
Moab Workload Manager
Administrator Guide 10.0.0

March 2023

© 2018, 2023 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is
strictly prohibited without prior written consent from Adaptive Computing Enterprises, Inc.

This documentation and related software are provided under a license agreement
containing restrictions on use and disclosure and are protected by intellectual property
laws. Except as expressly permitted in your license agreement or allowed by law, you may
not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability,
is prohibited.

This documentation and related software may provide access to or information about
content, products, and services from third-parties. Adaptive Computing is not responsible
for and expressly disclaims all warranties of any kind with respect to third-party content,
products, and services unless otherwise set forth in an applicable agreement between you
and Adaptive Computing. Adaptive Computing will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services,
except as set forth in an applicable agreement between you and Adaptive Computing.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint,
Moab Cluster Manager, Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab
Access Portal, NODUS Cloud OS™, On-Demand Data Center™, and other Adaptive
Computing products are either registered trademarks or trademarks of Adaptive
Computing Enterprises, Inc. The Adaptive Computing logo and the Cluster Resources logo
are trademarks of Adaptive Computing Enterprises, Inc. All other company and product
names may be trademarks of their respective companies.

Adaptive Computing Enterprises, Inc.
1100 5th Avenue South, Suite #201
Naples, FL 34102
+1 (239) 330-6093
www.adaptivecomputing.com

2

https://www.adaptivecomputing.com/

Contents

Chapter 1: Moab Workload Manager Overview 23

Chapter 2: Philosophy And Goals Of Moab Workload Manager 24
2.1 Value Of A Batch System 25

2.1.1 Traffic Control 25
2.1.2Mission Policies 25
2.1.3 Optimizations 26

2.2 Philosophy AndGoals 26
2.2.1Management Goals 26
2.2.2 Administration Goals 27
2.2.3 End User Goals 27

2.3 Workload 27
2.3.1 BatchWorkload 28
2.3.2 InteractiveWorkload 28
2.3.3 CalendarWorkload 28
2.3.4 ServiceWorkload 29

Chapter 3: Scheduler Basics 30
3.1 Initial Moab Configuration 31
3.2 Layout Of Scheduler Components 32

3.2.1 Layout Of Scheduler Components 32
3.2.2 Layout Of Scheduler Components With Integrated Database 34

3.3 Scheduling Environment 35
3.3.1 Jobs 35
3.3.2 Nodes 38
3.3.3 Advance Reservations 38
3.3.4 Policies 38
3.3.5 Resources 39
3.3.6 Class (or Queue) 40
3.3.7 ResourceManager (RM) 41

3.4 Scheduling Dictionary 42
3.5 Scheduling Iterations And Job Flow 52

3.5.1 Scheduling Iterations 52
3.5.2 Detailed Job Flow 53

3.6 Configuring The Scheduler 54
3.6.1 Adjusting Server Behavior 55

3.7 Credential Overview 58

3

4

3.7.1 General Credential Attributes 59
3.7.2 User Credential 65
3.7.3 Group Credential 66
3.7.4 Account (or Project) Credential 67
3.7.5 Class (or Queue) Credential 67
3.7.6 QoS Credential 89

3.8 Job Flags 90

Chapter 4: Scheduler Commands 98
4.1 Moab CommandOverview 99

4.1.1Moab Commands 99
4.1.2Moab CommandOptions 101
4.1.3 Commands ProvidingMaui Compatibility 102

4.2 Status Commands 102
4.3 JobManagement Commands 103
4.4 ReservationManagement Commands 104
4.5 Policy/ConfigurationManagement Commands 105
4.6 End-User Commands 105
4.7 Moab Commands 106

4.7.1 Checkjob 106
4.7.2 Checknode 118
4.7.3Mcredctl 123
4.7.4Mdiag 127
4.7.5Mdiag -a 132
4.7.6Mdiag -b 133
4.7.7Mdiag -c 133
4.7.8Mdiag -f 137
4.7.9Mdiag -j 139
4.7.10Mdiag -n 141
4.7.11Mdiag -p 147
4.7.12Mdiag -q 150
4.7.13Mdiag -r 151
4.7.14Mdiag -R 155
4.7.15Mdiag -s 156
4.7.16Mdiag -S 157
4.7.17Mdiag -t 158
4.7.18Mdiag -T 159
4.7.19Mdiag -u 161
4.7.20Mjobctl 162
4.7.21Mnodectl 179

4.7.22Moab 185
4.7.23Mrmctl 186
4.7.24Mrsvctl 190
4.7.26Mschedctl 216
4.7.27Mshow 225
4.7.28Mshow -a 227
4.7.29Mshow -a (mshow In A Hosting Environment) 237
4.7.30Msub 239
4.7.31Mvcctl (Moab Virtual Container Control) 268
4.7.32 Showbf 273
4.7.33 Showq 277
4.7.34 Showhist.moab.pl 287
4.7.35 Showres 291
4.7.36 Showstart 297
4.7.37 Showstate 301
4.7.38 Showstats 302
4.7.39 Showstats -f 315
4.7.40 Deprecated Commands 318

Chapter 5: Prioritizing Jobs And Allocating Resources 334
5.1 Job Prioritization 335

5.1.1 Priority Overview 335
5.1.2 Job Priority Factors 336
5.1.3 Fairshare Job Priority Example 348
5.1.4 Common Priority Usage 349
5.1.5 Prioritization Strategies 352
5.1.6Manual Job Priority Adjustment 353

5.2 Node Allocation Policies 354
5.2.1 Node Allocation Overview 354
5.2.2 Node Selection Factors 358
5.2.3 Resource-Based Algorithms 358
5.2.4 User-Defined Algorithms 364
5.2.5 Specifying Per Job Resource Preferences 365

5.3 Node Access Policies 366
5.3.1 Node Access Policy Descriptions 366
5.3.2 Configuring Node Access Policies 367

5.4 Node Availability Policies 368
5.4.1 Node Resource Availability Policies 369
5.4.2 Node Categorization 370
5.4.3 Node Failure/Performance Based Notification 372

5

6

5.4.4 Node Failure/Performance Based Triggers 372
5.4.5 Handling Transient Node Failures 373
5.4.6 Allocated Resource Failure Policy For Jobs 374

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management 377
6.1 Fairness Overview 378

6.1.1 Fairness Facilities 378
6.1.2 Selecting The Correct Policy Approach 381

6.2 Usage Limits/Throttling Policies 382
6.2.1 Fairness Via Throttling Policies 382
6.2.2 Override Limits 394
6.2.3 Idle Job Limits 395
6.2.4 Hard And Soft Limits 397
6.2.5 Per-partition Limits 398
6.2.6 Usage-based Limits 399

6.3 Fairshare 402
6.3.1 Fairshare Parameters 403
6.3.2 Using Fairshare Information 407
6.3.3 Hierarchical Fairshare/Share Trees 413

6.4 Sample FairShare Data File 418
6.5 Accounting, Charging, And AllocationManagement 419

6.5.1 AccountingManager Overview 419
6.5.2 AccountingMode 420
6.5.3 AccountingManager Interface Types 421
6.5.4 Charging For Jobs 424
6.5.5 Charging For Reservations 425
6.5.6 Accounting Properties Reported To The AccountingManager 426
6.5.7 Accounting Stages 431
6.5.8 Accounting Events 434
6.5.9 Blocking Versus Non-Blocking Accounting Actions 434
6.5.10 Retrying Failed Charges 435

6.6 AMCFGParameters And Flags 438
6.6.1 AMCFGParameters 438
6.6.2 AMCFGFlags 461

Chapter 7: Controlling Resource Access - Reservations, Partitions, And QoS Facilities 462
7.1 Advance Reservations 463

7.1.1 Reservation Overview 463
7.1.2 Administrative Reservations 469
7.1.3 Standing Reservations 471
7.1.4 Reservation Policies 471

7.1.5 Configuring AndManaging Reservations 476
7.1.6 Personal/User Reservations - Enabling Reservations For End Users 516

7.2 Partitions 519
7.2.1 Partition Overview 520
7.2.2 Defining Partitions 521
7.2.3Managing Partition Access 521
7.2.4 Requesting Partitions 523
7.2.5 Per-Partition Settings 523
7.2.6Miscellaneous Partition Issues 524

7.3 Quality Of Service (QoS) Facilities 525
7.3.1 QoS Overview 525
7.3.2 QoS Enabled Privileges 526
7.3.3Managing QoS Access 534
7.3.4 Requesting QoS Services At Job Submission 535
7.3.5 Restricting Access To Special Attributes 536

Chapter 8: Optimizing Scheduling Behavior – Backfill And Node Sets 537
8.1 Optimization Overview 537
8.2 Backfill 538

8.2.1 Backfill Overview 538
8.2.2 Backfill Algorithms 540
8.2.3 Configuring Backfill 542

8.3 Node Set Overview 545
8.3.1 Node Set UsageOverview 545
8.3.2 Node Set Configuration Examples 546
8.3.3 Requesting Node Sets For Job Submission 552
8.3.4 Configuring Node Sets For Classes 552

Chapter 9: Evaluating System Performance - Statistics, Profiling And Testing 554
9.1 Moab Performance Evaluation Overview 554
9.2 Accounting: Job And System Statistics 554

9.2.1 Accounting Overview 555
9.2.2 Real-Time Statistics 556

9.3 Testing New Versions And Configurations 557
9.3.1MONITOR Mode 557
9.3.2 INTERACTIVE Mode 558

Chapter 10: General Job Administration 559
10.1 Job Holds 560

10.1.1 Holds And Deferred Jobs 560
10.1.2 User Holds 560

7

8

10.1.3 System Holds 560
10.1.4 Batch Holds 561
10.1.5 Job Defer 561

10.2 Job Priority Management 562
10.3 Suspend/ResumeHandling 562
10.4 Checkpoint/Restart Facilities 563
10.5 Job Dependencies 564

10.5.1 Basic Job Dependency Support 564
10.5.2 Job Dependency Syntax 565

10.6 Job Defaults And Per Job Limits 567
10.6.1 Job Defaults 567
10.6.2 Per JobMaximum Limits 567
10.6.3 Per JobMinimum Limits 568

10.7 General Job Policies 568
10.7.1Multi-Node Support 568
10.7.2Multi-Req Support 568
10.7.3Malleable Job Support 569
10.7.4 Enabling Job User Proxy 569

10.8 Using A Local Queue 570
10.9 Job Deadlines 573

10.9.1 Deadline Overview 574
10.9.2 Setting Job Deadlines Via QoS 574
10.9.3 Job Termination Date 575
10.9.4 Conflict Policies 576

10.10 Job Arrays 576
10.10.1 Job Array Overview 577
10.10.2 Enabling Job Arrays 577
10.10.3 Subjob Definitions 577
10.10.4 Using Environment Variables To Specify Array Index Values 578
10.10.5 Job Array Cancellation Policies 580
10.10.6Minimizing The Impact Of Very Large Job Arrays 581
10.10.7 Examples 584

Chapter 11: General Node Administration 586
11.1 Node Attribute Types 587

11.1.1 ResourceManager Specified 'Opaque' Attributes 587
11.1.2 Scheduler Specified Default Node Attributes 588
11.1.3 Scheduler Specified Node Attributes 588

11.2 Node Location 588
11.2.1 Partitions 589

11.2.2 Racks 589
11.2.3 Queues 589
11.2.4 Node Selection 590

11.3 Node Attributes 592
11.3.1 Configurable Node Attributes 592
11.3.2 Node Features/Node Properties 601

11.4 Node Specific Policies 602
11.4.1 Node Usage/Throttling Policies 602
11.4.2 Node Access Policies 604

11.5 Managing Shared Cluster Resources (Floating Resources) 605
11.5.1 Shared Cluster Resource Overview 605
11.5.2 Configuring Generic Consumable Floating Resources 606
11.5.3 Configuring Cluster File Systems 606
11.5.4 Configuring Cluster Licenses 607
11.5.5 Configuring Generic Resources As Features 607
11.5.6 Configuring Generic Resources As Licenses 609

11.6 Managing Node State 609
11.6.1 Node State Definitions 610
11.6.2 Specifying Node States Within Native ResourceManagers 611
11.6.3Moab Based Node State Adjustment 611
11.6.4 Adjusting Scheduling Behavior BasedOnReported Node State 611
11.6.5 Adding Or Removing Nodes 611

11.7 Managing Consumable Generic Resources 612
11.7.1 Differences Between Node Features And Consumable Resources 613
11.7.2 Configuring Node-locked Consumable Generic Resources 613
11.7.3Managing Generic Resource Race Conditions 615

11.8 Enabling Generic Metrics 616
11.8.1 Configuring Generic Metrics 616
11.8.2 Example Generic Metric Usage 618

11.9 Enabling Generic Events 619
11.9.1 Configuring Generic Events 620
11.9.2 Reporting Generic Events 623
11.9.3 Generic Events Attributes 624
11.9.4Manually Creating Generic Events 624

Chapter 12: Resource Managers And Interfaces 625
12.1 ResourceManager Overview 627

12.1.1 Scheduler/ResourceManager Interactions 628
12.1.2 ResourceManager Specific Details (Limitations/Special Features) 629
12.1.3 Synchronizing Conflicting Information 629

9

10

12.1.4 Evaluating ResourceManager Availability And Performance 630
12.2 ResourceManager Configuration 630

12.2.1 Defining And Configuring ResourceManager Interfaces 630
12.2.2 ResourceManager Configuration Details 656
12.2.3 Scheduler/ResourceManager Interactions 661

12.3 ResourceManager Extensions 662
12.3.1 ResourceManager Extension Specification 662
12.3.2 ResourceManager Extension Values 663
12.3.3 ResourceManager Extension Examples 690
12.3.4 Configuring Dynamic Features In Torque AndMoab 691

12.4 Adding New ResourceManager Interfaces 692
12.4.1 ResourceManager Specific Interfaces 692
12.4.2Wiki Interface 692
12.4.3 SSS Interface 692

12.5 Managing Resources Directly With The Native Interface 693
12.5.1 Native Interface Overview 693
12.5.2 Configuring The Native Interface 694
12.5.3 Generating Cluster Query Data 695
12.5.4 InterfacingWith FlexNet (Formerly FLEXlm) 696
12.5.5 Interfacing To Nagios 697
12.5.6 Configuring Resource Types 698
12.5.7 Creating New Tools ToManage The Cluster 699

12.6 UtilizingMultiple ResourceManagers 704
12.6.1Multi-RMOverview 704
12.6.2 ConfiguringMultiple Independent ResourceManager Partitions 705
12.6.3Migrating Jobs Between ResourceManagers 705
12.6.4 Aggregating Information Into A Cohesive Node View 705

12.7 LicenseManagement 706
12.7.1 LicenseManagement Overview 707
12.7.2 Controlling AndMonitoring License Availability 707
12.7.3 Requesting Licenses Within Jobs 708

12.8 Resource Provisioning 709
12.8.1 Resource Provisioning Overview 710
12.8.2 Configuring Provisioning 710

12.9 Managing Networks 710
12.9.1 Network Management Overview 711
12.9.2 Dynamic VLAN Creation 711
12.9.3 Network Load And Health Monitoring 712
12.9.4 Creating A ResourceManagement Interface For A New Network 712
12.9.5 Per-Job Network Monitoring 713

12.10 Intelligent Platform Management Interface 714
12.10.1 IPMI Overview 714
12.10.2 Node IPMI Configuration 714
12.10.3 Installing IPMItool 715
12.10.4 [Optional] Creating The IPMI BMC-NodeMap File 715
12.10.5 Configuring TheMoab IPMI Tools 716
12.10.6 ConfiguringMoab 716
12.10.7 Ensuring Proper Setup 717

12.11 ResourceManager Translation 717
12.11.1 Translation Overview 717
12.11.2 Translation Enablement Steps 718

Chapter 13: Troubleshooting And System Maintenance 719
13.1 Internal Diagnostics/Diagnosing System Behavior And Problems 720

13.1.1 TheMdiag Command 720
13.1.2 Other Diagnostic Commands 722
13.1.3 UsingMoab Logs For Troubleshooting 722
13.1.4 Automating Recovery Actions After A Failure 722

13.2 Logging Overview 723
13.2.1 Log Facility Configuration 724
13.2.2 Standard Log Format 725
13.2.3 SearchingMoab Logs 726
13.2.4 Event Logs 726
13.2.5 Enabling Syslog 729
13.2.6Managing Verbosity 729

13.3 Object Messages 730
13.3.1 Object MessageOverview 730
13.3.2 ViewingMessages 730
13.3.3 CreatingMessages 731

13.4 Notifying Administrators Of Failures 731
13.4.1 Enabling Administrator Email 732
13.4.2 Handling Events With The Notification Routine 732

13.5 Issues With Client Commands 733
13.5.1 Client Overview 734
13.5.2 Diagnosing Client Problems 734

13.6 Tracking System Failures 735
13.6.1 System Failures 735
13.6.2 Internal Errors 736
13.6.3 Reporting Failures 737

13.7 Problems With Individual Jobs 737

11

12

13.8 Diagnostic Scripts 738
13.8.1 Support-diag.py 738
13.8.2 Support.diag.pl 740

Chapter 14: Improving User Effectiveness 742
14.1 User Feedback Loops 742

14.1.1 Improving Job Size/Duration Requests 743
14.1.2 Improving Resource Requirement Specification 743

14.2 User Level Statistics 743
14.3 EnhancingWallclock Limit Estimates 744
14.4 Job Start Time Estimates 744

14.4.1 Example 744
14.4.2 Estimation Types 745

14.5 Providing Resource Availability Information 746
14.6 Collecting Performance Information On Individual Jobs 746

Chapter 15: Cluster Analysis And Testing 747
15.1 Testing New Releases And Policies 747

15.1.1Moab EvaluationModes 748
15.1.2 Testing New Releases 749
15.1.3 Testing New Policies 750
15.1.4Moab Side-by-Side 751

15.2 Testing New Middleware 752
15.2.1 Analysis Aspects 752
15.2.2 General Analysis 754
15.2.3 NativeMode Analysis 754

15.3 Workload Event Format 755
15.3.1Workload Event Record Format 755
15.3.2 Reservation Event Records 764
15.3.3 Recording Job Events 765

Chapter 16: Green Computing 767
16.1 Green ComputingMethods 768

16.1.1Moab Edition Green Features 768
16.1.2Moab PowerManagement Methods 769
16.1.3 Theory Of Operation 771
16.1.4 Active Node PowerManagement 777
16.1.5 Idle Node PowerManagement 780
16.1.6 Green Policy Configuration 781

16.2 Deploying Adaptive Computing IPMI Scripts 781
16.2.1 Prerequisites 781

16.2.2 To Deploy The Adaptive Computing IPMI Scripts 782
16.3 ChoosingWhich Nodes Moab Powers OnOrOff 783
16.4 Enabling Green Computing 784
16.5 Adjusting Green Pool Size 787
16.6 Handling Power-Related Events 788
16.7 Maximizing Scheduling Efficiency 788
16.8 Putting Idle Nodes In Power-Saving States 789
16.9 Troubleshooting Green Computing 790

Chapter 17: Elastic Computing Overview 793
17.1 About Elastic Computing 795
17.2 Configuring Elastic Computing 796

17.2.1 To Configure Elastic Computing 796
17.2.2 SampleMoab.cfg File Excerpt 799

17.3 Elastic Trigger 799
17.4 IntegrationWith A Private OpenStack Cloud 800

17.4.1 ConfiguringMoab To Talk ToOpenStack Integration Scripts 800
17.4.2 Verification 801
17.4.3 Troubleshooting 802

17.5 Dynamic Nodes 802
17.5.1 Dynamic Node Parameters 803
17.5.2 Dynamic Node Events 803
17.5.3 Configuring Dynamic Nodes 804

17.6 Viewing Node And Trigger Information 806
17.6.1Mdiag -n -v --xml 806
17.6.2Mdiag -T 807
17.6.3 Checknode -v <node Name> 807

17.7 Usage Policies 808
17.7.1 Available Policies 809
17.7.2 Policy Levels 809

Chapter 18: Object Triggers 810
18.1 About Object Triggers 811
18.2 Object Trigger Tasks 812

18.2.1 Creating A Trigger 812
18.2.2 Using A Trigger To Send Email 815
18.2.3 Using A Trigger To Execute A Script 816
18.2.4 Using A Trigger To Perform Internal Moab Actions 817
18.2.5 Requiring AnObject Threshold For Trigger Execution 817
18.2.6 Enabling Job Triggers 818
18.2.7Modifying A Trigger 818

13

14

18.2.8 Viewing A Trigger 820
18.2.9 Checkpointing A Trigger 820

18.3 Object Trigger Reference 821
18.3.1 Job Triggers 821
18.3.2 Node Triggers 823
18.3.3 Reservation Triggers 824
18.3.4 ResourceManager Triggers 826
18.3.5 Scheduler Triggers 827
18.3.6 Threshold Triggers 829
18.3.7 Trigger Components 830
18.3.8 Trigger Exit Codes 838
18.3.9 NodeMaintenance Example 839
18.3.10 Environment Creation Example 840

18.4 About Trigger Variables 842
18.4.1 Trigger Variable Tasks 842

18.5 Generic System Job Trigger Requirements 846
18.5.1 Trigger Variable Reference 846

Chapter 19: Miscellaneous 851
19.1 User Feedback Overview 851
19.2 Enabling High Availability Features 853

19.2.1 High Availability Overview 853
19.2.2 Configuring High Availability On A Networked File System 854
19.2.3 Confirming High Availability On A Networked File System 855
19.2.4 Other High Availability Configuration 855

19.3 Malleable Jobs 856
19.4 Identity Managers 856

19.4.1 Identity Manager Overview 857
19.4.2 Basic Configuration 857
19.4.3 Importing Credential Fairness Policies 860
19.4.4 Identity Manager Data Format 860
19.4.5 Identity Manager Conflicts 861
19.4.6 Refreshing Identity Manager Data 861

19.5 Generic System Jobs 862
19.5.1 Creating A Generic System Job 862
19.5.2Workflows Using Job Template Dependencies 863

Chapter 20: Database Configuration 865
20.1 SQLite3 866
20.2 Connecting To A MySQLDatabaseWith AnODBC Driver 866
20.3 Connecting To A PostgreSQLDatabaseWith AnODBC Driver 869

20.4 Connecting To AnOracle DatabaseWith AnODBC Driver 872
20.4.1 Installing TheOracle Instant Client 879

20.5 Migrating Your Database To Newer Versions Of Moab 882
20.5.1Migrate FromMoab 9.1 ToMoab 10.0 882
20.5.2Migrate FromMoab 9.0 ToMoab 9.1 883
20.5.3Migrate FromMoab 8.1 ToMoab 9.0 883
20.5.4Migrate FromMoab 8.0 ToMoab 8.1 883
20.5.5Migrate FromMoab 7.5 ToMoab 8.0 884
20.5.6Migrate FromMoab 7.2.6-7.2.10 ToMoab 7.5 884
20.5.7Migrate FromMoab 7.2.0-7.2.5 ToMoab 7.2.6 885

20.6 Importing Statistics From Stats/DAY.* To TheMoab Database 885

Chapter 21: Accelerators 886
21.1 Scheduling GPUs 886

21.1.1 Deploying And Configuring GPUs 887
21.1.2 Using GPUs WithMinimal Configuration 888

21.2 Using GPUs With NUMA 888
21.3 NVIDIA GPUs 890

21.3.1 Using NVIDIA GPUs 890
21.3.2 Package Installation/Upgrade 891
21.3.3 Torque Configuration 892
21.3.4 GPU Modes For NVIDIA 260.x Driver 893
21.3.5 GPU Modes For NVIDIA 270.x Driver 893
21.3.6 Gpu_status 893
21.3.7 Enabling PersistenceMode 894
21.3.8 Requesting GPUs And Setting GPU Mode 894

