
Torque Resource Manager
Administrator Guide 7.0.1

September 2023

Legal Notices
© 2013, 2023 Adaptive Computing Enterprises, Inc. All rights reserved.

This documentation and related software are provided under a license agreement
containing restrictions on use and disclosure and are protected by intellectual property
laws. Except as expressly permitted in your license agreement or allowed by law, you may
not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability,
is prohibited.

Distribution of this document for commercial purposes in either hard or soft copy form is
strictly prohibited without prior written consent from Adaptive Computing Enterprises, Inc.

This documentation and related software may provide access to or information about
content, products, and services from third-parties. Adaptive Computing is not responsible
for and expressly disclaims all warranties of any kind with respect to third-party content,
products, and services unless otherwise set forth in an applicable agreement between you
and Adaptive Computing. Adaptive Computing will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services,
except as set forth in an applicable agreement between you and Adaptive Computing.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint,
Moab Cluster Manager, Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab
Access Portal, and other Adaptive Computing products are either registered trademarks or
trademarks of Adaptive Computing Enterprises, Inc. The Adaptive Computing logo and the
Cluster Resources logo are trademarks of Adaptive Computing Enterprises, Inc. All other
company and product names may be trademarks of their respective companies.

The information contained herein is subject to change without notice and is not warranted
to be error free. If you find any errors, please report them to us in writing.

Adaptive Computing Enterprises, Inc.
1100 5th Avenue South, Suite #201
Naples, FL 34102
+1 (239) 330-6093
www.adaptivecomputing.com

2

http://www.adaptivecomputing.com/

Contents

Chapter 1: Introduction 13
1.1 Torque Administrator Guide Overview 13
1.2 Getting Started 14

1.2.1What is a ResourceManager? 15
1.2.2What are Batch Systems? 15
1.2.3 Basic Job Flow 16

Chapter 2: Installation and Configuration 18
2.1 Torque Installation Overview 18

2.1.1 Basic Server Configuration 19
2.1.2 Torque Architecture 21
2.1.3 Installing Torque ResourceManager 21
2.1.4 Compute Nodes 28
2.1.5 Enabling Torque as a Service 30

2.2 Initializing/Configuring Torque on the Server (pbs_server) 31
2.2.1 Specifying Compute Nodes 31
2.2.2 Configuring Torque on Compute Nodes 33
2.2.3 Configuring Ports 33
2.2.4 Configuring trqauthd for Client Commands 37
2.2.5 Finalizing Configurations 39

2.3 Advanced Configuration 39
2.3.1 Customizing the Install 40
2.3.2 Server Configuration 48
2.3.3 Setting Up theMOMHierarchy (Optional) 53
2.3.4 Opening Ports in a Firewall 56
2.3.5 Port Reference 56

2.4Manual Setup of Initial Server Configuration 62
2.5 Server Node File Configuration 63

2.5.1 Basic Node Specification 63
2.5.2 Specifying Virtual Processor Count for a Node 64
2.5.3 Specifying GPU Count for a Node 65
2.5.4 Specifying Node Features (Node Properties) 65

2.6 Testing Server Configuration 66
2.7 Configuring Torque for NUMA Systems 67

2.7.1 Torque NUMA-Aware Configuration 68
2.7.2 Torque NUMA-Support Configuration 70

3

4

2.8 TorqueMulti-MOM 75
2.8.1Multi-MOM Configuration 76
2.8.2 Stopping pbs_mom inMulti-MOMMode 77

2.9 SupportingMIGDevices in Torque 78
2.9.1 Requirements 78
2.9.2 Functionality 78
2.9.3 Limitations 78

Chapter 3: Submitting and Managing Jobs 80
3.1 Job Submission 80

3.1.1Multiple Job Submission 82
3.1.2ManagingMulti-Node Jobs 83
3.1.3 Requesting Resources 84
3.1.4 Requesting NUMA-Aware Resources 94
3.1.5 Requesting Generic Resources 94
3.1.6 Requesting Floating Resources 95
3.1.7 Requesting Other Resources 96
3.1.8 Exported Batch Environment Variables 96
3.1.9 Enabling Trusted Submit Hosts 97
3.1.10 Example Submit Scripts 98

3.2Monitoring Jobs 99
3.3 Canceling Jobs 101
3.4 Job Preemption 101
3.5 Keeping Completed Jobs 102
3.6 Job Checkpoint and Restart 103

3.6.1 Introduction to BLCR 103
3.6.2 Configuration Files and Scripts 104
3.6.3 Starting a Checkpointable Job 108
3.6.4 Checkpointing a Job 110
3.6.5 Restarting a Job 110
3.6.6 Acceptance Tests 111

3.7 Job Exit Status 111
3.8 Torque Process Tracking 114

3.8.1 Default Process Tracking 115
3.8.2 Task Manager API 115
3.8.3 Process Tracking with cgroups/cpusets 116

3.9 Large Job Arrays 116

Chapter 4: Managing Nodes 118
4.1 Adding Nodes 118
4.2 Node Properties 120

4.2.1 Run-TimeNode Changes 120
4.2.2Manual Node Changes 121
4.2.3 AddingMemory to a Node 121

4.3 Changing Node State 122
4.3.1Marking Jobs Offline 122
4.3.2 Listing Node States 122
4.3.3 Node Recovery 122

4.4 Changing Node Power States 122
4.5 Host Security 125

4.5.1 Enabling PAM with Torque 125
4.5.2 Using PAM Exception Instructions 126
4.5.3 Legacy Torque PAMConfiguration 127

4.6 Linux cpuset Support 128
4.6.1 cpuset Overview 128
4.6.2 cpuset Support 128
4.6.3 Configuring cpuset 129
4.6.4 cpuset Advantages/Disadvantages 129

4.7 Scheduling Cores 130
4.7.1 Geometry Request Configuration 130
4.7.2 Geometry Request Usage 131
4.7.3 Geometry Request Considerations 131

4.8 Scheduling Accelerator Hardware 132
4.9 Node Resource Plug-In 132

4.9.1 Plug-In Implementation Recommendations 133
4.9.2 Building the Plug-In 133
4.9.3 Testing the Plug-In 133
4.9.4 Enabling the Plug-In 134

Chapter 5: Setting Server Policies 136
5.1 Queue Configuration 136

5.1.1 Example Queue Configuration 137
5.1.2 Setting Queue Resource Controls with Resource Request Syntax 2.0 137
5.1.3 Setting a Default Queue 138
5.1.4Mapping aQueue to Subset of Resources 138
5.1.5 Creating a Routing Queue 139

5.2 Server High Availability 141
5.2.1 Redundant Server Host Machines 142
5.2.2 Enabling High Availability 142
5.2.3 Enhanced High Availability with Moab 143
5.2.4 How Commands Select the Correct Server Host 144

5

6

5.2.5 Job Names 144
5.2.6 Persistence of the pbs_server Process 144
5.2.7 High Availability of the NFS Server 145
5.2.8 Installing Torque in High Availability Mode 145
5.2.9 Installing Torque in High Availability Mode on Headless Nodes 150
5.2.10 Example Setup of High Availability 154

5.3 Settingmin_threads andmax_threads 155

Chapter 6: Integrating Schedulers for Torque 157

Chapter 7: Configuring Data Management 158
7.1 SCP Setup 158

7.1.1 Generating SSH Key on Source Host 159
7.1.2 Copying Public SSH Key to Each Destination Host 159
7.1.3 Configuring the SSH Daemon on Each Destination Host 160
7.1.4 Validating Correct SSH Configuration 160
7.1.5 Enabling Bi-Directional SCP Access 161
7.1.6 Troubleshooting 161

7.2 NFS andOther Networked Filesystems 161
7.3 File stage-in/stage-out 162

Chapter 8: MPI (Message Passing Interface) Support 164
8.1MPICH 164

8.1.1MPIExec Overview 164
8.1.2MPIExec Troubleshooting 165
8.1.3 General MPI Troubleshooting 165

8.2 OpenMPI 166

Chapter 9: Resources 168
9.1 About Resources 168
9.2 Configuration 168
9.3 Utilization 169
9.4 Node States 170

Chapter 10: Accounting Records 171
10.1 Location and Contents 171
10.2 Record Types 171
10.3 Accounting Variables 172
10.4 Fields 173

Chapter 11: Job Logging 176
11.1 Job Log Location and Name 176

11.2 Enabling Job Logs 176

Chapter 12: NUMA and Torque 178
12.1 Supported NUMA Systems 178
12.2 NUMA-Aware Systems 178

12.2.1 About NUMA-Aware Systems 179
12.2.2 Installation and Configuration 180
12.2.3 Job Resource Requests 180
12.2.4 JobMonitoring 181
12.2.5Moab/Torque NUMA Configuration 181
12.2.6 Considerations when Upgrading Versions or Changing Hardware 181

12.3 NUMA Tutorials 181
12.3.1 NUMA Primer 182
12.3.2 How NUMA Places Jobs 190
12.3.3 NUMA Discovery and Persistence 193

12.4 -L NUMA Resource Request 196
12.4.1 Syntax 196
12.4.2 Allocation Options 196

12.5 pbsnodes with NUMA-Awareness 205
12.6 NUMA-Support Systems 206

12.6.1 About NUMA-Supported Systems 207
12.6.2 Torque Installation and Configuration 207
12.6.3Moab/Torque NUMA Configuration 207

Chapter 13: Troubleshooting 208
13.1 Automatic Queue and Job Recovery 208
13.2 Host Resolution 209
13.3 Firewall Configuration 209
13.4 Torque Log Files 210

13.4.1 pbs_server and pbs_mom Log Files 210
13.4.2 trqauthd Log Files 210

13.5 Using tracejob to Locate Job Failures 211
13.5.1 Overview 211
13.5.2 Syntax 212
13.5.3 Example 212

13.6 Using GDB to Locate Job Failures 213
13.7 Other Diagnostic Options 214
13.8 Stuck Jobs 215
13.9 Frequently AskedQuestions (FAQ) 216

13.9.1 Cannot connect to server: error=15034 216
13.9.2 Deleting 'stuck' jobs 217

7

8

13.9.3Which user must run Torque? 217
13.9.4 Scheduler cannot run jobs - rc: 15003 217
13.9.5 PBS_Server: pbsd_init, Unable to read server database 218
13.9.6 qsub will not allow the submission of jobs requestingmany processors 219
13.9.7 qsub reports 'Bad UID for job execution' 219
13.9.8Why does my job keep bouncing from running to queued? 220
13.9.9 How do I use PVMwith Torque? 220
13.9.10My build fails attempting to use the TCL library 221
13.9.11My job will not start, failing with themessage 'cannot send job tomom, state=PRERUN' 221
13.9.12 How do I determine what version of Torque I am using? 221
13.9.13 How do I resolve autogen.sh errors that contain "error: possibly undefinedmacro: AC_MSG_
ERROR"? 221
13.9.14Why are there somany error messages in the client logs (trqauthd logs) when I don't notice
client commands failing? 222

13.10 Compute Node Health Check 222
13.10.1 ConfiguringMOMs to Launch a Health Check 223
13.10.2 Creating the Health Check Script 223
13.10.3 Adjusting Node State Based on the Health Check Output 224
13.10.4 Example Health Check Script 224

13.11 Debugging 225
13.11.1 Diagnostic and DebugOptions 225
13.11.2 Torque Error Codes 226

Appendix A: Commands Overview 232
A.1 Torque Services 233
A.2 Client Commands 233
A.3momctl 234
A.4 pbs_mom 242
A.5 pbs_server 249
A.6 pbs_track 253
A.7 pbsdsh 254
A.8 pbsnodes 257
A.9 qalter 260
A.10 qchkpt 270
A.11 qdel 272
A.12 qgpumode 274
A.13 qgpureset 276
A.14 qhold 276
A.15 qmgr 279
A.16 qmove 283
A.17 qorder 284

A.18 qrerun 285
A.19 qrls 287
A.20 qrun 289
A.21 qsig 291
A.22 qstat 293
A.23 qsub 302
A.24 qterm 323
A.25 trqauthd 325

Appendix B: Server Parameters 328

Appendix C: Node Manager (MOM) Configuration 357
C.1MOM Parameters 357
C.2 Node Features andGeneric Consumable Resource Specification 381

Appendix D: Diagnostics and Error Codes 382

Appendix E: Preparing to Upgrade 390
E.1 Considerations Before Upgrading 390
E.2 To Upgrade 390
E.3 Rolling Upgrade 391

Appendix F: Large Cluster Considerations 393
F.1 Scalability Guidelines 393
F.2 End-User CommandCaching 394
F.3Moab and Torque Configuration for Large Clusters 396
F.4 Starting Torque in Large Environments 397
F.5 Other Considerations 398

F.5.1 job_stat_rate 398
F.5.2 poll_jobs 398
F.5.3 Scheduler Settings 399
F.5.4 File System 399
F.5.5 Network ARP Cache 399

Appendix G: Prologue and Epilogue Scripts 401
G.1MOM Prologue and Epilogue Scripts 401
G.2 Script Order of Execution 403
G.3 Script Environment 404

G.3.1 Prologue Environment 404
G.3.2 Epilogue Environment 405
G.3.3 Environment Variables 406
G.3.4 Standard Input 408

9

10

G.4 Per Job Prologue and Epilogue Scripts 408
G.5 Prologue and Epilogue Scripts TimeOut 409
G.6 Prologue Error Processing 409

Appendix H: Running Multiple Torque Servers and MOMs on the Same Node 413
H.1 ConfiguringMultiple Servers to Run on the SameNode 413
H.2 Configuring the First Torque 413
H.3 Configuring the Second Torque 413
H.4 Bringing the First Torque Server Online 413
H.5 Bringing the Second Torque Server Online 414

Appendix I: Security Overview 415

Appendix J: Job Submission Filter (qsub Wrapper) 416

Appendix K: torque.cfg Configuration File 418

Appendix L: Torque Quick Start Guide 424
L.1 Initial Installation 424
L.2 Initialize/Configure Torque on the Server (pbs_server) 425
L.3 Install Torque on the Compute Nodes 425
L.4 Configure Torque on the Compute Nodes 426
L.5 Configure DataManagement on the Compute Nodes 426
L.6 Update Torque Server Configuration 426
L.7 Start the pbs_mom Daemons on Compute Nodes 427
L.8 Verify Correct Torque Installation 427
L.9 Enable the Scheduler 427
L.10 (Optional) Startup/Shutdown Service Script for Torque/Moab 428

Appendix M: BLCR Acceptance Tests 429
M.1 Test Environment 430
M.2 Test 1 - Basic Operation 430

M.2.1 Introduction 430
M.2.2 Test Steps 430
M.2.3 Possible Failures 431
M.2.4 Successful Results 431

M.3 Test 2 - Persistence of Checkpoint Images 433
M.3.1 Introduction 433
M.3.2 Test Steps 433
M.3.3 Possible Failures 433
M.3.4 Successful Results 434

M.4 Test 3 - Restart After Checkpoint 434

M.4.1 Introduction 434
M.4.2 Test Steps 434
M.4.3 Successful Results 434

M.5 Test 4 - Multiple Checkpoint/Restart 434
M.5.1 Introduction 434
M.5.2 Test Steps 434
M.5.3 Successful Results 435

M.6 Test 5 - Periodic Checkpoint 435
M.6.1 Introduction 435
M.6.2 Test Steps 435
M.6.3 Successful Results 435

M.7 Test 6 - Restart from Previous Image 436
M.7.1 Introduction 436
M.7.2 Test Steps 436
M.7.3 Successful Results 436

Appendix N: Queue Attributes 437
N.1Queue Attribute Reference 437
N.2 Attributes 437
N.3 Assigning Queue Resource Limits 448

11

12

1.1 Torque Administrator Guide Overview 13

Chapter 1: Introduction

Welcome to the Torque 7.0.1 Administrator Guide
This guide is intended as a reference for system administrators.

In this chapter:

1.1 Torque Administrator Guide Overview 13
1.2 Getting Started 14

1.1 Torque Administrator Guide Overview

Chapter 1: Introduction - page 13 provides basic introduction information to help you get
started using Torque.

Chapter 2: Installation and Configuration - page 18 provides the details for installation and
initialization, advanced configuration options, and (optional) qmgr option necessary to get
the system up and running. System testing is also covered.

Chapter 3: Submitting and Managing Jobs - page 80 covers different actions applicable to
jobs. The first section details how to submit a job and request resources (nodes, software
licenses, and so forth), and provides several examples. Other actions include monitoring,
canceling, preemption, and keeping completed jobs.

Chapter 4: Managing Nodes - page 118 covers administrator tasks relating to nodes, which
include the following: adding nodes, changing node properties, and identifying state. Also
an explanation of how to configure restricted user access to nodes is covered in Host
Security.

Chapter 5: Setting Server Policies - page 136 details server-side configurations of queue
and high availability.

Chapter 6: Integrating Schedulers for Torque - page 157 offers information about using the
native scheduler versus an advanced scheduler.

Chapter 7: Configuring Data Management - page 158 deals with issues of data
management. For non-network file systems, SCP Setup details setting up SSH keys and
nodes to automate transferring data. NFS and Other Networked Filesystems covers
configuration for these file systems. This chapter also addresses the use of file staging
using the stagein and stageout directives of the qsub command.

Chapter 1: Introduction

Chapter 8: MPI (Message Passing Interface) Support - page 164 offers details supporting
MPI.

Chapter 9: Resources - page 168 covers configuration, utilization, and states of resources.

Chapter 10: Accounting Records - page 171 explains how jobs are tracked by Torque for
accounting purposes.

Chapter 11: Job Logging - page 176 explains how to enable job logs that contain
information for completed jobs.

Chapter 12: NUMA and Torque - page 178 provides a centralized location for information
on configuring Torque for NUMA systems.

Chapter 13: Troubleshooting - page 208 is a guide that offers help with general problems.
It includes FAQ and instructions for how to set up and use compute node checks. It also
explains how to debug Torque.

The appendices provide tables of commands, parameters, configuration options, error
codes, the Quick Start Guide, and so forth.

l Appendix A: Commands Overview - page 232

l Appendix B: Server Parameters - page 328

l Appendix C: Node Manager (MOM) Configuration - page 357

l Appendix D: Diagnostics and Error Codes - page 382

l Appendix E: Preparing to Upgrade - page 390

l Appendix F: Large Cluster Considerations - page 393

l Appendix G: Prologue and Epilogue Scripts - page 401

l Appendix H: Running Multiple Torque Servers and MOMs on the Same Node - page 413

l Appendix I: Security Overview - page 415

l Appendix J: Job Submission Filter (qsub Wrapper) - page 416

l Appendix K: torque.cfg Configuration File - page 418

l Appendix L: Torque Quick Start Guide

l Appendix M: BLCR Acceptance Tests - page 429

l Appendix N: Queue Attributes - page 437

1.2 Getting Started

This topic contains some basic information to help you get started using Torque.

Chapter 1: Introduction

14 1.2 Getting Started

1.2 Getting Started 15

In this topic:

1.2.1 What is a Resource Manager? - page 15
1.2.2 What are Batch Systems? - page 15
1.2.3 Basic Job Flow - page 16

1.2.1 What is a Resource Manager?
While Torque has a built-in scheduler, pbs_sched, it is typically used solely as a resource
manager with a scheduler making requests to it. Resource managers provide the low-level
functionality to start, hold, cancel, and monitor jobs. Without these capabilities, a scheduler
alone cannot control jobs.

1.2.2 What are Batch Systems?
While Torque is flexible enough to handle scheduling a conference room, it is primarily
used in batch systems. Torque is based on a job scheduler called Portable Batch System
(PBS). Batch systems are a collection of computers and other resources (networks, storage
systems, license servers, and so forth) that operate under the notion that the whole is
greater than the sum of the parts. Some batch systems consist of just a handful of machines
running single-processor jobs, minimally managed by the users themselves. Other systems
have thousands and thousands of machines executing users' jobs simultaneously while
tracking software licenses and access to hardware equipment and storage systems.

Pooling resources in a batch system typically reduces technical administration of resources
while offering a uniform view to users. Once configured properly, batch systems abstract
away many of the details involved with running and managing jobs, allowing higher
resource utilization. For example, users typically only need to specify the minimal
constraints of a job and do not need to know the individual machine names of each host on
which they are running. With this uniform abstracted view, batch systems can execute
thousands and thousands of jobs simultaneously.

Batch systems are comprised of four different components: (1) Master Node, (2)
Submit/Interactive Nodes, (3) Compute Nodes, and (4) Resources.

Component Description

Master Node A batch system will have a master node where pbs_server runs.
Depending on the needs of the systems, a master node may be
dedicated to this task, or it may fulfill the roles of other components as
well.

Chapter 1: Introduction

Component Description

Submit/Interactive
Nodes

Submit or interactive nodes provide an entry point to the system for
users to manage their workload. For these nodes, users are able to
submit and track their jobs. Additionally, some sites have one or more
nodes reserved for interactive use, such as testing and troubleshooting
environment problems. These nodes have client commands (such as
qsub and qhold).

Compute Nodes Compute nodes are the workhorses of the system. Their role is to
execute submitted jobs. On each compute node, pbs_mom runs to
start, kill, and manage submitted jobs. It communicates with pbs_
server on the master node. Depending on the needs of the systems, a
compute node may double as the master node (or more).

Resources Some systems are organized for the express purpose of managing a
collection of resources beyond compute nodes. Resources can include
high-speed networks, storage systems, license managers, and so forth.
Availability of these resources is limited and needs to be managed
intelligently to promote fairness and increased utilization.

1.2.3 Basic Job Flow
The life cycle of a job can be divided into four stages: (1) creation, (2) submission, (3)
execution, and (4) finalization.

Stage Description

Creation Typically, a submit script is written to hold all of the parameters of a job.
These parameters could include how long a job should run (walltime), what
resources are necessary to run, and what to execute. The following is an
example submit file:
#PBS -N localBlast
#PBS -S /bin/sh
#PBS -l nodes=1:ppn=2,walltime=240:00:00
#PBS -M user@my.organization.com
#PBS -m ea
source ~/.bashrc
cd $HOME/work/dir
sh myBlast.sh -i -v

This submit script specifies the name of the job (localBlast), what environment
to use (/bin/sh), that it needs both processors on a single node
(nodes=1:ppn=2), that it will run for at most 10 days, and that Torque
should email 'user@my.organization.com' when the job exits or aborts.
Additionally, the user specifies where and what to execute.

Chapter 1: Introduction

16 1.2 Getting Started

1.2 Getting Started 17

Stage Description

Submission A job is submitted with the qsub command. Once submitted, the policies set
by the administration and technical staff of the site dictate the priority of the
job and therefore, when it will start executing.

Execution Jobs often spend most of their lifecycle executing. While a job is running, its
status can be queried with qstat.

Finalization When a job completes, by default, the stdout and stderr files are copied to
the directory where the job was submitted.

Chapter 1: Introduction

2.1 Torque Installation Overview 18

Chapter 2: Installation and Configuration

This chapter contains some basic information about Torque, including how to install and
configure it on your system.

In this chapter:

2.1 Torque Installation Overview 18
2.2 Initializing/Configuring Torque on the Server (pbs_server) 31
2.3 Advanced Configuration 39
2.4 Manual Setup of Initial Server Configuration 62
2.5 Server Node File Configuration 63
2.6 Testing Server Configuration 66
2.7 Configuring Torque for NUMA Systems 67
2.8 Torque Multi-MOM 75
2.9 Supporting MIG Devices in Torque 78

2.1 Torque Installation Overview

This section contains information about Torque architecture and explains how to install
Torque. It also describes how to install Torque packages on compute nodes and how to
enable Torque as a service.

In this topic:

2.1.1 Basic Server Configuration 19
2.1.2 Torque Architecture 21
2.1.3 Installing Torque Resource Manager 21
2.1.4 Compute Nodes 28
2.1.5 Enabling Torque as a Service 30

Related Topics

l Chapter 13: Troubleshooting - page 208

Chapter 2: Installation and Configuration

2.1.1 Basic Server Configuration

2.1.1.A Server Configuration File (serverdb)
The server configuration is maintained in a file named serverdb, located in TORQUE_
HOME/server_priv. The serverdb file contains all parameters pertaining to the
operation of Torque plus all of the queues that are in the configuration. For pbs_server to
run, serverdb must be initialized.

You can initialize serverdb in two different ways, but the recommended way is to use the
./torque.setup script:

l As root, execute ./torque.setup from the build directory (see ./torque.setup).

l Use pbs_server -t create (see -t).

Restart pbs_server after initializing serverdb:

> qterm
> systemctl start pbs_server.service

2.1.1.B ./torque.setup
The torque.setup script uses pbs_server -t create to initialize serverdb and
then adds a user as a manager and operator of Torque and other commonly used
attributes. The syntax is as follows:
/torque.setupusername

> ./torque.setup ken
> qmgr -c 'p s'

#
Create queues and set their attributes.
#
#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = ken@kmn
set server operators = ken@kmn
set server default_queue = batch

Chapter 2: Installation and Configuration

19 2.1 Torque Installation Overview

2.1 Torque Installation Overview 20

set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6
set server mom_job_sync = True
set server keep_completed = 300

A single queue named batch and a few needed server attributes are created.

2.1.1.C pbs_server -t create
The -t create option instructs pbs_server to create the serverdb file and initialize it
with a minimum configuration to run pbs_server:

> pbs_server -t create

To see the configuration and verify that Torque is configured correctly, use qmgr:

> qmgr -c 'p s'

#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6

2.1.1.D Setting Up the Environment for pbs_server and pbs_mom
The pbs_environment file (default location: TORQUE_HOME/pbs_environment)
will be sourced by pbs_mom and pbs_server when they are launched. If there are
environment variables that should be set for pbs_server and/or pbs_mom, they can be
placed in this file.

A pbs_environment file with a non-default name and/or location can be specified
before compilation with the --with-environ=PATH configuration option. See Table 2-
2: Optional Packages - page 44 for more information. To determine whether a non-default
pbs_environment file is in use, run pbs_server --about.

The pbs_environment file should not be confused with the PBS_ENVIRONMENT
job environment variable.

Chapter 2: Installation and Configuration

Related Topics

l Appendix C: Node Manager (MOM) Configuration - page 357

l 2.3 Advanced Configuration - page 39

l 13.11 Debugging - page 225

2.1.2 Torque Architecture

A Torque cluster consists of one head node and many compute nodes. The head node runs
the pbs_server daemon and the compute nodes run the pbs_mom daemon. Client
commands for submitting and managing jobs can be installed on any host (including hosts
not running pbs_server or pbs_mom).

The head node also runs a scheduler daemon. The scheduler interacts with pbs_server to
make local policy decisions for resource usage and allocate nodes to jobs. A simple FIFO
scheduler, and code to construct more advanced schedulers, is provided in the Torque
source distribution. Most Torque users choose to use a packaged, advanced scheduler such
as Maui or Moab.

Users submit jobs to pbs_server using the qsub command. When pbs_server receives a
new job, it informs the scheduler. When the scheduler finds nodes for the job, it sends
instructions to run the job with the node list to pbs_server. Then, pbs_server sends the new
job to the first node in the node list and instructs it to launch the job. This node is
designated the execution host and is called Mother Superior. Other nodes in a job are called
sister MOMs.

Related Topics

l 2.1 Torque Installation Overview - page 18

2.1.3 Installing Torque Resource Manager

If you intend to use Torque Resource Manager with Moab Workload Manager, you
must run Moab version 8.0 or later. However, some Torque functionality may not be
available. See the Moab HPC Suite Release Notes for more information.

This topic contains instructions on how to install and start Torque Resource Manager
(Torque).

Chapter 2: Installation and Configuration

21 2.1 Torque Installation Overview

2.1 Torque Installation Overview 22

2.1.3.A Requirements

Supported Operating Systems
l Red Hat Linux 7, 8

l SUSE Linux 12, 15

l Ubuntu 18.04, 20.04, 22.04

Note:Moab 10.x / Torque 7.x are required to use CentOS 8, RHEL 8, and Ubuntu 18.04 and
later.

Software Requirements
l libxml2-devel package (package name may vary)

l openssl-devel package (package name may vary)

l Tcl/Tk version 8 or later if you plan to build the GUI portion of Torque, or use a Tcl-
based scheduler

l cpusets and cgroups
cgroups are supported and cpusets are handled by the cgroup cpuset subsystem.

It is recommended that you use --enable-cgroups instead of --enable-cpuset.
--enable-cpuset is deprecated and no new features will be added to it.

o boost version: 1.41 or later
o libcgroup version: Red Hat-based systems must use libcgroup version 0.40.rc1-
16.el6 or later; SUSE-based systems need to use a comparative libcgroup
version.

o libhwloc version: 1.9.1 is the minimum supported, however NVIDIA K80
requires libhwloc 1.11.0. Instructions for installing hwloc are provided as part
of the Torque Resource Manager install or upgrade instructions.

l If using NVIDIA/NVML configuration flags:
o NVIDIA driver version >= 450.80.02
o CUDA driver >= 11.0

l If you build Torque from source, the following additional software is required:
o gcc
o gcc-c++
o posix-compatible version of make

Chapter 2: Installation and Configuration

o libtool 1.5.22 or later
o boost-devel 1.36.0 or later

Red Hat-based systems come packaged with 1.53.0. If needed, use the --
with-boost-path=DIR option to change the packaged boost version. See
2.3.1 Customizing the Install - page 40 for more information.

2.1.3.B Open Necessary Ports
Torque requires certain ports to be open for essential communication.

If your site is running firewall software on its hosts, you will need to configure the firewall
to allow connections to the necessary ports.

Location Ports Functions When
Needed

Torque Server Host 15001 Torque Client and MOM communication
to Torque Server

Always

Torque MOM Host
(Compute Nodes)

15002 Torque Server communication to Torque
MOMs

Always

Torque MOM Host
(Compute Nodes)

15003 Torque MOM communication to other
Torque MOMs

Always

If using the MOM hierarchy, documented in 2.3.3 Setting Up the MOM Hierarchy (Optional)
- page 53, you must also open port 15003 from the server to the nodes.

See also:

l Opening Ports in a Firewall for general instructions and an example of how to open
ports in the firewall.

l 2.2.3 Configuring Ports - page 33 for more information on how to configure the ports
that Torque uses for communication.

2.1.3.C Install Dependencies, Packages, or Clients

Install Packages
On the Torque Server Host, use the following commands to install the libxml2-devel,
openssl-devel, and boost-devel packages.

Chapter 2: Installation and Configuration

23 2.1 Torque Installation Overview

2.1 Torque Installation Overview 24

l Red Hat-based systems:

[root]# yum install libtool openssl-devel libxml2-devel boost-devel gcc gcc-c++

l SUSE-based systems:

[root]# zypper install libopenssl-devel libtool libxml2-devel boost-devel gcc gcc-c++
make gmake postfix

Install hwloc

Using 'yum install hwloc' for Red Hat-based systems or 'zypper install hwloc' for
SUSE-based systems may install an older, non-supported version.

When cgroups are enabled (recommended), hwloc version 1.9.1 or later is required.
NVIDIA K80 requires libhwloc 1.11.0. If cgroups are to be enabled, check the Torque
Server Host to see if the required version of hwloc is installed. You can check the version
number by running the following command:

[root]# hwloc-info --version

The following instructions are for installing version 1.9.1.

If hwloc is not installed or needs to be upgraded to the required version, do the following.

1. On the Torque Server Host, each Torque MOM Host, and each Torque Client Host, do the
following.

a. Download hwloc-1.9.1.tar.gz from https://www.open-mpi.org/software/hwloc/v1.9.

b. Run each of the following commands in order.

l Red Hat-based systems:

[root]# yum install gcc make
[root]# tar -xzvf hwloc-1.9.1.tar.gz
[root]# cd hwloc-1.9.1
[root]# ./configure
[root]# make
[root]# make install

l SUSE-based systems:

[root]# zypper install gcc make
[root]# tar -xzvf hwloc-1.9.1.tar.gz
[root]# cd hwloc-1.9.1
[root]# ./configure
[root]# make
[root]# make install

2. Run the following commands on the Torque Server Host only:

[root]# echo /usr/local/lib >/etc/ld.so.conf.d/hwloc.conf

Chapter 2: Installation and Configuration

https://www.open-mpi.org/software/hwloc/v1.9

[root]# ldconfig

2.1.3.D Install Torque Server

You must complete the tasks to install the dependencies, packages, or clients before
installing Torque Server. See 2.1.3.C Install Dependencies, Packages, or Clients - page
23.

If your configuration uses firewalls, you must also open the necessary ports before
installing the Torque Server. See 2.1.3.B Open Necessary Ports - page 23.

On the Torque Server Host, do the following.

1. Download the latest Torque build from Adaptive Computing Torque Downloads:

[root]# tar -xzvf torque-7.0.1.tar.gz
[root]# cd torque-7.0.1/

2. Determine which ./configure command options you need to add, based on your system
configuration.

At a minimum, you add:

--enable-cgroups

--with-hwloc-path=/usr/local (see 2.1.3.A Requirements - page 22 for more
information)

These instructions assume you are using cgroups. When cgroups are supported,
cpusets are handled by the cgroup cpuset subsystem. If you are not using cgroups,
use --enable-cpusets instead.

For SUSE-based systems only. If --enable-gui is part of your configuration, do the
following:

$ cd /usr/lib64
$ ln -s libXext.so.6.4.0 libXext.so
$ ln -s libXss.so.1 libXss.so

When finished, cd back to your install directory.

See 2.3.1 Customizing the Install - page 40 for more information on which options are
available to customize the ./configure command.

Chapter 2: Installation and Configuration

25 2.1 Torque Installation Overview

https://support.adaptivecomputing.com/hpc-cloud-support-portal-2/

2.1 Torque Installation Overview 26

3. Run each of the following commands in order:

[root]# ./configure --enable-cgroups --with-hwloc-path=/usr/local # add any other
specified options
[root]# make
[root]# make install

4. Source the appropriate profile file to add /usr/local/bin and
/usr/local/sbin to your path:

[root]# . /etc/profile.d/torque.sh

5. Initialize serverdb by executing the torque.setup script:

[root]# ./torque.setup root

6. Add nodes to the /var/spool/torque/server_priv/nodes file. See 2.2.1
Specifying Compute Nodes - page 31 for information on syntax and options for
specifying compute nodes.

7. Configure pbs_server to start automatically at system boot, and then start the daemon:

[root]# qterm
[root]# systemctl enable pbs_server.service
[root]# systemctl start pbs_server.service

2.1.3.E Install Torque MOMs
In most installations, you will install a Torque MOM on each of your compute nodes.

See Specifying Compute Nodes or Configuring Torque on Compute Nodes for more
information.

Do the following.

1. On the Torque Server Host, do the following.

a. Create the self-extracting packages that are copied and executed on your nodes:

[root]# make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-gui-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.

The package files are self-extracting packages that can be copied and executed
on your production machines. Use --help for options.

Chapter 2: Installation and Configuration

b. Copy the self-extracting MOM packages to each Torque MOM Host.
Adaptive Computing recommends that you use a remote shell, such as SSH, to install
packages on remote systems. Set up shared SSH keys if you do not want to supply a
password for each Torque MOM Host.

[root]# scp torque-package-mom-linux-x86_64.sh <mom-node>:

c. Copy the pbs_mom startup script to each Torque MOM Host:

[root]# scp contrib/systemd/pbs_mom.service <mom-node>:/usr/lib/systemd/system/

2. On each Torque MOM Host, do the following.

a. Install cgroup-tools.

l Red Hat-based systems:

[root]# yum install libcgroup-tools

l SUSE-based systems:

[root]# zypper install libcgroup-tools

b. Install cgroup-tools.

l Red Hat-based systems:

[root]# yum install libcgroup-tools

l SUSE-based systems:

[root]# zypper install libcgroup-tools

c. Install the self-extracting MOM package:

[root]# ./torque-package-mom-linux-x86_64.sh --install

d. (Optional.) If you expect your jobs to require more than the default 12 MB of stack
space, increase the stack limit by editing the LimitSTACK setting in
/usr/lib/systemd/system/pbs_mom.service:

LimitSTACK=infinity

e. Configure pbs_mom to start at system boot, and then start the daemon:

[root]# systemctl enable pbs_mom.service
[root]# systemctl start pbs_mom.service

2.1.3.F Install Torque Clients
If you want to have the Torque client commands installed on hosts other than the Torque
Server Host (such as the compute nodes or separate login nodes), do the following.

Chapter 2: Installation and Configuration

27 2.1 Torque Installation Overview

2.1 Torque Installation Overview 28

1. On the Torque Server Host, do the following.

a. Copy the self-extracting client package to each Torque Client Host:

Adaptive Computing recommends that you use a remote shell, such as SSH, to
install packages on remote systems. Set up shared SSH keys if you do not want
to supply a password for each Torque Client Host.

[root]# scp torque-package-clients-linux-x86_64.sh <torque-client-host>:

b. Copy the trqauthd startup script to each Torque Client Host:

[root]# scp contrib/systemd/trqauthd.service <torque-client-
host>:/usr/lib/systemd/system/

2. On each Torque Client Host, do the following.

a. Install the self-extracting client package:

[root]# ./torque-package-clients-linux-x86_64.sh --install

b. Enable and start the trqauthd service:

[root]# systemctl enable trqauthd.service
[root]# systemctl start trqauthd.service

2.1.3.G Configure Data Management
When a batch job completes, stdout and stderr files are generated and placed in the spool
directory on the master Torque MOM Host for the job instead of the submit host. You can
configure the Torque batch environment to copy the stdout and stderr files back to the
submit host. See Configuring Data Management for more information.

2.1.4 Compute Nodes

Use the Adaptive Computing Torque package system to create self-extracting tarballs that
can be distributed and installed on compute nodes. The Torque packages are customizable.
See the INSTALL file for additional options and features.

Chapter 2: Installation and Configuration

If you installed Torque using the RPMs, you must install and configure your nodes
manually by modifying the /var/spool/torque/mom_priv/config file of
each one. This file is identical for all compute nodes and can be created on the head
node and distributed in parallel to all systems.

[root]# vi /var/spool/torque/mom_priv/config

$pbsserver headnode # hostname running pbs server
$logevent 225 # bitmap of which events to log

[root]# service pbs_mom restart

To Create Torque Packages

1. Configure and make as normal, and then run make packages:

> make packages
Building ./torque-package-clients-linux-i686.sh ...
Building ./torque-package-mom-linux-i686.sh ...
Building ./torque-package-server-linux-i686.sh ...
Building ./torque-package-gui-linux-i686.sh ...
Building ./torque-package-devel-linux-i686.sh ...
Done.

The package files are self-extracting packages that can be copied and executed on
your production machines. Use --help for options.

2. Copy the desired packages to a shared location:

> cp torque-package-mom-linux-i686.sh /shared/storage/
> cp torque-package-clients-linux-i686.sh /shared/storage/

3. Install the Torque packages on the compute nodes.
Adaptive Computing recommends that you use a remote shell, such as SSH, to install
Torque packages on remote systems. Set up shared SSH keys if you do not want to
supply a password for each host.

The only required package for the compute node is mom-linux. Additional
packages are recommended so you can use client commands and submit jobs from
compute nodes.

The following is an example of how to copy and install mom-linux in a distributed
fashion:

> for i in node01 node02 node03 node04 ; do scp torque-package-mom-linux-i686.sh
${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do scp torque-package-clients-linux-
i686.sh ${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-package-mom-linux-
i686.sh --install ; done

Chapter 2: Installation and Configuration

29 2.1 Torque Installation Overview

2.1 Torque Installation Overview 30

> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-package-clients-
linux-i686.sh --install ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} ldconfig ; done

Alternatively, you can use a tool like xCAT instead of dsh. To use a tool like xCAT.

1. Copy the Torque package to the nodes:

> prcp torque-package-linux-i686.sh noderange:/destinationdirectory/

2. Install the Torque package:

> psh noderange /tmp/torque-package-linux-i686.sh --install

Although optional, it is possible to use the Torque server as a compute node and install a
pbs_mom with the pbs_server daemon.

Related Topics

l 2.1 Torque Installation Overview - page 18

2.1.5 Enabling Torque as a Service

Enabling Torque as a service is optional. In order to run Torque as a service, you
must enable trqauthd. (see Configuring trqauthd for Client Commands).

The method for enabling Torque as a service is dependent on the Linux variant you are
using. Startup scripts are provided in the contrib/init.d/ or contrib/systemd/
directory of the source package. To enable Torque as a service, run the following as root on
the host for the appropriate Torque daemon:

> cp contrib/systemd/pbs_mom.service /usr/lib/systemd/pbs_server.service
> systemctl enable pbs_mom.service
> cp contrib/systemd/pbs_server.service /usr/lib/systemd/pbs_server.service
> systemctl enable pbs_server.service

You will need to customize these scripts to match your system.

These options can be added to the self-extracting packages. For more details, see the
INSTALL file.

Chapter 2: Installation and Configuration

Related Topics

l 2.1 Torque Installation Overview - page 18

l 2.2.4 Configuring trqauthd for Client Commands - page 37

2.2 Initializing/Configuring Torque on the Server
(pbs_server)

The Torque server (pbs_server) contains all the information about a cluster. It knows
about all of the MOM nodes in the cluster based on the information in the TORQUE_
HOME/server_priv/nodes file (see 2.2.2 Configuring Torque on Compute Nodes -
page 33). It also maintains the status of each MOM node through updates from the MOMs
in the cluster (see pbsnodes). All jobs are submitted via qsub to the server, which
maintains a master database of all jobs and their states.

Schedulers such as Moab Workload Manager receive job, queue, and node information
from pbs_server and submit all jobs to be run to pbs_server.

In this topic:

2.2.1 Specifying Compute Nodes 31
2.2.2 Configuring Torque on Compute Nodes 33
2.2.3 Configuring Ports 33
2.2.4 Configuring trqauthd for Client Commands 37
2.2.5 Finalizing Configurations 39

2.2.1 Specifying Compute Nodes

The environment variable TORQUE_HOME holds the directory path where configuration
files are stored. If you used the default locations during installation, you do not need to
specify the TORQUE_HOME environment variable.

The pbs_server must recognize which systems on the network are its compute nodes.
Specify each node on a line in the server's nodes file. This file is located at TORQUE_
HOME/server_priv/nodes. In most cases, it is sufficient to specify just the names of
the nodes on individual lines; however, various properties can be applied to each node.

Only a root user can access the server_priv directory.

Chapter 2: Installation and Configuration

31 2.2 Initializing/Configuring Torque on the Server (pbs_server)

2.2 Initializing/Configuring Torque on the Server (pbs_server) 32

Syntax of nodes file:

node-name[:ts] [np=] [gpus=] [properties]

l The node-name must match the hostname on the node itself, including whether it is
fully qualified or shortened.

You can specify a compute node's hostname by starting each pbs_mom with
the -H hostname option, or by adding a line for $mom_host in TORQUE_
HOME/mom_priv/config on the pbs_mom host(s). (You can run
hostname -f to obtain a node's hostname.)

l The [:ts] option marks the node as timeshared. Timeshared nodes are listed by
the server in the node status report, but the server does not allocate jobs to them.

l The [np=] option specifies the number of virtual processors for a given node. The
value can be less than, equal to, or greater than the number of physical processors
on any given node.

l The [gpus=] option specifies the number of GPUs for a given node. The value can
be less than, equal to, or greater than the number of physical GPUs on any given
node.

l The node processor count can be automatically detected by the Torque server if
auto_node_np is set to TRUE. This can be set using this command:

qmgr -c 'set server auto_node_np = True'

Setting auto_node_np to TRUE overwrites the value of np set in TORQUE_
HOME/server_priv/nodes.

l The [properties] option enables you to specify arbitrary strings to identify the
node. Property strings are alphanumeric characters only and must begin with an
alphabetic character.

l Comment lines are allowed in the nodes file if the first non-white space character is
the pound sign (#).

The following example shows a possible node file listing.

TORQUE_HOME/server_priv/nodes:

Nodes 001 and 003-005 are cluster nodes
#
node001 np=2 cluster01 rackNumber22
#
node002 will be replaced soon
node002:ts waitingToBeReplaced
node002 will be replaced soon
#
node003 np=4 cluster01 rackNumber24
node004 cluster01 rackNumber25

Chapter 2: Installation and Configuration

node005 np=2 cluster01 rackNumber26 RAM16GB
node006
node007 np=2
node008:ts np=4
...

Related Topics

l Initializing/Configuring Torque on the Server (pbs_server)

2.2.2 Configuring Torque on Compute Nodes

If you are using Torque self-extracting packages with default compute node configuration,
no additional steps are required and you can skip this section.

If installing manually, or advanced compute node configuration is needed, edit the
TORQUE_HOME/mom_priv/config file on each node. The recommended settings
follow.

TORQUE_HOME/mom_priv/config:

$logevent 1039 # bitmap of which events to log

This file is identical for all compute nodes and can be created on the head node and
distributed in parallel to all systems.

Related Topics

l 2.2 Initializing/Configuring Torque on the Server (pbs_server) - page 31

2.2.3 Configuring Ports

This topic provides information on configuring and managing the ports Torque uses for
communication.

2.2.3.A Configuring Torque Communication Ports
You can optionally configure the various ports that Torque uses for communication. Most
ports can be configured multiple ways. Instructions for configuring each of the ports is
provided below.

Chapter 2: Installation and Configuration

33 2.2 Initializing/Configuring Torque on the Server (pbs_server)

2.2 Initializing/Configuring Torque on the Server (pbs_server) 34

If you are running PBS Professional on the same system, be aware that it uses the
same environment variables and /etc/services entries.

Configuring the pbs_server Listening Port
To configure the port the pbs_server listens on, follow any of these steps.

l Set an environment variable called PBS_BATCH_SERVICE_PORT to the port
desired.

l Edit the /etc/services file and set pbs port_num/tcp.
l Start pbs_server with the -p option.

o Edit /etc/systemconfig/pbs_server:

PBS_ARGS="-p"

o Start the service:

systemctl start pbs_server.service

l Edit the $PBS_HOME/server_name file and change server_name to server_
name:<port_num>.

l Start pbs_server with the -H option.
o Edit /etc/systemconfig/pbs_server:

PBS_ARGS="-H"

o Start the service:

systemctl start pbs_server.service

Configuring the pbs_mom Listening Port
To configure the port the pbs_mom listens on, follow any of these steps.

l Set an environment variable called PBS_MOM_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs_mom port_num/tcp.

l Start pbs_mom with the -M option.
o Edit /etc/systemconfig/pbs_mom:

PBS_ARGS="-M"

o Start the service:

systemctl start pbs_mom.service

Chapter 2: Installation and Configuration

l Edit the pbs_server nodes file to add mom_service_port=port_num.

Configuring the Port pbs_server Uses to Communicate with pbs_mom
To configure the port the pbs_server uses to communicate with pbs_mom, follow any of
these steps.

l Set an environment variable called PBS_MOM_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs_mom port_num/tcp.

l Start pbs_mom with the -M option.
o Edit /etc/systemconfig/pbs_mom:

PBS_ARGS="-M"

o Start the service:

systemctl start pbs_mom.service

Configuring the Port pbs_mom Uses to Communicate with pbs_server
To configure the port the pbs_mom uses to communicate with pbs_server, follow any of
these steps.

l Set an environment variable called PBS_BATCH_SERVICE_PORT to the port
desired.

l Edit the /etc/services file and set pbs port_num/tcp.

l Start pbs_mom with the -S option.
o Edit /etc/systemconfig/pbs_mom:

PBS_ARGS="-S"

o Start the service:

systemctl start pbs_mom.service

l Edit the nodes file entry for that list: add mom_service_port=port_num.

Configuring the Port Client Commands Use to Communicate with pbs_
server
To configure the port client commands use to communicate with pbs_server, follow any
of these steps:

l Edit the /etc/services file and set pbs port_num/tcp.

l Edit the $PBS_HOME/server_name file and change server_name to server_
name:<port_num>

Chapter 2: Installation and Configuration

35 2.2 Initializing/Configuring Torque on the Server (pbs_server)

2.2 Initializing/Configuring Torque on the Server (pbs_server) 36

Configuring the Port trqauthd Uses to Communicate with pbs_server
To configure the port trqauthd uses to communicate with pbs_server, do the following:

l Edit the $PBS_HOME/server_name file and change server_name to server_
name:<port_num>.

2.2.3.B Changing Default Ports
This section provides examples of changing the default ports (using non-standard ports).

MOM Service Port
The MOM service port is the port number on which MOMs are listening. This example
shows how to change the default MOM service port (15002) to port 30001.

Do the following.

1. On the server, for the server_priv/nodes file, change the node entry:

nodename np=4 mom_service_port=30001

2. On the MOM, start pbs_mom with the -M option.
l Edit /etc/systemconfig/pbs_mom:

PBS_ARGS="-M"

l Start the service:

systemctl start pbs_mom.service

Default Port on the Server
Do the following.

1. Set the $(TORQUE_HOME)/server_name file:

hostname:newport
numa3.ac:45001

2. On the MOM, start pbs_mom with the -S option.
l Edit /etc/systemconfig/pbs_mom:

PBS_ARGS="-S"

l Start the service:

systemctl start pbs_mom.service

Chapter 2: Installation and Configuration

MOM Manager Port
The MOM manager port tell MOMs which ports on which other MOMs are listening for
MOM-to-MOM communication. This example shows how to change the default MOM
manager port (15003) to port 30002.

Do the following.

1. On the server nodes file:

nodename np=4 mom_manager_port=30002

2. On the MOM, start pbs_mom with the -R option.
l Edit /etc/systemconfig/pbs_mom:

PBS_ARGS="-R"

l Start the service:

systemctl start pbs_mom.service

Related Topics

l 2.2 Initializing/Configuring Torque on the Server (pbs_server) - page 31

l pbs_server

l pbs_mom

l trqauthd

l client commands

2.2.4 Configuring trqauthd for Client Commands

trqauthd is a daemon used by Torque client utilities to authorize user connections to
pbs_server. Once started, it remains resident. Torque client utilities then communicate
with trqauthd on port 15005 on the loopback interface. It is multi-threaded and can
handle large volumes of simultaneous requests.

Running trqauthd
trqauthd must be run as root. It must also be running on any host where Torque client
commands will execute.

By default, trqauthd is installed to /usr/local/bin.

Chapter 2: Installation and Configuration

37 2.2 Initializing/Configuring Torque on the Server (pbs_server)

2.2 Initializing/Configuring Torque on the Server (pbs_server) 38

If you run trqauthd before starting pbs_server, you will receive a warning that
no servers are available. To avoid this message, start pbs_server before running
trqauthd.

trqauthd can be invoked directly from the command line or by the use of scripts that are
located in the Torque source tree.

Note: The systemd scripts are located in the contrib/systemd directory.

There are two scripts for trqauthd:

Script Description

suse.trqauthd Used only for SUSE-based systems.

trqauthd An example for other package managers (Red Hat, Scientific, CentOS, and
Fedora are some common examples).

You should edit these scripts to be sure they will work for your site.

Inside each of the scripts are the variables PBS_DAEMON and PBS_HOME. These two
variables should be updated to match your Torque installation. PBS_DAEMON needs to
point to the location of trqauthd. PBS_HOME needs to match your Torque installation.

Do the following.

1. Choose the script that matches your dist system and copy it to /etc/init.d. If
needed, rename it to trqauthd.

2. Restart the service:

systemctl restart trqauthd.service

If you receive an error that says "Could not open socket in trq_simple_connect. error
97", check your /etc/hosts file for multiple entries of a single host name pointing
to the same IP address. Delete the duplicate(s), save the file, and launch trqauthd
again.

Related Topics

l Initializing/Configuring Torque on the Server (pbs_server)

Chapter 2: Installation and Configuration

2.2.5 Finalizing Configurations

After configuring the serverdb and the server_priv/nodes files, and after ensuring
minimal MOM configuration, restart the pbs_server on the server node and the pbs_
mom on the compute nodes.

l Compute Nodes:

> systemctl start pbs_mom.service

l Server Node:

> systemctl restart pbs_server.service

After waiting several seconds, the pbsnodes -a command should list all nodes in state
free.

Related Topics

l 2.2 Initializing/Configuring Torque on the Server (pbs_server) - page 31

2.3 Advanced Configuration

This section contains information about how you can customize the installation and
configure the server to ensure that the server and nodes are communicating correctly.

In this topic:

2.3.1 Customizing the Install 40
2.3.2 Server Configuration 48
2.3.3 Setting Up the MOM Hierarchy (Optional) 53
2.3.4 Opening Ports in a Firewall 56
2.3.5 Port Reference 56

Related Topics

l Appendix B: Server Parameters - page 328

Chapter 2: Installation and Configuration

39 2.3 Advanced Configuration

2.3 Advanced Configuration 40

2.3.1 Customizing the Install

The Torque configure command has several options available. Listed below are some
suggested options to use when running ./configure.

By default, only children MOM processes use syslog. To enable syslog for all of
Torque, use --enable-syslog.

Table 2-1: Optional Features

Option Description

--disable-
clients

Directs Torque not to build and install the Torque client utilities such as
qsub, qstat, qdel, etc.

--disable-
FEATURE

Do not include FEATURE (same as --enable-FEATURE=no).

--disable-
libtool-lock

Avoid locking (might break parallel builds).

--disable-mom Do not include the MOM daemon.

--disable-
mom-
checkspool

Don't check free space on spool directory and set an error.

--disable-
posixmemlock

Disable the MOM's use of mlockall. Some versions of OSs seem to
have buggy POSIX MEMLOCK.

--disable-
privports

Disable the use of privileged ports for authentication. Some versions of
OSX have a buggy bind() and cannot bind to privileged ports.

--disable-
qsub-keep-
override

Do not allow the qsub -k flag to override -o -e.

--disable-
server

Do not include server and scheduler.

--disable-
shell-pipe

Give the job script file as standard input to the shell instead of passing its
name via a pipe.

--disable-
spool

If disabled, Torque will create output and error files directly in

Chapter 2: Installation and Configuration

Option Description

TORQUE_HOME/.pbs_spool if it exists or in TORQUE_HOME
otherwise. By default, Torque will spool files in TORQUE_HOME/spool
and copy them to the users home directory when the job completes.

--disable-
xopen-
networking

With HPUX and GCC, don't force usage of XOPEN and libxnet.

--enable-
acct-x

Enable adding x attributes to accounting log.

--enable-
array

Setting this under IRIX enables the SGI Origin 2000 parallel support.
Normally autodetected from the /etc/config/array file.

--enable-
autorun

Turn on the AUTORUN_JOBS flag. When enabled, Torque runs the jobs
as soon as they are submitted (destroys Moab compatibly). This option
is not supported.

--enable-blcr Enable BLCR support.

--enable-
cgroups

Enable cgroups. When cgroups are enabled, cpusets are handled by the
cgroup cpuset subsystem. Requires --with-hwloc-path.

If you are building with cgroups enabled, you must have Boost
version 1.41 or later.

--enable-cgroups is not compatible with --enable-
geometry-requests.

--enable-
cpuset

Enable Linux 2.6 kernel cpusets.

It is recommended that you use --enable-cgroups instead of
--enable-cpuset. --enable-cpuset is deprecated and no
new features will be added to it. --enable-cgroups and
--enable-cpuset are mutually exclusive.

--enable-
debug

Prints debug information to the console for pbs_server and pbs_mom
while they are running. (This is different than --with-debug, which
will compile with debugging symbols.)

--enable-
dependency-

Do not reject slow dependency extractors.

Chapter 2: Installation and Configuration

41 2.3 Advanced Configuration

2.3 Advanced Configuration 42

Option Description

tracking

--enable-
fast-install
[=PKGS]

Optimize for fast installation [default=yes].

--enable-
FEATURE[=ARG]

Include FEATURE [ARG=yes].

--enable-
filesync

Open files with sync on each write operation. This has a negative impact
on Torque performance. This is disabled by default.

--enable-
force-
nodefile

Forces creation of nodefile regardless of job submission parameters. Not
on by default.

--enable-gcc-
warnings

Enable gcc strictness and warnings. If using gcc, default is to error on any
warning.

--enable-
geometry-
requests

Torque is compiled to use procs_bitmap during job submission.

When using --enable-geometry-requests, do not disable
cpusets. Torque looks at the cpuset when killing jobs.

--enable-geometry-requests is not compatible with --
enable-cgroups.

--enable-gui Include the GUI-clients.

--enable-
maintainer-
mode

This is for the autoconf utility and tells autoconf to enable so called
rebuild rules. See maintainer mode for more information.

--enable-
maxdefault

Turn on the RESOURCEMAXDEFAULT flag.

Chapter 2: Installation and Configuration

http://www.gnu.org/software/hello/manual/automake/maintainer_002dmode.html

Option Description

Earlier versions of Torque attempted to apply queue and server
defaults to a job that didn't have defaults specified. If a setting still
did not have a value after that, Torque applied the queue and
server maximum values to a job (meaning, the maximum values for
an applicable setting were applied to jobs that had no specified or
default value).
In later versions of Torque, the queue and server maximum values
are no longer used as a value for missing settings. To re-enable this
behavior, use --enable-maxdefault.

--enable-
nochildsignal

Turn on the NO_SIGCHLD flag.

--enable-
nodemask

Enable nodemask-based scheduling on the Origin 2000.

--enable-
nvidia-gpus

Include support for NVIDIA GPUs. See 'Scheduling GPUs' in the
Accelerators chapter of the Moab Workload Manager Administrator
Guide for setup details and options.

--enable-
plock-daemons
[=ARG]

Enable daemons to lock themselves into memory: logical-or of 1 for
pbs_server, 2 for pbs_scheduler, 4 for pbs_mom (no argument
means 7 for all three).

--enable-pmix Moms must be built with --enable-pmix to support jobs using PMIx.
Binaries built with PMIx will also support jobs that are not using PMIx.
However, if the moms are not built with -enable-pmix, the PMIx jobs will
fail right after being launched.

The PMIx 1.0 API is supported except for registering and
deregistering events.

--enable-
quickcommit

Turn on the QUICKCOMMIT flag. When enabled, adds a check to make
sure the job is in an expected state and does some bookkeeping for array
jobs. This option is not supported.

--enable-
shared[=PKGS]

Build shared libraries [default=yes].

--enable-
shell-use-
argv

Enable this to put the job script name on the command line that invokes
the shell. Not on by default. Ignores --enable-shell-pipe setting.

Chapter 2: Installation and Configuration

43 2.3 Advanced Configuration

2.3 Advanced Configuration 44

Option Description

--enable-sp2 Build PBS for an IBM SP2.

--enable-
static[=PKGS]

Build static libraries [default=yes].

--enable-
syslog

Enable (default) the use of syslog for error reporting.

--enable-tcl-
qstat

Setting this builds qstat with Tcl interpreter features. This is enabled if
Tcl is enabled.

--enable-
unixsockets

Enable the use of UNIX Domain sockets for authentication.

Table 2-2: Optional Packages

Option Description

--with-blcr=DIR BLCR installation prefix.

--with-blcr-include=DIR Include path for libcr.h.

--with-blcr-lib=DIR Lib path for libcr.

--with-blcr-bin=DIR Bin path for BLCR utilities.

--with-boost-path=DIR Boost version 1.36.0 or later is supported. Red Hat-based
systems come packaged with 1.53.0.

Set the path to the Boost header files to be used during make.
This option does not require Boost to be built or installed.
The --with-boost-path value must be a directory
containing a subdirectory called boost that contains the boost
.hpp files.
For example, if downloading the boost 1.55.0 source tarball to
the adaptive user's home directory:

[adaptive]$ cd ~
[adaptive]$ wget
https://sourceforge.net/projects/boost/files/boost/1.55.
0/boost_1_55_0.tar.gz/download
[adaptive]$ tar xzf boost_1_55_0.tar.gz
[adaptive]$ ls boost_1_55_0

Chapter 2: Installation and Configuration

Option Description

boost
boost-build.jam
...

In this case use --with-boost-
path=/home/adaptive/boost_1_55_0 during configure.
Another example would be to use an installed version of Boost. If
the installed Boost header files exist in
/usr/include/boost/*.hpp, use --with-boost-
path=/usr/include.

--with-cpa-include=DIR Include path for cpalib.h.

--with-cpa-lib=DIR Lib path for libcpalib.

--with-debug=no Do not compile with debugging symbols.

--with-default-
server=HOSTNAME

Set the name of the computer that clients will access when no
machine name is specified as part of the queue name. It defaults
to the hostname of the machine on which PBS is being compiled.

--with-environ=PATH Set the path containing the environment variables for the
daemons. For SP2 and AIX systems, suggested setting it to
/etc/environment. Defaults to the file pbs_environment
in the server home. Relative paths are interpreted within the
context of the server home.

--with-gnu-ld Assume the C compiler uses GNU ld [default=no].

--with-hwloc-path Path for hwloc include and library files. Example:

./configure --with-hwloc-path=/usr/local/hwloc-1.9

Specifies that the include files are in /usr/local/hwloc-
1.9/include and the libraries are in /usr/local/hwloc-
1.9/lib.

--with-
maildomain=MAILDOM
AIN

Override the default domain for outgoing mail messages (i.e.,
user@maildomain). The default maildomain is the
hostname where the job was submitted from.

--with-modulefiles
[=DIR]

Use module files in specified directory [/etc/modulefiles].

Chapter 2: Installation and Configuration

45 2.3 Advanced Configuration

2.3 Advanced Configuration 46

Option Description

--with-momlogdir Use this directory for MOM logs.

--with-momlogsuffix Use this suffix for MOM logs.

--with-nvml-
include=DIR

Include path for nvml.h. See 'Scheduling GPUs' in the
Accelerators chapter of the Moab Workload Manager
Administrator Guide for setup details and options.

--with-nvml-lib=DIR Library path for libnvidia-ml.so. See 'Scheduling GPUs' in
the Accelerators chapter of the Moab Workload Manager
Administrator Guide for setup details and options.

--without-PACKAGE Do not use PACKAGE (same as --with-PACKAGE=no).

--without-readline Do not include readline support (default: included if found).

--with-PACKAGE[=ARG] Use PACKAGE [ARG=yes].

--with-pam=DIR Directory that holds the system PAM modules. Defaults to /lib
(64)/security on Linux.

--with-pic Try to use only PIC/non-PIC objects [default=use both].

--with-qstatrc-file=FILE Set the name of the file that qstat will use if there is no
.qstatrc file in the directory where it is being invoked.
Relative path names will be evaluated relative to the server
home directory (see above). If this option is not specified, the
default name for this file will be set to qstatrc (no dot) in the
server home directory.

--with-rcp One of scp, rcp, mom_rcp, or the full path of a remote file copy
program. scp is the default if found; otherwise, mom_rcp is
used. Some rcp programs don't always exit with valid error
codes in case of failure. mom_rcp is a copy of BSD rcp included
with this source that has correct error codes, but it is also old,
unmaintained, and doesn't have large file support.

--with-reserved-port-
start=PORT

Set the lower bound of the reserved port range that Torque will
used when opening a reserved port. PORT must be between 144
and 823, inclusive.

Chapter 2: Installation and Configuration

Option Description

Setting this parameter reduces the number of privileged
ports available to the system. This could affect

performance, because it limits the number of concurrent
reserved ports pbs_server can open.

--with-sched=TYPE Sets the scheduler type. If TYPE is c, the scheduler will be
written in C. If TYPE is tcl the server will use a Tcl based
scheduler. If TYPE is basl, Torque will use the rule based
scheduler. If TYPE is no, then no scheduling is done. c is the
default.

--with-sched-
code=PATH

Sets the name of the scheduler to use. This only applies to BASL
schedulers and those written in the C language. For C schedulers
this should be a directory name and for BASL schedulers a
filename ending in .basl. It will be interpreted relative to
srctree/src/schedulers.SCHD_TYPE/samples. As an
example, an appropriate BASL scheduler relative path would be
nas.basl. The default scheduler code for 'C' schedulers is
fifo.

--with-scp SCP is the default remote copy protocol. See --with-rcp if a
different protocol is desired.

--with-sendmail
[=PATH_TO_
EXECUTABLE]

Sendmail executable to use. If =PATH_TO_EXECUTABLE is not
specified or if --with-sendmail is not used at all, configure
will attempt to find sendmail.

--with-server-
home=DIR

Set the server home/spool directory for PBS use. Defaults to
/var/spool/torque.

--with-server-name-
file=FILE

Set the file that will contain the name of the default server for
clients to use. If this is not an absolute pathname, it will be
evaluated relative to the server home directory that either
defaults to /var/spool/torque or is set using the --with-
server-home option to configure. If this option is not
specified, the default name for this file will be set to server_
name.

--with-tcl Directory containing tcl configuration (tclConfig.sh).

--with-tclatrsep=CHAR Set the Tcl attribute separator character this will default to '.' if
unspecified.

Chapter 2: Installation and Configuration

47 2.3 Advanced Configuration

2.3 Advanced Configuration 48

Option Description

--with-tclinclude Directory containing the public Tcl header files.

--with-tclx Directory containing tclx configuration (tclxConfig.sh).

--with-tk Directory containing tk configuration (tkConfig.sh).

--with-tkinclude Directory containing the public Tk header files.

--with-tkx Directory containing tkx configuration (tkxConfig.sh).

--with-xauth=PATH Specify path to xauth program.

2.3.1.A HAVE_WORDEXP
Wordxp() performs a shell-like expansion, including environment variables. By default,
HAVE_WORDEXP is set to 1 in src/pbs_config.h. If set to 1, will limit the characters
that can be used in a job name to those allowed for a file in the current environment, such
as BASH. If set to 0, any valid character for the file system can be used.

If a user would like to disable this feature by setting HAVE_WORDEXP to 0 in
src/include/pbs_config.h, it is important to note that the error and the output file
names will not expand environment variables, including $PBS_JOBID. The other
important consideration is that characters that BASH dislikes, such as (), will not be
allowed in the output and error file names for jobs by default.

Related Topics

l 2.3 Advanced Configuration - page 39

l 2.3.2 Server Configuration - page 48

2.3.2 Server Configuration

This topic contains information and instructions to configure your server.

Also see 2.3.3 Setting Up the MOM Hierarchy (Optional) - page 53

Chapter 2: Installation and Configuration

2.3.2.A Server Configuration Overview
There are several steps to ensure that the server and the nodes are completely aware of
each other and able to communicate directly. Some of this configuration takes place within
Torque directly using the qmgr command. Other configuration settings are managed using
the pbs_server nodes file, DNS files such as /etc/hosts and the
/etc/hosts.equiv file.

2.3.2.B Name Service Configuration
Each node, as well as the server, must be able to resolve the name of every node with
which it will interact. This can be accomplished using /etc/hosts, DNS, NIS, or other
mechanisms. In the case of /etc/hosts, the file can be shared across systems in most
cases.

A simple method of checking proper name service configuration is to verify that the server
and the nodes can ping each other.

2.3.2.C Configuring Job Submission Hosts

Using RCmd Authentication
When jobs can be submitted from several different hosts, these hosts should be trusted via
the R* commands (such as rsh and rcp). This can be enabled by adding the hosts to the
/etc/hosts.equiv file of the machine executing the pbs_server daemon or using other R*
command authorization methods. The exact specification can vary from OS to OS (see the
man page for ruserok to find out how your OS validates remote users). In most cases,
configuring this file is as simple as adding a line to your /etc/hosts.equiv file, as in
the following:

/etc/hosts.equiv:

#[+ | -] [hostname] [username]
mynode.myorganization.com
.....

Either of the hostname or username fields can be replaced with a wildcard symbol (+). The
(+) can be used as a stand-alone wildcard but not connected to a username or hostname
(e.g., +node01 or +user01). However, a (-) can be used in that manner to specifically
exclude a user.

Following the Linux man page instructions for hosts.equiv may result in a failure.
You cannot precede the user or hostname with a (+). To clarify, node1 +user1
will not work and user1 will not be able to submit jobs.

Chapter 2: Installation and Configuration

49 2.3 Advanced Configuration

2.3 Advanced Configuration 50

For example, the following lines will not work or will not have the desired effect:

+node02 user1
node02 +user1

These lines will work:

node03 +
+ jsmith
node04 -tjones

The most restrictive rules must precede more permissive rules. For example, to restrict
user tsmith but allow all others, follow this format:

node01 -tsmith
node01 +

Note that when a hostname is specified, it must be the fully qualified domain name (FQDN)
of the host. Job submission can be further secured using the server or queue acl_hosts
and acl_host_enabled parameters (for details, see Queue Attributes).

Using the 'submit_hosts' Service Parameter
Trusted submit host access can be directly specified without using RCmd authentication by
setting the server submit_hosts parameter via qmgr as in the following example:

> qmgr -c 'set server submit_hosts = host1'
> qmgr -c 'set server submit_hosts += host2'
> qmgr -c 'set server submit_hosts += host3'

Use of submit_hosts is potentially subject to DNS spoofing and should not be used
outside of controlled and trusted environments.

Allowing Job Submission from Compute Hosts
If preferred, all compute nodes can be enabled as job submit hosts without setting
.rhosts or hosts.equiv by setting the allow_node_submit parameter to true.

2.3.2.D Configuring Torque on a Multi-Homed Server
If the pbs_server daemon is to be run on a multi-homed host (a host possessing
multiple network interfaces), the interface to be used can be explicitly set using the
SERVERHOST parameter.

Chapter 2: Installation and Configuration

2.3.2.E Architecture Specific Notes
With some versions of Mac OS/X, it is required to add the line $restricted
*.<DOMAIN> to the pbs_mom configuration file. This is required to work around some
socket bind bugs in the OS.

2.3.2.F Specifying Non-Root Administrators
By default, only root is allowed to start, configure and manage the pbs_server daemon.
Additional trusted users can be authorized using the parameters managers and
operators. To configure these parameters use the qmgr command, as in the following
example:

> qmgr
Qmgr: set server managers += josh@*.fsc.com
Qmgr: set server operators += josh@*.fsc.com

All manager and operator specifications must include a user name and either a fully
qualified domain name or a host expression.

To enable all users to be trusted as both operators and administrators, place the +
(plus) character on its own line in the server_priv/acl_svr/operators and
server_priv/acl_svr/managers files.

2.3.2.G Setting Up Email
Moab relies on emails from Torque about job events. To set up email, do the following.

1. Specify the location of the sendmail executable. You can do this using the sendmail_
path server attribute:

qmgr -c 'set server sendmail_path = <path_to_executable>'

If this server option is not set, you can set a default location during the build:

> ./configure --with-sendmail=<path_to_executable>

If a location for the sendmail executable is not specified, Torque will attempt to find it
when you run configure. If you installed Torque using RPMs from Adaptive Computing,
the default path will be /usr/sbin/sendmail.

2. Set mail_domain in your server settings. If your domain is
clusterresources.com, execute:

> qmgr -c 'set server mail_domain=clusterresources.com'

Chapter 2: Installation and Configuration

51 2.3 Advanced Configuration

2.3 Advanced Configuration 52

3. (Optional) You can override the default mail_body_fmt and mail_subject_fmt values via
qmgr:

> qmgr -c 'set server mail_body_fmt=Job: %i \n Name: %j \n On host: %h \n \n %m \n
\n %d'
> qmgr -c 'set server mail_subject_fmt=Job %i - %r'

By default, users receive emails on job aborts. Each user can select which kind of emails to
receive by using the qsub -m option when submitting the job. If you want to dictate when
each user should receive emails, use a submit filter (for details, see Job Submission Filter
(qsub Wrapper)).

2.3.2.H Using MUNGE Authentication

The same version on MUNGE must be installed on all of your Torque Hosts (Server,
Client, MOM).

MUNGE is an authentication service that creates and validates user credentials. It was
developed by Lawrence Livermore National Laboratory (LLNL) to be highly scalable so it
can be used in large environments such as HPC clusters. To learn more about MUNGE and
how to install it, see https://dun.github.io/munge/.

Configuring Torque to use MUNGE is a compile time operation. When you are building
Torque, use --enable-munge-auth as a command line option with ./configure:

> ./configure --enable-munge-auth

You can use only one authorization method at a time. If --enable-munge-auth is
configured, the privileged port ruserok method is disabled.

Torque does not link any part of the MUNGE library into its executables. It calls the MUNGE
and UNMUNGE utilities, which are part of the MUNGE daemon. The MUNGE daemon must
be running on the server and all submission hosts. The Torque client utilities call MUNGE
and then deliver the encrypted credential to pbs_server where the credential is then
unmunged and the server verifies the user and host against the authorized users
configured in serverdb.

Authorized users are added to serverdb using qmgr and the authorized_users
parameter. The syntax for authorized_users is authorized_
users=<user>@<host>. To add an authorized user to the server you can use the
following qmgr command:

> qmgr -c 'set server authorized_users=user1@hosta
> qmgr -c 'set server authorized_users+=user2@hosta

Chapter 2: Installation and Configuration

https://dun.github.io/munge/

The previous example adds user1 and user2 from hosta to the list of authorized users on
the server. Users can be removed from the list of authorized users by using the -= syntax
as follows:

> qmgr -c 'set server authorized_users-=user1@hosta

Users must be added with the <user>@<host> syntax. The user and the host portion can
use the '*' wildcard to allow multiple names to be accepted with a single entry. A range of
user or host names can be specified using a [a-b] syntax where a is the beginning of the
range and b is the end:

> qmgr -c 'set server authorized_users=user[1-10]@hosta

This allows user1 through user10 on hosta to run client commands on the server.

Related Topics

l 2.3.3 Setting Up the MOM Hierarchy (Optional) - page 53

l 2.3 Advanced Configuration - page 39

2.3.3 Setting Up the MOM Hierarchy (Optional)

Mom hierarchy is designed for large systems to configure how information is passed
directly to the pbs_server.

The MOM hierarchy enables you to override the compute nodes' default behavior of
reporting status updates directly to the pbs_server. Instead, you configure compute
nodes so that each node sends its status update information to another compute node. The
compute nodes pass the information up a tree or hierarchy until eventually the information
reaches a node that will pass the information directly to pbs_server. This can
significantly reduce network traffic and ease the load on the pbs_server in a large
system.

Adaptive Computing recommends approximately 25 nodes per path. Numbers larger
than this may reduce the system performance.

2.3.3.A MOM Hierarchy Example
The following example illustrates how information is passed to the pbs_server without
and with mom_hierarchy.

Chapter 2: Installation and Configuration

53 2.3 Advanced Configuration

2.3 Advanced Configuration 54

The dotted lines indicates an alternate path if the hierarchy-designated node goes
down.

The following is the mom_hierarchy_file for the mom_hierarchy example:

<path>
 <level>hostA,hostB</level>
 <level>hostB,hostC,hostD</level>
</path>
<path>
 <level>hostE,hostF</level>
 <level>hostE,hostF,hostG</level>
</path>

Chapter 2: Installation and Configuration

2.3.3.B Setting Up the MOM Hierarchy
The name of the file that contains the configuration information is named mom_
hierarchy. By default, it is located in the /var/spool/torque/server_priv
directory. The file uses syntax similar to XML:

<path>
 <level>comma-separated node list</level>
 <level>comma-separated node list</level>
 ...
</path>
...

The <path></path> tag pair identifies a group of compute nodes. The
<level></level> tag pair contains a comma-separated list of compute node names
listed by their hostnames. Multiple paths can be defined with multiple levels within each
path.