21.4 GPU Metrics 895
21.5 Intel® Xeon Phi™Coprocessor Configuration 897

21.5.1 Intel Many-Integrated Cores (MIC) Architecture Configuration 898
21.5.2 Validating The Configuration 899
21.5.3 Job Submission 900

21.6 Intel® Xeon Phi™Co-processor Metrics 902

Chapter 22: Preemption 904
22.1 Preemption Tasks 905

22.1.1 Canceling Jobs With Preemption 905
22.1.2 Checkpointing Jobs With Preemption 909
22.1.3 Requeuing Jobs With Preemption 910
22.1.4 Suspending Jobs With Preemption 913
22.1.5 Using Owner Preemption 917
22.1.6 Using QoS Preemption 920

15

16

22.2 Preemption Reference 922
22.2.1Manual Preemption Commands 922
22.2.2 Preemption Flags 923
22.2.3 PREEMPTPOLICY Types 924
22.2.4 Simple Example Of Preemption 925
22.2.5 Testing And Troubleshooting Preemption 929

Chapter 23: About Job Templates 932
23.1 Job Template Tasks 933

23.1.1 Creating Job Templates 933
23.1.2 Viewing Job Templates 934
23.1.3 Applying Templates BasedOn Job Attributes 934
23.1.4 Requesting Job Templates Directly 935
23.1.5 CreatingWorkflows With Job Templates 936

23.2 Job Template Reference 937
23.2.1 Job Template Extension Attributes 937
23.2.2 Job TemplateMatching Attributes 950
23.2.3 Job Template Examples 951
23.2.4 Job TemplateWorkflow Examples 952

Chapter 24: Moab Workload Manager For Grids 954
24.1 Grid Basics 956

24.1.1 Grid Overview 956
24.1.2 Grid Benefits 956
24.1.3Management-Scalability 957
24.1.4 Resource Access 957
24.1.5 Load-Balancing 958
24.1.6 Single System Image (SSI) 958
24.1.7 High Availability 959
24.1.8 Grid Relationships 959
24.1.9 Submitting Jobs To TheGrid 964
24.1.10 Viewing Jobs And Resources 965

24.2 Grid Configuration Basics 966
24.2.1 Peer Configuration Overview 966
24.2.2 Initial Configuration 966

24.3 Centralized Grid Management (MoabGrid Control / MoabGrid Member) 967
24.3.1MoabGrid Control Configuration 967
24.3.2MoabGrid Member Configuration 968

24.4 Hierarchical Grid Management 968
24.4.1 Configuring A Peer Server (Source) 968
24.4.2 Simple Hierarchical Grid 969

24.5 Localized Grid Management 970
24.5.1 Enabling Bi-Directional Job Flow 970
24.5.2 True Peer-to-Peer Grid 971

24.6 Resource Control And Access 971
24.6.1 Controlling Resource Information 972
24.6.2Managing Resources With Grid Sandboxes 974

24.7 Workload Submission And Control 976
24.8 Reservations In TheGrid 976
24.9 Grid Usage Policies 977

24.9.1 Grid Usage Policy Overview 977
24.9.2 Peer Job Resource Limits 978
24.9.3 Usage Limits Via Peer Credentials 978
24.9.4 Using General Policies In A Grid Environment 979

24.10 Grid Scheduling Policies 980
24.10.1 Peer-to-Peer Resource Affinity Overview 980
24.10.2 Peer Allocation Policies 981
24.10.3 Per-partition Scheduling 981

24.11 Grid Credential Management 982
24.11.1 Peer Credential Management Overview 982
24.11.2 Peer Credential Mapping 982
24.11.3 Source And Destination Side Credential Mapping 984
24.11.4 Preventing User Space Collisions 984

24.12 Grid DataManagement 984
24.12.1 Grid DataManagement Overview 985
24.12.2 Configuring Peer Data Staging 985
24.12.3 Peer-to-Peer SCP Key Authentication 987
24.12.4 Diagnostics 988

24.13 Accounting And AllocationManagement 990
24.13.1 Peer-to-Peer Accounting Overview 990
24.13.2 Peer-to-Peer AllocationManagement 991

24.14 Grid Security 992
24.15 Grid Diagnostics And Validation 992

24.15.1 Peer Management Overview 992
24.15.2 Peer Diagnostic Overview 992

Chapter 25: Data Staging 993
25.1 Data Staging Example 993
25.2 Data Staging Tasks 995

25.2.1 Configuring The SSH Keys For The Data Staging Transfer Script 995
25.2.2 Configuring Data Staging 998

17

18

25.2.3 Staging Data ToOr From A Shared File System 1000
25.2.4 Staging Data ToOr From A Shared File System In A Grid 1005
25.2.5 Staging Data ToOr From A Compute Node 1011
25.2.6 Configuring Data StagingWith AdvancedOptions 1016

25.3 Data Staging References 1019
25.3.1 Sample User Job Script 1019

Chapter 26: Using NUMA With Moab 1021
26.1 Using NUMA-AwareWithMoab 1021

26.1.1 NUMA Process 1022
26.1.2 Installation And Configuration 1023
26.1.3Moab And NUMA Resources 1023
26.1.4 Track Dedicated NUMA Resources 1024

26.2 Using NUMA-Support With Moab 1025

Appendix A: Moab Parameters 1026

Appendix B: Multi-OS Provisioning 1190
B.1 XCAT Plug-in Configuration Parameters 1191
B.2 Configuration Validation 1198
B.3 Deploying Images With Torque 1199
B.4 InstallingMoabOn TheManagement Node 1199
B.5 IntegratingMSM And XCAT 1200
B.6 Moab Configuration File Example 1201
B.7 MSMConfiguration 1202
B.8 MSM Installation 1202
B.9 Troubleshooting 1203
B.10 Verifying The Installation 1203
B.11 XCAT Configuration Requirements 1206

Appendix C: Event Dictionary 1207
C.1 Moab Event Dictionary 1207

Appendix D: Adjusting Default Limits 1360

Appendix E: Security 1366
E.1 Authentication (Interface Security) 1366

E.1.1Mauth Authentication 1367
E.1.2Munge Authentication 1370
E.1.3 Server Response Control 1371
E.1.4 Checksum Algorithm For Client Authentication 1371
E.1.5 Interface Development Notes 1371

E.2 Authorization 1371
E.2.1 Role Based Authorization Security Configuration 1372

E.3 Host Security For Compute Resources 1375
E.3.1Minimal Host Security Enforcement 1375
E.3.2Medium Host Security Enforcement 1375
E.3.3 Strict Host Security Enforcement 1376

E.4 Securing Sensitive Configuration Information 1376

Appendix F: Initial Moab Testing 1377
F.1 Scheduler Modes 1377

F.1.1 Normal Mode 1377
F.1.2Monitor Mode (or Test Mode) 1377
F.1.3 InteractiveMode 1379

Appendix G: Integrating Other Resources With Moab 1380
G.1 Compute ResourceManagers 1380

G.1.1Moab-Torque Integration Guide 1380
G.2 Hardware Integration 1384

G.2.1Moab-NUMA-Support Integration Guide 1384
G.3 Torque/PBS Integration Guide - RM Access Control 1389

G.3.1 Server Configuration 1389
G.3.2 (Optional) MOMConfiguration 1389

G.4 Torque/PBS Config - Default Queue Settings 1390
G.4.1 Default Queue 1390
G.4.2 Queue Default Node AndWalltime Attributes 1390
G.4.3 System-Wide Default Node AndWalltime Attributes 1390

G.5 Provisioning ResourceManagers 1391
G.5.1 Validating An XCAT Installation For UseWithMoab 1391

Appendix H: Interfacing With Moab (APIs) 1394
H.1 Accounting Interfaces 1394
H.2 Grid Interfaces 1394

H.2.1 Services Utilized 1395
H.2.2 Services Provided 1395

H.3 Identity And Credential Management Interfaces 1395
H.4 Job Submission AndManagement Interface 1396
H.5 Query And Control APIs 1397

H.5.1 CLI (Command Line Interface) XML API 1397
H.6 ResourceManagement Interfaces 1398

19

20

Appendix I: Considerations For Large Clusters 1400
I.1 Handling Large Jobs 1400
I.2 Handling Large Numbers Of Jobs 1401

I.2.1 Set A Minimum RMPOLLINTERVAL 1401
I.2.2 Reduce Command Processing Time 1402
I.2.3 Minimize Job Processing Time 1403
I.2.4 Load All Non-Completed Jobs At Startup 1403
I.2.5 Reducing Job Start Time 1403
I.2.6 Reducing Job Reservation Creation Time 1404
I.2.7 Optimizing Backfill Time 1404
I.2.8 ConstrainingMoab Logging - LOGLEVEL 1404
I.2.9 Preemption 1404
I.2.10 Handling Transient ResourceManager Failures 1404
I.2.11 Constrain The Number Of Jobs Preempted Per Iteration 1405
I.2.12 Scheduler Settings 1405
I.2.13 Configure Torque For Large Job Numbers 1405

I.3 Handling Large Numbers Of Nodes 1405
I.4 Handling Large SMP Systems 1406
I.5 ResourceManager Scaling 1407
I.6 Server Sizing 1407

Appendix J: Configuring Moab As A Service 1408
J.1 MoabGrid Scheduler Service Script 1408
J.2 MoabWorkloadManager Service Scripts 1409

Appendix K: Migrating From Maui 3.2 1412
K.1 Migrating FromMaui ToMoab 1413
K.2 Other Notes 1413

K.2.1 File Naming 1413
K.2.2 Statistics And Checkpointing 1414
K.2.3 Verify Configuration File Compatibility 1414
K.2.4 Environment Variables 1414

K.3 RunningMaui AndMoab Side-By-Side 1415

Appendix L: Node Allocation Plug-in Developer Kit 1416
L.1 Moab Configuration 1416

L.1.1Moab.cfg 1417
L.1.2 Syntax Rules 1417
L.1.3 Troubleshooting 1418

L.2 Writing The Plug-In 1418
L.2.1 Node Allocation Plug-in 1419

L.2.2 API And Data Structures 1419

Appendix M: Scalable Systems Software Specification 1424
M.1 Scalable Systems Software JobObject Specification 1425

Status Of This Memo 1425
Abstract 1426
Table Of Contents 1426
1.0 Introduction 1428
2.0 Conventions Used In This Document 1431
3.0 The JobModel 1433
4.0 JobGroup Element 1434
5.0 Job And JobDefaults Element 1436
6.0 TaskGroup And TaskGroupDefaults Element 1453
7.0 Task And TaskDefaults Element 1455
8.0 Property Categories 1456
9.0 AwarenessPolicy Attribute 1459
10.0 References 1460
11.0 Units Of Measure Abbreviations 1460

M.2 Scalable Systems Software ResourceManagement And Accounting Protocol (SSSRMAP)Mes-
sage Format 1461

Status Of This Memo 1461
Abstract 1461
Table Of Contents 1462
1.0 Introduction 1463
2.0 Conventions Used In This Document 1463
3.0 Encoding 1464
4.0 Error Reporting 1477
5.0 References 1486

M.3 Scalable Systems Software NodeObject Specification 1487
Status Of This Memo 1487
Abstract 1487
Table Of Contents 1487
1.0 Introduction 1488
2.0 Conventions Used In This Document 1489
3.0 The NodeModel 1491
4.0 Node Element 1491
5.0 Units Of Measure Abbreviations 1496

M.4 Scalable Systems Software ResourceManagement And Accounting Protocol (SSSRMAP)Wire
Protocol 1497

Status Of This Memo 1497
Abstract 1498

21

22

Table Of Contents 1498
1.0 Introduction 1499
2.0 Conventions Used In This Document 1500
3.0 Encoding 1501
4.0 Transport Layer 1502
5.0 Framing 1502
6.0 Asynchrony 1504
7.0 Security 1505
8.0 References 1514

Appendix N: Moab Resource Manager Language Interface Overview 1516
N.1 Moab RM Language Socket Protocol Description 1516

N.1.1 RM LanguageOverview 1516
N.1.2 Checksum Algorithm ('C' Version) 1517
N.1.3 Header Creation (PERLCode) 1519
N.1.4 Header Processing (PERLCode) 1519

N.2 Moab ResourceManager Language Data Format 1520
N.2.1 Query Resources Data Format 1520
N.2.2 Query Workload Data Format 1525

Appendix O: SCHEDCFG Flags 1531

23

Chapter 1: Moab Workload Manager Overview

Welcome to the Moab Workload Manager 10.0.0 Administrator Guide.
This guide is intended for Moab Workload Manager system administrators.

Moab Workload Manager is a scheduling and management system designed for clusters,
grids, and on-demand/utility computing systems. Moab:

l Applies site policies and extensive optimizations to orchestrate jobs, services, and
other workload across the ideal combination of network, compute, and storage
resources.

l Enables Adaptive Computing; allowing compute resources to be customized to
changing needs and failed systems to be automatically fixed or replaced.

l Increases system resource availability, offers extensive cluster diagnostics, delivers
powerful quality of service (QoS) and service level agreement (SLA) features, and it
provides rich visualization of cluster performance through advanced statistics,
reports, and charts. In addition, the Elastic Computing feature allows Moab to
temporarily utilize systems that can provide additional resources to take care of
increased workload demand (caused by high job backlog) in a more timely manner.

Moab also works with major resource management and resource monitoring tools. From
hardware monitoring systems such as IPMI to provisioning systems and storage managers,
Moab takes advantage of domain expertise to allow these systems to do what they do best,
importing their state information and providing them with the information necessary to do
their job better. Moab uses its global information to coordinate the activities of both
resources and services, which optimizes overall performance in-line with high-level
mission objectives.

Chapter 1: Moab Workload Manager Overview

24

Chapter 2: Philosophy and Goals of Moab Workload
Manager

The scheduler's purpose is to optimally use resources in a convenient and manageable
way. System users want to specify resources, obtain quick turnaround on their jobs, and
have reliable resource allocation. On the other hand, administrators want to understand
both the workload and the resources available. This includes current state, problems, and
statistics—information about what is happening that is transparent to the end user.
Administrators need an extensive set of options to enable management enforced policies
and tune the system to obtain desired statistics.

There are other systems that provide batch management; however, Moab is unique in
many respects. Moab matches jobs to nodes, dynamically reprovisions nodes to satisfy
workload, and dynamically modifies workload to better take advantage of available nodes.
Moab allows sites to fully visualize cluster and user behavior. It can integrate and
orchestrate resource monitors, databases, identity managers, license managers, networks,
and storage systems, therefore providing a cohesive view of the cluster—a cluster that
fully acts and responds according to site mission objectives.

Moab can dynamically adjust security to meet specific job needs. Moab can create real and
virtual clusters on demand and from scratch that are custom-tailored to a specific request.
Moab can integrate visualization services, web farms, and application servers; it can also
create powerful grids of disparate clusters. Moab maintains complete accounting and
auditing records, exporting this data to information services on command, even providing
professional billing statements to cover all used resources and services.

Moab provides user- and application-centric web portals and powerful graphical tools for
monitoring and controlling every conceivable aspect of a cluster's objectives, performance,
workload, and usage. Moab is unique in its ability to deliver a powerful user-centric cluster
with little effort. Its design is focused on ROI, better use of resources, increased user
effectiveness, and reduced staffing requirements.

In this chapter:

2.1 Value of a Batch System 25
2.1.1 Traffic Control 25
2.1.2 Mission Policies 25
2.1.3 Optimizations 26

2.2 Philosophy and Goals 26
2.2.1 Management Goals 26
2.2.2 Administration Goals 27

Chapter 2: Philosophy and Goals of Moab Workload Manager

2.2.3 End User Goals 27
2.3 Workload 27

2.3.1 Batch Workload 28
2.3.2 Interactive Workload 28
2.3.3 Calendar Workload 28
2.3.4 Service Workload 29

2.1 Value of a Batch System

Batch systems provide centralized access to distributed resources through mechanisms for
submitting, launching, and tracking jobs on a shared resource. This greatly simplifies use of
the cluster's distributed resources, allowing users a single system image in terms of
managing jobs and aggregate compute resources available. Batch systems should do much
more than just provide a global view of the cluster, though. Using compute resources in a
fair and effective manner is complex, so a scheduler is necessary to determine when,
where, and how to run jobs to optimize the cluster. This topic describes the categories of
scheduling decisions.

In this topic:

2.1.1 Traffic Control - page 25
2.1.2 Mission Policies - page 25
2.1.3 Optimizations - page 26

2.1.1 Traffic Control
A scheduler must prevent jobs from interfering. If jobs contend for resources, cluster
performance decreases, job execution is delayed, and jobs may fail. Therefore, the
scheduler tracks resources and dedicates requested resources to a particular job, which
prevents use of such resources by other jobs.

2.1.2 Mission Policies
Clusters and other HPC platforms typically have specific purposes; to fulfill these purposes,
or mission goals, there are usually rules about system use pertaining to who or what is

Chapter 2: Philosophy and Goals of Moab Workload Manager

25 2.1 Value of a Batch System

2.2 Philosophy and Goals 26

allowed to use the system. To be effective, a scheduler must provide a suite of policies
allowing a site tomap site mission policies into scheduling behavior.

2.1.3 Optimizations
The compute power of a cluster is a limited resource; over time, demand inevitably exceeds
supply. Intelligent scheduling decisions facilitate higher job volume and faster job
completion. Though subject to the constraints of the traffic control and mission policies, the
scheduler must use whatever freedom is available to maximize cluster performance.

2.2 Philosophy and Goals

Managers want high system utilization and the ability to deliver various qualities of service
to various users and groups. They need to understand how available resources are
delivered to users over time. They also need administrators to tune cycle delivery to satisfy
the current site mission objectives.

Determining a scheduler's success is contingent upon establishing metrics and a means to
measure them. The value of statistics is best understood if optimal statistical values are
known for a given environment, including workload, resources, and policies. That is, if an
administrator could determine that a site's typical workload obtained an average queue
time of 3.0 hours on a particular system, that would be a useful statistic; however, if an
administrator knew that through proper tuning the system could deliver an average queue
time of 1.2 hours with minimal negative side effects, that would be valuable knowledge.

Moab development relies on extensive feedback from users, administrators, and managers.
At its core, it is a tool designed tomanage resources and provide meaningful information
about what is actually happening on the system.

In this topic:

2.2.1 Management Goals - page 26
2.2.2 Administration Goals - page 27
2.2.3 End User Goals - page 27

2.2.1 Management Goals
A manager must ensure that a cluster fulfills the purpose for which it was purchased, so a
manager must deliver cycles to those projects that are most critical to the success of the
funding organizations. Management tasks to fulfill this role may include the following:

Chapter 2: Philosophy and Goals of Moab Workload Manager

l Define cluster mission objectives and performance criteria

l Evaluate current and historical cluster performance

l Instantly graph delivered service

2.2.2 Administration Goals
An administrator must ensure that a cluster is effectively functioning within the bounds of
the established mission goals. Administrators translate goals into cluster policies, identify
and correct cluster failures, and train users in best practices. Given these objectives, an
administrator may be tasked with each of the following:

l Maximize utilization and cluster responsiveness

l Tune fairness policies and workload distribution

l Automate time-consuming tasks

l Troubleshoot job and resource failures

l Instruct users of available policies and in their use regarding the cluster

l Integrate new hardware and cluster services into the batch system

2.2.3 End User Goals
End users are responsible for learning about the resources available, the requirements of
their workload, and the policies to which they are subject. Using this understanding and the
available tools, they find ways to obtain the best possible responsiveness for their own jobs.
A typical end user may have the following tasks:

l Manage current workload

l Identify available resources

l Minimize workload response time

l Track historical usage

l Identify effectiveness of prior submissions

2.3 Workload

Moab can manage a broad spectrum of compute workload types, and it can optimize all
workload types within the same cluster simultaneously, delivering on the objectives most
important to each workload type, as described in this topic.

Chapter 2: Philosophy and Goals of Moab Workload Manager

27 2.3 Workload

2.3 Workload 28

In this topic:

2.3.1 Batch Workload - page 28
2.3.2 Interactive Workload - page 28
2.3.3 Calendar Workload - page 28
2.3.4 Service Workload - page 29

2.3.1 Batch Workload
Batch workload is characterized by a job command file that typically describes all critical
aspects of the needed compute resources and execution environment. With a batch job, the
job is submitted to a job queue and runs somewhere on the cluster as resources become
available. In most cases, the submitter submits multiple batch jobs with no execution time
constraints and processes job results as they become available.

Moab can enforce rich policies defining how, when, and where batch jobs run to deliver
compute resources to the most important workload and provide general SLA guarantees
while maximizing system utilization and minimizing average response time.

2.3.2 Interactive Workload
Interactive workload differs from batch in that requestors are interested in immediate
response and are generally waiting for the interactive request to be executed before going
on to other activities. In many cases, interactive submitters will continue to be attached to
the interactive job, routing keystrokes and other input into the job and seeing both output
and error information in real-time. While interactive workload can be submitted within a
job file, commonly, it is routed into the cluster via a web or other graphical terminal and the
end user may never even be aware of the underlying use of the batch system.

For managing interactive jobs, the focus is usually on setting aside resources to guarantee
immediate execution or at least a minimal wait time for interactive jobs. Targeted service
levels require management when mixing batch and interactive jobs. Interactive and other
job types can be dynamically steered in terms of what they are executing, as well as in
terms of the quantity of resources required by the application.

2.3.3 Calendar Workload
Calendar workload must be executed at a particular time and possibly in a regular periodic
manner. For such jobs, time constraints range from flexible to rigid. For example, some
calendar jobs may need to complete by a certain time, while others must run exactly at a
given time each day or each week.

Chapter 2: Philosophy and Goals of Moab Workload Manager

Moab can schedule the future and can therefore guarantee resource availability at needed
times to allow calendar jobs to run as required. Furthermore, Moab provisioning features
can locate or temporarily create the needed compute environment to properly execute the
target applications.

2.3.4 Service Workload
Moab can schedule and manage both individual applications and long-running or
persistent services. Service workload processes externally-generated transaction requests
while Moab provides the distributed service with needed resources to meet target backlog
or response targets to the service. Examples of service workload include parallel
databases, web farms, and visualization services. Moab can apply cluster, grid, or
dynamically-generated on-demand resources to the service.

When handling service workload, Moab observes the application in a highly abstract
manner. Using the JOBCFG parameter, aspects of the service jobs can be discovered or
configured with attributes describing them as resource consumers possessing response
time, backlog, state metrics, and associated QoS targets. In addition, each application can
specify the type of compute resource required (OS, arch, memory, disk, network adapter,
data store, and so forth), as well as the support environment (network, storage, external
services, and so forth).

If the QoS response time/backlog targets of the application are not being satisfied by the
current resource allocation, Moab evaluates the needs of this application against all other
site mission objectives and workload needs and determines what it must do to locate or
create (that is, provision, customize, secure) the needed resources. With the application
resource requirement specification, a site can also indicate proximity/locality constraints,
partition policies, ramp-up/ramp-down rules, and so forth.

Once Moab identifies and creates appropriate resources, it hands these resources to the
application via a site customized URL. This URL can be responsible for whatever
application-specific handshaking must be done to launch and initialize the needed
components of the distributed application upon the new resources. Moab engages in the
hand-off by providing needed context and resource information and by launching the URL
at the appropriate time.

Related Topics

l Malleable Jobs

l QOS/SLA Enforcement

Chapter 2: Philosophy and Goals of Moab Workload Manager

29 2.3 Workload

30

Chapter 3: Scheduler Basics

In this chapter:

3.1 Initial Moab Configuration 31
3.2 Layout of Scheduler Components 32

3.2.1 Layout of Scheduler Components 32
3.2.2 Layout of Scheduler Components with Integrated Database 34

3.3 Scheduling Environment 35
3.3.1 Jobs 35
3.3.2 Nodes 38
3.3.3 Advance Reservations 38
3.3.4 Policies 38
3.3.5 Resources 39
3.3.6 Class (or Queue) 40
3.3.7 Resource Manager (RM) 41

3.4 Scheduling Dictionary 42
3.5 Scheduling Iterations and Job Flow 52

3.5.1 Scheduling Iterations 52
3.5.2 Detailed Job Flow 53

3.6 Configuring the Scheduler 54
3.6.1 Adjusting Server Behavior 55

3.7 Credential Overview 58
3.7.1 General Credential Attributes 59
3.7.2 User Credential 65
3.7.3 Group Credential 66
3.7.4 Account (or Project) Credential 67
3.7.5 Class (or Queue) Credential 67
3.7.6 QoS Credential 89

3.8 Job Flags 90

Chapter 3: Scheduler Basics

3.1 Initial Moab Configuration

After Moab is installed, there may be minor configuration remaining within the primary
configuration file, moab.cfg. While the configure script automatically sets these
parameters, sites can choose to specify additional parameters. If the values selected in
configure are satisfactory, then this section can be safely ignored.

The parameters needed for proper initial startup include the following:

Parameter Instructions

SCHEDCFG The SCHEDCFG parameter specifies how the Moab server will execute and
communicate with client requests. The SERVER attribute allows Moab client
commands to locate the Moab server and is specified as a URL or in <HOST>
[:<PORT>] format. For example:

SCHEDCFG[orion] SERVER=cw.psu.edu

Specifying the server in the Moab configuration file is optional. If nothing is
specified, gethostname() is called. You can restart Moab and run mdiag -S to
confirm that the correct host name is specified.

The SERVER attribute can also be set using the environment variable
$MOABSERVER. Using this variable allows you to quickly change to the
Moab server that client commands will connect to.
> export MOABSERVER=cluster2:12221

ADMINCFG Moab provides role-based security enabled via multiple levels of admin access.
Users who are to be granted full control of all Moab functions should be
indicated by setting the ADMINCFG[1] parameter. The first user in this USERS
attribute list is considered the primary administrator. It is the ID under which
Moab will execute. For example, the following can be used to enable users greg
and thomas as level 1 admins:

ADMINCFG[1] USERS=greg,thomas

Moab can only be launched by the primary administrator user ID.

The primary administrator should be configured as a
manager/operator/administrator in every resource manager with which
Moab will interface.

If the msub command will be used, then 'root' must be the primary
administrator.

Chapter 3: Scheduler Basics

31 3.1 Initial Moab Configuration

3.2 Layout of Scheduler Components 32

Parameter Instructions

Moab's home directory and contents should be owned by the primary
administrator.

RMCFG For Moab to properly interact with a resource manager, the interface to this
resource manager must be defined as described in the Resource Manager
Configuration Overview. Further, it is important that the primary Moab
administrator also be a resource manager administrator within each of those
systems. For example, to interface to a Torque resource manager, the following
can be used:

RMCFG[torque1] TYPE=pbs

Related Topics

l Parameter Overview

l mdiag -C command (for diagnosing current Moab configuration)

3.2 Layout of Scheduler Components

In this topic:

3.2.1 Layout of Scheduler Components - page 32
3.2.2 Layout of Scheduler Components with Integrated Database - page 34

3.2.1 Layout of Scheduler Components
Moab is initially unpacked into a simple one-deep directory structure. What follows
demonstrates the default layout of scheduler components; some of the files (such as log
and statistics files) are created while Moab runs.

l $(MOABHOMEDIR) Default is /opt/moab, which can be modified via the --
with-homedir parameter during ./configure. $(MOABHOMEDIR) contains
the files shown in the table below.

Chapter 3: Scheduler Basics

Filename Description

contrib/ Directory containing contributed code and plug-ins

.counters File containing last 3 counters for InsightIDs, jobs, and reservations
respectively. Created during installation and required for Moab
operation.

docs/ Directory for documentation

etc/ Directory for configuration files

lib/ Directory for library files (primarily for tools/)

log/ Directory for log files

[etc/]moab.cfg General configuration file (can be located in $(MOABHOMEDIR) or
$(MOABHOMEDIR)/etc).

.moab.ck Checkpoint file

[etc/].moab.key Secret key used in authentication (can be located in
$(MOABHOMEDIR) or $(MOABHOMEDIR)/etc).

moab.dat Configuration file generated by Moab Cluster Manager

[etc/]moab-
client.cfg

Client configuration file (can be located in $(MOABHOMEDIR) or
$(MOABHOMEDIR)/etc).

moab.lic License file

moab.log Log file

moab.log.1 Previous log file

.moab.pid Lock file

[etc/]moab-
private.cfg

Secure configuration file containing private information (can be
located in $(MOABHOMEDIR) or $(MOABHOMEDIR)/etc).

Chapter 3: Scheduler Basics

33 3.2 Layout of Scheduler Components

3.2 Layout of Scheduler Components 34

Filename Description

stats/ Directory for statistics files:

o events.<date> – event files
o {DAY|WEEK|MONTH|YEAR}.<date> – usage profiling data
o FS.<PARTITION>.<epochtime> – fairshare usage data

l $(MOABINSTDIR) Default is /opt/moab, which can be modified via the --
prefix parameter during ./configure. $(MOABINSTDIR) contains the files
shown in the table below.

Filename Description

bin/ Directory for client commands (for example, showq, setres, etc.)

moab Moab binary

sbin/ Directory for server daemons

tools/ Directory for resource manager interfaces and local scripts

l /etc/moab.cfg If the Moab home directory cannot be found at startup, this file is
checked to see if it declares the Moab home directory. If a declaration exists, the
system checks the declared directory to find Moab. The syntax is:
MOABHOMEDIR=<DIRECTORY>.

If you want to run Moab from a different directory other than /opt/moab but did not use
the --with-homedir parameter during ./configure, you can set the
$MOABHOMEDIR environment variable, declare the home directory in the
/etc/moab.cfg file, or use the -C command line option when using the Moab server or
client commands to specify the configuration file location.

When Moab runs, it creates a log file, moab.log, in the log/ directory and creates a
statistics file in the stats/ directory with the naming convention events.WWW_MMM_
DD_YYYY (for example, events.Sat_Oct_8_2022). Additionally, a checkpoint file,
.moab.ck, and lock file, .moab.pid, are maintained in the Moab home directory.

3.2.2 Layout of Scheduler Components with Integrated Database
Layout of Scheduler Components with Integrated Database Enabled

If USEDATABASE INTERNAL is configured, the layout of scheduler components varies
slightly. The .moab.ck file and usage profiling data (stat/

Chapter 3: Scheduler Basics

{DAY|WEEK|MONTH|YEAR}.<date>) are stored in the moab.db database. In
addition, the event information is stored in both event files: (stat/events.<date>)
and moab.db.

Related Topics

l Commands Overview

3.3 Scheduling Environment

Moab functions by manipulating a number of elementary objects, including jobs, nodes,
reservations, QoS structures, resource managers, and policies. Multiple minor elementary
objects and composite objects are also used; these objects are defined in 3.4 Scheduling
Dictionary - page 42.

In this topic:

3.3.1 Jobs - page 35
3.3.1.A Job States - page 36
3.3.1.B Task Group (or Req) - page 37

3.3.2 Nodes - page 38
3.3.3 Advance Reservations - page 38
3.3.4 Policies - page 38
3.3.5 Resources - page 39

3.3.5.A Task - page 39
3.3.5.B PE (Processor Equivalent) Calculation - page 39

3.3.6 Class (or Queue) - page 40
3.3.7 Resource Manager (RM) - page 41

Moab functions by manipulating a number of elementary objects, including jobs, nodes,
reservations, QoS structures, resource managers, and policies. Multiple minor elementary
objects and composite objects are also used; these objects are defined in the scheduling
dictionary.

3.3.1 Jobs
Job information is provided to the Moab scheduler from a resource manager such as PBS
or Wiki. Job attributes include ownership of the job, job state, amount and type of resources

Chapter 3: Scheduler Basics

35 3.3 Scheduling Environment

3.3 Scheduling Environment 36

required by the job, and a wallclock limit indicating how long the resources are required. A
job consists of one or more task groups, each of which requests a number of resources of a
given type; for example, a job may consist of two task groups, the first asking for a single
master task consisting of 1 IBM SP node with at least 512 MB of RAM and the second asking
for a set of slave tasks such as 24 IBM SP nodes with at least 128 MB of RAM. Each task
group consists of one or more tasks where a task is defined as the minimal independent
unit of resources. By default, each task is equivalent to one processor. In SMP
environments, however, users might want to tie one or more processors together with a
certain amount of memory and other resources.

3.3.1.A Job States
The job's state indicates its current status and eligibility for execution and can be any of the
values listed in the following tables:

Table 3-1: Pre-execution states

State Definition

Deferred Job that has been held by Moab due to an inability to schedule the job under
current conditions. Deferred jobs are held for DEFERTIME before being placed
in the idle queue. This process is repeated DEFERCOUNT times before the job
is placed in batch hold.

Hold Job is idle and is not eligible to run due to a user, (system) administrator, or
batch system hold (also, batchhold, systemhold, userhold).

Idle Job is currently queued and eligible to run but is not executing (also,
notqueued).

NotQueued The job has not been queued.

Unknown Moab cannot determine the state of the job.

Table 3-2: Execution states

State Definition

Starting Batch system has attempted to start the job and the job is currently performing
pre-start tasks that may include provisioning resources, staging data, or
executing system pre-launch scripts.

Running Job is currently executing the user application.

Chapter 3: Scheduler Basics

State Definition

Suspended Job was running but has been suspended by the scheduler or an administrator;
user application is still in place on the allocated compute resources, but it is not
executing.

Table 3-3: Post-execution states

State Definition

Completed Job has completed running without failure.

Removed Job has run to its requested walltime successfully but has been canceled by the
scheduler or resource manager due to exceeding its walltime or violating
another policy; includes jobs canceled by users or administrators either before
or after a job has started.

Vacated Job canceled after partial execution due to a system failure.

3.3.1.B Task Group (or Req)
A job task group (or req) consists of a request for a single type of resources. Each task
group consists of the following components:

Component Description

Task
Definition

A specification of the elementary resources that compose an individual task.

Resource
Constraints

A specification of conditions that must be met for resource matching to occur.
Only resources from nodes that meet all resource constraints can be allocated
to the job task group.

Task Count The number of task instances required by the task group.

Task List The list of nodes on which the task instances are located.

Task Group
Statistics

Statistics tracking resource utilization.

Chapter 3: Scheduler Basics

37 3.3 Scheduling Environment

3.3 Scheduling Environment 38

3.3.2 Nodes
Moab recognizes a node as a collection of resources with a particular set of associated
attributes. This definition is similar to the traditional notion of a node found in a Linux
cluster or supercomputer wherein a node is defined as one or more CPUs, associated
memory, and possibly other compute resources such as local disk, swap, network adapters,
and software licenses. Additionally, this node is described by various attributes such as an
architecture type or operating system. Nodes range in size from small uniprocessor PCs to
large symmetric multiprocessing (SMP) systems where a single node may consist of
hundreds of CPUs and massive amounts of memory.

In many cluster environments, the primary source of information about the configuration
and status of a compute node is the resource manager. This information can be augmented
by additional information sources including node monitors and information services.
Further, extensive node policy and node configuration information can be specified within
Moab via the graphical tools or the configuration file. Moab aggregates this information and
presents a comprehensive view of the node configuration, usages, and state.

While a node in Moab in most cases represents a standard compute host, nodes can also be
used to represent more generalized resources. The GLOBAL node possesses floating
resources that are available cluster wide, and created virtual nodes (such as network,
software, and data nodes) track and allocate resource usage for other resource types.

For additional node information, see General Node Administration.

3.3.3 Advance Reservations
An advance reservation dedicates a block of specific resources for a particular use. Each
reservation consists of a list of resources, an access control list, and a time range for
enforcing the access control list. The reservation ensures the matching nodes are used
according to the access controls and policy constraints within the time frame specified. For
example, a reservation could reserve 20 processors and 10 GB of memory for users Bob
and John from Friday 6:00 a.m. to Saturday 10:00 p.m. Moab uses advance reservations
extensively to manage backfill, guarantee resource availability for active jobs, allow service
guarantees, support deadlines, and enable metascheduling. Moab also supports both
regularly recurring reservations and the creation of dynamic one-time reservations for
special needs. Advance reservations are described in detail in the Advance Reservations
overview.

3.3.4 Policies
A configuration file specifies policies and controls how and when jobs start. Policies include
job prioritization, fairness policies, fairshare configuration policies, and scheduling policies.

Chapter 3: Scheduler Basics

3.3.5 Resources
Jobs, nodes, and reservations all deal with the abstract concept of a resource. A resource in
the Moab world is one of the following:

Resource Description

processors Specify with a simple count value

memory Specify real memory or RAM in megabytes (MB)

swap Specify virtual memory or swap in megabytes (MB)

disk Specify local disk in megabytes (MB)

In addition to these elementary resource types, there are two higher level resource
concepts used within Moab: Task and the processor equivalent (or PE (Processor
Equivalent) Calculation), as explained below.

3.3.5.A Task
A task is a collection of elementary resources that must be allocated together within a
single node. For example, a task may consist of one processor, 512 MB of RAM, and 2 GB of
local disk. A key aspect of a task is that the resources associated with the task must be
allocated as an atomic unit, without spanning node boundaries. A task requesting 2
processors cannot be satisfied by allocating 2 uniprocessor nodes, nor can a task
requesting 1 processor and 1 GB of memory be satisfied by allocating 1 processor on 1
node and memory on another.

In Moab, when jobs or reservations request resources, they do so in terms of tasks typically
using a task count and a task definition. By default, a task maps directly to a single
processor within a job and maps to a full node within reservations. In all cases, this default
definition can be overridden by specifying a new task definition.

Within both jobs and reservations, depending on task definition, it is possible to have
multiple tasks from the same job mapped to the same node. For example, a job requesting
4 tasks using the default task definition of 1 processor per task, can be satisfied by 2 dual
processor nodes.

3.3.5.B PE (Processor Equivalent) Calculation
The concept of the processor equivalent, or PE, arose out of the need to translate multi-
resource consumption requests into a scalar value. It is not an elementary resource but

Chapter 3: Scheduler Basics

39 3.3 Scheduling Environment

3.3 Scheduling Environment 40

rather a derived resource metric. It is a measure of the actual impact of a set of requested
resources by a job on the total resources available system wide. It is calculated as follows:

PE = MAX(ProcsRequestedByJob / TotalOnlineProcs,
MemoryRequestedByJob / TotalOnlineMemory,
DiskRequestedByJob / TotalOnlineDisk,
SwapRequestedByJob / TotalOnlineSwap) * TotalOnlineProcs

For example, if a job requested 20% of the total processors and 50% of the total memory of
a 128-processor MPP system, only two such jobs could be supported by this system. The
job is essentially using 50% of all available resources since the system can only be
scheduled to its most constrained resource - memory in this case. The processor
equivalents for this job should be 50% of the processors, or PE = 64.

Another example: Assume a homogeneous 100-node system with 4 processors and 1 GB of
memory per node. A job is submitted requesting 2 processors and 768 MB of memory. The
PE for this job would be calculated as follows:
PE = MAX(2/(100*4), 768/(100*1024)) * (100*4) = 3.

This result makes sense since the job would be consuming 3/4 of the memory on a 4-
processor node.

The calculation works equally well on homogeneous or heterogeneous systems,
uniprocessor or large SMP systems.

3.3.6 Class (or Queue)
A class (or queue) is a logical container object that implicitly or explicitly applies policies to
jobs. In most cases, a class is defined and configured within the resource manager and
associated with one or more of the following attributes or constraints:

Attribute Description

Default Job
Attributes

A queue can be associated with a default job duration, default size, or default
resource requirements.

Host
Constraints

A queue can constrain job execution to a particular set of hosts.

Job
Constraints

A queue can constrain the attributes of jobs that can be submitted, including
setting limits such as max wallclock time and minimum number of processors.

Access List A queue can constrain who can submit jobs into it based on such things as user
lists and group lists.

Chapter 3: Scheduler Basics

Attribute Description

Special
Access

A queue can associate special privileges with jobs including adjusted job
priority.

As stated previously, most resource managers allow full class configuration within the
resource manager. Where additional class configuration is required, the CLASSCFG
parameter can be used.

Moab tracks class usage as a consumable resource allowing sites to limit the number of
jobs using a particular class. This is done by monitoring class initiators that may be
considered to be a ticket to run in a particular class. Any compute node can simultaneously
support several types of classes and any number of initiators of each type. By default,
nodes will have a one-to-one mapping between class initiators and configured processors.
For every job task run on the node, one class initiator of the appropriate type is consumed.
For example, a 3-processor job submitted to the class 'batch' consumes three batch class
initiators on the nodes where it runs.

Using queues as consumable resources allows sites to specify various policies by adjusting
the class initiator to node mapping. For example, a site running serial jobs might want to
allow a particular 8-processor node to run any combination of batch and special jobs
subject to the following constraints:

l Only 8 jobs of any type allowed simultaneously.

l No more than 4 special jobs allowed simultaneously.

To enable this policy, the site can set the node's MAXJOB policy to 8 and configure the node
with 4 special class initiators and 8 batch class initiators.

In virtually all cases, jobs have a one-to-one correspondence between processors
requested and class initiators required. However, this is not a requirement, and with
special configuration, sites can choose to associate job tasks with arbitrary combinations of
class initiator requirements.

In displaying class initiator status, Moab signifies the type and number of class initiators
available using the format [<CLASSNAME>:<CLASSCOUNT>]. This is most commonly seen
in the output of node status commands indicating the number of configured and available
class initiators, or in job status commands when displaying class initiator requirements.

3.3.7 Resource Manager (RM)
While other systems may have more strict interpretations of a resource manager and its
responsibilities, Moab's multi-resource manager support allows a much more liberal
interpretation. In essence, any object that can provide environmental information and
environmental control can be used as a resource manager, including sources of resource,

Chapter 3: Scheduler Basics

41 3.3 Scheduling Environment

3.4 Scheduling Dictionary 42

workload, credential, or policy information such as scripts, peer services, databases, web
services, hardware monitors, or even flats files. Likewise, Moab considers to be a resource
manager any tool that provides control over the cluster environment whether that be a
license manager, queue manager, checkpoint facility, provisioning manager, network
manager, or storage manager.

Moab aggregates information from multiple unrelated sources into a larger more complete
world view of the cluster that includes all the information and control found within a
standard resource manager such as Torque, including node, job, and queue management
services. For more information, see the Resource Managers and Interfaces overview.

3.3.7.A Arbitrary Resource
Nodes can also be configured to support various arbitrary resources. Use the NODECFG
parameter to specify information about such resources. For example, you could configure a
node to have 256 MB RAM, 4 processors, 1 GB Swap, and 2 tape drives.

3.4 Scheduling Dictionary

Index: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

Account

Definition A credential also known as 'project ID.' Multiple users can be associated a single
account ID and each user can have access to multiple accounts. See credential
definition and ACCOUNTCFG parameter.

Example ACCOUNT=hgc13

ACL (Access Control List)

Definition In the context of scheduling, an access control list is used and applied much as it
is elsewhere. An ACL defines what credentials are required to access or use
particular objects. The principal objects to which ACLs are applied are
reservations and QoSs. ACLs can contain both allow and deny statements,
include wildcards, and contain rules based on multiple object types.

Example Reservation META1 contains 4 access statements:

Chapter 3: Scheduler Basics

ACL (Access Control List)

l Allow jobs owned by user "john" or "bob"
l Allow jobs with QoS "premium"
l Deny jobs in class "debug"
l Allow jobs with a duration of less than 1 hour

Allocation

Definition A logical, scalar unit assigned to users on a credential basis, providing access to a
particular quantity of compute resources. Allocations are consumed by jobs
associated with those credentials.

Example ALLOCATION=30000

B

C

Class

Definition (See Queue) A class is a logical container object that holds jobs allowing a site to
associate various constraints and defaults to these jobs. Class access can also be
tied to individual nodes defining whether a particular node will accept a job
associated with a given class. Class based access to a node is denied unless
explicitly allowed via resource manager configuration. Within Moab, classes are
tied to jobs as a credential.

Example job "cw.073" is submitted to class batch
node "cl02" accepts jobs in class batch
reservation weekend allows access to jobs in class batch

CPU

Definition A single processing unit. A CPU is a consumable resource. Nodes typically consist
of one or more CPUs. (same as processor)

Credential

Definition An attribute associated with jobs and other objects that determines object

Chapter 3: Scheduler Basics

43 3.4 Scheduling Dictionary

3.4 Scheduling Dictionary 44

Credential

identity. In the case of schedulers and resource managers, credential based
policies and limits are often established. At submit time, jobs are associated with
a number of credentials such as user, group, account, QoS, and class. These job
credentials subject the job to various polices and grant it various types of access.
In most cases, credentials set both the privileges of the job and the ID of the
actual job executable.

Example Job "cw.24001" possesses the following credentials:

USER=john;GROUP=staff;ACCOUNT=[NONE];
QOS=[DEFAULT];CLASS=batch

D

Disk

Definition A quantity of local disk available for use by batch jobs. Disk is a consumable
resource.

E

Execution Environment

Definition A description of the environment where the executable is launched. This
environment can include attributes such as the following:

l an executable
l command line arguments
l input file
l output file
l local user ID
l local group ID
l process resource limits

Example Job "cw.24001" possesses the following execution environment:

EXEC=/bin/sleep;ARGS="60";
INPUT=[NONE];OUTPUT=[NONE];
USER=loadl;GROUP=staff;

Chapter 3: Scheduler Basics

F

Fairshare

Definition A mechanism that allows historical resource utilization information to be
incorporated into job priority decisions.

Fairness

Definition The access to shared compute resources that each user is granted. Access can be
equal or based on factors such as historical resource usage, political issues, and
job value.

G

Group

Definition A credential typically directly mapping to a user's UNIX group ID.

H

I

J

Job

Definition The fundamental object of resource consumption. A job contains the following
components:

l A list of required consumable resources
l A list of resource constraints controlling which resources can be allocated to

the job
l A list of job constraints controlling where, when, and how the job should

run
l A list of credentials
l An execution environment

Job Constraints

Definition A set of conditions that must be fulfilled for the job to start. These conditions are

Chapter 3: Scheduler Basics

45 3.4 Scheduling Dictionary

3.4 Scheduling Dictionary 46

Job Constraints

far reaching and can include one or more of the following:

l When the job can run. After time X, within Y minutes.
l Which resources can be allocated. For example, node must possess at least

512 MB of RAM, run only in partition or Partition C, or run on HostA and
HostB.

l Starting job relative to a particular event. Start after job X successfully
completes.

Example RELEASETIME>='Tue Feb 12, 11:00AM'
DEPEND=AFTERANY:cw.2004
NODEMEMORY==256MB

K

L

M

Memory

Definition A quantity of physical memory (RAM). Memory is provided by compute nodes. It
is required as a constraint or consumed as a consumable resource by jobs.
Within Moab, memory is tracked and reported in megabytes (MB).