Within a <path></path> tag pair, the levels define the hierarchy. All nodes in the top
level communicate directly with the server. All nodes in lower levels communicate to the
first available node in the level directly above it. If the first node in the upper level goes
down, the nodes in the subordinate level will then communicate to the next node in the
upper level. If no nodes are available in an upper level then the node will communicate
directly to the server.

When setting up the MOM hierarchy, you must open port 15003 for communication
from pbs_server to pbs_mom.

If an upper level node has gone down and then becomes available, the lower level nodes
will eventually find that the node is available and start sending their updates to that node.

If you want to specify MOMs on a different port than the default, you must list the
node in the form: hostname:mom_manager_port. For example:

<path>
 <level>hostname:mom_manager_port,... </level>
 ...
</path>
...

2.3.3.C Putting the MOM Hierarchy on the MOMs
You can put the MOM hierarchy file directly on the MOMs. The default location is
/var/spool/torque/mom_priv/mom_hierarchy. This way, the pbs_server
doesn't have to send the hierarchy to all the MOMs during each pbs_server startup. The
hierarchy file still has to exist on the pbs_server and if the file versions conflict, the

Chapter 2: Installation and Configuration

55 2.3 Advanced Configuration

2.3 Advanced Configuration 56

pbs_server version overwrites the local MOM file. When using a global file system
accessible from both the MOMs and the pbs_server, it is recommended that the
hierarchy file be symbolically linked to the MOMs.

Once the hierarchy file exists on the MOMs, start pbs_server with the -n option, which
tells pbs_server to not send the hierarchy file on startup. Instead, pbs_server waits
until a MOM requests it.

2.3.4 Opening Ports in a Firewall

If your site is running firewall software on its hosts, you will need to configure the firewall
to allow connections to the products in your installation.

This topic provides an example and general instructions for how to open ports in your
firewall. See 2.3.5 Port Reference - page 56 for the actual port numbers for the various
products.

2.3.4.A Red Hat-Based Systems
Red Hat-based systems use firewalld as the default firewall software. If you use different
firewall software, refer to your firewall documentation for opening ports in your firewall.

The following is an example of adding port 1234 when using firewalld:

[root]# firewall-cmd --add-port=1234/tcp --permanent
[root]# firewall-cmd --reload

2.3.4.B SUSE-Based Systems
SUSE-based systems use SuSEfirewall2 as the default firewall software. If you use different
firewall software, refer to your firewall documentation for opening ports in your firewall.

The following is an example of adding port 1234 when using SuSEfirewall2:

[root]# vi /etc/sysconfig/SuSEfirewall2

FW_SERVICES_EXT_TCP="1234"

[root]# systemctl restart SuSEfirewall2

2.3.5 Port Reference

The following table contains the port numbers for the various products in the Moab HPC
Suite.

Chapter 2: Installation and Configuration

Adaptive Computing Local RPM Repository

Location Ports Functions When Needed

Deployment Host 80
443

Adaptive Computing
Local RPM repository

The duration of the install when
using RPM installation method.

RLM Server

Location Ports Functions When Needed

RLM Server Host 5053 RLM Server Port Always

RLM Server Host 5054 RLM Web Interface Port Always

RLM Server Host 57889 Remote Visualization Port If Remote Visualization is
part of your configuration.

RLM Server Host 5135 ISV adaptiveco Port (for
the Adaptive license-
enabled products)

For Moab Workload Manager
and if Nitro is part of your
configuration.

Torque Resource Manager

Location Ports Functions When
Needed

Torque Server Host 15001 Torque Client and MOM communication
to Torque Server

Always

Torque MOM Host
(Compute Nodes)

15002 Torque Server communication to Torque
MOMs

Always

Torque MOM Host
(Compute Nodes)

15003 Torque MOM communication to other
Torque MOMs

Always

Moab Workload Manager

Location Ports Functions When Needed

Moab Server Host 42559 Moab Server Port If you intend to run client

Chapter 2: Installation and Configuration

57 2.3 Advanced Configuration

2.3 Advanced Configuration 58

Location Ports Functions When Needed

commands on a host different
from the Moab Server Host or if
you will be using Moab in a grid

Moab Accounting Manager

Location Ports Functions When Needed

MAM Server Host 7112 MAM Server
Port

If you will be installing the
MAM Server on a different host
from where you installed the
Moab Server or you will be
installing the MAM Clients on
other hosts

MAM GUI Host 443 HTTPS Port If using the MAM GUI

MAM Web Services Host 443 HTTPS Port If using MAM Web Services

MAM Database Host 5432 MAM
PostgreSQL
Server Port

If you will be installing the
MAM Database on a different
host from the MAM Server

Moab Web Services

Location Ports Functions When Needed

MWS Server Host 8080 Tomcat Server
Port

Always

MWS Database Host 27017 MWS MongoDB
Server Port

If you will be installing the MWS
Database on a different host from
the MWS Server

Moab Insight

Location Ports Functions When Needed

Insight Server Host 5568 Insight Server Port Always

Chapter 2: Installation and Configuration

Location Ports Functions When Needed

Moab MongoDB Database Host 27017 Moab MongoDB Server Port Always

Moab Server Host 5574 Moab Data Port Always

Moab Server Host 5575 Moab Reliability Port Always

Moab Viewpoint

Location Ports Functions When
Needed

Viewpoint Server Host 8081 Viewpoint Web Server Port Always

Moab Server Host 8443 Viewpoint File Manager Port Always

Viewpoint Database Host 5432 Viewpoint PostgreSQL Database Port If you will
be
installing
the
Viewpoint
Database
on a
different
host from
the
Viewpoint
Server

Remote Visualization

Location Ports Functions When Needed

Remote Visualization Server
Host (also known as the
Gateway Server)

3443 FastX Web
Server
Port

Always

Remote Visualization Session
Server Host (Torque MOM
Host)

Add ports as
required, for
example,
TCP: 3443,
6000-6005,

Session
Server
Ports

Ports 16001 and 35091
are only needed when
using gnome

Chapter 2: Installation and Configuration

59 2.3 Advanced Configuration

2.3 Advanced Configuration 60

Location Ports Functions When Needed

16001, 35091
UDP: 117

Nitro

The listed ports are for configurations that have only one coordinator. If multiple
coordinators are run on a single compute host, then sets of ports (range of 4) must be
opened for the number of expected simultaneous coordinators.

Location Ports Functions When
Needed

Compute Hosts (Nitro
Coordinator)

47000 Coordinator/Worker communication Always

Compute Hosts (Nitro
Coordinator)

47001 Coordinator PUB/SUB channel - publishes
status information

Always

Compute Hosts (Nitro
Coordinator)

47002 Reserved for future functionality

Compute Hosts (Nitro
Coordinator)

47003 API communication channel Always

Nitro Web Services

Location Ports Functions When Needed

Nitro Web Services Host 9443 Tornado Web
Port

Always

Nitro Web Services Host 47100 ZMQ Port Always

Nitro Web Services Database Host 27017 Nitro Web
Services
MongoDB Server
Port

If you will be
installing the Nitro
Web Services
Database on a
different host from
Nitro Web Services

Chapter 2: Installation and Configuration

Reporting

Suggested Host Service Ports Function When
Needed

Reporting Master HDFS name node 8020 HDFS
communication

Always

Reporting Master HDFS name node 50070 HDFS web
interface

Always

Reporting Master Spark Master 6066,
7077

Spark
communication

Always

Reporting Master Spark Master 8082 Spark Master
web interface

Always

Reporting Master Apache Kafka 9092 Kafka
communication

Always

Reporting Master Apache Zookeeper 2181 Zookeeper
communication
with Kafka and
Drill

Always

Insight Server Apache Drill 8047 Drill HTTP
interface

Always

Reporting Worker HDFS data node 50075,
50010,
50020

HDFS
communication

Always

Reporting Worker Spark Worker 4040 Spark
communication

Always

Reporting Worker Spark worker 8083 Spark worker
web interface

Always

MWS Host Tomcat 8080 Reporting Web
Services HTTP
interface

Always

MWS Host MongoDB 27017 MongoDB
communication

Always

Chapter 2: Installation and Configuration

61 2.3 Advanced Configuration

2.4 Manual Setup of Initial Server Configuration 62

2.4 Manual Setup of Initial Server Configuration

On a new installation of Torque, the server database must be initialized using the command
pbs_server -t create. This command creates a file in $TORQUE_HOME/server_
priv named serverdb, which contains the server configuration information.

The following output from qmgr shows the base configuration created by the command
pbs_server -t create:

qmgr -c 'p s'
#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6

This is a bare minimum configuration and it is not very useful. By using qmgr, the server
configuration can be modified to set up Torque to do useful work. The following qmgr
commands will create a queue and enable the server to accept and run jobs. These
commands must be executed by root.

pbs_server -t create
qmgr -c "set server scheduling=true"
qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"
qmgr -c "set server default_queue=batch"

When Torque reports a new queue to Moab a class of the same name is automatically
applied to all nodes.

In this example, the configuration database is initialized and the scheduling interface is
activated using ('scheduling=true'). This option allows the scheduler to receive job
and node events, which allow it to be more responsive (see scheduling for more
information). The next command creates a queue and specifies the queue type. Within PBS,
the queue must be declared an execution queue in order for it to run jobs. Additional
configuration (i.e., setting the queue to started and enabled) allows the queue to
accept job submissions, and launch queued jobs.

The next two lines are optional, setting default node and walltime attributes for a
submitted job. These defaults will be picked up by a job if values are not explicitly set by
the submitting user. The final line, default_queue=batch, is also a convenience line

Chapter 2: Installation and Configuration

and indicates that a job should be placed in the batch queue unless explicitly assigned to
another queue.

Additional information on configuration can be found in the admin manual and in the qmgr
main page.

Related Topics

l 2.1 Torque Installation Overview - page 18

2.5 Server Node File Configuration

This section contains information about configuring server node files. It explains how to
specify node virtual processor counts and GPU counts, as well as how to specify node
features or properties.

In this topic:

2.5.1 Basic Node Specification 63
2.5.2 Specifying Virtual Processor Count for a Node 64
2.5.3 Specifying GPU Count for a Node 65
2.5.4 Specifying Node Features (Node Properties) 65

Related Topics

l 2.1 Torque Installation Overview - page 18

l Appendix B: Server Parameters - page 328

l Node Features/Node Properties in the Moab Workload Manager Administrator Guide

2.5.1 Basic Node Specification

For the pbs_server to communicate with each of the MOMs, it needs to know which
machines to contact. Each node that is to be a part of the batch system must be specified on
a line in the server nodes file. This file is located at TORQUE_HOME/server_
priv/nodes. In most cases, it is sufficient to specify just the node name on a line as in the
following example.

server_priv/nodes:

Chapter 2: Installation and Configuration

63 2.5 Server Node File Configuration

2.5 Server Node File Configuration 64

node001
node002
node003
node004

The server nodes file also displays the parameters applied to the node. See Adding
nodes for more information on the parameters.

Related Topics

l 2.5 Server Node File Configuration - page 63

2.5.2 Specifying Virtual Processor Count for a Node

By default each node has one virtual processor. Increase the number using the np
attribute in the nodes file. The value of np can be equal to the number of physical cores on
the node or it can be set to a value that represents available 'execution slots' for the node.
The value used is determined by the administrator based on hardware, system, and site
criteria.

The following example shows how to set the np value in the nodes file. In this example, we
are assuming that node001 and node002 have four physical cores. The administrator
wants the value of np for node001 to reflect that it has four cores. However, node002 will
be set up to handle multiple virtual processors without regard to the number of physical
cores on the system.

server_priv/nodes:

node001 np=4
node002 np=12
...

Related Topics

l 2.5 Server Node File Configuration - page 63

Chapter 2: Installation and Configuration

2.5.3 Specifying GPU Count for a Node

This section describes a rudimentary method for configuring GPUs manually.
Administrators can configure the MOMs to automatically detect the number of
NVIDIA GPUs and get detailed GPU reporting on each node (the recommended
method). Combining this with cgroups will also prevent unauthorized access to
resources. See 'Scheduling GPUs' in the Moab Workload Manager Administrator Guide
for details on this automated method.

When using this method, pbs_server automatically appends gpus=<count> to
the end of the line in TORQUE_HOME/server_priv/nodes for any node with a
GPU, overriding any such manual configuration.

To manually set the number of GPUs on a node, use the gpus attribute in the nodes file.
The value of GPUs is determined by the administrator based on hardware, system, and site
criteria.

The following example shows how to set the GPU value in the nodes file. In the example, we
assume node01 and node002 each have two physical GPUs. The administrator wants the
value of node001 to reflect the physical GPUs available on that system and adds gpus=2
to the nodes file entry for node001. However, node002 will be set up to handle multiple
virtual GPUs without regard to the number of physical GPUs on the system.

server_priv/nodes:

node001 gpus=2
node002 gpus=4
...

Related Topics

l 2.5 Server Node File Configuration - page 63

2.5.4 Specifying Node Features (Node Properties)

Node features can be specified by placing one or more white space-delimited strings on the
line for the associated host as in the following example.

server_priv/nodes:

node001 np=2 fast ia64
node002 np=4 bigmem fast ia64 smp
...

Chapter 2: Installation and Configuration

65 2.5 Server Node File Configuration

2.6 Testing Server Configuration 66

These features can be used by users to request specific nodes when submitting jobs. For
example:

qsub -l nodes=1:bigmem+1:fast job.sh

This job submission will look for a node with the bigmem feature (node002) and a node
with the fast feature (either node001 or node002).

Related Topics

l 2.5 Server Node File Configuration - page 63

2.6 Testing Server Configuration

If you have initialized Torque using the torque.setup script or started Torque using pbs_
server -t create and pbs_server is still running, terminate the server by calling qterm. Next,
start pbs_server again without the -t create arguments. Follow the script below to
verify your server configuration. The output for the examples below is based on the nodes
file example in Specifying node features and Server configuration.

verify all queues are properly configured
> qstat -q

server:kmn

Queue Memory CPU Time Walltime Node Run Que Lm State
----- ------ -------- -------- ---- --- --- -- -----
batch -- -- -- -- 0 0 -- ER

--- ---
0 0

view additional server configuration
> qmgr -c 'p s'
#
Create queues and set their attributes
#
#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = user1@kmn

Chapter 2: Installation and Configuration

set server operators = user1@kmn
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 300
set server job_stat_rate = 45
set server poll_jobs = True
set server mom_job_sync = True
set server keep_completed = 300
set server next_job_number = 0

verify all nodes are correctly reporting
> pbsnodes -a
node001
state=free
np=2
properties=bigmem,fast,ia64,smp
ntype=cluster

status=rectime=1328810402,varattr=,jobs=,state=free,netload=6814326158,gres=,loadave=0
.21,ncpus=6,physmem=8193724kb,
availmem=13922548kb,totmem=16581304kb,idletime=3,nusers=3,nsessions=18,sessions=1876
1120 1912 1926 1937 1951 2019 2057 28399 2126 2140 2323 5419 17948 19356 27726 22254
29569,uname=Linux kmn 2.6.38-11-generic #48-Ubuntu SMP Fri Jul 29 19:02:55 UTC 2022
x86_64,opsys=linux
mom_service_port = 15002
mom_manager_port = 15003
gpus = 0

submit a basic job - DO NOT RUN AS ROOT
> su - testuser
> echo "sleep 30" | qsub

verify jobs display
> qstat

Job id Name User Time Use S Queue
------ ----- ---- -------- -- -----
0.kmn STDIN knielson 0 Q batch

At this point, the job should be in the Q state and will not run because a scheduler is not
running yet. Torque can use its native scheduler by running pbs_sched or an advanced
scheduler (such as Moab Workload Manager). See Integrating Schedulers for Torque for
details on setting up an advanced scheduler.

Related Topics

l 2.1 Torque Installation Overview - page 18

2.7 Configuring Torque for NUMA Systems

Torque supports these two types of Non-Uniform Memory Architecture (NUMA) systems:

Chapter 2: Installation and Configuration

67 2.7 Configuring Torque for NUMA Systems

2.7 Configuring Torque for NUMA Systems 68

l NUMA-Aware – Supports multi-req jobs and jobs that span hosts. Requires the
--enable-cgroups configuration command to support cgroups. See 2.7.1 Torque
NUMA-Aware Configuration - page 68 for instructions and additional information.

l NUMA-Support – Only for large-scale SLES systems (SGI Altix and UV hardware).
Requires the --enable-numa-support configuration command. See 2.7.2
Torque NUMA-Support Configuration - page 70 for instructions and additional
information.

Torque cannot be configured for both systems at the same.

In this topic:

2.7.1 Torque NUMA-Aware Configuration 68
2.7.2 Torque NUMA-Support Configuration 70

2.7.1 Torque NUMA-Aware Configuration

This topic provides instructions for enabling NUMA-aware, including cgroups. For
instructions on NUMA-support configurations, see 2.7.2 Torque NUMA-Support
Configuration - page 70. This topic assumes you have a basic understanding of cgroups. See
RedHat Resource Management Guide or cgroups on kernel.org for basic information on
cgroups.

In this topic:

2.7.1.A About cgroups - page 68
2.7.1.B Prerequisites - page 69
2.7.1.C Installation Instructions - page 69
2.7.1.D Multiple cgroup Directory Configuration - page 70

2.7.1.A About cgroups
Torque uses cgroups to better manage CPU and memory accounting, memory enforcement,
cpuset management, and binding jobs to devices such as MICs and GPUs.

Chapter 2: Installation and Configuration

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

Be aware of the following:

l cgroups is incompatible with (and supersedes) cpuset support (--enable-
cpuset and --enable-geometry-requests). Configuring with --enable-
cgroups overrides these other options.

l If you are building with cgroups enabled, you must have boost version 1.41 or later.

l The pbs_mom daemon is the binary that interacts cgroups, but both the server and
the MOM must be built with --enable-cgroups to understand all of the new
structures.

2.7.1.B Prerequisites

1. Install the prerequisites found in Installing Torque Resource Manager.

2. hwloc version 1.9.1 or later is required. Version 1.11.0 is needed if installing with
NVIDIA K80 or newer GPU hardware:

l download hwloc-1.9.1.tar.gz from: https://www.open-mpi.org/software/hwloc/v1.9

l perform the following command line actions:

$ tar -xzvf hwloc-1.9.1.tar.gz
$ cd hwloc-1.9.1.tar.gz
$ sudo ./configure

l You do not need to overwrite the default installation of hwloc. By default, hwloc will
install to the /usr/local directory. You can also configure hwloc with the --prefix
option to have it install to a location of your choosing. If you do not install hwloc to
/usr directory you can tell Torque where to find the version you want it to use at
configure time using the --with-hwloc-path option. For example:

./configure --enable-cgroups --with-hwloc-path=/usr/local

l Run make

l sudo make install

2.7.1.C Installation Instructions
Do the following.

Chapter 2: Installation and Configuration

69 2.7 Configuring Torque for NUMA Systems

https://www.open-mpi.org/software/hwloc/v1.9

2.7 Configuring Torque for NUMA Systems 70

1. Install the libcgroup package.

Red Hat-based Systems must use libcgroup version 0.40.rc1-16.el6 or later; SUSE-
based systems need to use a comparative libcgroup version.

l Red Hat-based systems:

yum install libcgroup-tools

l SUSE-based systems:

zypper install libcgroup-tools

2. Enable Torque to access cgroups:

$./configure --enable-cgroups --with-hwloc-path=/usr/local

2.7.1.D Multiple cgroup Directory Configuration
If your system has more than one cgroup directory configured, you must create the
trq-cgroup-paths file in the $TORQUE_HOME directory. This file has a list of the
cgroup subsystems and the mount points for each subsystem in the syntax of
<subsystem> <mount point>.

All five subsystems used by pbs_mommust be in the trq-cgroup-paths file. In the
example that follows, a directory exists at /cgroup with subdirectories for each subsystem.
Torque uses this file first to configure where it will look for cgroups.

cpuset /cgroup/cpuset
cpuacct /cgroup/cpuacct
cpu /cgroup/cpu
memory /cgroup/memory
devices /cgroup/devices

2.7.2 Torque NUMA-Support Configuration

This topic provides instructions for enabling NUMA-support on large-scale SLES
systems using SGI Altix and UV hardware. For instructions on enabling NUMA-aware,
see 2.7.1 Torque NUMA-Aware Configuration - page 68.

Perform the following steps:

Chapter 2: Installation and Configuration

1. Configure Torque for NUMA-Support

2. Create the mom.layout File

3. Configure the server_priv/nodes File

4. Limit Memory Resources (Optional)

2.7.2.A Configure Torque for NUMA-Support
To turn on NUMA-support for Torque the --enable-numa-support option must be
used during the configure portion of the installation. In addition to any other configuration
options, add the --enable-numa-support option as indicated in the following
example:

$./configure --enable-numa-support

Don't use MOM hierarchy with NUMA.

When Torque is enabled to run with NUMA support, there is only a single instance of pbs_
mom (MOM) that is run on the system. However, Torque will report that there are multiple
nodes running in the cluster. While pbs_mom and pbs_server both know there is only
one instance of pbs_mom, they manage the cluster as if there were multiple separate MOM
nodes.

The mom.layout file is a virtual mapping between the system hardware configuration
and how the administrator wants Torque to view the system. Each line in mom.layout
equates to a node in the cluster and is referred to as a NUMA node.

2.7.2.B Create the mom.layout File
This section provides instructions to create the mom.layout file.

Do one of the following:

l Automatically Create mom.layout (Recommended) - page 71

l Manually Create mom.layout - page 72

Automatically Create mom.layout (Recommended)
A perl script named mom_gencfg is provided in the contrib/ directory that generates
the mom.layout file for you. The script can be customized by setting a few variables in it.

To automatically create the mom.layout file, do the following:

Chapter 2: Installation and Configuration

71 2.7 Configuring Torque for NUMA Systems

2.7 Configuring Torque for NUMA Systems 72

1. Verify hwloc library and corresponding hwloc-devel package are installed. See
Installing Torque Resource Manager for more information.

2. Install Sys::Hwloc from CPAN.

3. Verify $PBS_HOME is set to the proper value.

4. Update the variables in the 'Config Definitions' section of the script. Especially update
firstNodeId and nodesPerBoard if desired. The firstNodeId variable should
be set above 0 if you have a root cpuset that you want to exclude and the
nodesPerBoard variable is the number of NUMA nodes per board. Each node is
defined in /sys/devices/system/node, in a subdirectory node<node index>.

5. Back up your current file in case a variable is set incorrectly or neglected.

6. Run the script:

$./mom_gencfg

Manually Create mom.layout
To properly set up the mom.layout file, it is important to know how the hardware is
configured. Use the topology command line utility and inspect the contents of
/sys/devices/system/node. The hwloc library can also be used to create a custom
discovery tool.

Typing topology on the command line of a NUMA system produces something similar to
the following:

Partition number: 0
6 Blades
72 CPUs
378.43 GB Memory Total

Blade ID asic NASID Memory

 0 r001i01b00 UVHub 1.0 0 67089152 kB
 1 r001i01b01 UVHub 1.0 2 67092480 kB
 2 r001i01b02 UVHub 1.0 4 67092480 kB
 3 r001i01b03 UVHub 1.0 6 67092480 kB
 4 r001i01b04 UVHub 1.0 8 67092480 kB
 5 r001i01b05 UVHub 1.0 10 67092480 kB

CPU Blade PhysID CoreID APIC-ID Family Model Speed L1(KiB) L2(KiB) L3(KiB)

 0 r001i01b00 00 00 0 6 46 2666 32d/32i 256 18432
 1 r001i01b00 00 02 4 6 46 2666 32d/32i 256 18432
 2 r001i01b00 00 03 6 6 46 2666 32d/32i 256 18432
 3 r001i01b00 00 08 16 6 46 2666 32d/32i 256 18432
 4 r001i01b00 00 09 18 6 46 2666 32d/32i 256 18432
 5 r001i01b00 00 11 22 6 46 2666 32d/32i 256 18432
 6 r001i01b00 01 00 32 6 46 2666 32d/32i 256 18432
 7 r001i01b00 01 02 36 6 46 2666 32d/32i 256 18432
 8 r001i01b00 01 03 38 6 46 2666 32d/32i 256 18432
 9 r001i01b00 01 08 48 6 46 2666 32d/32i 256 18432

Chapter 2: Installation and Configuration

 10 r001i01b00 01 09 50 6 46 2666 32d/32i 256 18432
 11 r001i01b00 01 11 54 6 46 2666 32d/32i 256 18432
 12 r001i01b01 02 00 64 6 46 2666 32d/32i 256 18432
 13 r001i01b01 02 02 68 6 46 2666 32d/32i 256 18432
 14 r001i01b01 02 03 70 6 46 2666 32d/32i 256 18432

From this partial output, note that this system has 72 CPUs on 6 blades. Each blade has 12
CPUs grouped into clusters of 6 CPUs. If the entire content of this command were printed
you would see each Blade ID and the CPU ID assigned to each blade.

The topology command shows how the CPUs are distributed, but you likely also need to
know where memory is located relative to CPUs, so go to
/sys/devices/system/node. If you list the node directory you will see something
similar to the following:

ls -al
total 0
drwxr-xr-x 14 root root 0 Dec 3 12:14 .
drwxr-xr-x 14 root root 0 Dec 3 12:13 ..
-r--r--r-- 1 root root 4096 Dec 3 14:58 has_cpu
-r--r--r-- 1 root root 4096 Dec 3 14:58 has_normal_memory
drwxr-xr-x 2 root root 0 Dec 3 12:14 node0
drwxr-xr-x 2 root root 0 Dec 3 12:14 node1
drwxr-xr-x 2 root root 0 Dec 3 12:14 node10
drwxr-xr-x 2 root root 0 Dec 3 12:14 node11
drwxr-xr-x 2 root root 0 Dec 3 12:14 node2
drwxr-xr-x 2 root root 0 Dec 3 12:14 node3
drwxr-xr-x 2 root root 0 Dec 3 12:14 node4
drwxr-xr-x 2 root root 0 Dec 3 12:14 node5
drwxr-xr-x 2 root root 0 Dec 3 12:14 node6
drwxr-xr-x 2 root root 0 Dec 3 12:14 node7
drwxr-xr-x 2 root root 0 Dec 3 12:14 node8
drwxr-xr-x 2 root root 0 Dec 3 12:14 node9
-r--r--r-- 1 root root 4096 Dec 3 14:58 online
-r--r--r-- 1 root root 4096 Dec 3 14:58 possible

The directory entries node0, node1,...node11 represent groups of memory and CPUs local
to each other. These groups are a node board, a grouping of resources that are close
together. In most cases, a node board is made up of memory and processor cores. Each
bank of memory is called a memory node by the operating system, and there are certain
CPUs that can access that memory very rapidly. Note under the directory for node board
node0 that there is an entry called cpulist. This contains the CPU IDs of all CPUs local to
the memory in node board 0.

Now create the mom.layout file. The content of cpulist 0-5 are local to the memory of
node board 0, and the memory and cpus for that node are specified in the layout file by
saying nodes=0. The cpulist for node board 1 shows 6-11 and memory node index 1. To
specify this, simply write nodes=1. Repeat this for all twelve node boards and create the
following mom.layout file for the 72 CPU system.

nodes=0
nodes=1
nodes=2
nodes=3

Chapter 2: Installation and Configuration

73 2.7 Configuring Torque for NUMA Systems

2.7 Configuring Torque for NUMA Systems 74

nodes=4
nodes=5
nodes=6
nodes=7
nodes=8
nodes=9
nodes=10
nodes=11

Each line in the mom.layout file is reported as a node to pbs_server by the pbs_mom
daemon.

The mom.layout file does not need to match the hardware layout exactly. It is possible to
combine node boards and create larger NUMA nodes. The following example shows how to
do this:

nodes=0-1

The memory nodes can be combined the same as CPUs. The memory nodes combined must
be contiguous. You cannot combine mem 0 and 2.

2.7.2.C Configure the server_priv/nodes File
The pbs_server requires awareness of how the MOM is reporting nodes since there is
only one MOM daemon and multiple MOM nodes.

You need to configure the server_priv/nodes file with the num_node_boards and
numa_board_str attributes. The attribute num_node_boards tells pbs_server how
many numa nodes are reported by the MOM.

The following is an example of how to configure the nodes file with num_node_boards:

numa-10 np=72 num_node_boards=12

In this example, the nodes file tells pbs_server there is a host named numa-10 and that
it has 72 processors and 12 nodes. The pbs_server divides the value of np (72) by the
value for num_node_boards (12) and determines there are 6 CPUs per NUMA node.

The previous example showed that the NUMA system is uniform in its configuration of
CPUs per node board. However, a system does not need to be configured with the same
number of CPUs per node board. For systems with non-uniform CPU distributions, use the
attribute numa_board_str to let pbs_server know where CPUs are located in the
cluster.

The following is an example of how to configure the server_priv/nodes file for non-
uniformly distributed CPUs:

Numa-11 numa_board_str=6,8,12

Chapter 2: Installation and Configuration

In this example, pbs_server knows it has 3 MOM nodes and the nodes have 6, 8, and 12
CPUs respectively. Notice that the attribute np is not used. The np attribute is ignored
because the number of CPUs per node is expressly given.

2.7.2.D Limit Memory Resources (Optional)
Torque can better enforce memory limits with the use of the memacctd utility. The
memacctd utility is a daemon that caches memory footprints when it is queried. When
configured to use the memory monitor, Torque queries memacctd.

The memacctd utility is provided by SGI for SLES systems only. It is up to the user to
make sure memacctd is installed.

To configure Torque to use memacctd for memory enforcement, do the following:

1. Start memacctd as instructed by SGI.

2. Reconfigure Torque with --enable-memacct. This will link in the necessary library
when Torque is recompiled.

3. Recompile and reinstall Torque.

4. Restart all MOM nodes.

You use the qsub filter to include a default memory limit for all jobs that are not
submitted with memory limit.

2.8 Torque Multi-MOM

Users can run multiple MOMs on a single node. The initial reason to develop a multiple
MOM capability was for testing purposes. A small cluster can be made to look larger since
each MOM instance is treated as a separate node.

When running multiple MOMs on a node, each MOM must have its own service and
manager ports assigned. The default ports used by the MOM are 15002 and 15003. With
the multi-mom alternate ports can be used without the need to change the default ports for
pbs_server even when running a single instance of the MOM.

In this topic:

Chapter 2: Installation and Configuration

75 2.8 Torque Multi-MOM

2.8 Torque Multi-MOM 76

2.8.1 Multi-MOM Configuration 76
2.8.2 Stopping pbs_mom in Multi-MOMMode 77

2.8.1 Multi-MOM Configuration

There are three steps to setting up multi-MOM capability:

1. Configure server_priv/nodes

2. Edit the /etc/hosts File

3. Start pbs_mom with Multi-MOMOptions

2.8.1.A Configure server_priv/nodes
The attributes mom_service_port and mom_manager_port were added to the
nodes file syntax to accommodate multiple MOMs on a single node. By default, pbs_mom
opens ports 15002 and 15003 for the service and management ports respectively. For
multiple MOMs to run on the same IP address they need to have their own port values so
they can be distinguished from each other. pbs_server learns about the port addresses
of the different MOMs from entries in the server_priv/nodes file. The following is an
example of a nodes file configured for multiple MOMs:

hosta np=2
hosta-1 np=2 mom_service_port=30001 mom_manager_port=30002
hosta-2 np=2 mom_service_port=31001 mom_manager_port=31002
hosta-3 np=2 mom_service_port=32001 mom_manager_port=32002

Note that all entries have a unique host name and that all port values are also unique. The
entry hosta does not have a mom_service_port or mom_manager_port given. If
unspecified, then the MOM defaults to ports 15002 and 15003.

2.8.1.B Edit the /etc/hosts File
Host names in the server_priv/nodes file must be resolvable. Creating an alias for
each host enables the server to find the IP address for each MOM; the server uses the port
values from the server_priv/nodes file to contact the correct MOM. An example
/etc/hosts entry for the previous server_priv/nodes example might look like the
following:

192.65.73.10 hosta hosta-1 hosta-2 hosta-3

Chapter 2: Installation and Configuration

Even though the host name and all the aliases resolve to the same IP address, each MOM
instance can still be distinguished from the others because of the unique port value
assigned in the server_priv/nodes file.

2.8.1.C Start pbs_mom with Multi-MOM Options
To start multiple instances of pbs_mom on the same node, use the following syntax (see
pbs_mom for details):

pbs_mom -m -M <port value of MOM_service_port> -R <port value of MOM_manager_port> -A
<name of MOM alias>

Continuing based on the earlier example, if you want to create four MOMs on hosta, type
the following at the command line:

pbs_mom -m -M 30001 -R 30002 -A hosta-1
pbs_mom -m -M 31001 -R 31002 -A hosta-2
pbs_mom -m -M 32001 -R 32002 -A hosta-3
pbs_mom

Notice that the last call to pbs_mom uses no arguments. By default, pbs_mom opens on
ports 15002 and 15003. No arguments are necessary because there are no conflicts.

Related Topics

l 2.8 Torque Multi-MOM - page 75

l 2.8.2 Stopping pbs_mom in Multi-MOM Mode - page 77

2.8.2 Stopping pbs_mom in Multi-MOM Mode

Terminate pbs_mom by using the momctl -s command (for details, see momctl). For
any MOM using the default manager port 15003, the momctl -s command stops the
MOM. However, to terminate MOMs with a manager port value not equal to 15003, you
must use the following syntax:

momctl -s -p <port value of MOM_manager_port>

The -p option sends the terminating signal to the MOM manager port and the MOM is
terminated.

Chapter 2: Installation and Configuration

77 2.8 Torque Multi-MOM

2.9 Supporting MIG Devices in Torque 78

Related Topics

l 2.8 Torque Multi-MOM - page 75

l 2.8.1 Multi-MOM Configuration - page 76

2.9 Supporting MIG Devices in Torque

This section describes how to use the MIG features on a MIG capable NVIDIA GPU.

2.9.1 Requirements
The configuration required for Multi-Instance GPU (MIG) capabilities include hwloc
installed along with the following configuration option flags:

l --enable-cgroups

l --with-hwloc-path

l --enable-nvidia-gpus

l --with-nvml-include

l --with-nvml-lib

2.9.2 Functionality
The partitioned MIG instances will be enumerated as real GPU instances. Job submission
resource request limitations are subject to current NVIDIA/CUDA driver limitations
described below. A job resource request is performed identically to requesting a normal
GPU resource.

Torque recognizes MIG instances as real GPUs, therefore, the PBS_MOM service must be
stopped on a node when enabling or disabling MIG mode on a MIG capable GPU and then
restarted. The PBS_MOM service must also be stopped and restarted whenever changing
the configuration of MIG partitions on a node.

2.9.3 Limitations
Due to current NVIDIA driver limitations, no GPU to GPU P2P (either PCIe or NVLink) is
supported. With CUDA 11, only enumeration of a single MIG instance is supported. See
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html for more
information.

Chapter 2: Installation and Configuration

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

This means that when MIG instances are enabled on a GPU, only one GPU should be
requested per job. This may change in future CUDA/NVIDIA driver versions.

Chapter 2: Installation and Configuration

79 2.9 Supporting MIG Devices in Torque

3.1 Job Submission 80

Chapter 3: Submitting and Managing Jobs

This section contains information about how you can submit and manage jobs with Torque.

In this chapter:

3.1 Job Submission 80
3.2 Monitoring Jobs 99
3.3 Canceling Jobs 101
3.4 Job Preemption 101
3.5 Keeping Completed Jobs 102
3.6 Job Checkpoint and Restart 103
3.7 Job Exit Status 111
3.8 Torque Process Tracking 114
3.9 Large Job Arrays 116

3.1 Job Submission

Job submission is accomplished using the qsub command, which takes a number of
command line arguments and integrates such into the specified PBS command file.

The PBS command file can be specified as a filename on the qsub command line or can be
entered via STDIN:

l The PBS command file does not need to be executable.

l The PBS command file can be piped into qsub (i.e., cat pbs.cmd | qsub).

l In the case of parallel jobs, the PBS command file is staged to, and executed on, the
first allocated compute node only. (Use pbsdsh to run actions on multiple nodes.)

l The command script is executed from the user's home directory in all cases. (The
script may determine the submission directory by using the $PBS_O_WORKDIR
environment variable)

l The command script will be executed using the default set of user environment
variables unless the -V or -v flags are specified to include aspects of the job
submission environment.

l PBS directives should be declared first in the job script:

Chapter 3: Submitting and Managing Jobs

#PBS -S /bin/bash
#PBS -m abe
#PBS -M <yourEmail@company.com>
echo sleep 300

This is an example of properly declared PBS directives.

#PBS -S /bin/bash
SOMEVARIABLE=42
#PBS -m abe
#PBS -M <yourEmail@company.com>
echo sleep 300

This is an example of improperly declared PBS directives. PBS directives below "SOMEVARIABLE=42" are ignored.

By default, job submission is allowed only on the Torque server host (host on which
pbs_server is running). Enablement of job submission from other hosts is
documented in Server Configuration.

Earlier versions of Torque attempted to apply queue and server defaults to a job that
didn't have defaults specified. If a setting still did not have a value after that, Torque
applied the queue and server maximum values to a job (meaning, the maximum
values for an applicable setting were applied to jobs that had no specified or default
value).

In later versions of Torque, the queue and server maximum values are no longer
used as a value for missing settings.

In this topic:

3.1.1 Multiple Job Submission 82
3.1.2 Managing Multi-Node Jobs 83
3.1.3 Requesting Resources 84
3.1.4 Requesting NUMA-Aware Resources 94
3.1.5 Requesting Generic Resources 94
3.1.6 Requesting Floating Resources 95
3.1.7 Requesting Other Resources 96
3.1.8 Exported Batch Environment Variables 96
3.1.9 Enabling Trusted Submit Hosts 97
3.1.10 Example Submit Scripts 98

Chapter 3: Submitting and Managing Jobs

81 3.1 Job Submission

3.1 Job Submission 82

Related Topics

l Maui Documentation

l Appendix J: Job Submission Filter (qsub Wrapper) - page 416 – Allow local checking
and modification of submitted job

3.1.1 Multiple Job Submission

Sometimes users want to submit large numbers of jobs based on the same job script.
Rather than using a script to repeatedly call qsub, a feature known as job arrays enables
the creation of multiple jobs with one qsub command. Additionally, this feature includes a
job naming convention that enables users to reference the entire set of jobs as a unit, or to
reference one particular job from the set.

3.1.1.A Submitting Job Arrays
Job arrays are submitted through the -t option to qsub, or by using #PBS -t in your
batch script. This option takes a comma-separated list consisting of either a single job ID
number, or a pair of numbers separated by a dash. Each of these jobs created will use the
same script and will be running in a nearly identical environment.

> qsub -t 0-4 job_script
1098[].hostname

> qstat -t
1098[0].hostname ...
1098[1].hostname ...
1098[2].hostname ...
1098[3].hostname ...
1098[4].hostname ...

Each 1098[x] job has an environment variable called PBS_ARRAYID, which is set to the
value of the array index of the job, so 1098[0].hostname would have PBS_ARRAYID set to
0. This enables you to create job arrays where each job in the array performs slightly
different actions based on the value of this variable, such as performing the same tasks on
different input files. One other difference in the environment between jobs in the same
array is the value of the PBS_JOBNAME variable.

These two examples are equivalent
> qsub -t 0-99
> qsub -t 100

You can also pass comma-delimited lists of ids and ranges:
> qsub -t 0,10,20,30,40
> qsub -t 0-50,60,70,80

Chapter 3: Submitting and Managing Jobs

http://docs.adaptivecomputing.com/maui/index.php

Running qstat displays a job summary, which provides an overview of the array's state.
To see each job in the array, run qstat -t.

The qalter, qdel, qhold, and qrls commands can operate on arrays—either the
entire array or a range of that array. Additionally, any job in the array can be accessed
normally by using that job's ID, just as you would with any other job. For example, running
the following command would run only the specified job:

qrun 1098[0].hostname

3.1.1.B Slot Limit
The slot limit is a way for administrators to limit the number of jobs from a job array that
can be eligible for scheduling at the same time. When a slot limit is used, Torque puts a
hold on all jobs in the array that exceed the slot limit. When an eligible job in the array
completes, Torque removes the hold flag from the next job in the array. Slot limits can be
declared globally with the max_slot_limit parameter, or on a per-job basis with qsub -t.

Related Topics

l 3.1 Job Submission - page 80

3.1.2 Managing Multi-Node Jobs

By default, when a multi-node job runs, the Mother Superior manages the job across all the
sister nodes by communicating with each of them and updating pbs_server. Each of the
sister nodes sends its updates and stdout and stderr directly to the Mother Superior. When
you run an extremely large job using hundreds or thousands of nodes, you may want to
reduce the amount of network traffic sent from the sisters to the Mother Superior by
specifying a job radix. Job radix sets a maximum number of nodes with which the Mother
Superior and resulting intermediate MOMs communicate and is specified using the -W
option for qsub.

For example, if you submit a smaller, 12-node job and specify job_radix=3, Mother
Superior and each resulting intermediate MOM is only allowed to receive communication
from 3 subordinate nodes.

Chapter 3: Submitting and Managing Jobs

83 3.1 Job Submission

3.1 Job Submission 84

Image 3-1: Job radix example

The Mother Superior picks three sister nodes with which to communicate the job
information. Each of those nodes (intermediate MOMs) receives a list of all sister nodes that
will be subordinate to it. They each contact up to three nodes and pass the job information
on to those nodes. This pattern continues until the bottom level is reached. All
communication is now passed across this new hierarchy. The stdout and stderr data is
aggregated and sent up the tree until it reaches the Mother Superior, where it is saved and
copied to the .o and .e files.

Job radix is meant for extremely large jobs only. It is a tunable parameter and should
be adjusted according to local conditions in order to produce the best results.

3.1.3 Requesting Resources

Various resources can be requested at the time of job submission. A job can request a
particular node, a particular node attribute, or even a number of nodes with particular
attributes. Either native Torque resources (with the -l <resource> syntax) or external
scheduler resource extensions (with -W x=) can be specified.

qsub -l supports:

Chapter 3: Submitting and Managing Jobs

l All the native Torque resources. See 3.1.3.A Native Torque Resources - page 85 for a
list of resources.

l Some Moab scheduler job extensions (for legacy support). See 3.1.3.D Moab Job
Extensions - page 93 for a list of resources.

For Moab resource extensions, qsub -W x= is recommended instead of qsub
-l. See 'Resource Manager Extensions' in the Moab Workload Manager
Administrator Guide for a complete list of scheduler-only job extensions.

3.1.3.A Native Torque Resources
The native Torque resources are listed in the following table.

Resource Format Description

arch string Specifies the administrator defined system architecture
required. This defaults to whatever the PBS_MACH string is
set to in local.mk.

cput seconds, or
[[HH:]MM;]SS

Maximum amount of CPU time used by all processes in the
job on all requested processors.

cpuclock string Specify the CPU clock frequency for each node requested for
this job. A cpuclock request applies to every processor on
every node in the request. Specifying varying
CPU frequencies for different nodes or different processors
on nodes in a single job request is not supported.
Not all processors support all possible frequencies or ACPI
states. If the requested frequency is not supported by the
CPU, the nearest frequency is used.
The clock frequency can be specified via:

l a number that indicates the clock frequency (with or
without the SI unit suffix).

qsub -l cpuclock=1800,nodes=2 script.sh
qsub -l cpuclock=1800mhz,nodes=2 script.sh

This job requests 2 nodes and specifies their
CPU frequencies should be set to 1800 MHz.

l a Linux power governor policy name. The governor
names are:

o performance: This governor instructs Linux to
operate each logical processor at its maximum
clock frequency.

Chapter 3: Submitting and Managing Jobs

85 3.1 Job Submission

3.1 Job Submission 86

Resource Format Description
This setting consumes the most power and
workload executes at the fastest possible speed.

o powersave: This governor instructs Linux to
operate each logical processor at its minimum clock
frequency.
This setting executes workload at the slowest
possible speed. This setting does not necessarily
consume the least amount of power since
applications execute slower, and may actually
consume more energy because of the additional
time needed to complete the workload's execution.

o ondemand: This governor dynamically switches
the logical processor's clock frequency to the
maximum value when system load is high and to
the minimum value when the system load is low.
This setting causes workload to execute at the
fastest possible speed or the slowest possible
speed, depending on OS load. The system switches
between consuming the most power and the least
power.

The power saving benefits of ondemand
might be non-existent due to frequency
switching latency if the system load causes
clock frequency changes too often.
This has been true for older processors since
changing the clock frequency required putting
the processor into the C3 'sleep' state,
changing its clock frequency, and then waking
it up, all of which required a significant
amount of time.
Newer processors, such as the Intel Xeon E5-
2600 Sandy Bridge processors, can change
clock frequency dynamically and much faster.

o conservative: This governor operates like the
ondemand governor but is more conservative in
switching between frequencies. It switches more
gradually and uses all possible clock frequencies.
This governor can switch to an intermediate clock
frequency if it seems appropriate to the system load
and usage, which the ondemand governor does not
do.

qsub -l cpuclock=performance,nodes=2 script.sh

This job requests 2 nodes and specifies their

Chapter 3: Submitting and Managing Jobs

Resource Format Description

CPU frequencies should be set to the
performance power governor policy.

l an ACPI performance state (or P-state) with or without
the P prefix. P-states are a special range of values (0-15)
that map to specific frequencies. Not all processors
support all 16 states, however, they all start at P0. P0
sets the CPU clock frequency to the highest performance
state, which runs at the maximum frequency. P15 sets
the CPU clock frequency to the lowest performance
state, which runs at the lowest frequency.

qsub -l cpuclock=3,nodes=2 script.sh
qsub -l cpuclock=p3,nodes=2 script.sh

This job requests 2 nodes and specifies their
CPU frequencies should be set to a
performance state of 3.

When reviewing job or node properties when cpuclock
was used, be mindful of unit conversion. The OS reports
frequency in Hz, not MHz or GHz.

epilogue string Specifies a user owned epilogue script, which will be run
before the system epilogue and epilogue.user scripts at the
completion of a job. The syntax is epilogue=<file>. The
file can be designated with an absolute or relative path.
For more information, see Prologue and Epilogue Scripts.

feature string Specifies a property or feature for the job. Feature
corresponds to Torque node properties and Moab features.

qsub script.sh -l procs=10,feature=bigmem

file size* Sets RLIMIT_FSIZE for each process launched through the
TM interface.
See FILEREQUESTISJOBCENTRIC in the Moab Workload
Manager Administrator Guide for information on how Moab
schedules.

host string Name of the host on which the job should be run. This
resource is provided for use by the site's scheduling policy.
The allowable values and effect on job placement is site
dependent.

mem size* Maximum amount of physical memory used by the job.

Chapter 3: Submitting and Managing Jobs

87 3.1 Job Submission

3.1 Job Submission 88

Resource Format Description

Ignored on Darwin, Digital UNIX, Free BSD, HPUX 11, IRIX,
NetBSD, and SunOS. Not implemented on AIX and HPUX 10.
The mem resource will only work for single-node jobs. If
your job requires multiple nodes, use pmem instead.

ncpus integer The number of processors in one task where a task cannot
span nodes.

You cannot request both ncpus and nodes in the same
job.

nice integer Number between -20 (highest priority) and 19 (lowest
priority). Adjust the process execution priority.

nodes {<node_count> |
<hostname>}
[:ppn=<ppn>]
[:gpus=<gpu>]
[:<property>
[:<property>]...]
[+ ...]

Number and/or type of nodes to be reserved for exclusive
use by the job. The value is one or more node_specs joined
with the + (plus) character: node_spec[+node_spec...]. Each
node_spec is a number of nodes required of the type
declared in the node_spec and a name of one or more
properties desired for the nodes. The number, the name, and
each property in the node_spec are separated by a : (colon).
If no number is specified, one (1) is assumed. The name of a
node is its hostname.
The properties of nodes are:

l ppn=# - Specify the number of virtual processors per
node requested for this job.
The number of virtual processors available on a node by
default is 1, but it can be configured in the TORQUE_
HOME/server_priv/nodes file using the np
attribute (see Server Node File Configuration). The
virtual processor can relate to a physical core on the
node or it can be interpreted as an 'execution slot' such
as on sites that set the node np value greater than the
number of physical cores (or hyper-thread contexts).
The ppn value is a characteristic of the hardware,
system, and site, and its value is to be determined by the
administrator.

l gpus=# - Specify the number of GPUs per node
requested for this job.
The number of GPUs available on a node can be
configured in the TORQUE_HOME/server_priv/nodes file
using the gpu attribute (see Server Node File
Configuration). The GPU value is a characteristic of the

Chapter 3: Submitting and Managing Jobs

Resource Format Description

hardware, system, and site, and its value is to be
determined by the administrator.

l property - A string assigned by the system
administrator specifying a node's features. Check with
your administrator as to the node names and properties
available to you.
Torque does not have a TPN (tasks per
node) property. You can specify TPN in Moab
Workload Manager with Torque as your resource
manager, but Torque does not recognize the property
when it is submitted directly to it via qsub.

See qsub -l nodes for examples.

By default, the node resource is mapped to a virtual
node (that is, directly to a processor, not a full
physical compute node). This behavior can be changed
within Maui or Moab by setting the
JOBNODEMATCHPOLICY parameter. See Moab
Parameters in the Moab Workload Manager
Administrator Guide for more information.

All nodes in Torque have their own name as a
property. You can request a specific node by using its
name in the nodes request. Multiple nodes can be
requested this way by using '+' as a delimiter. For
example:
qsub -l nodes=node01:ppn=3+node02:ppn=6

See the HOSTLIST RM extension in the Moab Workload
Manager Administrator Guide for more information.

opsys string Specifies the administrator defined operating system as
defined in the MOM configuration file.

other string Allows a user to specify site specific information. This
resource is provided for use by the site's scheduling policy.
The allowable values and effect on job placement is site
dependent.

This does not work for msub using Moab and Maui.

pcput seconds, or
[[HH:]MM:]SS

Maximum amount of CPU time used by any single process in
the job.

Chapter 3: Submitting and Managing Jobs

89 3.1 Job Submission

3.1 Job Submission 90

Resource Format Description

pmem size* Maximum amount of physical memory used by any single
process of the job. (Ignored on Fujitsu. Not implemented on
Digital UNIX and HPUX.)

procs procs=<integer> The number of processors to be allocated to a job. The
processors can come from one or more qualified node(s).
Only one procs declaration can be used per submitted qsub
command.
> qsub -l nodes=3 -1 procs=2

procs_
bitmap

string A string made up of 1s and 0s in reverse order of the
processor cores requested. A procs_bitmap=1110 means
the job requests a node that has four available cores, but the
job runs exclusively on cores two, three, and four. With this
bitmap, core one is not used.
For more information, see Scheduling Cores.

prologue string Specifies a user owned prologue script, which will be run
after the system prologue and prologue.user scripts at the
beginning of a job. The syntax is prologue=<file>. The
file can be designated with an absolute or relative path.
For more information, see Prologue and Epilogue Scripts.

pvmem size* Maximum amount of virtual memory used by any single
process in the job. (Ignored on Unicos.)

size integer For Torque, this resource has no meaning. It is passed on to
the scheduler for interpretation. See the note at the end of
this table about the supported format.

software string Allows a user to specify software required by the job. This is
useful if certain software packages are only available on
certain systems in the site. This resource is provided for use
by the site's scheduling policy. The allowable values and
effect on job placement is site dependent. See 'License
Management' in the Moab Workload Manager Administrator
Guide for more information.

vmem size* Maximum amount of virtual memory used by all concurrent
processes in the job. (Ignored on Unicos.)

walltime seconds, or
[[HH:]MM:]SS

Maximum amount of real time during which the job can be
in the running state.

Chapter 3: Submitting and Managing Jobs

*size

The size format specifies the maximum amount in terms of bytes or words. It is expressed
in the form integer[suffix]. The suffix is a multiplier defined in the following table
('b' means bytes [the default] and 'w' means words). The size of a word is calculated on the
execution server as its word size.

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

3.1.3.B Interpreting Resource Requests
The table below shows how various requests are interpreted in the qsub -l syntax and
corresponding cgroup usage.

Memory parameters (mem, pmem, vmem, pvmem) may specify units (examples:
mem=1024mb, mem=320kb, mem=1gb). Recognized units are kb (kilobytes), mb
(megabytes), gb (gigabytes), tb (terabyte), pb (petabytes), and eb (exabyte). If units are not
specified, mb (megabytes) is assumed.

Example 3-1: Interpreting qsub -l requests

Usage Description

node=X:ppn=Y Creates X tasks that will use Y lprocs per task.

procs=X Creates X tasks that will use 1 lproc each.

ncpus=X Creates 1 task that will use X lprocs.

mem=X The entire job will use X memory, divided evenly among the tasks.*

pmem=X Each task will use X memory. In translation, -l nodes=1:ppn=4,pmem=1gb

Chapter 3: Submitting and Managing Jobs

91 3.1 Job Submission

3.1 Job Submission 92

Usage Description

will use 4 GB of memory.*

vmem=X The entire job will use X swap, divided evenly among the tasks. If legacy_
vmem is set to true in the server, then the entire specified value will be
given per host.**

pvmem=X Each task will use X swap. In translation, -l nodes=1:ppn=4,pvmem=1gb
will use 4 GB of swap.**

*If both mem and pmem are specified, the less restrictive of the two will be used as the
limit for the job. For example, qsub job.sh -l
nodes=2:ppn=2,mem=4gb,pmem=1gb will apply the mem requested instead of pmem,
because it will allow 2 GB per task (4 GB/2 tasks) instead of 1 GB per task.

**If both vmem and pvmem are specified, the less restrictive of the two will be used as the
limit for the job. For example, qsub job.sh -l
nodes=2:ppn=2,vmem=4gb,pvmem=1gb will apply pvmem instead of vmem, because
it will allow 2 GB swap per task (1 GB * 2 ppn) instead of .5 GB per task (1 GB/2 tasks).

3.1.3.C Interpreting Node Requests
The table below shows how various qsub -l nodes requests are interpreted.

Example 3-2: qsub -l nodes

Usage Description

> qsub -l nodes=12 Request 12 nodes of any type.

> qsub -l
nodes=2:server+14

Request 2 'server' nodes and 14 other nodes (a total of
16) - this specifies two node_specs, '2:server' and '14'.

> qsub -l
nodes=server:hippi+10:
noserver+3:bigmem:hippi

Request (a) 1 node that is a 'server' and has a 'hippi'
interface, (b) 10 nodes that are not servers, and (c) 3
nodes that have a large amount of memory and have hippi.

> qsub -l
nodes=b2005+b1803+b1813

Request 3 specific nodes by hostname.

> qsub -l nodes=4:ppn=2 Request 2 processors on each of four nodes.

Chapter 3: Submitting and Managing Jobs

Usage Description

> qsub -l nodes=1:ppn=4 Request 4 processors on one node.

> qsub -l
nodes=2:blue:ppn=2+red:
ppn=3+b1014

Request 2 processors on each of two blue nodes, three
processors on one red node, and the compute node
'b1014'.

Example 3-3:

This job requests a node with 200MB of available memory:

> qsub -l mem=200mb /home/user/script.sh

Example 3-4:

This job will wait until node01 is free with 200MB of available memory:

> qsub -l nodes=node01,mem=200mb /home/user/script.sh

3.1.3.D Moab Job Extensions
qsub -l also supports some Moab resource extension values listed below, but be advised
that this usage has been deprecated. The ones that currently work will remain for the
purpose of legacy support, but additional ones will not be added. Instead, we recommend
transitioning to the -W x=<resource> syntax mentioned at the top of this page.

advres

cpuclock

deadline

depend

ddisk

dmem

energy_used

epilogue

feature

flags

gattr

geometry

gmetric

gres

hostlist

image

jgroup

jobflags

latency

loglevel

minprocspeed

minpreempttime

minwclimit

naccesspolicy

nallocpolicy

nodeset

opsys

os

partition

pref

procs

procs_bitmap

prologue

qos

queuejob

reqattr

retrycount

retrycc

rmtype

select

sid

signal

stagein

spriority

subnode

subnode_list

taskdistpolicy

template

termsig

termtime

tid

tpn

trig

trl

var

vcores

wcrequeue

Chapter 3: Submitting and Managing Jobs

93 3.1 Job Submission

3.1 Job Submission 94

Related Topics

l 3.1 Job Submission - page 80

3.1.4 Requesting NUMA-Aware Resources

This topic only applies for NUMA-aware systems.

Various NUMA resources can be requested at the time of job submission.

The qsub -L option enables administrators the ability to place jobs at the 'task' or 'OS
process' level to get maximum efficiency out of the available hardware. In addition,
multiple, non-symmetric resource requests can be made for the same job using the -L job
submission syntax. See the section -L NUMA Resource Request for a complete list of -L
values.

For example:

qsub -L tasks=4:lprocs=2:usecores:memory=500mb -L tasks=8:lprocs=4:memory=2gb

Creates two requests. The first will create 4 tasks with two logical processors per task and 500 mb of memory per task.
The logical processors will be placed on cores. The second request calls for 8 tasks with 4 logical processors per task and
2 gb of memory per task. The logical processors can be placed on cores or threads since the default placement is
allowthreads.

The queue attribute resources_default has several options that are not
compatible with the qsub -L syntax. If a queue has any of the following
resources_default options set (again, without a corresponding req_
information_default setting), the job will be rejected from the queue:

nodes, size, mppwidth, mem, hostlist, ncpus, procs, pvmem, pmem, vmem,
reqattr, software, geometry, opsys, tpn, and trl.

See 5.1.2 Setting Queue Resource Controls with Resource Request Syntax 2.0 - page
137 for more information about setting queue resource requirements and the use of
-l and -L job submission syntaxes.

3.1.5 Requesting Generic Resources

When generic resources have been assigned to nodes using the server's nodes file,
these resources can be requested at the time of job submission using the other field. See

Chapter 3: Submitting and Managing Jobs

'Managing Consumable Generic Resources' in the Moab Workload Manager Administrator
Guide for details on configuration within Moab.

Example 3-5: Generic

This job will run on any node that has the generic resource matlab:

> qsub -l other=matlab /home/user/script.sh

This can also be requested at the time of job submission using the -W
x=GRES:matlab flag.

Related Topics

l 3.1.3 Requesting Resources - page 84

l 3.1 Job Submission - page 80

3.1.6 Requesting Floating Resources

When floating resources have been set up inside Moab, they can be requested in the
same way as generic resources. Moab will automatically understand that these
resources are floating and will schedule the job accordingly. See 'Managing Shared Cluster
Resources (Floating Resources)' in the Moab Workload Manager Administrator Guide for
details on configuration within Moab.

Example 3-6: Floating

This job will run on any node when there are enough floating resources available:

> qsub -l other=matlab /home/user/script.sh

This can also be requested at the time of job submission using the -W
x=GRES:matlab flag.

Related Topics

l 3.1.3 Requesting Resources - page 84

l 3.1 Job Submission - page 80

Chapter 3: Submitting and Managing Jobs

95 3.1 Job Submission

3.1 Job Submission 96

3.1.7 Requesting Other Resources

Many other resources can be requested at the time of job submission using Moab
Workload Manager (via the qsub -W x= syntax (or qsub -l in limited cases), or via
msub -l or msub -W x=). See 'Resource Manager Extensions' in the Moab Workload
Manager Administrator Guide for a list of these supported requests and correct syntax.

Related Topics

l 3.1.3 Requesting Resources - page 84

l 3.1 Job Submission - page 80

3.1.8 Exported Batch Environment Variables

When a batch job is started, a number of variables are introduced into the job's
environment that can be used by the batch script in making decisions, creating output files,
and so forth. These variables are listed in the following table:

Variable Description

PBS_ARRAYID Zero-based value of job array index for this job

PBS_ENVIRONMENT Set to PBS_BATCH to indicate the job is a batch job, or to PBS_
INTERACTIVE to indicate the job is a PBS interactive job (see -I
option)

PBS_GPUFILE Line-delimited list of GPUs allocated to the job located in
TORQUE_HOME/aux/jobidgpu. Each line follows the following
format: <host>-gpu<number> For example, myhost-gpu1.

PBS_JOBCOOKIE Job cookie

PBS_JOBID Unique pbs job id

PBS_JOBNAME User specified jobname

PBS_MOMPORT Active port for MOM daemon

PBS_NODEFILE File containing line delimited list of nodes allocated to the job

Chapter 3: Submitting and Managing Jobs

Variable Description

PBS_NODENUM Node offset number

PBS_NP Number of execution slots (cores) for the job

PBS_NUM_NODES Number of nodes allocated to the job

PBS_NUM_PPN Number of procs per node allocated to the job

PBS_O_HOME Home directory of submitting user

PBS_O_HOST Host on which job script is currently running

PBS_O_LANG Language variable for job

PBS_O_LOGNAME Name of submitting user

PBS_O_PATH Path variable used to locate executables within job script

PBS_O_SHELL Script shell

PBS_O_WORKDIR Job's submission directory

PBS_QUEUE Job queue

PBS_TASKNUM Number of tasks requested

Related Topics

l 3.1.3 Requesting Resources - page 84

l 3.1 Job Submission - page 80

3.1.9 Enabling Trusted Submit Hosts

By default, only the node running the pbs_server daemon is allowed to submit jobs.
Additional nodes can be trusted as submit hosts by taking any of the following steps:

Chapter 3: Submitting and Managing Jobs

97 3.1 Job Submission

3.1 Job Submission 98

l Set the allow_node_submit server parameter (see Allowing Job Submission
from Compute Hosts).
Allows any host trusted as a compute host to also be trusted as a submit host.

l Set the submit_hosts server parameter (see Using the 'submit_hosts' Service
Parameter).
Allows specified hosts to be trusted as a submit host.

l Use .rhosts to enable ruserok() based authentication (see Using RCmd
Authentication).

See Configuring Job Submission Hosts for more information.

When you enable allow_node_submit, you must also enable the allow_
proxy_user parameter to allow user proxying when submitting and running jobs.

Related Topics

l 3.1 Job Submission - page 80

3.1.10 Example Submit Scripts

The following is an example job test script:

#!/bin/sh
#
#This is an example script example.sh
#
#These commands set up the Grid Environment for your job:
#PBS -N ExampleJob
#PBS -l nodes=1,walltime=00:01:00
#PBS -q np_workq
#PBS -M YOURUNIQNAME@umich.edu
#PBS -m abe

#print the time and date
date

#wait 10 seconds
sleep 10

#print the time and date again
date

Chapter 3: Submitting and Managing Jobs

Related Topics

l 3.1 Job Submission - page 80

3.2 Monitoring Jobs

Torque enables users and administrators to monitor submitted jobs with the qstat
command.

If the command is run by a non-administrative user, it will output just that user's jobs. For
example:

> qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
4807 scatter user01 12:56:34 R batch
...

Monitoring NUMA Job Task Placement
When using NUMA, job resources are tracked per task. To support this qstat -f
produces a new category of information that begins with the req_information
keyword. Following each req_information keyword is another keyword giving
information about how the job was allocated. See the section -L NUMA Resource Request
for available allocation keywords.

When the job has completed, the output will also include the per-task resident memory
used and per-task CPU time used. The following is a sample qstat -f completed job
output.

Timing issues may prevent the resources_uses.mem value from accurately
reporting the maximum amount of memory used, particularly if the logging level is set
above 0.

You will see that req_information.task_usage.0.task.0.cpu_list gives the
cores to which the job is bound for the cpuset. The same for mem_list. The keywords
memory_used and cput_used report the per task resident memory used and CPU time
used respectively.

Job Id: 832.pv-knielson-dt
Job_Name = bigmem.sh
Job_Owner = knielson@pv-knielson-dt
resources_used.cput = 00:00:00
resources_used.energy_used = 0
resources_used.mem = 3628kb
resources_used.vmem = 31688kb

Chapter 3: Submitting and Managing Jobs

99 3.2 Monitoring Jobs

3.2 Monitoring Jobs 100

resources_used.walltime = 00:00:00
job_state = C
queue = second
server = pv-knielson-dt
Checkpoint = u
ctime = Tue Jul 28 23:23:15 2020
Error_Path = pv-knielson-dt:/home/knielson/jobs/bigmem.sh.e832
exec_host = pv-knielson-dt/0-3
Hold_Types = n
Join_Path = n
Keep_Files = n
Mail_Points = a
mtime = Tue Jul 28 23:23:18 2020
Output_Path = pv-knielson-dt:/home/knielson/jobs/bigmem.sh.o832
Priority = 0
qtime = Tue Jul 28 23:23:15 2020
Rerunable = True
Resource_List.walltime = 00:05:00
session_id = 2708
substate = 59
Variable_List = PBS_O_QUEUE=routeme,PBS_O_HOME=/home/knielson,
PBS_O_LOGNAME=knielson,
PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/b
in:/usr/games:/usr/local/games,PBS_O_SHELL=/bin/bash,PBS_O_LANG=en_US,
PBS_O_WORKDIR=/home/knielson/jobs,PBS_O_HOST=pv-knielson-dt,
PBS_O_SERVER=pv-knielson-dt
euser = knielson
egroup = company
hashname = 832.pv-knielson-dt
queue_rank = 391
queue_type = E
etime = Tue Jul 28 23:23:15 2020
exit_status = 0
submit_args = -L tasks=2:lprocs=2 ../scripts/bigmem.sh
start_time = Tue Jul 28 23:23:18 2020
start_count = 1
fault_tolerant = False
comp_time = Tue Jul 28 23:23:18 2020
job_radix = 0
total_runtime = 0.093262
submit_host = pv-knielson-dt
req_information.task_count.0 = 2
req_information.lprocs.0 = 2
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = pv-knielson-dt:ppn=4
req_information.task_usage.0.task.0.cpu_list = 2,6
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.memory_used = 258048
req_information.task_usage.0.task.0.cput_used = 18
req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 0
req_information.task_usage.0.task.0.host =
req_information.task_usage.0.task.1.cpu_list = 3,7
req_information.task_usage.0.task.1.mem_list = 0
req_information.task_usage.0.task.1.memory_used = 258048
req_information.task_usage.0.task.1.cput_used = 18
req_information.task_usage.0.task.1.cores = 0
req_information.task_usage.0.task.1.threads = 2
req_information.task_usage.0.task.1.host = pv-knielson-dt

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 80

Chapter 3: Submitting and Managing Jobs

3.3 Canceling Jobs

Torque enables users and administrators to cancel submitted jobs with the qdel
command. The job will be sent TERM and KILL signals killing the running processes. When
the top-level job script exits, the job will exit. The only parameter is the ID of the job to be
canceled.

If a job is canceled by an operator or manager, an email notification will be sent to the user.
Operators and managers can add a comment to this email with the -m option.

$ qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
4807 scatter user01 12:56:34 R batch
...
$ qdel -m "hey! Stop abusing the NFS servers" 4807
$

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 80

3.4 Job Preemption

Torque supports job preemption by allowing authorized users to suspend and resume jobs.
This is supported using one of two methods. If the node supports OS-level preemption,
Torque will recognize that during the configure process and enable it. Otherwise, the MOM
can be configured to launch a custom checkpoint script in order to support preempting a
job. Using a custom checkpoint script requires that the job understand how to resume itself
from a checkpoint after the preemption occurs.

Configuring a Checkpoint Script on a MOM
To configure the MOM to support a checkpoint script, the $checkpoint_script
parameter must be set in the MOM's configuration file found in TORQUE_HOME/mom_
priv/config. The checkpoint script should have execute permissions set. A typical
configuration file might look as follows:

mom_priv/config:

$pbsserver node06
$logevent 255
$restricted *.mycluster.org
$checkpoint_script /opt/moab/tools/mom-checkpoint.sh

Chapter 3: Submitting and Managing Jobs

101 3.3 Canceling Jobs

3.5 Keeping Completed Jobs 102

The second thing that must be done to enable the checkpoint script is to change the value
of MOM_CHECKPOINT to 1 in /src/include/pbs_config.h. (In some instances,
MOM_CHECKPOINT may already be defined as 1.) The new line should be as follows:

/src/include/pbs_config.h:

#define MOM_CHECKPOINT 1

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 80

3.5 Keeping Completed Jobs

Torque provides the ability to report on the status of completed jobs for a configurable
duration after the job has completed. This can be enabled by setting the attribute on the
job execution queue or the keep_completed parameter on the server. This should be set to
the number of seconds that jobs should be held in the queue. If you set keep_completed on
the job execution queue, completed jobs will be reported in the C state and the exit status
is seen in the exit_status job attribute.

If the Mother Superior and Torque server are on the same server, expect the
following behavior:

l When keep_completed is set, the job spool files will be deleted when the
specified time arrives and Torque purges the job from memory.

l When keep_completed is not set, Torque deletes the job spool files upon job
completion.

l If you manually purge a job (qdel -p) before the job completes or time runs out,
Torque will never delete the spool files.

By maintaining status information about completed (or canceled, failed, etc.) jobs,
administrators can better track failures and improve system performance. This enables
Torque to better communicate with Moab Workload Manager and track the status of jobs.
This gives Moab the ability to track specific failures and to schedule the workload around
possible hazards. See NODEFAILURERESERVETIME in 'Moab Parameters' in the Moab
Workload Manager Administrator Guide for more information.

Chapter 3: Submitting and Managing Jobs

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 80

3.6 Job Checkpoint and Restart

While Torque has had a job checkpoint and restart capability for many years, this was tied
to machine specific features. Torque also supports BLCR—an architecture independent
package that provides for process checkpoint and restart.

The support for BLCR is only for serial jobs, not for any MPI type jobs.

In this topic:

3.6.1 Introduction to BLCR 103
3.6.2 Configuration Files and Scripts 104
3.6.3 Starting a Checkpointable Job 108
3.6.4 Checkpointing a Job 110
3.6.5 Restarting a Job 110
3.6.6 Acceptance Tests 111

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 80

3.6.1 Introduction to BLCR

BLCR is a kernel level package. It must be downloaded and installed from BLCR.

After building and making the package, it must be installed into the kernel with commands
as follows. These can be installed into the file /etc/modules but all of the testing was
done with explicit invocations of modprobe.

Installing BLCR into the kernel:

/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_imports.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_vmadump.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr.ko

The BLCR system provides four command line utilities:

Chapter 3: Submitting and Managing Jobs

103 3.6 Job Checkpoint and Restart

https://ftg.lbl.gov/projects/CheckpointRestart/

3.6 Job Checkpoint and Restart 104

l cr_checkpoint

l cr_info

l cr_restart

l cr_run

For more information about BLCR, see the BLCR Administrator's Guide.

Related Topics

l 3.6 Job Checkpoint and Restart - page 103

3.6.2 Configuration Files and Scripts

Configuring and Building Torque for BLCR:

> ./configure --enable-unixsockets=no --enable-blcr
> make
> sudo make install

Depending on where BLCR is installed you may also need to use the following configure
options to specify BLCR paths:

Option Description

--with-blcr-include=DIR include path for libcr.h

--with-blcr-lib=DIR lib path for libcr

--with-blcr-bin=DIR bin path for BLCR utilities

The pbs_mom configuration file located in /var/spool/torque/mom_priv must be
modified to identify the script names associated with invoking the BLCR commands. The
following variables should be used in the configuration file when using BLCR
checkpointing.

Variable Description

$checkpoint_interval How often periodic job checkpoints will be taken (minutes).

$checkpoint_script The name of the script file to execute to perform a job checkpoint.

Chapter 3: Submitting and Managing Jobs

http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html

Variable Description

$restart_script The name of the script file to execute to perform a job restart.

$checkpoint_run_exe The name of an executable program to be run when starting a check-
pointable job (for BLCR, cr_run).

The following example shows the contents of the configuration file used for testing the
BLCR feature in Torque.

The script files below must be executable by the user. Be sure to use chmod to set
the permissions to 754.

Example 3-7: Script file permissions

chmod 754 blcr*
ls -l
total 20
-rwxr-xr-- 1 root root 2112 2023-03-11 13:14 blcr_checkpoint_script
-rwxr-xr-- 1 root root 1987 2023-03-11 13:14 blcr_restart_script
-rw-r--r-- 1 root root 215 2023-03-11 13:13 config
drwxr-x--x 2 root root 4096 2023-03-11 13:21 jobs
-rw-r--r-- 1 root root 7 2023-03-11 13:15 mom.lock

Example 3-8: mom_priv/config

$checkpoint_script /var/spool/torque/mom_priv/blcr_checkpoint_script
$restart_script /var/spool/torque/mom_priv/blcr_restart_script
$checkpoint_run_exe /usr/local/bin/cr_run
$pbsserver makua.cridomain
$loglevel 7

Example 3-9: mom_priv/blcr_checkpoint_script

#! /usr/bin/perl
##
#
Usage: checkpoint_script
#
This script is invoked by pbs_mom to checkpoint a job.
#
##
use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

Chapter 3: Submitting and Managing Jobs

105 3.6 Job Checkpoint and Restart

3.6 Job Checkpoint and Restart 106

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $signalNum, $checkpointDir, $checkpointName);
my $usage =
 "Usage: $0 \n";

Note that depth is not used in this script but could control a limit to the number
of checkpoint
image files that are preserved on the disk.
#
Note also that a request was made to identify whether this script was invoked by the
job's
owner or by a system administrator. While this information is known to pbs_server,
it
is not propagated to pbs_mom and thus it is not possible to pass this to the script.