Example Node "node001" provides the following resources:
PROCS=1,MEMORY=512,SWAP=1024

"Job cw.24004" consumes the following resources per task:
PROCS=1,MEMORY=256

N

Node

Definition A node is the fundamental object associated with compute resources. Each node
contains the following components:

l A list of consumable resources
l A list of node attributes

Chapter 3: Scheduler Basics

Node Attribute

Definition A node attribute is a non-quantitative aspect of a node. Attributes typically
describe the node itself or possibly aspects of various node resources such as
processors or memory. While it is probably not optimal to aggregate node and
resource attributes together in this manner, it is common practice. Common
node attributes include processor architecture, operating system, and processor
speed. Jobs often specify that resources be allocated from nodes possessing
certain node attributes.

Example ARCH=AMD,OS=LINUX24,PROCSPEED=950

Node Feature

Definition A node feature is a node attribute that is typically specified locally via a
configuration file. Node features are opaque strings associated with the node by
the resource manager that generally only have meaning to the end-user, or
possibly to the scheduler. A node feature is commonly associated with a subset
of nodes allowing end-users to request use of this subset by requiring that
resources be allocated from nodes with this feature present. In many cases, node
features are used to extend the information provided by the resource manager.

Example FEATURE=s950,pIII,geology

This can be used to indicate that the node possesses a 950 MHz
Pentium III processor and that the node is owned by the Geology
department.

O

P

Processor

Definition A processing unit. A processor is a consumable resource. Nodes typically consist
of one or more processors. (same as CPU)

Q

Quality of Service (QoS)

Definition An object that provides special services, resources, and so forth.

Chapter 3: Scheduler Basics

47 3.4 Scheduling Dictionary

3.4 Scheduling Dictionary 48

Queue

Definition (see Class)

R

Reservation

Definition An object that reserves a specific collection or resources for a specific timeframe
for use by jobs that meet specific conditions. Each reservation consists of three
major components: (1) a set of resources, (2) a time frame, and (3) an access
control list. It is a scheduler role to ensure that the access control list is not
violated during the reservation's lifetime (that is, its time frame) on the
resources listed. For example, a reservation may specify that node002 is
reserved for user Tom on Friday. The scheduler is therefore constrained to make
certain that only Tom's jobs can use node002 at any time on Friday.

Example Reserve 24 processors and 8 GB of memory from time T1 to time T2 for use by
user X or jobs in the class batch.

Resource

Definition Hardware, generic resources such as software, and features available on a node,
including memory, disk, swap, and processors.

Resource, Available

Definition A compute node's configured resources minus the maximum of the sum of the
resources utilized by all job tasks running on the node and the resources
dedicated; that is, R.Available = R.Configure - MAX(R.Dedicated,R.Utilized).
In most cases, resources utilized will be associated with compute jobs that the
batch system has started on the compute nodes, although resource consumption
may also come from the operating system or rogue processes outside of the
batch system's knowledge or control. Further, in a well-managed system, utilized
resources are less than or equal to dedicated resources and when exceptions are
detected, one or more usage-based limits are activated to preempt the jobs
violating their requested resource usage.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of
job "clserver.0041" that are using 1 processor and 60 MB of memory each. One
processor and 250 MB of memory are reserved for user "jsmith" but are not
currently in use.
Resources available to user jsmith on node "cl003":

Chapter 3: Scheduler Basics

Resource, Available

l 2 processors
l 392 MB memory

Resources available to a user other than jsmith on node "cl003":

l 1 processor
l 142 MB memory

Resource, Configured

Definition The total amount of consumable resources that are available on a compute node
for use by job tasks.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of
job "clserver.0041" that are using 1 processor and 60 MB of memory each. One
processor and 250 MB of memory are reserved for user "jsmith" but are not
currently in use.
Configured resources for node "cl003":

l 4 processors
l 512 MB memory

Resource, Consumable

Definition Any object that can be used (that is, consumed and therefore made unavailable
to another job) by, or dedicated to a job is considered to be a resource. Common
examples of resources are a node's physical memory or local disk. As these
resources can be given to one job and therefore become unavailable to another,
they are considered to be consumable. Other aspects of a node, such as its
operating system, are not considered to be consumable since its use by one job
does not preclude its use by another. Note that some node objects, such as a
network adapter, can be dedicated under some operating systems and resource
managers and not under others. On systems where the network adapter cannot
be dedicated and the network usage per job cannot be specified or tracked,
network adapters are not considered to be resources, but rather attributes.
Nodes possess a specific quantity of consumable resources such as real memory,
local disk, or processors. In a resource management system, the node manager
can choose to report only those configured resources available to batch jobs. For
example, a node may possess an 80 GB hard drive but may have only 20 GB
dedicated to batch jobs. Consequently, the resource manager may report that the
node has 20 GB of local disk available when idle. Jobs can explicitly request a
certain quantity of consumable resources.

Chapter 3: Scheduler Basics

49 3.4 Scheduling Dictionary

3.4 Scheduling Dictionary 50

Resource, Constraint

Definition A resource constraint imposes a rule on which resources can be used to match a
resource request. Resource constraints either specify a required quantity and
type of resource or a required node attribute. All resource constraints must be
met by any given node to establish a match.

Resource, Dedicated

Definition A job may request that a block of resources be dedicated while the job is
executing. At other times, a certain number of resources can be reserved for use
by a particular user or group. In these cases, the scheduler is responsible for
guaranteeing that these resources, utilized or not, are set aside and made
unavailable to other jobs.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of
job "clserver.0041" that are using 1 processor and 60 MB of memory each. One
processor and 250 MB of memory are reserved for user "jsmith" but are not
currently in use.
Dedicated resources for node "cl003":

l 1 processor
l 250 MB memory

Resource, Utilized

Definition All consumable resources actually used by all job tasks running on the compute
node.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of
job "clserver.0041" that are using 1 processor and 60 MB of memory each. One
processor and 250 MB of memory are reserved for user "jsmith" but are not
currently in use.
Utilized resources for node "cl003":

l 2 processors
l 120 MB memory

S

Swap

Definition A quantity of virtual memory available for use by batch jobs. Swap is a
consumable resource provided by nodes and consumed by jobs.

Chapter 3: Scheduler Basics

T

Task

Definition An atomic collection of consumable resources.

Time to Live (TTL)

Definition Specifies the time that a node is supposed to be retired by Moab. Moab will not
schedule any jobs on a node after its time to live has passed.

U

User, Global

Definition The user credential used to provide access to functions and resources. In local
scheduling, global user IDs map directly to local user IDs.

User, Local

Definition The user credential under which the job executable will be launched.

V

W

Workload

Definition A set of tasks to be performed or services to be provided by a system that
comprises a set of resources.

X

Y

Z

Chapter 3: Scheduler Basics

51 3.4 Scheduling Dictionary

3.5 Scheduling Iterations and Job Flow 52

3.5 Scheduling Iterations and Job Flow

In this topic:

3.5.1 Scheduling Iterations - page 52
3.5.1.A Update State Information - page 52
3.5.1.B Handle User Requests - page 53
3.5.1.C Perform Next Scheduling Cycle - page 53

3.5.2 Detailed Job Flow - page 53
3.5.2.A Determine Basic Job Feasibility - page 53
3.5.2.B Prioritize Jobs - page 53
3.5.2.C Enforce Configured Throttling Policies - page 53
3.5.2.D Determine Resource Availability - page 53
3.5.2.E Allocate Resources to Job - page 54
3.5.2.F Launch Job - page 54

3.5.1 Scheduling Iterations
In any given scheduling iteration, many activities take place, examples of which are listed
below:

l Update State Information

l Handle User Requests

l Perform Next Scheduling Cycle

l Refresh reservations

l Schedule reserved jobs

l Schedule priority jobs

l Backfill jobs

l Update statistics

3.5.1.A Update State Information
Each iteration, the scheduler contacts the resource manager(s) and requests up-to-date
information on compute resources, workload, and policy configuration. On most systems,
these calls are to a centralized resource manager daemon that possesses all information.
Jobs can be reported as being in any of the following states listed in the job state table.

Chapter 3: Scheduler Basics

3.5.1.B Handle User Requests
User requests include any call requesting state information, configuration changes, or job
or resource manipulation commands. These requests can come in the form of user client
calls, peer daemon calls, or process signals.

3.5.1.C Perform Next Scheduling Cycle
Moab operates on a polling/event driven basis. When all scheduling activities complete,
Moab processes user requests until a new resource manager event is received or an
internal event is generated. Resource manager events include activities such as a new job
submission or completion of an active job, addition of new node resources, or changes in
resource manager policies. Internal events include administrator schedule requests,
reservation activation/deactivation, or the expiration of the RMPOLLINTERVAL timer.

3.5.2 Detailed Job Flow

3.5.2.A Determine Basic Job Feasibility
The first step in scheduling is determining which jobs are feasible. This step eliminates jobs
that have job holds in place, invalid job states (such as Completed, Not Queued, Deferred),
or unsatisfied preconditions. Preconditions can include stage-in files or completion of
preliminary job steps.

3.5.2.B Prioritize Jobs
With a list of feasible jobs created, the next step involves determining the relative priority
of all jobs within that list. A priority for each job is calculated based on job attributes such
as job owner, job size, and length of time the job has been queued.

3.5.2.C Enforce Configured Throttling Policies
Any configured throttling policies are then applied constraining how many jobs, nodes,
processors, and so forth are allowed on a per credential basis. Jobs that violate these
policies are not considered for scheduling.

3.5.2.D Determine Resource Availability
For each job, Moab attempts to locate the required compute resources needed by the job.
For a match to be made, the node must possess all node attributes specified by the job and

Chapter 3: Scheduler Basics

53 3.5 Scheduling Iterations and Job Flow

3.6 Configuring the Scheduler 54

possess adequate available resources to meet the 'TasksPerNode' job constraint. (Default
'TasksPerNode' is 1.) Normally, Moab determines that a node has adequate resources if the
resources are neither utilized by nor dedicated to another job using the calculation.

R.Available = R.Configured - MAX(R.Dedicated,R.Utilized).

The NODEAVAILABILITYPOLICY parameter can be modified to adjust this behavior.

3.5.2.E Allocate Resources to Job
If adequate resources can be found for a job, the node allocation policy is then applied to
select the best set of resources. These allocation policies allow selection criteria such as
speed of node, type of reservations, or excess node resources to be figured into the
allocation decision to improve the performance of the job and maximize the freedom of the
scheduler in making future scheduling decisions.

3.5.2.F Launch Job
With the resources selected and task distribution mapped, the scheduler then contacts the
resource manager and informs it where and how to launch the job. The resource manager
then initiates the actual job executable.

3.6 Configuring the Scheduler

In this topic:

3.6.1 Adjusting Server Behavior - page 55
3.6.1.A Logging - page 55
3.6.1.B Checkpointing - page 56
3.6.1.C Client Interface - page 56
3.6.1.D Scheduler Mode - page 56
3.6.1.E Configuring a Job ID Offset - page 57

Scheduler configuration is maintained using the flat text configuration file moab.cfg. All
configuration file entries consist of simple <PARAMETER> <VALUE> pairs that are
whitespace delimited. Parameter names are not case sensitive but <VALUE> settings are.
Some parameters are array values and should be specified as <PARAMETER>
[<INDEX>] (Example: QOSCFG[hiprio] PRIORITY=1000); the <VALUE> settings
can be integers, floats, strings, or arrays of these. Some parameters can be specified as
arrays wherein index values can be numeric or alphanumeric strings. If no array index is

Chapter 3: Scheduler Basics

specified for an array parameter, an index of zero (0) is assumed. The example below
includes both array based and non-array based parameters:

SCHEDCFG[cluster2] SERVER=head.c2.org MODE=NORMAL
LOGLEVEL 6
LOGDIR /var/tmp/moablog

See the parameters documentation for information on specific parameters.

The moab.cfg file is read when Moab is started up or recycled. Also, the mschedctl -m
command can be used to reconfigure the scheduler at any time, updating some or all of the
configurable parameters dynamically. This command can be used to modify parameters
either permanently or temporarily. For example, the command mschedctl -m
LOGLEVEL 3will temporarily adjust the scheduler log level. When the scheduler restarts,
the log level restores to the value stored in the Moab configuration files. To adjust a
parameter permanently, the option --flags=persistent should be set.

At any time, the current server parameter settings can be viewed using the mschedctl -l
command.

3.6.1 Adjusting Server Behavior
Most aspects of Moab behavior are configurable. This includes both scheduling policy
behavior and daemon behavior. In terms of configuring server behavior, the following
realms are most commonly modified.

3.6.1.A Logging
Moab provides extensive and highly configurable logging facilities controlled by
parameters.

Parameter Description

LOGDIR Indicates directory for log files.

LOGFACILITY Indicates scheduling facilities to track.

LOGFILE Indicates path name of log file.

LOGFILEMAXSIZE Indicates maximum size of log file before rolling.

LOGFILEROLLDEPTH Indicates maximum number of log files to maintain.

LOGLEVEL Indicates verbosity of logging.

Chapter 3: Scheduler Basics

55 3.6 Configuring the Scheduler

3.6 Configuring the Scheduler 56

3.6.1.B Checkpointing
Moab checkpoints its internal state. The checkpoint file records statistics and attributes for
jobs, nodes, reservations, users, groups, classes, and almost every other scheduling object.

Parameter Description

CHECKPOINTEXPIRATIONTIME Indicates how long unmodified data should be kept after
the associated object has disappeared; that is, job priority
for a job no longer detected.

CHECKPOINTFILE Indicates path name of checkpoint file.

CHECKPOINTINTERVAL Indicates interval between subsequent checkpoints.

3.6.1.C Client Interface
Clients will read from the client configuration file (moab-client.cfg), if present, and
then from the server configuration file (moab.cfg), if present. First, clients will search for
the presence of a moab-client.cfg file, loading client parameters from the first file
detected in $MOABHOMEDIR or $MOABHOMEDIR/etc. Next, clients will search for the
presence of a moab.cfg file, loading client parameters from the first file detected in
$MOABHOMEDIR or $MOABHOMEDIR/etc, overriding any parameter values read from
the client configuration file. If both files are present on a host, it is safe to remove the
moab-client.cfg file after merging the client parameters into the moab.cfg file.

The Client interface is configured using the SCHEDCFG parameter. Most commonly, the
attributes SERVER and PORT must be set to point client commands to the appropriate
Moab server. Other parameters such as CLIENTTIMEOUT can also be set.

By default, Moab listens on all the interfaces of the machine on which it is installed. To bind
Moab to a specific address use 'SCHEDCFG[] BINDADDRESS=<IPV4>' and specify the
specific IPv4 address of the interface on which Moab should listen. By default, Moab also
verifies that the SERVER parameter matches the output of the 'gethostbyname' system
call. To configure Moab to use a different alias (on multi-homed hosts for example) you can
specify the valid server aliases using 'SCHEDCFG[]
SERVERALIAS=<alias1>,<alias2>...'

3.6.1.D Scheduler Mode
The scheduler mode of operation is controlled by setting the MODE attribute of the
SCHEDCFG parameter. The following modes are allowed:

Chapter 3: Scheduler Basics

Mode Description

INTERACTIVE Moab interactively confirms each scheduling action before taking any steps.
See interactive mode overview for more information.

MONITOR Moab observes cluster and workload performance, collects statistics,
interacts with allocation management services, and evaluates failures, but it
does not actively alter the cluster, including workload scheduling, and
resource provisioning. See monitor mode overview for more information.

NORMAL Moab actively schedules workload according to mission objectives and
policies; it creates reservations; starts, cancels, preempts, and modifies jobs;
and takes other scheduling actions.

SINGLESTEP Moab behaves as in NORMAL mode but will only schedule a single iteration
and then exit.

SLAVE Moab behaves as in NORMAL mode but will only start a job when explicitly
requested by a trusted grid peer service or administrator.

TEST Moab behaves as in NORMAL mode, will make reservations, and scheduling
decisions, but will then only log scheduling actions it would have taken if
running in NORMAL mode. In most cases, 'TEST' mode is identical to
MONITOR mode. See test mode overview for more information.

3.6.1.E Configuring a Job ID Offset
Moab assigns job IDs as integers in numeric order as jobs are submitted, starting with 1. In
some situations, you might want to offset the integer at which Moab starts to assign job IDs
in your system.

This example describes how you would offset the job IDs in a compound system consisting
of Site A, Site B, and Site C, each of which runs its own instance of Moab. Users belonging to
any of the sites can submit jobs to their own site and to the other two. To simplify
aggregation of usage records from the three sites, offset the job IDs for Site B to a starting
value higher than the expected total lifetime value for the system; in this example, to
20000000. Likewise, set Site C to 20,000,000 more, or 40000000. To do so, set the
MINJOBID attribute of SCHEDCFG in each system's moab.cfg to the offset value. To
ensure that Moab will never use the same job ID for two different sites, also set
MAXJOBID. If the Moab job naming process ever reaches the MAXJOBID, it will start over
again with the MINJOBID.

SCHEDCFG[moab] SERVER=moab_siteA:4244 MAXJOBID=19999999

Chapter 3: Scheduler Basics

57 3.6 Configuring the Scheduler

3.7 Credential Overview 58

SCHEDCFG[moab] SERVER=moab_siteB:4344 MINJOBID=20000000 MAXJOBID=39999999

SCHEDCFG[moab] SERVER=moab_siteC:4444 MINJOBID=40000000 MAXJOBID=59999999

When users submit jobs to Moab using msub, Moab selects the job ID in numeric order,
starting with 1 in Site A, 20000000 in Site B, and 40000000 in Site C.

If the compound system in this example uses Torque as its resource manager and users
submit jobs directly to Torque using qsub, Torque assigns the job ID instead of Moab. In
this case, you should also offset the Torque job IDs by setting the next_job_number server
parameter of Site B and Site C to 20000000 and 40000000, respectively.

$user qmgr "set server next_job_number=20000000"

$user qmgr "set server next_job_number=40000000"

Torque job ID limits will allow you to use the 20,000,000 offset scheme for up to 4
sites.

Related Topics

l Initial Configuration

l Adding #INCLUDE files to moab.cfg

3.7 Credential Overview

Moab supports the concept of credentials, which provide a means of attributing policy and
resource access to entities such as users and groups. These credentials allow specification
of job ownership, tracking of resource usage, enforcement of policies, and many other
features. There are five types of credentials: user, group, account, class, and QoS. While the
credentials have many similarities, each plays a slightly different role.

In this topic:

3.7.1 General Credential Attributes - page 59
3.7.1.A Credential Priority Settings - page 60
3.7.1.B Credential Usage Limits - page 60
3.7.1.C Service Targets - page 61
3.7.1.D Credential and Partition Access - page 61

Chapter 3: Scheduler Basics

3.7.1.E Credential Statistics - page 63
3.7.1.F Job Defaults, Credential State, and General Configuration - page 63

3.7.2 User Credential - page 65
3.7.2.A Role - page 65
3.7.2.B Privileges - page 65
3.7.2.C Email Address - page 66
3.7.2.D Disable Moab User Email - page 66
3.7.2.E Disable Memory Enforcement in RESOURCELIMITPOLICY - page

66
3.7.3 Group Credential - page 66
3.7.4 Account (or Project) Credential - page 67
3.7.5 Class (or Queue) Credential - page 67

3.7.5.A Class Job Defaults - page 68
3.7.5.B Per Job Min/Max Limits - page 69
3.7.5.C Resource Access - page 70
3.7.5.D Class Membership Constraints - page 70
3.7.5.E Attributes Enabling Class Access to Other Credentials - page 71
3.7.5.F Special Class Attributes - page 71
3.7.5.G Setting Default Classes - page 73
3.7.5.H Creating a Remap Class - page 74
3.7.5.I Class Attribute Overview - page 75
3.7.5.J Enabling Queue Complex Functionality - page 88

3.7.6 QoS Credential - page 89
3.7.6.A QoS Usage Limit Overrides - page 89
3.7.6.B QoS Service Targets - page 89
3.7.6.C QoS Privilege Flags - page 90
3.7.6.D QoS Charge Rate - page 90
3.7.6.E QoS Access Controls - page 90

3.7.1 General Credential Attributes
Internally, credentials are maintained as objects. Credentials can be created, destroyed,
queried, and modified. They are associated with jobs and requests providing access and
privileges. Each credential type has the following attributes:

l Priority Settings

l Usage Limits

l Service Targets

Chapter 3: Scheduler Basics

59 3.7 Credential Overview

3.7 Credential Overview 60

l Credential and Partition Access

l Statistics

l Credential Defaults, State and Configuration Information

All credentials represent a form of identity, and when applied to a job, express ownership.
Consequently, jobs are subject to policies and limits associated with their owners.

3.7.1.A Credential Priority Settings
Each credential can be assigned a priority using the PRIORITY attribute. This priority
affects a job's total credential priority factor as described in the Priority Factors section. In
addition, each credential can also specify priority weight offsets, which adjust priority
weights that apply to associated jobs. These priority weight offsets include FSWEIGHT (see
Priority-Based Fairshare for more information), QTWEIGHT, and XFWEIGHT.

For example:

set priority weights
CREDWEIGHT 1
USERWEIGHT 1
CLASSWEIGHT 1
SERVICEWEIGHT 1
XFACTORWEIGHT 10
QUEUETIMEWEIGHT 1000
set credential priorities
USERCFG[john] PRIORITY=200
CLASSCFG[batch] PRIORITY=15
CLASSCFG[debug] PRIORITY=100
QOSCFG[bottomfeeder] QTWEIGHT=-50 XFWEIGHT=100
ACCOUNTCFG[topfeeder] PRIORITY=100

3.7.1.B Credential Usage Limits
Usage limits constrain which jobs can run, which jobs can be considered for scheduling,
and what quantity of resources each individual job can consume. With usage limits, policies
such as MAXJOB, MAXNODE, and MAXMEM can be enforced against both idle and active
jobs. Limits can be applied in any combination as shown in the example below where usage
limits include 32 active processors per group and 12 active jobs for user john. For a job to
run, it must satisfy the most limiting policies of all associated credentials. The Throttling
Policy section documents credential usage limits in detail.

GROUPCFG[DEFAULT] MAXPROC=32 MAXNODE=100
GROUPCFG[staff] MAXNODE=200
USERCFG[john] MAXJOB=12

Chapter 3: Scheduler Basics

3.7.1.C Service Targets
Credential service targets allow jobs to obtain special treatment to meet usage or response
time based metrics. Additional information about service targets can be found in the
Fairshare section.

3.7.1.D Credential and Partition Access
Access to partitions and to other credentials can be specified on a per credential basis with
credential access lists, default credentials, and credential membership lists.

Credential Access Lists
You can use the ALIST, PLIST, and QLIST attributes (shown in the following table) to
specify the list of credentials or partitions that a given credential can access.

Credential Attribute

Account ALIST (allows credential to access specified list of accounts

Partition PLIST (allows credential to access specified list of partitions)

QoS QLIST (allows credential to access specified list of QoSes)

Example 3-1:

USERCFG[bob] ALIST=jupiter,quantum
USERCFG[steve] ALIST=quantum

Account-based access lists are only enforced if using an accounting manager or if the
ENFORCEACCOUNTACCESS parameter is set to 'TRUE.'

Assigning Default Credentials
Use the *DEF attribute (shown in the following table) to specify the default credential or
partition for a particular credential.