Therefore, a workaround is to invoke qmgr and attempt to set a trivial variable.
This will fail if the invoker is not a manager.

if (@ARGV == 7)
{

($sessionId, $jobId, $userId, $checkpointDir, $checkpointName, $signalNum $depth)
=

@ARGV;
}
else { logDie(1, $usage); }

Change to the checkpoint directory where we want the checkpoint to be created
chdir $checkpointDir
 or logDie(1, "Unable to cd to checkpoint dir ($checkpointDir): $!\n")
 if $logLevel;

my $cmd = "cr_checkpoint";
$cmd .= " --signal $signalNum" if $signalNum;
$cmd .= " --tree $sessionId";
$cmd .= " --file $checkpointName";
my $output = `$cmd 2>&1`;
my $rc = $? >> 8;
logDie(1, "Subcommand ($cmd) failed with rc=$rc:\n$output")
 if $rc && $logLevel >= 1;
logPrint(3, "Subcommand ($cmd) yielded rc=$rc:\n$output")
 if $logLevel >= 3;
exit 0;

##
logPrint($message)
Write a message (to syslog) and die
##
sub logPrint
{
 my ($level, $message) = @_;
 my @severity = ('none', 'warning', 'info', 'debug');

 return if $level > $logLevel;

 openlog('checkpoint_script', '', 'user');
 syslog($severity[$level], $message);
 closelog();

Chapter 3: Submitting and Managing Jobs

}

##
logDie($message)
Write a message (to syslog) and die
##
sub logDie
{
 my ($level, $message) = @_;
 logPrint($level, $message);
 die($message);
}

Example 3-10: mom_priv/blcr_restart_script

#! /usr/bin/perl
##
#
Usage: restart_script
#
This script is invoked by pbs_mom to restart a job.
#
##
use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $checkpointDir, $restartName);
my $usage =
 "Usage: $0 \n";
if (@ARGV == 5)
{

($sessionId, $jobId, $userId, $checkpointDir, $restartName) =
@ARGV;

}
else { logDie(1, $usage); }

Change to the checkpoint directory where we want the checkpoint to be created
chdir $checkpointDir
 or logDie(1, "Unable to cd to checkpoint dir ($checkpointDir): $!\n")
 if $logLevel;

my $cmd = "cr_restart";
$cmd .= " $restartName";
my $output = `$cmd 2>&1`;
my $rc = $? >> 8;
logDie(1, "Subcommand ($cmd) failed with rc=$rc:\n$output")
 if $rc && $logLevel >= 1;
logPrint(3, "Subcommand ($cmd) yielded rc=$rc:\n$output")
 if $logLevel >= 3;

Chapter 3: Submitting and Managing Jobs

107 3.6 Job Checkpoint and Restart

3.6 Job Checkpoint and Restart 108

exit 0;

##
logPrint($message)
Write a message (to syslog) and die
##
sub logPrint
{
 my ($level, $message) = @_;
 my @severity = ('none', 'warning', 'info', 'debug');

 return if $level > $logLevel;
 openlog('restart_script', '', 'user');
 syslog($severity[$level], $message);
 closelog();
}

##
logDie($message)
Write a message (to syslog) and die
##
sub logDie
{
 my ($level, $message) = @_;

 logPrint($level, $message);
 die($message);
}

Related Topics

l 3.6 Job Checkpoint and Restart - page 103

3.6.3 Starting a Checkpointable Job

Not every job is checkpointable. A job for which checkpointing is desirable must be started
with the -c command line option. This option takes a comma-separated list of arguments
that are used to control checkpointing behavior. The list of valid options is shown below:

Option Description

none No checkpointing (not highly useful, but included for completeness).

enabled Specify that checkpointing is allowed, but must be explicitly invoked by
either the qhold or qchkpt commands.

shutdown Specify that checkpointing is to be done on a job at pbs_mom shutdown.

Chapter 3: Submitting and Managing Jobs

Option Description

periodic Specify that periodic checkpointing is enabled. The default interval is 10
minutes and can be changed by the $checkpoint_interval option
in the MOM configuration file, or by specifying an interval when the job
is submitted.

interval=minutes Specify the checkpoint interval in minutes.

depth=number Specify a number (depth) of checkpoint images to be kept in the
checkpoint directory.

dir=path Specify a checkpoint directory (default is
/var/spool/torque/checkpoint).

Example 3-11: Sample test program

#include "stdio.h"
int main(int argc, char *argv[])
{
int i;

for (i=0; i<100; i++)
{

 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}

Example 3-12: Instructions for building test program

> gcc -o test test.c

Example 3-13: Sample test script

#!/bin/bash ./test

Example 3-14: Starting the test job

> qstat
> qsub -c enabled,periodic,shutdown,interval=1 test.sh
77.jakaa.cridomain
> qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
77.jakaa test.sh jsmith 0 Q batch
>

If you have no scheduler running, you might need to start the job with qrun.

Chapter 3: Submitting and Managing Jobs

109 3.6 Job Checkpoint and Restart

3.6 Job Checkpoint and Restart 110

As this program runs, it writes its output to a file in /var/spool/torque/spool. This
file can be observed with the command tail -f.

Related Topics

l 3.6 Job Checkpoint and Restart - page 103

3.6.4 Checkpointing a Job

Jobs are checkpointed by issuing a qhold command. This causes an image file
representing the state of the process to be written to disk. The directory by default is
/var/spool/torque/checkpoint.

This default can be altered at the queue level with the qmgr command. For example, the
command qmgr -c set queue batch checkpoint_dir=/tmp would change the
checkpoint directory to /tmp for the queue 'batch'.

The default directory can also be altered at job submission time with the -c dir=/tmp
command line option.

The name of the checkpoint directory and the name of the checkpoint image file become
attributes of the job and can be observed with the command qstat -f. Notice in the
output the names checkpoint_dir and checkpoint_name. The variable checkpoint_
name is set when the image file is created and will not exist if no checkpoint has been
taken.

A job can also be checkpointed without stopping or holding the job with the command
qchkpt.

Related Topics

l 3.6 Job Checkpoint and Restart - page 103

3.6.5 Restarting a Job

Restarting a Job in the Held State
The qrls command is used to restart the hibernated job. If you were using the tail -f
command to watch the output file, you will see the test program start counting again.

It is possible to use the qalter command to change the name of the checkpoint file
associated with a job. This could be useful if there were several job checkpoints and
restarting the job from an older image was specified.

Chapter 3: Submitting and Managing Jobs

Restarting a Job in the Completed State
In this case, the job must be moved to the Queued state with the qrerun command. Then
the job must go to the Run state either by action of the scheduler or if there is no
scheduler, through using the qrun command.

Related Topics

l 3.6 Job Checkpoint and Restart - page 103

3.6.6 Acceptance Tests

A number of tests were made to verify the functioning of the BLCR implementation. See
BLCR Acceptance Tests for a description of the testing.

Related Topics

l 3.6 Job Checkpoint and Restart - page 103

3.7 Job Exit Status

Once a job under Torque has completed, the exit_status attribute will contain the
result code returned by the job script. This attribute can be seen by submitting a qstat -
f command to show the entire set of information associated with a job. The exit_
status field is found near the bottom of the set of output lines.

Example 3-15: qstat -f (job failure)

Job Id: 179.host
 Job_Name = STDIN
 Job_Owner = user@host
 job_state = C
 queue = batchq server = host
 Checkpoint = u ctime = Fri Aug 29 14:55:55 2023
 Error_Path = host:/opt/moab/STDIN.e179
 exec_host = node1/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Fri Aug 29 14:55:55 2023
 Output_Path = host:/opt/moab/STDIN.o179
 Priority = 0
 qtime = Fri Aug 29 14:55:55 2023
 Rerunable = True Resource_List.ncpus = 2

Chapter 3: Submitting and Managing Jobs

111 3.7 Job Exit Status

3.7 Job Exit Status 112

 Resource_List.nodect = 1
 Resource_List.nodes = node1
 Variable_List = PBS_O_HOME=/home/user,PBS_O_LOGNAME=user,
 PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:,PBS_O_
SHELL=/bin/bash,PBS_O_HOST=host,
 PBS_O_WORKDIR=/opt/moab,PBS_O_QUEUE=batchq
 sched_hint = Post job file processing error; job 179.host on host node1/0Ba
 d UID for job execution REJHOST=pala.cridomain MSG=cannot find user 'user' in
password file
 etime = Fri Aug 29 14:55:55 2023
 exit_status = -1

The value of Resource_List.* is the amount of resources requested.

This code can be useful in diagnosing problems with jobs that may have unexpectedly
terminated.

If Torque was unable to start the job, this field will contain a negative number produced by
the pbs_mom. Otherwise, if the job script was successfully started, the value in this field
will be the return value of the script.

Example 3-16: Torque supplied exit codes

Name Value Description

JOB_EXEC_OK 0 Job execution successful

JOB_EXEC_FAIL1 -1 Job execution failed, before files, no retry

JOB_EXEC_FAIL2 -2 Job execution failed, after files, no retry

JOB_EXEC_RETRY -3 Job execution failed, do retry

JOB_EXEC_INITABT -4 Job aborted on MOM initialization

JOB_EXEC_INITRST -5 Job aborted on MOM init, chkpt, no migrate

JOB_EXEC_INITRMG -6 Job aborted on MOM init, chkpt, ok migrate

JOB_EXEC_BADRESRT -7 Job restart failed

JOB_EXEC_CMDFAIL -8 Exec() of user command failed

JOB_EXEC_STDOUTFAIL -9 Could not create/open stdout stderr files

Chapter 3: Submitting and Managing Jobs

Name Value Description

JOB_EXEC_OVERLIMIT_MEM -10 Job exceeded a memory limit

JOB_EXEC_OVERLIMIT_WT -11 Job exceeded a walltime limit

JOB_EXEC_OVERLIMIT_CPUT -12 Job exceeded a CPU time limit

JOB_EXEC_RETRY_CGROUP -13 Could not create the job's cgroups

JOB_EXEC_RETRY_PROLOGUE -14 Prologue failed

Example 3-17: Exit code from C program

$ cat error.c

#include
#include

int
main(int argc, char *argv)
{

exit(256+11);
}

$ gcc -o error error.c

$ echo ./error | qsub
180.xxx.yyy

$ qstat -f
Job Id: 180.xxx.yyy
 Job_Name = STDIN
 Job_Owner = test.xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:00
 job_state = C
 queue = batch
 server = xxx.yyy
 Checkpoint = u
 ctime = Wed Apr 30 11:29:37 2023
 Error_Path = xxx.yyy:/home/test/STDIN.e180
 exec_host = node01/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a

Chapter 3: Submitting and Managing Jobs

113 3.7 Job Exit Status

3.8 Torque Process Tracking 114

 mtime = Wed Apr 30 11:29:37 2023
 Output_Path = xxx.yyy:/home/test/STDIN.o180
 Priority = 0
 qtime = Wed Apr 30 11:29:37 2023
 Rerunable = True

Resource_List.neednodes = 1
 Resource_List.nodect = 1
 Resource_List.nodes = 1
 Resource_List.walltime = 01:00:00
 session_id = 14107
 substate = 59
 Variable_List = PBS_O_HOME=/home/test,PBS_O_LANG=en_US.UTF-8,
 PBS_O_LOGNAME=test,
 PBS_O_PATH=/usr/local/perltests/bin:/home/test/bin:/usr/local/s
 bin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games,
 PBS_O_SHELL=/bin/bash,PBS_SERVER=xxx.yyy,
 PBS_O_HOST=xxx.yyy,PBS_O_WORKDIR=/home/test,
 PBS_O_QUEUE=batch
 euser = test
 egroup = test
 hashname = 180.xxx.yyy
 queue_rank = 8
 queue_type = E
 comment = Job started on Wed Apr 30 at 11:29

etime = Wed Apr 30 11:29:37 2023
 exit_status = 11
 start_time = Wed Apr 30 11:29:37 2023
 start_count = 1

Notice that the C routine exit passes only the low order byte of its argument. In this case,
256+11 is really 267 but the resulting exit code is only 11 as seen in the output.

Related Topics

l 3.6 Job Checkpoint and Restart - page 103

l Chapter 3: Submitting and Managing Jobs - page 80

3.8 Torque Process Tracking

This section describes how Torque tracks the lifecycle and resource usage of processes
and how to use the Task Manager (TM) API to inform Torque of processes to be tracked.
See Chapter 8: MPI (Message Passing Interface) Support - page 164 for more details on the
TM API.

In this topic:

Chapter 3: Submitting and Managing Jobs

3.8.1 Default Process Tracking - page 115
3.8.2 Task Manager API - page 115
3.8.3 Process Tracking with cgroups/cpusets - page 116

3.8.1 Default Process Tracking
By default, Torque tracks all processes that it launches, as well as child processes that
share the same session ID as processes launched by Torque.

When a job is launched, the master process for the job is a child of the pbs_mom daemon
on the mother superior node. If that process forks, the child will share a session ID with the
master process, and Torque automatically tracks the process.

3.8.2 Task Manager API
If a job uses the Task Manager (TM) API to launch a process, then that process will also be
automatically tracked along with its children. Most, if not all, MPI libraries can be built to
interact with Torque. When properly configured to do so, MPI libraries either launch
processes in the job through Torque, or inform Torque that it has launched a new process
that should be part of the job.

3.8.2.A Launching Through Torque
The TM API provides the function tm_spawn(). If this function is invoked by an MPI
library or some other program, it will send the executable path or name with all of its
arguments and environment to the local pbs_mom, along with instructions for where the
process should be launched and some data for identifying and tracking that process. The
local MOM will then launch the process if it is local, or send the information to a remote
MOM to launch the process if it should be launched on another host that is part of the job.

The pbsdsh command that comes with Torque uses tm_spawn() to launch processes
that will be part of the job. If you are doing simple proof-of-concept work, pbsdsh is a
built-in launcher that offers some simple options for launching processes within a Torque
job.

3.8.2.B Informing Torque of Other Processes
Another option available for making a process part of a job is the tm_adopt() function.
Some MPI implementations have their own launching mechanism for starting processes—
whether remote or local—and use this instead of the one provided by Torque. To

Chapter 3: Submitting and Managing Jobs

115 3.8 Torque Process Tracking

3.9 Large Job Arrays 116

accommodate this behavior, the tm_adopt() function can be used to inform the MOM
that it should track the process as part of the job.

The tm_adopt() function must be called on the host where the process has been
launched.

The pbs_track() command can be used to launch a process that will be adopted by a
specified Torque job, or it can be used to inform the local MOM that an existing process
should be adopted by a specified Torque job. In either case, the specified Torque job must
be currently executing on the local MOM.

3.8.3 Process Tracking with cgroups/cpusets
With cgroups, Torque generally follows its default approach to tracking processes, but
instead of following session IDs, any process that is part of the job's cgroup is considered
part of the job. Generally speaking, processes launched by processes within a cgroup
inherit their parent's cgroup, but this part is managed by the operating system. In the case
of processes that are launched or adopted by the TM API, the mom daemon will add these
processes to the job's cgroup.

If a process is launched in some way that is exterior to Torque and avoids the cgroup, then
it will not be restricted by the job's cgroup. The only way to guarantee that jobs are
properly restricted is to ensure that process launchers (usually MPI implementations) are
properly configured to either launch through Torque or inform Torque of the processes
that they launch.

Related Topics

l A.6 pbs_track - page 253

3.9 Large Job Arrays

Behavior for Job Arrays Submitted with qsub
When a job array is submitted using qsub, Torque will create all of the subjobs in its
queues, and then it reports the new jobs to Moab the next time it performs a cluster query.
When Moab discovers the new jobs, it will create all of the job files, place the jobs in the
appropriate queue, and perform other job submission tasks.

With small job arrays, this does not present any problems, but if a very large job array is
submitted via qsub however, the impact on Moab is significant. The cluster query will

Chapter 3: Submitting and Managing Jobs

require longer to complete, and scheduling will stop while Moab processes the new data
and jobs. Sites have even restarted Moab thinking it had crashed, when more than likely it
was just very busy, which extended the scheduling iteration and made it unresponsive.

For arrays larger than 500 subjobs, we recommend that msub be used for job submission
instead of qsub. This puts Moab in control of managing the job array right from
submission, and with the proper settings, Moab can handle any size array very well. Refer
to section 'Minimizing Impact of Very Large Array Jobs' in the Moab Workload Manager
Administrator Guide for more details.

We also recommend that the setting set server moab_array_compatible =
True be used if job arrays are expected to be submitted.

Chapter 3: Submitting and Managing Jobs

117 3.9 Large Job Arrays

4.1 Adding Nodes 118

Chapter 4: Managing Nodes

This chapter contains information about adding and configuring compute nodes. It explains
how to work with host security for systems that require dedicated access to compute
nodes. It also contains information about scheduling specific cores on a node at job
submission.

In this chapter:

4.1 Adding Nodes 118
4.2 Node Properties 120
4.3 Changing Node State 122
4.4 Changing Node Power States 122
4.5 Host Security 125
4.6 Linux cpuset Support 128
4.7 Scheduling Cores 130
4.8 Scheduling Accelerator Hardware 132
4.9 Node Resource Plug-In 132

4.1 Adding Nodes

Torque can add and remove nodes either dynamically with qmgr or by manually editing
the TORQUE_HOME/server_priv/nodes file. See Initializing/Configuring Torque on
the Server (pbs_server).

Chapter 4: Managing Nodes

Be aware of the following:

l Nodes cannot be added or deleted dynamically if there is a mom_hierarchy file in
the server_priv directory.

l When you make changes to nodes by directly editing the nodes file, you must restart
pbs_server for those changes to take effect. Changes made using qmgr do not
require a restart.

l When you make changes to a node's ip address, you must clear the pbs_server
cache. Either restart pbs_server or delete the changed node and then re-add it.

l Before a newly added node is set to a free state, the cluster must be informed that
the new node is valid and they can trust it for running jobs. Once this is done, the
node will automatically transition to free.

l Adding or changing a hostname on a node requires a pbs_server restart in order to
add the new hostname as a node.

Run-Time Node Changes
Torque can dynamically add nodes with the qmgr command. For example, the following
command will add node node003:

$ qmgr -c 'create node node003[,node004,node005...] [np=n][,[TTL=YYYY-MM-
DDThh:mm:ssZ],[acl=user:user1[:user2:user3...]],[requestid=n]]'

The optional parameters are used as follows:

l np – Number of virtual processors.

l TTL – (Time to Live) Specifies the time in UTC format that the node is supposed to be
retired by Moab. Moab will not schedule any jobs on a node after its time to live has
passed.

l acl – (Access control list) Can be used to control which users have access to the node
in Moab.

Except for temporary nodes and/or the simplest of cluster configurations,
Adaptive Computing recommends avoiding the use of the acl parameter, as
this can lead to confusion about the root cause of jobs being unable to run. Use
Moab reservations with user ACLs instead.

l requestid – An ID that can be used to track the request that created the node.

You can alter node parameters by following these examples:

qmgr -c 'set node node003 np=6'
qmgr -c 'set node node003 TTL=2020-12-31T23:59:59Z'
qmgr -c 'set node node003 requestid=23234'
qmgr -c 'set node node003 acl="user:user10:user11:user12"'

Chapter 4: Managing Nodes

119 4.1 Adding Nodes

4.2 Node Properties 120

qmgr -c 'set node node003 acl=""'

Torque does not use the TTL, acl, and requestid parameters. Information for
those parameters are simply passed to Moab.

The set node subcommand of qmgr supports the += and -= syntax, but has
known problems when used to alter the acl parameter. Do not use it for this.
Instead, simply reset the full user list, as shown in the above example.

The create node and set node command examples above would append the
following line(s) to the bottom of the TORQUE_HOME/server_priv/nodes file:

node003 np=6 TTL=2020-12-31T23:59:59Z acl=user1:user2:user3 requestid=3210
node004 ...

Nodes can also be removed with a similar command:

> qmgr -c 'delete node node003[,node004,node005...]'

Related Topics

l 4.3 Changing Node State - page 122

l Chapter 4: Managing Nodes - page 118

4.2 Node Properties

Torque can associate properties with nodes to aid in identifying groups of nodes. It's typical
for a site to conglomerate a heterogeneous set of resources. To identify the different sets,
properties can be given to each node in a set. For example, a group of nodes that has a
higher speed network connection could have the property ib. Torque can set, update, or
remove properties either dynamically with qmgr or by manually editing the nodes file.

4.2.1 Run-Time Node Changes
Torque can dynamically change the properties of a node with the qmgr command. For
example, note the following to give node001 the properties of bigmem and dualcore:

> qmgr -c "set node node001 properties = bigmem"
> qmgr -c "set node node001 properties += dualcore"

To relinquish a stated property, use the -= operator.

Chapter 4: Managing Nodes

4.2.2 Manual Node Changes
The properties of each node are enumerated in TORQUE_HOME/server_priv/nodes.
The feature(s) must be in a space-delimited list after the node name. For example, to give
node001 the properties of bigmem and dualcore and node002 the properties of
bigmem and matlab, edit the nodes file to contain the following:

node001 bigmem dualcore
node002 np=4 bigmem matlab

For changes to the nodes file to be activated, pbs_server must be restarted.

For a full description of this file, see 2.5 Server Node File Configuration - page 63.

4.2.3 Adding Memory to a Node
Torque caches information about each node, such as the amount of memory a node has. If
you add memory to a node, pbs_server may not recognize the additional memory. To
force Torque to update a node's configuration, do the following:

1. Stop pbs_server.

2. Remove the entry for the node from the nodes file (TORQUE_HOME/server_
priv/nodes).

3. Remove the file with the name corresponding to the modified node from the TORQUE_
HOME/server_priv/node_usage directory.

4. Start pbs_server.

5. Add entry for the node back into the nodes file

6. Restart pbs_server.

Related Topics

l 3.1 Job Submission - page 80

l Chapter 4: Managing Nodes - page 118

Chapter 4: Managing Nodes

121 4.2 Node Properties

4.3 Changing Node State 122

4.3 Changing Node State

4.3.1 Marking Jobs Offline
A common task is to prevent jobs from running on a particular node by marking it offline
with pbsnodes -o nodename. Once a node has been marked offline, the scheduler will
no longer consider it available for new jobs. Simply use pbsnodes -c nodename when
the node is returned to service.

4.3.2 Listing Node States
Also useful is pbsnodes -l, which lists all nodes with an interesting state, such as down,
unknown, or offline. This provides a quick glance at nodes that might be having a problem
(see pbsnodes for details.)

4.3.3 Node Recovery
When a MOM gets behind on processing requests, pbs_server has a failsafe to allow for
node recovery in processing the request backlog. After three failures without having two
consecutive successes in servicing a request, pbs_server will mark the MOM as offline for
five minutes to allow the MOM extra time to process the backlog before it resumes its
normal activity. If the MOM has two consecutive successes in responding to network
requests before the timeout, then it will come back earlier.

Related Topics

l Chapter 4: Managing Nodes - page 118

4.4 Changing Node Power States

The pbsnodes -m command can modify the power state of nodes. Node cannot go from one
low-power state to another low-power state. They must be brought up to the Running state
and then moved to the new low-power state. The supported power states are:

State Description

Running l Physical machine is actively working
l Power conservation is on a per-device basis

Chapter 4: Managing Nodes

State Description

l Processor power consumption controlled by P-states

Standby l System appears off
l Processor halted (OS executes a 'halt' instruction)
l Processor maintains CPU and system cache state
l RAM refreshed to maintain memory state
l Machine in low-power mode
l Requires interrupt to exit state
l Lowest-latency sleep state - has no effect on software

Suspend l System appears off
l Processor and support chipset have no power
l OS maintains CPU, system cache, and support chipset state in memory
l RAM in slow refresh
l Machine in lowest-power state
l Usually requires specific interrupt (keyboard, mouse) to exit state
l Third lowest-latency sleep state - system must restore power to processor

and support chipset

Hibernate l System is off
l Physical machine state and memory saved to disk
l Requires restoration of power and machine state to exit state
l Second highest-latency sleep state - system performs faster boot using saved

machine state and copy of memory

Shutdown l Equivalent to shutdown now command as root

In order to wake nodes and bring them up to a running state:

l the nodes must support, and be configured to use, Wake-on-LAN (WOL).

l the pbsnodes command must report the node's MAC address correctly.

To Configure Nodes to use Wake-on-LAN
1. Enable WOL in the BIOS for each node. If needed, contact your hardware manufacturer

for details.

2. Use the ethtool command to determine what types of WOL packets your hardware
supports. Torque uses the g packet. If the g packet is not listed, you cannot use WOL
with Torque.

[root]# ethtool eth0
Settings for eth0:

Chapter 4: Managing Nodes

123 4.4 Changing Node Power States

4.4 Changing Node Power States 124

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 2
Transceiver: internal
Auto-negotiation: on
MDI-X: off
Supports Wake-on: pumbg
Wake-on: p
Current message level: 0x00000007 (7)

drv probe link
Link detected: yes

This Ethernet interface supports the gWOL packet, but is currently set to use the p packet.

3. If your Ethernet interface supports the g packet, but is configured for a different packet,
use ethtool -s <interface> wol g to configure it to use g.

[root]# ethtool -s eth0 wol g
[root]# ethtool eth0
Settings for eth0:

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 2
Transceiver: internal
Auto-negotiation: on
MDI-X: off
Supports Wake-on: pumbg
Wake-on: g
Current message level: 0x00000007 (7)

drv probe link
Link detected: yes

Now the power state of your nodes can be modified and they can be woken up from
power-saving states.

Chapter 4: Managing Nodes

Related Topics

l A.8 pbsnodes - page 257

4.5 Host Security

In this topic:

4.5.1 Enabling PAM with Torque - page 125
4.5.2 Using PAM Exception Instructions - page 126
4.5.3 Legacy Torque PAM Configuration - page 127

4.5.1 Enabling PAM with Torque
Torque is able to take advantage of the authentication services provided through Pluggable
Authentication Modules (PAM) to help administrators manage access to compute nodes by
users. The PAM module available in Torque is located in the PAM security directory. This
module, when used in conjunction with other PAM modules, restricts access to the compute
node unless the user has a job currently running on the node. The following configurations
are examples only. For more information about PAM, see the PAM (Pluggable
Authentication Modules) documentation from LinuxDocs.

Security Enhanced Linux (SELinux) must either be disabled or configured to properly
work with PAM.

To enable Torque PAM configure Torque using the --with-pam option. Using --with-
pam is sufficient but if your PAM security modules are not in the default
/lib/security or /lib64/security directory, you can specify the location using -
-with-pam=<DIR> where <DIR> is the directory where you want the modules to be
installed. When Torque is installed the files pam_pbssimpleauth.la and pam_
pbssimpleauth.so appear in /lib/security, /lib64/security, or the
directory designated on the configuration line.

PAM is very flexible and policies vary greatly from one site to another. The following
example restricts users trying to access a node using SSH. Administrators need to assess
their own installations and decide how to apply the Torque PAM restrictions.

In this example, after installing Torque with PAM enabled, you would add the following two
lines to /etc/pam.d/sshd:

account required pam_pbssimpleauth.so

Chapter 4: Managing Nodes

125 4.5 Host Security

https://www.linuxdoc.org/HOWTO/User-Authentication-HOWTO/x101.html
https://www.linuxdoc.org/HOWTO/User-Authentication-HOWTO/x101.html

4.5 Host Security 126

account required pam_access.so

In /etc/security/access.conf make sure all users who access the compute node
are added to the configuration. This is an example that allows the users root, george, allen,
and michael access:

-:ALL EXCEPT root george allen michael torque:ALL

With this configuration, if user george has a job currently running on the compute node,
george can use ssh to login to the node. If there are currently no jobs running, george is
disconnected when attempting to login.

Torque PAM is good at keeping users out who do not have jobs running on a compute node.
However, it does not have the ability to force a user to log out once they are in. To
accomplish this use epilogue or prologue scripts to force users off the system.

4.5.2 Using PAM Exception Instructions
PAM exception instructions enable you to configure exceptions to access restrictions. For
example, users may be restricted from logging into nodes on which they do not have a
running job unless they are a member of a group permitted to bypass that restriction.

To configure a bypass group, do the following.

1. Create the bypass group:

groupadd torque-pam-bypass

2. Add users to the bypass group:

usermod -G torque-pam-bypass jsmith

3. Configure group membership on remote hosts:

pdsh -w ibm[03,04,06,07,15] "usermod -G torque-pam-bypass jsmith"

4. Edit /etc/security/access.conf to add the group exception at the end of the
file:

vim /etc/security/access.conf

#-:ALL EXCEPT root rmckay testuser torque:ALL
--- PAM exception workaround
-:ALL EXCEPT (torque-pam-bypass):ALL

5. Edit /etc/pam.d/sshd to configure PAM to allow users to login using SSH only when
they have job running:

vim /etc/pam.d/sshd

Chapter 4: Managing Nodes

PAM exception method to allow a non-root pam_access group
account sufficient pam_access.so
account required pam_nologin.so
account required pam_pbssimpleauth.so

4.5.3 Legacy Torque PAM Configuration
There is an alternative PAM configuration for Torque that can be found in the tarball
'contrib/pam_authuser.tar.gz'. Adaptive Computing does not currently support this method
but the instructions are given here for those who are currently using it and for those who
want to use it.

For systems requiring dedicated access to compute nodes (for example, users with
sensitive data), Torque prologue and epilogue scripts provide a vehicle to leverage the
authentication provided by linux-PAM modules (see Prologue and Epilogue Scripts for
more information.)

To Allow Only Users with Running Jobs (and root) to Access Compute
Nodes

1. Untar contrib/pam_authuser.tar.gz (found in the src tar ball).

2. Compile pam_authuser.c with make and make install on every compute node.

3. Edit /etc/system-auth as described in README.pam_authuser, again on every
compute node.

4. Either make a tarball of the epilogue* and prologue* scripts (to preserve the symbolic
link) and untar it in the mom_priv directory, or just copy epilogue* and prologue* to
mom_priv/.

The prologue* scripts are Perl scripts that add the user of the job to /etc/authuser.
The epilogue* scripts then remove the first occurrence of the user from
/etc/authuser. File locking is employed in all scripts to eliminate the chance of race
conditions. There is also some commented code in the epilogue* scripts, which, if
uncommented, kills all processes owned by the user (using pkill), provided that the user
doesn't have another valid job on the same node.

Related Topics

l Chapter 4: Managing Nodes - page 118

Chapter 4: Managing Nodes

127 4.5 Host Security

4.6 Linux cpuset Support 128

4.6 Linux cpuset Support

In this topic:

4.6.1 cpuset Overview - page 128
4.6.2 cpuset Support - page 128
4.6.3 Configuring cpuset - page 129
4.6.4 cpuset Advantages/Disadvantages - page 129

4.6.1 cpuset Overview
Linux kernel 2.6 cpusets are logical, hierarchical groupings of CPUs and units of memory.
Once created, individual processes can be placed within a cpuset. The processes will only
be allowed to run/access the specified CPUs and memory. cpusets are managed in a virtual
file system mounted at /dev/cpuset. New cpusets are created by simply making new
directories. cpusets gain CPUs and memory units by simply writing the unit number to files
within the cpuset.

cgroups support encompasses and expands upon the cpusets functionality described
in this section. See 2.7.1 Torque NUMA-Aware Configuration - page 68 for details on
configuring cgroup support, and for full documentation.

4.6.2 cpuset Support

All nodes using cpusets must have the hwloc library and corresponding hwloc-devel
package installed. See Installing Torque Resource Manager for more information.

When started, pbs_mom will create an initial top-level cpuset at /dev/cpuset/torque.
This cpuset contains all CPUs and memory of the host machine. If this 'torqueset' already
exists, it will be left unchanged to allow the administrator to override the default behavior.
All subsequent cpusets are created within the torqueset.

When a job is started, the jobset is created at /dev/cpuset/torque/$jobid and
populated with the CPUs listed in the exec_host job attribute. Also created are
individual tasksets for each CPU within the jobset. This happens before prologue, which
allows it to be easily modified, and it happens on all nodes.

The top-level batch script process is executed in the jobset. Tasks launched through the TM
interface (pbsdsh and PW's mpiexec) will be executed within the appropriate taskset.

Chapter 4: Managing Nodes

On job exit, all tasksets and the jobset are deleted.

4.6.3 Configuring cpuset
To configure cpuset, do the following.

1. As root, mount the virtual filesystem for cpusets:

mkdir /dev/cpuset
mount -t cpuset none /dev/cpuset

Do this for each MOM that is to use cpusets.

2. Because cpuset usage is a build-time option in Torque, you must add --enable-
cpuset to your configure options:

./configure --enable-cpuset

3. Use this configuration for the MOMs across your system.

4.6.4 cpuset Advantages/Disadvantages
Presently, any job can request a single CPU and proceed to use everything available in the
machine. This is occasionally done to circumvent policy, but most often is simply an error
on the part of the user. cpuset support will easily constrain the processes to not interfere
with other jobs.

Jobs on larger NUMA systems may see a performance boost if jobs can be intelligently
assigned to specific CPUs. Jobs may perform better if striped across physical processors, or
contained within the fewest number of memory controllers.

TM tasks are constrained to a single core, therefore a multi-threaded process could
seriously suffer.

Related Topics

l Chapter 4: Managing Nodes - page 118

l 4.7.1 Geometry Request Configuration - page 130

Chapter 4: Managing Nodes

129 4.6 Linux cpuset Support

4.7 Scheduling Cores 130

4.7 Scheduling Cores

You can request specific cores on a node at job submission by using geometry requests. To
use this feature, specify the procs_bitmap resource request of qsub-l (see qsub) at
job submission.

cgroups is incompatible with (and supersedes) cpuset support (--enable-cpuset
and --enable-geometry-requests). Configuring with --enable-cgroups
overrides these other options. See the section 'NUMA-Aware Systems' for more
information about cgroups and job resource requests.

In this topic:

4.7.1 Geometry Request Configuration 130
4.7.2 Geometry Request Usage 131
4.7.3 Geometry Request Considerations 131

4.7.1 Geometry Request Configuration

A Linux kernel of 2.6 or later is required to use geometry requests, because this feature
uses Linux cpusets in its implementation. In order to use this feature, the cpuset directory
has to be mounted. For more information on how to mount the cpuset directory, see Linux
cpuset Support. If the operating environment is suitable for geometry requests, configure
Torque with the --enable-geometry-requests option.

> ./configure --prefix=/home/john/torque --enable-geometry-requests

Torque is configured to install to /home/john/torque and to enable the geometry
requests feature.

The geometry request feature uses a subset of the cpusets feature. When you
configure Torque using --enable-cpuset and --enable-geometry-
requests at the same time, and use -l procs_bitmap=X, the job will get the
requested cpuset. Otherwise, the job is treated as if only --enable-cpuset was
configured.

Chapter 4: Managing Nodes

cgroups is incompatible with (and supersedes) cpuset support (--enable-cpuset
and --enable-geometry-requests). Configuring with --enable-cgroups
overrides these other options.

Related Topics

l 4.7 Scheduling Cores - page 130

4.7.2 Geometry Request Usage

Once enabled, users can submit jobs with a geometry request by using the procs_
bitmap=<string> resource request. procs_bitmap requires a numerical string
made up of 1s and 0s. A 0 in the bitmap means the job cannot run on the core that matches
the 0s index in the bitmap. The index is in reverse order of the number of cores available.
If a job is submitted with procs_bitmap=1011, then the job requests a node with four
free cores, and uses only cores one, two, and four.

The geometry request feature requires a node that has all cores free. A job with a
geometry request cannot run on a node that has cores that are busy, even if the node
has more than enough cores available to run the job.

qsub -l procs_bitmap=0011 ossl.sh

The job ossl.sh is submitted with a geometry request of 0011.

In the above example, the submitted job can run only on a node that has four cores. When
a suitable node is found, the job runs exclusively on cores one and two.

Related Topics

l 4.7 Scheduling Cores - page 130

4.7.3 Geometry Request Considerations

As previously stated, jobs with geometry requests require a node with all of its cores
available. After the job starts running on the requested cores, the node cannot run other
jobs, even if the node has enough free cores to meet the requirements of the other jobs.
Once the geometry requesting job is done, the node is available to other jobs again.

Chapter 4: Managing Nodes

131 4.7 Scheduling Cores

4.8 Scheduling Accelerator Hardware 132

Related Topics

l 4.7 Scheduling Cores - page 130

4.8 Scheduling Accelerator Hardware

Torque works with accelerators (such as NVIDIA GPUs and Intel MICs) and can collect and
report metrics from them or submit workload to them. This feature requires the use of the
Moab scheduler. See 'Accelerators' in the Moab Workload Manager Administrator Guide for
information on configuring accelerators in Torque.

4.9 Node Resource Plug-In

There is now an API for creating a resource plug-in to allow the reporting of custom
varattrs, generic resources, generic metrics, and node features. Additionally, jobs can be
made to report custom resources through the same plug-in. The purpose of this plug-in is
to allow some resource integration to happen outside of the normal code release cycle and
without having to be part of the main codebase for Torque This should allow specific sites
to implement things that are not of general interest, as well as provide a tight integration
option for resources that vary widely based on hardware.

Torque's resource plug-in capability provides an API through which a Torque plug-in can
add arbitrary generic resources, generic metrics, varattrs, and features to a node.
Additionally, Torque plug-in can add arbitrary resource usage per job.

The API can be found in trq_plugin_api.h. To implement a plug-in, you must
implement all of the API functions, even if the function does nothing. An implementation
that does nothing can be found in contrib/resource_plugin.cpp. If you want, you
can simply add the desired functionality to this file, build the library, and link it to the MOM
at build time.

In this topic:

4.9.1 Plug-In Implementation Recommendations - page 133
4.9.2 Building the Plug-In - page 133
4.9.3 Testing the Plug-In - page 133
4.9.4 Enabling the Plug-In - page 134

Chapter 4: Managing Nodes

4.9.1 Plug-In Implementation Recommendations
Your plug-in must execute very quickly in order to avoid causing problems for the pbs_
mom daemon. The node resource portion of the plug-in has a 5 second time limit, and the
job resource usage portion has a 3 second time limit. The node resource portion executes
each time the MOM sends a status to pbs_server, and the job resource usage portion
executes once per job at the same time interval. The node resource and job resource
portions block pbs_mom while they are executing, so they should execute in a short,
deterministic amount of time.

Remember, you are responsible for plug-ins, so design well and test thoroughly.

4.9.2 Building the Plug-In
If you do not change the name of the .cpp file and want to build it, execute the following:

export TRQ_HEADER_LOCATION=/usr/local/include/
g++ -fPIC -I $TRQ_HEADER_LOCATION resource_plugin.cpp -shared -o libresource_plugin.so

Note: Change TRQ_HEADER_LOCATION if you configured torque with the --prefix
option.

4.9.3 Testing the Plug-In
Note: You assume all responsibility for any plug-ins. This document is intended to assist
you in testing the plug-ins, but this list of suggested tests may not be comprehensive. We do
not assume responsibility if these suggested tests do not cover everything.

4.9.3.A Testing Basic Functionality
Once you've implemented and built your library, you can begin testing. For your
convenience, a simple test driver can be found in plugin_driver.cpp. You can build
this executable and link it against your library as shown below in order to manually verify
the output:

export PLUGIN_LIB_PATH=/usr/local/lib
g++ plugin_driver.cpp -I $TRQ_HEADER_LOCATION -L $PLUGIN_LIB_PATH -lresource_plugin -o
driver

You can then execute the driver and manually inspect the output:

./driver

Note: Change PLUGIN_LIB_PATH if you have installed the plug-in somewhere other than
/usr/local/lib.

Chapter 4: Managing Nodes

133 4.9 Node Resource Plug-In

4.9 Node Resource Plug-In 134

To illustrate output, a simple plug-in that reports:

l 2 broams of stormlight used, ignoring the random process ID found by the driver

l 1024 hbmem for GRES

l temperature of 75.2 for GMETRICS

l octave = 3.2.4 for VARATTRS

l haswell for features

will have the output:

$./driver
Your plugin reported the following for the random pid 7976:
stormlight = 2broams
Your plugin reports the following for this host:

GRES:
hbmem = 1024

GMETRICS:
temperature = 75.20

VARATTRS:
octave = 3.2.4

FEATURES: haswell

4.9.3.B Testing for Memory Leaks
In order to prevent your compute nodes from being compromised for speed or even going
down due to out-of-memory conditions, you should run your plug-in under valgrind to test
that it is correctly managing memory.

Assuming you are executing the driver from the 'Testing Basic Functionality' section, you
can run:

valgrind --tool=memcheck --leak-check=full --log-file=plugin_valgrind_output.txt
./driver

If you are not familiar with valgrind, a good primer can be found at The Valgrind Quick
Start Guide.

We recommend that you fix all errors reported by valgrind.

4.9.4 Enabling the Plug-In
Once you've implemented, built, and thoroughly tested your plug-in (remember that our
suggestions may not address everything), you will want to enable it in Torque. Your plug-in
can be linked in at build time:

./configure <your other options> --with-resource-plugin=<path to your resource plugin>

Chapter 4: Managing Nodes

http://valgrind.org/docs/manual/QuickStart.html
http://valgrind.org/docs/manual/QuickStart.html

Note: You will want to make sure that the path you specify is in $LD_LIBRARY_PATH, or
can otherwise be found by pbs_mom when you start the daemon.

Once you build, you can then start the new MOM and be able to observe the plug-in's
output using pbsnodes, qstat -f, and in the accounting file.

Sample pbsnodes output:

<normal output>
gres:hbmem = 20
gmetric:temperature = 76.20
varattr:octave = 3.2.4
features = haswell

The keywords at the front let Moab know what each line means, so it can use them
accordingly.

Sample accounting file entry:

<normal entry until resources used> resources_used.cput=0
resources_used.energy_used=0 resources_used.mem=452kb
resources_used.vmem=22372kb resources_used.walltime=00:05:00
resources_used.stormlight=2broams

Your plug-in resources reported will appear in the form:

resources_used.<name you supplied>=<value you supplied>

The above example includes the arbitrary resource stormlight and the value of 2broams.

Sample qstat -f output:

<normal qstat -f output>
resources_used.stormlight = 2broams

The resources used reported by the plug-in will appear at the end of the qstat -f
output in the same format as in the accounting file.

Chapter 4: Managing Nodes

135 4.9 Node Resource Plug-In

5.1 Queue Configuration 136

Chapter 5: Setting Server Policies

This section explains how to set up and configure your queue. This section also explains
how to set up Torque to run in high availability mode.

In this chapter:

5.1 Queue Configuration 136
5.2 Server High Availability 141
5.3 Setting min_threads and max_threads 155

5.1 Queue Configuration

To initially define a queue, use the create subcommand of qmgr:

> qmgr -c "create queue batch queue_type=execution"

Once created, the queue must be configured to be operational. At a minimum, this includes
setting the options started and enabled.

> qmgr -c "set queue batch started=true"
> qmgr -c "set queue batch enabled=true"

Further configuration is possible using any combination of the following attributes.

Boolean attributes T, t, 1, Y, and y are all synonymous with 'TRUE,' and F, f, 0, N, and n all
mean 'FALSE.' E and R are synonymous with 'Execution' and 'Routing' (respectively).

In this topic:

5.1.1 Example Queue Configuration 137
5.1.2Setting Queue Resource Controls with Resource Request Syntax 2.0 137
5.1.3 Setting a Default Queue 138
5.1.4 Mapping a Queue to Subset of Resources 138
5.1.5 Creating a Routing Queue 139

Chapter 5: Setting Server Policies

Related Topics

l Appendix N: Queue Attributes - page 437

l Appendix B: Server Parameters - page 328

l A.9 qalter - page 260 - command that can move jobs from one queue to another

5.1.1 Example Queue Configuration

The following series of qmgr commands will create and configure a queue named batch:

qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"

This queue will accept new jobs and, if not explicitly specified in the job, will assign a nodecount of 1 and a walltime of
1 hour to each job.

See 5.1.2 Setting Queue Resource Controls with Resource Request Syntax 2.0 - page
137 for more information about setting queue resource requirements and the use of
-l and -L job submission syntaxes.

Related Topics

l 5.1 Queue Configuration - page 136

5.1.2 Setting Queue Resource Controls with Resource
Request Syntax 2.0

Using the -L syntax, you can set default, minimum, and maximum values for lprocs,
memory, swap, disk, sockets, numanode, cores and threads with resource request 2.0.

These can be set in the general format:

qmgr -c "set queue <queue_name> req_information_[default|min|max].
[lprocs|memory|swap|disk|sockets|numanode|core|thread]

Example 5-1: Jobs using -L syntax

qmgr -c "set queue q1 req_information_default.lprocs=2"
qmgr -c "set queue q1 req_information_minimum.memory=2gb"
qmgr -c "set queue q1 req_information_maximum.core=10

Chapter 5: Setting Server Policies

137 5.1 Queue Configuration

5.1 Queue Configuration 138

Regarding queue defaults and the newer -L NUMA-aware syntax: with only the
newer req_information_default.<attribute> configured on a queue,
the queue will only accept submissions with the -L syntax. The same holds true for
resources_default.<attribute> and -l submissions. Setting both on a
queue (as in Example 5-2) enables the queue to accept job submissions with either
syntax.

Example 5-2: Jobs using -L or -l syntax

This example shows how to enable a queue to be able to accept both kinds of jobs and still
be able to enforce defaults:

qmgr -c "create queue batch"
qmgr -c "set queue batch queue_type = Execution"
qmgr -c "set queue batch resources_default.mem = 3gb"
qmgr -c "set queue batch enabled = True"
qmgr -c "set queue batch started = True"
qmgr -c "set queue batch req_information_default.memory = 3gb

In this example, jobs submitted that explicitly use the -L syntax will have the req_
information_default.memory setting applied. If the job does not explicitly use this syntax,
then the resources_default.mem setting will be applied.

Related Topics

l 5.1 Queue Configuration - page 136

5.1.3 Setting a Default Queue

By default, a job must explicitly specify which queue it is to run in. To change this behavior,
the server parameter default_queue can be specified as in the following example:

qmgr -c "set server default_queue=batch"

Related Topics

l 5.1 Queue Configuration - page 136

5.1.4 Mapping a Queue to Subset of Resources

Torque does not currently provide a simple mechanism for mapping queues to nodes.
However, schedulers such as Moab and Maui can provide this functionality.

Chapter 5: Setting Server Policies

The simplest method is using default_resources.neednodes on an execution
queue, setting it to a particular node attribute. Maui/Moab will use this information to
ensure that jobs in that queue will be assigned nodes with that attribute. For example,
suppose we have some nodes bought with money from the chemistry department, and
some nodes paid by the biology department.

TORQUE_HOME/server_priv/nodes:
node01 np=2 chem
node02 np=2 chem
node03 np=2 bio
node04 np=2 bio
qmgr:
set queue chem resources_default.neednodes=chem
set queue bio resources_default.neednodes=bio

This example does not preclude other queues from accessing those nodes. One
solution is to use some other generic attribute with all other nodes and queues.

More advanced configurations can be made with standing reservations and QoSes.

Related Topics

l 5.1 Queue Configuration - page 136

5.1.5 Creating a Routing Queue

A routing queue will steer a job to a destination queue based on job attributes and queue
constraints. It is set up by creating a queue of queue_type 'Route' with a route_
destinations attribute set, as in the following example:

qmgr

routing queue
create queue route
set queue route queue_type = Route
set queue route route_destinations = reg_64
set queue route route_destinations += reg_32
set queue route route_destinations += reg
set queue route enabled = True
set queue route started = True

queue for jobs using 1-15 nodes
create queue reg
set queue reg queue_type = Execution
set queue reg resources_min.ncpus = 1
set queue reg resources_min.nodect = 1
set queue reg resources_default.ncpus = 1
set queue reg resources_default.nodes = 1
set queue reg enabled = True

Chapter 5: Setting Server Policies

139 5.1 Queue Configuration

5.1 Queue Configuration 140

set queue reg started = True

queue for jobs using 16-31 nodes
create queue reg_32
set queue reg_32 queue_type = Execution
set queue reg_32 resources_min.ncpus = 31
set queue reg_32 resources_min.nodes = 16
set queue reg_32 resources_default.walltime = 12:00:00
set queue reg_32 enabled = True
set queue reg_32 started = True

queue for jobs using 32+ nodes
create queue reg_64
set queue reg_64 queue_type = Execution
set queue reg_64 resources_min.ncpus = 63
set queue reg_64 resources_min.nodes = 32
set queue reg_64 resources_default.walltime = 06:00:00
set queue reg_64 enabled = True
set queue reg_64 started = True

have all jobs go through the routing queue
set server default_queue = route
set server resources_default.ncpus = 1
set server resources_default.walltime = 24:00:00
 ...

In this example, the compute nodes are dual processors and default walltimes are set
according to the number of processors/nodes of a job. Jobs with 32 nodes (63 processors)
or more will be given a default walltime of 6 hours. Also, jobs with 16-31 nodes (31-62
processors) will be given a default walltime of 12 hours. All other jobs will have the server
default walltime of 24 hours.

You should not use a Torque routing queue in conjunction with Moab remap classes
to route jobs to queues/nodes. You should select only one of the two methods.

The ordering of the route_destinations is important. In a routing queue, a job is assigned to
the first possible destination queue based on the resources_max, resources_min, acl_users,
and acl_groups attributes. In the preceding example, the attributes of a single processor job
would first be checked against the reg_64 queue, then the reg_32 queue, and finally the reg
queue.

Adding the following settings to the earlier configuration elucidates the queue resource
requirements:

qmgr

set queue reg resources_max.ncpus = 30
set queue reg resources_max.nodect = 15
set queue reg_16 resources_max.ncpus = 62
set queue reg_16 resources_max.nodect = 31

Chapter 5: Setting Server Policies

Torque waits to apply the server and queue defaults until the job is assigned to its final
execution queue. Queue defaults override the server defaults. If a job does not have an
attribute set, the server and routing queue defaults are not applied when queue resource
limits are checked. Consequently, a job that requests 32 nodes (not ncpus=32) will not be
checked against a min_resource.ncpus limit. Also, for the preceding example, a job without
any attributes set will be placed in the reg_64 queue, since the server ncpus default will be
applied after the job is assigned to an execution queue.

If the error message qsub: Job rejected by all possible
destinations is reported when submitting a job, it may be necessary to add
queue location information, (i.e., in the routing queue's route_destinations attribute,
change 'batch' to 'batch@localhost').

Related Topics

l 5.1 Queue Configuration - page 136

l Appendix N: Queue Attributes - page 437

5.2 Server High Availability

Torque can run in a redundant or high availability mode. This means that there can be
multiple instances of the server running and waiting to take over processing in the event
that the primary server fails.

In this topic:

5.2.1 Redundant Server Host Machines - page 142
5.2.2 Enabling High Availability - page 142
5.2.3 Enhanced High Availability with Moab - page 143
5.2.4 How Commands Select the Correct Server Host - page 144
5.2.5 Job Names - page 144
5.2.6 Persistence of the pbs_server Process - page 144
5.2.7 High Availability of the NFS Server - page 145
5.2.8 Installing Torque in High Availability Mode - page 145
5.2.9 Installing Torque in High Availability Mode on Headless Nodes - page 150
5.2.10 Example Setup of High Availability - page 154

Chapter 5: Setting Server Policies

141 5.2 Server High Availability

5.2 Server High Availability 142

5.2.1 Redundant Server Host Machines
High availability enables Moab to continue running even if pbs_server is brought down.
This is done by running multiple copies of pbs_server, each of which has its TORQUE_
HOME/server_priv directory mounted on a shared file system.

Do not use symlinks when sharing the Torque home directory or server_priv
directories. A workaround for this is to use mount --rbind /path/to/share
/var/spool/torque. Also, it is highly recommended that you only share the
server_priv directory and not the entire TORQUE_HOME directory.

The server_name file (for all servers and compute nodes) must include the names of
every pbs_server host. The syntax of the server_name file is a comma-delimited list
of host names. For example:

host1,host2,host3

When configuring high availability, do not use $pbsserver in the pbs_mom
configuration file (TORQUE_HOME/mom_priv/config on the compute nodes) to
specify the server host names. You must use the TORQUE_HOME/server_name
file.

All instances of pbs_server need to be started with the --ha command line option that
allows the servers to run at the same time. Only the first server to start will complete the
full startup. Each subsequent server to start will block very early upon startup when it
tries to lock the TORQUE_HOME/server_priv/server.lock file. When the server
cannot obtain the lock, it will spin in a loop and wait for the lock to clear. The sleep time
between checks of the lock file is one second.

Notice that not only can the servers run on independent server hardware, there can also
be multiple instances of the pbs_server running on the same machine. This was not
possible before, as any server starting after the first would always write an error and quit
when it could not obtain the lock.

5.2.2 Enabling High Availability
To use high availability, you must start each instance of pbs_server with the --ha
option.

Three server options help manage high availability. The server parameters are lock_
file, lock_file_update_time, and lock_file_check_time.

Chapter 5: Setting Server Policies

The lock_file option enables the administrator to change the location of the lock file
(default location: TORQUE_HOME/server_priv). If the lock_file option is used, the
new location must be on the shared partition so all servers have access.

The lock_file_update_time and lock_file_check_time parameters are used
by the servers to determine if the primary server is active. The primary pbs_server will
update the lock file based on the lock_file_update_time (default value of 3
seconds). All backup pbs_servers will check the lock file as indicated by the lock_
file_check_time parameter (default value of 9 seconds). The lock_file_
update_time must be less than the lock_file_check_time. When a failure occurs,
the backup pbs_server takes up to the lock_file_check_time value to take over.

> qmgr -c "set server lock_file_check_time=5"

In the above example, after the primary pbs_server goes down, the backup pbs_
server takes up to 5 seconds to take over. It takes additional time for all MOMs to switch
over to the new pbs_server.

The clock on the primary and redundant servers must be synchronized in order for
high availability to work. Use a utility such as NTP to ensure your servers have a
synchronized time.

Do not use anything but a simple NFS fileshare that is not used by anything else (i.e.,
only Moab can use the fileshare).

Do not use a general-purpose NAS, parallel file system, or company-wide shared
infrastructure to set up Moab high availability using 'native' high availability.

5.2.3 Enhanced High Availability with Moab
When Torque is run with an external scheduler such as Moab, and the pbs_server is not
running on the same host as Moab, pbs_server needs to know where to find the scheduler.
To do this, use the -l option as demonstrated in the example below (the port is required
and the default is 15004):

Set the PBS_ARGS environment variable in the /etc/sysconfig/pbs_server
file. Set PBS_ARGS=-l <moabhost:port> where moabhost is the name of the
alternate server node and port is the port on which Moab on the alternate server
node is listening (default 15004).

If Moab is running in HA mode, set the -l option for each redundant server:

Chapter 5: Setting Server Policies

143 5.2 Server High Availability

5.2 Server High Availability 144

Set the PBS_ARGS environment variable in the /etc/sysconfig/pbs_server
file to PBS_ARGS=-l <moabhost:port> -l <moabhost2:port>.

If pbs_server and Moab run on the same host, use the --ha option as demonstrated in the
example below:

Set the PBS_ARGS environment variable in the /etc/sysconfig/pbs_server
file to PBS_ARGS=--ha.

The root user of each Moab host must be added to the operators and managers lists of the
server. This enables Moab to execute root level operations in Torque.

5.2.4 How Commands Select the Correct Server Host
The various commands that send messages to pbs_server usually have an option of
specifying the server name on the command line, or if none is specified will use the default
server name. The default server name comes either from the PBS_DEFAULT environment
variable or from the TORQUE_HOME/server_name.

PBS_DEFAULT overrides the value in the server_name file.

Whenever a Torque client command executes with no explicit server mentioned, it
attempts to connect to the first server name listed in PBS_DEFAULT or TORQUE_
HOME/server_name. If this fails, the command tries the next server name. If all servers
in the list are unreachable, an error is returned and the command fails.

Note that there is a period of time after the failure of the current server during which the
new server is starting up where it is unable to process commands. The new server must
read the existing configuration and job information from the disk, so the length of time that
commands cannot be received varies. Commands issued during this period of time might
fail due to timeouts expiring.

5.2.5 Job Names
Job names normally contain the name of the host machine where pbs_server is running.
When job names are constructed, only the server name in $PBS_DEFAULT or the first
name from the server specification list, TORQUE_HOME/server_name, is used in
building the job name.

5.2.6 Persistence of the pbs_server Process
The system administrator must ensure that pbs_server continues to run on the server
nodes. This could be as simple as a cron job that counts the number of pbs_servers in the

Chapter 5: Setting Server Policies

process table and starts some more if needed.

5.2.7 High Availability of the NFS Server

Before installing a specific NFS HA solution contact Adaptive Computing Support for a
detailed discussion on NFS HA type and implementation path.

One consideration of this implementation is that it depends on NFS file system also being
redundant. NFS can be set up as a redundant service. See the following:

l Setting Up A Highly Available NFS Server

l Sourceforge Linux NFS FAQ

l CentOS Documentation Home

l SUSE Linux Enterprise Administration Guide: Sharing File Systems with NFS

There are also other ways to set up a shared file system. See the following:

l Red Hat Enterprise Linux: Chapter 1. High Availability Add-On Overview

5.2.8 Installing Torque in High Availability Mode
The following procedure demonstrates a Torque installation in high availability (HA) mode.

Requirements
l gcc (GCC) 4.1.2

l BASH shell

l Servers configured the following way:
o 2 main servers with identical architecture:

o server1— Primary server running Torque with a shared file system
(this example uses NFS)

o server2— Secondary server running with Torque with a shared file
system (this example uses NFS)

o fileServer— Shared file system (this example uses NFS)
o Compute nodes

Chapter 5: Setting Server Policies

145 5.2 Server High Availability

http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://nfs.sourceforge.net/
https://www.centos.org/docs
https://www.suse.com/documentation/sles-12/book_sle_admin/data/cha_nfs.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/High_Availability_Add-On_Overview/ch.gfscs.cluster-overview-CSO.html

5.2 Server High Availability 146

To Install Torque in HA Mode

1. Stop all firewalls or update your firewall to allow traffic from Torque services:

> systemctl stop firewalld
> systemctl disable firewalld

If you are unable to stop the firewall due to infrastructure restriction, open the
following ports:

l 15001[tcp,udp]

l 15002[tcp,udp]

l 15003[tcp,udp]

2. Disable SELinux:

> vi /etc/sysconfig/selinux
SELINUX=disabled

3. Update your main ~/.bashrc profile to ensure you are always referencing the
applications to be installed on all servers:

Torque
export TORQUE_HOME=/var/spool/torque

Library Path

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TORQUE_HOME}/lib

Update system paths
export PATH=${TORQUE_HOME}/bin:${TORQUE_HOME}/sbin:${PATH}

4. Verify server1 and server2 are resolvable via either DNS or looking for an entry in
the /etc/hosts file.

5. Configure the NFS Mounts by following these steps.

a. Create mount point folders on fileServer:

fileServer# mkdir -m 0755 /var/spool/torque
fileServer# mkdir -m 0750 /var/spool/torque/server_priv

b. Update /etc/exports on fileServer. The IP addresses should be that of
server2.

/var/spool/torque/server_priv 192.168.0.0/255.255.255.0(rw,sync,no_root_squash)

c. Update the list of NFS exported file systems:

fileServer# exportfs -r

6. If the NFS daemons are not already running on fileServer, start them:

Chapter 5: Setting Server Policies

> systemctl restart rpcbind.service
> systemctl start nfs-server.service
> systemctl start nfs-lock.service
> systemctl start nfs-idmap.service

7. Mount the exported file systems on server1 by following these steps.

a. Create the directory reference and mount them:

server1# mkdir /var/spool/torque/server_priv

Repeat this process for server2.

b. Update /etc/fstab on server1 to ensure that NFS mount is performed on
startup:

fileServer:/var/spool/torque/server_priv /var/spool/torque/server_priv nfs
rsize= 8192,wsize=8192,timeo=14,intr

Repeat this step for server2.

8. Install Torque by following these steps.

a. Download and extract the latest Torque build from Adaptive Computing Torque
Downloads.

b. Navigate to the Torque directory and compile Torque on server1:

server1# configure
server1# make
server1# make install
server1# make packages

c. If the installation directory is shared on both head nodes, then run make
install on server1:

server1# make install

If the installation directory is not shared, repeat step 8a-b (downloading and
installing Torque) on server2.

9. Start trqauthd:

server1# systemctl start trqauthd

10. Configure Torque for HA.
a. List the host names of all nodes that run pbs_server in the TORQUE_

HOME/server_name file. You must also include the host names of all nodes
running pbs_server in the TORQUE_HOME/server_name file of each MOM node.
The syntax of TORQUE_HOME/server_name is a comma-delimited list of host
names.

Chapter 5: Setting Server Policies

147 5.2 Server High Availability

http://www.adaptivecomputing.com/support/download-center/torque-download/
http://www.adaptivecomputing.com/support/download-center/torque-download/

5.2 Server High Availability 148

server1,server2

b. Create a simple queue configuration for Torque job queues on server1:

server1# pbs_server -t create
server1# qmgr -c “set server scheduling=true”
server1# qmgr -c “create queue batch queue_type=execution”
server1# qmgr -c “set queue batch started=true”
server1# qmgr -c “set queue batch enabled=true”
server1# qmgr -c “set queue batch resources_default.nodes=1”
server1# qmgr -c “set queue batch resources_default.walltime=3600”
server1# qmgr -c “set server default_queue=batch”

Because server_priv/* is a shared drive, you do not need to repeat this
step on server2.

c. Add the root users of Torque to the Torque configuration as an operator and
manager:

server1# qmgr -c “set server managers += root@server1”
server1# qmgr -c “set server managers += root@server2”
server1# qmgr -c “set server operators += root@server1”
server1# qmgr -c “set server operators += root@server2”

Because server_priv/* is a shared drive, you do not need to repeat this
step on Server 2.

d. You must update the lock file mechanism for Torque in order to determine which
server is the primary. To do so, use the lock_file_update_time and lock_
file_check_time parameters. The primary pbs_server will update the lock file
based on the specified lock_file_update_time (default value of 3 seconds).
All backup pbs_servers will check the lock file as indicated by the lock_file_
check_time parameter (default value of 9 seconds). The lock_file_update_
time must be less than the lock_file_check_time. When a failure occurs,
the backup pbs_server takes up to the lock_file_check_time value to take
over.

server1# qmgr -c “set server lock_file_check_time=5”
server1# qmgr -c “set server lock_file_update_time=3”

Because server_priv/* is a shared drive, you do not need to repeat this
step on server2.

e. List the servers running pbs_server in the Torqueacl_hosts file:

server1# qmgr -c “set server acl_hosts += server1”

Chapter 5: Setting Server Policies

server1# qmgr -c “set server acl_hosts += server2”

Because server_priv/* is a shared drive, you do not need to repeat this
step on server2.

f. Restart the running pbs_server in HA mode:

systemctl stop pbs_server

g. Start the pbs_server on the secondary server:

systemctl start pbs_server

11. Check the status of Torque in HA mode:

server1# qmgr -c “p s”
server2# qmgr -c “p s”

The commands above returns all settings from the active Torque server from either node.

a. Drop one of the pbs_servers to verify that the secondary server picks up the
request:

systemctl stop pbs_server

b. Stop the pbs_server on server2 and restart pbs_server on server1 to verify that
both nodes can handle a request from the other.

12. Install a pbs_mom on the compute nodes.

a. Copy the install scripts to the compute nodes and install.

b. Navigate to the shared source directory of Torque and run the following:

node1 torque-package-mom-linux-x86_64.sh --install
node2 torque-package-clients-linux-x86_64.sh --install

Repeat this for each compute node. Verify that the
/var/spool/torque/server_name file shows all your compute nodes.

c. On server1 or server2, configure the nodes file to identify all available MOMs.
To do so, edit the /var/spool/torque/server_priv/nodes file.

node1 np=2
node2 np=2

Change the np flag to reflect number of available processors on that node.

d. Recycle the pbs_servers to verify that they pick up the MOM configuration:

Chapter 5: Setting Server Policies

149 5.2 Server High Availability

5.2 Server High Availability 150

systemctl stop pbs_server

e. Start the pbs_mom on each execution node:

systemctl start pbs_mom

5.2.9 Installing Torque in High Availability Mode on Headless
Nodes
The following procedure demonstrates a Torque installation in high availability (HA) mode
on nodes with no local hard drive.

Requirements
l gcc (GCC) 4.1.2

l BASH shell

l Servers (these cannot be two VMs on the same hypervisor) configured the following
way:

o 2 main servers with identical architecture
o server1— Primary server running Torque with a file system share
(this example uses NFS)

o server2— Secondary server running with Torque with a file system
share (this example uses NFS)

o Compute nodes
o fileServer— A shared file system server (this example uses NFS)

To Install Torque in HA Mode on a Node with no Local Hard Drive

1. Stop all firewalls or update your firewall to allow traffic from Torque services:

> systemctl stop firewalld
> systemctl disable firewalld

If you are unable to stop the firewall due to infrastructure restriction, open the
following ports:

l 15001[tcp,udp]

l 15002[tcp,udp]

l 15003[tcp,udp]

Chapter 5: Setting Server Policies

2. Disable SELinux:

> vi /etc/sysconfig/selinux

SELINUX=disabled

3. Update your main ~/.bashrc profile to ensure you are always referencing the
applications to be installed on all servers:

Torque
export TORQUE_HOME=/var/spool/torque

Library Path

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TORQUE_HOME}/lib

Update system paths
export PATH=${TORQUE_HOME}/bin:${TORQUE_HOME}/sbin:${PATH}

4. Verify server1 and server2 are resolvable via either DNS or looking for an entry in
the /etc/hosts file.

5. Configure the NFS Mounts by following these steps.

a. Create mount point folders on fileServer:

fileServer# mkdir -m 0755 /var/spool/torque

b. Update /etc/exports on fileServer. The IP addresses should be that of
server2.

/var/spool/torque/ 192.168.0.0/255.255.255.0(rw,sync,no_root_squash)

c. Update the list of NFS exported file systems:

fileServer# exportfs -r

6. If the NFS daemons are not already running on fileServer, start them:

> systemctl restart rpcbind.service
> systemctl start nfs-server.service
> systemctl start nfs-lock.service
> systemctl start nfs-idmap.service

7. Mount the exported file systems on server1 by following these steps.

a. Create the directory reference and mount them:

server1# mkdir /var/spool/torque

Repeat this process for server2.

b. Update /etc/fstab on server1 to ensure that NFS mount is performed on
startup:

Chapter 5: Setting Server Policies

151 5.2 Server High Availability

5.2 Server High Availability 152

fileServer:/var/spool/torque/server_priv /var/spool/torque/server_priv nfs
rsize= 8192,wsize=8192,timeo=14,intr

Repeat this step for server2.

8. Install Torque by following these steps.

a. Download and extract the latest Torque build from Adaptive Computing Torque
Downloads.

b. Navigate to the Torque directory and compile Torque with the HA flag on server1:

server1# configure --prefix=/var/spool/torque
server1# make
server1# make install
server1# make packages

c. If the installation directory is shared on both head nodes, then run make
install on server1:

server1# make install

If the installation directory is not shared, repeat step 8a-b (downloading and
installing Torque) on server2.

9. Start trqauthd:

server1# systemctl start trqauthd

10. Configure Torque for HA.
a. List the host names of all nodes that run pbs_server in the TORQUE_

HOME/server_name file. You must also include the host names of all nodes
running pbs_server in the TORQUE_HOME/server_name file of each MOM node.
The syntax of TORQUE_HOME/server_name is a comma-delimited list of host
names.

server1,server2

b. Create a simple queue configuration for Torque job queues on server1:

server1# pbs_server -t create
server1# qmgr -c “set server scheduling=true”
server1# qmgr -c “create queue batch queue_type=execution”
server1# qmgr -c “set queue batch started=true”
server1# qmgr -c “set queue batch enabled=true”
server1# qmgr -c “set queue batch resources_default.nodes=1”
server1# qmgr -c “set queue batch resources_default.walltime=3600”
server1# qmgr -c “set server default_queue=batch”

Chapter 5: Setting Server Policies

http://www.adaptivecomputing.com/support/download-center/torque-download/
http://www.adaptivecomputing.com/support/download-center/torque-download/

Because TORQUE_HOME is a shared drive, you do not need to repeat this step
on server2.

c. Add the root users of Torque to the Torque configuration as an operator and
manager:

server1# qmgr -c “set server managers += root@server1”
server1# qmgr -c “set server managers += root@server2”
server1# qmgr -c “set server operators += root@server1”
server1# qmgr -c “set server operators += root@server2”

Because TORQUE_HOME is a shared drive, you do not need to repeat this step
on server2.

d. You must update the lock file mechanism for Torque in order to determine which
server is the primary. To do so, use the lock_file_update_time and lock_
file_check_time parameters. The primary pbs_server will update the lock file
based on the specified lock_file_update_time (default value of 3 seconds).
All backup pbs_servers will check the lock file as indicated by the lock_file_
check_time parameter (default value of 9 seconds). The lock_file_update_
time must be less than the lock_file_check_time. When a failure occurs,
the backup pbs_server takes up to the lock_file_check_time value to take
over.

server1# qmgr -c “set server lock_file_check_time=5”
server1# qmgr -c “set server lock_file_update_time=3”

Because TORQUE_HOME is a shared drive, you do not need to repeat this step
on server2.

e. List the servers running pbs_server in the Torqueacl_hosts file:

server1# qmgr -c “set server acl_hosts += server1”
server1# qmgr -c “set server acl_hosts += server2”

Because TORQUE_HOME is a shared drive, you do not need to repeat this step
on server2.

f. Restart the running pbs_server in HA mode:

systemctl stop pbs_server

g. Start the pbs_server on the secondary server:

Chapter 5: Setting Server Policies

153 5.2 Server High Availability

5.2 Server High Availability 154

systemctl start pbs_server

11. Check the status of Torque in HA mode:

server1# qmgr -c “p s”
server2# qmgr -c “p s”

The commands above returns all settings from the active Torque server from either node.

a. Drop one of the pbs_servers to verify that the secondary server picks up the
request:

systemctl stop pbs_server

b. Stop the pbs_server on server2 and restart pbs_server on server1 to verify that
both nodes can handle a request from the other.

12. Install a pbs_mom on the compute nodes.

a. On server1 or server2, configure the nodes file to identify all available MOMs.
To do so, edit the / var/spool/torque/server_priv/nodes file.

node1 np=2
node2 np=2

Change the np flag to reflect number of available processors on that node.

b. Recycle the pbs_servers to verify that they pick up the MOM configuration:

systemctl stop pbs_server

You can specify command line arguments for pbs_server using the PBS_ARGS
environment variable in the /etc/sysconfig/pbs_server file. Set PBS_
ARGS=--ha -l <host>:<port> where <host> is the name of the
alternate server node and <port> is the port on which pbs_server on the
alternate server node is listening (default 15004).

c. Start the pbs_mom on each execution node:

systemctl start pbs_mom

5.2.10 Example Setup of High Availability
1. The machines running pbs_server must have access to a shared server_priv/

directory (usually an NFS share on a MoM).

Chapter 5: Setting Server Policies

2. All MoMs must have the same content in their server_name file. This can be done
manually or via an NFS share. The server_name file contains a comma-delimited list
of the hosts that run pbs_server.

List of all servers running pbs_server
server1,server2

3. The machines running pbs_server must be listed in:

> qmgr -c "set server acl_hosts += server1"
> qmgr -c "set server acl_hosts += server2"

4. Start pbs_server:

[root@server1]$ systemctl start pbs_server
[root@server2]$ systemctl start pbs_server

Related Topics

l Chapter 5: Setting Server Policies - page 136

l 5.1 Queue Configuration - page 136

5.3 Setting min_threads and max_threads

There are two threadpools in Torque, one for background tasks and one for incoming
requests from the MOMs and through the API (client commands, Moab, and so forth). The
min_threads and max_threads parameters control the number of total threads used for
both, not for each individually. The incoming requests' threadpool has three-quarters of
min_threads for its minimum, and three-quarters of max_threads for its maximum,
with the background pool receiving the other one-quarter.

Additionally, pbs_server no longer allows incoming requests to pile up indefinitely. When
the threadpool is too busy for incoming requests, it indicates such, returning PBSE_
SERVER_BUSY with the accompanying message that "Pbs Server is currently too busy to
service this request. Please retry this request." The threshold for this message, if the
request is from a manager, is that at least two threads be available in the threadpool. If the
request comes from a non-manager, 5% of the threadpool must be available for the
request to be serviced. Note that availability is calculated based on the maximum threads
and not based on the current number of threads allocated.

If an undesirably large number of requests are given a busy response, one option is to
increase the number of maximum threads for the threadpool. If the load on the server is
already very high, then this is probably not going to help, but if the CPU load is lower, then
it may help. Remember that by default the threadpool shrinks down once the extra threads
are no longer needed. This is controlled via the thread_idle_seconds server parameter.

Chapter 5: Setting Server Policies

155 5.3 Setting min_threads and max_threads

5.3 Setting min_threads and max_threads 156

Any change in the min_threads, max_threads, or thread_idle_seconds
parameters requires a restart of pbs_server to take effect.

Chapter 5: Setting Server Policies

157

Chapter 6: Integrating Schedulers for Torque

Selecting the cluster scheduler is an important decision and significantly affects cluster
utilization, responsiveness, availability, and intelligence. The default Torque scheduler,
pbs_sched, is very basic and will provide poor utilization of your cluster's resources.
Other options, such as Maui Scheduler or Moab Workload Manager, are highly
recommended. If you are using Maui or Moab, see Moab-Torque Integration Guide in the
Moab Workload Manager Administrator Guide. If using pbs_sched, simply start the pbs_
sched daemon.

If you are installing Moab Cluster Manager, Torque and Moab were configured at
installation for interoperability and no further action is required.

Chapter 6: Integrating Schedulers for Torque

7.1 SCP Setup 158

Chapter 7: Configuring Data Management

This chapter provides instructions to configure Torque for data management purposes. For
example, if you want to copy stdout and stderr files back to the submit host.

In this chapter:

7.1 SCP Setup 158
7.2 NFS and Other Networked Filesystems 161
7.3 File stage-in/stage-out 162

7.1 SCP Setup

To use SCP-based data management, Torque must be authorized to migrate data to any of
the compute nodes. If this is not already enabled within the cluster, this can be achieved
with the process described below. This process enables uni-directional access for a
particular user from a source host to a destination host.

These directions were written using OpenSSH version 3.6 and may not transfer
correctly to older versions.

To set up Torque for SCP, follow the directions in each of the topics in this section.

In this topic:

7.1.1 Generating SSH Key on Source Host 159
7.1.2 Copying Public SSH Key to Each Destination Host 159
7.1.3 Configuring the SSH Daemon on Each Destination Host 160
7.1.4 Validating Correct SSH Configuration 160
7.1.5 Enabling Bi-Directional SCP Access 161
7.1.6 Troubleshooting 161

Related Topics

l Chapter 7: Configuring Data Management - page 158

Chapter 7: Configuring Data Management

http://www.openssh.org/

7.1.1 Generating SSH Key on Source Host

On the source host as the transfer user, execute the following:

> ssh-keygen -t rsa

This will prompt for a passphrase (optional) and create two files (id_rsa and id_
rsa.pub) inside ~/.ssh/.

Related Topics

l 7.1 SCP Setup - page 158

l 7.1.2 Copying Public SSH Key to Each Destination Host - page 159

7.1.2 Copying Public SSH Key to Each Destination Host

Transfer public key to each destination host as the transfer user.

Easy key copy:

ssh-copy-id [-i [identity_file]] [user@]machine

Manual steps to copy keys:

> scp ~/.ssh/id_rsa.pub destHost:~ (enter password)

Create an authorized_keys file on each destination host:

> ssh destHost (enter password)
> cat id_rsa.pub >> .ssh/authorized_keys

If the .ssh directory does not exist, create it with 700 privileges (mkdir .ssh; chmod
700 .ssh):

> chmod 700 .ssh/authorized_keys

Related Topics

l 7.1.1 Generating SSH Key on Source Host - page 159

l SCP Setup

Chapter 7: Configuring Data Management

159 7.1 SCP Setup

7.1 SCP Setup 160

7.1.3 Configuring the SSH Daemon on Each Destination Host

Some configuration of the SSH daemon may be required on the destination host. (Because
this is not always the case, see Validating Correct SSH Configuration and test the changes
made to this point. If the tests fail, proceed with this step and then try testing again.)
Typically, this is done by editing the /etc/ssh/sshd_config file (root access needed).
To verify correct configuration, see that the following attributes are set (not commented):

RSAAuthentication yes
PubkeyAuthentication yes

If configuration changes were required, the SSH daemon will need to be restarted (root
access needed):

> /etc/init.d/sshd restart

Related Topics

l 7.1 SCP Setup - page 158

7.1.4 Validating Correct SSH Configuration

If all is properly configured, the following command issued on the source host should
succeed and not prompt for a password:

> scp destHost:/etc/motd /tmp

If this is your first time accessing destination from source, it may ask you if you want
to add the fingerprint to a file of known hosts. If you specify yes, this message should
no longer appear and should not interfere with scp copying via Torque. Also, it is
important that the full hostname appear in the known_hosts file. To do this, use the
full hostname for destHost, as in machine.domain.org instead of just machine.