Credential Attribute

Account ADEF (specifies default account)

Class CDEF (specifies default class)

Chapter 3: Scheduler Basics

61 3.7 Credential Overview

3.7 Credential Overview 62

Credential Attribute

QoS QDEF (specifies default QoS)

Example 3-2:

user bob can access accounts a2, a3, and a6. If no account is explicitly requested,
his job will be assigned to account a3
USERCFG[bob] ALIST=a2,a3,a6 ADEF=a3
user steve can access accounts a14, a7, a2, a6, and a1. If no account is explicitly
requested, his job will be assigned to account a2
USERCFG[steve] ALIST=a14,a7,a2,a6,a1 ADEF=a2

Specifying Credential Membership Lists
As an alternate to specifying access lists, administrators can also specify membership lists.
This allows a credential to specify who can access it rather than allowing each credential to
specify which credentials it can access. Membership lists are controlled using the
MEMBERULIST, EXCLUDEUSERLIST and REQUIREDUSERLIST attributes, shown in
the following table:

Credential Attribute

User ---

Account, Group, QoS MEMBERULIST

Class EXCLUDEUSERLIST and REQUIREDUSERLIST

Example 3-3:

account omega3 can only be accessed by users johnh, stevek, jenp
ACCOUNTCFG[omega3] MEMBERULIST=johnh,stevek,jenp

Example 3-4: Controlling Partition Access on a Per User Basis

A site may specify the user john can access partitions atlas, pluto, and zeus and will
default to partition pluto. To do this, include the following line in the configuration file:

USERCFG[john] PLIST=atlas,pluto,zeus

Example 3-5: Controlling QoS Access on a Per Group Basis

A site may also choose to allow everyone in the group staff to access QoS standard
and special with a default QoS of standard. To do this, include the following line in the
configuration file:

Chapter 3: Scheduler Basics

GROUPCFG[staff] QLIST=standard,special QDEF=standard

Example 3-6: Controlling Resource Access on a Per Account Basis

An organization wants to allow everyone in the account omega3 to access nodes 20
through 24. To do this, include the following in the configuration file:

ACCOUNTCFG[omega3] MEMBERULIST=johnh,stevek,jenp
SRCFG[omega3] HOSTLIST=r:20-24 ACCOUNTLIST=omega3

3.7.1.E Credential Statistics
Full statistics are maintained for each credential instance. These statistics record current
and historical resource usage, level of service delivered, accuracy of requests, and many
other aspects of workload. Note, though, that you must explicitly enable credential statistics
as they are not tracked by default. You can enable credential statistics by including the
following in the configuration file:

USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE

3.7.1.F Job Defaults, Credential State, and General Configuration
Credentials can apply defaults and force job configuration settings via the following
parameters:

COMMENT

Description Associates a comment string with the target credential.

Example USERCFG[steve] COMMENT='works for boss, provides good
service'
CLASSCFG[i3] COMMENT='queue for I/O intensive workload'

HOLD

Description Specifies a hold should be placed on all jobs associated with the target
credential. Any job associated with the target credential will remain in the hold
state (i.e., the only way to remove the hold is to remove or disassociate the
target credential from the job).

Chapter 3: Scheduler Basics

63 3.7 Credential Overview

3.7 Credential Overview 64

HOLD

The order in which this HOLD attribute is evaluated depends on the
following credential precedence: USERCFG, GROUPCFG, ACCOUNTCFG,
CLASSCFG, QOSCFG, USERCFG[DEFAULT], GROUPCFG[DEFAULT],
ACCOUNTCFG[DEFAULT], CLASSCFG[DEFAULT], QOSCFG
[DEFAULT].

Example USERCFG[user1] HOLD=false
GROUPCFG[user1] HOLD=true

Moab evaluates the user hold first, sees that it should not put a hold
on the job, and moves on with scheduling.

GROUPCFG[user1] HOLD=true
CLASSCFG[user1] HOLD=false

Moab evaluates the group first, puts a hold on the job, and moves
on.

JOBFLAGS

Description Assigns the specified job flag to all jobs with the associated credential.

Example CLASSCFG[batch] JOBFLAGS=suspendable
QOSCFG[special] JOBFLAGS=restartable

NOSUBMIT

Description Specifies whether jobs belonging to this credential can submit jobs using msub.

Example ACCOUNTCFG[general] NOSUBMIT=TRUE
CLASSCFG[special] NOSUBMIT=TRUE

OVERRUN

Description The amount of time a job can exceed its wallclock limit before being
terminated. (Only applies to user and class credentials.)

Example CLASSCFG[bigmem] OVERRUN=00:15:00

Chapter 3: Scheduler Basics

VARIABLE

Description Specifies attribute-value pairs associated with the specified credential. These
variables can be used in triggers and other interfaces to modify system
behavior.

Example GROUPCFG[staff] VARIABLE='nocharge=true'

Credentials can carry additional configuration information. They can specify that detailed
statistical profiling should occur, that submitted jobs should be held, or that corresponding
jobs should be marked as preemptible.

3.7.2 User Credential
The user credential is the fundamental credential within a workload manager; each job
requires an association with exactly one user. In fact, the user credential is the only
required credential in Moab; all others are optional. In most cases, the job's user credential
is configured within or managed by the operating system itself, although Moab can be
configured to obtain this information from an independent security and identity
management service.

As the fundamental credential, the user credential has a number of unique attributes:

l Role

l Privileges

l Email Address

l Disable Moab User Email

l Disable Memory Enforcement in RESOURCELIMITPOLICY

3.7.2.A Role
Moab supports role-based authorization, mapping particular roles to collections of specific
users. See the Security section for more information.

3.7.2.B Privileges
Moab supports the ability to configure which 'mdiag' commands a user can run.

Give all users as default:

USERCFG[DEFAULT] PRIVILEGES=RM:diagnose;NODE:diagnose

Chapter 3: Scheduler Basics

65 3.7 Credential Overview

3.7 Credential Overview 66

Users without any specific PRIVILEGES can run 'mdiag -R' and 'mdiag -n'.

Give specific PRIVILEGES:

USERCFG[carol] PRIVILEGES=SCHED:diagnose;NODE:diagnose

User 'carol' can run 'mdiag -S' and 'mdiag -n' but NOT 'mdiag -R'.

3.7.2.C Email Address
Facilities exist to allow user notification in the event of job or system failures or under
other general conditions. This attribute allows these notifications to be mailed directly to
the target user.

USERCFG[sally] EMAILADDRESS=sally@acme.com

3.7.2.D Disable Moab User Email
You can disable Moab email notifications for a specific user.

USERCFG[john] NOEMAIL=TRUE

3.7.2.E Disable Memory Enforcement in RESOURCELIMITPOLICY
You can disable memory enforcement for a specific user.

USERCFG[doug] FLAGS=DisableMemEnforcement

3.7.3 Group Credential
The group credential represents an aggregation of users. User-to-group mappings are
often specified by the operating system or resource manager and typically map to a user's
UNIX group ID. However, user-to-group mappings can also be provided by a security and
identity management service, or you can specify such directly within Moab.

With many resource managers such as Torque and PBSPro, the group associated with a job
is either the user's active primary group as specified within the operating system or a
group that is explicitly requested at job submission time. When a secondary group is
requested, the user's default group and associated policies are not taken into account. Also
note that a job can only run under one group. If more constraining policies are required for
these systems, an alternate aggregation scheme such as the use of Account or QOS
credentials is recommended.

To enable support for secondary groups, add a SCHEDCFG line to moab.cfg with
FLAGS=EXTENDEDGROUPSUPPORT.

Chapter 3: Scheduler Basics

To submit a job as a secondary group, refer to your local resource manager's job
submission options. For Torque users, see the group_list=g_list option of the qsub -
W command.

3.7.4 Account (or Project) Credential
The account credential is also referred to as the project. This credential is generally
associated with a group of users along the lines of a particular project for accounting and
billing purposes. User-to-accounting mapping can be obtained from a resource manager or
accounting manager, or you can configure it directly within Moab. Access to an account can
be controlled via the ALIST and ADEF credential attributes specified via the Identity
Manager or the moab.cfg file.

The MANAGERS attribute (applicable only to the account and class credentials) allows an
administrator to assign a user the ability to manage jobs inside the credential, as if the user
is the job owner.

Example 3-7: MANAGERS Attribute

ACCOUNTCFG[general] MANAGERS=ops
ACCOUNTCFG[special] MANAGERS=stevep

If a user is able to access more than one account, the desired account can be specified at
job submission time using the resource-manager specific attribute. For example, with
Torque this is accomplished using the -A argument to the qsub command.

Example 3-8: Enforcing Account Usage

Job-to-account mapping can be enforced using the ALIST attribute and the
ENFORCEACCOUNTACCESS parameter.

USERCFG[john] ALIST=proj1,proj3
USERCFG[steve] ALIST=proj2,proj3,proj4
USERCFG[brad] ALIST=proj1
USERCFG[DEFAULT] ALIST=proj2
ENFORCEACCOUNTACCESS TRUE
...

3.7.5 Class (or Queue) Credential
l Class Job Defaults

l Per Job Min/Max Limits

l Resource Access

l Class Membership Constraints

l Attributes Enabling Class Access to Other Credentials

Chapter 3: Scheduler Basics

67 3.7 Credential Overview

3.7 Credential Overview 68

l Special Class Attributes (such as Managers and Job Prologs)

l Setting Default Classes

l Creating a Remap Class

l Class Attribute Overview

l Enabling Queue Complex Functionality

The concept of the class credential is derived from the resource manager class or queue
object. Classes differ from other credentials in that they more directly impact job attributes.
In standard HPC usage, a user submits a job to a class and this class imposes a number of
factors on the job. The attributes of a class can be specified within the resource manager or
directly within Moab. Class attributes include the following:

l Job Defaults

l Per Job Min/Max Limits

l Resource Access Constraints

l Class Membership Constraints

l Attributes Enabling Class Access to Other Credentials

l Special Class Attributes

For all classes configured in Moab, a resource manager queue with the same name
should be created.

When Torque reports a new queue to Moab, a class of the same name is automatically
applied to all nodes (the same goes for existing queues when adding nodes). To
associate nodes to only specific classes, add CLASSCFG entries for every Torque
queue, and define the nodes linked to each queue/class via HOSTLIST expressions
and/or REMAPCLASS. (This augments the optional resources_
default.neednodes queue setting in qmgr.)

3.7.5.A Class Job Defaults
Classes can be assigned to a default job template that can apply values to job attributes not
explicitly specified by the submitter. Additionally, you can specify shortcut attributes from
the table that follows:

Chapter 3: Scheduler Basics

Attribute Description

DEFAULT.ATTR Job Attribute

DEFAULT.DISK Required Disk (in MB)

DEFAULT.EXT Job RM Extension

DEFAULT.FEATURES Required Node Features/Properties

DEFAULT.GRES Required Consumable Generic Resources

DEFAULT.MEM Required Memory/RAM (in MB)

DEFAULT.NODESET Node Set Specification

DEFAULT.PROC Required Processor Count

DEFAULT.TPN Tasks Per Node

DEFAULT.WCLIMIT Wallclock Limit

Defaults set in a class/queue of the resource manager will override the default values
of the corresponding class/queue specified in Moab.

RESOURCELIMITPOLICY must be configured in order for the CLASSCFG limits to
take effect.

Example 3-9:

CLASSCFG[batch] DEFAULT.DISK=200MB DEFAULT.FEATURES=prod DEFAULT.WCLIMIT=1:00:00
CLASSCFG[debug] DEFAULT.FEATURES=debug DEFAULT.WCLIMIT=00:05:00

3.7.5.B Per Job Min/Max Limits
Classes can be assigned a minimum and a maximum job template that constrains resource
requests. Jobs submitted to a particular queue must meet the resource request constraints
of these templates. If a job submission exceeds these limits, the entire job submission fails.

Chapter 3: Scheduler Basics

69 3.7 Credential Overview

3.7 Credential Overview 70

Limit Description

MAX.ARRAYSUBJOBS Max Allowed Jobs in an Array

MAX.CPUTIME Max Allowed Utilized CPU Time

MAX.NODE Max Allowed Node Count

MAX.PROC Max Allowed Processor Count

MAX.PS Max Requested Processor-Seconds

MIN.NODE Min Allowed Node Count

MIN.PROC Min Allowed Processor Count

MIN.PS Min Requested Processor-Seconds

MIN.TPN Min Tasks Per Node

MIN.WCLIMIT Min Requested Wallclock Limit

MAX.WCLIMIT Max Requested Wallclock Limit

The parameters listed in the preceding table are for classes and PARCFG only, not
users, accounts, groups or QoSes, and they function on a per-job basis. The MAX.*
and MIN.* parameters are different from the MAXJOB, MAXNODE, and MAXMEM
parameters described earlier in Credential Usage Limits.

3.7.5.C Resource Access
Classes can be associated with a particular set of compute resources. Consequently, jobs
submitted to a given class can only use listed resources. This can be handled at the
resource manager level or via the CLASSCFG HOSTLIST attribute.

3.7.5.D Class Membership Constraints
Classes can be configured at either the resource manager or scheduler level to only allow
select users and groups to access them. Jobs that do not meet these criteria are rejected. If
specifying class membership/access at the resource manager level, see the respective

Chapter 3: Scheduler Basics

resource manager documentation. Moab automatically detects and enforces these
constraints. If specifying class membership/access at the scheduler level, use the
REQUIREDUSERLIST or EXCLUDEUSERLIST attributes of the CLASSCFG parameter.

Under most resource managers, jobs must always be a member of one and only one
class.

3.7.5.E Attributes Enabling Class Access to Other Credentials
Classes can be configured to allow jobs to access other credentials such as QoSs and
Accounts. This is accomplished using the QDEF, QLIST, ADEF, and ALIST attributes.

3.7.5.F Special Class Attributes
The class object also possesses a few unique attributes including JOBPROLOG,
JOBEPILOG, RESFAILPOLICY, and DISABLEAM attributes described in what follows.

MANAGERS
Users listed via the MANAGERS parameter are granted full control over all jobs submitted
to or running within the specified class.

allow john and steve to cancel and modify all jobs submitted to the class/queue
special
CLASSCFG[special] MANAGERS=john,steve

In particular, a class manager can perform the following actions on jobs within a
class/queue:

l view/diagnose job (checkjob)

l cancel, requeue, suspend, resume, and checkpoint job (mjobctl)

l modify job (mjobctl)

JOBPROLOG
The JOBPROLOG class performs a function similar to the resource manager level job
prolog feature; however, there are some key differences:

l Moab prologs execute on the head node; resource manager prologs execute on the
nodes allocated to the job.

l Moab prologs execute as the primary Moab administrator, resource manager prologs
execute as root.

Chapter 3: Scheduler Basics

71 3.7 Credential Overview

3.7 Credential Overview 72

l Moab prologs can incorporate cluster environment information into their decisions
and actions. See Valid Variables.

l Unique Moab prologs can be specified on a per class basis.

l Job start requests are not sent to the resource manager until the Moab job prolog is
successfully completed.

l Error messages generated by a Moab prolog are attached to jobs and associated
objects; stderr from prolog script is attached to job.

l Moab prologs have access to Moab internal and peer services.

Valid epilog and prolog variables are:

Variable Description

$TIME Time that the trigger launches

$HOME Moab home directory

$USER User name the job is running under

$JOBID Unique job identifier

$HOSTLIST Entire host list for job

$MASTERHOST Master host for job

The JOBPROLOG class attribute allows a site to specify a unique per-class action to take
before a job is allowed to start. This can be used for environmental provisioning, pre-
execution resource checking, security management, and other functions. Sample uses may
include enabling a VLAN, mounting a global file system, installing a new application or
virtual node image, creating dynamic storage partitions, or activating job specific software
services.

A prolog is considered to have failed if it returns a negative number. If a prolog fails,
the associated job will not start.

If a prolog executes successfully, the associated epilog is guaranteed to start, even if
the job fails for any reason. This allows the epilog to undo any changes made to the
system by the prolog.

Chapter 3: Scheduler Basics

Job Prolog Examples
explicitly specify prolog arguments for special epilog
CLASSCFG[special] JOBPROLOG='$TOOLSDIR/specialprolog.pl $JOBID $HOSTLIST'
use default prolog arguments for batch prolog
CLASSCFG[batch] JOBPROLOG=$TOOLSDIR/batchprolog.pl

JOBEPILOG
The Moab epilog is nearly identical to the prolog in functionality except that it runs after
the job completes within the resource manager but before the scheduler releases the
allocated resources for use by subsequent jobs. It is commonly used for job clean-up, file
transfers, signaling peer services, and undoing other forms of resource customization.

An epilog is considered to have failed if it returns a negative number. If an epilog fails,
the associated job will be annotated and a message will be sent to administrators.

RESFAILPOLICY
This policy allows specification of the action to take on a per-class basis when a failure
occurs on a node allocated to an actively running job. See the Node Availability Overview
for more information.

DISABLEAM
You can disable allocation management for jobs in specific classes by setting the
DISABLEAM class attribute to TRUE. For all jobs outside of the specified classes, allocation
enforcement will continue to be enforced.

do not enforce allocations on low priority and debug jobs
CLASSCFG[lowprio] DISABLEAM=TRUE
CLASSCFG[debug] DISABLEAM=TRUE

3.7.5.G Setting Default Classes
In many cases, end-users do not want to be concerned with specifying a job class/queue.
This is often handled by defining a default class. Whenever a user does not explicitly
submit a job to a particular class, a default class, if specified, is used. In resource managers
such as Torque, this can be done at the resource manager level and its impact is
transparent to the scheduler. The default class can also be enabled within the scheduler on
a per resource manager or per user basis. To set a resource manager default class within
Moab, use the DEFAULTCLASS attribute of the RMCFG parameter. For per user defaults,
use the CDEF attribute of the USERCFG parameter.

Chapter 3: Scheduler Basics

73 3.7 Credential Overview

3.7 Credential Overview 74

3.7.5.H Creating a Remap Class
If a single default class is not adequate, Moab provides more flexible options with the
REMAPCLASS parameter. If this parameter is set and a job is submitted to the remap class,
Moab attempts to determine the final class to which a job belongs based on the resources
requested. If a remap class is specified, Moab compares the job's requested nodes,
processors, memory, and node features with the class's corresponding minimum and
maximum resource limits. Classes are searched in the order in which they are defined;
when the first match is found, Moab assigns the job to that class.

You should not use remap classes to route jobs to queues/nodes in conjunction with
a Torque routing queue. You should select only one of the two methods.

Because Moab remaps at job submission, updates you make to job requirements after
submission will not cause any class changes. Moab does not restart the process.

In order to use REMAPCLASS, you must specify a DEFAULTCLASS. For example:

RMCFG[internal] DEFAULTCLASS=batch

In the example that follows, a job requesting 4 processors and the node feature fast are
assigned to the class quick:

You must specify a default class in order to use remap classes
RMCFG[internal] DEFAULTCLASS=batch

Jobs submitted to "batch" should be remapped
REMAPCLASS batch

stevens only queue
CLASSCFG[stevens] REQ.FEATURES=stevens REQUIREDUSERLIST=stevens,stevens2

Special queue for I/O nodes
CLASSCFG[io] MAX.PROC=8 REQ.FEATURES=io

General access queues
CLASSCFG[quick] MIN.PROC=2 MAX.PROC=8 REQ.FEATURES=fast|short
CLASSCFG[medium] MIN.PROC=2 MAX.PROC=8
CLASSCFG[DEFAULT] MAX.PROC=64
...

The following parameters can be used to remap jobs to different classes:

l MIN.PROC

l MAX.PROC

l MIN.TPN

l MAX.TPN

l MIN.WCLIMIT

Chapter 3: Scheduler Basics

l MAX.WCLIMIT

l REQ.FEATURES

l REQ.FLAGS=INTERACTIVE

l REQUIREDUSERLIST

If the parameter REMAPCLASSLIST is set, then only the listed classes are searched and
they are searched in the order specified by this parameter. If none of the listed classes are
valid for a particular job, that job retains its original class.

The remap class only works with resource managers that allow dynamic modification
of a job's assigned class/queue.

If default credentials are specified on a remap class, a job submitted to that class will
inherit those credentials. If the destination class has different default credentials, the
new defaults override the original settings. If the destination class does not have
default credentials, the job maintains the defaults inherited from the remap class.

3.7.5.I Class Attribute Overview
The following table enumerates the different attributes for CLASSCFG.

Setting DEFAULT.* on a class does not assign resources or features to that class.
Rather, it specifies resources that jobs will inherit when they are submitted to the
class without their own resource requests. To configure features, use NODECFG.

Chapter 3: Scheduler Basics

75 3.7 Credential Overview

3.7 Credential Overview 76

CLASSCFG Parameters

DEFAULT.ATTR

Format <ATTRIBUTE>[,<ATTRIBUTE>]...

Description One or more comma-delimited generic job attributes.

Example ---

DEFAULT.DISK

Format <INTEGER>

Description Default amount of requested disk space.

Example ---

DEFAULT.EXT

Format <STRING>

Description Default job RM extension.

Example ---

DEFAULT.FEATURESDEFAULT.EXT

Format Comma-delimited list of features.

Description Default list of requested node features (a.k.a. node properties).
This only applies to compute resource reqs.

Example ---

DEFAULT.GRES

Format <STRING>[<COUNT>][,<STRING>[<COUNT>]]...

Chapter 3: Scheduler Basics

DEFAULT.GRES

Description Default list of per task required consumable generic resources.

Example CLASSCFG[viz] DEFAULT.GRES=viz:2

DEFAULT.MEM

Format <INTEGER> (in MB)

Description Default amount of requested memory.

Example ---

DEFAULT.NODE

Format <INTEGER>

Description Default required node count.

Example CLASSCFG[viz] DEFAULT.NODE=5

When a user submits a job to the viz class without a specified node count,
the job is assigned 5 nodes.

DEFAULT.NODESET

Format <SETTYPE>:<SETATTR>[:<SETLIST>[,<SETLIST>]...]

Description Default node set.

Example CLASSCFG[amd]
DEFAULT.NODESET=ONEOF:FEATURE:ATHLON,OPTERON

DEFAULT.PROC

Format <INTEGER>

Chapter 3: Scheduler Basics

77 3.7 Credential Overview

3.7 Credential Overview 78

DEFAULT.PROC

Description Default number of requested processors.

Example ---

DEFAULT.TPN

Format <INTEGER>

Description Default number of tasks per node.

Example ---

DEFAULT.WCLIMIT

Format <INTEGER>

Description Default wallclock limit.

Example ---

EXCL.FEATURES

Format Comma- or pipe-delimited list of node features.

Description Set of excluded (disallowed) features. If delimited by commas, reject job if
all features are requested; if delimited by the pipe symbol (|), reject job if
at least one feature is requested.

Example CLASSCFG[intel] EXCL.FEATURES=ATHLON,AMD

EXCL.FLAGS

Format Comma-delimited list of job flags.

Description Set of excluded (disallowed) job flags. Reject job if any listed flags are set.

Chapter 3: Scheduler Basics

EXCL.FLAGS

Example CLASSCFG[batch] EXCL.FLAGS=INTERACTIVE

EXCLUDEUSERLIST

Format Comma-delimited list of users.

Description List of users not permitted access to class.

Example ---

FLAGS

Format NoBackfill

Description Disable jobs from this class from backfilling.

Example CLASSCFG[batch] FLAGS=NoBackfill

FORCENODEACCESSPOLICY

Format One of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Description Node access policy associated with queue. If set, this value overrides
any per job settings specified by the user at the job level. See Node
Access Policy overview for more information.

Example CLASSCFG[batch] FORCENODEACCESSPOLICY=SINGLEJOB

FSCAP

Format <DOUBLE>[%]

Description See fairshare policies specification.