Related Topics

l 7.1 SCP Setup - page 158

Chapter 7: Configuring Data Management

7.1.5 Enabling Bi-Directional SCP Access

The preceding steps allow source access to destination without prompting for a password.
The reverse, however, is not true. Repeat the steps, but this time using the destination as
the source, etc. to enable bi-directional SCP access (i.e., source can send to destination and
destination can send to sourcewithout password prompts.)

Related Topics

l 7.1 SCP Setup - page 158

7.1.6 Troubleshooting

If, after following all of the instructions in this section (see SCP Setup), Torque is still having
problems transferring data with SCP, set the PBSDEBUG environment variable and restart
the pbs_mom for details about copying. Also check the MOM log files for more details.

Related Topics

l 7.1 SCP Setup - page 158

7.2 NFS and Other Networked Filesystems

When a batch job starts, its stdin file (if specified) is copied from the submission
directory on the remote submission host to the TORQUE_HOME/spool directory (e.g.,
/var/spool/torque/spool on the execution host (or 'mother superior').

When the job completes, the MOM copies the files back to the submission directory on the
remote submit host. The file copy happens using a remote copy facility such as rcp
(default) or scp.

If a shared file system such as NFS, DFS, or AFS is available, a site can specify that the MOM
should take advantage of this by specifying the $usecp directive inside the MOM
configuration file (located in the TORQUE_HOME/mom_priv directory) using the
following format:

$usecp <HOST>:<SRCDIR> <DSTDIR>

<HOST> can be specified with a leading wildcard ('*') character. The following example
demonstrates this directive:

mom_priv/config

Chapter 7: Configuring Data Management

161 7.2 NFS and Other Networked Filesystems

7.3 File stage-in/stage-out 162

/home is NFS mounted on all hosts
$usecp *:/home /home
submission hosts in domain fte.com should map '/data' directory on submit host to
'/usr/local/data' on compute host
$usecp *.fte.com:/data /usr/local/data

If, for any reason, the MOM daemon cannot copy the output or error files to the submission
directory, it copies them to TORQUE_HOME/undelivered on that host.

Related Topics

l Chapter 7: Configuring Data Management - page 158

7.3 File stage-in/stage-out

File staging requirements are specified using the stagein and stageout directives of
the qsub command. Stagein requests occur before the job starts execution, while stageout
requests happen after a job completes.

On completion of the job, all staged-in and staged-out files are removed from the execution
system. The file_list is in the form local_file@hostname:remote_file
[,...] regardless of the direction of the copy. The name local_file is the name of
the file on the system where the job executed. It may be an absolute path or relative to the
home directory of the user. The name remote_file is the destination name on the host
specified by hostname. The name may be absolute or relative to the user's home directory
on the destination host. The use of wildcards in the file name is not recommended.

The file names map to a remote copy program (rcp/scp/cp, depending on configuration)
called on the execution system in the following manner:

For stagein: rcp/scp hostname:remote_file local_file

For stageout: rcp/scp local_file hostname:remote_file

Examples
stage /home/john/input_source.txt from node13.fsc to /home/john/input_
destination.txt on master compute node
> qsub -l nodes=1,walltime=100 -W stagein=input_
source.txt@node13.fsc:/home/john/input_destination.txt

stage /home/bill/output_source.txt on master compute node to /tmp/output_
destination.txt on node15.fsc
> qsub -l nodes=1,walltime=100 -W stageout=/tmp/output_
source.txt@node15.fsc:/home/bill/output_destination.txt

Chapter 7: Configuring Data Management

$ fortune >xxx;echo cat xxx|qsub -W stagein=xxx@`hostname`:xxx
199.myhost.mydomain
$ cat STDIN*199
Anyone who has had a bull by the tail knows five or six more things
than someone who hasn't.
-- Mark Twain

Related Topics

l Chapter 7: Configuring Data Management - page 158

Chapter 7: Configuring Data Management

163 7.3 File stage-in/stage-out

8.1 MPICH 164

Chapter 8: MPI (Message Passing Interface) Support

A message passing library is used by parallel jobs to augment communication between the
tasks distributed across the cluster. Torque can run with any message passing library and
provides limited integration with some MPI libraries.

In this chapter:

8.1 MPICH 164
8.2 Open MPI 166

8.1 MPICH

One of the most popular MPI libraries is MPICH available from Argonne National Lab. If
using this release, you may want to consider also using the mpiexec tool for launching MPI
applications. Support for mpiexec has been integrated into Torque.

8.1.1 MPIExec Overview
mpiexec is a replacement program for the scriptmpirun, which is part of the mpich
package. It is used to initialize a parallel job from within a PBS batch or interactive
environment. mpiexec uses the task manager library of PBS to spawn copies of the
executable on the nodes in a PBS allocation.

Reasons to use mpiexec rather than a script (mpirun) or an external daemon (mpd):

l Starting tasks with the task manager (TM) interface is much faster than invoking a
separate rsh * once for each process.

l Resources used by the spawned processes are accounted correctly with mpiexec,
and reported in the PBS logs, because all the processes of a parallel job remain under
the control of PBS, unlike when using mpirun-like scripts.

l Tasks that exceed their assigned limits of CPU time, wallclock time, memory usage, or
disk space are killed cleanly by PBS. It is quite hard for processes to escape control of
the resource manager when using mpiexec.

l You can use mpiexec to enforce a security policy. If all jobs are forced to spawn using
mpiexec and the PBS execution environment, it is not necessary to enable rsh or ssh
access to the compute nodes in the cluster.

For more information, see the mpiexec homepage.

Chapter 8: MPI (Message Passing Interface) Support

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mpich.org/
http://www.anl.gov/
http://www.osc.edu/
http://www.osc.edu/

8.1.2 MPIExec Troubleshooting
Although problems with mpiexec are rare, if issues do occur, the following steps may be
useful:

l Determine current version using mpiexec --version and review the change log
available on the MPI homepage to determine if the reported issue has already been
corrected.

l Send email to the mpiexec mailing list at mpiexec@osc.edu.

l Browse the mpiexec user list archives for similar problems and resolutions.

l Read the FAQ contained in the README file and the mpiexec man pages contained
within the mpiexec distribution.

l Increase the logging of mpiexec operation with mpiexec --verbose (reports
messages to stderr).

l Increase logging of the master and slave resource manager execution daemons
associated with the job (with Torque, use $loglevel to 5 or higher in
$TORQUEROOT/mom_priv/config and look for 'tm' messages after associated
join job messages).

l Use tracejob (included with Torque) or qtracejob (included with OSC's
pbstools package) to isolate failures within the cluster.

l If the message 'exec: Error: get_hosts: pbs_connect: Access
from host not allowed, or unknown host' appears, this indicates that
mpiexec cannot communicate with the pbs_server daemon. In most cases, this
indicates that the $TORQUEROOT/server_name file points to the wrong server or
the node cannot resolve the server's name. The qstat command can be run on the
node to test this.

8.1.3 General MPI Troubleshooting
When using MPICH, some sites have issues with orphaned MPI child processes remaining
on the system after the master MPI process has been terminated. To address this, Torque
epilogue scripts can be created that properly clean up the orphaned processes (see
Prologue and Epilogue Scripts).

Related Topics

l Chapter 8: MPI (Message Passing Interface) Support - page 164

l 3.8 Torque Process Tracking - page 114

Chapter 8: MPI (Message Passing Interface) Support

165 8.1 MPICH

http://www.osc.edu/
mailto:mpiexec@osc.edu
http://www.open-mpi.org/community/lists/users/

8.2 Open MPI 166

8.2 Open MPI

Open MPI is an implementation that combines technologies from multiple projects to create
the best possible library. It supports the TM interface for integration with Torque. More
information is available in the FAQ.

TM Aware
To make use of Moab's TM interface, MPI must be configured to be TM aware.

Use these guidelines:

1. If you have installed from source, you need to use ./configure --with-tm when
you configure and make openmpi.

2. Run mpirun without the -machinefile. Moab will copy down the environment
PATH and Library path down to each sister MOM. If -machinefile is used, mpirun
will bypass the TM interface.

Example 8-1: Without TM Aware

[jbooth@support-mpi1 ~]$ /usr/lib64/openmpi/bin/mpirun -np 4 -machinefile $PBS_
NODEFILE echo.sh
=============
support-mpi1
=============
/usr/lib64/openmpi/bin:/usr/lib64/openmpi/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/lib64/openmpi/lib:/usr/lib64/openmpi/lib

=============
support-mpi1
=============
/usr/lib64/openmpi/bin:/usr/lib64/openmpi/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/lib64/openmpi/lib:/usr/lib64/openmpi/lib

=============
support-mpi2
=============
/usr/lib64/openmpi/bin:/usr/lib64/openmpi/bin:/usr/lib64/qt-
3.3/bin:/usr/local/bin:/bin:/usr/bin

/usr/lib64/openmpi/lib:/usr/lib64/openmpi/lib:

=============
support-mpi2
=============
/usr/lib64/openmpi/bin:/usr/lib64/openmpi/bin:/usr/lib64/qt-
3.3/bin:/usr/local/bin:/bin:/usr/bin

Chapter 8: MPI (Message Passing Interface) Support

http://www.open-mpi.org/
http://www.open-mpi.org/faq

/usr/lib64/openmpi/lib:/usr/lib64/openmpi/lib:

The paths, /opt/moab/bin and /opt/moab/sbin, were not passed down to the sister MOMs.

Example 8-2: With TM Aware

[jbooth@support-mpi1 ~]$ /usr/local/bin/mpirun -np 4 echo.sh
=============
support-mpi1
=============
/usr/local/bin:/usr/local/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/local/lib:/usr/local/lib

=============
support-mpi1
=============
/usr/local/bin:/usr/local/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/local/lib:/usr/local/lib

=============
support-mpi2
=============
/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/local/lib:/usr/local/lib:/usr/local/lib

=============
support-mpi2
=============
/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/local/lib:/usr/local/lib:/usr/local/lib

The paths, /opt/moab/bin and /opt/moab/sbin, were passed down to the sister MOMs.

Related Topics

l Chapter 8: MPI (Message Passing Interface) Support - page 164

l 3.8 Torque Process Tracking - page 114

Chapter 8: MPI (Message Passing Interface) Support

167 8.2 Open MPI

168

Chapter 9: Resources

9.1 About Resources
A primary task of any resource manager is to monitor the state, health, configuration, and
utilization of managed resources. Torque is specifically designed to monitor compute hosts
for use in a batch environment. Torque is not designed to monitor non-compute host
resources such as software licenses, networks, file systems, and so forth, although these
resources can be integrated into the cluster using some scheduling systems.

With regard to monitoring compute nodes, Torque reports about a number of attributes
broken into three major categories:

l Configuration

l Utilization

l Node States

9.2 Configuration
Configuration includes both detected hardware configuration and specified batch
attributes.

Attribute Description Details

Architecture
(arch)

operating
system of the
node

The value reported is a derivative of the operating system
installed.

Node
Features
(properties)

arbitrary
string
attributes
associated
with the node

No node features are specified by default. If required, they
are set using the nodes file located in the TORQUE_
HOME/server_priv directory. They can specify any
string and are most commonly used to allow users to
request certain subsets of nodes when submitting jobs.

Local Disk
(size)

configured
local disk

By default, local disk space is not monitored. If the MOM
configuration size[fs=<FS>] parameter is set, Torque will
report, in kilobytes, configured disk space within the
specified directory.

Memory
(physmem)

local
memory/RAM

Local memory/RAM is monitored and reported in
kilobytes.

Chapter 9: Resources

Attribute Description Details

Processors
(ncpus/np)

real/virtual
processors

The number of processors detected by Torque is reported
via the ncpus attribute. However, for scheduling purposes,
other factors are taken into account. In its default
configuration, Torque operates in 'dedicated' mode with
each node possessing a single virtual processor. In
dedicated mode, each job task will consume one virtual
processor and Torque will accept workload on each node
until all virtual processors on that node are in use. While
the number of virtual processors per node defaults to 1,
this can be configured using the nodes file located in the
TORQUE_HOME/server_priv directory. An alternative
to dedicated mode is 'timeshared' mode. If Torque's
timeshared mode is enabled, Torque will accept additional
workload on each node until the node's maxload limit is
reached.

Swap
(totmem)

virtual
memory/Swap

Virtual memory/Swap is monitored and reported in
kilobytes.

9.3 Utilization
Utilization includes information regarding the amount of node resources currently in use,
as well as information about who or what is consuming it.

Attribute Description Details

Disk (size) local disk
availability

By default, local disk space is not monitored. If the MOM
configuration size[fs=<FS>] parameter is set, Torque will
report configured and currently available disk space within
the specified directory in kilobytes.

Memory
(availmem)

real
memory/RAM

Available real memory/RAM is monitored and reported in
kilobytes.

Network
(netload)

local network
adapter usage

Reports total number of bytes transferred in or out by the
network adapter.

Processor
Utilization
(loadave)

node's cpu
load average

Reports the node's 1 minute bsd load average.

Chapter 9: Resources

169

170

9.4 Node States
State information includes administrative status, general node health information, and
general usage status.

Attribute Description Details

Idle Time
(idletime)

time since local
keyboard/mouse activity
has been detected

Time in seconds since local keyboard/mouse
activity has been detected.

State
(state)

monitored/admin node
state

A node can be in one or more of the following
states:

l busy - node is full and will not accept
additional work

l down - node is failing to report, is detecting
local failures with node

l free - node is ready to accept additional work
l job-exclusive - all available virtual processors

are assigned to jobs
l job-sharing - node has been allocated to run

multiple shared jobs and will remain in this
state until jobs are complete

l offline - node has been instructed by an admin
to no longer accept work

l reserve - node has been reserved by the server
l time-shared - node always allows multiple

jobs to run concurrently
l unknown - node has not been detected

Chapter 9: Resources

171

Chapter 10: Accounting Records

In this chapter:

10.1 Location and Contents

10.2 Record Types

10.3 Accounting Variables

10.4 Fields

10.1 Location and Contents
Torque maintains accounting records for batch jobs in the following directory:
$TORQUEROOT/server_priv/accounting/<TIMESTAMP>

$TORQUEROOT defaults to /var/spool/torque and <TIMESTAMP> is in the format:
YYYYMMDD.

These records include events, time stamps, and information on resources requested and
used.

For sites running Moab, and using the Torque accounting records, we recommend that
Moab is configured to sync the job IDs. If the IDs are not synced, the Moab job ID will not
be known from these accounting files. The Moab job ID can be obtained from the Moab
event logs (in $MOABHOMEDIR/stats), but that requires extra effort. For additional
information, see the instructions ‘Synchronizing Job IDs in Torque and Moab’ in the Moab
Workload Manager Administrator Guide, section ‘Resource Manager Configuration'.

10.2 Record Types
Records for four different event types are produced and are described in the following
table:

Record
Marker

Record
Type Description

A abort Job has been aborted by the server

C checkpoint Job has been checkpointed and held

Chapter 10: Accounting Records

Record
Marker

Record
Type Description

D delete Job has been deleted

E exit Job has exited (either successfully or unsuccessfully)

Q queue Job has been submitted/queued

R rerun Attempt to rerun the job has been made

S start Attempt to start the job has been made (if the job fails to properly
start, it may have multiple job start records)

T restart Attempt to restart the job (from checkpoint) has been made (if the
job fails to properly start, it may have multiple job start records)

10.3 Accounting Variables
The following table offers accounting variable descriptions. Descriptions for accounting
variables not indicated in the table, particularly those prefixed with Resources_List,
are available at Job Submission.

Jobs submitted with the -L request syntax will have the -L submission recorded in the
accounting log.

Variable Description

ctime Time job was created

etime Time job became eligible to run

qtime Time job was queued

start Time job started to run

A sample record in this file can look like the following:

08/26/2022 17:07:44;Q;11923.napali;queue=batch
08/26/2022 17:07:50;S;11923.napali;user=dbeer group=company jobname=STDIN queue=batch
ctime=1409094464 qtime=1409094464 etime=1409094464 start=1409094470 owner=dbeer@napali
exec_host=napali/0+napali/1+napali/2+napali/3+napali/4+napali/5+torque-devtest-

Chapter 10: Accounting Records

172

173

03/0+torque-devtest-03/1+torque-devtest-03/2+torque-devtest-03/3+torque-devtest-
03/4+torque-devtest-03/5 Resource_List.neednodes=2:ppn=6 Resource_List.nodect=2
Resource_List.nodes=2:ppn=6
08/26/2022 17:08:04;E;11923.napali;user=dbeer group=company jobname=STDIN queue=batch
ctime=1409094464 qtime=1409094464 etime=1409094464 start=1409094470 owner=dbeer@napali
exec_host=napali/0+napali/1+napali/2+napali/3+napali/4+napali/5+torque-devtest-
03/0+torque-devtest-03/1+torque-devtest-03/2+torque-devtest-03/3+torque-devtest-
03/4+torque-devtest-03/5 Resource_List.neednodes=2:ppn=6 Resource_List.nodect=2
Resource_List.nodes=2:ppn=6 session=11352 total_execution_slots=12 unique_node_count=2
end=1409094484 Exit_status=265 resources_used.cput=00:00:00 resources_used.mem=82700kb
resources_used.vmem=208960kb resources_used.walltime=00:00:14 Error_Path=/dev/pts/11
Output_Path=/dev/pts/11

The value of Resource_List.* is the amount of resources requested, and the
value of resources_used.* is the amount of resources actually used.

total_execution_slots and unique_node_count display additional
information regarding the job resource usage.

10.4 Fields

COMMON FIELDS
The COMMON_FIELDS are fields that are used by both Start and Exit accounting logs.

Field Description

user USER

group GROUP

account ACCOUNT (optional)

jobname JOBNAME

queue QUEUE (optional)

ctime CTIME

qtime QTIME

etime ETIME

Chapter 10: Accounting Records

Field Description

start_count NUMBER_OF_TIMES_STARTED

start EXECUTION_START_TIME

owner JOB_OWNER

exec_host EXEC_HOST (optional)

login_node LOGIN_NODE_ID (optional)

RESOURCE_LIST JOB_ATR_resource (optional)

Resource_Request_2.0 (optional)

x X_ATTRIBUTES (optional)

Extra Fields

Abort (A)
No extra fields.

Checkpoint (C)
No extra fields (can say either 'Checkpointed and held' or just 'Checkpointed').

Delete (D)

Field Description

Delete USER@HOST

Exit (E)

Field Description

session SESSION_ID

Chapter 10: Accounting Records

174

175

Field Description

alt_id ALT_ID (optional)

total_execution_slots TOTAL_EXECUTION_SLOTS (optional)

unique_node_count UNIQUE_NODE_COUNT (optional)

walltime WALLTIME (optional)

end TIME_OF_COMPLETION

Exit_status EXIT_STATUS

Queue (Q)

Field Description

Queue QUEUE_NAME

Rerun (R)
No extra fields.

Start (S)
No extra fields.

Restart (T)
No extra fields.

Chapter 10: Accounting Records

11.1 Job Log Location and Name 176

Chapter 11: Job Logging

Torque has the ability to log job information for completed jobs. The information stored in
the log file is the same information produced with the command qstat -f. The log file
data is stored using an XML format. Data can be extracted from the log using the utility
showjobs found in the contrib/ directory of the Torque source tree. Custom scripts
that can parse the XML data can also be used.

In this chapter:

11.1 Job Log Location and Name 176
11.2 Enabling Job Logs 176

11.1 Job Log Location and Name

When job logging is enabled (see Enabling Job Logs.), the job log is kept at TORQUE_
HOME/job_logs. The naming convention for the job log is the same as for the server log
or MOM log. The log name is created from the current year/month/day.

For example, if today's date is 26 October, 2022 the log file is named 20221026.

A new log file is created each new day that data is written to the log.

Related Topics

l 11.2 Enabling Job Logs - page 176

l Chapter 11: Job Logging - page 176

11.2 Enabling Job Logs

There are five server parameters used to enable job logging. These parameters control
what information is stored in the log and manage the log files.

Parameter Description

record_ This must be set to true in order for job logging to be enabled. If not set to true,

Chapter 11: Job Logging

Parameter Description

job_info the remaining server parameters are ignored. Changing this parameter requires
a restart of pbs_server to take effect.

record_
job_script

If set to true, this adds the contents of the script executed by a job to the log.

job_log_
file_max_
size

This specifies a soft limit (in kilobytes) for the job log's maximum size. The file
size is checked every five minutes and if the current day file size is greater than
or equal to this value, it is rolled from <filename> to <filename.1> and a new
empty log is opened. If the current day file size exceeds the maximum size a
second time, the <filename.1> log file is rolled to <filename.2>, the current log is
rolled to <filename.1>, and a new empty log is opened. Each new log causes all
other logs to roll to an extension that is one greater than its current number.
Any value less than 0 is ignored by pbs_server (meaning the log will not be
rolled).

job_log_
file_roll_
depth

This sets the maximum number of new log files that are kept in a day if the
job_log_file_max_size parameter is set. For example, if the roll depth is
set to 3, no file can roll higher than <filename.3>. If a file is already at the
specified depth, such as <filename.3>, the file is deleted so it can be replaced by
the incoming file roll, <filename.2>.

job_log_
keep_days

This maintains logs for the number of days designated. If set to 4, any log file
older than 4 days old is deleted.

Related Topics

l 11.1 Job Log Location and Name - page 176

l Chapter 11: Job Logging - page 176

Chapter 11: Job Logging

177 11.2 Enabling Job Logs

12.1 Supported NUMA Systems 178

Chapter 12: NUMA and Torque

Torque supports two types of Non-Uniform Memory Architecture (NUMA) systems. This
chapter serves as a central information repository for the various configuration settings
involved when using either NUMA system configuration.

Torque cannot be configured for both NUMA types simultaneously.

In this chapter:

12.1 Supported NUMA Systems 178
12.2 NUMA-Aware Systems 178
12.3 NUMA Tutorials 181
12.4 -L NUMA Resource Request 196
12.5 pbsnodes with NUMA-Awareness 205
12.6 NUMA-Support Systems 206

12.1 Supported NUMA Systems

Torque supports these two NUMA system configurations:

l NUMA-Aware – This configuration supports multi-req jobs and jobs that span hosts.
Moab version 9.0 or later is required.

l NUMA-Support – This configuration supports only a single instance for pbs_mom that
is treated as if there were multiple nodes running in the cluster. This configuration is
only for large-scale SLES systems using SGI Altix and UV hardware.

12.2 NUMA-Aware Systems

This topic serves as a central information repository for NUMA-aware systems. This topic
provides basic information and contains links to the various NUMA-aware topics found
throughout the documentation.

Support for NUMA-aware systems is available only with Moab Workload Manager 9.0
or later.

Chapter 12: NUMA and Torque

In this topic:

12.2.1 About NUMA-Aware Systems - page 179
12.2.2 Installation and Configuration - page 180
12.2.3 Job Resource Requests - page 180
12.2.4 Job Monitoring - page 181
12.2.5 Moab/Torque NUMA Configuration - page 181
12.2.6 Considerations when Upgrading Versions or Changing Hardware - page

181

12.2.1 About NUMA-Aware Systems
The NUMA-aware architecture is a hardware design that separates its cores into multiple
clusters where each cluster has its own local memory region and still allows cores from one
cluster to access all memory in the system. However, if a processor needs to use memory
that is not its own memory region, it will take longer to access that (remote) memory. For
applications where performance is crucial, preventing the need to access memory from
other clusters is critical.

Torque uses cgroups to better manage cpu and memory accounting, memory enforcement,
cpuset management, and binding jobs to devices such as MICs and GPUs. Torque will try to
place jobs that request GPUs or MICs on NUMA nodes next to the GPU or MIC device to be
used.

PCIe devices are similar to cores in that these devices will be closer to the memory of one
NUMA node than another. Examples of PCIe devices are GPUs, NICs, disks, etc.

The resources of a processor chip have a hierarchy. The largest unit is a socket. A socket
can contain one or more NUMA nodes with its cores and memory. A NUMA node will
contain a set of cores and threads and memory that is local to the NUMA node. A core can
have 0 or more threads.

l A socket refers to the physical location where a processor package plugs into a
motherboard. The processor that plugs into the motherboard is also known as a
socket. The socket can contain one or more NUMA nodes.

l A core is an individual execution unit within a processor that can independently
execute a software execution thread and maintains its execution state separate from
the execution state of any other cores within a processor.

l A thread refers to a hardware-based thread execution capability. For example, the
Intel Xeon 7560 has eight cores, each of which has hardware that can effectively
execute two software execution threads simultaneously, yielding 16 threads.

Chapter 12: NUMA and Torque

179 12.2 NUMA-Aware Systems

12.2 NUMA-Aware Systems 180

The following image is a simple depiction of a NUMA-aware architecture. In this example,
the system has two NUMA nodes with four cores per NUMA node. The cores in each NUMA
node have access to their own memory region but they can also access the memory region
of the other NUMA node through the inter-connect.

If the cores from NUMA chip 0 need to get memory from NUMA chip 1 there will be a
greater latency to fetch the memory.

12.2.2 Installation and Configuration
Once Torque is first installed, you need to perform configuration steps. See 2.7.1 Torque
NUMA-Aware Configuration - page 68.

12.2.3 Job Resource Requests
NUMA-aware resources can be requested at the time of job submission using the
qsub/msub -L parameter. In addition, the req_information_max and req_information_min
queue attributes let you specify the maximum and minimum resource limits allowed for
jobs submitted to a queue.

Jobs requesting resources with -L can be run via qrun without a hostlist.

See also:

Chapter 12: NUMA and Torque

l 3.1.4 Requesting NUMA-Aware Resources - page 94

l 12.4 -L NUMA Resource Request - page 196

l Appendix N: Queue Attributes - page 437

12.2.4 Job Monitoring
When using NUMA-aware, job resources are tracked per task. qstat -f produces a new
category of information that begins with the 'req_information' keyword. Following each
'req_information keyword' is another keyword giving information about how the job was
allocated. When the job has completed, the output will also include the per task resident
memory used and per task cpu time used. See Monitoring NUMA Job Task Placement - page
99

12.2.5 Moab/Torque NUMA Configuration
Moab does not require special configuration to support this NUMA-aware system. However,
there are a few Moab-specific things that would be helpful to know and understand. See
Using NUMA with Moab in the Moab Workload Manager Administrator Guide.

12.2.6 Considerations when Upgrading Versions or Changing
Hardware
After upgrading server software or updating the hardware for a compute node, you should
start the pbs_mom daemon with the -f flag to force the server to recognize the new
configuration. See documentation for the A.4 pbs_mom - page 242 -f flag.

12.3 NUMA Tutorials

This section contains links to tutorials and other documentation useful in understanding
NUMA-Aware systems.

In this topic:

12.3.1 NUMA Primer 182
12.3.2 How NUMA Places Jobs 190
12.3.3 NUMA Discovery and Persistence 193

Chapter 12: NUMA and Torque

181 12.3 NUMA Tutorials

12.3 NUMA Tutorials 182

Related Topics

l 12.2 NUMA-Aware Systems - page 178

12.3.1 NUMA Primer

Resource request syntax gives users the ability to request resources on a per task basis,
have multiple asymmetric resource requests in the same job, and control where jobs
execute on cores and memory within NUMA hardware.

Control groups (cgroups) provide the ability to partition sets of tasks and their children
into hierarchical groups with specialized behavior; cgroups are used to manage each job. In
RHEL 7, the default directory for cgroups became /sys/fs/cgroup. The following examples
use this standard.

If you are building with cgroups enabled, you must have boost version 1.41 or later.

12.3.1.A Torque cgroup Hierarchy
Torque only uses the cpu, devices, cpuacct, cpuset, and memory subsystems. When pbs_
mom is initialized it creates a sub-directory named torque in each of the five subsystem
directories. When a job is started on the MOM a directory that is the full job ID is created
under each torque directory. The following is an 'ls -al' submission command example from
the cpuset/torque hierarchy:

total 0
drwxr-xr-x 3 root root 0 Aug 28 13:36 .
drwxr-xr-x 4 root root 0 Aug 28 13:35 ..
drwx------ 4 root root 0 Aug 31 10:20 1301.hosta
-rw-r--r-- 1 root root 0 Aug 28 13:35 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 28 13:35 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 28 13:35 cgroup.procs
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.cpu_exclusive
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.cpus
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.mem_exclusive
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.mem_hardwall
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.memory_migrate
-r--r--r-- 1 root root 0 Aug 28 13:35 cpuset.memory_pressure
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.memory_spread_page
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.memory_spread_slab
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.mems
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.sched_load_balance
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.sched_relax_domain_level
-rw-r--r-- 1 root root 0 Aug 28 13:35 notify_on_release
-rw-r--r-- 1 root root 0 Aug 28 13:35 tasks

Chapter 12: NUMA and Torque

Line 4 shows that the subdirectory is '1301.hosta'. This is the cpuset cgroup for job
'1301.hosta'. If you were to issue an ls command on the '1301.hosta' subdirectory in this
example, you would see the following:

total 0
drwx------ 4 root root 0 Aug 31 10:24 .
drwxr-xr-x 3 root root 0 Aug 31 10:22 ..
-rw-r--r-- 1 root root 0 Aug 31 10:24 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 31 10:24 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 31 10:24 cgroup.procs
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.cpu_exclusive
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.cpus
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.mem_exclusive
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.mem_hardwall
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.memory_migrate
-r--r--r-- 1 root root 0 Aug 31 10:24 cpuset.memory_pressure
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.memory_spread_page
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.memory_spread_slab
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.mems
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.sched_load_balance
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.sched_relax_domain_level
-rw-r--r-- 1 root root 0 Aug 31 10:24 notify_on_release
drwx------ 2 root root 0 Aug 31 10:24 R0.t0
drwx------ 2 root root 0 Aug 31 10:24 R0.t1
-rw-r--r-- 1 root root 0 Aug 31 10:24 tasks
-rw-r--r-- 1 root root 0 Aug 28 13:35 tasks

For this job the -L resource request was:

qsub -L tasks=2:lprocs=2

This job has a single request and two tasks. The R0 represents request 0 and the t0 and t1
represent the two tasks. In this case, cpuset information would be set for each task in their
respective subdirectories. The cpu, cpuacct, memory and devices subsystems also utilize
the same subdirectory structure.

12.3.1.B cpuset Subsystem
The Linux cpuset functionality was integrated into cgroups so that when Torque is
configured with the '--enable-cgroups' option, cpuset functionality is also included. When
jobs are submitted using the -L resource request syntax. Torque allocates a cpu set and
memory set for each task in the job request. Examples of how cpusets and memory sets are
allocated will be shown in the examples at the end of this primer.

12.3.1.C cpuacct Subsystem
The cpuacct subsystem keeps track of cpu time used for a cgroup. Torque now uses the
cpuacct data to calculate cpu time used for a job. Also when using the -L resource request,
cpu time per task is also recorded. Another advantage of cgroups is that the accounting
information of a job does not disappear when the job process exits. So if pbs_mom goes

Chapter 12: NUMA and Torque

183 12.3 NUMA Tutorials

12.3 NUMA Tutorials 184

down for any reason while running jobs the cpu time and memory used can still be tracked
when pbs_mom is restarted.

12.3.1.D memory Subsystem
The memory subsystem keeps track of the maximummemory used by a cgroup and also
can be used to limit the maximum amount of resident memory a task can use or the
maximum amount of swap a task can use. The -L resource request syntax has a memory
and a swap option.

Following are examples of how to request memory restrictions with the -L resource
request:

qsub -L tasks=2:memory=300mb

Two tasks are created. The memory=300mb option restricts each task to a maximum of 300 megabytes of resident
memory. If a task exceeds 300 mb, then the excess memory is sent to swap.

qsub -L tasks=2:swap=1Gb

Two tasks are created. The swap limit for each task is set to 1 GB.

In order to be able to set swap and memory limits the Linux kernel must be built
using the options CONFIG_MEMCG=y, CONFIG_MEMCG_SWAP=y and CONFIG_
MEMCG_SWAP_ENABLED=y. For Red Hat 7-based systems, these options are set by
default.

For SUSE 12-based systems, you will also need to modify the /etc/default/grub
file. Do the following:

1. Edit /etc/defult.grub.

2. Add the following inside of the GRUB_CMDLINE_LINUX_DEFAULT variable:

cgroup_enable=memory swapaccount=1

3. Run the following:

root# update-bootloader --refresh

4. Reboot your machine.

12.3.1.E Resource Request 2.0
Following are several different types of -L resource requests. The examples show how to
use the syntax to be able to have resources allocated that can best fit your job needs.

Chapter 12: NUMA and Torque

Single Resource Request with Two Tasks and Default Settings
qsub -L tasks=2:lprocs=1

After this job runs, the summarized qstat -f output is shown:

Job Id: 1306.hosta
Job_Name = bigmem.sh
Job_Owner = knielson@hosta
resources_used.cput = 00:00:01
resources_used.energy_used = 0
resources_used.mem = 1956984kb
resources_used.vmem = 2672652kb
resources_used.walltime = 00:00:10
job_state = C
. . .
exit_status = 0
submit_args = -L tasks=2:lprocs=1 ../scripts/bigmem.sh
. . .
req_information.task_count.0 = 2
req_information.lprocs.0 = 1
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = hosta:ppn=2
req_information.task_usage.0.task.0.cpu_list = 0
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.memory_used = 976816kb
req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 1
req_information.task_usage.0.task.0.host = hosta
req_information.task_usage.0.task.1.cpu_list = 4
req_information.task_usage.0.task.1.mem_list = 0
req_information.task_usage.0.task.1.memory_used = 976752kb
req_information.task_usage.0.task.1.cores = 0
req_information.task_usage.0.task.1.threads = 1
req_information.task_usage.0.task.1.host = hosta

In this job, 1 second of cpu time was used. 1956984kb of resident memory was used, but
with the new -L syntax there is a new set of information that starts with req_information.
This is the per task information of the job.

Output Description

req_information.task_
count.0 = 2

Two tasks are requested for this resource request; named tasks 0
and 1 respectively.

req_inform-
ation.lprocs.0 = 1

One logical processor is requested per task. The lprocs value
becomes the number of processing units per task allocated in the
cpuset.

req_inform-
ation.thread_usage_
policy.0 = allow-
threads

The processing unit allocation policy for the task. allowthreads is the
user-specified default policy. allowthreads uses the first available
core or thread. Processing units allocated in the cpuset are adjacent
to each other unless other processors are also allocated.

Chapter 12: NUMA and Torque

185 12.3 NUMA Tutorials

12.3 NUMA Tutorials 186

Output Description

req_inform-
ation.hostlist.0 =
hosta:ppn=2

On hostname hosta, two processing units are necessary. A single
resource request can run on more than one host.

req_information.task_
usage.0.task.0.cpu_list
= 0

The task_usage keyword refers to the per task resource usage. 0 is
the processing unit assigned to this task. In req_information.task_
usage.0.cpu_list.1, the processing unit assigned is 4. This particular
hardware is a 4 core system with hyper threading. So the core
numbering is (0,4), (1,5), (2,6) and (3.7). Because the thread_usage_
policy is allowthreads, the first two processing units are taken by
default.

req_information.task_
usage.0.task0.mem_list
= 0

Memory location 0 is allocated to this task.

req_information.task_
usage.0.task0.memory_
used = 976816kb

The amount of resident memory used at task 0 is 976816kb.

req_information.task_
usage.0.task0.cores = 0

This is the number of cores used by the task. In this case no cores
were used because the allowthreads policy uses only threads and not
discrete cores.

req_information.task_
usage.0.task0.host =
hosta

The task was run on hostname hosta.

The information for req_information.task_usage.0.task.1 as opposed to task.0, means
that the information displayed is referring to what was performed on task 1, rather
than task 0.

Multiple lprocs
qsub -L tasks=1:lprocs=2

Two logical processors are specified with one task. The output of this job is as follows:

req_information.task_count.0 = 1
req_information.lprocs.0 = 2
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = hosta:ppn=2
req_information.task_usage.0.task.0.cpu_list = 0,4
req_information.task_usage.0.task.0.mem_list = 0

Chapter 12: NUMA and Torque

req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 2
req_information.task_usage.0.task.0.host = hosta

The req_information for this syntax shows a cpu_list with two processing units. 0 and 4 are
the first two processing units available so they are in the cpu_list. Notice that now there are
two threads running.

usecores
The following example shows how a request to use cores changes the cpu_list allocation.

qsub -L tasks=1:lprocs=4:usecores

req_information.task_count.0 = 1
req_information.lprocs.0 = 4
req_information.thread_usage_policy.0 = usecores
req_information.hostlist.0 = hosta:ppn=4
req_information.task_usage.0.task.0.cpu_list = 0-3
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 4
req_information.task_usage.0.task.0.threads = 8
req_information.task_usage.0.task.0.host = hosta

Output Description

req_information.task_
usage.0.task.0.cores =
4

Four cores are used for task 0.

req_information.task_
usage.0.task.0.threads
= 8

When a core is requested, any threads for that core are no longer
available for use by another task. In this case, each core has two
threads. As a result, when one core is used two threads are also used.
In this case, 8 threads are used in total.

usethreads
qsub -L tasks=1:lprocs=4:usethreads

The output of this job is as follows:

req_information.task_count.0 = 1
req_information.lprocs.0 = 4
req_information.thread_usage_policy.0 = usecores
req_information.hostlist.0 = hosta:ppn=4
req_information.task_usage.0.task.0.cpu_list = 0,4,1,5
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 4
req_information.task_usage.0.task.0.host = hosta

Chapter 12: NUMA and Torque

187 12.3 NUMA Tutorials

12.3 NUMA Tutorials 188

Requesting usethreads gives adjacent processing units 0,4,1,5 and uses only 4 threads as
indicated by req_information.task_usage.0.task.0.threads = 4.

Multiple Resource Requests
The -L resource requests makes it easier to request asymmetric resources for a single job.
For example, you might have a job that needs several processors on a host to do work but
only one or two processors on another host. The -L syntax easily accommodates this.

qsub -L tasks=2:lprocs=6:usecores -L tasks=1:lprocs=1:place=socket

req_information.task_count.0 = 2
req_information.lprocs.0 = 6
req_information.thread_usage_policy.0 = usecores
req_information.hostlist.0 = hostb:ppn=12
req_information.task_usage.0.task.0.cpu_list = 0-5
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 6
req_information.task_usage.0.task.0.threads = 12
req_information.task_usage.0.task.0.host = hostb
req_information.task_usage.0.task.1.cpu_list = 6-11
req_information.task_usage.0.task.1.mem_list = 1
req_information.task_usage.0.task.1.cores = 6
req_information.task_usage.0.task.1.threads = 12
req_information.task_usage.0.task.1.host = hostb
req_information.task_count.1 = 1
req_information.lprocs.1 = 1
req_information.socket.1 = 1
req_information.thread_usage_policy.1 = allowthreads
req_information.hostlist.1 = hostb:ppn=1
req_information.task_usage.1.task.0.cpu_list = 0
req_information.task_usage.1.task.0.mem_list = 0
req_information.task_usage.1.task.0.cores = 1
req_information.task_usage.1.task.0.threads = 1
req_information.task_usage.1.task.0.host = hostb

Output Description

req_information.task_count.1=1 Only one task on request 1.

req_information.socket.1 = 1 One socket is requested and then allocated for use.

place Directives
The place directive takes one of five arguments: node, socket, numanode, core, and thread.
The node, core, and thread arguments do not take an assignment, however socket and
numanode can be assigned a number value requesting the number of sockets or
numanodes per task. The use of 'place=core' or 'place=thread' is the equivalent of using
the usecores or usethreads syntax.

When processes share the same memory cache and are run on adjacent cores or threads,
the likelihood of swapping out a cache line is high. When memory needs to be fetched from

Chapter 12: NUMA and Torque

primary memory instead of the cache processing execution times are increased and
become less predictable. In these examples, Torque disables linearly allocating cores. To
help ensure best performance by avoiding the sharing of caches between processors, cores
are spread as far apart as possible.

The following examples show the results of each directive:

place=socket

If a socket is not given a number, it defaults to the number 1:

qsub -L tasks=2:lprocs=2:place=socket

This request allocates two tasks with two logical processors each. Each task is placed on its
own socket.

req_information.task_count.0 = 2
req_information.lprocs.0 = 2
req_information.socket.0 = 1
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = hosta:ppn=4
req_information.task_usage.0.task.0.cpu_list = 0,3
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 2
req_information.task_usage.0.task.0.threads = 4
req_information.task_usage.0.task.0.host = hosta
req_information.task_usage.0.task.1.cpu_list = 6,9
req_information.task_usage.0.task.1.mem_list = 1
req_information.task_usage.0.task.1.cores = 2
req_information.task_usage.0.task.1.threads = 4
req_information.task_usage.0.task.1.host = hosta
cpuset_string = hosta:0,3,6,9
memset_string = hosta:0-1

For the last example the job was run on a dual socket host with 12 cores. Each core has two
threads for a total of 24 processing units. Each socket has 6 cores and 12 threads. The
cores for socket 0 are numbered 0, 1, 2, 3, 4, 5. The cores for socket 1 are numbered 6, 7, 8,
9, 10, 11. Task.0 uses cores 0 and 3 and task.1 uses cores 6 and 9.

place=numanode=2

qsub -L tasks=2:lprocs=2:place=numanode=2

This request allocates two numanodes, one for each task:

req_information.task_count.0 = 2
req_information.lprocs.0 = 2
req_information.numanode.0 = 2
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = hostb:ppn=2
req_information.task_usage.0.task.0.cpu_list = 0, 3
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 0
req_information.task_usage.0.task.0.host = hostb
req_information.task_usage.0.task.1.cpu_list = 6, 9

Chapter 12: NUMA and Torque

189 12.3 NUMA Tutorials

12.3 NUMA Tutorials 190

req_information.task_usage.0.task.1.mem_list = 1
req_information.task_usage.0.task.1.cores = 2
req_information.task_usage.0.task.1.threads = 4
req_information.task_usage.0.task.1.host = hostb

pbsnodes and Dedicated Resources
When a resource is requested (core, numanode, socket, etc.), the entire resource is no
longer available for other jobs to use, and enters a dedicated state. pbsnodes tracks total
sockets, numanodes, cores and threads per node. pbsnodes also tracks dedicated sockets,
numanodes, cores, and threads.

Following is an example of node output in pbsnodes:

state = free
power_state = Running
np = 12
ntype = cluster
status =
rectime=1441054213,macaddr=78:e3:b5:0a:c0:58,cpuclock=Fixed,varattr=,jobs=,state=fre
e...
mom_service_port = 15002
mom_manager_port = 15003
total_sockets = 2
total_numa_nodes = 2
total_cores = 12
total_threads = 12
dedicated_sockets = 0
dedicated_numa_nodes = 0
dedicated_cores = 0
dedicated_threads = 0

This node has a total of 2 sockets, 2 numanodes, 12 cores, and 12 threads. The number of
dedicated sockets, numanodes, cores, and threads are set to 0 indicating there are
currently no jobs running on this nodes. If a job is run with a syntax of:

qsub -L tasks=2:lprocs=2

the number of dedicated threads becomes four.

Once a job is completed, dedicated_threads returns to 0.

Related Topics

l 12.3 NUMA Tutorials - page 181

12.3.2 How NUMA Places Jobs

This topic discusses how jobs are placed on their specific NUMA resources.

Chapter 12: NUMA and Torque

In this topic, placing is defined as determining where on the node the job will go.

Moab determines where to place a job on a node and pbs_server places that job inside the
node. pbs_server decides where to place the job based on the parameters specified by the
job itself and optimal locality.

The Placement Algorithm
The following diagram shows the decision making process for each request not using the
'place=' syntax.

Whenever possible, jobs are given placement preference next to the GPUs that they will
use. If the job's tasks' memory and CPUs are available on the socket that has the GPUs, that
job will be placed at that location.

This placement fails if either there is no socket that contains all of the required
resources, or if jobs are and the GPUs are on socket - but all of the cores are used by
another job.

Chapter 12: NUMA and Torque

191 12.3 NUMA Tutorials

12.3 NUMA Tutorials 192

For jobs using the 'place=' syntax, the decision making algorithm is much simpler. When
the place is specified, it will become reserved and the job will be placed at that location.

For a job to occupy the user-requested place option, that option must be completely
available for use.

Chapter 12: NUMA and Torque

The following is an example of a job submitted using the -L option:

-L tasks=1:lprocs=2:sockets=2

This job placed on two sockets with one core reserved per socket.

The use of the word 'core' is intentional. If a 'place=socket' or 'place=numanode' is
requested and the lprocs request is less that the number of cores inside the socket or
NUMA node, then the job is given only cores.

Once pbs_server has determined where each task should run, that decision is stored in
attributes on the job itself. The complete_req attribute stores where each task is allocated,
and the mom reads that information to create appropriate cgroups for the job and for the
entire task. This information is available to the user via qstat.

Related Topics

l 12.3 NUMA Tutorials - page 181

12.3.3 NUMA Discovery and Persistence

12.3.3.A Initial Discovery
First, The mom performs the initial discovery of the host's layout, including the number of
sockets, numa nodes, pci devices, cores, and threads. This is done using the hwloc library.
Next, the mom sends that information to pbs_server, which notes it. Last, pbs_server writes
files with the node's layout information locally. Following restarts, node information is
gathered from these files.

12.3.3.B Job Placement Decisions
Job placement decisions are done by pbs_server so that it immediately knows which NUMA
resources have been used by which job. As a result, the second a job starts or finishes the
information for available numa resources is updated and accurate. This information is then
communicated to the mom daemon. For more information on how jobs are placed, see
12.3.2 How NUMA Places Jobs - page 190.

12.3.3.C Persistence Across Restarts
To maintain correct usage information pbs_server writes files to a new directory in
/server_priv/node_usage. The files are written in JSON format. The following is a

Chapter 12: NUMA and Torque

193 12.3 NUMA Tutorials

12.3 NUMA Tutorials 194

representation of what these files look like:

Simple Node
"node" :
{
"socket" :
{
"os_index" : 0,
"numanode" :
{
"os_index" : 0,
"cores" : "0-5",
"threads" : "",
"mem" : 16435852

}
}

}

More Complicated Node
"node" :
{
"socket" :
{
"os_index" : 0,
"numanode" :
{
"os_index" : 0,
"cores" : "0-7",
"threads" : "",
"mem" : 16775316

},
"numanode" :
{
"os_index" : 1,
"cores" : "8-15",
"threads" : "",
"mem" : 16777216

}
},
"socket" :
{
"os_index" : 1,
"numanode" :
{
"os_index" : 2,
"cores" : "16-23",
"threads" : "",
"mem" : 8388608

},
"numanode" :
{
"os_index" : 3,
"cores" : "24-31",
"threads" : "",
"mem" : 8388608

}
}

}

When jobs are present, an allocation object will also be there to record what resources are
being used by the job. The allocation object will be beneath the numanode object, so it is
possible to have more than one per job. An example of an allocation object is shown below:

Chapter 12: NUMA and Torque

Allocation object

"allocation" :
{
"cores_only" : 0,
"cpus" : "0",
"exclusive" : 6,
"jobid" : "39.roshar",
"mem" : "0"

}

An example of a complete node usage file is shown below:

Node usage

{
"node" :
[
{
"socket" :
{
"numanodes" :
[
{
"numanode" :
{
"allocations" :
[
{
"allocation" :
{
"cores_only" : 0,
"cpus" : "0",
"exclusive" : 6,
"jobid" : "39.roshar",
"mem" : "0",

}
}

],
"cores" : "0-7",
"mem" : "16325348",
"os_index", : 0,
"threads" : ""

}
}

],
"os_index" : 0

}
}

]
}

Related Topics

l 12.3 NUMA Tutorials - page 181

Chapter 12: NUMA and Torque

195 12.3 NUMA Tutorials

12.4 -L NUMA Resource Request 196

12.4 -L NUMA Resource Request

This topic provides the -L option syntax and a description of the allocation options.

The -L option is available in the qsub and msub commands to allow administrators the
ability to place jobs at the 'task' or 'OS process' level to get maximum efficiency out of the
available hardware.

Using the -L option requires a basic knowledge of the topologies of the available hardware
where jobs will run. You will need to know how many cores, numanodes, sockets, etc. are
available on the hosts within the cluster. The -L syntax is designed to allow for a wide
variety of requests. However, if requests do not match the available hardware, you may
have unexpected results.

In addition, multiple, non-symmetric resource requests can be made for the same job using
the -L job submission syntax.

For example, the following command creates two requests:

qsub -L tasks=4:lprocs=2:usecores:memory=500mb -L tasks=8:lprocs=4:memory=2gb

The first request creates 4 tasks with two logical processors and 500 mb of memory per
task. The logical processors are placed on cores. The second request calls for 8 tasks with 4
logical processors and 2 gb of memory per task. Logical processors can be placed on cores
or threads since the default placement is allowthreads.

12.4.1 Syntax
-L tasks=#[:lprocs=#|all]

[:{usecores|usethreads|allowthreads}]
[:place={socket|numanode|core|thread}[=#]{node}][:memory=#]
[:swap=#][:maxtpn=#][:gpus=#[:<mode>]][:mics=#][:gres=<gres>]
[:feature=<feature>]
[[:{cpt|cgroup_per_task}]|[:{cph|cgroup_per_host}]]

12.4.2 Allocation Options
The following table identifies the various allocation options you can specify per task.

tasks=# specifies the number of job tasks for which the resource request is to be
applied. It is the only required element for the -L resource request. The remainder of
the -L syntax allocates resources per task.

Chapter 12: NUMA and Torque

Value Description

cpt,
cgroup_
per_task,
cph,
cgroup_
per_host

Specifies whether cgroups are created per-task or per-host. If submitting using
msub, this information is passed through to Torque; there is no affect to Moab
operations.

This option lets you specify how cgroups are created during job
submission. This option can be used to override the Torque cgroup_per_
task server parameter. If this option is not specified, the server parameter
value is used. See cgroup_per_task for more information.

l :cpt, :cgroup_per_task – Job request will have one cgroup created per
task; all the processes on that host will be placed in the first task's cgroup.

l :cph, :cgroup_per_host – Job request will have one cgroup created per
host; this is similar to pre-6.0 cpuset implementations.

Some MPI implementations only launch one process through the TM API,
and then fork each subsequent process that should be launched on that

host. If the job is set to have one cgroup per task, this means that all of the
processes on that host will be placed in the first task's cgroup. Confirm
that the cgroup_per_task Torque server parameter is set to FALSE
(default) or specify :cph or :cgroup_per_host at job submission.
If you know that your MPI will communicate each process launch to the
mom individually, then set the cgroup_per_task Torque server parameter
is set to TRUE or specify :cpt or :cgroup_per_task at job submission.

feature Specifies one or more node feature names used to qualify compute nodes for
task resources (i.e., a compute node must have all (&) and/or (|) of the specified
feature names assigned or the compute node's resources are ineligible for
allocation to a job task).
:feature=bigmem
:feature='bmem&fio'
:feature='bmem|fio'

gpus Specifies the quantity of GPU accelerators to allocate to a task, which requires
placement at the locality-level to which an accelerator is connected or higher.
<MODE> can be exclusive_process, exclusive_thread, or
reseterr.

If you are using CUDA 8 or newer, the default of exclusive_thread is
no longer supported. If the server specifies an exclusive_thread
setting, the MOM will substitute an exclusive_process mode setting.
We recommend that you set the default to exclusive_process.

The task resource request must specify placement at the numanode- (AMD
only), socket-, or node-level. place=core and place=thread are invalid

Chapter 12: NUMA and Torque

197 12.4 -L NUMA Resource Request

12.4 -L NUMA Resource Request 198

Value Description

placement options when a task requests a PCIe-based accelerator device, since
allowing other tasks to use cores and threads on the same NUMA chip or socket
as the task with the PCIe device(s) would violate the consistent job execution
time principle since these other tasks would likely interfere with the data
transfers between the task's logical processors and its allocated accelerator(s).

:gpus=1

Allocates one GPU per task.

:gpus=2:exclusive_process:reseterr

Allocates two GPUs per task with exclusive access by process and
resets error counters.

gres Specifies the quantity of a specific generic resource <gres> to allocate to a task.
If a quantity is not given, it defaults to one.

Specify multiple GRES by separating them with commas and enclosing all
the GRES names, their quantities, and the commas within single quotation
marks.

:gres=matlab=1

Allocates one Matlab license per task.

:gres='dvd,blu=2'

Allocates one DVD drive and two Blu-ray drives per task, represented
by the "dvd" and "blu" generic resource names, respectively.

When scheduling, if a generic resource is node-locked, only compute
nodes with the generic resource are eligible for allocation to a job task. If
a generic resource is floating, it does not qualify or disqualify compute
node resources from allocation to a job task.

lprocs Specifies the quantity of 'logical processors' required by a single task to which it
will be pinned by its control-group (cgroup).

The 'place' value specifies the total number of physical cores/threads to
which a single task has exclusive access. The lprocs= keyword indicates
the actual number of cores/threads to which the task has exclusive access
for the task's cgroup to pin to the task.

l When :lprocs is specified, and nothing is specified for #, the default is 1.
l When :lprocs=all is specified, all cores or threads in any compute

Chapter 12: NUMA and Torque

Value Description

node/server's available resource locality placement specified by the 'place'
option is eligible for task placement (the user has not specified a quantity,
other than "give me all logical processors within the resource locality or
localities"), which allows a user application to take whatever it can get and
adapt to whatever it receives, which cannot exceed one node.

qsub -L tasks=1:lprocs=4

One task is created, which allocates four logical processors to the
task. When the job is executed, the pbs_mom where the job is running
will create a cpuset with four processors in the set. Torque will make
a best effort to allocate the four processors next to each other but the
placement is not guaranteed.

qsub -L tasks=1:lprocs=all:place=node

Places one task on a single node, and places all processing units in
the cpuset of the task. The "lprocs=all" parameter specifies that the
task will use all cores and/or threads available on the resource level
requested.

maxtpn Specifies the maximum tasks per node; where '#' is the maximum tasks allocated
per physical compute node. This restricts a task type to no more than '#' tasks
per compute node and allows it to share a node with other task types or jobs.
For example, a communication-intensive task may share a compute node with
computation-intensive tasks.

The number of nodes and tasks per node will not be known until the job
is run.

qsub -L tasks=7:maxtpn=4

Allocates seven tasks but a maximum of four tasks can run on a
single node.

memory 'memory' is roughly equivalent to the mem request for the qsub/msub -l
resource request. However, with the -L qsub syntax, cgroups monitors the
job memory usage and puts a ceiling on resident memory for each task of
the job.

Specifies the maximum resident memory allocated per task. Allowable suffixes
are kb (kilobytes), mb (megabytes), gb (gigabytes), tb (terabyte), pb
(petabytes), and eb (exabyte). If a suffix is not provided by the user, kb
(kilobytes) is default. Either whole or decimal numbers are allowed.

If a task uses more resident memory than specified the excess memory is
moved to swap.

Chapter 12: NUMA and Torque

199 12.4 -L NUMA Resource Request

12.4 -L NUMA Resource Request 200

Value Description

qsub -L tasks=4:lprocs=2:usecores:memory=.5gb

Allocates four tasks with two logical processors each. Each task is
given a limit of .5 gb of resident memory.

qsub -L tasks=2:memory=3500

Allocates two tasks with 3500 kb (the suffix was not specified so
kilobytes is assumed).

mics Specifies the quantity of Intel MIC accelerators to allocate to a task, which
requires placement at the locality-level to which a MIC is connected or higher.
The task resource request must specify placement at the NUMA chip- (makes
sense for AMD only), socket-, or node-level. place=core and place=thread are
invalid placement options when a task requests a PCIe-based accelerator device
since allowing other tasks to use cores and threads on the same NUMA chip or
socket as the task with the PCIe device(s) would violate the consistent job
execution time principle since these other tasks would likely interfere with the
data transfers between the task's logical processors and its allocated accelerator
(s).

Allocating resources for MICs operates in the exact same manner as for
GPUs. See gpus.

:mics=1

Allocates on MIC per task.

:mics=2

Allocates two MICs per task.

place Specifies placement of a single task on the hardware. Specifically, this designates
what hardware resource locality level and identifies the quantity of locality-level
resources. Placement at a specific locality level is always exclusive, meaning a job
task has exclusive use of all logical processor and physical memory resources at
the specified level of resource locality, even if it does not use them.
Valid Options:

If a valid option is not specified, the usecores, usethreads, and
allowthreads parameters are used.

l socket[=#] – Refers to a socket within a compute node/server and specifies
that each task is placed at the socket level with exclusive use of all logical
processors and memory resources of the socket(s) allocated to a task. If a
count is not specified, the default setting is 1.

Chapter 12: NUMA and Torque

Value Description

qsub -L tasks=2:lprocs=4:place=socket

Two tasks are allocated with four logical processors each. Each
task is placed on a socket where it will have exclusive access to
all of the cores and memory of the socket. Although the socket
can have more cores/threads than four, only four cores/threads
will be bound in a cpuset per task per socket as indicated by
"lprocs=4".

l numanode[=#] – Refers to the numanode within a socket and specifies
that each task is placed at the NUMA node level within a socket with
exclusive use of all logical processor and memory resources of the NUMA
node(s) allocated to the task. If a count is not given, the default value is 1. If
a socket does not contain multiple numanodes, by default the socket
contains one numanode.
To illustrate the locality level to which this option refers, the following
examples are provided:
First, a Haswell-based Intel Xeon v3 processor with 10 or more cores is
divided internally into two separate 'nodes', each with an equal quantity of
cores and its own local memory (referred to as a 'numanode' in this topic).
Second, an AMD Opteron 6xxx processor is a 'multi-chip module' that
contains two separate physical silicon chips each with its own local memory
(referred to as a 'numanode' in this topic).
In both of the previous examples, a core in one 'node' of the processor can
access its own local memory faster than it can access the remote memory of
the other 'node' in the processor, which results in NUMA behavior.

qsub -L tasks=2:lprocs=4:place=numanode

Places a single task on a single numanode and the task has
exclusive use of all the logical processors and memory of the
numanode.

qsub -L tasks=2:lprocs=4:place=numanode=2

Allocates two tasks with each task getting two numanodes each.

l core[=#] – Refers to a core within a numanode or socket and specifies each
task is placed at the core level within the numanode or socket and has
exclusive use of all logical processor and memory resources of the core(s)
allocated to the task. Whether a core has SMT/hyper-threading enabled or
not is irrelevant to this locality level. If a number of cores is not specified, it
will default to the number of lprocs specified.

The number of cores specified must be greater than or equal to the
number of lprocs available; otherwise, the job submission will be
rejected.

Chapter 12: NUMA and Torque

201 12.4 -L NUMA Resource Request

12.4 -L NUMA Resource Request 202

Value Description

qsub -L tasks=2:place=core=2

Two tasks with one logical processor each will be placed on two
cores per task.

qsub -L tasks=2:lprocs=2:place=core

Two tasks are allocated with two logical processors per task.
Each logical process will be assigned to one core each (two cores
total, the same as the number of lprocs). Torque will attempt to
place the logical processors on non-adjacent cores.

l thread[=#] – Specifies each task is placed at the thread level within a core
and has exclusive use of all logical processor and memory resources of the
thread(s) allocated to a task.
This affinity level refers to threads within a core and is applicable only to
nodes with SMT or hyper-threading enabled. If a node does not have SMT
or hyper-threading enabled, Moab will consider the node ineligible when
allocating resources for a task. If a specific number of threads is not
specified, it will default to the number of lprocs specified.

qsub -L tasks=2:lprocs=4:place=thread

Allocates two tasks, each with four logical processors, which can
be bound to any thread. Torque will make a best effort to bind
the threads on the same numanode but placement is not
guaranteed. Because the number of threads is not specified,
Torque will place the number of lprocs requested.

l node – Specifies that each task is placed at the node level and has exclusive
use of all the resources of the node(s) allocated to a task. This locality level
usually refers to a physical compute node, blade, or server within a cluster.

qsub -L tasks=2:lprocs=all:place=node

Two tasks are allocated with one task per node, where the task
has exclusive access to all the resources on the node. The
"lprocs=all" specification directs Torque to create a cpuset with
all of the processing units on the node. The "place=node"
specification also claims all of the memory for the node/server.

swap Specifies the maximum allocated resident memory and swap space allowed per
task.
Allowable suffixes are kb (kilobytes), mb (megabytes), gb (gigabytes), tb
(terabyte), pb (petabytes), and eb (exabyte). If a suffix is not given, kb
(kilobytes) is assumed. Either whole or decimal numbers are allowed.
If a task exceeds the specified limit, the task will be killed; the associated job
will be terminated.

Chapter 12: NUMA and Torque

Value Description

If the swap limit is unable to be set, the job will still be allowed to run.
All other cgroup-related failures will cause the job to be rejected.

When requesting swap, it is not required that you give a value for the :memory
option:

l If using :swap without a specified :memory value, Torque will supply a
memory value up to the value of :swap; but not larger than available
physical memory.

qsub -L tasks=4:lprocs=2:swap=4.5gb

Allocates four tasks with two logical processors each. Each task is
given a combined limit of 4.5 gb of resident memory and swap
space. If a task exceeds the limit, the task is terminated.

l If using :swap with a specified :memory value, Torque will only supply
resident memory up to the :memory value. The rest of the swap can only
be supplied from the swap space.

The :memory value must be smaller than or equal to the :swap
value.

qsub -L tasks=2:memory=3.5gb:swap=5gb

Allocates two tasks and each task has up to 3.5 gb of resident
memory and a maximum of 5 gb of swap. If a task exceed 3.5 gb
of resident memory, the excess will be moved to the swap space.
However, if the task exceed 5 gb of total swap, the task and job
will be terminated.

tasks Specifies the quantity of job tasks for which the resource request describes the
resources needed by a single task:

l Distributed memory systems - A single task must run within a single
compute node/server (i.e., the task's resources must all come from the
same compute node/server).

l Shared memory systems - A single task can run on multiple compute
nodes (i.e., the task's resources may come from multiple compute nodes).

This option is required for task-based resource allocation and placement.

qsub -L tasks=4

Creates four tasks, each with one logical process. The tasks can be
run on a core or thread (default allowthreads).

usecores,
usethreads,

The usecores, usethreads, and allowthreads parameters are used to indicate

Chapter 12: NUMA and Torque

203 12.4 -L NUMA Resource Request

12.4 -L NUMA Resource Request 204

Value Description

allow
threads

whether the cgroup pins cores, threads, or either to a task, respectively. If no
logical processor definition is given, the default is allowthreads for backward-
compatible Moab scheduler and Torque resource manager behavior.
In this context, 'cores' means an AMD Opteron core, a hyperthread-disabled
Intel Xeon core, or thread 0 and only thread 0 of a hyperthread-enabled Intel
Xeon core. The term 'threads' refers to a hyperthread-enabled Intel Xeon thread.
Likewise, 'either' refers to an AMD Opteron core, a hyperthread-disabled Intel
Xeon core, or any thread of a hyperthread-enabled Intel Xeon.

l :usecores – Denotes that the logical processor definition for a task
resource request is a physical core. This means if a core has hyper-
threading enabled, the task will use only thread 0 of the core.

qsub -L tasks=2:lprocs=2:usecores

Two tasks are allocated with two logical processors per task. The
usecores parameter indicates the processor types must be a core
or thread 0 of a hyper-threaded core.

l :usethreads – Specifies the logical processor definition for a task resource
request is a hardware-based thread or virtual core.

qsub -L tasks=2:lprocs=2:usethreads

Two tasks are allocated with two logical processors per task. The
usethreads parameter indicates that any type of hardware-
based thread or virtual core can be used.

l :allowthreads – Specifies that the logical processor definition for a task
resource request can be either a physical core (e.g., AMD Opteron), or
hardware-based thread of a core (hyperthread-enabled Intel Xeon).

qsub -L tasks=2:lprocs=2:allowthreads

Two tasks are allocated with two logical processors per task. The
allowthreads parameter indicates hardware threads or cores
can be used.

Related Topics

l qsub

l 3.1.4 Requesting NUMA-Aware Resources - page 94

Chapter 12: NUMA and Torque

12.5 pbsnodes with NUMA-Awareness

When Torque is configured with NUMA-awareness and configured with --enable-cgroups,
the number of total and the number of available sockets, numachips (numa nodes), cores,
and threads are returned when the status of nodes are queried by Moab (a call is made to
pbsnodes).

The example output that follows shows a node with two sockets, four numachips, 16 cores
and 32 threads. In this example, no jobs are currently running on this node; therefore, the
available resources are the same as the total resources.

torque-devtest-01
state = free
power_state = Running
np = 16
ntype = cluster
status =

rectime=1412732948,macaddr=00:26:6c:f4:66:a0,cpuclock=Fixed,varattr=,jobs=,state=free,
netload=17080856592,gres=,loadave=10.74,ncpus=16,physmem=49416100kb,availmem=50056608k
b,totmem=51480476kb,idletime=29,nusers=2,nsessions=3,sessions=8665
8671 1994,uname=Linux torque-devtest-01 2.6.32-358.el6.x86_64 #1 SMP
Fri Feb 22 00:31:26 UTC 2023 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
total_sockets = 2
total_numachips = 4
total_cores = 16
total_threads = 32
available_sockets = 2
available_numachips = 4
available_cores = 16
available_threads = 32

However, if a job requesting only a single core was started on this node, the pbsnodes
output will look like:

torque-devtest-01
state = free
power_state = Running
np = 16
ntype = cluster
jobs = 0/112.torque-devtest-01
status =

rectime=1412732948,macaddr=00:26:6c:f4:66:a0,cpuclock=Fixed,varattr=,jobs=,state=free,
netload=17080856592,gres=,loadave=10.74,ncpus=16,physmem=49416100kb,availmem=50056608k
b,totmem=51480476kb,idletime=29,nusers=2,nsessions=3,sessions=8665
8671 1994,uname=Linux torque-devtest-01 2.6.32-358.el6.x86_64 #1 SMP
Fri Feb 22 00:31:26 UTC 2023 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
total_sockets = 2
total_numachips = 4
total_cores = 16
total_threads = 32
available_sockets = 1
available_numachips = 3
available_cores = 15
available_threads = 30

Chapter 12: NUMA and Torque

205 12.5 pbsnodes with NUMA-Awareness

12.6 NUMA-Support Systems 206

In looking at the output for this example, you will see that even though only one core was
requested the available sockets, numachip, cores and threads were all reduced. This is
because the NUMA architecture is hierarchical: socket contains one or more numachips; a
numachip contains two or more cores; cores contain one or more threads (one thread in
the case of non-threaded cores). In order for a resource to be available, the entire resource
must be free. When a job uses one core, the use of that core consumes part of the
associated socket, and numa chip resources. As a result, the affected socket and numachip
cannot be used when subsequent jobs request sockets and numachips as resources. Also,
because the job asked for one core, the number of threads for that core are consumed. As a
result, the number of threads available on the machine is reduced by the number of
threads in the core.

As another example, suppose a user makes an job request and they want to use a socket.
The pbsnodes output will look like:

torque-devtest-01
state = free
power_state = Running
np = 16
ntype = cluster
jobs = 113.torque-devtest-01
status =

rectime=1412732948,macaddr=00:26:6c:f4:66:a0,cpuclock=Fixed,varattr=,jobs=,state=free,
netload=17080856592,gres=,loadave=10.74,ncpus=16,physmem=49416100kb,availmem=50056608k
b,totmem=51480476kb,idletime=29,nusers=2,nsessions=3,sessions=8665
8671 1994,uname=Linux torque-devtest-01 2.6.32-358.el6.x86_64 #1 SMP
Fri Feb 22 00:31:26 UTC 2023 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
total_sockets = 2
total_numachips = 4
total_cores = 16
total_threads = 32
available_sockets = 1
available_numachips = 2
available_cores = 8
available_threads = 16

In looking at the output in this example, you will see that not only are the available sockets
reduced to one, but all of the numachips, cores, and threads associated with the socket are
no longer available. In other words, by requesting a job placement of 'socket' all of the
resources of the socket are reserved and are no longer available to other jobs.

12.6 NUMA-Support Systems

This topic serves as a central information repository for NUMA-support systems. This topic
provides basic information and contains links to the various NUMA-aware topics found
throughout the documentation.

Chapter 12: NUMA and Torque

Support for NUMA-support systems is available only on large-scale SLES systems
using SGI Altix and UV hardware.

12.6.1 About NUMA-Supported Systems
When Torque is enabled to run with NUMA support, there is only a single instance of pbs_
mom (MOM) that is run on the system. However, Torque will report that there are multiple
nodes running in the cluster. While pbs_mom and pbs_server both know there is only
one instance of pbs_mom, they manage the cluster as if there were multiple separate MOM
nodes.

The mom.layout file is a virtual mapping between the system hardware configuration
and how the administrator wants Torque to view the system. Each line in mom.layout
equates to a node in the cluster and is referred to as a NUMA node.

12.6.2 Torque Installation and Configuration
To enable Torque for NUMA-support, you will need to add the --enable-numa-
support option during the configure portion of the installation. You will also need create
the mom.layout file and configure the server_priv/nodes file.

With SGI Altix systems, each node must be configured on its own partition, so Moab
does not schedule across Altix systems. Non-Altix nodes must be on a different
partition than Altix systems.

See 2.7.2 Torque NUMA-Support Configuration - page 70

12.6.3 Moab/Torque NUMA Configuration
Moab requires additional configuration to enable NUMA-support.

See Moab-NUMA-Support Integration Guide in the Moab Workload Manager Administrator
Guide.

Chapter 12: NUMA and Torque

207 12.6 NUMA-Support Systems

13.1 Automatic Queue and Job Recovery 208

Chapter 13: Troubleshooting

There are a few general strategies that can be followed to determine the cause of
unexpected behavior. These are a few of the tools available to help determine where
problems occur.

Note: If you currently have a support services contract and encounter an installation
problem that you can’t resolve, please submit an online support case, and a technical
support specialist will contact you.

In this chapter:

13.1 Automatic Queue and Job Recovery 208
13.2 Host Resolution 209
13.3 Firewall Configuration 209
13.4 Torque Log Files 210
13.5 Using tracejob to Locate Job Failures 211
13.6 Using GDB to Locate Job Failures 213
13.7 Other Diagnostic Options 214
13.8 Stuck Jobs 215
13.9 Frequently Asked Questions (FAQ) 216
13.10 Compute Node Health Check 222
13.11 Debugging 225

13.1 Automatic Queue and Job Recovery

When pbs_server restarts and recovers a job but cannot find that job's queue, it will create
a new queue with the original name, but with a ghost_queue attribute (as seen in qmgr)
and then add the job to that queue. This will happen for each queue the server does not
recognize. Ghost queues will not accept new jobs, but will allow the jobs in it to run and be
in a running state. If users attempt to submit any new jobs to these queues, the user will
get an error stating that the queue had an error on recovery, and is in a ghost state. Once
the admin reviews and corrects the queue's settings, the admin can remove the ghost
setting and then the queue will function normally.

See ghost_queue for more information.

Chapter 13: Troubleshooting

https://support.adaptivecomputing.com/support-login

13.2 Host Resolution

The Torque server host must be able to perform both forward and reverse name lookup
on itself and on all compute nodes. Likewise, each compute node must be able to perform
forward and reverse name lookup on itself, the Torque server host, and all other compute
nodes. In many cases, name resolution is handled by configuring the node's /etc/hosts
file although DNS and NIS services can also be used. Commands such as nslookup or
dig can be used to verify proper host resolution.

Invalid host resolution may exhibit itself with compute nodes reporting as down
within the output of pbsnodes -a and with failure of the momctl -d3 command.

Related Topics

l Chapter 13: Troubleshooting - page 208

13.3 Firewall Configuration

Be sure that, if you have firewalls running on the server or node machines, you allow
connections on the appropriate ports for each machine. Torque pbs_mom daemons use
UDP ports 1023 and below if privileged ports are configured (privileged ports is the
default). The pbs_server and pbs_mom daemons use TCP and UDP ports 15001-15004 by
default.

Firewall based issues are often associated with server to MOM communication failures and
messages such as 'premature end of message' in the log files.

Also, the tcpdump program can be used to verify the correct network packets are being
sent.

Related Topics

l Chapter 13: Troubleshooting - page 208

Chapter 13: Troubleshooting

209 13.2 Host Resolution

13.4 Torque Log Files 210

13.4 Torque Log Files

In this topic:

13.4.1 pbs_server and pbs_mom Log Files - page 210
13.4.2 trqauthd Log Files - page 210

13.4.1 pbs_server and pbs_mom Log Files
The pbs_server keeps a daily log of all activity in the TORQUE_HOME/server_logs
directory. The pbs_mom also keeps a daily log of all activity in the TORQUE_HOME/mom_
logs/ directory. These logs contain information on communication between server and
MOM, as well as information on jobs as they enter the queue and as they are dispatched,
run, and terminated. These logs can be very helpful in determining general job failures. For
MOM logs, the verbosity of the logging can be adjusted by setting the $loglevel parameter
in the mom_priv/config file. For server logs, the verbosity of the logging can be
adjusted by setting the server log_level attribute in qmgr.

For both pbs_mom and pbs_server daemons, the log verbosity level can also be adjusted by
setting the environment variable PBSLOGLEVEL to a value between 0 and 7. Further, to
dynamically change the log level of a running daemon, use the SIGUSR1 and SIGUSR2
signals to increase and decrease the active loglevel by one. Signals are sent to a process
using the kill command.

For example, kill -USR1 `pgrep pbs_mom` would raise the log level up by one.

The current loglevel for pbs_mom can be displayed with the command momctl -d3.

13.4.2 trqauthd Log Files
trqauthd logs its events in the TORQUE_HOME/client_logs directory. It names the log
files in the format <YYYYMMDD>, creating a new log daily as events occur.

Chapter 13: Troubleshooting

You might see some peculiar behavior if you mount the client_logs directory for
shared access via network-attached storage.

When trqauthd first gets access on a particular day, it writes an 'open' message to the
day's log file. It also writes a 'close' message to the last log file it accessed prior to that,
which is usually the previous day's log file, but not always. For example, if it is
Monday and no client commands were executed over the weekend, trqauthd writes
the 'close' message to Friday's file.

Since the various trqauthd binaries on the submit hosts (and potentially, the compute
nodes) each write an 'open' and 'close' message on the first access of a new day,
you'll see multiple (seemingly random) accesses when you have a shared log.

The trqauthd records the following events along with the date and time of the occurrence:

l When trqauthd successfully starts. It logs the event with the IP address and port.

l When a user successfully authenticates with trqauthd.

l When a user fails to authenticate with trqauthd.

l When trqauthd encounters any unexpected errors.