Example ---

Chapter 3: Scheduler Basics

79 3.7 Credential Overview

3.7 Credential Overview 80

FSTARGET

Format <DOUBLE>[%]

Description See fairshare policies specification.

Example ---

HOSTLIST

Format Host expression, or comma-delimited list of hosts or host ranges.

Description List of hosts associated with a class. If specified, Moab constrains the
availability of a class to only nodes listed in the class host list.

Example CLASSCFG[batch] HOSTLIST=r:abs[45-113]

IGNHOSTLIST

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, any job submitted to the class will have its requested
hostlist ignored by the scheduler.

Example CLASSCFG[batch] IGNHOSTLIST=TRUE

JOBEPILOG

Format <STRING>

Description Scheduler level job epilog to be run after job is completed by resource
manager. See special class attributes.

Example ---

Chapter 3: Scheduler Basics

JOBFLAGS

Format Comma-delimited list of job flags.

Description See the flag overview for a description of legal flag values.

Example CLASSCFG[batch] JOBFLAGS=restartable

JOBPROLOG

Format <STRING>

Description Scheduler level job prolog to be run before job is started by resource
manager. See special class attributes.

Example ---

JOBTRIGGER

Format <STRING>

Description Job trigger associated with the class. See Job Triggers.

Example CLASSCFG[batch] JOBTRIGGER=atype=exec,etype=create,action="/opt/moab/tools
/job_trigger.pl"

Execute /opt/moab/tools/job_trigger.pl when a job
of class batch is created.

MANAGERS

Format <USER>[,<USER>]...

Description Users allowed to control, cancel, preempt, and modify jobs within
class/queue. See special class attributes.

Example CLASSCFG[fast] MANAGERS=root,kerry,e43

Chapter 3: Scheduler Basics

81 3.7 Credential Overview

3.7 Credential Overview 82

MAXJOB

Format <INTEGER>

Description Maximum number of active (starting or running) jobs allowed in the class.

Example ---

MAXPROCPERNODE

Format <INTEGER>

Description Maximum number of processors requested per node. May optionally
include node names to articulate which nodes have a specific limit.

Example CLASSCFG[cpu] MAXPROCPERNODE=20 # When using this class, limit 20 for
all nodes

CLASSCFG[cpu] MAXPROCPERNODE[n1,n2]=20 MAXPROCPERNODE[n3]=10 # When
using this class, limit 20 for n1 & n2 and limit 10 for n3

CLASSCFG[cpu] MAXPROCPERNODE[n1,n2]=20 MAXPROCPERNODE=10 # When using
this class, limit 20 for n1 & n2 and limit 10 for all other nodes

MAX.CPUTIME

Format <INTEGER>

Description Maximum allowed utilized CPU time.

Example ---

MAX.NODE

Format <INTEGER>

Description Maximum number of requested nodes per job. Also used when
REMAPCLASS is set to correctly route the job.

Chapter 3: Scheduler Basics

MAX.NODE

Example CLASSCFG[batch] MAX.NODE=64

Deny jobs requesting over 64 nodes access to the class batch.

MAX.PROC

Format <INTEGER>

Description Maximum number of requested processors per job. Also used when
REMAPCLASS is set to correctly route the job.

This enforces the requested processors, not the actual processors
dedicated to a job. When enforcing limits for NODEACCESSPOLICY
SINGLEJOB, use MAX.NODE instead.

Example CLASSCFG[small] MAX.PROC[USER]=3,6

MAX.PS

Format <INTEGER>

Description Maximum requested processor-seconds.

Example ---

MAX.TPN

Format <INTEGER>

Description Maximum required tasks per node per job. Also used when REMAPCLASS
is set to correctly route the job.

Example ---

Chapter 3: Scheduler Basics

83 3.7 Credential Overview

3.7 Credential Overview 84

MAX.WCLIMIT

Format [[[DD:]HH:]MM:]SS

Description Maximum allowed wallclock limit per job. Also used when REMAPCLASS is
set to correctly route the job.

Example CLASSCFG[long] MAX.WCLIMIT=96:00:00

MIN.NODE

Format <INTEGER>

Description Minimum number of requested nodes per job. Also used when
REMAPCLASS is set to correctly route the job.

Example CLASSCFG[dev] MIN.NODE=16

Jobs must request at least 16 nodes to be allowed to access the class.

MIN.PROC

Format <INTEGER>

Description Minimum number of requested processors per job. Also used when
REMAPCLASS is set to correctly route the job.

Example CLASSCFG[dev] MIN.PROC=32

Jobs must request at least 32 processors to be allowed to access the class.

MIN.PS

Format <INTEGER>

Description Minimum requested processor-seconds.

Example ---

Chapter 3: Scheduler Basics

MIN.TPN

Format <INTEGER>

Description Minimum required tasks per node per job. Also used when REMAPCLASS is
set to correctly route the job.

Example ---

MIN.WCLIMIT

Format [[[DD:]HH:]MM:]SS

Description Minimum required wallclock limit per job. Also used when REMAPCLASS is
set to correctly route the job.

Example ---

NODEACCESSPOLICY

Format One of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Description Default node access policy associated with queue. This value will be
overridden by any per job settings specified by the user at the job level. See
Node Access Policy overview.

Example CLASSCFG[batch] NODEACCESSPOLICY=SINGLEJOB

PARTITION

Format <STRING>

Description Partition name where jobs associated with this class must run.

Example CLASSCFG[batch] PARTITION=p12

Chapter 3: Scheduler Basics

85 3.7 Credential Overview

3.7 Credential Overview 86

PRIORITY

Format <INTEGER>

Description Priority associated with the class. See Priority overview.

Example CLASSCFG[batch] PRIORITY=1000

QDEF

Format <QOSID>

Description Default QoS for jobs submitted to this class. You can specify a maximum of
four QDEF entries per credential. Any QoSes specified after the fourth will
not be accepted.

In addition to classes, you can also specify QDEF for accounts,
groups, and users.

Example CLASSCFG[batch] QDEF=base

Jobs submitted to class batch that do not explicitly request a QoS will
have the QoS base assigned.

QLIST

Format <QOSID>[,<QOSID>]...

Description List of accessible QoSs for jobs submitted to this class.

Example CLASSCFG[batch] QDEF=base
QLIST=base,fast,special,bigio

REQ.FEATURES

Format Comma- or pipe-delimited list of node features.

Description Set of required features. If delimited by commas, all features are required;
if delimited by the pipe symbol (|), at least one feature is required.

Chapter 3: Scheduler Basics

REQ.FEATURES

Example CLASSCFG[amd] REQ.FEATURES=ATHLON,AMD

REQ.FLAGS

Format REQ.FLAGS can be used with only the INTERACTIVE flag.

Description Sets the INTERACTIVE flag on jobs in this class.

Example CLASSCFG[orion] REQ.FLAGS=INTERACTIVE

REQUIREDACCOUNTLIST

Format Comma-delimited list of accounts.

Description List of accounts allowed to access and use a class (analogous to *LIST
for other credentials).

Example CLASSCFG[jasper] REQUIREDACCOUNTLIST=testers,development

REQUIREDUSERLIST

Format Comma-delimited list of users.

Description List of users allowed to access and use a class (analogous to *LIST for
other credentials).

Example CLASSCFG[jasper] REQUIREDUSERLIST=john,u13,steve,guest

REQUIREDQOSLIST

Format Comma-delimited list of QoSs

Description List of QoSs allowed to access and use a class (analogous to *LIST for
other credentials).

Chapter 3: Scheduler Basics

87 3.7 Credential Overview

3.7 Credential Overview 88

REQUIREDQOSLIST

The number of unique QoSs is limited by the Moab Maximum ACL
limit, which defaults to 32.

Example CLASSCFG[jasper] REQUIREDQOSLIST=hi,lo

SYSPRIO

Format <INTEGER>

Description Value of system priority applied to every job submitted to this class.

Once a system priority has been added to a job, either manually or
through configuration, it can only be removed manually.

Example CLASSCFG[special] SYSPRIO=100

WCOVERRUN

Format [[[DD:]HH:]MM:]SS

Description Tolerated amount of time beyond the specified wallclock limit.

Example ---

3.7.5.J Enabling Queue Complex Functionality
Queue complexes allow an organization to build a hierarchy of queues and apply certain
limits and rules to collections of these queues. Moab supports this functionality in two ways.
The first way, queue mapping, is very simple but limited in functionality. The second
method provides very rich functionality but requires more extensive configuration using
the Moab hierarchical fairshare facility.

Queue Mapping
Queue mapping allows collections of queues to be mapped to a parent credential object
against which various limits and policies can be applied, as in the following example:

Chapter 3: Scheduler Basics

QOSCFG[general] MAXIJOB[USER]=14 PRIORITY=20
QOSCFG[prio] MAXIJOB[USER]=8 PRIORITY=2000
group short, med, and long jobs into 'general' QOS
CLASSCFG[short] QDEF=general FSTARGET=30
CLASSCFG[med] QDEF=general FSTARGET=40
CLASSCFG[long] QDEF=general FSTARGET=30 MAXPROC=200
group interactive and debug jobs into 'prio' QOS
CLASSCFG[inter] QDEF=prio
CLASSCFG[debug] QDEF=prio
CLASSCFG[premier] PRIORITY=10000

3.7.6 QoS Credential
The concept of a quality of service (QoS) credential is unique to Moab and is not derived
from any underlying concept or peer service. In most cases, the QoS credential is used to
allow a site to set up a selection of service levels for end-users to choose from on a long-
term or job-by-job basis. QoSs differ from other credentials in that they are centered
around special access where this access may allow use of additional services, additional
resources, or improved responsiveness. Unique to this credential, organizations can also
choose to apply different charge rates to the varying levels of service available within each
QoS. As QoS is an internal credential, all QoS configuration occurs within Moab.

QoS access and QoS defaults can be mapped to users, groups, accounts, and classes,
allowing limited service offering for key users. As mentioned, these services focus around
increasing access to special scheduling capabilities & additional resources and improving
job responsiveness. At a high level, unique QoS attributes can be broken down into the
following:

l Usage Limit Overrides

l Service Targets

l Privilege Flags

l Charge Rate

l Access Controls

3.7.6.A QoS Usage Limit Overrides
All credentials allow specification of job limits. In such cases, jobs are constrained by the
most limiting of all applicable policies. With QoS override limits, however, jobs are limited
by the override, regardless of other limits specified.

3.7.6.B QoS Service Targets
Service targets cause the scheduler to take certain job-related actions as various
responsiveness targets are met. Targets can be set for either job queue time or job

Chapter 3: Scheduler Basics

89 3.7 Credential Overview

3.8 Job Flags 90

expansion factor and cause priority adjustments, reservation enforcement, or preemption
activation. In strict service centric organizations, Moab can be configured to trigger various
events and notifications in the case of failure by the cluster to meet responsiveness targets.

3.7.6.C QoS Privilege Flags
QoSs can provide access to special capabilities. These capabilities include preemption, job
deadline support, backfill, next to run priority, guaranteed resource reservation, resource
provisioning, dedicated resource access, and many others. See the complete list in the QoS
Facility Overview section.

3.7.6.D QoS Charge Rate
Associated with the QoSs many privileges is the ability to assign end-users costs for the use
of these services. This charging can be done on a per-QoS basis and can be specified for
both dedicated and use-based resource consumption. The Quality of Service (QoS) Facilities
section covers more details on QoS level costing configuration while the Charging and
Allocation Management section provides more details regarding general single cluster and
multi-cluster charging capabilities.

3.7.6.E QoS Access Controls
QoS access control can be enabled on a per QoS basis using the MEMBERULIST attribute or
specified on a per-requestor basis using the QDEF and QLIST attributes of the USERCFG,
GROUPCFG, ACCOUNTCFG, and CLASSCFG parameters. See Managing QoS Access for more
detail.

Related Topics

l Identity Manager Interface

l Usage Limits

3.8 Job Flags

ADVRES

Format ADVRES[:<RESID>]

Chapter 3: Scheduler Basics

ADVRES

Default Use available resources where ever found, whether inside a reservation or not.

Description Specifies the job can only utilize accessible, reserved resources. If <RESID> is
specified, only resources in the specified reservation can be utilized.

Example FLAGS=ADVRES:META.1

The job can only utilize resources located in the META.1
reservation.

ALLPROCS

Format ---

Default ---

Description Each task should occupy all the processors on the node.

Incompatible with ppn and non-Torque systems.

ALLPROCS is scheduled to be deprecated in a future Moab version
where it will be replaced with the new NUMA job submission syntax
(place=node in this particular case).

Example msub -l nodes=6 -l flags=allprocs

Each of the 6 tasks will occupy all the processors on the node and
the job will launch enough processes to occupy each of those
processors.

ARRAYJOBPARLOCK

Format ---

Default ---

Description Specifies that the job array being submitted should not span across multiple
partitions. This locks all subjobs of the array to a single partition. If you want
to lock all job arrays to a single partition, specify the ARRAYJOBPARLOCK
parameter in moab.cfg to force this behavior on a global scale.

Chapter 3: Scheduler Basics

91 3.8 Job Flags

3.8 Job Flags 92

ARRAYJOBPARLOCK

Example > msub -t moab.[1-5]%3 -l walltime=30,flags=arrayjobparlock

ARRAYJOBPARSPAN

Format ---

Default ---

Description Specifies that the job array being submitted should span across multiple
partitions. This is the default behavior in Moab, unless the ARRAYJOBPARLOCK
parameter is specified in moab.cfg. This job flag overrides the
ARRAYJOBPARLOCK parameter so that job arrays can be allowed to span
multiple partitions at submit time.

Example > msub -t moab.[1-5]%3 -l walltime=30,flags=arrayjobparspan

FORCEPROVISION

Format FORCEPROVISION

Default ---

Description A job will provision nodes whether or not they already have the requested OS.
When provisioning is enabled (on KNL systems, for example) and this flag is
present, the default provisioning behavior (where Moab does not provision a
node if the current OS already matches the one being requested) is overridden.

Example msub -l os=RHEL,flags=forceprovision

GRESONLY

Format GRESONLY

Default False

Description Uses no compute resources such as processors, memory, and so forth; uses

Chapter 3: Scheduler Basics

GRESONLY

only generic resources.

Example > msub -l gres=matlab,walltime=300

IGNIDLEJOBRSV

Format IGNIDLEJOBRSV

Default N/A

Description Only applies to QOS. IGNIDLEJOBRSV allows jobs to start without a
guaranteed walltime. Instead, it overlaps the idle reservations of real jobs and
is preempted 2 minutes before the real job starts.

Example QOSCFG[standby] JOBFLAGS=IGNIDLEJOBRSV

NOQUEUE

Format NOQUEUE

Default Jobs remain queued until they are able to run.

Description Specifies that the job should be removed if it is unable to allocate resources
and start execution immediately.

Example FLAGS=NOQUEUE

The job should be removed unless it can start running at submit
time.

This functionality is identical to the resource manager extension
QUEUEJOB:FALSE.

NORMSTART

Format: NORMSTART

Chapter 3: Scheduler Basics

93 3.8 Job Flags

3.8 Job Flags 94

NORMSTART

Default: Moab passes jobs to a resource manager to schedule.

Description: Specifies that the job is an internal system job and will not be started via an
RM.

Example: FLAGS=NORMSTART

The job begins running in Moab without a corresponding RM job.

PREEMPTEE

Format: PREEMPTEE

Default: Jobs cannot be preempted by other jobs

Description: Specifies that the job can be preempted by other jobs that have the
PREEMPTOR flag set.

Example: FLAGS=PREEMPTEE

The job can be preempted by other jobs that have the PREEMPTOR
flag set.

PREEMPTOR

Format PREEMPTOR

Default Jobs cannot preempt other jobs.

Description Specifies that the job can preempt other jobs that have the PREEMPTEE flag
set.

Example FLAGS=PREEMPTOR

The job may preempt other jobs that have the PREEMPTEE flag set.

Chapter 3: Scheduler Basics

PURGEONSUCCESSONLY

Format PURGEONSUCCESSONLY

Default Completed jobs are sent to a queue for a short period of time before Moab
purges them from the system.

Description Specifies that Moab should only purge the job from the completed queue if it
completed successfully. If the job failed, Moab will keep it in the queue
indefinitely to allow you to restart it at any time. This flag is particularly
useful for setup and take down jobs in job workflows. See Creating
Workflows with Job Templates for more information.

Example FLAGS=PURGEONSUCCESSONLY

If the job fails, Moab will not purge it from the completed job
queue.

RESTARTABLE

Format RESTARTABLE

Default Jobs cannot be restarted if preempted.

Description Specifies jobs can be requeued and later restarted if preempted.

Example FLAGS=RESTARTABLE

The associated job can be preempted and restarted at a
later date.

SUSPENDABLE

Format SUSPENDABLE

Default Jobs cannot be suspended if preempted.

Description Specifies jobs can be suspended and later resumed if preempted.

Example FLAGS=SUSPENDABLE

Chapter 3: Scheduler Basics

95 3.8 Job Flags

3.8 Job Flags 96

SUSPENDABLE

The associated job can be suspended and resumed at a
later date.

SYSTEMJOB

Format SYSTEMJOB

Default N/A

Description Creates an internal system job that does not require resources.

Example FLAGS=SYSTEMJOB

USEMOABJOBID

Format <BOOLEAN>

Default FALSE

Description Specifies whether to return the Moab job ID when running 'msub', or the
resource manager's job ID if it is available.

Setting USEMOABJOBID here overrides the global setting for
USEMOABJOBID in moabcfg. See USEMOABJOBID for more information.

Example FLAGS=USEMOABJOBID SELECT=TRUE

WIDERSVSEARCHALGO

Format <BOOLEAN>

Default ---

Description When Moab is determining when and where a job can run, it either searches
for the most resources or the longest range of resources. In almost all cases
searching for the longest range is ideal and returns the soonest starttime. In
some rare cases, however, a particular job may need to search for the most

Chapter 3: Scheduler Basics

WIDERSVSEARCHALGO

resources. In those cases this flag can be used to have the job find the soonest
starttime. The flag can be specified at submit time, or you can use mjobctl -m
to modify the job after it has been submitted. See the RSVSEARCHALGO
parameter.

Example > msub -l flags=widersvsearchalgo

> mjobctl -m flags+=widersvsearchalgo job.1

Related Topics

l Setting Per-Credential Job Flags

Chapter 3: Scheduler Basics

97 3.8 Job Flags

98

Chapter 4: Scheduler Commands

In this chapter:

4.1 Moab Command Overview 99
4.1.1 Moab Commands 99
4.1.2 Moab Command Options 101
4.1.3 Commands Providing Maui Compatibility 102

4.2 Status Commands 102
4.3 Job Management Commands 103
4.4 Reservation Management Commands 104
4.5 Policy/Configuration Management Commands 105
4.6 End-User Commands 105
4.7 Moab Commands 106

4.7.1 checkjob 106
4.7.2 checknode 118
4.7.3 mcredctl 123
4.7.4 mdiag 127
4.7.5 mdiag -a 132
4.7.6 mdiag -b 133
4.7.7 mdiag -c 133
4.7.8 mdiag -f 137
4.7.9 mdiag -j 139
4.7.10 mdiag -n 141
4.7.11 mdiag -p 147
4.7.12 mdiag -q 150
4.7.13 mdiag -r 151
4.7.14 mdiag -R 155
4.7.15 mdiag -s 156
4.7.16 mdiag -S 157
4.7.17 mdiag -t 158
4.7.18 mdiag -T 159
4.7.19 mdiag -u 161
4.7.20 mjobctl 162
4.7.21 mnodectl 179

Chapter 4: Scheduler Commands

4.7.22 moab 185
4.7.23 mrmctl 186
4.7.24 mrsvctl 190
4.7.26 mschedctl 216
4.7.27 mshow 225
4.7.28 mshow -a 227
4.7.29 mshow -a (mshow in a Hosting Environment) 237
4.7.30 msub 239
4.7.31 mvcctl (Moab Virtual Container Control) 268
4.7.32 showbf 273
4.7.33 showq 277
4.7.34 showhist.moab.pl 287
4.7.35 showres 291
4.7.36 showstart 297
4.7.37 showstate 301
4.7.38 showstats 302
4.7.39 showstats -f 315
4.7.40 Deprecated Commands 318

4.1 Moab Command Overview

In this topic:

4.1.1 Moab Commands - page 99
4.1.2 Moab Command Options - page 101
4.1.3 Commands Providing Maui Compatibility - page 102

4.1.1 Moab Commands

Command Description

checkjob Provide detailed status report for specified job

Chapter 4: Scheduler Commands

99 4.1 Moab Command Overview

4.1 Moab Command Overview 100

Command Description

checknode Provide detailed status report for specified node

mcredctl Controls various aspects about the credential objects within Moab

mdiag Provide diagnostic reports for resources, workload, and scheduling

mjobctl Control and modify job

mnodectl Control and modify nodes

moab Control the Moab daemon

mrmctl Query and control resource managers

mrsvctl Create, control and modify reservations

mschedctl Modify scheduler state and behavior

mshow Displays various diagnostic messages about the system and job queues

mshow -a Query and show available system resources

msub Scheduler job submission

mvcctl Create, modify, and delete VCs

showbf Show current resource availability

showhist.moab.pl Show past job information

showq Show queued jobs

showres Show existing reservations

showstart Show estimates of when job can/will start

showstate Show current state of resources

Chapter 4: Scheduler Commands

Command Description

showstats Show usage statistics

showstats -f Show various tables of scheduling/system performance

4.1.2 Moab Command Options
For many Moab commands, you can use the following options to specify that Moab will run
the command in a different way or different location from the configured default. These
options do not change your settings in the configuration file; they override the settings for
this single instance of the command.

Option Description

--about Displays build and version information and the status of your Moab
license.

--help Displays usage information about the command.

--host=
<serverHostName>

Causes Moab to run the client command on the specified host.

--
loglevel=
<logLevel>

Causes Moab to write log information to STDERR as the client
command is running. For more information, see Logging Overview.

--msg=<message> Causes Moab to annotate the action in the event log.

--
port=
<serverPort>

Causes Moab to run the command using the port specified.

--
timeout=<seconds>

Sets the maximum time that the client command will wait for a
response from the Moab server.

--version Displays version information.

--xml Causes Moab to return the command output in XML format.

Chapter 4: Scheduler Commands

101 4.1 Moab Command Overview

4.2 Status Commands 102

4.1.3 Commands Providing Maui Compatibility

The following commands are deprecated. Click the link for respective deprecated
commands to see the updated replacement command for each.

Command Description

canceljob Cancel job

changeparam Change in memory parameter settings

diagnose Provide diagnostic report for various aspects of resources, workload, and
scheduling

releasehold Release job defers and holds

releaseres Release reservations

runjob Force a job to run immediately

sethold Set job holds

setqos Modify job QOS settings

setres Set an admin/user reservation

setspri Adjust job/system priority of job

showconfig Show current scheduler configuration

4.2 Status Commands

The status commands organize and present information about the current state and
historical statistics of the scheduler, jobs, resources, users, and accounts. The following
table presents the primary status commands and flags:

Chapter 4: Scheduler Commands

Command Description

checkjob Displays detailed job information such as job state, resource
requirements, environment, constraints, credentials, history, allocated
resources, and resource utilization.

checknode Displays detailed node information such as node state, resources,
attributes, reservations, history, and statistics.

mdiag -f Displays summarized fairshare information and any unexpected fairshare
configuration.

mdiag -j Displays summarized job information and any unexpected job state.

mdiag -n Displays summarized node information and any unexpected node state.

mdiag -p Displays summarized job priority information.

mschedctl -f Resets internal statistics.

showstats -f Displays various aspects of scheduling performance across a job
duration/job size matrix.

showq [-r|-i] Displays various views of currently queued active, idle, and non-eligible
jobs.

showstats -g Displays current and historical usage on a per group basis.

showstats -u Displays current and historical usage on a per user basis.

showstats -v Displays high level current and historical scheduling statistics.

4.3 Job Management Commands

Moab shares job management tasks with the resource manager. Typically, the scheduler
only modifies scheduling relevant aspects of the job such as partition access, job priority,
charge account, and hold state. The following table covers the available job management
commands. The Commands Overview lists all available commands.

Chapter 4: Scheduler Commands

103 4.3 Job Management Commands

4.4 Reservation Management Commands 104

Command Description

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints,
credentials, history, allocated resources, and resource utilization.

mdiag -j Displays summarized job information and any unexpected job state.

releasehold -a Removes job holds or deferrals.

runjob Starts job immediately, if possible.

sethold Sets hold on job.

setqos Sets/modifies QoS of existing job.

setspri Adjusts job/system priority of job.

Related Topics

l Job State Definitions

4.4 Reservation Management Commands

Moab exclusively controls and manages all advance reservation features including both
standing and administrative reservations. The following table covers the available
reservation management commands:

Command Description

mdiag -r Displays summarized reservation information and any unexpected state.

mrsvctl Reservation control.

mrsvctl -r Removes reservations.

mrsvctl -c Creates an administrative reservation.

Chapter 4: Scheduler Commands

Command Description

showres Displays information regarding location and state of reservations.

4.5 Policy/Configuration Management Commands

Moab allows dynamic modification of most scheduling parameters allowing new scheduling
policies, algorithms, constraints, and permissions to be set at any time. Changes made via
Moab client commands are temporary and are overridden by values specified in Moab
configuration files the next time Moab is shut down and restarted. The following table
covers the available configuration management commands:

Command Description

mschedctl -l Displays triggers, messages, and settings of all configuration parameters.

mschedctl Controls the scheduler (behavior, parameters, triggers, messages).

mschedctl -m Modifies system values.

4.6 End-User Commands

While the majority of Moab commands are tailored for use by system administrators, a
number of commands are designed to extend the knowledge and capabilities of end-users.
The following table covers the commands available to end-users.

When using Active Directory as a central authentication mechanism, all nodes must
be reported with a different name when booted in both Linux and Windows (for
instance, node01-l for Linux and node01 for Windows). If a machine account with
the same name is created for each OS, the most recent OS will remove the previously-
joined machine account. The nodes must report to Moab with the same hostname.
This can be done by using aliases (adding all node names to the /etc/hosts file on
the system where Moab is running) and ensuring that the Linux resource manager
reports the node with its global name rather than the Linux-specific one (node01
rather than node01-l).

Chapter 4: Scheduler Commands

105 4.5 Policy/Configuration Management Commands

4.7 Moab Commands 106

Command Description

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints, credentials,
history, allocated resources, and resource utilization.

msub Submit a new job.

releaseres Releases a user reservation.

setres Create a user reservation.

showbf Shows resource availability for jobs with specific resource requirements.

showq Displays detailed prioritized list of active and idle jobs.

showstart Shows estimated start time of idle jobs.

showstats Shows detailed usage statistics for users, groups, and accounts, to which the
end-user has access.

Related Topics

l Commands Overview

4.7 Moab Commands

See the Moab commands below.

4.7.1 checkjob

4.7.1.A Synopsis
checkjob [exact:jobid] [jobname:jobname] [-l policylevel] [-n nodeid] [-q qosid] [-r
reservationid] [-v] [--flags=future | complete] [--blocking] jobid [--about] [--help]

Chapter 4: Scheduler Commands

[--host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.1.B Overview
checkjob displays detailed job state information and diagnostic output for a specified job.
Detailed information is available for queued, blocked, active, and recently completed jobs.
The checkjob command shows the master job of an array, as well as a summary of array
subjobs but does not display all subjobs. Use checkjob -v to display all job-array subjobs.

4.7.1.C Access
This command can be run by level 1-3 Moab administrators for any job. Also, end users can
use checkjob to view the status of their own jobs.

4.7.1.D Options

--blocking

Format --blocking

Description Do not use cache information in the output. The --blocking flag retrieves
results exclusively from the scheduler.

Example > checkjob -v --blocking 1234

Display real time data about job 1234.

--flags

Format --flags=future | complete

Description l future – Evaluates future eligibility of job (ignore current resource state
and usage limitations).

l complete – Queries details for jobs that have already terminated.

Example > checkjob -v --flags=future 6235

Display reasons why idle job is blocked ignoring node state and
current node utilization constraints.

Chapter 4: Scheduler Commands

107 4.7 Moab Commands

4.7 Moab Commands 108

exact

Format exact:<JOBID>

Description Searches for and returns the exact job ID.

Example > checkjob exact:1.job_dependency1

jobname

Format jobname:<JOBNAME>

Description Searches for and returns the first job with the matching
<JOBNAME>.

Example > checkjob jobname:STEP4

-l (Policy level)

Format <POLICYLEVEL>

HARD, SOFT, or OFF

Description Reports job start eligibility subject to specified throttling policy level.

Example > checkjob -l SOFT 6235
> checkjob -l HARD 6235

-n (NodeID)

Format <NODEID>

Description Checks job access to specified node and preemption status with regards to jobs
located on that node.

Example > checkjob -n node113 6235

Chapter 4: Scheduler Commands

-q (QoS)

Format <QOSID>

Description Checks job access to specified QoS <QOSID>.

Example > checkjob -q special 6235

-r (Reservation)

Format <RSVID>

Description Checks job access to specified reservation <RSVID>.

Example > checkjob -r orion.1 6235

-v (Verbose)

Description Sets verbose mode. If the job is part of an array, the -v option shows pertinent
array information before the job-specific information (see Example 2 and
Example 3 for differences between standard output and -v output).

Specifying the double verbose (-v -v) displays additional information
about the job. See the Output table for details.

Example > checkjob -v 6235

4.7.1.E Details
This command allows any Moab administrator to check the detailed status and resource
requirements of an active, queued, or recently completed job. Additionally, this command
performs numerous diagnostic checks and determines if and where the job could
potentially run. Diagnostic checks include policy violations, reservation constraints,
preemption status, and job to resource mapping. If a job cannot run, a text reason is
provided along with a summary of how many nodes are and are not available. If the -v flag
is specified, a node by node summary of resource availability will be displayed for idle jobs.

Chapter 4: Scheduler Commands

109 4.7 Moab Commands

4.7 Moab Commands 110

Job Eligibility
If a job cannot run, a text reason is provided along with a summary of how many nodes are
and are not available. If the -v flag is specified, a node by node summary of resource
availability will be displayed for idle jobs. For job level eligibility issues, one of the following
reasons will be given:

Reason Description

Job has hold in place One or more job holds are currently in place

Insufficient idle procs There are currently not adequate processor resources
available to start the job

Idle procs do not meet
requirements

adequate idle processors are available but these do not meet
job requirements

Start date not reached Job has specified a minimum start date that is still in the
future

Expected state is not idle Job is in an unexpected state

State is not idle Job is not in the idle state

Dependency is not met Job depends on another job reaching a certain state

Rejected by policy Job start is prevented by a throttling policy

If a job cannot run on a particular node, one of the following 'per node' reasons will be
given:

Reason Description

Class Node does not allow required job class/queue

CPU Node does not possess required processors

Disk Node does not possess required local disk

Features Node does not possess required node features

Memory Node does not possess required real memory

Chapter 4: Scheduler Commands

Reason Description

Network Node does not possess required network interface

State Node is not Idle or Running

Reservation Access
The -r flag can be used to provide detailed information about job access to a specific
reservation

Preemption Status
If a job is marked as a preemptor and the -v and -n flags are specified, checkjob will
perform a job by job analysis for all jobs on the specified node to determine if they can be
preempted.

4.7.1.F Output
The checkjob command displays the following job attributes:

Attribute Value Description

Account <STRING> Name of account associated with job.

Allocated Nodes Square bracket
delimited list of node
and processor IDs

List of nodes and processors allocated
to job.

Applied Nodeset** <STRING> Nodeset used for job's node
allocation.

Arch <STRING> Node architecture required by job.

Attr square bracket
delimited list of job
attributes

Job Attributes (i.e., [BACKFILL]
[PREEMPTEE]).

Available Memory** <INTEGER> The available memory requested by
job. Moab displays the relative or
exact value by returning a comparison
symbol (>, <, >=, <=, or ==) with the
value (i.e., Available Memory <=

Chapter 4: Scheduler Commands

111 4.7 Moab Commands

4.7 Moab Commands 112

Attribute Value Description

2048).

Available Swap** <INTEGER> The available swap requested by job.
Moab displays the relative or exact
value by returning a comparison
symbol (>, <, >=, <=, or ==) with the
value (i.e., Available Swap >=
1024).

Average Utilized
Procs*

<FLOAT> Average load balance for a job.

Avg Util Resources
Per Task*

<FLOAT>

BecameEligible <TIMESTAMP> The date and time when the job
moved from Blocked to Eligible.

Bypass <INTEGER> Number of times a lower priority job
with a later submit time ran before
the job.

CheckpointStartTime** [[[DD:]HH:]MM:]SS The time the job was first
checkpointed.

Class [<CLASS NAME>
<CLASS COUNT>]

Name of class/queue required by job
and number of class initiators
required per task.

Dedicated Resources
Per Task*

Space-delimited list of
<STRING>
:<INTEGER>

Resources dedicated to a job on a per-
task basis.

Disk <INTEGER> Amount of local disk required by job
(in MB).

Estimated Walltime [[[DD:]HH:]MM:]SS The scheduler's estimated walltime.

In simulation mode, it is the
actual walltime.

EnvVariables** Comma-delimited list of List of environment variables assigned

Chapter 4: Scheduler Commands

Attribute Value Description

<STRING> to job.

Exec Size* <INTEGER> Size of job executable (in MB).

Executable <STRING> Name of command to run.

Features Square bracket
delimited list of
<STRING>s

Node features required by job.

Flags

Group <STRING> Name of UNIX group associated with
job.

Holds Zero or more of User,
System, and Batch

Types of job holds currently applied
to job.

Image Size <INTEGER> Size of job data (in MB).

IWD (Initial Working
Directory)

<DIR> Directory to run the executable in.

Job Messages** <STRING> Messages attached to a job.

Job Submission** <STRING> Job script submitted to RM.

Memory <INTEGER> Amount of real memory required per
node (in MB).

Max Util Resources
Per Task*

<FLOAT>

NodeAccess*

Nodecount <INTEGER> Number of nodes required by job.

Opsys <STRING> Node operating system required by
job.

Chapter 4: Scheduler Commands

113 4.7 Moab Commands

4.7 Moab Commands 114

Attribute Value Description

Partition Mask ALL or colon delimited
list of partitions

List of partitions the job has access to.

PE <FLOAT> Number of processor-equivalents
requested by job.

Per Partition
Priority**

Tabular Table showing job template priority
for each partition.

Priority Analysis** Tabular Table showing how job's priority was
calculated:
Job PRIORITY* Cred
(User:Group:Class) Serv
(QTime)

QOS <STRING> Quality of Service associated with job.

Reservation <RSVID> (<TIME1> -
<TIME2> Duration:
<TIME3>)

RESID specifies the reservation ID,
TIME1 is the relative start time,
TIME2 the relative end time, TIME3
the duration of the reservation.

Req [<INTEGER>]
TaskCount:
<INTEGER> Partition:
<partition>

A job requirement for a single type of
resource followed by the number of
tasks instances required and the
appropriate partition.

StageIn <SOURCE>
%<DESTINATION>

The <SOURCE> is the username,
hostname, directory and file name of
origin for the file(s) that Moab will
stage in for this job. The
<DESTINATION> is the username,
hostname, directory and file name
where Moab will place the file during
this job. See Data Staging Example for
more information.

StageInSize <INTEGER><UNIT> The size of the file Moab will stage in
for this job. <UNIT> can be KB, MB,
GB, or TB. See Data Staging Example
for more information.

Chapter 4: Scheduler Commands

Attribute Value Description

StageOut <SOURCE>
%<DESTINATION>

The <SOURCE> is the username,
hostname, directory and file name of
origin for the file(s) that Moab will
stage out for this job. The
<DESTINATION> is the username,
hostname, directory and file name
where Moab will place the file during
this job. See Data Staging Example for
more information.

StageOutSize <INTEGER><UNIT> The size of the file Moab will stage
out for this job. <UNIT> can be KB,
MB, GB, or TB. See Data Staging
Example for more information.

StartCount <INTEGER> Number of times job has been started
by Moab.

StartPriority <INTEGER> Start priority of job.

StartTime <TIME> Time job was started by the resource
management system.

State One of Idle, Starting,
Running, etc. See Job
States for all possible
values.

Current Job State.

SubmitTime <TIME> Time job was submitted to resource
management system.

Swap <INTEGER> Amount of swap disk required by job
(in MB).

Task Distribution* Square bracket
delimited list of nodes

Time Queued

Total Requested
Nodes**

<INTEGER> Number of nodes the job requested.

Chapter 4: Scheduler Commands

115 4.7 Moab Commands

4.7 Moab Commands 116

Attribute Value Description

Total Requested Tasks <INTEGER> Number of tasks requested by job.

User <STRING> Name of user submitting job.

Utilized Resources Per
Task*

<FLOAT>

WallTime [[[DD:]HH:]MM:]SS of
[[[DD:]HH:]MM:]SS

Length of time job has been running
out of the specified limit.

In the above table, fields marked with an asterisk (*) are only displayed when set or when
the -v flag is specified. Fields marked with two asterisks (**) are only displayed when set
or when the -v -v flag is specified.

Example 4-1: checkjob 717

> checkjob 717
job 717
State: Idle
Creds: user:jacksond group:jacksond class:batch
WallTime: 00:00:00 of 00:01:40
SubmitTime: Mon Aug 15 20:49:41
(Time Queued Total: 3:12:23:13 Eligible: 3:12:23:11)

TerminationDate: INFINITY Sat Oct 24 06:26:40
Total Tasks: 1
Req[0] TaskCount: 1 Partition: ALL
Network: --- Memory >= 0 Disk >= 0 Swap >= 0
Opsys: --- Arch: --- Features: ---

IWD: /home/jacksond/moab/moab-4.2.3
Executable: STDIN
Flags: RESTARTABLE,NORMSTART
StartPriority: 5063
Reservation '717' (INFINITY -> INFINITY Duration: 00:01:40)
Note: job cannot run in partition base (idle procs do not meet requirements : 0 of 1
procs found)
idle procs: 4 feasible procs: 0
Rejection Reasons: [State : 3][ReserveTime : 1]
cannot select job 717 for partition GM (partition GM does not support requested class
batch)

The example job cannot be started for two different reasons.

l It is temporarily blocked from partition base
because of node state and node reservation
conflicts.

l It is permanently blocked from partition GM because
the requested class batch is not supported in that
partition.

Chapter 4: Scheduler Commands

Example 4-2: Using checkjob (no -v) on a job array master job:

checkjob array.1
job array.1

AName: array
Job Array Info:
Name: array.1

Sub-jobs: 10
Active: 6 (60.0%)
Eligible: 2 (20.0%)
Blocked: 2 (20.0%)
Complete: 0 (0.0%)

Example 4-3: Using checkjob -v on a job array master job:

$ checkjob -v array.1
job array.1

AName: array
Job Array Info:
Name: array.1
1 : array.1.1 : Running
2 : array.1.2 : Running
3 : array.1.3 : Running
4 : array.1.4 : Running
5 : array.1.5 : Running
6 : array.1.6 : Running
7 : array.1.7 : Idle
8 : array.1.8 : Idle
9 : array.1.9 : Blocked
10 : array.1.10 : Blocked

Sub-jobs: 10
Active: 6 (60.0%)
Eligible: 2 (20.0%)
Blocked: 2 (20.0%)
Complete: 0 (0.0%)

Example 4-4: Using checkjob -v on a data staging job

$ checkjob -v moab.14.dsin
job moab.14.dsin

AName: moab.14.dsin
State: Running
Creds: user:fred group:company
WallTime: 00:00:00 of 00:01:01
SubmitTime: Wed Apr 16 10:07:19
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Wed Apr 16 10:07:19
TemplateSets: dsin
Triggers: 78$start+0@0.000000:exec@/opt/moab/tools/datastaging/ds_move_rsync --
stagein:FALSE
Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: SHARED
Dedicated Resources Per Task: bandwidth: 1
NodeAccess: SHARED

Chapter 4: Scheduler Commands

117 4.7 Moab Commands

4.7 Moab Commands 118

Allocated Nodes:
[GLOBAL:1]

Job Group: moab.14
SystemID: moab
SystemJID: moab.14.dsin
Task Distribution: GLOBAL
IWD: $HOME/test/datastaging
SubmitDir: $HOME/test/datastaging
StartCount: 1
Parent VCs: vc11
User Specified Partition List: local
Partition List: local
SrcRM: internal
Flags: NORMSTART,GRESONLY,TEMPLATESAPPLIED
Attr: dsin
StageInSize: 386MB
StageOutSize: 100MB
StageIn: fred@remotelab:/home/fred/input1/%fred@scratch:/home/fred/input1/
StageIn: fred@remotelab:/home/fred/input2/%fred@scratch:/home/fred/input2/
StageIn: fred@remotelab:/home/fred/input3/%fred@scratch:/home/fred/input3/
StageOut: fred@scratch:/home/fred/output/%fred@remotelab:/home/fred/output/
StartPriority: 1
SJob Type: datastaging
Completion Policy: datastaging

PE: 0.00
Reservation 'moab.14.dsin' (-00:00:06 -> 00:00:55 Duration: 00:01:01)

Related Topics

l showhist.moab.pl - explains how to query for past job information

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mdiag -j command - display additional detailed information regarding jobs

l showq command - showq high-level job summaries

l JOBCPURGETIME parameter - specify how long information regarding completed jobs
is maintained

l diagnosing job preemption

4.7.2 checknode

4.7.2.A Synopsis
checknode flags [nodeID | ALL] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--

Chapter 4: Scheduler Commands

msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.2.B Overview
This command shows detailed state information and statistics for nodes that run jobs.

The following information is returned by this command:

Name Description

ACL Node Access Control List (displayed only if set)

ActiveTime Total time node has been busy (allocated to active jobs) since
statistics initialization expressed in HH:MM:SS notation (percent of
time busy: BusyTime/TotalTime)

Adapters Network adapters available

Arch Architecture

Classes Classes available

Disk Disk space available

Downtime Displayed only if downtime is scheduled

EffNodeAccessPolicy Configured effective node access policy

Features Features available

Load CPU Load (Berkley one-minute load average)

Memory Memory available

Opsys Operating system

RequestID Dynamic Node RequestID set by the RM (displayed only if set)

State Node state

StateTime Time node has been in current state in HH:MM:SS notation

Chapter 4: Scheduler Commands

119 4.7 Moab Commands

4.7 Moab Commands 120

Name Description

Swap Swap space available

TotalTime Total time node has been detected since statistics initialization
expressed in HH:MM:SS notation

TTL Dynamic Node Time To Live set by the RM (expiration date,
displayed only if set)

UpTime Total time node has been in an available (Non-Down) state since
statistics initialization expressed in HH:MM:SS notation (percent of
time up: UpTime/TotalTime)

After displaying this information, some analysis is performed and any unusual conditions
are reported.

4.7.2.C Access
By default, this command can be run by any Moab Administrator (see ADMINCFG).

4.7.2.D Parameters

Name Description

NODE Node name you want to check. Moab uses regular expressions to return any node
that contains the provided argument. For example, if you ran checknode node1,
Moab would return information about node1, node10, node100, etc. If you want
to limit the results to node1 only, you would run checknode "^node1$".

4.7.2.E Flags

Name Description

ALL Returns checknode output on all nodes in the cluster.

-h Help for this command.

-v Returns verbose output.

Chapter 4: Scheduler Commands

Name Description

--xml Output in XML format. Same as mdiag -n --xml.

Example 4-5: checknode

> checknode P690-032
node P690-032

State: Busy (in current state for 11:31:10)
Configured Resources: PROCS: 1 MEM: 16G SWAP: 2000M DISK: 500G
Utilized Resources: PROCS: 1
Dedicated Resources: PROCS: 1
Opsys: AIX Arch: P690
Speed: 1.00 CPULoad: 1.000
Network: InfiniBand,Myrinet
Features: Myrinet
Attributes: [Batch]
Classes: [batch]

Total Time: 5:23:28:36 Up: 5:23:28:36 (100.00%) Active: 5:19:44:22 (97.40%)

Reservations:
Job '13678'(x1) 10:16:12:22 -> 12:16:12:22 (2:00:00:00)
Job '13186'(x1) -11:31:10 -> 1:12:28:50 (2:00:00:00)

Jobs: 13186

Example 4-6: checknode ALL

> checknode ALL
node ahe

State: Idle (in current state for 00:00:30)
Configured Resources: PROCS: 12 MEM: 8004M SWAP: 26G DISK: 1M
Utilized Resources: PROCS: 1 SWAP: 4106M
Dedicated Resources: ---
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 1.400
Flags: rmdetected
Classes: [batch]
RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:00 (0.00%)

Reservations: ---
node ahe-ubuntu32

State: Running (in current state for 00:00:05)
Configured Resources: PROCS: 12 MEM: 2013M SWAP: 3405M DISK: 1M
Utilized Resources: PROCS: 6 SWAP: 55M
Dedicated Resources: PROCS: 6
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 2.000
Flags: rmdetected
Classes: [batch]

Chapter 4: Scheduler Commands

121 4.7 Moab Commands

4.7 Moab Commands 122

RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:02 (1.92%)

Reservations:
6x2 Job:Running -00:00:07 -> 00:01:53 (00:02:00)
7x2 Job:Running -00:00:06 -> 00:01:54 (00:02:00)
8x2 Job:Running -00:00:05 -> 00:01:55 (00:02:00)

Jobs: 6,7,8
node ahe-ubuntu64

State: Busy (in current state for 00:00:06)
Configured Resources: PROCS: 12 MEM: 2008M SWAP: 3317M DISK: 1M
Utilized Resources: PROCS: 12 SWAP: 359M
Dedicated Resources: PROCS: 12
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.000
Flags: rmdetected
Classes: [batch]
RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:55 (52.88%)

Reservations:
0x2 Job:Running -00:01:10 -> 00:00:50 (00:02:00)
1x2 Job:Running -00:00:20 -> 00:01:40 (00:02:00)
2x2 Job:Running -00:00:20 -> 00:01:40 (00:02:00)
3x2 Job:Running -00:00:17 -> 00:01:43 (00:02:00)
4x2 Job:Running -00:00:13 -> 00:01:47 (00:02:00)
5x2 Job:Running -00:00:07 -> 00:01:53 (00:02:00)

Jobs: 0,1,2,3,4,5
ALERT: node is in state Busy but load is low (0.000)

Example 4-7: checknode n001 (Dynamic Node)

> checknode node001
node node001

State: Idle (in current state for 00:13:50)
Configured Resources: PROCS: 2 MEM: 4096M
Utilized Resources: PROCS: 2
Dedicated Resources: ---
ACL: USER==FRED+:==BOB+ GROUP==DEV+
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: --- Arch: ---
Speed: 1.00 CPULoad: 2.000
Partition: local Rack/Slot: --- NodeIndex: 1
RM[local]*: TYPE=NATIVE:AGFULL
EffNodeAccessPolicy: SHARED
RequestID: 1234
TTL: Tue Nov 10 00:00:00 2022
Total Time: 2:21:19:05 Up: 2:21:19:05 (100.00%) Active: 00:00:00 (0.00%)

Reservations:
node001-TTL-1234x1 User 441days -> INFINITY (INFINITY)
Blocked Resources@ 441days Procs: 2/2 (100.00%) Mem: 4096/4096 (100.00%)

Swap: 1/1 (100.00%) Disk: 1/1 (100.00%)
ALERT: node is in state Idle but load is high (2.000)

Chapter 4: Scheduler Commands

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mdiag -n

l showstate

4.7.3 mcredctl

4.7.3.A Synopsis
mcredctl [-d credtype[:credid]] [-h credtype:credid] [-l credtype] [-q
{role|limit|profile|accessfrom|accessto|policies} credtype[:credid]] [--format=xml] [-r
{stats|fairshare|uid} <type>[:<ID>] [-t <STARTTIME>[,<ENDTIME>] [--about] [--help]
[--host=<serverHostName>] [--loglevel=<logLevel>] [--msg=<message>]
[--port=<serverPort>] [--timeout=<seconds>] [--version] [--xml]

4.7.3.B Overview
The mcredctl command controls various aspects about the credential objects within Moab. It can
be used to display configuration, limits, roles, and relationships for various Moab credential objects.