Example 13-1: trqauthd logging sample

2022-10-05 15:05:51.8404 Log opened
2022-10-05 15:05:51.8405 Torque authd daemon started and listening on IP:port
101.0.1.0:12345
2022-10-10 14:48:05.5688 User hfrye at IP:port abc:12345 logged in

Related Topics

l Chapter 13: Troubleshooting - page 208

13.5 Using tracejob to Locate Job Failures

13.5.1 Overview
The tracejob utility extracts job status and job events from accounting records, MOM log
files, server log files, and scheduler log files. Using it can help identify where, how, a why a
job failed. This tool takes a job ID as a parameter, as well as arguments to specify which
logs to search, how far into the past to search, and other conditions.

Chapter 13: Troubleshooting

211 13.5 Using tracejob to Locate Job Failures

13.5 Using tracejob to Locate Job Failures 212

13.5.2 Syntax
tracejob [-a|s|l|m|q|v|z] [-c count] [-w size] [-p path] [-n <DAYS>] [-f filter_type]
<JOBID>

-p : path to PBS_SERVER_HOME
-w : number of columns of your terminal
-n : number of days in the past to look for job(s) [default 1]
-f : filter out types of log entries, multiple -f's can be specified
 error, system, admin, job, job_usage, security, sched, debug,
 debug2, or absolute numeric hex equivalent
-z : toggle filtering excessive messages
-c : what message count is considered excessive
-a : don't use accounting log files
-s : don't use server log files
-l : don't use scheduler log files
-m : don't use MOM log files
-q : quiet mode - hide all error messages
-v : verbose mode - show more error messages

13.5.3 Example
> tracejob -n 10 1131

Job: 1131.icluster.org

03/02/2023 17:58:28 S enqueuing into batch, state 1 hop 1
03/02/2023 17:58:28 S Job Queued at request of dev@icluster.org, owner =
 dev@icluster.org, job name = STDIN, queue = batch
03/02/2023 17:58:28 A queue=batch
03/02/2023 17:58:41 S Job Run at request of dev@icluster.org
03/02/2023 17:58:41 M evaluating limits for job
03/02/2023 17:58:41 M phase 2 of job launch successfully completed
03/02/2023 17:58:41 M saving task (TMomFinalizeJob3)
03/02/2023 17:58:41 M job successfully started
03/02/2023 17:58:41 M job 1131.koa.icluster.org reported successful start on 1 node
(s)
03/02/2023 17:58:41 A user=dev group=dev jobname=STDIN queue=batch ctime=1109811508

qtime=1109811508 etime=1109811508 start=1109811521
 exec_host=icluster.org/0 Resource_List.neednodes=1 Resource_
List.nodect=1
 Resource_List.nodes=1 Resource_List.walltime=00:01:40
03/02/2023 18:02:11 M walltime 210 exceeded limit 100
03/02/2023 18:02:11 M kill_job
03/02/2023 18:02:11 M kill_job found a task to kill
03/02/2023 18:02:11 M sending signal 15 to task
03/02/2023 18:02:11 M kill_task: killing pid 14060 task 1 with sig 15
03/02/2023 18:02:11 M kill_task: killing pid 14061 task 1 with sig 15
03/02/2023 18:02:11 M kill_task: killing pid 14063 task 1 with sig 15
03/02/2023 18:02:11 M kill_job done
03/02/2023 18:04:11 M kill_job
03/02/2023 18:04:11 M kill_job found a task to kill
03/02/2023 18:04:11 M sending signal 15 to task
03/02/2023 18:06:27 M kill_job
03/02/2023 18:06:27 M kill_job done
03/02/2023 18:06:27 M performing job clean-up

Chapter 13: Troubleshooting

03/02/2023 18:06:27 A user=dev group=dev jobname=STDIN queue=batch ctime=1109811508

 qtime=1109811508 etime=1109811508 start=1109811521
 exec_host=icluster.org/0 Resource_List.neednodes=1 Resource_
List.nodect=1

Resource_List.nodes=1 Resource_List.walltime=00:01:40
session=14060
 end=1109811987 Exit_status=265 resources_used.cput=00:00:00
 resources_used.mem=3544kb resources_used.vmem=10632kb

resources_used.walltime=00:07:46

...

The tracejob command operates by searching the pbs_server accounting records
and the pbs_server, MOM, and scheduler logs. To function properly, it must be run on
a node and as a user that can access these files. By default, these files are all
accessible by the user root and only available on the cluster management node. In
particular, the files required by tracejob are located in the following directories:

TORQUE_HOME/server_priv/accounting

TORQUE_HOME/server_logs

TORQUE_HOME/mom_logs

TORQUE_HOME/sched_logs

tracejob can only be used on systems where these files are made available. Non-
root users may be able to use this command if the permissions on these directories or
files are changed appropriately.

The value of Resource_List.* is the amount of resources requested, and the
value of resources_used.* is the amount of resources actually used.

Related Topics

l Chapter 13: Troubleshooting - page 208

13.6 Using GDB to Locate Job Failures

If either the pbs_mom or pbs_server fail unexpectedly (and the log files contain no
information on the failure) gdb can be used to determine whether or not the program is
crashing. To start pbs_mom or pbs_server under GDB export the environment variable

Chapter 13: Troubleshooting

213 13.6 Using GDB to Locate Job Failures

http://www.gnu.org/software/gdb/

13.7 Other Diagnostic Options 214

PBSDEBUG=yes and start the program (i.e., gdb pbs_mom and then issue the run
subcommand at the gdb prompt).

GDB may run for some time until a failure occurs and at which point, a message will be
printed to the screen and a gdb prompt again made available. If this occurs, use the gdb
where subcommand to determine the exact location in the code. The information provided
may be adequate to allow local diagnosis and correction. If not, this output can be sent to
the mailing list or to help for further assistance.

See the PBSCOREDUMP parameter for enabling creation of core files (see
Debugging).

Related Topics

l Chapter 13: Troubleshooting - page 208

13.7 Other Diagnostic Options

When PBSDEBUG is set, some client commands will print additional diagnostic information.

$ export PBSDEBUG=yes
$ cmd

To debug different kinds of problems, it can be useful to see where in the code time is
being spent. This is called profiling and there is a Linux utility 'gprof' that will output a
listing of routines and the amount of time spent in these routines. This does require that
the code be compiled with special options to instrument the code and to produce a file,
gmon.out, that will be written at the end of program execution.

The following listing shows how to build Torque with profiling enabled. Notice that the
output file for pbs_mom will end up in the mom_priv directory because its startup code
changes the default directory to this location.

./configure "CFLAGS=-pg -lgcov -fPIC"
make -j5
make install
pbs_mom ... do some stuff for a while ...
momctl -s
cd /var/spool/torque/mom_priv
gprof -b `which pbs_mom` gmon.out |less
#

Another way to see areas where a program is spending most of its time is with the valgrind
program. The advantage of using valgrind is that the programs do not have to be specially
compiled.

Chapter 13: Troubleshooting

mailto:help@supercluster.org

valgrind --tool=callgrind pbs_mom

Related Topics

l Chapter 13: Troubleshooting - page 208

13.8 Stuck Jobs

If a job gets stuck in Torque, try these suggestions to resolve the issue:

l Use the qdel command to cancel the job.

l Force the MOM to send an obituary of the job ID to the server:

> qsig -s 0 <JOBID>

l You can try clearing the stale jobs by using the momctl command on the compute
nodes where the jobs are still listed:

> momctl -c 58925 -h compute-5-20

l Setting the qmgr server setting mom_job_sync to Truemight help prevent jobs
from hanging:

> qmgr -c "set server mom_job_sync = True"

To check and see if this is already set, use:

> qmgr -c "p s"

l If the suggestions above cannot remove the stuck job, you can try qdel -p. However,
since the -p option purges all information generated by the job, this is not a
recommended option unless the above suggestions fail to remove the stuck job.

> qdel -p <JOBID>

l The last suggestion for removing stuck jobs from compute nodes is to restart the pbs_
mom.

For additional troubleshooting, run a tracejob on one of the stuck jobs. You can then create
an online support ticket with the full server log for the time period displayed in the trace
job.

Chapter 13: Troubleshooting

215 13.8 Stuck Jobs

https://support.adaptivecomputing.com/hpc-cloud-support-portal-2/

13.9 Frequently Asked Questions (FAQ) 216

Related Topics

l Chapter 13: Troubleshooting - page 208

13.9 Frequently Asked Questions (FAQ)

In this topic:

13.9.1 Cannot connect to server: error=15034 - page 216
13.9.2 Deleting 'stuck' jobs - page 217
13.9.3 Which user must run Torque? - page 217
13.9.4 Scheduler cannot run jobs - rc: 15003 - page 217
13.9.5 PBS_Server: pbsd_init, Unable to read server database - page 218
13.9.6 qsub will not allow the submission of jobs requesting many processors -

page 219
13.9.7 qsub reports 'Bad UID for job execution' - page 219
13.9.8 Why does my job keep bouncing from running to queued? - page 220
13.9.9 How do I use PVM with Torque? - page 220
13.9.10 My build fails attempting to use the TCL library - page 221
13.9.11 My job will not start, failing with the message 'cannot send job to mom,

state=PRERUN' - page 221
13.9.12 How do I determine what version of Torque I am using? - page 221
13.9.13 How do I resolve autogen.sh errors that contain "error: possibly

undefined macro: AC_MSG_ERROR"? - page 221
13.9.14 Why are there so many error messages in the client logs (trqauthd logs)

when I don't notice client commands failing? - page 222

13.9.1 Cannot connect to server: error=15034
This error occurs in Torque clients (or their APIs) because Torque cannot find the
server_name file and/or the PBS_DEFAULT environment variable is not set. The
server_name file or PBS_DEFAULT variable indicate the pbs_server's hostname that the
client tools should communicate with. The server_name file is usually located in
Torque's local state directory. Make sure the file exists, has proper permissions, and that
the version of Torque you are running was built with the proper directory settings.
Alternatively you can set the PBS_DEFAULT environment variable. Restart Torque
daemons if you make changes to these settings.

Chapter 13: Troubleshooting

13.9.2 Deleting 'stuck' jobs
To manually delete a 'stale' job that has no process, and for which the mother superior is
still alive, sending a sig 0 with qsig will often cause MOM to realize the job is stale and issue
the proper JobObit notice. Failing that, use momctl -c to forcefully cause MOM to purge
the job. The following process should never be necessary:

l Shut down the MOM on the mother superior node.

l Delete all files and directories related to the job from TORQUE_HOME/mom_
priv/jobs.

l Restart the MOM on the mother superior node.

If the mother superior MOM has been lost and cannot be recovered (i.e., hardware or disk
failure), a job running on that node can be purged from the output of qstat using the
qdel -p command or can be removed manually using the following steps:

To Remove Job X

1. Shut down pbs_server:

> qterm

2. Remove job spool files:

> rm TORQUE_HOME/server_priv/jobs/X.SC TORQUE_HOME/server_priv/jobs/X.JB

3. Restart pbs_server:

> pbs_server

13.9.3 Which user must run Torque?
Torque (pbs_server & pbs_mom) must be started by a user with root privileges.

13.9.4 Scheduler cannot run jobs - rc: 15003
For a scheduler, such as Moab or Maui, to control jobs with Torque, the scheduler needs to
be run by a user in the server operators/managers list (see qmgr). The default for the
server operators/managers list is root@localhost. For Torque to be used in a grid
setting with Moab, the scheduler needs to be run as root.

Chapter 13: Troubleshooting

217 13.9 Frequently Asked Questions (FAQ)

13.9 Frequently Asked Questions (FAQ) 218

13.9.5 PBS_Server: pbsd_init, Unable to read server database
If this message is displayed upon starting pbs_server it means that the local database
cannot be read. This can be for several reasons. The most likely is a version mismatch. Most
versions of Torque can read each other's databases. However, there are a few
incompatibilities between OpenPBS and Torque. Because of enhancements to Torque, it
cannot read the job database of an OpenPBS server (job structure sizes have been altered
to increase functionality). Also, a compiled in 32-bit mode cannot read a database
generated by a 64-bit pbs_server and vice versa.

To Reconstruct a Database (Excluding the Job Database)

1. First, print out the old data with this command:

%> qmgr -c "p s"
#
Create queues and set their attributes.
#
#
Create and define queue batch
create queue batch
set queue batch queue_type = Execution
set queue batch acl_host_enable = False
set queue batch resources_max.nodect = 6
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch resources_available.nodect = 18
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server managers = griduser@oahu.icluster.org
set server managers += scott@*.icluster.org
set server managers += wightman@*.icluster.org
set server operators = griduser@oahu.icluster.org
set server operators += scott@*.icluster.org
set server operators += wightman@*.icluster.org
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server resources_available.nodect = 80
set server node_ping_rate = 300
set server node_check_rate = 600
set server tcp_timeout = 6

2. Copy this information somewhere.

3. Restart pbs_server:

> pbs_server -t create

Chapter 13: Troubleshooting

4. When you are prompted to overwrite the previous database, enter y, then enter the
data exported by the qmgr command as in this example:

> cat data | qmgr

5. Restart pbs_server without the flags:

> qterm
> pbs_server

This will reinitialize the database to the current version.

Reinitializing the server database will reset the next jobid to 1

13.9.6 qsub will not allow the submission of jobs requesting many
processors
Torque's definition of a node is context sensitive and can appear inconsistent. The qsub -
l nodes=<X> expression can at times indicate a request for X processors and other time
be interpreted as a request for X nodes. While qsub allows multiple interpretations of the
keyword nodes, aspects of the Torque server's logic are not so flexible. Consequently, if a
job is using -l nodes to specify processor count and the requested number of
processors exceeds the available number of physical nodes, the server daemon will reject
the job.

To get around this issue, the server can be told it has an inflated number of nodes using
the resources_available attribute. To take effect, this attribute should be set on both
the server and the associated queue as in the example below. See resources_available for
more information.

> qmgr
Qmgr: set server resources_available.nodect=2048
Qmgr: set queue batch resources_available.nodect=2048

The pbs_server daemon will need to be restarted before these changes will take
effect.

13.9.7 qsub reports 'Bad UID for job execution'
Submitting a job may fail with an error similar to the following:

[guest@login2]$ qsub test.job
qsub: submit error (Bad UID for job execution MSG=ruserok failed validating
guest/guest from login2)

Chapter 13: Troubleshooting

219 13.9 Frequently Asked Questions (FAQ)

13.9 Frequently Asked Questions (FAQ) 220

This usually means that the host you are submitting the job from is not registered as a
trusted submission host within Torque. In the example above, the host login2 is not
configured to be trusted.

To check what hosts are trusted as submission hosts run the following on the Torque
server host:

[root@torque-server-host]# qmgr -c "print server" | grep submit_hosts

If you do not see the host you submitted the job from, you can add it by doing the following:

[root@torque-server-host]# qmgr -c "set server submit_hosts += login2"

For more information see Configuring Job Submission Hosts.

This error may also occur when using an identity and credential management system, such
as Centrify and the identity management system has cached user credentials. To resolve
this issue, flush the credential cache (for example, using Centrify's adflush command).

13.9.8 Why does my job keep bouncing from running to queued?
There are several reasons why a job will fail to start. Do you see any errors in the MOM
logs? Be sure to increase the loglevel on MOM if you don't see anything. Also be sure
Torque is configured with --enable-syslog and look in /var/log/messages (or
wherever your syslog writes).

Also verify the following on all machines:

l DNS resolution works correctly with matching forward and reverse

l Time is synchronized across the head and compute nodes

l User accounts exist on all compute nodes

l User home directories can be mounted on all compute nodes

l Prologue scripts (if specified) exit with 0

If using a scheduler such as Moab or Maui, use a scheduler tool such as checkjob to
identify job start issues.

13.9.9 How do I use PVM with Torque?
Start the master pvmd on a compute node and then add the slaves.

mpiexec can be used to launch slaves using rsh or ssh (use export PVM_
RSH=/usr/bin/ssh to use ssh).

Chapter 13: Troubleshooting

Access can be managed by rsh/ssh without passwords between the batch nodes, but
denying it from anywhere else, including the interactive nodes. This can be done with
xinetd and sshd configuration (root is allowed to ssh everywhere). This way, the pvm
daemons can be started and killed from the job script.

The problem is that this setup allows the users to bypass the batch system by writing a job
script that uses rsh/ssh to launch processes on the batch nodes. If there are relatively few
users and they can more or less be trusted, this setup can work.

13.9.10 My build fails attempting to use the TCL library
Torque builds can fail on TCL dependencies even if a version of TCL is available on the
system. TCL is only utilized to support the xpbsmon client. If your site does not use this tool
(most sites do not use xpbsmon), you can work around this failure by rerunning
configure with the --disable-gui argument.

13.9.11 My job will not start, failing with the message 'cannot send
job to mom, state=PRERUN'
If a node crashes or other major system failures occur, it is possible that a job may be stuck
in a corrupt state on a compute node. Torque automatically handles this when the mom_
job_sync parameter is set via qmgr (the default).

This error can also occur if not enough free space is available on the partition that holds
Torque.

13.9.12 How do I determine what version of Torque I am using?
Run either of the following commands:

qstat --version

pbs_server --about

13.9.13 How do I resolve autogen.sh errors that contain "error:
possibly undefined macro: AC_MSG_ERROR"?
Verify the pkg-config package is installed.

Chapter 13: Troubleshooting

221 13.9 Frequently Asked Questions (FAQ)

13.10 Compute Node Health Check 222

13.9.14 Why are there so many error messages in the client logs
(trqauthd logs) when I don't notice client commands failing?
If a client makes a connection to the server and the trqauthd connection for that client
command is authorized before the client's connection, the trqauthd connection is rejected.
The connection is retried, but if all retry attempts are rejected, trqauthd logs a message
indicating a failure. Some client commands then open a new connection to the server and
try again. The client command fails only if all its retries fail.

Related Topics

l Chapter 13: Troubleshooting - page 208

13.10 Compute Node Health Check

Torque provides the ability to perform health checks on each compute node. If these
checks fail, a failure message can be associated with the node and routed to the scheduler.
Schedulers (such as Moab) can forward this information to administrators by way of
scheduler triggers, make it available through scheduler diagnostic commands, and
automatically mark the node down until the issue is resolved. See the RMMSGIGNORE
parameter in Moab Parameters in the Moab Workload Manager Administrator Guide for
more information.

Additionally, Michael Jennings at LBNL has authored an open-source bash node health
check script project. It offers an easy way to perform some of the most common node
health checking tasks, such as verifying network and filesystem functionality. More
information is available on the project's page.

In this topic:

13.10.1 Configuring MOMs to Launch a Health Check 223
13.10.2 Creating the Health Check Script 223
13.10.3 Adjusting Node State Based on the Health Check Output 224
13.10.4 Example Health Check Script 224

Related Topics

l Chapter 13: Troubleshooting - page 208

Chapter 13: Troubleshooting

https://github.com/mej/nhc

13.10.1 Configuring MOMs to Launch a Health Check

The health check feature is configured via the mom_priv/config file using the
parameters described below:

Parameter Format Default Description

$node_
check_
script

<STRING> N/A (Required) Specifies the fully qualified pathname of
the health check script to run.

$node_
check_
interval

<INTEGER> 1 (Optional) Specifies the number of MOM intervals
between health checks (by default, each MOM
interval is 45 seconds long - this is controlled via the
$status_update_time node parameter. The
integer may be followed by a list of event names (
jobstart and jobend are currently supported).
See pbs_mom for more information.

The node health check can be configured to
run before the prologue script by including
the 'jobstart' option. However, the job
environment variables are not in the health
check at that point.

Related Topics

l 13.10 Compute Node Health Check - page 222

13.10.2 Creating the Health Check Script

The health check script is executed directly by the pbs_mom daemon under the root user
ID. It must be accessible from the compute node and can be a script or compile executable
program. It can make any needed system calls and execute any combination of system
utilities but should not execute resource manager client commands. Also, the pbs_mom
daemon blocks until the health check is completed and does not possess a built-in timeout.
Consequently, it is advisable to keep the launch script execution time short and verify that
the script will not block even under failure conditions.

By default, the script looks for the EVENT: keyword to indicate successes. If the script
detects a failure, it should return the keyword ERROR to stdout followed by an error
message. When a failure is detected, the ERROR keyword should be printed to stdout
before any other data. The message immediately following the ERROR keyword must all be

Chapter 13: Troubleshooting

223 13.10 Compute Node Health Check

13.10 Compute Node Health Check 224

contained on the same line. The message is assigned to the node attribute 'message' of the
associated node.

In order for the node health check script to log a positive run, it is necessary to
include the keyword EVENT: at the beginning of the message your script returns.
Failure to do so may result in unexpected outcomes.

Both the ERROR and EVENT: keywords are case insensitive.

Related Topics

l 13.10 Compute Node Health Check - page 222

13.10.3 Adjusting Node State Based on the Health Check
Output

If the health check reports an error, the node attribute 'message' is set to the error string
returned. Cluster schedulers can be configured to adjust a given node's state based on this
information. For example, by default, Moab sets a node's state to down if a node error
message is detected. The node health script continues to run at the configured interval (see
Configuring MOMs to Launch a Health Check for more information), and if it does not
generate the error message again during one of its later executions, Moab picks that up at
the beginning of its next iteration and restores the node to an online state.

Related Topics

l 13.10 Compute Node Health Check - page 222

13.10.4 Example Health Check Script

As mentioned, the health check can be a shell script, PERL, Python, C-executable, or
anything that can be executed from the command line capable of setting STDOUT. The
example below demonstrates a very simple health check:

#!/bin/sh
/bin/mount | grep global
if [$? != "0"]
 then
 echo "ERROR cannot locate filesystem global"
fi

Chapter 13: Troubleshooting

Related Topics

l 13.10 Compute Node Health Check - page 222

13.11 Debugging

13.11.1 Diagnostic and Debug Options
Torque supports a number of diagnostic and debug options including the following:

PBSDEBUG environment variable - If set to 'yes', this variable will prevent pbs_server,
pbs_mom, and/or pbs_sched from backgrounding themselves allowing direct launch
under a debugger. Also, some client commands will provide additional diagnostic
information when this value is set.

PBSLOGLEVEL environment variable - Can be set to any value between 0 and 7 and
specifies the logging verbosity level (default = 0)

PBSCOREDUMP environment variable - If set, it will cause the offending pbs_mom or pbs_
server daemon to create a core file if a SIGSEGV, SIGILL, SIGFPE, SIGSYS, or SIGTRAP signal
is received.

To enable core dump file creation in systems using systemd, add this line to the
trqauthd.service, pbs_mom.service, and pbs_server.service unit
files (in /usr/lib/systemd/system/):
LimitCORE=infinity

Core dumps will be placed in the daemons' home directories as shown in the table below.

Daemon Path

trqauthd /var/spool/torque

pbs_server /var/spool/torque/server_priv

pbs_mom /var/spool/torque/mom_priv

NDEBUG #define - if set at build time, will cause additional low-level logging information to
be output to stdout for pbs_server and pbs_mom daemons.

Chapter 13: Troubleshooting

225 13.11 Debugging

13.11 Debugging 226

tracejob reporting tool - can be used to collect and report logging and accounting
information for specific jobs (see Using tracejob to Locate Job Failures) for more
information.

PBSLOGLEVEL and PBSCOREDUMP must be added to the PBSHOME/pbs_
environment file, not just the current environment. To set these variables, add a
line to the pbs_environment file as either 'variable=value' or just 'variable'. In the
case of 'variable=value', the environment variable is set up as the value specified. In
the case of 'variable', the environment variable is set based upon its value in the
current environment.

13.11.2 Torque Error Codes

Error Code Name Number Description

PBSE_FLOOR 15000 No error

PBSE_UNKJOBID 15001 Unknown job identifier

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 No permission

PBSE_MUNGE_NOT_FOUND 15009 "munge" executable not found; unable to
authenticate

PBSE_BADHOST 15010 Access from host not allowed

PBSE_JOBEXIST 15011 Job already exists

PBSE_SYSTEM 15012 System error occurred

Chapter 13: Troubleshooting

Error Code Name Number Description

PBSE_INTERNAL 15013 Internal server error occurred

PBSE_REGROUTE 15014 Parent job of dependent in rte queue

PBSE_UNKSIG 15015 Unknown signal name

PBSE_BADATVAL 15016 Bad attribute value

PBSE_MODATRRUN 15017 Cannot modify attribute in run state

PBSE_BADSTATE 15018 Request invalid for job state

PBSE_UNKQUE 15020 Unknown queue name

PBSE_BADCRED 15021 Invalid credential in request

PBSE_EXPIRED 15022 Expired credential in request

PBSE_QUNOENB 15023 Queue not enabled

PBSE_QACESS 15024 No access permission for queue

PBSE_BADUSER 15025 Bad user - no password entry

PBSE_HOPCOUNT 15026 Max hop count exceeded

PBSE_QUEEXIST 15027 Queue already exists

PBSE_ATTRTYPE 15028 Incompatible queue attribute type

PBSE_QUEBUSY 15029 Queue busy (not empty)

PBSE_QUENBIG 15030 Queue name too long

PBSE_NOSUP 15031 Feature/function not supported

PBSE_QUENOEN 15032 Cannot enable queue, needs add def

Chapter 13: Troubleshooting

227 13.11 Debugging

13.11 Debugging 228

Error Code Name Number Description

PBSE_PROTOCOL 15033 Protocol (ASN.1) error

PBSE_BADATLST 15034 Bad attribute list structure

PBSE_NOCONNECTS 15035 No free connections

PBSE_NOSERVER 15036 No server to connect to

PBSE_UNKRESC 15037 Unknown resource

PBSE_EXCQRESC 15038 Job exceeds queue resource limits

PBSE_QUENODFLT 15039 No default queue defined

PBSE_NORERUN 15040 Job not rerunnable

PBSE_ROUTEREJ 15041 Route rejected by all destinations

PBSE_ROUTEEXPD 15042 Time in route queue expired

PBSE_MOMREJECT 15043 Request to MOM failed

PBSE_BADSCRIPT 15044 (qsub) Cannot access script file

PBSE_STAGEIN 15045 Stage-In of files failed

PBSE_RESCUNAV 15046 Resources temporarily unavailable

PBSE_BADGRP 15047 Bad group specified

PBSE_MAXQUED 15048 Max number of jobs in queue

PBSE_CKPBSY 15049 Checkpoint busy, may be retries

PBSE_EXLIMIT 15050 Limit exceeds allowable

PBSE_BADACCT 15051 Bad account attribute value

Chapter 13: Troubleshooting

Error Code Name Number Description

PBSE_ALRDYEXIT 15052 Job already in exit state

PBSE_NOCOPYFILE 15053 Job files not copied

PBSE_CLEANEDOUT 15054 Unknown job ID after clean init

PBSE_NOSYNCMSTR 15055 No master in sync set

PBSE_BADDEPEND 15056 Invalid dependency

PBSE_DUPLIST 15057 Duplicate entry in list

PBSE_DISPROTO 15058 Bad DIS based request protocol

PBSE_EXECTHERE 15059 Cannot execute there

PBSE_SISREJECT 15060 Sister rejected

PBSE_SISCOMM 15061 Sister could not communicate

PBSE_SVRDOWN 15062 Requirement rejected -server shutting down

PBSE_CKPSHORT 15063 Not all tasks could checkpoint

PBSE_UNKNODE 15064 Named node is not in the list

PBSE_UNKNODEATR 15065 Node-attribute not recognized

PBSE_NONODES 15066 Server has no node list

PBSE_NODENBIG 15067 Node name is too big

PBSE_NODEEXIST 15068 Node name already exists

PBSE_BADNDATVAL 15069 Bad node-attribute value

PBSE_MUTUALEX 15070 State values are mutually exclusive

Chapter 13: Troubleshooting

229 13.11 Debugging

13.11 Debugging 230

Error Code Name Number Description

PBSE_GMODERR 15071 Error(s) during global modification of nodes

PBSE_NORELYMOM 15072 Could not contact MOM

PBSE_NOTSNODE 15073 No time-shared nodes

PBSE_JOBTYPE 15074 Wrong job type

PBSE_BADACLHOST 15075 Bad ACL entry in host list

PBSE_MAXUSERQUED 15076 Maximum number of jobs already in queue for
user

PBSE_BADDISALLOWTYPE 15077 Bad type in "disallowed_types" list

PBSE_NOINTERACTIVE 15078 Interactive jobs not allowed in queue

PBSE_NOBATCH 15079 Batch jobs not allowed in queue

PBSE_NORERUNABLE 15080 Rerunable jobs not allowed in queue

PBSE_NONONRERUNABLE 15081 Non-rerunable jobs not allowed in queue

PBSE_UNKARRAYID 15082 Unknown array ID

PBSE_BAD_ARRAY_REQ 15083 Bad job array request

PBSE_TIMEOUT 15084 Time out

PBSE_JOBNOTFOUND 15085 Job not found

PBSE_NOFAULTTOLERANT 15086 Fault tolerant jobs not allowed in queue

PBSE_
NOFAULTINTOLERANT

15087 Only fault tolerant jobs allowed in queue

PBSE_NOJOBARRAYS 15088 Job arrays not allowed in queue

PBSE_RELAYED_TO_MOM 15089 Request was relayed to a MOM

Chapter 13: Troubleshooting

Error Code Name Number Description

PBSE_MEM_MALLOC 15090 Failed to allocate memory for memmgr

PBSE_MUTEX 15091 Failed to allocate controlling mutex (lock/unlock)

PBSE_TRHEADATTR 15092 Failed to set thread attributes

PBSE_THREAD 15093 Failed to create thread

PBSE_SELECT 15094 Failed to select socket

PBSE_SOCKET_FAULT 15095 Failed to get connection to socket

PBSE_SOCKET_WRITE 15096 Failed to write data to socket

PBSE_SOCKET_READ 15097 Failed to read data from socket

PBSE_SOCKET_CLOSE 15098 Socket closed

PBSE_SOCKET_LISTEN 15099 Failed to listen in on socket

PBSE_AUTH_INVALID 15100 Invalid auth type in request

PBSE_NOT_IMPLEMENTED 15101 Functionality not yet implemented

PBSE_QUENOTAVAILABLE 15102 Queue is not available

Related Topics

l Chapter 13: Troubleshooting - page 208

Chapter 13: Troubleshooting

231 13.11 Debugging

232

Appendix A: Commands Overview

In this appendix:

A.1 Torque Services 233
A.2 Client Commands 233
A.3 momctl 234
A.4 pbs_mom 242
A.5 pbs_server 249
A.6 pbs_track 253
A.7 pbsdsh 254
A.8 pbsnodes 257
A.9 qalter 260
A.10 qchkpt 270
A.11 qdel 272
A.12 qgpumode 274
A.13 qgpureset 276
A.14 qhold 276
A.15 qmgr 279
A.16 qmove 283
A.17 qorder 284
A.18 qrerun 285
A.19 qrls 287
A.20 qrun 289
A.21 qsig 291
A.22 qstat 293
A.23 qsub 302
A.24 qterm 323
A.25 trqauthd 325

Related Topics

l Appendix C: Node Manager (MOM) Configuration - page 357

l Appendix B: Server Parameters - page 328

Appendix A: Commands Overview

A.1 Torque Services

Command Description

pbs_mom PBS batch execution mini-server. Runs on each Torque compute node.

pbs_
server

Batch system manager daemon. Runs on the Torque master node.

pbs_
track

Process launcher. Starts a new process and tells pbs_mom to track its lifecycle
and resource usage.

trqauthd Torque authorization daemon.

A.2 Client Commands

Command Description

momctl Manage/diagnose MOM (node execution) daemon

pbsdsh Launch tasks within a parallel job

pbsnodes View/modify batch status of compute nodes

qalter Modify queued batch jobs

qchkpt Checkpoint batch jobs

qdel Delete/cancel batch jobs

qgpumode Specifies new mode for GPU

qgpureset Reset the GPU

qhold Hold batch jobs

qmgr Manage policies and other batch configuration

Appendix A: Commands Overview

233 A.1 Torque Services

A.3 momctl 234

Command Description

qmove Move batch jobs

qorder Exchange order of two batch jobs in any queue

qrerun Rerun a batch job

qrls Release batch job holds

qrun Start a batch job

qsig Send a signal to a batch job

qstat View queues and jobs

qsub Submit jobs

qterm Shutdown pbs server daemon

tracejob Trace job actions and states recorded in Torque logs (see Using tracejob to
Locate Job Failures)

A.3 momctl

(PBS MOM Control)

A.3.1 Synopsis
momctl -c { <JOBID> | all }
momctl -C
momctl -d { <INTEGER> | <JOBID> }
momctl -f <FILE>
momctl -h <HOST>[,<HOST>]...
momctl -l
momctl -p <PORT_NUMBER>
momctl -q <ATTRIBUTE>
momctl -r { <FILE> | LOCAL:<FILE> }
momctl -s
momctl -u

Appendix A: Commands Overview

A.3.2 Overview
The momctl command allows remote shutdown, reconfiguration, diagnostics, and
querying of the pbs_mom daemon.

A.3.3 Format

-c — Clear

Format { <JOBID> | all }

Default ---

Description Makes the MOM unaware of the job's existence. It does not clean up any
processes associated with the job.

Example momctl -c 2 -h node1

-C — Cycle

Format ---

Default ---

Description Cycle pbs_mom (force the MOM to send a status update to pbs_server).

Example momctl -C -h node1

Cycle pbs_mom on node1.

-d — Diagnose

Format { <INTEGER> | <JOBID> }

Default 0

Description Diagnose MOM(s). (For more details, see Diagnose Detail below.)

Example momctl -d 2 -h node1

Appendix A: Commands Overview

235 A.3 momctl

A.3 momctl 236

-d — Diagnose

Print level 2 and lower diagnostic information for the MOM on
node1.

-f — Host File

Format <FILE>

Default ---

Description A file containing only comma or whitespace (space, tab, or new line) delimited
hostnames.

Example momctl -f hosts.txt -d 0

Print diagnose information for the MOMs running on the hosts
specified in hosts.txt.

-h — Host List

Format <HOST>[,<HOST>]...

Default localhost

Description A comma separated list of hosts.

Example momctl -h node1,node2,node3 -d 0

Print diagnose information for the MOMs running on node1, node2,
and node3.

-l — Layout

Format ---

Default ---

Description Display the layout of the machine as it is understood by Torque.

Appendix A: Commands Overview

-l — Layout

Example [root@c04a numa]# momctl -l
Machine (50329748KB)
Socket 0 (33552532KB)
Chip 0 (16775316KB)
Core 0 (1 threads)
Core 1 (1 threads)
Core 2 (1 threads)
Core 3 (1 threads)
Core 4 (1 threads)
Core 5 (1 threads)
Core 6 (1 threads)
Core 7 (1 threads)
Chip 1 (16777216KB)
Core 8 (1 threads)
Core 9 (1 threads)
Core 10 (1 threads)
Core 11 (1 threads)
Core 12 (1 threads)
Core 13 (1 threads)
Core 14 (1 threads)
Core 15 (1 threads)

Socket 1 (16777216KB)
Chip 2 (8388608KB)
Core 16 (1 threads)
Core 17 (1 threads)
Core 18 (1 threads)
Core 19 (1 threads)
Core 20 (1 threads)
Core 21 (1 threads)
Core 22 (1 threads)
Core 23 (1 threads)
Chip 3 (8388608KB)
Core 24 (1 threads)
Core 25 (1 threads)
Core 26 (1 threads)
Core 27 (1 threads)
Core 28 (1 threads)
Core 29 (1 threads)
Core 30 (1 threads)
Core 31 (1 threads)

-p — Port

Format <PORT_NUMBER>

Default Torque's default port number.

Description The port number for the specified MOM(s).

Example momctl -p 5455 -h node1 -d 0

Request diagnose information over port 5455 on node1.

Appendix A: Commands Overview

237 A.3 momctl

A.3 momctl 238

-q — Query

Format <ATTRIBUTE>

Default ---

Description Query or set <ATTRIBUTE>, where <ATTRIBUTE> is a property listed by
pbsnodes-a (see A.3.4 Query Attributes - page 239 for a list of attributes).
Can also be used to query or set pbs_mom options (see A.3.5 Resources -
page 240).

Example momctl -q physmem

Print the amount of physmem on localhost.

momctl -h node2 -q loglevel=7

Change the current MOM logging on node2 to level 7.

-r — Reconfigure

Format { <FILE> | LOCAL:<FILE> }

Default ---

Description Reconfigure MOM(s) with remote or local config file, <FILE>. This does not
work if $remote_reconfig is not set to true when the MOM is started.

Example momctl -r /home/user1/new.config -h node1

Reconfigure MOM on node1 with /home/user1/new.config on
node1.

-s — Shutdown

Format ---

Default ---

Description Have the MOM shut itself down gracefully (this includes reporting to server so
that pbsnodes marks the node down).

Appendix A: Commands Overview

-s — Shutdown

Example momctl -s

Shut down the pbs_mom process on localhost.

-u — Update

Format ---

Default ---

Description Update the hardware configuration on pbs_server with a layout from the MOM.

Example momctl -u

Update pbs_server hardware configuration.

A.3.4 Query Attributes

Attribute Description

arch Node hardware architecture

availmem Available RAM

loadave 1 minute load average

ncpus Number of CPUs available on the system

netload Total number of bytes transferred over all network interfaces

nsessions Number of sessions active

nusers Number of users active

physmem Configured RAM

sessions List of active sessions

Appendix A: Commands Overview

239 A.3 momctl

A.3 momctl 240

Attribute Description

totmem Configured RAM plus configured swap

A.3.5 Resources
Resource Manager queries can be made with momctl -q options to retrieve and set pbs_
mom options. Any configured static resource can be retrieved with a request of the same
name. These are resource requests not otherwise documented in the PBS ERS.

Request Description

cycle Forces an immediate MOM cycle.

status_update_time Retrieve or set the $status_update_time parameter.

check_poll_time Retrieve or set the $check_poll_time parameter.

configversion Retrieve the config version.

jobstartblocktime Retrieve or set the $jobstartblocktime parameter.

enablemomrestart Retrieve or set the $enablemomrestart parameter.

loglevel Retrieve or set the $loglevel parameter.

down_on_error Retrieve or set the $down_on_error parameter.

diag0 - diag4 Retrieves varied diagnostic information.

rcpcmd Retrieve or set the $rcpcmd parameter.

version Retrieves the pbs_mom version.

A.3.6 Diagnose Detail

Appendix A: Commands Overview

Level Description

0 Display the following information:

l Local hostname
l Expected server hostname
l Execution version
l MOM home directory
l MOM config file version (if specified)
l Duration MOM has been executing
l Duration since last request from pbs_server daemon
l Duration since last request to pbs_server daemon
l RM failure messages (if any)
l Log verbosity level
l Local job list

1 All information for level 0 plus the following:

l Interval between updates sent to server
l Number of initialization messages sent to pbs_server daemon
l Number of initialization messages received from pbs_server

daemon
l Prologue/epilogue alarm time
l List of trusted clients

2 All information from level 1 plus the following:

l PID
l Event alarm status

3 All information from level 2 plus the following:

l syslog enabled

Example A-1: MOM diagnostics

[root@node01]# momctl -d1

Host: node01/node01 Version: x.x.x PID: 30404
Server[0]: torque-server (10.2.15.70:15001)
Last Msg From Server: 1275 seconds (StatusJob)
Last Msg To Server: 42 seconds

HomeDirectory: /var/spool/torque/mom_priv
stdout/stderr spool directory: '/var/spool/torque/spool/' (15518495 blocks available)
MOM active: 260257 seconds
Check Poll Time: 45 seconds
Server Update Interval: 45 seconds

Appendix A: Commands Overview

241 A.3 momctl

A.4 pbs_mom 242

LogLevel: 7 (use SIGUSR1/SIGUSR2 to adjust)
Communication Model: TCP
MemLocked: TRUE (mlock)
TCP Timeout: 300 seconds
Trusted Client List:
10.2.15.3:15003,10.2.15.5:15003,10.2.15.6:15003,10.2.15.70:0,10.2.15.204:15003,127.0.0
.1:0
Copy Command: /bin/scp -rpB
NOTE: no local jobs detected

diagnostics complete

Example A-2: System shutdown

> momctl -s -f /opt/clusterhostfile

shutdown request successful on node001
shutdown request successful on node002
shutdown request successful on node003
shutdown request successful on node004
shutdown request successful on node005
shutdown request successful on node006

A.4 pbs_mom

Start a pbs batch execution mini-server.

A.4.1 Synopsis
pbs_mom [-a alarm] [-A alias] [-c config] [-C chkdirectory] [-
d directory] [-f] [-F] [-h help] [-H hostname] [-L logfile] [-
M MOMport] [-p|-r] [-P purge] [-R RMPport] [-S serverport] [-
v] [-w] [-x]

A.4.2 Description
The pbs_mom command is located within the TORQUE_HOME directory and starts the
operation of a batch Machine Oriented Mini-server (MOM) on the execution host. To ensure
that the pbs_mom command is not runnable by the general user community, the server
will only execute if its real and effective uid is zero.

The first function of pbs_mom is to place jobs into execution as directed by the server,
establish resource usage limits, monitor the job's usage, and notify the server when the job
completes. If they exist, pbs_mom will execute a prologue script before executing a job and
an epilogue script after executing the job.

Appendix A: Commands Overview

The second function of pbs_mom is to respond to resource monitor requests. This was
done by a separate process in previous versions of PBS but has now been combined into
one process. It provides information about the status of running jobs, memory available,
etc.

The last function of pbs_mom is to respond to task manager requests. This involves
communicating with running tasks over a TCP socket, as well as communicating with other
MOMs within a job (a.k.a. a 'sisterhood').

pbs_mom will record a diagnostic message in a log file for any error occurrence. The log
files are maintained in the mom_logs directory below the home directory of the server. If
the log file cannot be opened, the diagnostic message is written to the system console.

A.4.3 Options

Flag Name Description

-a alarm Specifies the alarm timeout in seconds for computing a resource. Every
time a resource request is processed, an alarm is set for the given
amount of time. If the request has not completed before the given
time, an alarm signal is generated. The default is 5 seconds.

-A alias Specifies this multimom's alias name. The alias name needs to be the
same name used in the mom.hierarchy file. It is only needed when
running multiple MOMs on the same machine. For more information,
see Torque Multi-MOM.

-c config Specifies an alternative configuration file, see description below. If this
is a relative file name, it will be relative to TORQUE_HOME/mom_
priv, (see the -d option). If the specified file cannot be opened, pbs_
mom will abort. If the -c option is not supplied, pbs_mom will
attempt to open the default configuration file, TORQUE_HOME/mom_
priv/config. If this file is not present, pbs_mom will log the fact
and continue.

-C chkdirectory Specifies the path of the directory used to hold checkpoint files. The
default directory is TORQUE_HOME/spool/checkpoint (see the -
d option). The directory specified with the -C option must be owned
by root and accessible (rwx) only by root to protect the security of
the checkpoint files.

-d directory Specifies the path of the directory that is the home of the server's
working files, TORQUE_HOME. This option is typically used along with
-M when debugging MOM. The default directory is given by TORQUE_
HOME, which is typically /var/spool/torque

Appendix A: Commands Overview

243 A.4 pbs_mom

A.4 pbs_mom 244

Flag Name Description

-f force_update Forces the server to accept an update of the hardware on the node.
Should be used the first time pbs_mom is run after a hardware update
on a node.

-F fork Do not fork.

This option is useful when running under systemd (Red Hat 7-
based or SUSE 12-based systems).

-h help Displays the help/usage message.

-H hostname Sets the MOM's hostname. This can be useful on multi-homed
networks.

-L logfile Specifies an absolute path name for use as the log file. If not specified,
MOM will open a file named for the current date in the TORQUE_
HOME/mom_logs directory (see the -d option).

-M port Specifies the port number on which the mini-server (MOM) will listen
for batch requests.

-p poll Specifies the impact on jobs that were in execution when the mini-
server shut down. On any restart of MOM, the new mini-server will
not be the parent of any running jobs, MOM has lost control of her
offspring (not a new situation for a mother). With the -p option, MOM
will allow the jobs to continue to run and monitor them indirectly via
polling. This flag is redundant in that this is the default behavior when
starting the server. The -p option is mutually exclusive with the -r and
-q options.

-P purge Specifies the impact on jobs that were in execution when the mini-
server shut down. With the -P option, it is assumed that either the
entire system has been restarted or the MOM has been down so long
that it can no longer guarantee that the pid of any running process is
the same as the recorded job process pid of a recovering job. Unlike
the -p option, no attempt is made to try and preserve or recover
running jobs. All jobs are terminated and removed from the queue.

-q n/a Specifies the impact on jobs that were in execution when the mini-
server shut down. With the -q option, MOM will allow the processes
belonging to jobs to continue to run, but will not attempt to monitor
them. The -q option is mutually exclusive with the -p and -r options.

Appendix A: Commands Overview

Flag Name Description

-r n/a Specifies the impact on jobs that were in execution when the mini-
server shut down. With the -r option, MOM will kill any processes
belonging to jobs, mark the jobs as terminated, and notify the batch
server that owns the job. The -r option is mutually exclusive with the -
p and -q options.
Normally the mini-server is started from the system boot file without
the -p or the -r option. The mini-server will make no attempt to signal
the former session of any job that may have been running when the
mini-server terminated. It is assumed that on reboot, all processes
have been killed. If the -r option is used following a reboot, process
IDs (pids) may be reused and MOM may kill a process that is not a
batch session.

-R port Specifies the port number on which the mini-server (MOM) will listen
for resource monitor requests, task manager requests and inter-MOM
messages. Both a UDP and a TCP port of this number will be used.

-S server port pbs_server port to connect to.

-v version Displays version information and exits.

-w wait_for_
server

When started with -w, pbs_moms wait until they get their MOM
hierarchy file from pbs_server to send their first update, or until 10
minutes pass. This reduces network traffic on startup and can bring up
clusters faster.

-x n/a Disables the check for privileged port resource monitor connections.
This is used mainly for testing since the privileged port is the only
mechanism used to prevent any ordinary user from connecting.

A.4.4 Configuration File
The configuration file, located at mom_priv/config by default, can be specified on the
command line at program start with the -c flag. The use of this file is to provide several
types of run time information to pbs_mom: static resource names and values, external
resources provided by a program to be run on request via a shell escape, and values to
pass to internal set up functions at initialization (and re-initialization).

See C.1 MOM Parameters - page 357 for a full list of pbs_mom parameters.

Each item type is on a single line with the component parts separated by white space. If the
line starts with a hash mark (pound sign, #), the line is considered to be a comment and is
skipped.

Appendix A: Commands Overview

245 A.4 pbs_mom

A.4 pbs_mom 246

Static Resources
For static resource names and values, the configuration file contains a list of resource
names/values pairs, one pair per line and separated by white space. An example of static
resource names and values could be the number of tape drives or printers of different
types and could be specified by:

tape3480 4
tape3420 2
tapedat 1
hpm527dn 2
epsonc20590 1

Shell Commands
If the first character of the value is an exclamation mark (!), the entire rest of the line is
saved to be executed through the services of the system(3) standard library routine.

The shell escape provides a means for the resource monitor to yield arbitrary information
to the scheduler. Parameter substitution is done such that the value of any qualifier sent
with the query, as explained below, replaces a token with a percent sign (%) followed by
the name of the qualifier. For example, here is a configuration file line that gives a resource
name of 'escape':

escape !echo %xxx %yyy

If a query for 'escape' is sent with no qualifiers, the command executed would be echo
%xxx %yyy.

If one qualifier is sent, escape[xxx=hi there], the command executed would be
echo hi there %yyy.

If two qualifiers are sent, escape[xxx=hi][yyy=there], the command executed
would be echo hi there.

If a qualifier is sent with no matching token in the command line, escape[zzz=snafu],
an error is reported.

A.4.5 Health Check
The health check script is executed directly by the pbs_mom daemon under the root user
ID. It must be accessible from the compute node and can be a script or compiled executable
program. It can make any needed system calls and execute any combination of system
utilities but should not execute resource manager client commands. Also, the pbs_mom
daemon blocks until the health check is completed and does not possess a built-in timeout.
Consequently, it is advisable to keep the launch script execution time short and verify that
the script will not block even under failure conditions.

Appendix A: Commands Overview

If the script detects a failure, it should return the ERROR keyword to stdout followed by
an error message. The message (up to 1024 characters) immediately following the ERROR
string will be assigned to the node attribute message of the associated node.

If the script detects a failure when run from 'jobstart', then the job will be rejected. You can
use this behavior with an advanced scheduler, such as Moab Workload Manager, to cause
the job to be routed to another node. Torque currently ignores Error messages by default,
but you can configure an advanced scheduler to react appropriately.

If the $down_on_error MOM setting is enabled, the MOM will set itself to state down
and report to pbs_server. Additionally, the $down_on_error server attribute can be
enabled, which has the same effect but moves the decision to pbs_server. It is redundant to
have MOM's $down_on_error and pbs_server's down_on_error features enabled.
Also see down_on_error (in Server Parameters).

See 13.10.2 Creating the Health Check Script - page 223 for more information.

A.4.6 Files

File Description

TORQUE_HOME/server_
name

File containing the pbs_server hostname

TORQUE_HOME/mom_priv Directory for configuration files
(/var/spool/torque/mom_priv by default)

TORQUE_HOME/mom_logs Directory for log files recorded by the server

TORQUE_HOME/mom_
priv/prologue

The administrative script to be run before job execution

TORQUE_HOME/mom_
priv/epilogue

The administrative script to be run after job execution

A.4.7 Signal Handling
pbs_mom handles the following signals:

Signal Description

SIGHUP Causes pbs_mom to re-read its configuration file, close and reopen the log

Appendix A: Commands Overview

247 A.4 pbs_mom

A.4 pbs_mom 248

Signal Description

file, and reinitialize resource structures.

SIGALRM The signal is used to limit the time taken by child processes, such as the
prologue and epilogue. You can set the alarm timeout with the -a option. If
a timeout occurs, it is logged in the pbs_mom log file.

SIGINT and
SIGTERM

Results in pbs_mom exiting without terminating any running jobs. This is
the action for the following signals as well: SIGXCPU, SIGXFSZ, SIGCPULIM,
and SIGSHUTDN.

SIGUSR1,
SIGUSR2

Causes the MOM to increase and decrease logging levels, respectively.

SIGPIPE,
SIGINFO

Are ignored.

SIGBUS,
SIGFPE, SIGILL,
SIGTRAP, and
SIGSYS

Cause a core dump if the PBSCOREDUMP environmental variable is
defined.

All other signals have their default behavior installed.

A.4.8 Exit Status
If the pbs_mom command fails to begin operation, the server exits with a value greater
than zero.

Related Topics

l pbs_server(8B)

Non-Adaptive Computing Topics
l pbs_sched_basl(8B)

l pbs_sched_tcl(8B)

l PBS External Reference Specification (included in the Torque download tarball in
doc/v2_2_ers.pdf)

l PBS Administrator Guide

Appendix A: Commands Overview

https://www.jlab.org/hpc/PBS/v2_2_admin.pdf

A.5 pbs_server

(PBS Server) pbs batch system manager

A.5.1 Synopsis
pbs_server [-a active] [-A acctfile] [-c] [-d config_path] [-f
force overwrite] [-F] [-H hostname] [--ha] [-l location] [-L
logfile] [-n don't send hierarchy] [-p port] [-S scheduler_
port] [-t type] [-v] [--about] [--version]

A.5.2 Description
The pbs_server command starts the operation of a batch server on the local host.
Typically, this command will be in a local boot file such as /etc/rc.local. If the batch
server is already in execution, pbs_server will exit with an error. To ensure that the pbs_
server command is not runnable by the general user community, the server will only
execute if its real and effective uid is zero.

The server will record a diagnostic message in a log file for any error occurrence. The log
files are maintained in the server_logs directory below the home directory of the server. If
the log file cannot be opened, the diagnostic message is written to the system console.

The pbs_server is multi-threaded, which leads to quicker response to client commands, is
more robust, and allows for higher job throughput.

A.5.3 Options

Option Name Description

-a active Specifies if scheduling is active or not. This sets the scheduling
server attribute. If the option argument is 'true' ('True', 't', 'T', or '1'),
the server is active and the PBS job scheduler will be called. If the
argument is 'false' ('False', 'f', 'F', or '0), the server is idle, and the
scheduler will not be called. Jobs would then need to be run manually
or via an external scheduler. If this option is not specified, the server
will retain the prior value of the scheduling attribute.

-A acctfile Specifies an absolute path name of the file to use as the accounting
file. If not specified, the file name will be the current date in the
TORQUE_HOME/server_priv/accounting directory.

Appendix A: Commands Overview

249 A.5 pbs_server

A.5 pbs_server 250

Option Name Description

-c wait_for_
moms

This directs pbs_server to send the MOM hierarchy only to MOMs
that request it for the first 10 minutes. After 10 minutes, it attempts
to send the MOM hierarchy to MOMs that haven't requested it
already. This greatly reduces traffic on start up.

-d config_
directory

Specifies the path of the directory that is home to the server's
configuration files, PBS_HOME. A host may have multiple servers.
Each server must have a different configuration directory. The default
configuration directory is given by the symbol TORQUE_HOME, which
is typically var/spool/torque.

-f force
overwrite

Forces an overwrite of the server database. This can be useful to
bypass the yes/no prompt when running something like pbs_
server -t create and can ease installation and configuration of
Torque via scripts.

-F fork Do not fork.

This option is useful when running under systemd (Red Hat 7-
based or SUSE 12-based systems).

--ha high_
availability

Starts server in high availability mode (for details, see Server High
Availability).

-H hostname Causes the server to start under a different hostname as obtained
from gethostname(2). Useful for servers with multiple network
interfaces to support connections from clients over an interface that
has a hostname assigned that differs from the one that is returned by
gethost name(2).

-l location Specifies where to find the scheduler (for example, Moab) when it
does not reside on the same host as Torque.

pbs_server -l <other_host>:<other_port>

-L logfile Specifies an absolute path name of the file to use as the log file. If not
specified, the file will be the current date in the PBS_
HOME/server_logs directory.

-n no send This directs pbs_server to not send the hierarchy to all the MOMs
on startup. Instead, the hierarchy is only sent if a MOM requests it.
This flag works only in conjunction with the local MOM hierarchy
feature. See 2.3.3 Setting Up the MOM Hierarchy (Optional) - page 53.

Appendix A: Commands Overview

Option Name Description

-p port Specifies the port number on which the server will listen for batch
requests. If multiple servers are running on a single host, each must
have its own unique port number. This option is for use in testing
with multiple batch systems on a single host.

-S scheduler_
port

Specifies the port number to which the server should connect when
contacting the scheduler. The argument scheduler_conn is of the same
syntax as under the -M option.

-t type If the job is rerunnable or restartable, and -t create is specified,
the server will discard any existing configuration files, queues, and
jobs, and initialize configuration files to the default values. The server
is idled.

If -t is not specified, the job states will remain the same.

A.5.4 Files

File Description

TORQUE_
HOME/server_priv

Default directory for configuration files, typically
/var/spool/torque/server_priv

TORQUE_
HOME/server_logs

Directory for log files recorded by the server

A.5.5 Signal Handling
On receipt of the following signals, the server performs the defined action:

Action Description

SIGHUP The current server log and accounting log are closed and new log files opened.
This allows for the prior logs to be renamed and new logs started from the
time of the signal. Usage example:

mv 20170816 20170816.old && kill -HUP $(pgrep pbs_server)

Appendix A: Commands Overview

251 A.5 pbs_server

A.5 pbs_server 252

Action Description

SIGINT Causes an orderly shutdown of pbs_server.

SIGUSR1,
SIGURS2

Causes server to increase and decrease logging levels, respectively.

SIGTERM Causes an orderly shutdown of pbs_server.

SIGSHUTDN On systems (Unicos) where SIGSHUTDN is defined, it also causes an orderly
shutdown of the server.

SIGPIPE This signal is ignored.

All other signals have their default behavior installed.

A.5.6 Exit Status
If the server command fails to begin batch operation, the server exits with a value greater
than zero.

Related Topics

l pbs_mom(8B)

l pbsnodes(8B)

l qmgr(1B)

l qrun(8B)

l qsub(1B)

l qterm(8B)

Non-Adaptive Computing Topics
l pbs_connect(3B)

l pbs_sched_basl(8B)

l pbs_sched_tcl(8B)

l qdisable(8B)

l qenable(8B)

Appendix A: Commands Overview

l qstart(8B)

l qstop(8B)

l PBS External Reference Specification (included in the Torque download tarball in
doc/v2_2_ers.pdf)

A.6 pbs_track

Starts a specified executable and directs pbs_mom to start monitoring its lifecycle and
resource usage.

A.6.1 Synopsis
pbs_track -j <JOBID> [-b] [-a] <executable> [args]

A.6.2 Description
The pbs_track command tells a pbs_mom daemon to monitor the lifecycle and
resource usage of the process that it launches using exec(). The pbs_mom is told about
this new process via the Task Manager API, using tm_adopt(). The process must also be
associated with a job that already exists on the pbs_mom.

By default, pbs_track will send its PID to Torque via tm_adopt(). It will then perform
an exec(), causing <executable> to run with the supplied arguments. pbs_track
will not return until the launched process has completed because it becomes the launched
process.

This command can be considered related to the pbsdsh command, which uses the tm_
spawn()API call. The pbsdsh command instructs a pbs_mom to launch and track a new
process on behalf of a job. When it is not desirable or possible for the pbs_mom to spawn
processes for a job, pbs_track can be used to allow an external entity to launch a
process and include it as part of a job.

This command improves integration with Torque and SGI's MPT MPI implementation.

A.6.3 Options

Option Description

-a Adopt a process into a running job. The user must either own the process or have

Appendix A: Commands Overview

253 A.6 pbs_track

A.7 pbsdsh 254

Option Description

permission to adopt it.

pbs_track -j 3 -a 12345

Adopts process 12345 into job 3.

-b Instead of having pbs_track send its PID to Torque, it will fork() first, send
the child PID to Torque, and then execute from the forked child. This essentially
'backgrounds' pbs_track so that it will return after the new process is launched.

-j
<JOBID>

Job ID the new process should be associated with.

A.6.4 Operands
The pbs_track command accepts a path to a program/executable (<executable>)
and, optionally, one or more arguments to pass to that program.

A.6.5 Exit Status
Because the pbs_track command becomes a new process (if used without -b), its exit
status will match that of the new process. If the -b option is used, the exit status will be
zero if no errors occurred before launching the new process.

If pbs_track fails, whether due to a bad argument or other error, the exit status will be
set to a non-zero value.

Related Topics

l pbsdsh(1B)

Non-Adaptive Computing Topics
l tm_spawn(3B)

A.7 pbsdsh

The pbsdsh command distributes tasks to nodes under pbs.

Appendix A: Commands Overview

Some limitations exist in the way that pbsdsh can be used. Note the following
situations are not currently supported:

l Running multiple instances of pbsdsh concurrently within a single job.

l Using the -o and -s options concurrently; although requesting these options together
is permitted, only the output from the first node is displayed rather than output from
every node in the chain.

A.7.1 Synopsis
pbsdsh [-c copies] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-n node] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-h nodename] [-o] [-v] program [args]

A.7.2 Description
Executes (spawns) a normal UNIX program on one or more nodes under control of the
Portable Batch System, PBS. Pbsdsh uses the Task Manager API (see tm_spawn(3)) to
distribute the program on the allocated nodes.

When run without the -c or the -n option, pbsdsh will spawn the program on all nodes
allocated to the PBS job. The spawns take place concurrently – all execute at (about) the
same time.

Users will find the PBS_TASKNUM, PBS_NODENUM, and the PBS_VNODENUM
environmental variables useful. They contain the TM task ID, the node identifier, and the
cpu (virtual node) identifier.

Note that under particularly high workloads, the pbsdsh command may not function
properly.

A.7.3 Options

Option Name Description

-c copies The program is spawned on the first Copies nodes allocated. This
option is mutually exclusive with -n.

-h hostname The program is spawned on the node specified.

Appendix A: Commands Overview

255 A.7 pbsdsh

A.7 pbsdsh 256

Option Name Description

-n node The program is spawned on one node, which is the n-th node
allocated. This option is mutually exclusive with -c.

-o --- Capture stdout of the spawned program. Normally stdout goes to the
job's output.

-s --- If this option is given, the program is run in turn on each node, one
after the other.

-u --- The program is run once on each node (unique). This ignores the
number of allocated processors on a given node.

-v --- Verbose output about error conditions and task exit status is
produced.

A.7.4 Operands
The first operand, program, is the program to execute. Additional operands are passed as
arguments to the program.

A.7.5 Standard Error
The pbsdsh command will write a diagnostic message to standard error for each error
occurrence.

A.7.6 Exit Status
Upon successful processing of all the operands presented to the command, the exit status
will be a value of zero.

If the pbsdsh command fails to process any operand, or fails to contact the MOM daemon
on the localhost the command exits with a value greater than zero.

Related Topics

l qsub(1B)

Appendix A: Commands Overview

Non-Adaptive Computing Topics
l tm_spawn(3B)

A.8 pbsnodes

PBS node manipulation.

A.8.1 Synopsis
pbsnodes [-{a|x|xml|-xml}] [-q] [-s server] [node|:property]
pbsnodes -l [-q] [-s server] [state] [nodename|:property ...]
pbsnodes -m <running|standby|suspend|hibernate|shutdown> <host
list>
pbsnodes [-{c|d|o|r}] [-q] [-s server] [-n -l] [-N "note"] [-A
"append note"] [node|:property]

A.8.2 Description
The pbsnodes command is used to mark nodes down, free or offline. It can also be used
to list nodes and their state. Node information is obtained by sending a request to the PBS
job server. Sets of nodes can be operated on at once by specifying a node property
prefixed by a colon. For more information, see 9.4 Node States.

Nodes do not exist in a single state, but actually have a set of states. For example, a node
can be simultaneously 'busy' and 'offline'. The 'free' state is the absence of all other states
and so is never combined with other states.

In order to execute pbsnodes with other than the -a or -l options, the user must have PBS
Manager or Operator privilege.

A.8.3 NUMA-Awareness
When Torque is configured with NUMA-awareness and configured with --enable-groups,
the number of total and the number of available sockets, numachips (numa nodes), cores,
and threads are returned when the status of nodes are queried by Moab (a call is made to
pbsnodes).

See the section 'pbsnodes with NUMA-Awareness' for additional information and examples.

A.8.4 Options

Appendix A: Commands Overview

257 A.8 pbsnodes

A.8 pbsnodes 258

Option Description

-a All attributes of a node or all nodes are listed. This is the default if no flag is given.

-A Append a note attribute to existing note attributes. The -N note option will
overwrite exiting note attributes. -A will append a new note attribute to the existing
note attributes delimited by a ',' and a space.

-c Clear OFFLINE from listed nodes.

-d Print MOM diagnosis on the listed nodes. Not yet implemented. Use momctl instead.

-l List node names and their state. If no state is specified, only nodes in the DOWN,
OFFLINE, or UNKNOWN states are listed. Specifying a state string acts as an output
filter. Valid state strings are 'active', 'all', 'busy', 'down', 'free', 'job-exclusive', 'job-
sharing', 'offline', 'reserve', 'state-unknown', 'time-shared', and 'up'.

l Using all displays all nodes and their attributes.
l Using active displays all nodes that are job-exclusive, job-sharing, or busy.
l Using up displays all nodes in an 'up state'. Up states include job-exclusive, job-

sharing, reserve, free, busy and time-shared.
l All other strings display the nodes that are currently in the state indicated by

the string.

-m Set the hosts in the specified host list to the requested power state. If a compute
node does not support the energy-saving power state you request, the command
returns an error and leaves the state unchanged.
In order for the command to wake a node from a low-power state, Wake-on-LAN
(WOL) must be enabled for the node.

In order for the command to wake a node from a low-power state, Wake-on-
LAN must be enabled for the node and it must support the g WOL packet.
For more information, see Changing Node Power States.

The allowable power states are:

l Running: The node is up and running.
l Standby: CPU is halted but still powered. Moderate power savings but low

latency entering and leaving this state.
l Suspend: Also known as Suspend-to-RAM. Machine state is saved to RAM.

RAM is put into self-refresh mode. Much more significant power savings with
longer latency entering and leaving state.

l Hibernate: Also known as Suspend-to-disk. Machine state is saved to disk and
then powered down. Significant power savings but very long latency entering
and leaving state.

l Shutdown: Equivalent to shutdown now command as root.

Appendix A: Commands Overview

Option Description

The host list is a space-delimited list of node host names. See A.8.5 Examples - page
259.

-n Show the 'note' attribute for nodes that are DOWN, OFFLINE, or UNKNOWN. This
option requires -l.

-N Specify a 'note' attribute. This enables an administrator to add an arbitrary
annotation to the listed nodes. To clear a note, use -N "" or -N n.

-o Add the OFFLINE state. This is different from being marked DOWN. OFFLINE
prevents new jobs from running on the specified nodes. This gives the administrator
a tool to hold a node out of service without changing anything else. The OFFLINE
state will never be set or cleared automatically by pbs_server; it is purely for the
manager or operator.

-p Purge the node record from pbs_server. Not yet implemented.

-q Suppress all error messages.

-r Reset the listed nodes by clearing OFFLINE and adding DOWN state. pbs_server will
ping the node and, if they communicate correctly, free the node.

-s Specify the PBS server's hostname or IP address.

-x
-xml
--xml

Same as -a, but the output has an XML-like format.

A.8.5 Examples
Example A-3: host list

pbsnodes -m shutdown node01 node02 node03 node04

With this command, pbs_server tells the pbs_mom associated with nodes01-04 to shut down the node.

The pbsnodes output shows the current power state of nodes. In this example, note that
pbsnodes returns the MAC addresses of the nodes.

pbsnodes

Appendix A: Commands Overview

259 A.8 pbsnodes

A.9 qalter 260

nuc1
state = free
power_state = Running
np = 4
ntype = cluster
status = rectime=1395765676,macaddr=0b:25:22:92:7b:26

,cpuclock=Fixed,varattr=,jobs=,state=free,netload=1242652020,gres=,loadave=0.16,ncpus=
6,physmem=16435852kb,availmem=24709056kb,totmem=33211016kb,idletime=4636,nusers=3,nses
sions=12,sessions=2758 998 1469 2708 2797 2845 2881 2946 4087 4154 4373
6385,uname=Linux bdaw 3.2.0-60-generic #91-Ubuntu SMP Wed Feb 19 03:54:44 UTC 2020
x86_64,opsys=linux

note = This is a node note
mom_service_port = 15002
mom_manager_port = 15003

nuc2
state = free
power_state = Running
np = 4
ntype = cluster
status = rectime=1395765678,macaddr=2c:a8:6b:f4:b9:35

,cpuclock=OnDemand:800MHz,varattr=,jobs=,state=free,netload=12082362,gres=,loadave=0.0
0,ncpus=4,physmem=16300576kb,availmem=17561808kb,totmem=17861144kb,idletime=67538,nuse
rs=2,nsessions=7,sessions=2189 2193 2194 2220 2222 2248 2351,uname=Linux nuc2 2.6.32-
431.el6.x86_64 #1 SMP Sun Nov 22 03:15:09 UTC 2020 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003

Related Topics

l pbs_server(8B)

Non-Adaptive Computing Topics
l PBS External Reference Specification (included in the Torque download tarball in
doc/v2_2_ers.pdf)

A.9 qalter

Alter batch job.

A.9.1 Synopsis
qalter [-a date_time][-A account_string][-c interval][-e path_
name]
[-h hold_list][-j join_list][-k keep_list][-l resource_list][-
L numa_list]
[-m mail_options][-M mail_list][-n][-N name][-o path_name]
[-p priority][-q][-r y|n][-S path_name_list][-t array_range][-
u user_list]

Appendix A: Commands Overview

[-v variable_list][-W additional_attributes][-x exec_host]
job_identifier ...

A.9.2 Description
The qalter command modifies the attributes of the job or jobs specified by job_
identifier on the command line. Only those attributes listed as options on the
command will be modified. If any of the specified attributes cannot be modified for a job for
any reason, none of that job's attributes will be modified.

The qalter command accomplishes the modifications by sending a Modify Job batch
request to the batch server that owns each job.

A.9.3 Options

Option Name Description

-a date_time Replaces the time at which the job becomes eligible for execution.
The date_time argument syntax is:
[[[[CC]YY]MM]DD]hhmm[.SS]

If the month, MM, is not specified, it will default to the current
month if the specified day DD, is in the future. Otherwise, the month
will be set to next month. Likewise, if the day, DD, is not specified, it
will default to today if the time hhmm is in the future. Otherwise, the
day will be set to tomorrow.
This attribute can be altered once the job has begun execution, but it
will not take effect unless the job is rerun.

-A account_
string

Replaces the account string associated with the job. This attribute
cannot be altered once the job has begun execution.

-c checkpoint_
interval

Replaces the interval at which the job will be checkpointed. If the job
executes upon a host that does not support checkpointing, this
option will be ignored.
The interval argument is specified as:

l n – No checkpointing is to be performed.
l s – Checkpointing is to be performed only when the server

executing the job is shutdown.
l c – Checkpointing is to be performed at the default minimum

cpu time for the queue from which the job is executing.
l c=minutes – Checkpointing is performed at intervals of the

specified amount of time in minutes. Minutes are the number of

Appendix A: Commands Overview

261 A.9 qalter

A.9 qalter 262

Option Name Description

minutes of CPU time used, not necessarily clock time.

This value must be greater than zero. If the number is less
than the default checkpoint time, the default time will be used.

This attribute can be altered once the job has begun execution, but
the new value does not take effect unless the job is rerun.

-e path_name Replaces the path to be used for the standard error stream of the
batch job. The path argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be
returned and path_name is the path name on that host in the
syntax recognized by POSIX 1003.1.
The argument will be interpreted as follows:

l path_name – Where path_name is not an absolute path name,
then the qalter command will expand the path name relative
to the current working directory of the command. The
command will supply the name of the host upon which it is
executing for the hostname component.

l hostname:path_name – Where path_name is not an absolute
path name, then the qalter command will not expand the
path name. The execution server will expand it relative to the
home directory of the user on the system specified by hostname.

This attribute can be altered once the job has begun execution, but it
will not take effect unless the job is rerun.

-h hold_list Updates the types of holds on the job. The hold_list argument is a
string of one or more of the following characters:

l u – Add the USER type hold.
l s – Add the SYSTEM type hold if the user has the appropriate

level of privilege. (Typically reserved to the batch
administrator.)

l o – Add the OTHER (or OPERATOR) type hold if the user has
the appropriate level of privilege. (Typically reserved to the
batch administrator and batch operator.)

l n – Set to none and clear the hold types that could be applied
with the user's level of privilege. Repetition of characters is
permitted, but 'n' cannot appear in the same option argument
with the other three characters.

Appendix A: Commands Overview

Option Name Description

This attribute can be altered once the job has begun execution, but
the hold will not take effect unless the job is rerun.

-j join Declares which standard streams of the job will be merged together.
The join argument value can be the characters 'oe' or 'eo', or the
single character 'n'.
An argument value of oe directs that the standard output and
standard error streams of the job will be merged, intermixed, and
returned as the standard output. An argument value of eo directs
that the standard output and standard error streams of the job will
be merged, intermixed, and returned as the standard error.
A value of n directs that the two streams will be two separate files.
This attribute can be altered once the job has begun execution, but it
will not take effect unless the job is rerun.

If using either the -e or the -o option and the -j eo|oe
option, the -j option takes precedence and all standard error
and output messages go to the chosen output file.

-k keep Defines which if either of standard output or standard error of the
job will be retained on the execution host. If set for a stream, this
option overrides the path name for that stream.
The argument is either the single letter 'e', 'o', or 'n', or one or more
of the letters 'e' and 'o' combined in either order:

l n – No streams are to be retained.
l e – The standard error stream is to retained on the execution

host. The stream will be placed in the home directory of the
user under whose user ID the job executed. The file name will
be the default file name given by:
job_name.esequence

where job_name is the name specified for the job, and
sequence is the sequence number component of the job
identifier.

l o – The standard output stream is to be retained on the
execution host. The stream will be placed in the home directory
of the user under whose user ID the job executed. The file name
will be the default file name given by:
job_name.osequence

where job_name is the name specified for the job, and
sequence is the sequence number component of the job
identifier.

l eo – Both the standard output and standard error streams will

Appendix A: Commands Overview

263 A.9 qalter

A.9 qalter 264

Option Name Description

be retained.
l oe – Both the standard output and standard error streams will

be retained.

This attribute cannot be altered once the job has begun execution.

-l resource_
list

Modifies the list of resources that are required by the job. The
resource_list argument is in the following syntax:
resource_name[=[value]][,resource_name[=
[value]],...]

For the complete list of resources that can be modified, see
Requesting Resources.
If a requested modification to a resource would exceed the resource
limits for jobs in the current queue, the server will reject the
request.
If the job is running, only certain resources can be altered. Which
resources can be altered in the run state is system dependent. A user
can only lower the limit for those resources.

-L NUMA_
resource_
list

This uses a different syntax than the -l resource_list option.

Defines the NUMA-aware resource requests for NUMA hardware.
This option will work with non-NUMA hardware.
See the section -L NUMA Resource Request for the syntax and valid
values.

-m mail_
options

Replaces the set of conditions under which the execution server will
send a mail message about the job. The mail_options argument is a
string that consists of the single character 'n', or one or more of the
characters 'a', 'b', and 'e'.
If the character 'n' is specified, no mail will be sent.
For the letters 'a', 'b', and 'e':

l a – Mail is sent when the job is aborted by the batch system.
l b – Mail is sent when the job begins execution.
l e – Mail is sent when the job ends.

-M user_list Replaces the list of users to whom mail is sent by the execution
server when it sends mail about the job.
The user_list argument is of the form:
user[@host][,user[@host],...]

Appendix A: Commands Overview

Option Name Description

-n node-
exclusive

Informs pbs_server that this job should not share nodes. Note that
this needs to be enforced by the scheduler and is not enforced by
pbs_server.

-N name Renames the job. The name specified can be up to and including 15
characters in length. It must consist of printable, nonwhite space
characters with the first character alphabetic.

-o path Replaces the path to be used for the standard output stream of the
batch job. The path argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be
returned and path_name is the path name on that host in the
syntax recognized by POSIX. The argument will be interpreted as
follows:

l path_name – Where path_name is not an absolute path name,
then the qalter command will expand the path name relative
to the current working directory of the command. The
command will supply the name of the host upon which it is
executing for the hostname component.

l hostname:path_name – Where path_name is not an absolute
path name, then the qalter command will not expand the
path name. The execution server will expand it relative to the
home directory of the user on the system specified by hostname.

This attribute can be altered once the job has begun execution, but it
will not take effect unless the job is rerun.

-p priority Replaces the priority of the job. The priority argument must be an
integer between -1024 and +1023 inclusive.
This attribute can be altered once the job has begun execution, but it
will not take effect unless the job is rerun.

-q quick Use an asynchronous (non-blocking) alter call to the server.

-r [y/n] Declares whether the job is rerunable (see the qrerun command).
The option argument c is a single character. PBS recognizes the
following characters: y and n. If the argument is 'y', the job is marked
rerunable.
If the argument is 'n', the job is marked as not rerunable.

Appendix A: Commands Overview

265 A.9 qalter

A.9 qalter 266

Option Name Description

-S path Declares the shell that interprets the job script.
The option argument path_list is in the form:
path[@host][,path[@host],...]

Only one path can be specified for any host named. Only one path
can be specified without the corresponding host name. The path
selected will be the one with the host name that matched the name
of the execution host. If no matching host is found, then the path
specified (without a host) will be selected.
If the -S option is not specified, the option argument is the null
string, or no entry from the path_list is selected, the execution will
use the login shell of the user on the execution host.
This attribute can be altered once the job has begun execution, but it
will not take effect unless the job is rerun.

-t array_range The array_range argument is an integer ID or a range of integers.
Multiple IDs or ID ranges can be combined in a comma-delimited
list. Examples: -t 1-100 or -t 1,10,50-100

If an array range isn't specified, the command tries to operate on the
entire array. The command acts on the array (or specified range of
the array) just as it would on an individual job.
An optional 'slot limit' can be specified to limit the number of jobs
that can run concurrently in the job array. The default value is
unlimited. The slot limit must be the last thing specified in the array_
request and is delimited from the array by a percent sign (%).
qalter 15.napali[] -t %20

Here, the array 15.napali[] is configured to allow a maximum of 20
concurrently running jobs.
Slot limits can be applied at job submit time with qsub, or can be
set in a global server parameter policy with max_slot_limit.

-u user_list Replaces the user name under which the job is to run on the
execution system.
The user_list argument is of the form:
user[@host][,user[@host],...]

Only one user name can be given for per specified host. Only one of
the user specifications can be supplied without the corresponding
host specification. That user name will be used for execution on any
host not named in the argument list.
This attribute cannot be altered once the job has begun execution.

Appendix A: Commands Overview

Option Name Description

-v variable_
list

Expands the list of environment variables that are exported to the
job.
variable_list names environment variables from the qsub
command environment that are made available to the job when it
executes. The variable_list is a comma separated list of strings
of the form variable or variable=value. These variables and
their values are passed to the job. See A.23.9 Environment Variables
- page 320 for more information on environment variables.

-W additional_
attributes

The -W option allows for the modification of additional job
attributes.
Note if white space occurs anywhere within the option argument
string or the equal sign, "=", occurs within an attribute_value string,
then the string must be enclosed with either single or double quote
marks.
To see the attributes PBS currently supports within the -W option,
see -W additional_attributes.

-x exec_host Modify the exec_host field of the job.

-W additional_attributes
The following table lists the attributes PBS currently supports with the -W option.

Attribute Description

depend=dependency_
list

Redefines the dependencies between this and other jobs. The
dependency_list is in the form:
type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job ID according
to type. If argument is a count, it must be greater than 0. If it is a
job ID and is not fully specified in the form: seq_
number.server.name, it will be expanded according to the
default server rules. If argument is null (the preceding colon need
not be specified), the dependency of the corresponding type is
cleared (unset).

l synccount:count – This job is the first in a set of jobs to be
executed at the same time. Count is the number of additional
jobs in the set.

l syncwith:jobid – This job is an additional member of a set of
jobs to be executed at the same time. In the above and
following dependency types, jobid is the job identifier of the

Appendix A: Commands Overview

267 A.9 qalter

A.9 qalter 268

Attribute Description

first job in the set.
l after:jobid [:jobid...] – This job can be scheduled for execution

at any point after jobs jobid have started execution.
l afterok:jobid [:jobid...] – This job can be scheduled for

execution only after jobs jobid have terminated with no errors.
See the csh warning under 'Extended Description'.

l afternotok:jobid [:jobid...] – This job can be scheduled for
execution only after jobs jobid have terminated with errors.
See the csh warning under 'Extended Description'.

l afterany:jobid [:jobid...] – This job can be scheduled for
execution after jobs jobid have terminated, with or without
errors.

l on:count – This job can be scheduled for execution after count
dependencies on other jobs have been satisfied. This
dependency is used in conjunction with any of the 'before'
dependencies shown below. If job A has on:2, it will wait for
two jobs with 'before' dependencies on job A to be fulfilled
before running.

l before:jobid [:jobid...] – When this job has begun execution,
then jobs jobid... can begin.

l beforeok:jobid [:jobid...] – If this job terminates execution
without errors, then jobs jobid... can begin. See the csh warning
under 'Extended Description'.

l beforenotok:jobid [:jobid...] – If this job terminates execution
with errors, then jobs jobid... can begin. See the csh warning
under 'Extended Description'.

l beforeany:jobid [:jobid...] – When this job terminates execution,
jobs jobid... can begin.

If any of the before forms are used, the job referenced by
jobid must have been submitted with a dependency type of
on.
If any of the before forms are used, the jobs referenced by
jobid must have the same owner as the job being altered.
Otherwise, the dependency will not take effect.

Error processing of the existence, state, or condition of the job
specified to qalter is a deferred service (i.e., the check is performed
after the job is queued). If an error is detected, the job will be
deleted by the server. Mail will be sent to the job submitter stating
the error.

group_list=g_list Alters the group name under which the job is to run on the
execution system.

Appendix A: Commands Overview

Attribute Description

The g_list argument is of the form:
group[@host][,group[@host],...]

Only one group name can be given per specified host. Only one of
the group specifications can be supplied without the corresponding
host specification. That group name will used for execution on any
host not named in the argument list.

stagein=file_list
stageout=file_list

Alters which files are staged (copied) in before job start or staged
out after the job completes execution. The file_list is in the form:
local_file@hostname:remote_file[,...]

The name local_file is the name on the system where the job
executes. It can be an absolute path or a path relative to the home
directory of the user. The name remote_file is the destination name
on the host specified by hostname. The name can be absolute or
relative to the user's home directory on the destination host.

A.9.4 Operands
The qalter command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

A.9.5 Standard Error
Any error condition, either in processing the options or the operands, or any error
received in reply to the batch requests will result in an error message being written to
standard error.

A.9.6 Exit Status
Upon successful processing of all the operands presented to the qalter command, the
exit status will be a value of zero.

If the qalter command fails to process any operand, the command exits with a value
greater than zero.

A.9.7 Copyright

Appendix A: Commands Overview

269 A.9 qalter

A.10 qchkpt 270

Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1,
2003 Edition, Standard for Information Technology -- Portable Operating System Interface
(POSIX), The Open Group Base Specifications Issue 6, Copyright © 2001-2003 by the
Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of
any discrepancy between this version and the original IEEE and The Open Group Standard,
the original IEEE and The Open Group Standard is the referee document. The original
Standard can be obtained online at https://www.unix.org/online.html.

Related Topics

l qdel

l qhold

l qrls

l qsub

A.10 qchkpt

Checkpoint pbs batch jobs.

A.10.1 Synopsis
qchkpt <JOBID>[<JOBID>] ...

A.10.2 Description
The qchkpt command requests that the PBS MOM generate a checkpoint file for a
running job.

This is an extension to POSIX.2d.

The qchkpt command sends a Chkpt Job batch request to the server as described in the
general section.

A.10.3 Options
None.

A.10.4 Operands

Appendix A: Commands Overview

http://www.unix.org/online.html

The qchkpt command accepts one or more job_identifier operands of the form:
sequence_number[.server_name][@server]

A.10.5 Examples
$ # request a checkpoint for job 3233
$ qchkpt 3233

A.10.6 Standard Error
The qchkpt command will write a diagnostic message to standard error for each error
occurrence.

A.10.7 Exit Status
Upon successful processing of all the operands presented to the qchkpt command, the
exit status will be a value of zero.

If the qchkpt command fails to process any operand, the command exits with a value
greater than zero.

Related Topics

l qhold(1B)

l qrls(1B)

l qsub(1B)

l qalter(1B)

Non-Adaptive Computing Topics
l pbs_alterjob(3B)

l pbs_holdjob(3B),

l pbs_rlsjob(3B)

l pbs_job_attributes(7B)

l pbs_resources_unicos8(7B)

Appendix A: Commands Overview

271 A.10 qchkpt

A.11 qdel 272

A.11 qdel

(delete job)

A.11.1 Synopsis
qdel [{-a <asynchronous delete>|-b <secs>|-m <message>|-p
<purge>|-t <array_range>|-W <delay>}]
<JOBID>[<JOBID>]... | 'all' | 'ALL'

A.11.2 Description
The qdel command deletes jobs in the order in which their job identifiers are presented
to the command. A job is deleted by sending a Delete Job batch request to the batch server
that owns the job. A job that has been deleted is no longer subject to management by batch
services.

A batch job can be deleted by its owner, the batch operator, or the batch administrator.

A batch job being deleted by a server will be sent a SIGTERM signal following by a SIGKILL
signal. The time delay between the two signals is an attribute of the execution queue from
which the job was run (set table by the administrator). This delay can be overridden by the
-W option.

See the PBS ERS section 3.1.3.3, Delete Job Request
(https://www.astro.princeton.edu/wiki/images/3/36/Pbs-ers.pdf), for more information.

A.11.3 Options

Option Name Description

-a asynchronous
delete

Performs an asynchronous delete. The server responds to the user
before contacting the MOM. The option qdel -a all performs
qdel all due to restrictions from being single-threaded.

-b seconds Defines the maximum number of seconds qdel will block
attempting to contact pbs_server. If pbs_server is down, or for a
variety of communication failures, qdel will continually retry
connecting to pbs_server for job submission.
This value overrides the CLIENTRETRY parameter in
torque.cfg. This is a non-portable Torque extension.
Portability-minded users can use the PBS_CLIENTRETRY

Appendix A: Commands Overview

https://www.astro.princeton.edu/wiki/images/3/36/Pbs-ers.pdf

Option Name Description

environmental variable. A negative value is interpreted as infinity.
The default is 0.

-p purge Forcibly purges the job from the server. This should only be used
if a running job will not exit because its allocated nodes are
unreachable. The admin should make every attempt at resolving
the problem on the nodes. If a job's mother superior recovers after
purging the job, any epilogue scripts may still run. This option is
only available to a batch operator or the batch administrator.

-t array_range The array_range argument is an integer ID or a range of integers.
Multiple IDs or ID ranges can be combined in a comma-delimited
list (examples: -t 1-100 or -t 1,10,50-100). The command
acts on the array (or specified range of the array) just as it would
on an individual job.

When deleting a range of jobs, you must include the
subscript notation after the job ID (for example, 'qdel -t 1-3
98432[]').

-m message Specify a comment to be included in the email. The argument
message specifies the comment to send. This option is only
available to a batch operator or the batch administrator.

-W delay Specifies the wait delay between the sending of the SIGTERM and
SIGKILL signals. The argument is the length of time in seconds of
the delay.

A.11.4 Operands
The qdel command accepts one or more job_identifier operands of the form: sequence_
number[.server_name][@server]

Or
all

A.11.5 Examples
Delete a job array
$ qdel 1234[]

Delete one job from an array
$ qdel 1234[1]

Appendix A: Commands Overview

273 A.11 qdel

A.12 qgpumode 274

Delete all jobs, including job arrays
$ qdel all

Delete selected jobs from an array
$ qdel -t 2-4,6,8-10 64[]

There is not an option that allows you to delete all job arrays without deleting jobs.

A.11.6 Standard Error
The qdel command will write a diagnostic messages to standard error for each error
occurrence.

A.11.7 Exit Status
Upon successful processing of all the operands presented to the qdel command, the exit
status will be a value of zero.

If the qdel command fails to process any operand, the command exits with a value greater
than zero.

Related Topics

l qsub(1B)

l qsig(1B)

Non-Adaptive Computing Topics
l pbs_deljob(3B)

A.12 qgpumode

This command is deprecated; use the nvidia-smi utility instead. See
https://developer.nvidia.com/nvidia-system-management-interface and
https://developer.download.nvidia.com/compute/cuda/6_0/rel/gdk/nvidia-
smi.331.38.pdf for more information.

(GPU mode)

Appendix A: Commands Overview

https://developer.nvidia.com/nvidia-system-management-interface
http://developer.download.nvidia.com/compute/cuda/6_0/rel/gdk/nvidia-smi.331.38.pdf
http://developer.download.nvidia.com/compute/cuda/6_0/rel/gdk/nvidia-smi.331.38.pdf

A.12.1 Synopsis
qgpumode -H host -g gpuid -m mode

A.12.2 Description
The qgpumode command specifies the mode for the GPU. This command triggers an
immediate update of the pbs_server.

For additional information about options for configuring GPUs, see NVIDIA GPUs in
the Moab Workload Manager Administrator Guide.

A.12.3 Options

Option Description

-H Specifies the host where the GPU is located.

-g Specifies the ID of the GPU. This varies depending on the version of the Nvidia
driver used. For driver 260.x, it is 0, 1, and so on. For driver 270.x, it is the PCI bus
address (i.e., 0:5:0).

-m Specifies the new mode for the GPU:

l 0 (Default/Shared): Default/shared compute mode. Multiple threads can use
cudaSetDevice() with this device.

l 1 (Exclusive Thread): Compute-exclusive-thread mode. Only one thread in
one process is able to use cudaSetDevice() with this device.

Support for Exclusive Thread was discontinued with CUDA 8, in
favor of Exclusive Process.

l 2 (Prohibited): Compute-prohibited mode. No threads can use
cudaSetDevice() with this device.

l 3 (Exclusive Process): Compute-exclusive-process mode. Many threads in one
process are able to use cudaSetDevice() with this device.

qgpumode -H node01 -g 0 -m 1

This puts the first GPU on node01 into mode 1 (exclusive)

qgpumode -H node01 -g 0 -m 0

This puts the first GPU on node01 into mode 0 (shared)

Appendix A: Commands Overview

275 A.12 qgpumode

A.13 qgpureset 276

Related Topics

l qgpureset

A.13 qgpureset

(reset GPU)

A.13.1 Synopsis
qgpureset -H host -g gpuid -p -v

A.13.2 Description
The qgpureset command resets the GPU.

A.13.3 Options

Option Description

-g Specifies the ID of the GPU. This varies depending on the version of the Nvidia
driver used. For driver 260.x, it is 0, 1, and so on. For driver 270.x, it is the PCI bus
address (i.e., 0:5:0).

-H Specifies the host where the GPU is located.

-p Specifies to reset the GPU's permanent ECC error count.

-v Specifies to reset the GPU's volatile ECC error count.

Related Topics

l qgpumode

A.14 qhold

(hold job)

Appendix A: Commands Overview

A.14.1 Synopsis
qhold [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>]
...

A.14.2 Description
The qhold command requests that the server place one or more holds on a job. A job that
has a hold is not eligible for execution. There are three supported holds: USER, OTHER
(also known as operator), and SYSTEM.

A user can place a USER hold upon any job the user owns. An 'operator', who is a user with
'operator privilege,' can place ether an USER or an OTHER hold on any job. The batch
administrator can place any hold on any job.

If no -h option is given, the USER hold will be applied to the jobs described by the job_
identifier operand list.

If the job identified by job_identifier is in the queued, held, or waiting states, then the hold
type is added to the job. The job is then placed into held state if it resides in an execution
queue.

If the job is in running state, then the following additional action is taken to interrupt the
execution of the job. If checkpoint/restart is supported by the host system, requesting a
hold on a running job will (1) cause the job to be checkpointed, (2) the resources assigned
to the job will be released, and (3) the job is placed in the held state in the execution queue.

If checkpoint/restart is not supported, qhold will only set the requested hold attribute.
This will have no effect unless the job is rerun with the qrerun command.

A.14.3 Options

Option Name Description

-h hold_
list

The hold_list argument is a string consisting of one or more of the letters
'u', 'o', or 's' in any combination. The hold type associated with each letter
is:

l u – USER
l o – OTHER
l s – SYSTEM

-t array_
range

The array_range argument is an integer ID or a range of integers. Multiple
IDs or ID ranges can be combined in a comma-delimited list (examples: -
t 1-100 or -t 1,10,50-100).

Appendix A: Commands Overview

277 A.14 qhold

A.14 qhold 278

Option Name Description

If an array range isn't specified, the command tries to operate on the
entire array. The command acts on the array (or specified range of the
array) just as it would on an individual job.

A.14.4 Operands
The qhold command accepts one or more job_identifier operands of the form:
sequence_number[.server_name][@server]

A.14.5 Example
> qhold -h u 3233 place user hold on job 3233

A.14.6 Standard Error
The qhold command will write a diagnostic message to standard error for each error
occurrence.

A.14.7 Exit Status
Upon successful processing of all the operands presented to the qhold command, the exit
status will be a value of zero.

If the qhold command fails to process any operand, the command exits with a value
greater than zero.

Related Topics

l qrls(1B)

l qalter(1B)

l qsub(1B)

Non-Adaptive Computing Topics
l pbs_alterjob(3B)

l pbs_holdjob(3B)

Appendix A: Commands Overview

l pbs_rlsjob(3B)

l pbs_job_attributes(7B)

l pbs_resources_unicos8(7B)

A.15 qmgr

(PBS Queue Manager) PBS batch system manager.

A.15.1 Synopsis
qmgr [-a] [-c command] [-e] [-n] [-z] [server...]

A.15.2 Description
The qmgr command provides an administrator interface to query and configure batch
system parameters (see Server Parameters).

The command reads directives from standard input. The syntax of each directive is
checked and the appropriate request is sent to the batch server or servers.

The list or print subcommands of qmgr can be executed by general users. Creating or
deleting a queue requires PBS Manager privilege. Setting or unsetting server or queue
attributes requires PBS Operator or Manager privilege.

By default, the user root is the only PBS Operator and Manager. To allow other users
to be privileged, the server attributes operators and managers will need to be set (i.e.,
as root, issue 'qmgr -c 'set server managers += <USER1>@<HOST>').
See Torque/PBS Integration Guide - RM Access Control in the Moab Workload
Manager Administrator Guide.

If qmgr is invoked without the -c option and standard output is connected to a terminal,
qmgr will write a prompt to standard output and read a directive from standard input.

Commands can be abbreviated to their minimum unambiguous form. A command is
terminated by a new line character or a semicolon, ';', character. Multiple commands can be
entered on a single line. A command can extend across lines by escaping the new line
character with a back-slash '\'.

Comments begin with the '#' character and continue to end of the line. Comments and
blank lines are ignored by qmgr.

Appendix A: Commands Overview

279 A.15 qmgr

A.15 qmgr 280

A.15.3 Options

Option Name Description

-a --- Abort qmgr on any syntax errors or any requests rejected by a server.

-c command Execute a single command and exit qmgr.

-e --- Echo all commands to standard output.

-n --- No commands are executed, syntax checking only is performed.

-z --- No errors are written to standard error.

A.15.4 Operands
The server operands identify the name of the batch server to which the administrator
requests are sent. Each server conforms to the following syntax: host_name[:port]

where host_name is the network name of the host on which the server is running and
port is the port number to which to connect. If port is not specified, the default port
number is used.

If server is not specified, the administrator requests are sent to the local server.

A.15.5 Standard Input
The qmgr command reads standard input for directives until end of file is reached, or the
exit or quit directive is read.

A.15.6 Standard Output
If Standard Output is connected to a terminal, a command prompt will be written to
standard output when qmgr is ready to read a directive.

If the -e option is specified, qmgr will echo the directives read from standard input to
standard output.

A.15.7 Standard Error

Appendix A: Commands Overview

If the -z option is not specified, the qmgr command will write a diagnostic message to
standard error for each error occurrence.

A.15.8 Directive Syntax
A qmgr directive is one of the following forms:

command server [names] [attr OP value[,attr OP value,...]]
command queue [names] [attr OP value[,attr OP value,...]]
command node [names] [attr OP value[,attr OP value,...]]

where command is the command to perform on an object.

Commands are:

Command Description

active Sets the active objects. If the active objects are specified, and the name is not
given in a qmgr cmd the active object names will be used.

create Is to create a new object, applies to queues and nodes.

delete Is to destroy an existing object, applies to queues and nodes.

set Is to define or alter attribute values of the object.

unset Is to clear the value of attributes of the object.

This form does not accept an OP and value, only the attribute name.

list Is to list the current attributes and associated values of the object.

print Is to print all the queue and server attributes in a format that will be usable as
input to the qmgr command.

names Is a list of one or more names of specific objects. The name list is in the form:
[name][@server][,queue_name[@server]...]

with no intervening white space. The name of an object is declared when the
object is first created. If the name is @server, then all the objects of specified
type at the server will be affected.

attr Specifies the name of an attribute of the object that is to be set or modified. If
the attribute is one that consists of a set of resources, then the attribute is
specified in the form:

Appendix A: Commands Overview

281 A.15 qmgr

A.15 qmgr 282

Command Description

attribute_name.resource_name

OP Operation to be performed with the attribute and its value:

l '=' – set the value of the attribute. If the attribute has an existing value, the
current value is replaced with the new value.

l '+=' – increase the current value of the attribute by the amount in the new
value.

l '-=' – decrease the current value of the attribute by the amount in the new
value.

value The value to assign to an attribute. If the value includes white space, commas or
other special characters, such as the '#' character, the value string must be
enclosed in quote marks (").

The following are examples of qmgr directives:

create queue fast priority=10,queue_type=e,enabled = true,max_running=0
set queue fast max_running +=2
create queue little
set queue little resources_max.mem=8mw,resources_max.cput=10
unset queue fast max_running
set node state = "down,offline"
active server s1,s2,s3
list queue @server1
set queue max_running = 10 - uses active queues

A.15.9 Exit Status
Upon successful processing of all the operands presented to the qmgr command, the exit
status will be a value of zero.

If the qmgr command fails to process any operand, the command exits with a value greater
than zero.

Related Topics

l pbs_server(8B)

Non-Adaptive Computing Topics
l pbs_queue_attributes (7B)

l pbs_server_attributes (7B)

Appendix A: Commands Overview

l qstart (8B), qstop (8B)

l qenable (8B), qdisable (8)

l PBS External Reference Specification (included in the Torque download tarball in
doc/v2_2_ers.pdf)

A.16 qmove

Move PBS batch jobs.

A.16.1 Synopsis
qmove destination jobId [jobId ...]

A.16.2 Description
To move a job is to remove the job from the queue in which it resides and instantiate the
job in another queue. The qmove command issues a Move Job batch request to the batch
server that currently owns each job specified by jobId.

A job in the Running, Transiting, or Exiting state cannot be moved.

A.16.3 Operands
The first operand, the new destination, is one of the following:
queue

@server

queue@server

If the destination operand describes only a queue, then qmove will move jobs into the
queue of the specified name at the job's current server. If the destination operand
describes only a batch server, then qmove will move jobs into the default queue at that
batch server. If the destination operand describes both a queue and a batch server,
then qmove will move the jobs into the specified queue at the specified server.

All following operands are jobIds, which specify the jobs to be moved to the new
destination. The qmove command accepts one or more jobId operands of the form:
sequenceNumber[.serverName][@server]

Appendix A: Commands Overview

283 A.16 qmove

A.17 qorder 284

A.16.4 Standard Error
The qmove command will write a diagnostic message to standard error for each error
occurrence.

A.16.5 Exit Status
Upon successful processing of all the operands presented to the qmove command, the exit
status will be a value of zero.

If the qmove command fails to process any operand, the command exits with a value
greater than zero.

Related Topics

l qsub

Non-Adaptive Computing Topics
l pbs_movejob(3B)

A.17 qorder

Exchange order of two PBS batch jobs in any queue.

A.17.1 Synopsis
qorder job1_identifier job2_identifier

A.17.2 Description
To order two jobs is to exchange the jobs' positions in the queue(s) in which the jobs
reside. The two jobs must be located on the same server. No attribute of the job, such as
priority, is changed. The impact of changing the order in the queue(s) is dependent on local
job schedule policy. For information about your local job schedule policy, contact your
system administrator.

A job in the running state cannot be reordered.

Appendix A: Commands Overview

A.17.3 Operands
Both operands are job_identifiers that specify the jobs to be exchanged. The
qorder command accepts two job_identifier operands of the following form:
sequence_number[.server_name][@server]

The two jobs must be in the same location, so the server specification for the two jobs must
agree.

A.17.4 Standard Error
The qorder command will write diagnostic messages to standard error for each error
occurrence.

A.17.5 Exit Status
Upon successful processing of all the operands presented to the qorder command, the
exit status will be a value of zero.

If the qorder command fails to process any operand, the command exits with a value
greater than zero.

Related Topics

l qsub

l qmove

Non-Adaptive Computing Topics
l pbs_orderjob(3B)

l pbs_movejob(3B)

A.18 qrerun

(Rerun a batch job)

A.18.1 Synopsis
qrerun [{-f}] <JOBID>[<JOBID>] ...

Appendix A: Commands Overview

285 A.18 qrerun

A.18 qrerun 286

A.18.2 Description
The qrerun command directs that the specified jobs are to be rerun if possible. To rerun
a job is to terminate the session leader of the job and return the job to the queued state in
the execution queue in which the job currently resides.

If a job is marked as not rerunable then the rerun request will fail for that job. If the mini-
server running the job is down, or it rejects the request, the Rerun Job batch request will
return a failure unless -f is used.

Using -f violates IEEE Batch Processing Services Standard and should be handled with
great care. It should only be used under exceptional circumstances. The best practice is to
fix the problem mini-server host and let qrerun run normally. The nodes may need manual
cleaning (see the -r option on the qsub and qalter commands).

A.18.3 Options

Option Description

-f Force a rerun on a job

qrerun -f 15406

The qrerun all command is meant to be run if all of the compute nodes go down.
If the machines have actually crashed, then we know that all of the jobs need to be
restarted. The behavior if you don't run this would depend on how you bring up the
pbs_mom daemons, but by default would be to cancel all of the jobs.

Running the command makes it so that all jobs are requeued without attempting to
contact the moms on which they should be running.

A.18.4 Operands
The qrerun command accepts one or more job_identifier operands of the form:
sequence_number[.server_name][@server]

A.18.5 Standard Error
The qrerun command will write a diagnostic message to standard error for each error
occurrence.

Appendix A: Commands Overview

A.18.6 Exit Status
Upon successful processing of all the operands presented to the qrerun command, the
exit status will be a value of zero.

If the qrerun command fails to process any operand, the command exits with a value
greater than zero.

A.18.7 Examples
> qrerun 3233

(Job 3233 will be re-run.)

Related Topics

l qsub(1B)

l qalter(1B)

Non-Adaptive Computing Topics
l pbs_alterjob(3B)

l pbs_rerunjob(3B)

A.19 qrls

(Release hold on PBS batch jobs)

A.19.1 Synopsis
qrls [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

A.19.2 Description
The qrls command removes or releases holds that exist on batch jobs.

A job may have one or more types of holds that make the job ineligible for execution. The
types of holds are USER, OTHER, and SYSTEM. The different types of holds may require
that the user issuing the qrls command have special privileges. A user can always
remove a USER hold on their own jobs, but only privileged users can remove OTHER or

Appendix A: Commands Overview

287 A.19 qrls

A.19 qrls 288

SYSTEM holds. An attempt to release a hold for which the user does not have the correct
privilege is an error and no holds will be released for that job.

If no -h option is specified, the USER hold will be released.

If the job has no execution_time pending, the job will change to the queued state. If an
execution_time is still pending, the job will change to the waiting state.

If you run qrls on an array subjob, pbs_server will correct the slot limit holds for the
array to which it belongs.

A.19.3 Options

Command Name Description

-h hold_
list

Defines the types of hold to be released from the jobs. The hold_list
option argument is a string consisting of one or more of the letters 'u',
'o', and 's' in any combination. The hold type associated with each
letter is:

l u – USER
l o – OTHER
l s – SYSTEM

-t array_
range

The array_range argument is an integer ID or a range of integers.
Multiple IDs or ID ranges can be combined in a comma-delimited list.
Examples: -t 1-100 or -t 1,10,50-100

If an array range isn't specified, the command tries to operate on the
entire array. The command acts on the array (or specified range of the
array) just as it would on an individual job.

A.19.4 Operands
The qrls command accepts one or more job_identifier operands of the form: sequence_
number[.server_name][@server]

A.19.5 Examples
> qrls -h u 3233 release user hold on job 3233

A.19.6 Standard Error

Appendix A: Commands Overview

The qrls command will write a diagnostic message to standard error for each error
occurrence.

A.19.7 Exit Status
Upon successful processing of all the operands presented to the qrls command, the exit
status will be a value of zero.

If the qrls command fails to process any operand, the command exits with a value greater
than zero.

Related Topics

l qsub(1B)

l qalter(1B)

l qhold(1B)

Non-Adaptive Computing Topics
l pbs_alterjob(3B)

l pbs_holdjob(3B)

l pbs_rlsjob(3B)

A.20 qrun

(Run a batch job)

A.20.1 Synopsis
qrun [{-H <HOST>|-a}] <JOBID>[<JOBID>] ...

A.20.2 Overview
The qrun command runs a job.

A.20.3 Format

Appendix A: Commands Overview

289 A.20 qrun

A.20 qrun 290

-a

Format ---

Default ---

Description Run the job(s) asynchronously.

Example qrun -a 15406

-H

Format <STRING> Host Identifier

Default ---

Description Specifies the host within the cluster on which the job(s) are to be run. The
host argument is the name of a host that is a member of the cluster of hosts
managed by the server. If the option is not specified, the server will select the
'worst possible' host on which to execute the job.

Example qrun -H hostname 15406

A.20.4 Command Details
The qrun command is used to force a batch server to initiate the execution of a batch job.
The job is run regardless of scheduling position or resource requirements.

In order to execute qrun, the user must have PBS Operation or Manager privileges.

A.20.5 Examples
> qrun 3233

(Run job 3233.)

Appendix A: Commands Overview

A.21 qsig

(Signal a job)

A.21.1 Synopsis
qsig [{-s <SIGNAL>}] <JOBID>[<JOBID>] ...
[-a]

A.21.2 Description
The qsig command requests that a signal be sent to executing batch jobs. The signal is
sent to the session leader of the job. If the -s option is not specified, SIGTERM is sent.

The request to signal a batch job will be rejected if:

l The user is not authorized to signal the job.

l The job is not in the running state.

l The requested signal is not supported by the system upon which the job is executing.

The qsig command sends a Signal Job batch request to the server that owns the job.

A.21.3 Options

Option Name Description

-a asynchronously Makes the command run asynchronously.

-s signal Declares which signal is sent to the job.
The signal argument is either a signal name (e.g., SIGKILL), the
signal name without the SIG prefix (e.g., KILL), or an unsigned
signal number (e.g., 9). The signal name SIGNULL is allowed; the
server will send the signal 0 to the job, which will have no effect
on the job, but will cause an obituary to be sent if the job is no
longer executing. Not all signal names will be recognized by
qsig. If it doesn't recognize the signal name, try issuing the
signal number instead.
Two special signal names, 'suspend' and 'resume', are used to
suspend and resume jobs.
Suspend causes a SIGTSTP to be sent to all processes in the job's
top task, wait 5 seconds, and then send a SIGSTOP to all

Appendix A: Commands Overview

291 A.21 qsig

A.21 qsig 292

Option Name Description

processes in all tasks on all nodes in the job. Resume sends a
SIGCONT to all processes in all tasks on all nodes.
When suspended, a job continues to occupy system resources
but is not executing and is not charged for walltime. The job will
be listed in the 'S' state. Manager or operator privilege is
required to suspend or resume a job.

Interactive jobs may not resume properly because the top-
level shell will background the suspended child process.

A.21.4 Operands
The qsig command accepts one or more job_identifier operands of the form: sequence_
number[.server_name][@server]

A.21.5 Examples
> qsig -s SIGKILL 3233 send a SIGKILL to job 3233
> qsig -s KILL 3233 send a SIGKILL to job 3233
> qsig -s 9 3233 send a SIGKILL to job 3233

A.21.6 Standard Error
The qsig command will write a diagnostic message to standard error for each error
occurrence.

A.21.7 Exit Status
Upon successful processing of all the operands presented to the qsig command, the exit
status will be a value of zero.

If the qsig command fails to process any operand, the command exits with a value greater
than zero.

Related Topics

l qsub(1B)

Appendix A: Commands Overview

Non-Adaptive Computing Topics
l pbs_sigjob(3B)

l pbs_resources_*(7B) where * is system type

l PBS ERS

A.22 qstat

Show status of PBS batch jobs.

A.22.1 Synopsis
qstat [-c] [-C] [-f [-1]] [-W site_specific] [job_
identifier... | destination...] [time]
qstat [-a|-i|-r|-e|--xml] [-c] [-n [-1]] [-s] [-G|-M] [-R] [-u
user_list]
[job_identifier... | destination...]
qstat -Q [-f [-1]] [-c] [-W site_specific] [destination...]
qstat -q [-c] [-G|-M] [destination...]
qstat -B [-c] [-f [-1]] [-W site_specific] [server_name...]
qstat -t [-c] [-C]

A.22.2 Description
The qstat command is used to request the status of jobs, queues, or a batch server. The
requested status is written to standard out.

When requesting job status, synopsis format 1 or 2, qstat will output information about
each job_identifier or all jobs at each destination. Jobs for which the user does not have
status privilege are not displayed.

When requesting queue or server status, synopsis format 3 through 5, qstat will output
information about each destination.

You can configure Torque with CFLAGS='DTXT' to change the alignment of text in
qstat output. This noticeably improves qstat -r output.

A.22.3 Options

Appendix A: Commands Overview

293 A.22 qstat

A.22 qstat 294

Option Description

-a All jobs are displayed in the alternative format (see Standard Output). If the
operand is a destination ID, all jobs at that destination are displayed. If the operand
is a job ID, information about that job is displayed.

-B Specifies that the request is for batch server status and that the operands are the
names of servers.

-c Completed jobs are not displayed in the output. If desired, you can set the PBS_
QSTAT_NO_COMPLETE environment variable to cause all qstat requests to not
show completed jobs by default.

-C Specifies that Torque will provide only a condensed output (job name, resources
used, queue, state, and job owner) for jobs that have not changed recently. See job_
full_report_time - page 338. Jobs that have recently changed will continue to send a
full output.

-e If the operand is a job ID or not specified, only jobs in executable queues are
displayed. Setting the PBS_QSTAT_EXECONLY environment variable will also enable
this option.

-f Specifies that a full status display be written to standard out. The [time] value is the
amount of walltime, in seconds, remaining for the job. [time] does not account for
walltime multipliers.

-G Show size information in gigabytes.

-i Job status is displayed in the alternative format. For a destination ID operand,
statuses for jobs at that destination that are not running are displayed. This includes
jobs that are queued, held or waiting. If an operand is a job ID, status for that job is
displayed regardless of its state.

-1 In combination with -n, the -1 option puts all of the nodes on the same line as the
job ID. In combination with -f, attributes are not folded to fit in a terminal window.
This is intended to ease the parsing of the qstat output.

-M Show size information, disk or memory in mega-words. A word is considered to be
8 bytes.

-n In addition to the basic information, nodes allocated to a job are listed.

-q Specifies that the request is for queue status, which should be shown in the
alternative format.

Appendix A: Commands Overview

Option Description

-Q Specifies that the request is for queue status and that the operands are destination
identifiers.

-r If an operand is a job ID, status for that job is displayed. For a destination ID
operand, statuses for jobs at that destination that are running are displayed; this
includes jobs that are suspended. Note that if there is no walltime given for a job,
then elapsed time does not display.

-R In addition to other information, disk reservation information is shown. Not
applicable to all systems.

-s In addition to the basic information, any comment provided by the batch
administrator or scheduler is shown.

-t Normal qstat output displays a summary of the array instead of the entire array,
job for job. qstat -t expands the output to display the entire array. Note that
arrays are now named with brackets following the array name; for example:
dbeer@napali:~/dev/torque/array_changes$ echo sleep 20 |
qsub -t 0-299 189[].napali

Individual jobs in the array are now also noted using square brackets instead of
dashes; for example, here is part of the output of qstat -t for the preceding
array:
189[299].napali STDIN[299] dbeer 0 Q batch

-u Job status is displayed in the alternative format. If an operand is a job ID, status for
that job is displayed. For a destination ID operand, statuses for jobs at that
destination that are owned by the user(s) listed in user_list are displayed. The
syntax of the user_list is:
user_name[@host][,user_name[@host],...]

Host names can be wild carded on the left end (e.g., *.nasa.gov). User_name without
a '@host' is equivalent to 'user_name@*', that is at any host.

--xml Same as -a, but the output has an XML-like format.

A.22.4 Operands
If neither the -Q nor the -B option is given, the operands on the qstat command must be
either job identifiers or destinations identifiers.

If the operand is a job identifier, it must be in the following form: sequence_number
[.server_name][@server]

Appendix A: Commands Overview

295 A.22 qstat

A.22 qstat 296

where sequence_number.server_name is the job identifier assigned at submittal
time (see qsub). If the .server_name is omitted, the name of the default server will be
used. If @server is supplied, the request will be for the job identifier currently at that
Server.

If the operand is a destination identifier, it is one of the following three forms:

l queue

l @server

l queue@server

If queue is specified, the request is for status of all jobs in that queue at the default server.
If the @server form is given, the request is for status of all jobs at that server. If a full
destination identifier, queue@server, is given, the request is for status of all jobs in the
named queue at the named server.

If the -Q option is given, the operands are destination identifiers as specified above. If
queue is specified, the status of that queue at the default server will be given. If
queue@server is specified, the status of the named queue at the named server will be
given. If @server is specified, the status of all queues at the named server will be given. If
no destination is specified, the status of all queues at the default server will be given.

If the -B option is given, the operand is the name of a server.

A.22.5 Standard Output

Displaying Job Status
If job status is being displayed in the default format and the -f option is not specified, the
following items are displayed on a single line, in the specified order, separated by white
space:

l the job identifier assigned by PBS.

l the job name given by the submitter.

l the job owner.

l the CPU time used.

l the job state:

Item Description

C Job is completed after having run.

Appendix A: Commands Overview

Item Description

E Job is exiting after having run.

H Job is held.

Q Job is queued, eligible to run or routed.

R Job is running.

T Job is being moved to new location.

W Job is waiting for its execution time (-a option) to be reached.

S (Unicos only) Job is suspended.

l the queue in which the job resides.

If job status is being displayed and the -f option is specified, the output will depend on
whether qstat was compiled to use a Tcl interpreter. See Configuration for details. If Tcl
is not being used, full display for each job consists of the header line: Job Id: job
identifier

Followed by one line per job attribute of the form: attribute_name = value

If any of the options -a, -i, -r, -u, -n, -s, -G, or -M are provided, the alternative display format
for jobs is used. The following items are displayed on a single line, in the specified order,
separated by white space:

l the job identifier assigned by PBS

l the job owner

l the queue in which the job currently resides

l the job name given by the submitter

l the session id (if the job is running)

l the number of nodes requested by the job (not the number of nodes in use)

l the number of CPUs or tasks requested by the job

l the amount of memory requested by the job

l either the CPU time, if specified, or wall time requested by the job, (hh:mm)

Appendix A: Commands Overview

297 A.22 qstat

A.22 qstat 298

l the job's current state

l the amount of CPU time or wall time used by the job (hh:mm)

When any of the above options or the -r option is used to request an alternative display
format, a column with the requested memory for the job is displayed. If more than one type
of memory is requested for the job, either through server or queue parameters or
command line, only one value can be displayed. The value displayed depends on the order
the memory types are evaluated with the last type evaluated being the value displayed.
The order of evaluation is dmem, mem, pmem, pvmem, vmem.

If the -R option is provided, the line contains:

l the job identifier assigned by PBS

l the job owner

l the queue in which the job currently resides

l the number of nodes requested by the job

l the number of CPUs or tasks requested by the job

l the amount of memory requested by the job

l either the CPU time or wall time requested by the job

l the job's current state

l the amount of CPU time or wall time used by the job

l the amount of SRFS space requested on the big file system

l the amount of SRFS space requested on the fast file system

l the amount of space requested on the parallel I/O file system

The last three fields may not contain useful information at all sites or on all systems.

Displaying Queue Status
If queue status is being displayed and the -f option was not specified, the following items
are displayed on a single line, in the specified order, separated by white space:

l the queue name

l the maximum number of jobs that can be run in the queue concurrently

l the total number of jobs in the queue

l the enable or disabled status of the queue

l the started or stopped status of the queue

Appendix A: Commands Overview

l for each job state, the name of the state and the number of jobs in the queue in that
state

l the type of queue, execution or routing

If queue status is being displayed and the -f option is specified, the output will depend on
whether qstat was compiled to use a Tcl interpreter. See the configuration section for
details. If Tcl is not being used, the full display for each queue consists of the header line:
Queue: queue_name

Followed by one line per queue attribute of the form: attribute_name = value

If the -q option is specified, queue information is displayed in the alternative format: The
following information is displayed on a single line:

l the queue name

l the maximum amount of memory a job in the queue can request

l the maximum amount of CPU time a job in the queue can request

l the maximum amount of wall time a job in the queue can request

l the maximum amount of nodes a job in the queue can request

l the number of jobs in the queue in the running state

l the number of jobs in the queue in the queued state

l the maximum number (limit) of jobs that can be run in the queue concurrently

l the state of the queue given by a pair of letters:
o either the letter E if the queue is Enabled or D if Disabled
And

o either the letter R if the queue is Running (started) or S if Stopped

Displaying Server Status
If batch server status is being displayed and the -f option is not specified, the following
items are displayed on a single line, in the specified order, separated by white space:

l the server name

l the maximum number of jobs that the server can run concurrently

l the total number of jobs currently managed by the server

l the status of the server

l for each job state, the name of the state and the number of jobs in the server in that
state

Appendix A: Commands Overview

299 A.22 qstat

A.22 qstat 300

If server status is being displayed and the -f option is specified, the output will depend on
whether qstat was compiled to use a Tcl interpreter. See the configuration section for
details. If Tcl is not being used, the full display for the server consists of the header line:
Server: server name

Followed by one line per server attribute of the form: attribute_name = value

A.22.6 Standard Error
The qstat command will write a diagnostic message to standard error for each error
occurrence.

A.22.7 Configuration
If qstat is compiled with an option to include a Tcl interpreter, using the -f flag to get a
full display causes a check to be made for a script file to use to output the requested
information. The first location checked is $HOME/.qstatrc. If this does not exist, the
next location checked is administrator configured. If one of these is found, a Tcl interpreter
is started and the script file is passed to it along with three global variables. The command
line arguments are split into two variable named flags and operands . The status
information is passed in a variable named objects . All of these variables are Tcl lists. The
flags list contains the name of the command (usually qstat) as its first element. Any other
elements are command line option flags with any options they use, presented in the order
given on the command line. They are broken up individually so that if two flags are given
together on the command line, they are separated in the list. For example, if the user typed:

qstat -QfWbigdisplay

the flags list would contain

qstat -Q -f -W bigdisplay

The operands list contains all other command line arguments following the flags. There will
always be at least one element in operands because if no operands are typed by the user,
the default destination or server name is used. The objects list contains all the information
retrieved from the server(s) so the Tcl interpreter can run once to format the entire
output. This list has the same number of elements as the operands list. Each element is
another list with two elements.

The first element is a string giving the type of objects to be found in the second. The string
can take the values 'server', 'queue', 'job' or 'error'.

The second element will be a list in which each element is a single batch status object of the
type given by the string discussed above. In the case of 'error', the list will be empty. Each
object is again a list. The first element is the name of the object. The second is a list of
attributes.

Appendix A: Commands Overview

The third element will be the object text.

All three of these object elements correspond with fields in the structure batch_status,
which is described in detail for each type of object by the man pages for pbs_statjob(3),
pbs_statque(3), and pbs_statserver(3). Each attribute in the second element list whose
elements correspond with the attrl structure. Each will be a list with two elements. The first
will be the attribute name and the second will be the attribute value.

A.22.8 Exit Status
Upon successful processing of all the operands presented to the qstat command, the exit
status will be a value of zero.

If the qstat command fails to process any operand, the command exits with a value
greater than zero.

Related Topics

l qalter(1B)

l qsub(1B)

Non-Adaptive Computing Topics
l pbs_alterjob(3B)

l pbs_statjob(3B)

l pbs_statque(3B)

l pbs_statserver(3B)

l pbs_submit(3B)

l pbs_job_attributes(7B)

l pbs_queue_attributes(7B)

l pbs_server_attributes(7B)

l qmgr query_other_jobs parameter (allow non-admin users to see other users' jobs

l pbs_resources_*(7B) where * is system type

l PBS ERS

Appendix A: Commands Overview

301 A.22 qstat

A.23 qsub 302

A.23 qsub

Submit PBS job.

A.23.1 Synopsis
qsub [-a date_time][-A account_string][-b secs][-c checkpoint_
options][-C directive_prefix][-d path][-D path][-e path][-f][-
F][-h][-i idle_slot_limit][-I][-j join][-k keep][-K kill_
delay][-l resource_list][-L NUMA_resource_list][-m mail_
options][-M user_list][-n node_exclusive][-N name][-o path][-p
priority][-P user[:group]][-q destination] [-r][-S path_to_
shell(s)][-t array_request] [-T script] [-u userlist] [-v
variable_list][-V][-w path][-W additional_attributes][-x][-X]
[-z][script]

A.23.2 Description
To create a job is to submit an executable script to a batch server. The batch server will be
the default server unless the -q option is specified. The command parses a script prior to
the actual script execution; it does not execute a script itself. All script-writing rules remain
in effect, including the #! at the head of the file (see discussion of PBS_DEFAULT under
Environment Variables). Typically, the script is a shell script that will be executed by a
command shell such as sh or csh.

Options on the qsub command allow the specification of attributes that affect the behavior
of the job.

The qsub command will pass certain environment variables in the Variable_List
attribute of the job. These variables will be available to the job. The value for the following
variables will be taken from the environment of the qsub command: HOME, LANG,
LOGNAME, PATH, MAIL, SHELL, and TZ. These values will be assigned to a new name,
which is the current name prefixed with the string PBS_O_. For example, the job will have
access to an environment variable named PBS_O_HOME that has the value of the variable
HOME in the qsub command environment.

In addition to the above, the following environment variables will be available to the batch
job:

Variable Description

PBS_ARRAYID Each member of a job array is assigned a unique identifier (see -t option).

Appendix A: Commands Overview

Variable Description

PBS_
ENVIRONMENT

Set to PBS_BATCH to indicate the job is a batch job, or to PBS_
INTERACTIVE to indicate the job is a PBS interactive job (see -I option).

PBS_GPUFILE The name of the file containing the list of assigned GPUs. For more
information about how to set up Torque with GPUS, see Accelerators in the
Moab Workload Manager Administrator Guide.

PBS_JOBID The job identifier assigned to the job by the batch system. It can be used in
the stdout and stderr paths. Torque replaces $PBS_JOBID with the job's
jobid (for example, #PBS -o /tmp/$PBS_JOBID.output).

PBS_JOBNAME The job name supplied by the user.

PBS_NODEFILE The name of the file contains the list of nodes assigned to the job (for
parallel and cluster systems).

PBS_O_HOST The name of the host upon which the qsub command is running.

PBS_O_QUEUE The name of the original queue to which the job was submitted.

PBS_O_
WORKDIR

The absolute path of the current working directory of the qsub command.

PBS_QUEUE The name of the queue from which the job is executed.

PBS_SERVER The hostname of the pbs_server that qsub submits the job to.

A.23.3 Options

Option Argument Description

-a date_time Declares the time after which the job is eligible for execution.
The date_time argument is in the form:
[[[[CC]YY]MM]DD]hhmm[.SS]

where CC is the first two digits of the year (the century), YY is the
second two digits of the year, MM is the two digits for the month, DD
is the day of the month, hh is the hour, mm is the minute, and the
optional SS is the seconds.

Appendix A: Commands Overview

303 A.23 qsub

A.23 qsub 304

Option Argument Description

If the month (MM) is not specified, it will default to the current
month if the specified day (DD) is in the future. Otherwise, the
month will be set to next month. Likewise, if the day (DD) is not
specified, it will default to today if the time (hhmm) is in the future.
Otherwise, the day will be set to tomorrow.
For example, if you submit a job at 11:15 am with a time of -a
1110, the job will be eligible to run at 11:10 am tomorrow.

-A account_
string

Defines the account string associated with the job. The account_
string is an undefined string of characters and is interpreted by the
server that executes the job. See section 2.7.1 of the PBS External
Reference Specification (included in the Torque download tarball in
doc/v2_2_ers.pdf).

-b seconds Defines the maximum number of seconds qsub will block attempting
to contact pbs_server. If pbs_server is down, or for a variety of
communication failures, qsub will continually retry connecting to
pbs_server for job submission.
This value overrides the CLIENTRETRY parameter in torque.cfg.
This is a non-portable Torque extension. Portability-minded users
can use the PBS_CLIENTRETRY environmental variable. A negative
value is interpreted as infinity. The default is 0.

-c checkpoint_
options

Defines the options that will apply to the job. If the job executes
upon a host that does not support checkpoint, these options will be
ignored.
Valid checkpoint options are:

l none – No checkpointing is to be performed.
l enabled – Specify that checkpointing is allowed but must be

explicitly invoked by either the qhold or qchkpt commands.
l shutdown – Specify that checkpointing is to be done on a job at

pbs_mom shutdown.
l periodic – Specify that periodic checkpointing is enabled. The

default interval is 10 minutes and can be changed by the
$checkpoint_interval option in the MOM config file or by
specifying an interval when the job is submitted

l interval=minutes – Checkpointing is to be performed at an
interval of minutes, which is the integer number of minutes of
wall time used by the job. This value must be greater than zero.

l depth=number – Specify a number (depth) of checkpoint images
to be kept in the checkpoint directory.

l dir=path – Specify a checkpoint directory (default is

Appendix A: Commands Overview

Option Argument Description

/var/spool/torque/checkpoint).

-C directive_
prefix

Defines the prefix that declares a directive to the qsub command
within the script file (see the paragraph on script directives under
Extended Description.)
If the -C option is presented with a directive_prefix argument that is
the null string, qsub will not scan the script file for directives.

-d path Defines the working directory path to be used for the job. If the -d
option is not specified, the default working directory is the home
directory. This option sets the environment variable PBS_O_INITDIR.

-D path Defines the root directory to be used for the job. This option sets the
environment variable PBS_O_ROOTDIR.

-e path Defines the path to be used for the standard error stream of the
batch job. The path argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be
returned, and path_name is the path name on that host in the
syntax recognized by POSIX.

When specifying a directory for the location you need to
include a trailing slash.

The argument will be interpreted as follows:

l path_name – where path_name is not an absolute path name,
then the qsub command will expand the path name relative to
the current working directory of the command. The command
will supply the name of the host upon which it is executing for
the hostname component.

l hostname:path_name – where path_name is not an absolute
path name, then the qsub command will not expand the path
name relative to the current working directory of the command.
On delivery of the standard error, the path name will be
expanded relative to the user's home directory on the hostname
system.

l path_name – where path_name specifies an absolute path
name, then the qsub will supply the name of the host on which
it is executing for the hostname.

l hostname:path_name – where path_name specifies an
absolute path name, the path will be used as specified.

Appendix A: Commands Overview

305 A.23 qsub

A.23 qsub 306

Option Argument Description

If the -e option is not specified, the default file name for the
standard error stream will be used. The default name has the
following form:

l job_name.esequence_number – where job_name is the name of
the job (see the -N name option) and sequence_number is
the job number assigned when the job is submitted.

-f --- Job is made fault tolerant. Jobs running on multiple nodes are
periodically polled by mother superior. If one of the nodes fails to
report, the job is canceled by mother superior and a failure is
reported. If a job is fault tolerant, it will not be canceled based on
failed polling (no matter how many nodes fail to report). This may
be desirable if transient network failures are causing large jobs not
to complete, where ignoring one failed polling attempt can be
corrected at the next polling attempt.

If Torque is compiled with PBS_NO_POSIX_VIOLATION (there
is no config option for this), you have to use -W fault_
tolerant=true to mark the job as fault tolerant.

-F --- Specifies the arguments that will be passed to the job script when
the script is launched. The accepted syntax is:
qsub -F "myarg1 myarg2 myarg3=myarg3value"
myscript2.sh

Quotation marks are required. qsub will fail with an error
message if the argument following -F is not a quoted value.
The pbs_mom server will pass the quoted value as arguments
to the job script when it launches the script.

-h --- Specifies that a user hold be applied to the job at submission time.

-i idle_slot_
limit

Sets an idle slot limit for the job array being submitted. If this
parameter is set for a non-array job, it will be rejected. Additionally,
if the user requests an idle slot limit that exceeds the server
parameter's default, the job will be rejected. See also the idle_slot_
limit server parameter.

$ qsub -t 0-99 -i 10 script.sh

The submitted array will only instantiate 10 idle jobs;
instead of all 100 jobs at submission time.

Appendix A: Commands Overview

Option Argument Description

-I --- Declares that the job is to be run 'interactively'. The job will be
queued and scheduled as any PBS batch job, but when executed, the
standard input, output, and error streams of the job are connected
through qsub to the terminal session in which qsub is running.
Interactive jobs are forced to not rerunable. See Extended
Description for additional information of interactive jobs.

-j join Declares if the standard error stream of the job will be merged with
the standard output stream of the job.
An option argument value of oe directs that the two streams will be
merged, intermixed, as standard output. An option argument value
of eo directs that the two streams will be merged, intermixed, as
standard error.
If the join argument is n or the option is not specified, the two
streams will be two separate files.

If using either the -e or the -o option and the -j eo|oe
option, the -j option takes precedence and all standard error
and output messages go to the chosen output file.

-k keep Defines which (if either) of standard output or standard error will
be retained on the execution host. If set for a stream, this option
overrides the path name for that stream. If not set, neither stream is
retained on the execution host.
The argument is either the single letter 'e' or 'o', or the letters 'e' and
'o' combined in either order. Or the argument is the letter 'n'.

l e – The standard error stream is to be retained on the execution
host. The stream will be placed in the home directory of the
user under whose user ID the job executed. The file name will
be the default file name given by:
job_name.esequence

where job_name is the name specified for the job, and
sequence is the sequence number component of the job
identifier.

l o – The standard output stream is to be retained on the
execution host. The stream will be placed in the home directory
of the user under whose user ID the job executed. The file name
will be the default file name given by:
job_name.osequence

where job_name is the name specified for the job, and
sequence is the sequence number component of the job
identifier.

Appendix A: Commands Overview

307 A.23 qsub

A.23 qsub 308

Option Argument Description

l eo – Both the standard output and standard error streams will
be retained.

l oe – Both the standard output and standard error streams will
be retained.

l n – Neither stream is retained.

-K kill_delay When set on a job, overrides server and queue kill_delay settings.
The kill_delay value is a positive integer. The default is 0. Seekill_
delay - page 341 for more information.

-l resource_
list

Defines the resources that are required by the job and establishes a
limit to the amount of resources that can be consumed. See 3.1.3
Requesting Resources - page 84 for more information.
If not set for a generally available resource, such as CPU time, the
limit is infinite. The resource_list argument is of the form:
resource_name[=[value]][,resource_name[=
[value]],...]

In this situation, you should request the more inclusive
resource first. For example, a request for procs should come
before a gres request.

qsub supports the mapping of -l gpus=X to -l gres=gpus:X.
This allows users who are using NUMA systems to make requests
such as -l ncpus=20:gpus=5 indicating they are not concerned
with the GPUs in relation to the NUMA nodes they request, they only
want a total of 20 cores and 5 GPUs.
If multiple -l options are specified for the same resource, only the
last resource list is submitted. For example, with qsub -l
nodes=1:ppn=1 -l nodes=1:ppn=2, the request for 1 node
and 1 process per node will be ignored, and the request for 1 node
and 2 processes per node will be submitted to the server.

-l supports some Moab-only extensions. See 3.1.3 Requesting
Resources - page 84 for more information on native Torque
resources. qsub -W x= is recommended instead (supports
more options). See -W for more information.

For information on specifying multiple types of resources for
allocation, see Multi-Req Support in the Moab Workload Manager
Administrator Guide.

-L NUMA_
resource_
list

This uses a different syntax than the -l resource_list option.

Defines the NUMA-aware resource requests for NUMA hardware.

Appendix A: Commands Overview

Option Argument Description

This option will work with non-NUMA hardware.
See the section -L NUMA Resource Request for the syntax and valid
values.

-m mail_
options

Defines the set of conditions under which the execution server will
send a mail message about the job. The mail_options argument is a
string that consists of either the single character 'n' or 'p', or one or
more of the characters 'a', 'b', 'e', and 'f'.
If the character 'n' is specified, no normal mail is sent. Mail for job
cancels and other events outside of normal job processing are still
sent.
If the character 'p' is specified, mail will never be sent for the job.
For the characters 'a', 'b', 'e' and 'f':

l a – Mail is sent when the job is aborted by the batch system.
l b – Mail is sent when the job begins execution.
l e – Mail is sent when the job terminates.
l f – Mail is sent when the job terminates with a non-zero exit

code.

If the -m option is not specified, mail will be sent if the job is
aborted.

-M user_list Declares the list of users to whom mail is sent by the execution
server when it sends mail about the job.
The user_list argument is of the form:
user[@host][,user[@host],...]

If unset, the list defaults to the submitting user at the qsub host
(i.e., the job owner).

-n node_
exclusive

Allows a user to specify an exclusive-node access/allocation request
for the job. This will set node_exclusive = True in the output
of qstat -f <job ID>.

For Moab, the following options are equivalent to '-n':
> qsub -l naccesspolicy=singlejob jobscript.sh
OR
> qsub -W x=naccesspolicy:singlejob jobscript.sh

By default, this only applies for cpusets, and only for compatible
schedulers (see4.6 Linux cpuset Support - page 128).
For systems that use Moab and have cgroups enabled, the

Appendix A: Commands Overview

309 A.23 qsub

A.23 qsub 310

Option Argument Description

recommended manner for assigning all cores is to use NUMA syntax:
-L tasks=<count>:lprocs=all:place=node.
With cgroups, the (-l) syntax (lowercase L) will, by default, restrict
to the number of cores requested, or to the resources_
default.procs value (i.e., 1 core, typically). In order to override
this behavior and have Moab assign all the cores on a node while
using -l...singlejob and/or -n (in other words, without -L
...lprocs=all...), you must also set RMCFG[<torque>]
FLAGS=MigrateAllJobAttributes in moab.cfg.

-N name Declares a name for the job. The name specified can be an unlimited
number of characters in length. It must consist of printable,
nonwhite space characters with the first character alphabetic.
If the -N option is not specified, the job name will be the base name
of the job script file specified on the command line. If no script file
name was specified and the script was read from the standard input,
then the job name will be set to STDIN.

-o path Defines the path to be used for the standard output stream of the
batch job. The path argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be
returned, and path_name is the path name on that host in the
syntax recognized by POSIX.

When specifying a directory for the location you need to
include a trailing slash.

The argument will be interpreted as follows:

l path_name – where path_name is not an absolute path name,
then the qsub command will expand the path name relative to
the current working directory of the command. The command
will supply the name of the host upon which it is executing for
the hostname component.

l hostname:path_name – where path_name is not an absolute
path name, then the qsub command will not expand the path
name relative to the current working directory of the command.
On delivery of the standard output, the path name will be
expanded relative to the user's home directory on the hostname
system.

l path_name – where path_name specifies an absolute path
name, then the qsub will supply the name of the host on which
it is executing for the hostname.

l hostname:path_namewhere path_name specifies an absolute

Appendix A: Commands Overview

Option Argument Description

path name, the path will be used as specified.

If the -o option is not specified, the default file name for the
standard output stream will be used. The default name has the
following form:

l job_name.osequence_number – where job_name is the name of
the job (see the -N name option) and sequence_number is
the job number assigned when the job is submitted.

-p priority Defines the priority of the job. The priority argument must be a
integer between -1024 and +1023 inclusive. The default is no
priority, which is equivalent to a priority of zero.

-P user
[:group]

Allows a root user or manager to submit a job as another user.
Torque treats proxy jobs as though the jobs were submitted by the
supplied username.

-q destination Defines the destination of the job. The destination names a queue, a
server, or a queue at a server.
The qsub command will submit the script to the server defined by
the destination argument. If the destination is a routing queue, the
job may be routed by the server to a new destination.
If the -q option is not specified, the qsub command will submit the
script to the default server. See Environment Variables and the PBS
ERS section 2.9.4, Default Server
(https://www.astro.princeton.edu/wiki/images/3/36/Pbs-ers.pdf).
If the -q option is specified, it is in one of the following three forms:

l queue
l @server
l queue@server

If the destination argument names a queue and does not name a
server, the job will be submitted to the named queue at the default
server.
If the destination argument names a server and does not name a
queue, the job will be submitted to the default queue at the named
server.
If the destination argument names both a queue and a server, the
job will be submitted to the named queue at the named server.

-r y/n Declares whether the job is rerunable (see the qrerun command).
The option argument is a single character, either y or n.

Appendix A: Commands Overview

311 A.23 qsub

https://www.astro.princeton.edu/wiki/images/3/36/Pbs-ers.pdf

A.23 qsub 312

Option Argument Description

If the argument is 'y', the job is rerunable. If the argument is 'n', the
job is not rerunable. The default value is y, rerunable.

-S path_list Declares the path to the desired shell for this job.
qsub script.sh -S /bin/tcsh

If the shell path is different on different compute nodes, use the
following syntax:
path[@host][,path[@host],...]
qsub script.sh -S
/bin/tcsh@node1,/usr/bin/tcsh@node2

Only one path can be specified for any host named. Only one path
can be specified without the corresponding host name. The path
selected will be the one with the host name that matched the name
of the execution host. If no matching host is found, then the path
specified without a host will be selected, if present.
If the -S option is not specified, the option argument is the null
string, or no entry from the path_list is selected, the execution will
use the user's login shell on the execution host.

-t array_
request

Specifies the task IDs of a job array. Single task arrays are allowed.
The array_request argument is an integer ID or a range of integers.
Multiple IDs or ID ranges can be combined in a comma-delimited
list. Examples: -t 1-100 or -t 1,10,50-100

An optional slot limit can be specified to limit the amount of jobs
that can run concurrently in the job array. The default value is
unlimited. The slot limit must be the last thing specified in the array_
request and is delimited from the array by a percent sign (%):
qsub script.sh -t 0-299%5

This sets the slot limit to 5. Only 5 jobs from this array can run at
the same time.
You can use qalter to modify slot limits on an array. The server
parameter max_slot_limit can be used to set a global slot limit policy.

-T script Specifies a prologue or epilogue script for the job. The full name of
the scripts are prologue.<script_name> or
epilogue.<script_name>, but you only specify the <script_
name> portion when using the -T option. For example, qsub -T
prescript specifies the prologue.prescript script file.

Appendix A: Commands Overview

Option Argument Description

-u This option is deprecated and will not work as previously
documented. Use -P.

-v variable_
list

Expands the list of environment variables that are exported to the
job.
In addition to the variables described in the 'Description' section
above, variable_list names environment variables from the
qsub command environment that are made available to the job
when it executes. The variable_list is a comma separated list of
strings of the form variable or variable=value. These
variables and their values are passed to the job. Note that -v has a
higher precedence than -V, so identically named variables specified
via -v will provide the final value for an environment variable in the
job. Example: -v V1,V2=,V3=myval causes environment
variables V1 and V2 to be set within the job to the value taken from
the submitting shell's environment. V3 is set within the job to the
specified value myval. If V1 and V2 are undefined in the submitting
shell's environment, they will be defined within the job, but have no
value.

-V --- Declares that all environment variables in the qsub commands
environment are to be exported to the batch job.

-w path Defines the working directory path to be used for the job. If the -w
option is not specified, the default working directory is the current
directory. This option sets the environment variable PBS_O_
WORKDIR.

-W additional_
attributes Use '-W x=' as pass-through for scheduler-only job extensions.

See Resource Manager Extensions in the Moab Workload
Manager Administrator Guide for a list of scheduler-only job
extensions.
For legacy purposes, qsub -l will continue to support some
scheduler-only job extensions. However, when in doubt, use '-
W x='.

The -W option allows for the specification of additional job
attributes. The general syntax of -W is in the form:
-W attr_name=attr_value.
You can use multiple -W options with this syntax:
-W attr_name1=attr_value1 -W attr_name2=attr_
value2.

Appendix A: Commands Overview

313 A.23 qsub

A.23 qsub 314

Option Argument Description

If white space occurs anywhere within the option argument
string or the equal sign, "=", occurs within an attribute_value
string, then the string must be enclosed with either single or
double quote marks.

PBS currently supports the following attributes within the -W
option:

l depend=dependency_list – Defines the dependency between this
and other jobs. The dependency_list is in the form:
type[:argument[:argument...]
[,type:argument...]

The argument is either a numeric count or a PBS job ID
according to type. If argument is a count, it must be greater
than 0. If it is a job ID and not fully specified in the form seq_
number.server.name, it will be expanded according to
the default server rules that apply to job IDs on most
commands. If argument is null (the preceding colon need not
be specified), the dependency of the corresponding type is
cleared (unset). For more information, see
depend=dependency_list Valid Dependencies.

l group_list=g_list – Defines the group name under which the job
is to run on the execution system. The g_list argument is of the
form:
group[@host][,group[@host],...]

Only one group name can be given per specified host. Only
one of the group specifications can be supplied without the
corresponding host specification. That group name will used
for execution on any host not named in the argument list. If
not set, the group_list defaults to the primary group of the
user under which the job will be run.

l interactive=true – If the interactive attribute is specified, the job
is an interactive job. The -I option is an alternative method of
specifying this attribute.

l job_radix=<int> – To be used with parallel jobs. It directs the
Mother Superior of the job to create a distribution radix of size
<int> between sisters. See Managing Multi-Node Jobs.

l stagein=file_list
l stageout=file_list – Specifies which files are staged (copied) in

before job start or staged out after the job completes execution.
On completion of the job, all staged-in and staged-out files are
removed from the execution system. The file_list is in the form:
local_file@hostname:remote_file[,...]

regardless of the direction of the copy. The name local_file is

Appendix A: Commands Overview

Option Argument Description

the name of the file on the system where the job executed. It
can be an absolute path or relative to the home directory of
the user. The name remote_file is the destination name on the
host specified by hostname. The name can be absolute or
relative to the user's home directory on the destination host.
The use of wildcards in the file name is not recommended.
The file names map to a remote copy program (rcp) call on
the execution system in the follow manner:

o For stagein: rcp hostname:remote_file local_
file

o For stageout: rcp local_file
hostname:remote_file

Data staging examples:
-W stagein=/tmp/input.txt@headnode:
/home/user/input.txt
-W stageout=/tmp/output.txt@headnode:
/home/user/output.txt

If Torque has been compiled with wordexp support, then
variables can be used in the specified paths. Currently, only
$PBS_JOBID, $HOME, and $TMPDIR are supported for
stagein.

l umask=XXX – Sets umask used to create stdout and stderr spool
files in pbs_mom spool directory. Values starting with 0 are
treated as octal values; otherwise, the value is treated as a
decimal umask value.

-x --- By default, if you submit an interactive job with a script, the script
will be parsed for PBS directives but the rest of the script will be
ignored since it's an interactive job. The -x option allows the script
to be executed in the interactive job and then the job completes. For
example:
script.sh
#!/bin/bash
ls
---end script---
qsub -I script.sh
qsub: waiting for job 5.napali to start
dbeer@napali:#
<displays the contents of the directory, because
of the ls command>
qsub: job 5.napali completed

Appendix A: Commands Overview

315 A.23 qsub

A.23 qsub 316

Option Argument Description

-X --- Enables X11 forwarding. The DISPLAY environment variable must be
set.

-z --- Directs that the qsub command is not to write the job identifier
assigned to the job to the commands standard output.

depend=dependency_list Valid Dependencies

For job dependencies to work correctly, you must set the keep_completed server
parameter.

Dependency Description

synccount:count This job is the first in a set of jobs to be
executed at the same time. Count is the
number of additional jobs in the set.

syncwith:jobid This job is an additional member of a set of
jobs to be executed at the same time. In the
above and following dependency types, jobid
is the job identifier of the first job in the set.

after:jobid[:jobid...] This job can be scheduled for execution at
any point after jobs jobid have started
execution.

afterok:jobid[:jobid...] This job can be scheduled for execution only
after jobs jobid have terminated with no
errors. See the csh warning under Extended
Description.

afternotok:jobid[:jobid...] This job can be scheduled for execution only
after jobs jobid have terminated with errors.
See the csh warning under Extended
Description.

afterany:jobid[:jobid...] This job can be scheduled for execution after
jobs jobid have terminated, with or without
errors.

Appendix A: Commands Overview

Dependency Description

on:count This job can be scheduled for execution after
count dependencies on other jobs have been
satisfied. This form is used in conjunction
with one of the 'before' forms (see below).

before:jobid[:jobid...] When this job has begun execution, then jobs
jobid... can begin.

beforeok:jobid[:jobid...] If this job terminates execution without
errors, then jobs jobid... can begin. See the csh
warning under Extended Description.

beforenotok:jobid[:jobid...] If this job terminates execution with errors,
then jobs jobid... can begin. See the csh
warning under Extended Description.

beforeany:jobid[:jobid...] When this job terminates execution, jobs
jobid... can begin.
If any of the before forms are used, the jobs
referenced by jobid must have been
submitted with a dependency type of on.
If any of the before forms are used, the jobs
referenced by jobid must have the same
owner as the job being submitted. Otherwise,
the dependency is ignored.

Array dependencies make a job depend on an array or part of an array. If no count is
given, then the entire array is assumed. For examples, see Dependency Examples.

afterstartarray:arrayid[count] After this many jobs have started from
arrayid, this job can start.

afterokarray:arrayid[count] This job can be scheduled for execution only
after jobs in arrayid have terminated with no
errors.

afternotokarray:arrayid[count] This job can be scheduled for execution only
after jobs in arrayid have terminated with
errors.

afteranyarray:arrayid[count] This job can be scheduled for execution after

Appendix A: Commands Overview

317 A.23 qsub

A.23 qsub 318

Dependency Description

jobs in arrayid have terminated, with or
without errors.

beforestartarray:arrayid[count] Before this many jobs have started from
arrayid, this job can start.

beforeokarray:arrayid[count] If this job terminates execution without
errors, then jobs in arrayid can begin.

beforenotokarray:arrayid[count] If this job terminates execution with errors,
then jobs in arrayid can begin.

beforeanyarray:arrayid[count] When this job terminates execution, jobs in
arrayid can begin.
If any of the before forms are used, the jobs
referenced by arrayid must have been
submitted with a dependency type of on.
If any of the before forms are used, the jobs
referenced by arrayid must have the same
owner as the job being submitted. Otherwise,
the dependency is ignored.

Error processing of the existence, state, or condition of the job on which the newly
submitted job is a deferred service (i.e., the check is performed after the job is queued). If
an error is detected, the new job will be deleted by the server. Mail will be sent to the job
submitter stating the error.

Jobs can depend on single job dependencies and array dependencies at the same time.

afterok:jobid
[:jobid...],afterokarray:arrayid
[count]

This job can be scheduled for execution only
after jobs jobid and jobs in arrayid have
terminated with no errors.

Dependency Examples
qsub -W depend=afterok:123.big.iron.com /tmp/script

qsub -W depend=before:234.hunk1.com:235.hunk1.com

/tmp/script

qsub script.sh -W depend=afterokarray:427[]

Appendix A: Commands Overview

(This assumes every job in array 427 has to finish successfully for the dependency to be
satisfied.)

qsub script.sh -W depend=afterokarray:427[][5]

(This means that 5 of the jobs in array 427 have to successfully finish in order for the
dependency to be satisfied.)

qsub script.sh -W depend=afterok:360976,afterokarray:360977[]

(Job 360976 and all jobs in array 360977 have to successfully finish for the dependency to
be satisfied.)

A.23.4 Operands
The qsub command accepts a script operand that is the path to the script of the job. If the
path is relative, it will be expanded relative to the working directory of the qsub command.

If the script operand is not provided or the operand is the single character '-', the qsub
command reads the script from standard input. When the script is being read from
Standard Input, qsub will copy the file to a temporary file. This temporary file is passed to
the library interface routine pbs_submit. The temporary file is removed by qsub after pbs_
submit returns or upon the receipt of a signal that would cause qsub to terminate.

A.23.5 Standard Input
The qsub command reads the script for the job from standard input if the script operand
is missing or is the single character '-'.

A.23.6 Input Files
The script file is read by the qsub command. qsub acts upon any directives found in the
script.

When the job is created, a copy of the script file is made and that copy cannot be modified.

A.23.7 Standard Output
Unless the -z option is set, the job identifier assigned to the job will be written to standard
output if the job is successfully created.

A.23.8 Standard Error

Appendix A: Commands Overview

319 A.23 qsub

A.23 qsub 320

The qsub command will write a diagnostic message to standard error for each error
occurrence.

A.23.9 Environment Variables
The values of some or all of the variables in the qsub commands environment are
exported with the job (see the -v and -V options).

The environment variable PBS_DEFAULT defines the name of the default server. Typically,
it corresponds to the system name of the host on which the server is running. If PBS_
DEFAULT is not set, the default is defined by an administrator established file.

The environment variable PBS_DPREFIX determines the prefix string that identifies
directives in the script.

The environment variable PBS_CLIENTRETRY defines the maximum number of seconds
qsub will block (see the -b option). Despite the name, currently qsub is the only client that
supports this option.

A.23.10 torque.cfg
The torque.cfg file, located in PBS_SERVER_HOME (/var/spool/torque by
default) controls the behavior of the qsub command. This file contains a list of parameters
and values separated by whitespace. See Appendix K: torque.cfg Configuration File - page
418 for more information on these parameters.

A.23.11 Extended Description

Script Processing
A job script can consist of PBS directives, comments and executable statements. A PBS
directive provides a way of specifying job attributes in addition to the command line
options. For example:

:
#PBS -N Job_name
#PBS -l walltime=10:30,mem=320kb
#PBS -m be
#
step1 arg1 arg2
step2 arg3 arg4

The qsub command scans the lines of the script file for directives. An initial line in the
script that begins with the characters '#!' or the character ':' will be ignored and scanning
will start with the next line. Scanning will continue until the first executable line, that is a

Appendix A: Commands Overview

line that is not blank, not a directive line, nor a line whose first nonwhite space character is
'#'. If directives occur on subsequent lines, they will be ignored.

A line in the script file will be processed as a directive to qsub if and only if the string of
characters starting with the first nonwhite space character on the line and of the same
length as the directive prefix matches the directive prefix.

The remainder of the directive line consists of the options to qsub in the same syntax as
they appear on the command line. The option character is to be preceded with the '-'
character.

If an option is present in both a directive and on the command line, that option and its
argument, if any, will be ignored in the directive. The command line takes precedence.

If an option is present in a directive and not on the command line, that option and its
argument, if any, will be processed as if it had occurred on the command line.

The directive prefix string will be determined in order of preference from:

l The value of the -C option argument if the option is specified on the command line.

l The value of the environment variable PBS_DPREFIX if it is defined.

l The four character string #PBS.

If the -C option is found in a directive in the script file, it will be ignored.

C-Shell .logout File
The following warning applies for users of the c-shell, csh. If the job is executed under the
csh and a .logout file exists in the home directory in which the job executes, the exit
status of the job is that of the .logout script, not the job script. This may impact any
inter-job dependencies. To preserve the job exit status, either remove the .logout file or
place the following line as the first line in the .logout file:

set EXITVAL = $status

and the following line as the last executable line in .logout:

exit $EXITVAL

Interactive Jobs
If the -I option is specified on the command line or in a script directive, or if the 'interactive'
job attribute declared true via the -W option, -W interactive=true, either on the
command line or in a script directive, the job is an interactive job. The script will be
processed for directives, but will not be included with the job. When the job begins
execution, all input to the job is from the terminal session in which qsub is running.

When an interactive job is submitted, the qsub command will not terminate when the job
is submitted. qsub will remain running until the job terminates, is aborted, or the user

Appendix A: Commands Overview

321 A.23 qsub

A.23 qsub 322

interrupts qsub with an SIGINT (the control-C key). If qsub is interrupted prior to job
start, it will query if the user wants to exit. If the user response 'yes', qsub exits and the job
is aborted.

One the interactive job has started execution, input to and output from the job pass
through qsub. Keyboard generated interrupts are passed to the job. Lines entered that
begin with the tilde (~) character and contain special sequences are escaped by qsub. The
recognized escape sequences are:

Sequence Description

~. qsub terminates execution. The batch job is also terminated.

~susp Suspend the qsub program if running under the C shell. 'susp' is the suspend
character (usually CNTL-Z).

~asusp Suspend the input half of qsub (terminal to job), but allow output to continue
to be displayed. Only works under the C shell. 'asusp' is the auxiliary suspend
character, usually CNTL-Y.

A.23.12 Exit Status
Upon successful processing, the qsub exit status will be a value of zero.

If the qsub command fails, the command exits with a value greater than zero.

Related Topics

l qalter(1B)

l qdel(1B)

l qhold(1B)

l qrls(1B)

l qsig(1B)

l qstat(1B)

l pbs_server(8B)

Non-Adaptive Computing Topics
l pbs_connect(3B)

l pbs_job_attributes(7B)

Appendix A: Commands Overview

l pbs_queue_attributes(7B)

l pbs_resources_irix5(7B)

l pbs_resources_sp2(7B)

l pbs_resources_sunos4(7B)

l pbs_resources_unicos8(7B)

l pbs_server_attributes(7B)

l qselect(1B)

l qmove(1B)

l qmsg(1B)

l qrerun(1B)

A.24 qterm

Terminate processing by a PBS batch server.

A.24.1 Synopsis
qterm [-l] [-t type] [server...]

A.24.2 Description
The qterm command terminates a batch server. When a server receives a terminate
command, the server will go into the 'Terminating' state. No new jobs will be allowed to be
started into execution or enqueued into the server. The impact on jobs currently being run
by the server depends

In order to execute qterm, the user must have PBS Operation or Manager privileges.

A.24.3 Options

Option Name Description

-l local Terminate processing only if the active server is local to where qterm is
being executed.

Appendix A: Commands Overview

323 A.24 qterm

A.24 qterm 324

Option Name Description

-t type Specifies the type of shut down. The types are:

l quick – This is the default action if the -t option is not specified. This
option is used when you want running jobs to be left running when
the server shuts down. The server will cleanly shutdown and can be
restarted when desired. Upon restart of the server, jobs that continue
to run are shown as running; jobs that terminated during the server's
absence will be placed into the exiting state.

The immediate and delay types are deprecated.

A.24.4 Operands
The server operand specifies which servers are to shut down. If no servers are given, then
the default server will be terminated.

A.24.5 Standard Error
The qterm command will write a diagnostic message to standard error for each error
occurrence.

A.24.6 Exit Status
Upon successful processing of all the operands presented to the qterm command, the exit
status will be a value of zero.

If the qterm command fails to process any operand, the command exits with a value
greater than zero.

Related Topics (Non-Adaptive Computing Topics)
pbs_server(8B)

qmgr(8B)

pbs_resources_aix4(7B)

pbs_resources_irix5(7B)

pbs_resources_sp2(7B)

pbs_resources_sunos4(7B)

pbs_resources_unicos8(7B)

Appendix A: Commands Overview

A.25 trqauthd

(Torque authorization daemon)

A.25.1 Synopsis
trqauthd -d

trqauthd -D

trqauthd -F

trqauthd --logfile_dir

trqauthd -n

A.25.2 Description
The trqauthd daemon replaced the pbs_iff authentication process. When users
connect to pbs_server by calling one of the Torque utilities or by using the Torque APIs,
the new user connection must be authorized by a trusted entity, which runs as root. The
advantage of trqauthd's doing this rather than pbs_iff is that trqauthd is resident,
meaning you do not need to be loaded every time a connection is made; multi-threaded;
scalable; and more easily adapted to new functionality than pbs_iff.

trqauthd can remember the currently active pbs_server host, enhancing high
availability functionality. Previously, trqauthd tried to connect to each host in the
TORQUE_HOME/<server_name> file until it could successfully connect. Because it now
remembers the active server, it tries to connect to that server first. If it fails to connect, it
will go through the <server_name> file and try to connect to a host where an active
pbs_server is running.

You have the option when starting trqauthd to disable trqauthd from logging anything. In
addition, the -F (don't fork) option is available when running under systemd.

If you run trqauthd before starting pbs_server, you will receive a warning that no
servers are available. To avoid this message, start pbs_server before running
trqauthd.

A.25.3 Options

Appendix A: Commands Overview

325 A.25 trqauthd

A.25 trqauthd 326

-d — Terminate

Format ---

Default ---

Description Terminate trqauthd.

Example trqauthd -d

-D — Debug

Format ---

Default ---

Description Run trqauthd in debug mode.

Example trqauthd -D

-F — Fork

Format ---

Default ---

Description Prevents the system from forking. Useful when running under systemd (Red
Hat 7-based or SUSE 12-based systems).

Example trqauthd -F

--logfile_dir — Specify log file directory

Format =<path>

Default ---

Description Specifies custom directory for trqauthd log file.

Appendix A: Commands Overview

--logfile_dir — Specify log file directory

Example trqauthd --logfile_dir=/logs

-n — No Logging

Format ---

Default ---

Description Disables trqauthd from logging anything.

Example trqauthd -n

Appendix A: Commands Overview

327 A.25 trqauthd

328

Appendix B: Server Parameters
Torque server parameters are specified using the qmgr command. The set subcommand
is used to modify the server object. For example:

> qmgr -c 'set server default_queue=batch'

Parameters

acl_group_hosts acl_host_enable acl_hosts

acl_logic_or acl_user_hosts allow_node_submit

allow_proxy_user auto_node_np automatic_requeue_exit_code

cgroup_per_task checkpoint_defaults clone_batch_delay

clone_batch_size copy_on_rerun default_gpu_mode

default_queue disable_automatic_requeue disable_server_id_check

display_job_server_suffix dont_write_nodes_file down_on_error

email_batch_seconds exit_code_canceled_job ghost_array_recovery

gres_modifiers idle_slot_limit interactive_jobs_can_roam

job_exclusive_on_use job_force_cancel_time job_full_report_time

job_log_file_max_size job_log_file_roll_depth job_log_keep_days

job_nanny job_start_timeout job_stat_rate

job_suffix_alias job_sync_timeout keep_completed

kill_delay legacy_vmem lock_file

lock_file_check_time lock_file_update_time log_events

log_file_max_size log_file_roll_depth log_keep_days

Appendix B: Server Parameters

log_level mail_body_fmt mail_domain

mail_from mail_subject_fmt managers

max_job_array_size max_slot_limit max_threads

max_user_queuable max_user_run min_threads

moab_array_compatible mom_job_sync next_job_number

node_check_rate node_pack node_ping_rate

node_submit_exceptions no_mail_force np_default

operators pass_cpuclock poll_jobs

query_other_jobs record_job_info record_job_script

resources_available scheduling sendmail_path

submit_hosts tcp_incoming_timeout tcp_timeout

thread_idle_seconds timeout_for_job_delete timeout_for_job_requeue

use_jobs_subdirs

acl_group_hosts

Format group@host[.group@host]...

Default ---

Description Users who are members of the specified groups will be able to submit jobs
from these otherwise untrusted hosts. Users who aren't members of the
specified groups will not be able to submit jobs unless they are specified in
acl_user_hosts.

Appendix B: Server Parameters

329

330

acl_host_enable

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, hosts not in the pbs_server nodes file must be added to
the acl_hosts list in order to get access to pbs_server.

acl_hosts

Format <HOST>[,<HOST>]... or <HOST>[range] or <HOST*> where the
asterisk (*) can appear anywhere in the host name

Default Not set.

Description Specifies a list of hosts that can have access to pbs_server when acl_
host_enable is set to TRUE. This does not enable a node to submit jobs. To
enable a node to submit jobs use submit_hosts.

Hosts that are in the TORQUE_HOME/server_priv/nodes file do
not need to be added to this list.
Qmgr: set queue batch acl_hosts="hostA,hostB"
Qmgr: set queue batch acl_hosts+=hostC
Qmgr: set server acl_hosts="hostA,hostB"
Qmgr: set server acl_hosts+=hostC

The wildcard (*) character can appear anywhere in the host name, and
ranges are supported; these specifications also work for managers and
operators.
Qmgr: set server acl_hosts = "galaxy*.tom.org"
Qmgr: set server acl_hosts += "galaxy[0-50].tom.org"

acl_logic_or

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, the user and group queue ACLs are logically ORed. When
set to FALSE, they are ANDed.

Appendix B: Server Parameters

acl_user_hosts

Format group@host[.group@host]...

Default ---

Description The specified users are allowed to submit jobs from otherwise untrusted hosts.
By setting this parameter, other users at these hosts will not be allowed to
submit jobs unless they are members of specified groups in acl_group_
hosts.

allow_node_submit

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, allows all hosts in the PBSHOME/server_priv/nodes
file (MOM nodes) to submit jobs to pbs_server.
To only allow qsub from a subset of all MOMs, use submit_hosts.

allow_proxy_user

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that users can proxy from one user to another.
Proxy requests will be either validated by ruserok() or by the scheduler.

auto_node_np

Format <BOOLEAN>

Default DISABLED

Description When set to TRUE, automatically configures a node's np (number of
processors) value based on the ncpus value from the status update. Requires
full manager privilege to set or alter.

Appendix B: Server Parameters

331

332

automatic_requeue_exit_code

Format <LONG>

Default ---

Description This is an exit code, defined by the admin, that tells pbs_server to requeue
the job instead of considering it as completed. This allows the user to add
some additional checks that the job can run meaningfully, and if not, then the
job script exits with the specified code to be requeued.

cgroup_per_task

Format <BOOLEAN>

Default FALSE

Description When set to FALSE, jobs submitted with the -L syntax will have one cgroup
created per host unless they specify otherwise at submission time. This
behavior is similar to the pre-6.0 cpuset implementation.
When set to TRUE, jobs submitted with the -L syntax will have one cgroup
created per task unless they specify otherwise at submission time.

Some MPI implementations are not compatible with using one cgroup
per task.

See -L NUMA Resource Request for more information.

checkpoint_defaults

Format <STRING>

Default ---

Description Specifies for a queue the default checkpoint values for a job that does not have
checkpointing specified. The checkpoint_defaults parameter only takes
effect on execution queues.
set queue batch checkpoint_defaults="enabled, periodic, interval=5"

Appendix B: Server Parameters

clone_batch_delay

Format <INTEGER>

Default 1

Description Specifies the delay (in seconds) between clone batches (see clone_batch_
size).

clone_batch_size

Format <INTEGER>

Default 256

Description Job arrays are created in batches of size X. X jobs are created, and after the
clone_batch_delay, X more are created. This repeats until all are created.

copy_on_rerun

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, Torque will copy the output and error files over to the
user-specified directory when the qrerun command is executed (i.e., a job
preemption). Output and error files are only created when a job is in running
state before the preemption occurs.

pbs_server and pbs_mom need to be on the same version.

When you change the value, you must perform a pbs_server restart
for the change to effect.

default_gpu_mode

Format <STRING>

Default exclusive_thread

Appendix B: Server Parameters

333

334

default_gpu_mode

Description Determines what GPU mode will be used for jobs that request GPUs but do not
request a GPU mode. Valid entries are exclusive_thread, exclusive,
exclusive_process, default, and shared.

If you are using CUDA 8 or newer, the default of exclusive_thread
is no longer supported. If the server specifies an exclusive_thread
setting, the MOM will substitute an exclusive_process mode
setting. We recommend that you set the default to exclusive_
process.

If you upgrade your CUDA library, you must rebuild Torque.

default_queue

Format <STRING>

Default ---

Description Indicates the queue to assign to a job if no queue is explicitly specified by the
submitter.

disable_automatic_requeue

Format <BOOLEAN>

Default FALSE

Description Normally, if a job cannot start due to a transient error, the MOM returns a
special exit code to the server so that the job is requeued instead of completed.
When this parameter is set, the special exit code is ignored and the job is
completed.

disable_server_id_check

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, makes it so the user for the job doesn't have to exist on the

Appendix B: Server Parameters

disable_server_id_check

server. The user must still exist on all the compute nodes or the job will fail
when it tries to execute.

If you have disable_server_id_check set to TRUE, a user could
request a group to which they do not belong. Setting

VALIDATEGROUP to TRUE in the torque.cfg file prevents such a
scenario (seetorque.cfg Configuration File).

display_job_server_suffix

Format <BOOLEAN>

Default TRUE

Description When set to TRUE, Torque will display both the job ID and the host name.
When set to FALSE, only the job ID will be displayed.

If set to FALSE, the environment variable NO_SERVER_SUFFIX must
be set to TRUE for pbs_track to work as expected.

display_job_server_suffix should not be set unless the server
has no queued jobs. If it is set while the server has queued jobs, it will
cause problems correctly identifying job IDs with all existing jobs.

dont_write_nodes_file

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, the nodes file cannot be overwritten for any reason; qmgr
commands to edit nodes will be rejected.

down_on_error

Format <BOOLEAN>

Default TRUE

Appendix B: Server Parameters

335

336

down_on_error

Description When set to TRUE, pbs_server will mark nodes that report an error from
their node health check as down and unavailable to run jobs. See A.4.5 Health
Check - page 246 for more information.

email_batch_seconds

Format <INTEGER>

Default 0

Description If set to a number greater than 0, emails will be sent in a batch every specified
number of seconds, per addressee. For example, if this is set to 300, then each
user will only receive emails every 5 minutes in the most frequent scenario.
The addressee would then receive one email that contains all of the
information that would've been sent out individually before. If it is unset or set
to 0, then emails will be sent for every email event.

exit_code_canceled_job

Format <INTEGER>

Default ---

Description When set, the exit code provided by the user is given to any job that is
canceled, regardless of the job's state at the time of cancellation.

ghost_array_recovery

Format <BOOLEAN>

Default TRUE

Description When TRUE, array subjobs will be recovered regardless of whether the .AR
file was correctly recovered. This prevents the loss of running and queued jobs.
However, it may no longer enforce a per-job slot limit or handle array
dependencies correctly, as some historical information will be lost. When
FALSE, array subjobs will not be recovered if the .AR file is invalid or non-
existent.

Appendix B: Server Parameters

gres_modifiers

Format Comma-separated list of user IDs

Default ---

Description List of users granted permission to modify the gres resource of their own
running jobs. Note that users do not need special permission to modify the
gres resource of their own queued jobs.

idle_slot_limit

Format <INTEGER>

Default 300

Description Sets a default idle slot limit that will be applied to all arrays submitted after it
is set.
The idle slot limit is the maximum number of subjobs from an array that will
be instantiated at once. For example, if this is set to 2, and an array with 1000
subjobs is submitted, then only two will ever be idle (queued) at a time.
Whenever an idle subjob runs or is deleted, then a new subjob will be
instantiated until the array no longer has remaining subjobs.
If this parameter is set, and user during job submission (using qsub -i)
requests an idle slot limit that exceeds this setting, that array will be rejected.
See also the -i option.

Example qmgr -c 'set server idle_slot_limit = 50'

interactive_jobs_can_roam

Format <BOOLEAN>

Default FALSE

Description By default, interactive jobs run from the login node that they submitted from.
When TRUE, interactive jobs can run on login nodes other than the one where
the jobs were submitted from.

Appendix B: Server Parameters

337

338

job_exclusive_on_use

Format <BOOLEAN>

Default FALSE

Description When job_exclusive_on_use is set to TRUE, pbsnodes will show job-
exclusive on a node when there's at least one of its processors running a job.
This differs with the default behavior, which is to show job-exclusive on a node
when all of its processors are running a job.

Example set server job_exclusive_on_use=TRUE

job_force_cancel_time

Format <INTEGER>

Default Disabled

Description If a job has been deleted and is still in the system after x seconds, the job will
be purged from the system. This is mostly useful when a job is running on a
large number of nodes and one node goes down. The job cannot be deleted
because the MOM cannot be contacted. The qdel fails and none of the other
nodes can be reused. This parameter can used to remedy such situations.

job_full_report_time

Format <INTEGER>

Default 300

Description Sets the time in seconds that a job should be fully reported after any kind of
change to the job, even if condensed output was requested.

job_log_file_max_size

Format <INTEGER>

Default ---

Appendix B: Server Parameters

job_log_file_max_size

Description This specifies a soft limit (in kilobytes) for the job log's maximum size. The file
size is checked every five minutes and if the current day file size is greater than
or equal to this value, it is rolled from <filename> to <filename.1> and
a new empty log is opened. If the current day file size exceeds the maximum
size a second time, the <filename.1> log file is rolled to <filename.2>,
the current log is rolled to <filename.1>, and a new empty log is opened.
Each new log causes all other logs to roll to an extension that is one greater
than its current number. Any value less than 0 is ignored by pbs_server
(meaning the log will not be rolled).

job_log_file_roll_depth

Format <INTEGER>

Default ---

Description This sets the maximum number of new log files that are kept in a day if the
job_log_file_max_size parameter is set. For example, if the roll depth
is set to 3, no file can roll higher than <filename.3>. If a file is already at
the specified depth, such as <filename.3>, the file is deleted so it can be
replaced by the incoming file roll, <filename.2>.

job_log_keep_days

Format <INTEGER>

Default ---

Description This maintains logs for the number of days designated. If set to 4, any log file
older than 4 days old is deleted.

job_nanny

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, enables the experimental 'job deletion nanny' feature. All
job cancels will create a repeating task that will resend KILL signals if the
initial job cancel failed. Further job cancels will be rejected with the message

Appendix B: Server Parameters

339

340

job_nanny

"job cancel in progress." This is useful for temporary failures with a job's
execution node during a job delete request.

job_start_timeout

Format <INTEGER>

Default ---

Description Specifies the pbs_server to pbs_mom TCP socket timeout in seconds that is
used when the pbs_server sends a job start to the pbs_mom. It is useful
when the MOM has extra overhead involved in starting jobs. If not specified,
then the tcp_timeout parameter is used.

job_stat_rate

Format <INTEGER>

Default 300

Description If the mother superior has not sent an update by the specified time, at the
specified time, pbs_server requests an update on job status from the
mother superior.

job_suffix_alias

Format <STRING>

Default ---

Description Allows the job suffix to be defined by the user.

job_suffix_alias should not be set unless the server has no
queued jobs. If it is set while the server has queued jobs, it will cause
problems correctly identifying job IDs with all existing jobs.

Example qmgr -c 'set server job_suffix_alias = biology'

When a job is submitted after this, its jobid will have .biology on the end:

Appendix B: Server Parameters

job_suffix_alias

14.napali.biology. If display_job_server_suffix is set to
false, it would be named 14.biology.

job_sync_timeout

Format <INTEGER>

Default 60

Description When a stray job is reported on multiple nodes, the server sends a kill signal
to one node at a time. This timeout determines how long the server waits
between kills if the job is still being reported on any nodes.

keep_completed

Format <INTEGER>

Default 300

Description The amount of time (in seconds) a job will be kept in the queue after it has
entered the completed state. keep_completed must be set for job
dependencies to work.
For more information, see Keeping Completed Jobs.

kill_delay

Format <INTEGER>

Default If using qdel, 2 seconds
If using qrerun, 0 (no wait)

Description Specifies the number of seconds between sending a SIGTERM and a SIGKILL to
a job you want to cancel. It is possible that the job script, and any child
processes it spawns, can receive several SIGTERM signals before the SIGKILL
signal is received.

Appendix B: Server Parameters

341

342

kill_delay

All MOMs must be configured with $exec_with_exec true in order
for kill_delay to work, even when relying on default kill_delay
settings.

If kill_delay is set for a queue, the queue setting overrides the
server setting. See kill_delay in Appendix N: Queue Attributes -
page 437.

Example qmgr -c "set server kill_delay=30"

legacy_vmem

Format <BOOLEAN>

Default FALSE

Description When set to true, the vmem request will be the amount of memory requested
for each node of the job. When it is unset or false, vmem will be the amount of
memory for the entire job and will be divided accordingly

lock_file

Format <STRING>

Default torque/server_priv/server.lock

Description Specifies the name and location of the lock file used to determine which high
availability server should be active.
If a full path is specified, it is used verbatim by Torque. If a relative path is
specified, Torque will prefix it with torque/server_priv.

lock_file_check_time

Format <INTEGER>

Default 9

Appendix B: Server Parameters

lock_file_check_time

Description Specifies how often (in seconds) a high availability server will check to see if it
should become active.

lock_file_update_time

Format <INTEGER>

Default 3

Description Specifies how often (in seconds) the thread will update the lock file.

log_events

Format Bitmap

Default ---

Descriptio
n

By default, the server logs all events. To customize this, perform Boolean OR
operations on the binary representation of each of the following bitmaps (or
'enablement bits') to put into effect, then convert the end result to decimal and
assign it to log_events:

#define PBSEVENT_ERROR 0x0001 /* internal errors */
#define PBSEVENT_SYSTEM 0x0002 /* system (server) events */
#define PBSEVENT_ADMIN 0x0004 /* admin events */
#define PBSEVENT_JOB 0x0008 /* job related events */
#define PBSEVENT_JOB_USAGE 0x0010 /* End of Job accounting */
#define PBSEVENT_SECURITY 0x0020 /* security violation events */
#define PBSEVENT_SCHED 0x0040 /* scheduler events */
#define PBSEVENT_DEBUG 0x0080 /* common debug messages */
#define PBSEVENT_DEBUG2 0x0100 /* less needed debug messages */
#define PBSEVENT_CLIENTAUTH 0X0200 /* TRQAUTHD login events */
#define PBSEVENT_SYSLOG 0x0400 /* pass this event to the syslog as well (if
defined) */
#define PBSEVENT_FORCE 0x8000 /* set to force a message */

For example, if you want to log only internal error, system/server, job-related,
and job-usage events, set log_events to 27 (1 (0x01) + 2 (0x02) + 8 (0x08) + 16
(0x10)) in qmgr:

Qmgr: set server log_events = 27

Appendix B: Server Parameters

343

344

log_file_max_size

Format <INTEGER>

Default 0

Description Specifies a soft limit, in kilobytes, for the server's log file. The file size is
checked every 5 minutes, and if the current day file size is greater than or
equal to this value then it will be rolled from X to X.1 and a new empty log
will be opened. Any value less than or equal to 0 will be ignored by pbs_
server (the log will not be rolled).

log_file_roll_depth

Format <INTEGER>

Default 1

Description If log_file_max_size is set, controls how deep the current day log
files will be rolled before they are deleted.

log_keep_days

Format <INTEGER>

Default 0

Description Specifies how long (in days) a server or MOM log should be kept.

log_level

Format <INTEGER>

Default 0

Description Specifies the pbs_server logging verbosity. Maximum value is 7.

Appendix B: Server Parameters

mail_body_fmt

Format A printf-like format string

Default PBS Job Id: %i Job Name: %j Exec host: %h %m %d

Description Override the default format for the body of outgoing mail messages. A number
of printf-like format specifiers and escape sequences can be used:

l \n – new line
l \t – tab
l \\ – backslash
l \' – single quote
l \" – double quote
l %d – details concerning the message
l %h – PBS host name
l %i – PBS job identifier
l %j – PBS job name
l %m – long reason for message
l %o – job owner
l %q – job's queue
l %r – short reason for message
l %R – resources requested summary
l %u – resources used summary
l %w – working directory
l %% – a single %

Example %o job owner dbeer@nalthis
%R resources requested summary walltime=600 nodes=2:ppn=6
%u resources used summary cput=600 vmem=1043246kb mem=1003241kb
%w working directory /home/dbeer/hemalurgy/

mail_domain

Format <STRING>

Default ---

Description Override the default domain for outgoing mail messages. If set, emails will be
addressed to <user>@<hostdomain>. If unset, the job's Job_Owner
attribute will be used. If set to never, Torque will never send emails.

Appendix B: Server Parameters

345

346

mail_from

Format <STRING>

Default adm

Description Specify the name of the sender when Torque sends emails.

mail_subject_fmt

Format A printf-like format string

Default PBS JOB %i

Description Override the default format for the subject of outgoing mail messages. A
number of printf-like format specifiers and escape sequences can be used:

l \n – new line
l \t – tab
l \\ – backslash
l \' – single quote
l \" – double quote
l %d – details concerning the message
l %h – PBS host name
l %i – PBS job identifier
l %j – PBS job name
l %m – long reason for message
l %o – job owner
l %q – job's queue
l %r – short reason for message
l %R – resources requested summary
l %u – resources used summary
l %w – working directory
l %% – a single %

Example %o job owner dbeer@nalthis
%R resources requested summary walltime=600 nodes=2:ppn=6
%u resources used summary cput=600 vmem=1043246kb mem=1003241kb
%w working directory /home/dbeer/hemalurgy/

Appendix B: Server Parameters

managers

Format <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default root@localhost

Description List of users granted batch administrator privileges. The host, sub-domain, or
domain name can be wildcarded by the use of an asterisk character (*).
Requires full manager privilege to set or alter.

max_job_array_size

Format <INTEGER>

Default Unlimited

Description Sets the maximum number of jobs that can be in a single job array.

max_slot_limit

Format <INTEGER>

Default Unlimited

Description This is the maximum number of jobs that can run concurrently in any job
array. Slot limits can be applied at submission time with qsub, or it can be
modified with qalter.
qmgr -c 'set server max_slot_limit=10'

No array can request a slot limit greater than 10. Any array that does not
request a slot limit receives a slot limit of 10. Using the example above, slot
requests greater than 10 are rejected with the message: "Requested slot limit
is too large, limit is 10."

max_user_run

Format <INTEGER>

Default Unlimited

Description This limits the maximum number of jobs a user can have running for the given

Appendix B: Server Parameters

347

348

max_user_run

server.

Example qmgr -c "set server max_user_run=5"

max_threads

Format <INTEGER>

Default min_threads * 20

Description This is the maximum number of threads that should exist in the thread pool at
any time. See Setting min_threads and max_threads for more information.

max_user_queuable

Format <INTEGER>

Default Unlimited

Description When set, max_user_queuable places a system-wide limit on the amount
of jobs that an individual user can queue.
qmgr -c 'set server max_user_queuable=500'

min_threads

Format <INTEGER>

Default (2 * the number of procs listed in /proc/cpuinfo) + 1. If Torque is unable
to read /proc/cpuinfo, the default is 10.

Description This is the minimum number of threads that should exist in the thread pool at
any time. See Setting min_threads and max_threads for more information.

Appendix B: Server Parameters

moab_array_compatible

Format <BOOLEAN>

Default TRUE

Description This parameter places a hold on jobs that exceed the slot limit in a job
array. When one of the active jobs is completed or deleted, one of the held jobs
goes to a queued state.

mom_job_sync

Format <BOOLEAN>

Default TRUE

Description When set to TRUE, specifies that the pbs_server will synchronize its view of
the job queue and resource allocation with compute nodes as they come
online. If a job exists on a compute node, it will be automatically cleaned up
and purged. (Enabled by default.)
Jobs that are no longer reported by the mother superior are automatically
purged by pbs_server. Jobs that pbs_server instructs the MOM to cancel
have their processes killed in addition to being deleted.

next_job_number

Format <INTEGER>

Default ---

Description Specifies the ID number of the next job. If you set your job number too low
and Torque repeats a job number that it has already used, the job will fail.
Before setting next_job_number to a number lower than any number that
Torque has already used, you must clear out your .e and .o files.

If you use Moab Workload Manager (and have configured it to
synchronize job IDs with Torque), then Moab will generate the job ID
and next_job_number will have no effect on the job ID. See Resource
Manager Configuration in the Moab Workload Manager Administrator
Guide for more information.

Appendix B: Server Parameters

349

350

node_check_rate

Format <INTEGER>

Default 600

Description Specifies the minimum duration (in seconds) that a node can fail to send a
status update before being marked down by the pbs_server daemon.

node_pack

Description Deprecated.

node_ping_rate

Format <INTEGER>

Default 300

Description Specifies the maximum interval (in seconds) between successive 'pings' sent
from the pbs_server daemon to the pbs_mom daemon to determine
node/daemon health.

node_submit_exceptions

Format String

Default ---

Description When set in conjunction with allow_node_submit, these nodes will not be
allowed to submit jobs.

no_mail_force

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, eliminates all emails when mail_options (see qsub) is

Appendix B: Server Parameters

no_mail_force

set to 'n'. The job owner won't receive emails when a job is deleted by a
different user or a job failure occurs. If no_mail_force is unset or is
FALSE, then the job owner receives emails when a job is deleted by a different
user or a job failure occurs.

np_default

Format <INTEGER>

Default ---

Description Allows the administrator to unify the number of processors (np) on all nodes.
The value can be dynamically changed. A value of 0 tells pbs_server to use
the value of np found in the nodes file. The maximum value is 32767.

np_default sets a minimum number of np per node. Nodes with less
than the np_default get additional execution slots.

operators

Format <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default root@localhost

Description List of users granted batch operator privileges. Requires full manager privilege
to set or alter.

pass_cpuclock

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, the pbs_server daemon passes the option and its value to
the pbs_mom daemons for direct implementation by the daemons, making the
CPU frequency adjustable as part of a resource request by a job submission.
If set to FALSE, the pbs_server daemon creates and passes a PBS_
CPUCLOCK job environment variable to the pbs_mom daemons that contains
the value of the cpuclock attribute used as part of a resource request by a

Appendix B: Server Parameters

351

352

pass_cpuclock

job submission. The CPU frequencies on the MOMs are not adjusted. The
environment variable is for use by prologue and epilogue scripts, enabling
administrators to log and research when users are making cpuclock
requests, as well as researchers and developers to perform CPU clock
frequency changes using a method outside of that employed by the Torque
pbs_mom daemons.

poll_jobs

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, pbs_server will poll job info from MOMs over time and will
not block on handling requests that require this job information.
If set to FALSE, no polling will occur and if requested job information is stale,
pbs_server may block while it attempts to update this information. For
large systems, this value should be set to TRUE.

query_other_jobs

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies whether or not non-admin users can view jobs
they do not own.

record_job_info

Format <BOOLEAN>

Default FALSE

Description This must be set to TRUE in order for job logging to be enabled.

Appendix B: Server Parameters

record_job_script

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, this adds the contents of the script executed by a job to the log.

For record_job_script to take effect, record_job_info must
be set to TRUE.

resources_available

Format <STRING>

Default ---

Description Allows overriding of detected resource quantities (see N.3 Assigning Queue
Resource Limits). pbs_server must be restarted for changes to take effect.
Also, resources_available is constrained by the smaller of
queue.resources_available and server.resources_available.

scheduling

Format <BOOLEAN>

Default ---

Description Allows pbs_server to be scheduled. When FALSE, pbs_server is a
resource manager that works on its own. When TRUE, Torque allows a
scheduler, such as Moab or Maui, to dictate what pbs_server should do.

sendmail_path

Format <STRING>

Default /usr/lib/sendmail or the path set with the configure --with-
sendmail configure option.

Description Sets the path to the sendmail executable. If this attribute is set, it will override
either the path discovered by Torque during the build or the path explicitly set

Appendix B: Server Parameters

353

354

sendmail_path

with the configure --with-sendmail=<path> configure option during
the build.

submit_hosts

Format <HOSTNAME>[,<HOSTNAME>]...

Default Not set.

Description Hosts in this list are able to submit jobs. This applies to any node whether
within the cluster or outside of the cluster.
If acl_host_enable is set to TRUE and the host is not in the
PBSHOME/server_priv/nodes file, then the host must also be in the
acl_hosts list.
To allow qsub from all compute nodes instead of just a subset of nodes, use
allow_node_submit.

tcp_incoming_timeout

Format <INTEGER>

Default 600

Description Specifies the timeout for incoming TCP connections to pbs_server.
Functions exactly the same as tcp_timeout, but governs incoming
connections while tcp_timeout governs only outgoing connections (or
connections initiated by pbs_server).

If you use Moab Workload Manager, prevent communication errors by
giving tcp_incoming_timeout at least twice the value of the Moab
RMPOLLINTERVAL. See RMPOLLINTERVAL in the Moab Workload
Manager Administrator Guide for more information.

tcp_timeout

Format <INTEGER>

Default 300

Appendix B: Server Parameters

tcp_timeout

Description Specifies the timeout for idle outbound TCP connections. If no communication
is received by the server on the connection after the timeout, the server closes
the connection. There is an exception for connections made to the server on
port 15001 (default); timeout events are ignored on the server for such
connections established by a client utility or scheduler. Responsibility rests
with the client to close the connection first (seeLarge Cluster Considerations
for additional information).
Use tcp_incoming_timeout to specify the timeout for idle inbound TCP
connections.

thread_idle_seconds

Format <INTEGER>

Default 300

Description This is the number of seconds a thread can be idle in the thread pool before it
is deleted. If threads should not be deleted, set to -1. Torque will always
maintain at least min_threads number of threads, even if all are idle.

timeout_for_job_delete

Format <INTEGER> (seconds)

Default 120

Description The specific timeout used when deleting jobs because the node they are
executing on is being deleted.

timeout_for_job_requeue

Format <INTEGER> (seconds)

Default 120

Description The specific timeout used when requeuing jobs because the node they are
executing on is being deleted.

Appendix B: Server Parameters

355

356

use_jobs_subdirs

Format <BOOLEAN>

Default Not set (FALSE).

Description Lets an administrator direct the way pbs_server will store its job-related
files. Improves the handling of large number of jobs.

l When use_jobs_subdirs is unset (or set to FALSE), job and job
array files will be stored directly under $PBS_HOME/server_
priv/jobs and $PBS_HOME/server_priv/arrays.

l When use_jobs_subdirs is set to TRUE, job and job array files will
be distributed over 10 subdirectories under their respective parent
directories. This method helps to keep a smaller number of files in a given
directory.

This setting does not automatically move existing job and job array
files into the respective subdirectories. If you choose to use this
setting (TRUE), you must first:

o set use_jobs_subdirs to TRUE,
o shut down the Torque server daemon,
o in the contrib directory, run the use_jobs_subdirs_setup

python script with -m option,
o start the Torque server daemon.

> qmgr -c 'set use_jobs_subdirs=TRUE'

Appendix B: Server Parameters

C.1 MOM Parameters 357

Appendix C: Node Manager (MOM) Configuration
Under Torque, MOM configuration is accomplished using the mom_priv/config file
located in the PBS directory on each execution server. You must create this file and insert
any desired lines in a text editor (blank lines are allowed). When you modify the mom_
priv/config file, you must restart pbs_mom.

The following examples demonstrate two methods of modifying the mom_priv/config
file:

> echo "\$loglevel 3" > /var/spool/torque/mom_priv/config

> vim /var/spool/torque/mom_priv/config
...
$loglevel 3

In this appendix:

C.1 MOM Parameters 357
C.2 Node Features and Generic Consumable Resource Specification 381

Related Topics

l Appendix A: Commands Overview - page 232

l Appendix G: Prologue and Epilogue Scripts - page 401

l pbs_mom Options

C.1 MOM Parameters

These parameters go in the mom_priv/config file. They control various behaviors for
the MOMs.

arch $attempt_to_make_dir $check_poll_time

$configversion $cputmult $cuda_visible_devices

$down_on_error $enablemomrestart $exec_with_exec

Appendix C: Node Manager (MOM) Configuration

$ext_pwd_retry $force_overwrite $ideal_load

$igncput $ignmem $ignvmem

$ignwalltime $job_exit_wait_time $job_output_file_umask

$job_starter $job_starter_run_privileged $jobdirectory_sticky

$log_directory $log_file_max_size $log_file_roll_depth

$log_file_suffix $log_keep_days $logevent

$loglevel $max_conn_timeout_micro_sec $max_join_job_wait_time

$max_load $max_physical_memory $max_swap_memory

$memory_pressure_duration $memory_pressure_threshold $mom_hierarchy_retry_time

$mom_host $node_check_interval $node_check_on_job_end

$node_check_on_job_start $node_check_on_job_start $nodefile_suffix

$nospool_dir_list opsys $pbsclient

$pbsserver $presetup_prologue $prologalarm

$rcpcmd $reduce_prolog_checks $reject_job_submission

$remote_checkpoint_dirs $remote_reconfig $resend_join_job_wait_time

$restricted size[fs=<FS>] $source_login_batch

$source_login_interactive $spool_as_final_name $status_update_time

$thread_unlink_calls $timeout $tmpdir

$use_smt $usecp $varattr

$wallmult $xauthpath

Appendix C: Node Manager (MOM) Configuration

358 C.1 MOM Parameters

C.1 MOM Parameters 359

arch

Format <STRING>

Description Specifies the architecture of the local machine. This information is used by the
scheduler only.

Example arch ia64

$attempt_to_make_dir

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that you want Torque to attempt to create the
output directories for jobs if they do not already exist.

Torque uses this parameter to make the directory as the user and not as
root. Torque will create the directory (or directories) ONLY if the user
has permissions to do so.

Example $attempt_to_make_dir true

$check_poll_time

Format <STRING>

Default 45

Description Amount of time (in seconds) between checking running jobs, polling jobs, and
trying to resend obituaries for jobs that haven't sent successfully.

Example $check_poll_time 90

$configversion

Format <STRING>

Appendix C: Node Manager (MOM) Configuration

$configversion

Description Specifies the version of the config file data.

Example $configversion 113

$cputmult

Format <FLOAT>

Description CPU time multiplier.

If set to 0.0, MOM level cputime enforcement is disabled.

Example $cputmult 2.2

$cuda_visible_devices

Format <BOOLEAN>

Default TRUE

This is disabled by default when cgroups are enabled, because it
becomes repetitive at that time. If you still want to have the
environment variable with cgroups enabled, then you need to set this
parameter to TRUE.

Description When set to TRUE, the MOM will set the CUDA_VISIBLE_DEVICES
environment variable for jobs using NVIDIA GPUs. If set to FALSE, the MOM
will not set CUDA_VISIBLE_DEVICES for any jobs.

For CUDA < 7, $CUDA_VISIBLE_DEVICES is set to the absolute
indices of the GPUs your job will use, so if you are using GPUs 2 and 3,
then the variable will be set to 2,3. If you are using CUDA >= 7.0, then it
will be set to the relative index, starting from 0, so if you are using GPUs
2 and 3, the variable will be set to 0,1. This is necessary because of a
change in the CUDA implementation that came out in version 7.

Example $cuda_visible_devices true

Appendix C: Node Manager (MOM) Configuration

360 C.1 MOM Parameters

C.1 MOM Parameters 361

$down_on_error

Format <BOOLEAN>

Default TRUE

Description Causes the MOM to report itself as state 'down' to pbs_server in the event
of a failed health check. See A.4.5 Health Check - page 246 for more
information.

Example $down_on_error true

$enablemomrestart

Format <BOOLEAN>

Description Enables automatic restarts of the MOM. If enabled, the MOM will check if its
binary has been updated and restart itself at a safe point when no jobs are
running; therefore making upgrades easier. The check is made by comparing
the mtime of the pbs_mom executable. Command-line args, the process name,
and the PATH env variable are preserved across restarts. It is recommended
that this not be enabled in the config file, but enabled when desired with
momctl (see A.3.5 Resources - page 240 for more information.)

Example $enablemomrestart true

$exec_with_exec

Format <BOOLEAN>

Default FALSE

Description pbs_mom uses the exec command to start the job script rather than the
Torque default method, which is to pass the script's contents as the input to
the shell. This means that if you trap signals in the job script, they will be
trapped for the job. Using the default method, you would need to configure the
shell to also trap the signals.

Example $exec_with_exec true

Appendix C: Node Manager (MOM) Configuration

$ext_pwd_retry

Format <INTEGER>

Default 3

Description Specifies the number of times to retry checking the password. Useful in cases
where external password validation is used, such as with LDAP.

Example $ext_pwd_retry = 5

$force_overwrite

Format <BOOLEAN>

Description When set to true, forces the output files to be overwritten each time a job is
started.

Example $force_overwrite true

$ideal_load

Format <FLOAT>

Description Ideal processor load.

Example $ideal_load 4.0

$igncput

Format <BOOLEAN>

Default FALSE

Description Ignores limit violation pertaining to CPU time.

Example $igncput true

Appendix C: Node Manager (MOM) Configuration

362 C.1 MOM Parameters

C.1 MOM Parameters 363

$ignmem

Format <BOOLEAN>

Default FALSE

Description Ignores limit violations pertaining to physical memory.

Example $ignmem true

$ignvmem

Format <BOOLEAN>

Default FALSE

Description Ignore limit violations pertaining to virtual memory.

Example $ignvmem true

$ignwalltime

Format <BOOLEAN>

Default FALSE

Description Ignore walltime (do not enable MOM based walltime limit enforcement).

Example $ignwalltime true

$job_exit_wait_time

Format <INTEGER>

Default 600

Description This is the timeout (in seconds) to clean up parallel jobs after one of the sister

Appendix C: Node Manager (MOM) Configuration

$job_exit_wait_time

nodes for the parallel job goes down or is otherwise unresponsive. The MOM
sends out all of its kill job requests to sisters and marks the time. Additionally,
the job is placed in the substate JOB_SUBSTATE_EXIT_WAIT. The MOM
then periodically checks jobs in this state and if they are in this state for more
than the specified time, death is assumed and the job gets cleaned up. Default
is 600 seconds (10 minutes).

Example $job_exit_wait_time 300

$job_output_file_umask

Format <STRING>

Description Uses the specified umask when creating job output and error files. Values can
be specified in base 8, 10, or 16; leading 0 implies octal and leading 0x or 0X
hexadecimal. A value of 'userdefault' will use the user's default umask.

Example $job_output_file_umask 027

$job_starter

Format <STRING>

Description Specifies the fully qualified pathname of the job starter. If this parameter is
specified, instead of executing the job command and job arguments directly,
the MOM will execute the job starter, passing the job command and job
arguments to it as its arguments. The job starter can be used to launch jobs
within a desired environment.

Example $job_starter /var/torque/mom_priv/job_starter.sh
> cat /var/torque/mom_priv/job_starter.sh
#!/bin/bash
export FOOHOME=/home/foo
ulimit -n 314
$*

Appendix C: Node Manager (MOM) Configuration

364 C.1 MOM Parameters

C.1 MOM Parameters 365

$job_starter_run_privileged

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that you want Torque to execute the $job_starter
script with elevated privileges.

Example $job_starter_run_privileged true

$jobdirectory_sticky

Format <BOOLEAN>

Default FALSE

Description When this option is set (TRUE), the job directory on the MOM can have a
sticky bit set.

Example $jobdirectory_sticky true

$log_directory

Format <STRING>

Default TORQUE_HOME/mom_logs/

Description Changes the log directory. TORQUE_HOME default is /var/spool/torque/
but can be changed in the ./configure script. The value is a string and
should be the full path to the desired MOM log directory.

Example $log_directory /opt/torque/mom_logs/

$log_file_max_size

Format <INTEGER>

Appendix C: Node Manager (MOM) Configuration

$log_file_max_size

Description Soft limit for log file size in kilobytes. Checked every 5 minutes. If the log file is
found to be greater than or equal to log_file_max_size the current log file will
be moved from X to X.1 and a new empty file will be opened.

Example $log_file_max_size = 100

$log_file_roll_depth

Format <INTEGER>

Description Specifies how many times a log fill will be rolled before it is deleted.

Example $log_file_roll_depth = 7

$log_file_suffix

Format <STRING>

Description Optional suffix to append to log file names. If %h is the suffix, pbs_mom
appends the hostname for where the log files are stored if it knows it;
otherwise, it will append the hostname where the MOM is running.

Example $log_file_suffix %h = 20100223.mybox
$log_file_suffix foo = 20100223.foo

$log_keep_days

Format <INTEGER>

Description Specifies how many days to keep log files. pbs_mom deletes log files older than
the specified number of days. If not specified, pbs_mom won't delete log files
based on their age.

Example $log_keep_days 10

Appendix C: Node Manager (MOM) Configuration

366 C.1 MOM Parameters

C.1 MOM Parameters 367

$logevent

Format <INTEGER>

Description Creates an event mask enumerating which log events will be recorded in the
MOM logs. By default, all events are logged.
These are the events that can be chosen:
ERROR 0x0001 internal errors
SYSTEM 0x0002 system (server) & (trqauthd) events
ADMIN 0x0004 admin events
JOB 0x0008 job related events
JOB_USAGE 0x0010 End of Job accounting
SECURITY 0x0020 security violation events
SCHED 0x0040 scheduler events
DEBUG 0x0080 common debug messages
DEBUG2 0x0100 less needed debug messages
CLIENTAUTH 0X0200 TRQAUTHD login events
SYSLOG 0x0400 pass this event to the syslog as well

The listed events are shown here with hexadecimal values; however, a
decimal value must be used when setting $logevent.

Example $logevent 1039

Log ERROR, SYSTEM, ADMIN, JOB and SYSLOG events. This has a
hexadecimal value of 0x40F.

$loglevel

Format <INTEGER>

Description Specifies the verbosity of logging with higher numbers specifying more verbose
logging. Values can range between 0 and 7.

Example $loglevel 4

$max_conn_timeout_micro_sec

Format <INTEGER>

Default 10000

Description Specifies how long (in microseconds) pbs_mom should wait for a connection
to be made. Default value is 10,000 (.01 sec).

Appendix C: Node Manager (MOM) Configuration

$max_conn_timeout_micro_sec

Example $max_conn_timeout_micro_sec 30000

Sets the connection timeout on the MOM to .03 seconds.

$max_join_job_wait_time

Format <INTEGER>

Default 600

Description The interval to wait (in seconds) for jobs stuck in a prerun state before
deleting them from the MOMs and requeuing them on the server. Default is
600 seconds (10 minutes).

If a MOM is completely idle, it can take as long as the next MOM-to-
server update time to requeue a failed job.

Example $max_join_job_wait_time 300

$max_load

Format <FLOAT>

Description Maximum processor load.

Example $max_load 4.0

$max_physical_memory

Format <INTEGER> <unit>

Description Restrict the amount of memory available to jobs on this node to the specified
amount, which cannot exceed the amount of memory on the machine and must
be greater than 0. Default is to use all available memory on the host.

Appendix C: Node Manager (MOM) Configuration

368 C.1 MOM Parameters

C.1 MOM Parameters 369

$max_physical_memory

When cgroups are enabled, this limits the whole of the machine and
doesn't specifically limit each socket or NUMA node. If you have 2 NUMA
nodes and 32 GB of memory, but you limit the machine to 30, it won't
force a job requesting 16 GB to span NUMA nodes, but once that jobs
starts, there would only be 14 GB remaining in use for jobs.

If you are using this setting, availmem (as reported in pbsnodes) is no
longer accurate, as we do not know what portion of used memory and
swap are by jobs and what portion are from the operating system. Since
availmem is no longer accurate, you need to set
NODEAVAILABILITYPOLICY to DEDICATED if you are using Moab or
Maui.

Example $max_physical_memory 30gb

$max_swap_memory

Format <INTEGER> <unit>

Description Restrict the amount of swap available to jobs on this node to the specified
amount, which cannot exceed the amount of swap on the machine and must be
greater than 0. If you want to disallow swap, this must be set to a very low
value instead of 0. Default is to use all available memory on the host.

If you are using this setting, availmem (as reported in pbsnodes) is no
longer accurate, as we do not know what portion of used memory and
swap are by jobs and what portion are from the operating system. Since
availmem is no longer accurate, you need to set
NODEAVAILABILITYPOLICY to DEDICATED if you are using Moab or
Maui.

Example $max_swap_memory 5gb

$memory_pressure_duration

Format <INTEGER>

Description Memory pressure duration sets a limit to the number of times the value of
memory_pressure_threshold can be exceeded before a process is terminated.

Appendix C: Node Manager (MOM) Configuration

$memory_pressure_duration

This can only be used with $memory_pressure_threshold.

Example $memory_pressure_duration 5

$memory_pressure_threshold

Format <INTEGER>

Description The memory_pressure of a cpuset provides a simple per-cpuset running
average of the rate that the processes in a cpuset are attempting to free up in-
use memory on the nodes of the cpuset to satisfy additional memory requests.
The memory_pressure_threshold is an integer number used to compare against
the reclaim rate provided by the memory_pressure file. If the threshold is
exceeded and memory_pressure_duration is set, then the process terminates
after exceeding the threshold by the number of times set in memory_pressure_
duration. If memory_pressure duration is not set, then a warning is logged and
the process continues. Memory_pressure_threshold is only valid with memory_
pressure enabled in the root cpuset.
To enable, log in as the super user and execute the command echo 1 >>
/dev/cpuset/memory_pressure_enabled. See the cpuset man page
for more information concerning memory pressure.

Example $memory_pressure_threshold 1000

$mom_hierarchy_retry_time

Format <SECONDS>

Default 90

Description Specifies the amount of time (in seconds) that a MOM waits to retry a node in
the hierarchy path after a failed connection to that node.

Example $mom_hierarchy_retry_time 30

Appendix C: Node Manager (MOM) Configuration

370 C.1 MOM Parameters

C.1 MOM Parameters 371

$mom_host

Format <STRING>

Description Sets the local hostname as used by pbs_mom.

Example $mom_host node42

$node_check_script

Format <STRING>

Description Specifies the fully qualified pathname of the health check script to run (see
Compute Node Health Check for more information).

Example $node_check_script /opt/batch_tools/nodecheck.pl

$node_check_interval

Format <STRING>

Description Specifies the number of MOM intervals between subsequent executions of the
health check specified by $node_check_script. This value defaults to 1 indicating
the check is run every MOM interval (see 13.10 Compute Node Health Check -
page 222 for more information). The interval number can be followed by a
comma-separated list of events that will initiate a health check.
$node_check_interval has two special strings that can be set:

l jobstart – makes the node health script run when a job is started (before
the prologue script).

l jobend – makes the node health script run after each job has completed on
a node (after the epilogue script).

The node health check can be configured to run before or after the job
with the 'jobstart' and/or 'jobend' options. However, the job
environment variables do not get passed to node health check script, so
it has no access to those variables at any time.

Appendix C: Node Manager (MOM) Configuration

$node_check_interval

Using 'jobstart' and/or 'jobend' options is deprecated and may be
removed in a future release. To initiate health checks at job start and job
end, set the $node_check_on_job_start and/or $node_check_on_job_end
parameters.

Example $node_check_interval 5,jobstart

Execute the health check every 5 MOM intervals and when a job
starts.

$node_check_on_job_end

Format <BOOLEAN>

Description If set to true, initiates a health check when a job ends.

Example $node_check_on_job_end=false

$node_check_on_job_start

Format <BOOLEAN>

Description If set to true, initiates a health check when a job starts.

Example $node_check_on_job_start=true

$nodefile_suffix

Format <STRING>

Description Specifies the suffix to append to a host names to denote the data channel
network adapter in a multi-homed compute node.

Example $nodefile_suffix i

With the suffix of "i" and the control channel adapter with the name
node01, the data channel would have a hostname of node01i.

Appendix C: Node Manager (MOM) Configuration

372 C.1 MOM Parameters

C.1 MOM Parameters 373

$nospool_dir_list

Format <STRING>

Description If this is configured, the job's output is spooled in the working directory of the
job or the specified output directory.
Specify the list in full paths, delimited by commas. If the job's working
directory (or specified output directory) is in one of the paths in the list (or a
subdirectory of one of the paths in the list), the job is spooled directly to the
output location. $nospool_dir_list * is accepted.
The user that submits the job must have write permission on the folder where
the job is written, and read permission on the folder where the file is spooled.
Alternatively, you can use the $spool_as_final_name parameter to force the job
to spool directly to the final output.

This should generally be used only when the job can run on the same
machine as where the output file goes, or if there is a shared filesystem.
If not, this parameter can slow down the system or fail to create the
output file.

Example $nospool_dir_list /home/mike/jobs/,/var/tmp/spool/

opsys

Format <STRING>

Description Specifies the operating system of the local machine. This information is used by
the scheduler only.

Example opsys RHEL3

$pbsclient

Format <STRING>

Description Specifies machines that the MOM daemon will trust to run resource manager
commands via momctl. This can include machines where monitors, schedulers,
or admins require the use of this command.

Example $pbsclient node01.teracluster.org

Appendix C: Node Manager (MOM) Configuration

$pbsserver

Format <STRING>

Description Specifies the machine running pbs_server.

Example $pbsserver node01.teracluster.org

$presetup_prologue

Format <STRING>

Description A full path to the presetup prologue for all jobs on this node. If set, this script
executes before any setup for the job occurs (such as becoming the user,
creating the output files, or changing directories). As a result, no output from
this script will appear in the job's output.

Example $presetup_prologue /opt/kerberos_integration.sh

$prologalarm

Format <INTEGER>

Description Specifies maximum duration (in seconds) that the MOM will wait for the job
prologue or job epilogue to complete. The default value is 300 seconds (5
minutes). When running parallel jobs, this is also the maximum time a sister
node will wait for a job to start.

Example $prologalarm 60

$rcpcmd

Format <STRING>

Description Specifies the full path and optional additional command line args to use to
perform remote copies.

Example $rcpcmd /usr/local/bin/scp -i /etc/sshauth.dat

Appendix C: Node Manager (MOM) Configuration

374 C.1 MOM Parameters

C.1 MOM Parameters 375

$reduce_prolog_checks

Format <BOOLEAN>

Description If enabled, Torque will only check if the file is a regular file and is executable,
instead of the normal checks listed on the prologue and epilogue page. Default
is FALSE.

Example $reduce_prolog_checks true

$reject_job_submission

Format <BOOLEAN>

Description If set to TRUE, jobs will be rejected and the user will receive the message,
"Jobs cannot be run on mom %s." Default is FALSE.

Example $reject_job_submission true

$remote_checkpoint_dirs

Format <STRING>

Description Specifies which server checkpoint directories are remotely mounted. It tells the
MOM which directories are shared with the server. Using remote checkpoint
directories eliminates the need to copy the checkpoint files back and forth
between the MOM and the server. All entries must be on the same line,
separated by a space.

Example $remote_checkpoint_dirs /checkpointFiles /bigStorage /fast

This informs the MOM that the /checkpointFiles,
/bigStorage, and /fast directories are remotely mounted
checkpoint directories.

$remote_reconfig

Format <STRING>

Description Enables the ability to remotely reconfigure pbs_mom with a new config file.

Appendix C: Node Manager (MOM) Configuration

$remote_reconfig

Default is disabled. Enable by setting to true, yes, or 1. For more information
on how to reconfigure MOMs, see momctl-r.

Example $remote_reconfig true

$resend_join_job_wait_time

Format <INTEGER>

Description This is the timeout for the Mother Superior to re-send the join job request if it
didn't get a reply from all the sister MOMs. The resend happens only once.
Default is 5 minutes.

Example $resend_join_job_wait_time 120

$restricted

Format <STRING>

Description Specifies hosts that can be trusted to access MOM services as non-root. By
default, no hosts are trusted to access MOM services as non-root.

Example $restricted *.teracluster.org

size[fs=<FS>]

Format N/A

Description Specifies that the available and configured disk space in the <FS> filesystem is
to be reported to the pbs_server and scheduler.

To request disk space on a per job basis, specify the file resource as in
qsub -l nodes=1,file=1000kb.

Unlike most MOM config options, the size parameter is not preceded by
a "$" character.

Appendix C: Node Manager (MOM) Configuration

376 C.1 MOM Parameters

C.1 MOM Parameters 377

size[fs=<FS>]

Example size[fs=/localscratch]

The available and configured disk space in the /localscratch
filesystem will be reported.

$source_login_batch

Format <BOOLEAN>

Description Specifies whether or not MOM will source environment setup files, such as
/etc/profile, for batch jobs. Parameter accepts true, false, yes, no, 1 and 0.
Default is TRUE.

Example $source_login_batch False

MOM will bypass the sourcing of /etc/profile, etc. type files.

$source_login_interactive

Format <BOOLEAN>

Description Specifies whether or not MOM will source environment setup files, such as
/etc/profile, for interactive jobs. Parameter accepts true, false, yes, no, 1
and 0. Default is TRUE.

Example $source_login_interactive False

MOM will bypass the sourcing of /etc/profile, etc. type files.

$spool_as_final_name

Format <BOOLEAN>

Description This makes the job write directly to its output destination instead of a spool
directory. This allows users easier access to the file if they want to watch the
jobs output as it runs.

Example $spool_as_final_name true

Appendix C: Node Manager (MOM) Configuration

$status_update_time

Format <INTEGER>

Description Specifies the number of seconds between subsequent MOM-to-server update
reports. Default is 45 seconds.

Example $status_update_time 120

MOM will send server update reports every 120 seconds.

$thread_unlink_calls

Format <BOOLEAN>

Description Threads calls to unlink when deleting a job. Default is false. If it is set to TRUE,
pbs_mom will use a thread to delete the job's files.

Example $thread_unlink_calls true

$timeout

Format <INTEGER>

Description Specifies the number of seconds before a TCP connection on the MOM will
timeout. Default is 300 seconds.

Example $timeout 120

A TCP connection will wait up to 120 seconds before timing out.

For 3.x and earlier, MOM-to-MOM communication will allow up to 120
seconds before timing out.

$tmpdir

Format <STRING>

Description Specifies a directory to create job-specific scratch space.

Appendix C: Node Manager (MOM) Configuration

378 C.1 MOM Parameters

C.1 MOM Parameters 379

$tmpdir

Example $tmpdir /localscratch

$use_smt

Format <BOOLEAN>

Default TRUE

Description Indicates that the user would like to use SMT. If set, each logical core inside of
a physical core will be used as a normal core for cpusets. This parameter is on
by default.

$use_smt is deprecated. Use the syntax to control whether or not
threads or cores are used.
If you use SMT, you will need to set the np attribute so that each logical
processor is counted.

Example $use_smt false

$usecp

Format <HOST>:<SRCDIR> <DSTDIR>

Description Specifies which directories should be staged (see NFS and Other Networked
Filesystems)

Example $usecp *.fte.com:/data /usr/local/data

Submission hosts in domain fte.com will map /data directory
on submit host to /usr/local/data on compute host

$varattr

Format <INTEGER> <STRING>

Description Provides a way to keep track of dynamic attributes on nodes.
<INTEGER> is how many seconds should go by between calls to the script to

Appendix C: Node Manager (MOM) Configuration

$varattr

update the dynamic values. If set to -1, the script is read only one time. If set to
less than $status_update_time, the script will run only after the server gets the
update. Should preferably be set to a multiple of $status_update_time.
<STRING> is the script path. This script should check for whatever dynamic
attributes are desired, and then output lines in this format:
name=value

Include any arguments after the script's full path. These features are visible in
the output of pbsnodes-a
varattr=Matlab=7.1;Octave=1.0.

For information about using $varattr to request dynamic features in Moab,
see REQATTR in the Moab Workload Manager Administrator Guide.

Example $varattr 25 /usr/local/scripts/nodeProperties.pl arg1 arg2 arg3

$wallmult

Format <FLOAT>

Description Sets a factor to adjust walltime usage by multiplying a default job time to a
common reference system. It modifies real walltime on a per-MOM basis
(MOM configuration parameters). The factor is used for walltime calculations
and limits in the same way that cputmult is used for cpu time.

If set to 0.0, MOM level walltime enforcement is disabled.

Example $wallmult 2.2

$xauthpath

Format <STRING>

Description Specifies the path to the xauth binary to enable X11 forwarding.

Example $xauthpath /opt/bin/xauth

Appendix C: Node Manager (MOM) Configuration

380 C.1 MOM Parameters

C.2 Node Features and Generic Consumable Resource Specification 381

Related Topics

l Appendix C: Node Manager (MOM) Configuration - page 357

C.2 Node Features and Generic Consumable Resource
Specification

Node features (a.k.a. 'node properties') are opaque labels that can be applied to a node.
They are not consumable and cannot be associated with a value. (Use generic resources
described below for these purposes). Node features are configured within the nodes file on
the pbs_server head node. This file can be used to specify an arbitrary number of node
features.

Additionally, per node consumable generic resources can be specified using the format
'<ATTR> <VAL>' with no leading dollar ($) character. When specified, this information is
routed to the scheduler and can be used in scheduling decisions. For example, to indicate
that a given host has two tape drives and one node-locked matlab license available for
batch jobs, the following could be specified:

mom_priv/config:

$clienthost 241.13.153.7
tape 2
matlab 1

Dynamic consumable resource information can be routed in by specifying a path preceded
by an exclamation point. (!) as in the example below. If the resource value is configured in
this manner, the specified file will be periodically executed to load the effective resource
value.

mom_priv/config:

$clienthost 241.13.153.7
tape !/opt/rm/gettapecount.pl
matlab !/opt/tools/getlicensecount.pl

Related Topics

l Appendix C: Node Manager (MOM) Configuration - page 357

Appendix C: Node Manager (MOM) Configuration

382

Appendix D: Diagnostics and Error Codes
Torque has a diagnostic script to assist you in giving Torque Support the files they need to
support issues. It should be run by a user that has access to run all Torque commands and
access to all Torque directories (this is usually root).

The script grabs the node file, server and MOM log files, and captures the output of qmgr
-c 'p s'. These are put in a tar file.

The script also has the following options (this can be shown in the command line by
entering ./tdiag.sh -h):
USAGE: ./torque_diag [-d DATE] [-h] [-o OUTPUT_FILE] [-t
TORQUE_HOME]

l DATE should be in the format YYYYmmdd. For example, '20231130' would be the
date for November 30th, 2023. If no date is specified, today's date is used.

l OUTPUT_FILE is the optional name of the output file. The default output file is
torque_diag<today's_date>.tar.gz. TORQUE_HOME should be the path to
your Torque directory. If no directory is specified, /var/spool/torque is the
default.

Table D-1: Torque error codes

Error Code Name Number Description

PBSE_FLOOR 15000 No error

PBSE_UNKJOBID 15001 Unknown job ID error

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Cannot set attribute, read only or insufficient
permission

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 Unauthorized Request

Appendix D: Diagnostics and Error Codes

Error Code Name Number Description

PBSE_IFF_NOT_FOUND 15008 trqauthd unable to authenticate

PBSE_MUNGE_NOT_
FOUND

15009 Munge executable not found, unable to authenticate

PBSE_BADHOST 15010 Access from host not allowed, or unknown host

PBSE_JOBEXIST 15011 Job with requested ID already exists

PBSE_SYSTEM 15012 System error

PBSE_INTERNAL 15013 PBS server internal error

PBSE_REGROUTE 15014 Dependent parent job currently in routing queue

PBSE_UNKSIG 15015 Unknown/illegal signal name

PBSE_BADATVAL 15016 Illegal attribute or resource value for

PBSE_MODATRRUN 15017 Cannot modify attribute while job running

PBSE_BADSTATE 15018 Request invalid for state of job

PBSE_UNKQUE 15020 Unknown queue

PBSE_BADCRED 15021 Invalid credential

PBSE_EXPIRED 15022 Expired credential

PBSE_QUNOENB 15023 Queue is not enabled

PBSE_QACESS 15024 Access to queue is denied

PBSE_BADUSER 15025 Bad UID for job execution

PBSE_HOPCOUNT 15026 Job routing over too many hops

PBSE_QUEEXIST 15027 Queue already exists

Appendix D: Diagnostics and Error Codes

383

384

Error Code Name Number Description

PBSE_ATTRTYPE 15028 Incompatible type

PBSE_QUEBUSY 15029 Cannot delete busy queue

PBSE_QUENBIG 15030 Queue name too long

PBSE_NOSUP 15031 No support for requested service

PBSE_QUENOEN 15032 Cannot enable queue, incomplete definition

PBSE_PROTOCOL 15033 Batch protocol error

PBSE_BADATLST 15034 Bad attribute list structure

PBSE_NOCONNECTS 15035 No free connections

PBSE_NOSERVER 15036 No server specified

PBSE_UNKRESC 15037 Unknown resource type

PBSE_EXCQRESC 15038 Job exceeds queue resource limits

PBSE_QUENODFLT 15039 No default queue specified

PBSE_NORERUN 15040 Job is not rerunnable

PBSE_ROUTEREJ 15041 Job rejected by all possible destinations (check
syntax, queue resources, …)

PBSE_ROUTEEXPD 15042 Time in Route Queue Expired

PBSE_MOMREJECT 15043 Execution server rejected request

PBSE_BADSCRIPT 15044 (qsub) cannot access script file

PBSE_STAGEIN 15045 Stage-in of files failed

PBSE_RESCUNAV 15046 Resource temporarily unavailable

Appendix D: Diagnostics and Error Codes

Error Code Name Number Description

PBSE_BADGRP 15047 Bad GID for job execution

PBSE_MAXQUED 15048 Maximum number of jobs already in queue

PBSE_CKPBSY 15049 Checkpoint busy, may retry

PBSE_EXLIMIT 15050 Resource limit exceeds allowable

PBSE_BADACCT 15051 Invalid Account

PBSE_ALRDYEXIT 15052 Job already in exit state

PBSE_NOCOPYFILE 15053 Job files not copied

PBSE_CLEANEDOUT 15054 Unknown job ID after clean init

PBSE_NOSYNCMSTR 15055 No master found for sync job set

PBSE_BADDEPEND 15056 Invalid Job Dependency

PBSE_DUPLIST 15057 Duplicate entry in list

PBSE_DISPROTO 15058 Bad DIS based Request Protocol

PBSE_EXECTHERE 15059 Cannot execute at specified host because of
checkpoint or stagein files

PBSE_SISREJECT 15060 Sister rejected

PBSE_SISCOMM 15061 Sister could not communicate

PBSE_SVRDOWN 15062 Request not allowed: Server shutting down

PBSE_CKPSHORT 15063 Not all tasks could checkpoint

PBSE_UNKNODE 15064 Unknown node

PBSE_UNKNODEATR 15065 Unknown node-attribute

Appendix D: Diagnostics and Error Codes

385

386

Error Code Name Number Description

PBSE_NONODES 15066 Server has no node list

PBSE_NODENBIG 15067 Node name is too big

PBSE_NODEEXIST 15068 Node name already exists

PBSE_BADNDATVAL 15069 Illegal value for

PBSE_MUTUALEX 15070 Mutually exclusive values for

PBSE_GMODERR 15071 Modification failed for

PBSE_NORELYMOM 15072 Server could not connect to MOM

PBSE_NOTSNODE 15073 No time-share node available

PBSE_JOBTYPE 15074 Wrong job type

PBSE_BADACLHOST 15075 Bad ACL entry in host list

PBSE_MAXUSERQUED 15076 Maximum number of jobs already in queue for user

PBSE_
BADDISALLOWTYPE

15077 Bad type in disallowed_types list

PBSE_NOINTERACTIVE 15078 Queue does not allow interactive jobs

PBSE_NOBATCH 15079 Queue does not allow batch jobs

PBSE_NORERUNABLE 15080 Queue does not allow rerunable jobs

PBSE_
NONONRERUNABLE

15081 Queue does not allow nonrerunable jobs

PBSE_UNKARRAYID 15082 Unknown Array ID

PBSE_BAD_ARRAY_REQ 15083 Bad Job Array Request

PBSE_BAD_ARRAY_DATA 15084 Bad data reading job array from file

Appendix D: Diagnostics and Error Codes

Error Code Name Number Description

PBSE_TIMEOUT 15085 Time out

PBSE_JOBNOTFOUND 15086 Job not found

PBSE_
NOFAULTTOLERANT

15087 Queue does not allow fault tolerant jobs

PBSE_
NOFAULTINTOLERANT

15088 Queue does not allow fault intolerant jobs

PBSE_NOJOBARRAYS 15089 Queue does not allow job arrays

PBSE_RELAYED_TO_MOM 15090 Request was relayed to a MOM

PBSE_MEM_MALLOC 15091 Error allocating memory - out of memory

PBSE_MUTEX 15092 Error allocating controlling mutex (lock/unlock)

PBSE_THREADATTR 15093 Error setting thread attributes

PBSE_THREAD 15094 Error creating thread

PBSE_SELECT 15095 Error in socket select

PBSE_SOCKET_FAULT 15096 Unable to get connection to socket

PBSE_SOCKET_WRITE 15097 Error writing data to socket

PBSE_SOCKET_READ 15098 Error reading data from socket

PBSE_SOCKET_CLOSE 15099 Socket close detected

PBSE_SOCKET_LISTEN 15100 Error listening on socket

PBSE_AUTH_INVALID 15101 Invalid auth type in request

PBSE_NOT_
IMPLEMENTED

15102 This functionality is not yet implemented

Appendix D: Diagnostics and Error Codes

387

388

Error Code Name Number Description

PBSE_
QUENOTAVAILABLE

15103 Queue is currently not available

PBSE_TMPDIFFOWNER 15104 tmpdir owned by another user

PBSE_TMPNOTDIR 15105 tmpdir exists but is not a directory

PBSE_TMPNONAME 15106 tmpdir cannot be named for job

PBSE_CANTOPENSOCKET 15107 Cannot open demux sockets

PBSE_
CANTCONTACTSISTERS

15108 Cannot send join job to all sisters

PBSE_
CANTCREATETMPDIR

15109 Cannot create tmpdir for job

PBSE_BADMOMSTATE 15110 Mom is down, cannot run job

PBSE_SOCKET_
INFORMATION

15111 Socket information is not accessible

PBSE_SOCKET_DATA 15112 Data on socket does not process correctly

PBSE_CLIENT_INVALID 15113 Client is not allowed/trusted

PBSE_PREMATURE_EOF 15114 Premature End of File

PBSE_CAN_NOT_SAVE_
FILE

15115 Error saving file

PBSE_CAN_NOT_OPEN_
FILE

15116 Error opening file

PBSE_CAN_NOT_WRITE_
FILE

15117 Error writing file

PBSE_JOB_FILE_CORRUPT 15118 Job file corrupt

PBSE_JOB_RERUN 15119 Job cannot be rerun

Appendix D: Diagnostics and Error Codes

Error Code Name Number Description

PBSE_CONNECT 15120 Cannot establish connection

PBSE_JOBWORKDELAY 15121 Job function must be temporarily delayed

PBSE_BAD_PARAMETER 15122 Parameter of function was invalid

PBSE_CONTINUE 15123 Continue processing on job. (Not an error)

PBSE_JOBSUBSTATE 15124 Current sub state does not allow transaction.

PBSE_CAN_NOT_MOVE_
FILE

15125 Error moving file

PBSE_JOB_RECYCLED 15126 Job is being recycled

PBSE_JOB_ALREADY_IN_
QUEUE

15127 Job is already in destination queue.

PBSE_INVALID_MUTEX 15128 Mutex is NULL or otherwise invalid

PBSE_MUTEX_ALREADY_
LOCKED

15129 The mutex is already locked by this object

PBSE_MUTEX_ALREADY_
UNLOCKED

15130 The mutex has already been unlocked by this object

PBSE_INVALID_SYNTAX 15131 Command syntax invalid

PBSE_NODE_DOWN 15132 A node is down. Check the MOM and host

PBSE_SERVER_NOT_
FOUND

15133 Could not connect to batch server

PBSE_SERVER_BUSY 15134 Server busy. Currently no available threads

Appendix D: Diagnostics and Error Codes

389

390

Appendix E: Preparing to Upgrade

In this chapter:

E.1 Considerations Before Upgrading

E.2 To Upgrade

E.3 Rolling Upgrade

E.1 Considerations Before Upgrading
Torque is flexible in regard to how it can be upgraded. In most cases, a Torque 'shutdown'
followed by a configure,make,make install procedure as documented in this guide is all
that is required (see Installing Torque Resource Manager). This process will preserve
existing configuration and in most cases, existing workload.

A few considerations are included below:

l If upgrading from OpenPBS or PBSPro, queued jobs whether active or idle will be
lost. In such situations, job queues should be completely drained of all jobs.

l If not using the pbs_mom-r or -p flag (see pbs_mom Options), running jobs may be
lost. In such cases, running jobs should be allowed to be completed or should be
requeued before upgrading Torque.

l The server and the MOMs must run at the same major version, and the pbs_mom
version should never exceed the pbs_server version, even down to the patch
level. Problems can arise when running the MOM at a higher version. Most such
combinations do not get tested, and unexpected failures and job losses may occur.

l When upgrading from early versions of Moab, you may encounter a problem where
Moab core files are regularly created in /opt/moab. This can be caused by old
Torque library files used by Moab that try to authorize with the old Torque pbs_iff
authorization daemon. You can resolve the problem by removing the old version
library files from /usr/local/lib.

E.2 To Upgrade

1. Build new release (do not install).

2. Stop all Torque daemons (see qterm and momctl-s).

Appendix E: Preparing to Upgrade

3. Install new Torque (use make install).

4. Start all Torque daemons.

The directions to install and configure Torque are in the section Installing Torque Resource
Manager. Also note additional instructions in the PBS Administrator Guide and
README.building_40.

Note that you may need to install libssl-dev in order for the source to make successfully.
Specifically, the build system is looking for libssl.so and libcrypto.so. For non-RPM setups,
you may need to make a symbolic link from the ssl and crypto libraries to the respective .so
names.

E.3 Rolling Upgrade
If you are upgrading to a new point release of your current version (for example, from
9.1.2 to 9.1.3) and not to a new major release from your current version, you can use the
following procedure to upgrade Torque without taking your nodes offline.

To Perform a Rolling Upgrade in Torque

1. Enable the pbs_mom flag on the MOMs you want to upgrade. The
enablemomrestart option causes a MOM to check if its binary has been updated
and restart itself at a safe point when no jobs are running. You can enable this in the
MOM configuration file, but it is recommended that you use momctl instead.

> momctl -q enablemomrestart=1 -h :ALL

The enablemomrestart flag is enabled on all nodes.

2. Replace the pbs_mom binary, located in /usr/local/bin by default. pbs_mom will
continue to run uninterrupted because the pbs_mom binary has already been loaded
in RAM.

> torque-package-mom-linux-x86_64.sh --install

The next time pbs_mom is in an idle state, it will check for changes in the binary. If
pbs_mom detects that the binary on disk has changed, it will restart automatically,
causing the new pbs_mom version to load.

After the pbs_mom restarts on each node, the enablemomrestart parameter will
be set back to false (0) for that node.

Appendix E: Preparing to Upgrade

391

https://www.jlab.org/hpc/PBS/v2_2_admin.pdf

392

If you have cluster with high utilization, you may find that the nodes never enter an
idle state so pbs_mom never restarts. When this occurs, you must manually take the
nodes offline and wait for the running jobs to complete before restarting pbs_mom.
To set the node to an offline state, which will allow running jobs to complete but will
not allow any new jobs to be scheduled on that node, use pbsnodes -o
<nodeName>. After the new MOM has started, you must make the node active again
by running pbsnodes -c <nodeName>.

Appendix E: Preparing to Upgrade

F.1 Scalability Guidelines 393

Appendix F: Large Cluster Considerations
Torque has enhanced much of the communication found in the original OpenPBS project.
This has resulted in a number of key advantages including support for:

l larger clusters.

l more jobs.

l larger jobs.

l larger messages.

In most cases, enhancements made apply to all systems and no tuning is required.
However, some changes have been made configurable to allow site specific modification.
The configurable communication parameters are: node_check_rate, node_ping_
rate, and tcp_timeout.

In this appendix:

F.1 Scalability Guidelines 393
F.2 End-User Command Caching 394
F.3 Moab and Torque Configuration for Large Clusters 396
F.4 Starting Torque in Large Environments 397
F.5 Other Considerations 398

F.5.1 job_stat_rate 398
F.5.2 poll_jobs 398
F.5.3 Scheduler Settings 399
F.5.4 File System 399
F.5.5 Network ARP Cache 399

F.1 Scalability Guidelines

In very large clusters (in excess of 1,000 nodes), it may be advisable to tune a number of
communication layer timeouts. By default, PBS MOM daemons timeout on inter-MOM
messages after 60 seconds. In Torque, this can be adjusted by setting the timeout
parameter in the mom_priv/config file (see Node Manager (MOM) Configuration). If
15059 errors (cannot receive message from sisters) are seen in the MOM logs, it may be
necessary to increase this value.

Appendix F: Large Cluster Considerations

Client-to-server communication timeouts are specified via the tcp_timeout server
option using the qmgr command.

Sometimes, ulimits for the pbs_mom are inherited from the shell that spawns pbs_mom. A
workaround is to modify the current shell's ulimit or add an entry to the init script that
spawns pbs_mom.

On some systems, ulimit values may prevent large jobs from running. In particular,
the open file descriptor limit (i.e., ulimit -n) should be set to at least the maximum
job size in procs + 20. Further, there may be value in setting the fs.file-max in
sysctl.conf to a high value, such as:

/etc/sysctl.conf:
fs.file-max = 65536

Related Topics

l Appendix F: Large Cluster Considerations - page 393

F.2 End-User Command Caching

qstat
In a large system, users may tend to place excessive load on the system by manual or
automated use of resource manager end user client commands. A simple way of reducing
this load is through the use of client command wrappers that cache data. The example
script below will cache the output of the command 'qstat -f' for 60 seconds and report
this info to end users.

#!/bin/sh

USAGE: qstat $@

CMDPATH=/usr/local/bin/qstat
CACHETIME=60
TMPFILE=/tmp/qstat.f.tmp

if ["$1" != "-f"] ; then
 #echo "direct check (arg1=$1) "
 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-n "$2"] ; then
 #echo "direct check (arg2=$2)"
 $CMDPATH $1 $2 $3 $4

Appendix F: Large Cluster Considerations

394 F.2 End-User Command Caching

F.2 End-User Command Caching 395

 exit $?
fi

if [-f $TMPFILE] ; then
 TMPFILEMTIME=`stat -c %Z $TMPFILE`
else
 TMPFILEMTIME=0
fi

NOW=`date +%s`

AGE=$(($NOW - $TMPFILEMTIME))

#echo AGE=$AGE

for i in 1 2 3;do
 if ["$AGE" -gt $CACHETIME] ; then
 #echo "cache is stale "

 if [-f $TMPFILE.1] ; then
 #echo someone else is updating cache

 sleep 5

 NOW=`date +%s`

 TMPFILEMTIME=`stat -c %Z $TMPFILE`

AGE=$(($NOW - $TMPFILEMTIME))
 else
 break;
 fi
 fi
done

if [-f $TMPFILE.1] ; then
 #echo someone else is hung

 rm $TMPFILE.1
fi

if ["$AGE" -gt $CACHETIME] ; then
 #echo updating cache

 $CMDPATH -f > $TMPFILE.1

mv $TMPFILE.1 $TMPFILE

fi

#echo "using cache"

cat $TMPFILE

exit 0

The above script can easily be modified to cache any command and any combination of
arguments by changing one or more of the following attributes:

Appendix F: Large Cluster Considerations

l script name

l value of $CMDPATH

l value of $CACHETIME

l value of $TMPFILE

For example, to cache the command pbsnodes -a, make the following changes:

l Move original pbsnodes command to pbsnodes.orig.

l Save the script as 'pbsnodes'.

l Change $CMDPATH to pbsnodes.orig.

l Change $TMPFILE to /tmp/pbsnodes.a.tmp.

Related Topics

l Appendix F: Large Cluster Considerations - page 393

F.3 Moab and Torque Configuration for Large Clusters

There are a few basic configurations for Moab and Torque that can potentially improve
performance on large clusters.

Moab Configuration
In the moab.cfg file, add:

1. RMPOLLINTERVAL 30,30 - This sets the minimum and maximum poll interval to 30
seconds.

2. RMCFG[<name>] FLAGS=ASYNCSTART - This tells Moab not to block until it
receives a confirmation that the job starts.

3. RMCFG[<name>] FLAGS=ASYNCDELETE - This tells Moab not to block until it
receives a confirmation that the job was deleted.

Torque Configuration

1. Follow the Starting Torque in large environments recommendations.

2. Increase job_start_timeout on pbs_server. The default is 300 (5 minutes),
but for large clusters the value should be changed to something like 600 (10 minutes).
Sites running very large parallel jobs might want to set this value even higher.

Appendix F: Large Cluster Considerations

396 F.3 Moab and Torque Configuration for Large Clusters

F.4 Starting Torque in Large Environments 397

3. Use a node health check script on all MOM nodes. This helps prevent jobs from being
scheduled on bad nodes and is especially helpful for large parallel jobs.

4. Make sure that ulimit -n (maximum file descriptors) is set to unlimited, or a
very large number, and not the default.

5. For clusters with a high job throughput it is recommended that the server parameter
max_threads be increased from the default. The default is (2 * number of cores + 1)
* 10.

6. If you have the server send emails, set email_batch_seconds appropriately.
Setting this parameter will prevent pbs_server from forking too frequently and
increase the server's performance. See email_batch_seconds for more information on
this server parameter.

Related Topics

l Appendix F: Large Cluster Considerations - page 393

F.4 Starting Torque in Large Environments

If running Torque in a large environment, use these tips to help Torque start up faster.

Fastest Possible Start Up

1. Create a MOM hierarchy, even if your environment has a one-level MOM hierarchy
(meaning all MOMs report directly to pbs_server), and copy the file to the mom_
priv directory on the MOMs. See 2.3.3 Setting Up the MOM Hierarchy (Optional) - page
53 for more information.

2. Start pbs_server with the -n option. This specifies that pbs_server won't send the
hierarchy to the MOMs unless a MOM requests it. See -n for more information.

3. Start the MOMs normally.

If no daemons are Running

1. Start pbs_server with the -c option.

2. Start pbs_mom without the -w option.

If MOMs are Running and just Restarting pbs_server

1. Start pbs_server without the -c option.

Appendix F: Large Cluster Considerations

If Restarting a MOM or all MOMs

1. Start pbs_mom without the -w option. Starting it with -w causes the MOMs to appear to
be down.

Related Topics

l Appendix F: Large Cluster Considerations - page 393

F.5 Other Considerations

In this topic:

F.5.1 job_stat_rate - page 398
F.5.2 poll_jobs - page 398
F.5.3 Scheduler Settings - page 399
F.5.4 File System - page 399
F.5.5 Network ARP Cache - page 399

F.5.1 job_stat_rate
In a large system, there may be many users, many jobs, and many requests for information.
To speed up response time for users and for programs using the API the job_stat_
rate can be used to tweak when the pbs_server daemon will query MOMs for job
information. By increasing this number, a system will not be constantly querying job
information and causing other commands to block.

F.5.2 poll_jobs
The poll_jobs parameter enables a site to configure how the pbs_server daemon will
poll for job information. When set to TRUE, the pbs_server will poll job information in
the background and not block on user requests. When set to FALSE, the pbs_server
may block on user requests when it has stale job information data. Large clusters should
set this parameter to TRUE.

Appendix F: Large Cluster Considerations

398 F.5 Other Considerations

F.5 Other Considerations 399

F.5.3 Scheduler Settings
If using Moab, there are a number of parameters that can be set on the scheduler, which
may improve Torque performance. In an environment containing a large number of short-
running jobs, the JOBAGGREGATIONTIME parameter (see Moab Parameters in the Moab
Workload Manager Administrator Guide) can be set to reduce the number of workload and
resource queries performed by the scheduler. This parameter enables sites with bursty
job submissions to process job events in groups decreasing total job scheduling cycles and
allowing the scheduler to make more intelligent choices by aggregating job submissions
and choosing between the jobs. If the pbs_server daemon is heavily loaded and PBS API
timeout errors (i.e., 'Premature end of message') are reported within the scheduler, the
TIMEOUT attribute of the RMCFG parameter can be set with a value of between 30 and 90
seconds.

F.5.4 File System
Torque can be configured to disable file system blocking until data is physically written to
the disk by using the --disable-filesync argument with configure. While having
filesync enabled is more reliable, it may lead to server delays for sites with either a larger
number of nodes, or a large number of jobs. Filesync is enabled by default.

F.5.5 Network ARP Cache
For networks with more than 512 nodes it is mandatory to increase the kernel's internal
ARP cache size. For a network of ~1000 nodes, we use these values in
/etc/sysctl.conf on all nodes and servers:

/etc/sysctl.conf

Don't allow the arp table to become bigger than this
net.ipv4.neigh.default.gc_thresh3 = 4096
Tell the gc when to become aggressive with arp table cleaning.
Adjust this based on size of the LAN.
net.ipv4.neigh.default.gc_thresh2 = 2048
Adjust where the gc will leave arp table alone
net.ipv4.neigh.default.gc_thresh1 = 1024
Adjust to arp table gc to clean-up more often
net.ipv4.neigh.default.gc_interval = 3600
ARP cache entry timeout
net.ipv4.neigh.default.gc_stale_time = 3600

(The exact syntax to set the ARP cache size may vary according to OS version.) Use
sysctl -p to reload this file.

An alternative approach is to have a static /etc/ethers file with all hostnames and MAC
addresses and load this by arp -f /etc/ethers. However, maintaining this approach
is quite cumbersome when nodes get new MAC addresses (due to repairs, for example).

Appendix F: Large Cluster Considerations

Related Topics

l Appendix F: Large Cluster Considerations - page 393

Appendix F: Large Cluster Considerations

400 F.5 Other Considerations

G.1 MOM Prologue and Epilogue Scripts 401

Appendix G: Prologue and Epilogue Scripts
Torque provides administrators the ability to run scripts before and/or after each job
executes. With such a script, a site can prepare systems, perform node health checks,
prepend and append text to output and error log files, cleanup systems, and so forth.

In this appendix:

G.1 MOM Prologue and Epilogue Scripts 401
G.2 Script Order of Execution 403
G.3 Script Environment 404

G.3.1 Prologue Environment 404
G.3.2 Epilogue Environment 405
G.3.3 Environment Variables 406
G.3.4 Standard Input 408

G.4 Per Job Prologue and Epilogue Scripts 408
G.5 Prologue and Epilogue Scripts Time Out 409
G.6 Prologue Error Processing 409

G.1 MOM Prologue and Epilogue Scripts

The following table shows which MOM runs which script. All scripts must be in the
TORQUE_HOME/mom_priv/ directory and be available on every compute node. The
'Mother Superior' is the pbs_mom on the first node allocated for a job. While it is
technically a sister node, it is not a 'Sister' for the purposes of the following table.

The initial working directory for each script is TORQUE_HOME/mom_priv/.

Script Execution
Location

Script
Location

Execute
As

File
Permissions

Prologue Scripts

presetup.prologue Mother Superior 8th
argument

root Readable and
executable by
root and NOT

Appendix G: Prologue and Epilogue Scripts

Script Execution
Location

Script
Location

Execute
As

File
Permissions

writable by
anyone but
root (e.g., -r-
x-----)

prologue Mother Superior 8th
argument

root Readable and
executable by
root and NOT
writable by
anyone but
root (e.g., -r-
x-----)

prologue.parallel Sister --- root Readable and
executable by
root and NOT
writable by
anyone but
root (e.g., -r-
x-----)

prologue.user Mother Superior --- user Readable and
executable by
root and other
(e.g., -r-x---
r-x)

prologue.user.parallel Sister --- user Readable and
executable by
root and other
(e.g., -r-x---
r-x)

Epilogue Scripts

epilogue Mother Superior 11th
argument

root Readable and
executable by
root and NOT
writable by
anyone but
root (e.g., -r-
x-----)

Appendix G: Prologue and Epilogue Scripts

402 G.1 MOM Prologue and Epilogue Scripts

G.2 Script Order of Execution 403

Script Execution
Location

Script
Location

Execute
As

File
Permissions

epilogue.parallel Sister --- root Readable and
executable by
root and NOT
writable by
anyone but
root (e.g., -r-
x-----)

epilogue.precancel Mother Superior
This script runs after
a job cancel request
is received from pbs_
server and before a
kill signal is sent to
the job process.

--- user Readable and
executable by
root and other
(e.g., -r-x---
r-x)

epilogue.user Mother Superior --- user Readable and
executable by
root and other
(e.g., -r-x---
r-x)

epilogue.user.parallel Sister --- user Readable and
executable by
root and other
(e.g., -r-x---
r-x)

G.2 Script Order of Execution

When jobs start, the order of script execution is prologue followed by
prologue.user. On job exit, the order of execution is epilogue.user followed by
epilogue unless a job is canceled. In that case, epilogue.precancel is executed
first. epilogue.parallel is executed only on the Sister nodes when the job is
completed.

The epilogue and prologue scripts are controlled by the system administrator. A
user epilogue and prologue script can be used on a per job basis (see Per Job
Prologue and Epilogue Scripts for more information.)

Appendix G: Prologue and Epilogue Scripts

The node health check can be configured to run before or after the job with the
'jobstart' and/or 'jobend' options. However, the job environment variables do not get
passed to node health check script, so it has no access to those variables at any time.

Root squashing is now supported for epilogue and prologue scripts.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 401

G.3 Script Environment

The prologue and epilogue scripts can be very simple. On most systems, the script
must declare the execution shell using the #!<SHELL> syntax (for example,
'#!/bin/sh'). In addition, the script may want to process context sensitive arguments
passed by Torque to the script.

In this topic:

G.3.1 Prologue Environment - page 404
G.3.2 Epilogue Environment - page 405
G.3.3 Environment Variables - page 406
G.3.4 Standard Input - page 408

G.3.1 Prologue Environment
The following arguments are passed to the presetup.prologue, prologue,
prologue.user, and prologue.parallel scripts:

Argument Description

argv[1] Job ID.

argv[2] Job execution user name.

argv[3] Job execution group name.

Appendix G: Prologue and Epilogue Scripts

404 G.3 Script Environment

G.3 Script Environment 405

Argument Description

argv[4] Job name.

argv[5] List of requested resource.

argv[6] Job execution queue.

argv[7] Job account.

argv[8] Job script location.

argv[9] Comma-separated list of each host in the job. For example, if a job is using 10
cores on each of roshar, nalthis, elantris, and scadrial, this
argument will have the value: roshar,nalthis,elantris,scadrial.
Defined only for presetup.prologue.

G.3.2 Epilogue Environment
Torque supplies the following arguments to the epilogue, epilogue.user,
epilogue.precancel, and epilogue.parallel scripts:

Argument Description

argv[1] job id

argv[2] job execution user name

argv[3] job execution group name

argv[4] job name

argv[5] session id

argv[6] list of requested resource limits

argv[7] list of resources used by job

argv[8] job execution queue

Appendix G: Prologue and Epilogue Scripts

Argument Description

argv[9] job account

argv[10] job exit code

argv[11] job script location

The epilogue.precancel script is run after a job cancel request is received by the
MOM and before any signals are sent to job processes. If this script exists, it is run whether
the canceled job was active or idle.

The cancel job command (qdel) will take as long to return as the
epilogue.precancel script takes to run. For example, if the script runs for 5
minutes, it takes 5 minutes for qdel to return.

G.3.3 Environment Variables
For all scripts, the environment passed to the script is empty. When submitting a job
through qsub or msub -E, Torque defines variables.

G.3.3.A qsub
When submitting a job through qsub, Torque defines the following variables.

Variable Description

$PBS_MSHOST Mother superior's hostname

$PBS_RESOURCE_NODES -l nodes request made to the job, if any

$PBS_O_WORKDIR Job's working directory

$PBS_NODENUM Node index for the job of the node where this
prologue or epilogue is executing

$PBS_NUM_NODES Number of nodes requested for the job (1 if no -l
nodes request was made)

$PBS_NP Number of execution slots used for the job

Appendix G: Prologue and Epilogue Scripts

406 G.3 Script Environment

G.3 Script Environment 407

Variable Description

For example, -l nodes=2:ppn=4 will have $PBS_NP
defined as 8.

$PBS_NUM_PPN ppn request, if one was made
If more than one was made, it will be the first one. For
example: -l nodes=2:ppn=3+4:ppn=2 will have this
variable set to 3.

$PBS_NODEFILE Path to the job's nodefile

G.3.3.B msub -E
If you submit the job using msub -E, these Moab environment variables are available:

l MOAB_CLASS

l MOAB_GROUP

l MOAB_JOBARRAYINDEX

l MOAB_JOBARRAYRANGE

l MOAB_JOBID

l MOAB_JOBNAME

l MOAB_MACHINE

l MOAB_NODECOUNT

l MOAB_NODELIST

l MOAB_PARTITION

l MOAB_PROCCOUNT

l MOAB_QOS

l MOAB_TASKMAP

l MOAB_USER

See msub in the Moab Workload Manager Administrator Guide for more information.

Appendix G: Prologue and Epilogue Scripts

G.3.4 Standard Input
Standard input for both scripts is connected to a system dependent file. Currently, for all
systems this is /dev/null.

Except for epilogue scripts of an interactive job, prologue.parallel,
epilogue.precancel, and epilogue.parallel, the standard output and error
are connected to output and error files associated with the job.

For an interactive job, since the pseudo terminal connection is released after the job
completes, the standard input and error point to /dev/null.

For prologue.parallel and epilogue.parallel, the user will need to redirect
stdout and stderr manually.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 401

G.4 Per Job Prologue and Epilogue Scripts

Torque supports per job prologue and epilogue scripts when using the qsub -l option.
The syntax is:
qsub -l prologue=<prologue_script_path> epilogue=<epilogue_
script_path> <script>.

The path can be either relative (from the directory where the job is submitted) or absolute.
The files must be owned by the user with at least execute and read privileges, and the
permissions must not be writeable by group or other.

/home/usertom/dev/

-r-x------ 1 usertom usertom 24 2023-11-09 16:11 prologue_script.sh
-r-x------ 1 usertom usertom 24 2023-11-09 16:11 epilogue_script.sh

Example G-1:

$ qsub -l prologue=/home/usertom/dev/prologue_
script.sh,epilogue=/home/usertom/dev/epilogue_script.sh job14.pl

This job submission executes the prologue script first. When the prologue script is
complete, job14.pl runs. When job14.pl completes, the epilogue script is
executed.

Appendix G: Prologue and Epilogue Scripts

408 G.4 Per Job Prologue and Epilogue Scripts

G.5 Prologue and Epilogue Scripts Time Out 409

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 401

G.5 Prologue and Epilogue Scripts Time Out

Torque takes preventative measures against prologue and epilogue scripts by placing an
alarm around the scripts execution. By default, Torque sets the alarm to go off after 5
minutes of execution. If the script exceeds this time, it will be terminated and the node will
be marked down. This timeout can be adjusted by setting the $prologalarm parameter
in the mom_priv/config file.

While Torque is executing the epilogue, epilogue.user, or
epilogue.precancel scripts, the job will be in the E (exiting) state.

If an epilogue.parallel script cannot open the .OU or .ER files, an error is logged
but the script is continued.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 401

G.6 Prologue Error Processing

If the prologue script executes successfully, it should exit with a zero status. Otherwise,
the script should return the appropriate error code as defined in the table below. The pbs_
mom will report the script's exit status to pbs_server, which will in turn take the associated
action. The following table describes each exit code for the prologue scripts and the action
taken.

Error Description Action

-4 The script timed out Job will be
requeued

-3 The wait(2) call returned an error Job will be
requeued

Appendix G: Prologue and Epilogue Scripts

Error Description Action

-2 Input file could not be opened Job will be
requeued

-1 Permission error (script is not owned by root, or is writable by
others)

Job will be
requeued

0 Successful completion Job will run

1 Abort exit code Job will be abor-
ted

>1 other Job will be
requeued

Example G-2:

Following are example prologue and epilogue scripts that write the arguments passed to
them in the job's standard out file:

prologue

Script #!/bin/sh
echo "Prologue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo ""

exit 0

stdout Prologue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1

epilogue

Script #!/bin/sh
echo "Epilogue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"

Appendix G: Prologue and Epilogue Scripts

410 G.6 Prologue Error Processing

G.6 Prologue Error Processing 411

epilogue

echo "Job Name: $4"
echo "Session ID: $5"
echo "Resource List: $6"
echo "Resources Used: $7"
echo "Queue Name: $8"
echo "Account String: $9"
echo ""

exit 0

stdout Epilogue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1
Job Name: script.sh
Session ID: 28244
Resource List: neednodes=node01,nodes=1,walltime=00:01:00
Resources Used:
cput=00:00:00,mem=0kb,vmem=0kb,walltime=00:00:07
Queue Name: batch
Account String:

Example G-3:

The Ohio Supercomputer Center contributed the following scripts:

"prologue creates a unique temporary directory on each node assigned to a job before the
job begins to run, and epilogue deletes that directory after the job completes.

Having a separate temporary directory on each node is probably not as good as
having a good, high performance parallel filesystem.

prologue

#!/bin/sh
Create TMPDIR on all the nodes
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
prologue gets 3 arguments:
1 -- jobid
2 -- userid
3 -- grpid
#
jobid=$1
user=$2
group=$3
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)

Appendix G: Prologue and Epilogue Scripts

else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i mkdir -m 700 $tmp \&\& chown $user.$group $tmp
done
exit 0

epilogue

#!/bin/sh
Clear out TMPDIR
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
epilogue gets 9 arguments:
1 -- jobid
2 -- userid
3 -- grpid
4 -- job name
5 -- sessionid
6 -- resource limits
7 -- resources used
8 -- queue
9 -- account
#
jobid=$1
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i rm -rf $tmp
done
exit 0

prologue, prologue.user, and prologue.parallel scripts can have
dramatic effects on job scheduling if written improperly.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 401

Appendix G: Prologue and Epilogue Scripts

412 G.6 Prologue Error Processing

413

Appendix H: Running Multiple Torque Servers
and MOMs on the Same Node

In this topic:

H.1 Configuring Multiple Servers to Run on the Same Node
H.2 Configuring the First Torque
H.3 Configuring the Second Torque
H.4 Bringing the First Torque Server Online
H.5 Bringing the Second Torque Server Online

H.1 Configuring Multiple Servers to Run on the Same Node
Torque can be configured to allow multiple servers and MOMs to run on the same node.
This example will show how to configure, compile and install two different Torque servers
and MOMs on the same node.

H.2 Configuring the First Torque
./configure --with-server-home=/usr/spool/torque1 --bindir=/usr/spool/torque1/bin --
sbindir=/usr/spool/torque1/sbin

Then make and make install will place the first Torque into /usr/spool/torque1 with
the executables in their corresponding directories.

H.3 Configuring the Second Torque
./configure --with-server-home=/usr/spool/torque2 --bindir=/usr/spool/torque2/bin --
sbindir=/usr/spool/torque2/sbin

Then make and make install will place the second Torque into /usr/spool/torque2
with the executables in their corresponding directories.

H.4 Bringing the First Torque Server Online
Each command, including pbs_server and pbs_mom, takes parameters indicating which
servers and ports to connect to or listen on (when appropriate). Each of these is
documented in their corresponding man pages.

Appendix H: Running Multiple Torque Servers and MOMs on the Same Node

In this example the first Torque server will accept batch requests on port 35000 and
communicate with the MOMs on port 35001. The first Torque MOM will try to connect to
the server on port 35000 and it will listen for requests from the server on port 35001.
(Each of these command arguments is discussed in further details on the corresponding
man page. In particular, -t create is only used the first time a server is run.)

> pbs_server -p 35000 -M 35001 -t create
> pbs_mom -S 35000 -M 35001

Afterwards, when using a client command to make a batch request, it is necessary to
specify the server name and server port (35000):

> pbsnodes -a -s node01:35000

Submitting jobs can be accomplished using the -q option ([queue][@host[:port]]):

> qsub -q @node01:35000 /tmp/script.pbs

H.5 Bringing the Second Torque Server Online
In this example the second Torque server will accept batch requests on port 36000,
communicate with the MOMS on port 36001, and communicate via TCP on port 36002. The
second Torque MOM will try to connect to the server on port 36000, it will listen for
requests from the server on port 36001 and will communicate via TCP on port 36002.

> pbs_server -p 36000 -M 36001 -R 36002 -t create
> pbs_mom -S 36000 -M 36001 -R 36002

Afterward, when using a client command to make a batch request, it is necessary to specify
the server name and server port (36002):

> pbsnodes -a -s node01:36000
> qsub -q @node01:36000 /tmp/script.pbs

Appendix H: Running Multiple Torque Servers and MOMs on the Same Node

414

415

Appendix I: Security Overview
The authorization model for Torque uses a daemon called trqauthd. The job of the
trqauthd daemon is the same as pbs_iff. The difference is that trqauthd is a
resident daemon whereas pbs_iff is invoked by each client command. pbs_iff is not
scalable and is prone to failure under even small loads. trqauthd is very scalable and
creates the possibility for better security measures in the future.

trqauthd Authorization Theory
The key to security of trqauthd is the assumption that any host that has been added to
the Torque cluster has been secured by the administrator. trqauthd does not do
authentication, just authorization of users. Given that the host system is secure, the
following is the procedure by which trqauthd authorizes users to pbs_server.

1. Client utility makes a connection to pbs_server on a dynamic port.

2. Client utility sends a request to trqauthd with the user name and port.

3. trqauthd verifies the user ID and then sends a request to pbs_server on a
privileged port with the user ID and dynamic port to authorize the connection.

4. trqauthd reports results of the server to client utility.

trqauthd uses UNIX Domain Sockets for communication from the client utility. UNIX
Domain Sockets have the ability to verify that a user is who they say they are by using
security features that are part of the file system.

Appendix I: Security Overview

416

Appendix J: Job Submission Filter (qsub
Wrapper)

When a 'submit filter' exists, Torque will send the command file (or contents of STDIN if
piped to qsub) to that script/executable and allow it to evaluate the submitted request
based on specific site policies. The resulting file is then handed back to qsub and
processing continues. Submit filters can check user jobs for correctness based on site
policies. They can also modify user jobs as they are submitted. Some examples of what a
submit filter might evaluate and check for are:

l Memory Request - Verify that the job requests memory and rejects if it does not.

l Job event notifications - Check if the job does one of the following and rejects it if it:
o explicitly requests no notification.
o requests notifications but does not provide an email address.

l Walltime specified - Verify that the walltime is specified.

l Global Walltime Limit - Verify that the walltime is below the global max walltime.

l Test Walltime Limit - If the job is a test job, this check rejects the job if it requests a
walltime longer than the testing maximum.

The script below reads the original submission request from STDIN and shows how you
could insert parameters into a job submit request:

#!/bin/sh
add default memory constraints to all requests
that did not specify it in user's script or on command line
echo "#PBS -l mem=16MB"
while read i
do
echo $i
done

The same command line arguments passed to qsub will be passed to the submit filter and
in the same order. Exit status of -1 will cause qsub to reject the submission with a message
stating that it failed due to administrative policies.

The submit filter must be executable and must be available on each of the nodes where
users can submit jobs. Because the submit filter is likely to run multiple times for each job
submission, all operations in the submit filter must be idempotent (i.e., they must produce
the same results if called more than once with the same input parameters).

By default, the submit filter must be located at /usr/local/sbin/torque_
submitfilter. At run time, if the file does not exist at this new preferred path then
qsub will fall back to the old hard-coded path. The submit filter location can be customized

Appendix J: Job Submission Filter (qsub Wrapper)

by setting the SUBMITFILTER parameter inside the file (seetorque.cfg Configuration File),
as in the following example:

torque.cfg:

SUBMITFILTER /opt/torque/submit.pl
...

Initial development courtesy of Oak Ridge National Laboratories.

Appendix J: Job Submission Filter (qsub Wrapper)

417

418

Appendix K: torque.cfg Configuration File
Administrators can configure the torque.cfg file (located in PBS_SERVER_HOME
(/var/spool/torque by default)) to alter the behavior of the qsub command on specific host
machines where the file resides. This file contains a list of parameters and values
separated by whitespace. This only affects qsub, and only on each specific host with the file.

Configuration Parameters

CLIENTRETRY DEFAULTCKPT FAULT_TOLERANT_BY_DEFAULT

HOST_NAME_SUFFIX INTERACTIVE_PORT_RANGE QSUBHOST

QSUBSENDUID QSUBSLEEP RERUNNABLEBYDEFAULT

SERVERHOST SUBMITFILTER TRQ_IFNAME

VALIDATEGROUP VALIDATEPATH

CLIENTRETRY

Format <INT>

Default 0

Description Seconds between retry attempts to talk to pbs_server.

Example CLIENTRETRY 10

Torque waits 10 seconds after a failed attempt before it attempts to talk to pbs_server
again.

DEFAULTCKPT

Format One of None, Enabled, Shutdown, Periodic, Interval=minutes,
depth=number, or dir=path

Default None

Appendix K: torque.cfg Configuration File

DEFAULTCKPT

Description Default value for job's checkpoint attribute. For a description of all possible
values, see qsub.

This default setting can be overridden at job submission with the qsub
-c option.

Example DEFAULTCKPT Shutdown

By default, Torque checkpoints at pbs_mom shutdown.

FAULT_TOLERANT_BY_DEFAULT

Format <BOOLEAN>

Default FALSE

Description Sets all jobs to fault tolerant by default (see -i for more information on
fault tolerance).

Example FAULT_TOLERANT_BY_DEFAULT TRUE

Jobs are fault tolerant by default. They will not be canceled
based on failed polling, no matter how many nodes fail to
report.

HOST_NAME_SUFFIX

Format <STRING>

Default ---

Description Specifies a hostname suffix. When qsub submits a job, it also submits the
username of the submitter and the name of the host from which the user
submitted the job. Torque appends the value of HOST_NAME_SUFFIX to the
hostname. This is useful for multi-homed systems that may have more than
one name for a host.

Example HOST_NAME_SUFFIX -ib

When a job is submitted, the -ib suffix is appended to the host
name.

Appendix K: torque.cfg Configuration File

419

420

INTERACTIVE_PORT_RANGE

Format <INTEGER>-<INTEGER>

Default ---

Description Sets a range of ports for interactive jobs. The minimum port must be greater
than 1024, and the maximum port must be greater than the minimum port, or
else the setting will be ignored.

Example INTERACTIVE_PORT_RANGE 20000-20100

Force all interactive listening ports on this host to be between
20000 and 20100, inclusive.

QSUBHOST

Format <HOSTNAME>

Default ---

Description The hostname given as the argument of this option will be used as the PBS_O_
HOST variable for job submissions. By default, PBS_O_HOST is the hostname of
the submission host. This option enables administrators to override the default
hostname and substitute a new name.

Example QSUBHOST host1

The default hostname associated with a job is host1.

QSUBSENDUID

Format N/A

Default ---

Description Integer for job's PBS_O_UID variable. Specifying the parameter name anywhere
in the config file enables the feature. Removing the parameter name disables
the feature.

Example QSUBSENDUID

Appendix K: torque.cfg Configuration File

QSUBSENDUID

Torque assigns a unique ID to a job when it is submitted by qsub.

QSUBSLEEP

Format <INT>

Default 0

Description Specifies time, in seconds, to sleep between a user's submitting and Torque's
starting a qsub command. Used to prevent users from overwhelming the
scheduler.

Example QSUBSLEEP 2

When a job is submitted with qsub, it will sleep for 2 seconds.

RERUNNABLEBYDEFAULT

Format <BOOLEAN>

Default TRUE

Description Specifies if a job is re-runnable by default. Setting this to false causes the re-
runnable attribute value to be false unless the user specifies otherwise with
the qsub -r option.

Example RERUNNABLEBYDEFAULT FALSE

By default, qsub jobs cannot be rerun.

SERVERHOST

Format <STRING>

Default localhost

Description If set, the qsub command will open a connection to the host specified by the
SERVERHOST string.

Appendix K: torque.cfg Configuration File

421

422

SERVERHOST

Example SERVERHOST orion15

The server will open socket connections and communicate using
serverhost orion15.

SUBMITFILTER

Format <STRING>

Default /usr/local/sbin/torque_submitfilter

Description Specifies the location of the submit filter (see Job Submission Filter (qsub
Wrapper) used to preprocess job submission.

Example SUBMITFILTER /usr/local/sbin/torque_submitfilter

The location of the submit filter is specified as
/usr/local/sbin/torque_submitfilter.

TRQ_IFNAME

Format <STRING>

Default null

Description Allows you to specify a specific network interface to use for outbound Torque
requests. The string is the name of a network interface, such as eth0 or eth1,
depending on which interface you want to use.

Example TRQ_IFNAME eth1

Outbound Torque requests are handled by eth1.

VALIDATEGROUP

Format <BOOLEAN>

Default FALSE

Appendix K: torque.cfg Configuration File

VALIDATEGROUP

Description Validate submit user's group on qsub commands. VALIDATEGROUP also
checks any groups requested in group_list at the submit host. Set
VALIDATEGROUP to TRUE if you set disable_server_id_check to
TRUE.

Example VALIDATEGROUP TRUE

qsub verifies the submitter's group ID.

VALIDATEPATH

Format <BOOLEAN>

Default TRUE

Description Validate local existence of -d and/or -w working directories.

Example VALIDATEPATH FALSE

qsub does not validate the path.

Appendix K: torque.cfg Configuration File

423

L.1 Initial Installation 424

Appendix L: Torque Quick Start Guide

In this appendix:

L.1 Initial Installation 424
L.2 Initialize/Configure Torque on the Server (pbs_server) 425
L.3 Install Torque on the Compute Nodes 425
L.4 Configure Torque on the Compute Nodes 426
L.5 Configure Data Management on the Compute Nodes 426
L.6 Update Torque Server Configuration 426
L.7 Start the pbs_mom Daemons on Compute Nodes 427
L.8 Verify Correct Torque Installation 427
L.9 Enable the Scheduler 427
L.10 (Optional) Startup/Shutdown Service Script for Torque/Moab 428

Related Topics

l 2.3 Advanced Configuration - page 39

L.1 Initial Installation

Download the latest Torque build from Adaptive Computing Torque Downloads.

Extract and build the distribution on the machine that will act as the 'Torque server' - the
machine that will monitor and control all compute nodes by running the pbs_server
daemon. See the example below:

> tar -xzvf torque.tar.gz
> cd torque
> ./configure
> make
> make install

OSX 10.4 users need to change the #define __TDARWIN in src/include/pbs_
config.h to #define __TDARWIN_8.

Appendix L: Torque Quick Start Guide

https://support.adaptivecomputing.com/hpc-cloud-support-portal-2/

After installation, verify you have PATH environment variables configured for
/usr/local/bin/ and /usr/local/sbin/. Client commands are installed to
/usr/local/bin and server binaries are installed to /usr/local/sbin.

In this document, TORQUE_HOME corresponds to where Torque stores its
configuration files. The default is /var/spool/torque.

L.2 Initialize/Configure Torque on the Server (pbs_
server)

Once installation on the Torque server is complete, configure the pbs_server daemon by
executing the command torque.setup <USER> found packaged with the distribution
source code, where <USER> is a username that will act as the Torque admin. This script
will set up a basic batch queue to get you started. If you experience problems, make sure
that the most recent Torque executables are being executed, or that the executables are in
your current PATH.

If doing this step manually, be certain to run the command pbs_server -t create to
create the new batch database. If this step is not taken, the pbs_server daemon will be
unable to start.

Proper server configuration can be verified by following the steps listed in 2.6 Testing
Server Configuration - page 66.

L.3 Install Torque on the Compute Nodes

To configure a compute node, do the following on each machine (see Section 3.2.1 of PBS
Administrator Guide for full details):

Create the self-extracting, distributable packages with make packages (see the INSTALL
file for additional options and features of the distributable packages) and use the parallel
shell command from your cluster management suite to copy and execute the package on all
nodes (i.e., xCAT users might do prcp torque-package-linux-i686.sh
main:/tmp/; psh main /tmp/torque-package-linux-i686.sh --
install). Optionally, distribute and install the clients package.

Appendix L: Torque Quick Start Guide

425 L.2 Initialize/Configure Torque on the Server (pbs_server)

https://www.jlab.org/hpc/PBS/v2_2_admin.pdf
https://www.jlab.org/hpc/PBS/v2_2_admin.pdf

L.4 Configure Torque on the Compute Nodes 426

L.4 Configure Torque on the Compute Nodes

For each compute host, you must configure the MOM daemon to trust the pbs_server
host. The recommended method for doing this is to create the TORQUE_HOME/server_
name file with the server hostname in it. Alternatively, you can add a $pbsserver line to
the TORQUE_HOME/mom_priv/config file.

Additional config parameters can be added to TORQUE_HOME/mom_priv/config (see
Appendix C: Node Manager (MOM) Configuration - page 357 for details).

See 2.2.1 Specifying Compute Nodes - page 31 for more information about configuring
pbs_server to identify compute nodes.

L.5 Configure Data Management on the Compute
Nodes

Data management allows jobs' data to be staged in/out or to and from the server and
compute nodes:

l For shared filesystems (i.e., NFS, DFS, AFS, etc.) use the $usecp parameter in the
mom_priv/config files to specify how to map a user's home directory. (Example:
$usecp gridmaster.tmx.com:/home /home)

l For local, non-shared filesystems, rcp or scp must be configured to allow direct copy
without prompting for passwords (key authentication, etc.).

L.6 Update Torque Server Configuration

On the Torque server, append the list of newly configured compute nodes to the TORQUE_
HOME/server_priv/nodes file:

server_priv/nodes

computenode001.cluster.org
computenode002.cluster.org
computenode003.cluster.org

Appendix L: Torque Quick Start Guide

L.7 Start the pbs_mom Daemons on Compute Nodes

Next, start the pbs_mom daemon on each compute node by running the pbs_mom
executable.

Run the trqauthd daemon to run client commands (see Configuring trqauthd for Client
Commands). This enables running client commands.

L.8 Verify Correct Torque Installation

The pbs_server daemon was started on the Torque server when the torque.setup file
was executed or when it was manually configured. It must now be restarted so it can
reload the updated configuration changes.

shutdown server
> qterm # shutdown server

start server
> pbs_server

verify all queues are properly configured
> qstat -q

view additional server configuration
> qmgr -c 'p s'

verify all nodes are correctly reporting
> pbsnodes -a

submit a basic job
>echo "sleep 30" | qsub

verify jobs display
> qstat

At this point, the job will not start because there is no scheduler running. The scheduler is
enabled in the next step below.

L.9 Enable the Scheduler

Selecting the cluster scheduler is an important decision and significantly affects cluster
utilization, responsiveness, availability, and intelligence. The default Torque scheduler, pbs_
sched, is very basic and will provide poor utilization of your cluster's resources. Other
options, such as Maui Scheduler or Moab Workload Manager are highly recommended. If

Appendix L: Torque Quick Start Guide

427 L.7 Start the pbs_mom Daemons on Compute Nodes

L.10 (Optional) Startup/Shutdown Service Script for Torque/Moab 428

using Maui/Moab, see Moab-Torque Integration Guide in the Moab Workload Manager
Administrator Guide. If using pbs_sched, start this daemon now.

If you are installing ClusterSuite, Torque and Moab were configured at installation for
interoperability and no further action is required.

L.10 (Optional) Startup/Shutdown Service Script for
Torque/Moab

Optional startup/shutdown service scripts are provided as an example of how to run
Torque as an OS service that starts at bootup. The scripts are located in the
contrib/init.d/ directory of the Torque tarball you downloaded.

In order to use the script, you must:

l Determine which init.d script suits your platform the best.

l Modify the script to point to Torque's install location. This should only be necessary if
you used a non-default install location for Torque (by using the --prefix option of
./configure).

l Place the script in the /etc/init.d/ directory.

l Use a tool like chkconfig to activate the start-up scripts or make symbolic links
(S99moab and K15moab, for example) in desired runtimes (/etc/rc.d/rc3.d/
on Red Hat, etc.).

Appendix L: Torque Quick Start Guide

429

Appendix M: BLCR Acceptance Tests
This section contains a description of the testing done to verify the functionality of the
BLCR implementation.

In this appendix:

M.1 Test Environment 430
M.2 Test 1 - Basic Operation 430

M.2.1 Introduction 430
M.2.2 Test Steps 430
M.2.3 Possible Failures 431
M.2.4 Successful Results 431

M.3 Test 2 - Persistence of Checkpoint Images 433
M.3.1 Introduction 433
M.3.2 Test Steps 433
M.3.3 Possible Failures 433
M.3.4 Successful Results 434

M.4 Test 3 - Restart After Checkpoint 434
M.4.1 Introduction 434
M.4.2 Test Steps 434
M.4.3 Successful Results 434

M.5 Test 4 - Multiple Checkpoint/Restart 434
M.5.1 Introduction 434
M.5.2 Test Steps 434
M.5.3 Successful Results 435

M.6 Test 5 - Periodic Checkpoint 435
M.6.1 Introduction 435
M.6.2 Test Steps 435
M.6.3 Successful Results 435

M.7 Test 6 - Restart from Previous Image 436
M.7.1 Introduction 436
M.7.2 Test Steps 436
M.7.3 Successful Results 436

Appendix M: BLCR Acceptance Tests

M.1 Test Environment

All these tests assume the following test program and shell script, test.sh.

#include
int main(int argc, char *argv[])
{
int i;

 for (i=0; i<100; i++)
{

 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}
#!/bin/bash

/home/test/test

Related Topics

l Appendix M: BLCR Acceptance Tests - page 429

M.2 Test 1 - Basic Operation

In this topic:

M.2.1 Introduction - page 430
M.2.2 Test Steps - page 430
M.2.3 Possible Failures - page 431
M.2.4 Successful Results - page 431

M.2.1 Introduction
This test determines if the proper environment has been established.

M.2.2 Test Steps
Submit a test job and the issue a hold on the job:

> qsub -c enabled test.sh

Appendix M: BLCR Acceptance Tests

430 M.1 Test Environment

M.2 Test 1 - Basic Operation 431

999.xxx.yyy
> qhold 999

M.2.3 Possible Failures
Normally the result of qhold is nothing. If an error message is produced saying that
qhold is not a supported feature, then one of the following configuration errors might be
present:

l The Torque images may not have been configured with --enable-blcr

l BLCR support may not be installed into the kernel with insmod

l The config script in mom_priv may not exist with $checkpoint_script
defined

l The config script in mom_priv may not exist with $restart_script defined

l The config script in mom_priv may not exist with $checkpoint_run_exe
defined

l The scripts referenced in the config file may not exist

l The scripts referenced in the config file may not have the correct permissions

M.2.4 Successful Results
If no configuration was done to specify a specific directory location for the checkpoint file,
the default location is off of the Torque directory, which in my case is
/var/spool/torque/checkpoint.

Otherwise, go to the specified directory for the checkpoint image files. This was done by
either specifying an option on job submission (i.e., -c dir=/home/test) or by setting
an attribute on the execution queue. This is done with the command qmgr -c 'set
queue batch checkpoint_dir=/home/test'.

Doing a directory listing shows the following:

find /var/spool/torque/checkpoint
/var/spool/torque/checkpoint
/var/spool/torque/checkpoint/999.xxx.yyy.CK
/var/spool/torque/checkpoint/999.xxx.yyy.CK/ckpt.999.xxx.yyy.1205266630
find /var/spool/torque/checkpoint |xargs ls -l
-r-------- 1 root root 543779 2023-03-11 14:17
/var/spool/torque/checkpoint/999.xxx.yyy.CK/ckpt.999.xxx.yyy.1205266630

/var/spool/torque/checkpoint:
total 4
drwxr-xr-x 2 root root 4096 2023-03-11 14:17 999.xxx.yyy.CK

/var/spool/torque/checkpoint/999.xxx.yyy.CK:

Appendix M: BLCR Acceptance Tests

total 536
-r-------- 1 root root 543779 2023-03-11 14:17 ckpt.999.xxx.yyy.1205266630

Doing a qstat -f command should show the job in a held state, job_state = H. Note that
the attribute checkpoint_name is set to the name of the file seen above.

If a checkpoint directory has been specified, there will also be an attribute checkpoint_dir in
the output of qstat -f:

$ qstat -f
Job Id: 999.xxx.yyy
 Job_Name = test.sh
 Job_Owner = test@xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:06
 job_state = H
 queue = batch
 server = xxx.yyy
 Checkpoint = u
 ctime = Tue Mar 11 14:17:04 2023
 Error_Path = xxx.yyy:/home/test/test.sh.e999
 exec_host = test/0
 Hold_Types = u
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Tue Mar 11 14:17:10 2023
 Output_Path = xxx.yyy:/home/test/test.sh.o999
 Priority = 0
 qtime = Tue Mar 11 14:17:04 2023
 Rerunable = True
 Resource_List.neednodes = 1
 Resource_List.nodect = 1
 Resource_List.nodes = 1
 Resource_List.walltime = 01:00:00
 session_id = 9402 substate = 20
 Variable_List = PBS_O_HOME=/home/test,PBS_O_LANG=en_US.UTF-8,
 PBS_O_LOGNAME=test,
 PBS_O_PATH=/usr/local/perltests/bin:/home/test/bin:/usr/local/s
bin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games,
 PBS_O_SHELL=/bin/bash,PBS_SERVER=xxx.yyy,
 PBS_O_HOST=xxx.yyy,PBS_O_WORKDIR=/home/test,
 PBS_O_QUEUE=batch
 euser = test
 egroup = test
 hashname = 999.xxx.yyy
 queue_rank = 3
 queue_type = E comment = Job started on Tue Mar 11 at 14:17
 exit_status = 271
 submit_args = test.sh
 start_time = Tue Mar 11 14:17:04 2023
 start_count = 1
 checkpoint_dir = /var/spool/torque/checkpoint/999.xxx.yyy.CK
 checkpoint_name = ckpt.999.xxx.yyy.1205266630

Appendix M: BLCR Acceptance Tests

432 M.2 Test 1 - Basic Operation

M.3 Test 2 - Persistence of Checkpoint Images 433

The value of Resource_List.* is the amount of resources requested.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 429

M.3 Test 2 - Persistence of Checkpoint Images

M.3.1 Introduction
This test determines if the checkpoint files remain in the default directory after the job is
removed from the Torque queue.

Note that this behavior was requested by a customer but in fact may not be the right thing
to do as it leaves the checkpoint files on the execution node. These will gradually build up
over time on the node being limited only by disk space. The right thing would seem to be
that the checkpoint files are copied to the user's home directory after the job is purged
from the execution node.

M.3.2 Test Steps
Assuming the steps of Test 1 (see Test 1 - Basic Operation), delete the job and then wait
until the job leaves the queue after the completed job hold time. Then look at the contents
of the default checkpoint directory to see if the files are still there.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999
> qdel 999
> sleep 100
> qstat
>
> find /var/spool/torque/checkpoint
... files ...

M.3.3 Possible Failures
The files are not there, did Test 1 actually pass?

Appendix M: BLCR Acceptance Tests

M.3.4 Successful Results
The files are there.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 429

M.4 Test 3 - Restart After Checkpoint

M.4.1 Introduction
This test determines if the job can be restarted after a checkpoint hold.

M.4.2 Test Steps
Assuming the steps of Test 1 (see Test 1 - Basic Operation), issue a qrls command. Have
another window open into the /var/spool/torque/spool directory and tail the job.

M.4.3 Successful Results
After the qrls, the job's output should resume.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 429

M.5 Test 4 - Multiple Checkpoint/Restart

M.5.1 Introduction
This test determines if the checkpoint/restart cycle can be repeated multiple times.

M.5.2 Test Steps
Start a job and then while tailing the job output, do multiple qhold/qrls operations:

Appendix M: BLCR Acceptance Tests

434 M.4 Test 3 - Restart After Checkpoint

M.6 Test 5 - Periodic Checkpoint 435

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999
> qrls 999
> qhold 999
> qrls 999
> qhold 999
> qrls 999

M.5.3 Successful Results
After each qrls, the job's output should resume. Also tried while true; do qrls
999; qhold 999; done and this seemed to work as well.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 429

M.6 Test 5 - Periodic Checkpoint

M.6.1 Introduction
This test determines if automatic periodic checkpoint will work.

M.6.2 Test Steps
Start the job with the option -c enabled,periodic,interval=1 and look in the
checkpoint directory for checkpoint images to be generated about every minute.

> qsub -c enabled,periodic,interval=1 test.sh
999.xxx.yyy

M.6.3 Successful Results
After each qrls, the job's output should resume. Also tried "while true; do qrls 999;
qhold 999; done" and this seemed to work as well.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 429

Appendix M: BLCR Acceptance Tests

M.7 Test 6 - Restart from Previous Image

M.7.1 Introduction
This test determines if the job can be restarted from a previous checkpoint image.

M.7.2 Test Steps
Start the job with the option -c enabled,periodic,interval=1 and look in the
checkpoint directory for checkpoint images to be generated about every minute. Do a
qhold on the job to stop it. Change the attribute checkpoint_name with the qalter
command. Then do a qrls to restart the job.

> qsub -c enabled,periodic,interval=1 test.sh
999.xxx.yyy
> qhold 999
> qalter -W checkpoint_name=ckpt.999.xxx.yyy.1234567
> qrls 999

M.7.3 Successful Results
The job output file should be truncated back and the count should resume at an earlier
number.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 429

Appendix M: BLCR Acceptance Tests

436 M.7 Test 6 - Restart from Previous Image

437

Appendix N: Queue Attributes
This appendix provides information on the different queue attributes.

In this chapter:

N.1 Queue Attribute Reference

N.2 Attributes

N.3 Assigning Queue Resource Limits

N.1 Queue Attribute Reference
In addition to information on the different queue attributes, this appendix lists some queue
resource limits. See N.3 Assigning Queue Resource Limits - page 448.

For Boolean attributes, T, t, 1, Y, and y are all synonymous with 'TRUE,' and F, f, 0, N,
and n all mean 'FALSE.'

N.2 Attributes

acl_groups
acl_group_enable
acl_group_sloppy
acl_hosts
acl_host_enable
acl_logic_or
acl_users
acl_user_enable

disallowed_types
enabled
features_required
ghost_queue
keep_completed
kill_delay
max_queuable
max_running

max_user_queuable
max_user_run
priority
queue_type
req_information_max
req_information_min
required_login_property
resources_available

resources_default
resources_max
resources_min
route_destinations
started

acl_groups

Format <GROUP>[@<HOST>][+<USER>[@<HOST>]]...

Default ---

Description Specifies the list of groups that can submit jobs to the queue. If acl_group_

Appendix N: Queue Attributes

acl_groups

enable is set to true, only users with a primary group listed in acl_groups can
utilize the queue.

If the PBSACLUSEGROUPLIST variable is set in the pbs_server
environment, acl_groups checks against all groups of which the job user
is a member.

Example > qmgr -c "set queue batch acl_groups=staff"
> qmgr -c "set queue batch acl_groups+=ops@h1"
> qmgr -c "set queue batch acl_groups+=staff@h1"

Used in conjunction with acl_group_enable.

acl_group_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains Torque to only allow jobs submitted from groups specified
by the acl_groups parameter.

Example qmgr -c "set queue batch acl_group_enable=true"

acl_group_sloppy

Format <BOOLEAN>

Default FALSE

Description If TRUE, acl_groups will be checked against all groups of which the job
users is a member.

Example ---

Appendix N: Queue Attributes

438

439

acl_hosts

Format <HOST>[+<HOST>]...

Default ---

Description Specifies the list of hosts that can submit jobs to the queue.

Example qmgr -c "set queue batch acl_hosts=h1+h1+h1"

Used in conjunction with acl_host_enable.

acl_host_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains Torque to only allow jobs submitted from hosts specified
by the acl_hosts parameter.

Example qmgr -c "set queue batch acl_host_enable=true"

acl_logic_or

Format <BOOLEAN>

Default FALSE

Description If TRUE, user and group acls are logically ORed together, meaning that either
acl may be met to allow access. If FALSE or unset, then both acls are ANDed,
meaning that both acls must be satisfied.

Example qmgr -c "set queue batch acl_logic_or=true"

acl_users

Format <USER>[@<HOST>][+<USER>[@<HOST>]]...

Appendix N: Queue Attributes

acl_users

Default ---

Description Specifies the list of users who can submit jobs to the queue. If acl_user_
enable is set to TRUE, only users listed in acl_users can use the queue.

Example > qmgr -c "set queue batch acl_users=john"
> qmgr -c "set queue batch acl_users+=steve@h1"
> qmgr -c "set queue batch acl_users+=stevek@h1"

Used in conjunction with acl_user_enable.

acl_user_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains Torque to only allow jobs submitted from users specified
by the acl_users parameter.

Example qmgr -c "set queue batch acl_user_enable=true"

disallowed_types

Format <type>[+<type>]...

Default ---

Description Specifies classes of jobs that are not allowed to be submitted to this queue.
Valid types are interactive, batch, rerunable, nonrerunable, fault_tolerant, fault_
intolerant, and job_array.

Example qmgr -c "set queue batch disallowed_types = interactive"
qmgr -c "set queue batch disallowed_types += job_array"

Appendix N: Queue Attributes

440

441

enabled

Format <BOOLEAN>

Default FALSE

Description Specifies whether the queue accepts new job submissions.

Example qmgr -c "set queue batch enabled=true"

features_required

Format feature1[,feature2[,feature3...]]

Default ---

Description Specifies that all jobs in this queue will require these features in addition to
any they may have requested. A feature is a synonym for a property.

Example qmgr -c 's q batch features_required=fast'

ghost_queue

Format <BOOLEAN>

Default FALSE

Description Intended for automatic, internal recovery (by the server) only. If set to TRUE,
the queue rejects new jobs, but permits the server to recognize the ones
currently queued and/or running. Unset this attribute in order to approve a
queue and restore it to normal operation. See 13.1 Automatic Queue and Job
Recovery - page 208 for more information regarding this process.

Example qmgr -c "unset queue batch ghost_queue"

keep_completed

Format <INTEGER>

Appendix N: Queue Attributes

keep_completed

Default 0

Description Specifies the number of seconds jobs should be held in the Completed state
after exiting. For more information, see Keeping Completed Jobs.

Example qmgr -c "set queue batch keep_completed=120"

kill_delay

Format <INTEGER>

Default 2

Description Specifies the number of seconds between sending a SIGTERM and a SIGKILL to
a job in a specific queue that you want to cancel. It is possible that the job
script, and any child processes it spawns, can receive several SIGTERM signals
before the SIGKILL signal is received.

All MOMs must be configured with $exec_with_exec true in order
for kill_delay to work, even when relying on default kill_delay
settings.

This setting overrides the server setting. See kill_delay in Appendix B:
Server Parameters - page 328.

Example qmgr -c "set queue batch kill_delay=30"

max_queuable

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs allowed in the queue at any given time
(includes idle, running, and blocked jobs).

Example qmgr -c "set queue batch max_queuable=20"

Appendix N: Queue Attributes

442

443

max_running

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs in the queue allowed to run at any
given time.

Example qmgr -c "set queue batch max_running=20"

max_user_queuable

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs, per user, allowed in the queue at any
given time (includes idle, running, and blocked jobs).

Example qmgr -c "set queue batch max_user_queuable=20"

max_user_run

Format <INTEGER>

Default unlimited

Description This limits the maximum number of jobs a user can have running from the
given queue.

Example qmgr -c "set queue batch max_user_run=10"

priority

Format <INTEGER>

Default 0

Appendix N: Queue Attributes

priority

Description Specifies the priority value associated with the queue.

Example qmgr -c "set queue batch priority=20"

queue_type

Format One of e, execution, r, or route (see Creating a Routing Queue)

Default ---

Description Specifies the queue type.

This value must be explicitly set for all queues.

Example qmgr -c "set queue batch queue_type=execution"

req_information_max

Format <STRING>

Default ---

Description Specifies the maximum resource limits allowed for jobs submitted to a queue.

These limits apply only to the qsub -L job submission option.

Valid values are lprocs, node, socket, numachip, core, thread, memory, swap,
and disk.

If a maximum core count is specified, jobs with usecores must have
lprocs<= the maximum core count; jobs without usecores are rejected.
If a maximum thread count is specified, lprocs must be <= the maximum
thread count.

Example qmgr -c "set queue batch req_information_max.lprocs=8"

Appendix N: Queue Attributes

444

445

req_information_min

Format <STRING>

Default ---

Description Specifies the minimum resource limits allowed for jobs submitted to a queue.

These limits apply only to the qsub -L job submission option.

Valid values are lprocs, node, socket, numachip, core, thread, memory, swap,
and disk.

If a minimum core count is specified, jobs with usecores must have
lprocs>= the minimum core count; jobs without usecores are rejected.
If a minimum thread count is specified, lprocs must be >= the minimum
thread count.

Example qmgr -c "set queue batch req_information_min.lprocs=2"

required_login_property

Format <STRING>

Default ---

Description Adds the specified login property as a requirement for all jobs in this queue.

Example qmgr -c 's q <queuename> required_login_property=INDUSTRIAL'

resources_available

Format <STRING>

Default ---

Description Specifies to cumulative resources available to all jobs running in the queue. See
qsub will not allow the submission of jobs requesting many processors for
more information.

Appendix N: Queue Attributes

resources_available

Example qmgr -c "set queue batch resources_available.nodect=20"

You must restart pbs_server for changes to take effect. Also, resources_
available is constrained by the smallest of queue.resources_available and
server.resources_available.

resources_default

Format <STRING>

Default ---

Description Specifies default resource requirements for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_default.walltime=3600"

See 5.1.2 Setting Queue Resource Controls with Resource Request Syntax
2.0 - page 137 for more information about setting queue resource
requirements and the use of -l and -L job submission syntaxes.

resources_max

Format <STRING>

Default ---

Description Specifies the maximum resource limits for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_max.nodect=16"

resources_min

Format <STRING>

Default ---

Appendix N: Queue Attributes

446

447

resources_min

Description Specifies the minimum resource limits for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_min.nodect=2"

route_destinations

Format <queue>[@<host>]

Default ---

Description Specifies the potential destination queues for jobs submitted to the associated
routing queue.

This attribute is only valid for routing queues (see Creating a Routing
Queue).

Example > qmgr -c "set queue route route_destinations=fast"
> qmgr -c "set queue route route_destinations+=slow"
> qmgr -c "set queue route route_destinations+=medium@hostname"

To set multiple queue specifications, use multiple commands:
> qmgr -c 's s route_destinations=batch'
> qmgr -c 's s route_destinations+=long'
> qmgr -c 's s route_destinations+=short'

started

Format <BOOLEAN>

Default FALSE

Description Specifies whether jobs in the queue are allowed to execute.

Example qmgr -c "set queue batch started=true"

Appendix N: Queue Attributes

N.3 Assigning Queue Resource Limits
Administrators can use resources limits to help direct what kind of jobs go to different
queues. There are four queue attributes where resource limits can be set: resources_
available, resources_default, resources_max, and resources_min. The
list of supported resources that can be limited with these attributes are arch,mem, ncpus,
nodect, nodes, pmem, procct, pvmem, vmem, and walltime.

Resource Format Description

arch string Specifies the administrator defined system architecture
required.

mem size Amount of physical memory used by the job. (Ignored on
Darwin, Digital UNIX, Free BSD, HPUX 11, IRIX, NetBSD, and
SunOS. Also ignored on Linux if number of nodes is not 1. Not
implemented on AIX and HPUX 10.)

ncpus integer Sets the number of processors in one task where a task cannot
span nodes.

You cannot request both ncpus and nodes in the same
queue.

nodect integer Sets the number of nodes available. By default, Torque will set
the number of nodes available to the number of nodes listed in
the TORQUE_HOME/server_priv/nodes file. nodect can
be set to be greater than or less than that number. Generally, it
is used to set the node count higher than the number of
physical nodes in the cluster.

nodes integer Specifies the number of nodes.

pmem size Specifies the maximum amount of physical memory to be used
by any single process of the job. (Ignored on Fujitsu. Not
implemented on Digital UNIX and HPUX.)

procct integer Sets limits on the total number of execution slots (procs)
allocated to a job. The number of procs is calculated by
summing the products of all node and ppn entries for a job.
For example qsub -l nodes=2:ppn=2+3:ppn=4
job.sh would yield a procct of 16. 2*2 (2:ppn=2) + 3*4
(3:ppn=4).

pvmem size Amount of virtual memory used by any single process in a job.

Appendix N: Queue Attributes

448

449

Resource Format Description

vmem size Amount of virtual memory used by all concurrent processes in
the job.

walltime seconds, or
[[HH:]MM:]SS

Amount of real time during which a job can be in a running
state.

size

The size format specifies the maximum amount in terms of bytes or words. It is expressed
in the form integer[suffix]. The suffix is a multiplier defined in the following table
('b' means bytes [the default] and 'w' means words). The size of a word is calculated on the
execution server as its word size.

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

Related Topics

l 5.1 Queue Configuration - page 136

Appendix N: Queue Attributes

	Chapter 1: Introduction
	1.1 Torque Administrator Guide Overview
	1.2 Getting Started
	1.2.1 What is a Resource Manager?
	1.2.2 What are Batch Systems?
	1.2.3 Basic Job Flow

	Chapter 2: Installation and Configuration
	2.1 Torque Installation Overview
	2.1.1 Basic Server Configuration
	2.1.2 Torque Architecture
	2.1.3 Installing Torque Resource Manager
	2.1.4 Compute Nodes
	2.1.5 Enabling Torque as a Service

	2.2 Initializing/Configuring Torque on the Server (pbs_server)
	2.2.1 Specifying Compute Nodes
	2.2.2 Configuring Torque on Compute Nodes
	2.2.3 Configuring Ports
	2.2.4 Configuring trqauthd for Client Commands
	2.2.5 Finalizing Configurations

	2.3 Advanced Configuration
	2.3.1 Customizing the Install
	2.3.2 Server Configuration
	2.3.3 Setting Up the MOM Hierarchy (Optional)
	2.3.4 Opening Ports in a Firewall
	2.3.5 Port Reference

	2.4 Manual Setup of Initial Server Configuration
	2.5 Server Node File Configuration
	2.5.1 Basic Node Specification
	2.5.2 Specifying Virtual Processor Count for a Node
	2.5.3 Specifying GPU Count for a Node
	2.5.4 Specifying Node Features (Node Properties)

	2.6 Testing Server Configuration
	2.7 Configuring Torque for NUMA Systems
	2.7.1 Torque NUMA-Aware Configuration
	2.7.2 Torque NUMA-Support Configuration

	2.8 Torque Multi-MOM
	2.8.1 Multi-MOM Configuration
	2.8.2 Stopping pbs_mom in Multi-MOM Mode

	2.9 Supporting MIG Devices in Torque
	2.9.1 Requirements
	2.9.2 Functionality
	2.9.3 Limitations

	Chapter 3: Submitting and Managing Jobs
	3.1 Job Submission
	3.1.1 Multiple Job Submission
	3.1.2 Managing Multi-Node Jobs
	3.1.3 Requesting Resources
	3.1.4 Requesting NUMA-Aware Resources
	3.1.5 Requesting Generic Resources
	3.1.6 Requesting Floating Resources
	3.1.7 Requesting Other Resources
	3.1.8 Exported Batch Environment Variables
	3.1.9 Enabling Trusted Submit Hosts
	3.1.10 Example Submit Scripts

	3.2 Monitoring Jobs
	3.3 Canceling Jobs
	3.4 Job Preemption
	3.5 Keeping Completed Jobs
	3.6 Job Checkpoint and Restart
	3.6.1 Introduction to BLCR
	3.6.2 Configuration Files and Scripts
	3.6.3 Starting a Checkpointable Job
	3.6.4 Checkpointing a Job
	3.6.5 Restarting a Job
	3.6.6 Acceptance Tests

	3.7 Job Exit Status
	3.8 Torque Process Tracking
	3.8.1 Default Process Tracking
	3.8.2 Task Manager API
	3.8.3 Process Tracking with cgroups/cpusets

	3.9 Large Job Arrays

	Chapter 4: Managing Nodes
	4.1 Adding Nodes
	4.2 Node Properties
	4.2.1 Run-Time Node Changes
	4.2.2 Manual Node Changes
	4.2.3 Adding Memory to a Node

	4.3 Changing Node State
	4.3.1 Marking Jobs Offline
	4.3.2 Listing Node States
	4.3.3 Node Recovery

	4.4 Changing Node Power States
	4.5 Host Security
	4.5.1 Enabling PAM with Torque
	4.5.2 Using PAM Exception Instructions
	4.5.3 Legacy Torque PAM Configuration

	4.6 Linux cpuset Support
	4.6.1 cpuset Overview
	4.6.2 cpuset Support
	4.6.3 Configuring cpuset
	4.6.4 cpuset Advantages/Disadvantages

	4.7 Scheduling Cores
	4.7.1 Geometry Request Configuration
	4.7.2 Geometry Request Usage
	4.7.3 Geometry Request Considerations

	4.8 Scheduling Accelerator Hardware
	4.9 Node Resource Plug-In
	4.9.1 Plug-In Implementation Recommendations
	4.9.2 Building the Plug-In
	4.9.3 Testing the Plug-In
	4.9.4 Enabling the Plug-In

	Chapter 5: Setting Server Policies
	5.1 Queue Configuration
	5.1.1 Example Queue Configuration
	5.1.2 Setting Queue Resource Controls with Resource Request Syntax 2.0
	5.1.3 Setting a Default Queue
	5.1.4 Mapping a Queue to Subset of Resources
	5.1.5 Creating a Routing Queue

	5.2 Server High Availability
	5.2.1 Redundant Server Host Machines
	5.2.2 Enabling High Availability
	5.2.3 Enhanced High Availability with Moab
	5.2.4 How Commands Select the Correct Server Host
	5.2.5 Job Names
	5.2.6 Persistence of the pbs_server Process
	5.2.7 High Availability of the NFS Server
	5.2.8 Installing Torque in High Availability Mode
	5.2.9 Installing Torque in High Availability Mode on Headless Nodes
	5.2.10 Example Setup of High Availability

	5.3 Setting min_threads and max_threads

	Chapter 6: Integrating Schedulers for Torque
	Chapter 7: Configuring Data Management
	7.1 SCP Setup
	7.1.1 Generating SSH Key on Source Host
	7.1.2 Copying Public SSH Key to Each Destination Host
	7.1.3 Configuring the SSH Daemon on Each Destination Host
	7.1.4 Validating Correct SSH Configuration
	7.1.5 Enabling Bi-Directional SCP Access
	7.1.6 Troubleshooting

	7.2 NFS and Other Networked Filesystems
	7.3 File stage-in/stage-out

	Chapter 8: MPI (Message Passing Interface) Support
	8.1 MPICH
	8.1.1 MPIExec Overview
	8.1.2 MPIExec Troubleshooting
	8.1.3 General MPI Troubleshooting

	8.2 Open MPI

	Chapter 9: Resources
	 9.1 About Resources
	 9.2 Configuration
	 9.3 Utilization
	 9.4 Node States

	Chapter 10: Accounting Records
	 10.1 Location and Contents
	 10.2 Record Types
	 10.3 Accounting Variables
	 10.4 Fields

	Chapter 11: Job Logging
	11.1 Job Log Location and Name
	11.2 Enabling Job Logs

	Chapter 12: NUMA and Torque
	12.1 Supported NUMA Systems
	12.2 NUMA-Aware Systems
	12.2.1 About NUMA-Aware Systems
	12.2.2 Installation and Configuration
	12.2.3 Job Resource Requests
	12.2.4 Job Monitoring
	12.2.5 Moab/Torque NUMA Configuration
	12.2.6 Considerations when Upgrading Versions or Changing Hardware

	12.3 NUMA Tutorials
	12.3.1 NUMA Primer
	12.3.2 How NUMA Places Jobs
	12.3.3 NUMA Discovery and Persistence

	12.4 -L NUMA Resource Request
	12.4.1 Syntax
	12.4.2 Allocation Options

	12.5 pbsnodes with NUMA-Awareness
	12.6 NUMA-Support Systems
	12.6.1 About NUMA-Supported Systems
	12.6.2 Torque Installation and Configuration
	12.6.3 Moab/Torque NUMA Configuration

	Chapter 13: Troubleshooting
	13.1 Automatic Queue and Job Recovery
	13.2 Host Resolution
	13.3 Firewall Configuration
	13.4 Torque Log Files
	13.4.1 pbs_server and pbs_mom Log Files
	13.4.2 trqauthd Log Files

	13.5 Using tracejob to Locate Job Failures
	13.5.1 Overview
	13.5.2 Syntax
	13.5.3 Example

	13.6 Using GDB to Locate Job Failures
	13.7 Other Diagnostic Options
	13.8 Stuck Jobs
	13.9 Frequently Asked Questions (FAQ)
	13.9.1 Cannot connect to server: error=15034
	13.9.2 Deleting 'stuck' jobs
	13.9.3 Which user must run Torque?
	13.9.4 Scheduler cannot run jobs - rc: 15003
	13.9.5 PBS_Server: pbsd_init, Unable to read server database
	13.9.6 qsub will not allow the submission of jobs requesting many processors
	13.9.7 qsub reports 'Bad UID for job execution'
	13.9.8 Why does my job keep bouncing from running to queued?
	13.9.9 How do I use PVM with Torque?
	13.9.10 My build fails attempting to use the TCL library
	13.9.11 My job will not start, failing with the message 'cannot send job to mom, state=PRERUN'
	13.9.12 How do I determine what version of Torque I am using?
	13.9.13 How do I resolve autogen.sh errors that contain error: possibly undefined macro: AC_MSG_ERROR?
	13.9.14 Why are there so many error messages in the client logs (trqauthd logs) when I don't notice client commands failing?

	13.10 Compute Node Health Check
	13.10.1 Configuring MOMs to Launch a Health Check
	13.10.2 Creating the Health Check Script
	13.10.3 Adjusting Node State Based on the Health Check Output
	13.10.4 Example Health Check Script

	13.11 Debugging
	13.11.1 Diagnostic and Debug Options
	13.11.2 Torque Error Codes

	Appendix A: Commands Overview
	A.1 Torque Services
	A.2 Client Commands
	A.3 momctl
	A.4 pbs_mom
	A.5 pbs_server
	A.6 pbs_track
	A.7 pbsdsh
	A.8 pbsnodes
	A.9 qalter
	A.10 qchkpt
	A.11 qdel
	A.12 qgpumode
	A.13 qgpureset
	A.14 qhold
	A.15 qmgr
	A.16 qmove
	A.17 qorder
	A.18 qrerun
	A.19 qrls
	A.20 qrun
	A.21 qsig
	A.22 qstat
	A.23 qsub
	A.24 qterm
	A.25 trqauthd

	Appendix B: Server Parameters
	Appendix C: Node Manager (MOM) Configuration
	C.1 MOM Parameters
	C.2 Node Features and Generic Consumable Resource Specification

	Appendix D: Diagnostics and Error Codes
	Appendix E: Preparing to Upgrade
	 E.1 Considerations Before Upgrading
	 E.2 To Upgrade
	 E.3 Rolling Upgrade

	Appendix F: Large Cluster Considerations
	F.1 Scalability Guidelines
	F.2 End-User Command Caching
	F.3 Moab and Torque Configuration for Large Clusters
	F.4 Starting Torque in Large Environments
	F.5 Other Considerations
	F.5.1 job_stat_rate
	F.5.2 poll_jobs
	F.5.3 Scheduler Settings
	F.5.4 File System
	F.5.5 Network ARP Cache

	Appendix G: Prologue and Epilogue Scripts
	G.1 MOM Prologue and Epilogue Scripts
	G.2 Script Order of Execution
	G.3 Script Environment
	G.3.1 Prologue Environment
	G.3.2 Epilogue Environment
	G.3.3 Environment Variables
	G.3.4 Standard Input

	G.4 Per Job Prologue and Epilogue Scripts
	G.5 Prologue and Epilogue Scripts Time Out
	G.6 Prologue Error Processing

	Appendix H: Running Multiple Torque Servers and MOMs on the Same Node
	 H.1 Configuring Multiple Servers to Run on the Same Node
	 H.2 Configuring the First Torque
	 H.3 Configuring the Second Torque
	 H.4 Bringing the First Torque Server Online
	 H.5 Bringing the Second Torque Server Online

	Appendix I: Security Overview
	Appendix J: Job Submission Filter (qsub Wrapper)
	Appendix K: torque.cfg Configuration File
	Appendix L: Torque Quick Start Guide
	L.1 Initial Installation
	L.2 Initialize/Configure Torque on the Server (pbs_server)
	L.3 Install Torque on the Compute Nodes
	L.4 Configure Torque on the Compute Nodes
	L.5 Configure Data Management on the Compute Nodes
	L.6 Update Torque Server Configuration
	L.7 Start the pbs_mom Daemons on Compute Nodes
	L.8 Verify Correct Torque Installation
	L.9 Enable the Scheduler
	L.10 (Optional) Startup/Shutdown Service Script for Torque/Moab

	Appendix M: BLCR Acceptance Tests
	M.1 Test Environment
	M.2 Test 1 - Basic Operation
	M.2.1 Introduction
	M.2.2 Test Steps
	M.2.3 Possible Failures
	M.2.4 Successful Results

	M.3 Test 2 - Persistence of Checkpoint Images
	M.3.1 Introduction
	M.3.2 Test Steps
	M.3.3 Possible Failures
	M.3.4 Successful Results

	M.4 Test 3 - Restart After Checkpoint
	M.4.1 Introduction
	M.4.2 Test Steps
	M.4.3 Successful Results

	M.5 Test 4 - Multiple Checkpoint/Restart
	M.5.1 Introduction
	M.5.2 Test Steps
	M.5.3 Successful Results

	M.6 Test 5 - Periodic Checkpoint
	M.6.1 Introduction
	M.6.2 Test Steps
	M.6.3 Successful Results

	M.7 Test 6 - Restart from Previous Image
	M.7.1 Introduction
	M.7.2 Test Steps
	M.7.3 Successful Results

	Appendix N: Queue Attributes
	 N.1 Queue Attribute Reference
	 N.2 Attributes
	 N.3 Assigning Queue Resource Limits