If using Insight, you must restart Moab to view credential modifications.

4.7.3.C Options

In all cases <CREDTYPE> is one of acct, group, user, class, or qos.

In most cases it is necessary to use the --format=xml flag in order to print the output (see
examples below for specific syntax requirements).

-d - DESTROY

Format <TYPE>:<VAL>

Chapter 4: Scheduler Commands

123 4.7 Moab Commands

4.7 Moab Commands 124

-d - DESTROY

Description Purge a credential from moab.cfg (does not delete credential from memory).

Example > mcredctl -d user:john

All references to USERCFG[john] will be commented out of
moab.cfg)

-h - HOLD

Format <TYPE>:<VAL>

Description Toggles whether a given credential's jobs should be placed on hold or not.

Example > mcredctl -h user:john

User [john] will be put on hold.

-l - LIST

Format <TYPE>

Description List the various sub-objects of the specified credential.

Example > mcredctl -l user --format=xml

List all users within Moab in XML.

> mcredctl -l group --format=xml

List all groups within Moab in XML.

-q - QUERY

Format {role | accessfrom | accessto | limit| profile | policies}
limit <TYPE>
policies <TYPE>
role <USER>:<USERID>
profile <TYPE>[:<VAL>]

Chapter 4: Scheduler Commands

-q - QUERY

accessfrom <TYPE>[:<VAL>]
accessto <TYPE>[:<VAL>]

Description Display various aspects of a credential (formatted in XML)

Example > mcredctl -q role user:bob --format=xml

View user bob's administrative role within Moab in XML

> mcredctl -q limit acct --format=xml

Display limits for all accounts in XML

> mcredctl -q policies user:bob

View limits organized by credential for user bob on each partition
and resource manager

> mcredctl -q profile group --format=xml --timeout=00:10:00
-o time:1388590200,1431529200,types:TPSD

Generates a report of processor hours used by groups per month.
TPSD represents total proc-seconds dedicated by this credential in
the profiling interval.

-r - RESET

Format {stats|fairshare|uid} <TYPE> [:<ID>]

Description Reset the stats, fairshare, or UID/GID of a given credential.

When resetting UID, only a type of user is
supported.

Example > mcredctl -r uid user:john

Resets the UID/GID for the user named john.

-t - TIMEFRAME

Format <STARTTIME>[,<ENDTIME>]

Chapter 4: Scheduler Commands

125 4.7 Moab Commands

4.7 Moab Commands 126

-t - TIMEFRAME

Description Can be used in conjunction with the -q profile option to display profiling
information for the specified timeframe.

Example > mcredctl -q profile user -t 14:30_06/20

4.7.3.D Credential Statistics XML Output
Credential statistics can be requested as XML (via the --format=xml argument) and will be
written to STDOUT in the following format:

> mcredctl -q profile user --format=xml -o time:1182927600,1183013999
<Data>
<user ...>
<Profile ...>
</Profile>

</user>
</Data>

Example 4-8: Deleting a group

> mcredctl -d group:john
GROUPCFG[john] Successfully purged from config files

Example 4-9: List users in XML format

> mcredctl -l user --format=xml
<Data><user ID="john"</user><user ID="john"></user><user ID="root"></user><user
ID="dev"></user></Data>

Example 4-10: Display information about a user

> mcredctl -q role user:john --format=xml
<Data><user ID="test" role="admin5"></user></Data>

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

Chapter 4: Scheduler Commands

4.7.4 mdiag

4.7.4.A Synopsis
mdiag -a [accountid]

mdiag -b [-l policylevel] [-t partition] [-v]

mdiag -c [classid] [-v]

mdiag -C [configfile]

mdiag -e [-w
<starttime>|<endtime>|<eventtypes>|<oidlist>|<eidlist>|<object
list>] --xml

mdiag -f [-o user|group|acct|qos|class] [-v] [--
flags=relative]

mdiag -g [groupid]
mdiag -G [Green]

mdiag -j [jobid] [-t <partition>] [-v][-w
state|user|account|class|group|qos=VALUE][--flags=policy][--
blocking]

mdiag -l

mdiag -L [-v]

mdiag -n [-A <creds>] [-t partition] [nodeid] [-v]

mdiag -p [-t partition] [-v] [-v]

mdiag -P [-v] [-v]

mdiag -q [qosid] [-v]

mdiag -r [reservationid] [-v] [--blocking]

mdiag -R [resourcemanagername] [-v][-v]

mdiag -s [standingreservationid] [--blocking]

mdiag -S [-v] [-v]

mdiag -t [-v] [-v] [partitionid]

mdiag -T [triggerid] [-v][--blocking]

mdiag -u [userid] [-v]

mdiag [--format=xml]

Chapter 4: Scheduler Commands

127 4.7 Moab Commands

4.7 Moab Commands 128

[--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.4.B Overview
The mdiag command is used to display information about various aspects of the cluster
and the results of internal diagnostic tests. In summary, it provides the following:

l Current object health and state information

l Current object configuration (resources, policies, attributes, etc.)

l Current and historical performance/utilization information

l Reports on recent failure

l Object messages

Some mdiag options gather information from the Moab cache, which prevents them from
interrupting the scheduler, but the --blocking option can be used to bypass the cache
and interrupt the scheduler.

4.7.4.C Arguments

Option Description

-a [accountid] Display account information.

-b [-l policylevel] [-t partition] [-v] Display information on jobs
blocked by policies, holds, or
other factors.

If blocked job diagnostics
are specified, the -t
option is also available to
constrain the report to
analysis of particular
partition. Also, with
blocked job diagnosis, the
-l option can be used to
specify the analysis policy
level.

-c [classid] [-v] Display class information.

Chapter 4: Scheduler Commands

Option Description

-C [file] With the vast array of options
in the configuration file, the -C
option does not validate
function, but it does analyze the
configuration file for syntax
errors including use of invalid
parameters, deprecated
parameters, and some illegal
values. If you start Moab with
the -e flag, Moab evaluates the
configuration file at startup and
quits if an error exists.

mdiag -C does not print
out any #INCLUDE lines
listed in moab.cfg (and
moab.dat), but it does
evaluate and print out the
lines found in those
included files.

-e [-w
starttime|endtime|eventtypes|oidlist|eidlist|objectlist]
--xml

Moab will do a query for all
events whose eventtime
starts at <starttime> and
matches the search criteria.
This works only when Moab is
configured with ODBC MySQL.
The syntax is:
mdiag -e[-w
<starttime>
|<eventtypes>|
<oidlist>
|
<eidlist>|<objectlist>]
--xml

l starttime default is -
l eventtypes default is

command delimited, the
default is all event types
(possible values can be
found in the EventType
table in the Moab
database)

l oidlist is a comma-
delimited list of object IDs,

Chapter 4: Scheduler Commands

129 4.7 Moab Commands

4.7 Moab Commands 130

Option Description

the default is all objects
IDs

l eidlist is a comma-
delimited list of specific
event IDs, the default is all
event IDs

l objectlist is a comma-
delimited list of object
types, the default is all
object types (possible
values can be found in the
ObjectType table in the
Moab database)

-f [-o user|group|acct|qos|class] [-v] [--flags=relative] Display fairshare information.

-g [groupid] Display group information.

-G [Green] Display green computing
information.

-j [jobid] [-t partition] [-v] [-w
state|user|account|class|group|qos=VALUE] [--
flags=policy] [--blocking]

Display job information.

-l Diagnose license information
contained in the moab.lic file.

-L [-v] Display limits.

-n [-A creds] [-t partition] [nodeid] [-v] Display nodes.

If node diagnostics are
specified, the -t option
is also available to
constrain the report to a
particular partition.

-p [-t partition] [-v] [-v] Display job priority.

Chapter 4: Scheduler Commands

Option Description

If priority diagnostics are
specified, the -t option
is also available to
constrain the report to a
particular partition.

-P [-v] [-v] Display partition information.

-q [qosid] [-v] Display qos information.

-r [reservationid] [-v] [--blocking] Display reservation
information.

-R [rmid] [-v] [-v] Display resource manager
information.

-s [srsv] [--blocking] Display standing reservation
information.

-S [-v] [-v] Display general scheduler
information.

-t [-v] [-v] [partitionid] Display configuration, usage,
health, and diagnostic
information about partitions
maintained by Moab.

-T [triggerid] [-v] [--blocking] Display trigger information.

-u [userid] [-v] Display user information.

--format=xml Display output in XML format.

XML Output
Information for most of the options can be reported as XML as well. This is done with the
command mdiag -<option> <CLASS_ID> --format=xml. For example, XML-
based class information will be written to STDOUT in the following format:

<Data>
<class <ATTR>="<VAL>" ... >

Chapter 4: Scheduler Commands

131 4.7 Moab Commands

4.7 Moab Commands 132

<stats <ATTR>="<VAL>" ... >
<Profile <ATTR>="<VAL>" ... >
</Profile>

</stats>
</class>

<Data>
...

</Data>

Of the mdiag options, only -G and -L cannot be reported as XML.

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l checkjob

l checknode

4.7.5 mdiag -a

4.7.5.A Synopsis
mdiag -a [accountid]

4.7.5.B Overview
The mdiag -a command provides detailed information about the accounts (a.k.a.
projects) Moab is currently tracking. This command also allows an administrator to verify
correct throttling policies and access provided to and from other credentials.

Example 4-11: Generating information about accounts

> mdiag -a
evaluating acct information
Name Priority Flags QDef QOSList*
PartitionList Target Limits
engineering 100 - high high,urgent,low [A]
[B] 30.00 MAXJOB=50,75 MAXPROC=400,500
marketing 1 - low low [A]

5.00 MAXJOB=100,110 MAXPS=54000,54500
it 10 - DEFAULT DEFAULT,high,urgent,low [A]

100.00 MAXPROC=100,1250 MAXPS=12000,12500
FSWEIGHT=1000

development 100 - high high,urgent,low [A]
[B] 30.00 MAXJOB=50,75 MAXNODE=100,120

Chapter 4: Scheduler Commands

research 100 - high DEFAULT,high,low [A]
[B] 30.00 MAXNODE=400,500 MAXPS=900000,1000000
DEFAULT 0 - - - -

0.00 -

Related Topics

l Account credential

4.7.6 mdiag -b

4.7.6.A Synopsis
mdiag -b [-l policylevel] [-t partition] [-v]

4.7.6.B Overview
The mdiag -b command returns information about blocked jobs.

4.7.7 mdiag -c

4.7.7.A Synopsis
mdiag -c [classid][-v]

4.7.7.B Overview
The mdiag -c command provides detailed information about the classes Moab is
currently tracking. This command also allows an administrator to verify correct throttling
policies and access provided to and from other credentials.

The term class is used interchangeably with the term queue and generally refers to
resource manager queue.

Chapter 4: Scheduler Commands

133 4.7 Moab Commands

4.7 Moab Commands 134

4.7.7.C XML Attributes

Name Description

ADEF Accounts a class has access to.

CAPACITY Number of procs available to the class.

DEFAULT.ATTR Default attributes attached to a job.

DEFAULT.DISK Default required disk attached to a job.

DEFAULT.FEATURES Default required node features attached to a job.

DEFAULT.GRES Default generic resources attached to a job.

DEFAULT.MEM Default required memory attached to a job.

DEFAULT.NODESET Default specified nodeset attached to a job.

DEFAULT.WCLIMIT Default wallclock limit attached to a job.

EXCL.FEATURES List of excluded (disallowed) node features.

EXCL.FLAGS List of excluded (disallowed) job flags.

FSTARGET The class' fairshare target.

HOLD If TRUE this credential has a hold on it, FALSE otherwise.

HOSTLIST The list of hosts in this class.

JOBEPILOG Scheduler level job epilog to be run after job is completed by resource
manager (script path).

JOBFLAGS Default flags attached to jobs in the class.

JOBPROLOG Scheduler level job prolog to be run before job is started by resource
manager (script path).

ID The unique ID of this class.

Chapter 4: Scheduler Commands

Name Description

LOGLEVEL The log level attached to jobs in the class.

MAX.PROC The max processors per job in the class.

MAX.PS The max processor-seconds per job in the class.

MAX.WCLIMIT The max wallclock limit per job in the class.

MAXIJOB The max idle jobs in the class.

MAXIPROC The max idle processors in the class.

MAXJOBPERUSER The max jobs per user.

MAXNODEPERJOB The max nodes per job.

MAXNODEPERUSER The max nodes per user.

MAXPROCPERJOB The max processors per job.

MAXPROCPERNODE The max processors per node.

MAXPROCPERUSER The max processors per user.

MIN.NODE The minimum nodes per job in the class.

MIN.PROC The minimum processors per job in the class.

MIN.WCLIMIT The minimum wallclock limit per job in the class.

NODEACCESSPOLICY The node access policy associated with jobs in the class.

OCDPROCFACTOR Dedicated processor factor.

OCNODE Overcommit node.

PRIORITY The class' associated priority.

Chapter 4: Scheduler Commands

135 4.7 Moab Commands

4.7 Moab Commands 136

Name Description

PRIORITYF Priority calculation function.

REQ.FEATURES Required features for a job to be considered in the class.

REQ.FLAGS Required flags for a job to be considered in the class.

REQ.IMAGE Required image for a job to be considered in the class.

REQUIREDUSERLIST The list of users who have access to the class.

RM The resource manager reporting the class.

STATE The class' state.

WCOVERRUN Tolerated amount of time beyond the specified wallclock limit.

Example 4-12: Generating information about classes

> mdiag -c
Class/Queue Status
ClassID Priority Flags QDef QOSList* PartitionList
Target Limits
DEFAULT 0 --- --- --- ---
0.00 ---
batch 1 --- --- --- [A][B]
70.00 MAXJOB=33:200,250
MAX.WCLIMIT=10:00:00 MAXPROCPERJOB=128

long 1 --- low low [A]
10.00 MAXJOB=3:100,200
MAX.WCLIMIT=1:00:00:00 MAXPROCPERJOB=128

fast 100 --- high high [B]
10.00 MAXJOB=8:100,150
MAX.WCLIMIT=00:30:00 MAXPROCPERJOB=128

bigmem 1 --- low,high low ---
10.00 MAXJOB=1:100,200
MAXPROCPERJOB=128

In the example above, class fast has MAXJOB soft and hard limits of 100 and 150 respectively and is currently
running 8 jobs.

The Limits column will display limits in the following format:
<USAGE>:<HARDLIMIT>[,<SOFTLIMIT>]

Related Topics

l showstats command - display general statistics

Chapter 4: Scheduler Commands

4.7.8 mdiag -f

4.7.8.A Synopsis
mdiag -f [-o user|group|acct|qos|class] [--flags=relative]

4.7.8.B Overview
The mdiag -f command is used to display at a glance information about the fairshare
configuration and historic resource utilization. The fairshare usage might impact job
prioritization, job eligibility, or both based on the credential FSTARGET and FSCAP
attributes and by the fairshare priority weights as described in the Job Prioritization
Overview. The information presented by this command includes fairshare configuration
and credential fairshare usage over time.

The command hides information about credentials that have no fairshare target and no
fairshare cap.

If an object type (<OTYPE>) is specified, then only information for that credential type
(user, group, acct, class, or qos) will be displayed. If the relative flag is set, then per
user fairshare usage will be displayed relative to each non-user credential (see the second
example below).

Relative output is only displayed for credentials that have user mappings. For
example, if there is no association between classes and users, no relative per user
fairshare usage class breakdown will be provided.

Example 4-13: Standard Fairshare Output

> mdiag -f
FairShare Information
Depth: 6 intervals Interval Length: 00:20:00 Decay Rate: 0.50
FS Policy: DEDICATEDPES
System FS Settings: Target Usage: 0.00
FSInterval % Target 0 1 2 3 4 5
FSWeight ------- ------- 1.0000 0.5000 0.2500 0.1250 0.0625 0.0312
TotalUsage 100.00 ------- 85.3 476.1 478.9 478.5 475.5 482.8
USER

mattp 2.51 ------- 2.20 2.69 2.21 2.65 2.65 3.01
jsmith 12.82 ------- 12.66 15.36 10.96 8.74 8.15 13.85
kyliem 3.44 ------- 3.93 2.78 4.36 3.11 3.94 4.25
tgh 4.94 ------- 4.44 5.12 5.52 3.95 4.66 4.76
walex 1.51 ------- 3.14 1.15 1.05 1.61 1.22 1.60
jimf 4.73 ------- 4.67 4.31 5.67 4.49 4.93 4.92

Chapter 4: Scheduler Commands

137 4.7 Moab Commands

4.7 Moab Commands 138

poy 4.64 ------- 4.43 4.61 4.58 4.76 5.36 4.90
mjackson 0.66 ------- 0.35 0.78 0.67 0.77 0.55 0.43
tfw 17.44 ------- 16.45 15.59 19.93 19.72 21.38 15.68
gjohn 2.81 ------- 1.66 3.00 3.16 3.06 2.41 3.33
ljill 10.85 ------- 18.09 7.23 13.28 9.24 14.76 6.67
kbill 11.10 ------- 7.31 14.94 4.70 15.49 5.42 16.61
stevei 1.58 ------- 1.41 1.34 2.09 0.75 3.30 2.15
gms 1.54 ------- 1.15 1.74 1.63 1.40 1.38 0.90
patw 5.11 ------- 5.22 5.11 4.85 5.20 5.28 5.78
wer 6.65 ------- 5.04 7.03 7.52 6.80 6.43 2.83
anna 1.97 ------- 2.29 1.68 2.27 1.80 2.37 2.17
susieb 5.69 ------- 5.58 5.55 5.57 6.48 5.83 6.16
GROUP

dallas 13.25 15.00 14.61 12.41 13.19 13.29 15.37 15.09
sanjose* 8.86 15.00 6.54 9.55 9.81 8.97 8.35 4.16
seattle 10.05 15.00 9.66 10.23 10.37 9.15 9.94 10.54
austin* 30.26 15.00 29.10 30.95 30.89 28.45 29.53 29.54
boston* 3.44 15.00 3.93 2.78 4.36 3.11 3.94 4.25
orlando* 26.59 15.00 29.83 26.77 22.56 29.49 25.53 28.18
newyork* 7.54 15.00 6.33 7.31 8.83 7.54 7.34 8.24
ACCT

engineering 31.76 30.00 32.25 32.10 31.94 30.07 30.74 31.14
marketing 8.86 5.00 6.54 9.55 9.81 8.97 8.35 4.16
it 9.12 5.00 7.74 8.65 10.92 8.29 10.64 10.40
development* 24.86 30.00 24.15 24.76 25.00 24.84 26.15 26.78
research 25.40 30.00 29.32 24.94 22.33 27.84 24.11 27.53
QOS

DEFAULT* 0.00 50.00 ------- ------- ------- ------- ------- -------
high* 83.69 90.00 86.76 83.20 81.71 84.35 83.19 88.02
urgent 0.00 5.00 ------- ------- ------- ------- ------- -------
low* 12.00 5.00 7.34 12.70 14.02 12.51 12.86 7.48
CLASS

batch* 51.69 70.00 53.87 52.01 50.80 50.38 48.67 52.65
long* 18.75 10.00 16.54 18.36 20.89 18.36 21.53 16.28
fast* 15.29 10.00 18.41 14.98 12.58 16.80 15.15 18.21
bigmem 14.27 10.00 11.17 14.65 15.73 14.46 14.65 12.87

An asterisk (*) next to a credential name indicates that that credential has exceeded
its fairshare target.

Example 4-14: Grouping User Output by Account

> mdiag -f -o acct --flags=relative
FairShare Information
Depth: 6 intervals Interval Length: 00:20:00 Decay Rate: 0.50
FS Policy: DEDICATEDPES
System FS Settings: Target Usage: 0.00
FSInterval % Target 0 1 2 3 4 5
FSWeight ------- ------- 1.0000 0.5000 0.2500 0.1250 0.0625 0.0312
TotalUsage 100.00 ------- 23.8 476.1 478.9 478.5 475.5 482.8
ACCOUNT

dallas 13.12 15.00 15.42 12.41 13.19 13.29 15.37 15.09
mattp 19.47 ------- 15.00 21.66 16.75 19.93 17.26 19.95
walex 9.93 ------- 20.91 9.28 7.97 12.14 7.91 10.59

Chapter 4: Scheduler Commands

stevei 12.19 ------- 9.09 10.78 15.85 5.64 21.46 14.28
anna 14.77 ------- 16.36 13.54 17.18 13.55 15.44 14.37
susieb 43.64 ------- 38.64 44.74 42.25 48.74 37.92 40.81

sanjose* 9.26 15.00 8.69 9.55 9.81 8.97 8.35 4.16
mjackson 7.71 ------- 6.45 8.14 6.81 8.62 6.54 10.29
gms 17.61 ------- 21.77 18.25 16.57 15.58 16.51 21.74
wer 74.68 ------- 71.77 73.61 76.62 75.80 76.95 67.97

seattle 10.12 15.00 10.16 10.23 10.37 9.15 9.94 10.54
tgh 49.56 ------- 46.21 50.05 53.26 43.14 46.91 45.13
patw 50.44 ------- 53.79 49.95 46.74 56.86 53.09 54.87

austin* 30.23 15.00 25.58 30.95 30.89 28.45 29.53 29.54
jsmith 42.44 ------- 48.77 49.62 35.47 30.70 27.59 46.90
tfw 57.56 ------- 51.23 50.38 64.53 69.30 72.41 53.10

boston* 3.38 15.00 3.78 2.78 4.36 3.11 3.94 4.25
kyliem 100.00 ------- 100.00 100.00 100.00 100.00 100.00 100.00

orlando* 26.20 15.00 30.13 26.77 22.56 29.49 25.53 28.18
poy 17.90 ------- 16.28 17.22 20.30 16.15 20.98 17.39
ljill 37.85 ------- 58.60 26.99 58.87 31.33 57.79 23.67
kbill 44.25 ------- 25.12 55.79 20.83 52.52 21.23 58.94

newyork* 7.69 15.00 6.24 7.31 8.83 7.54 7.34 8.24
jimf 61.42 ------- 69.66 58.94 64.20 59.46 67.21 59.64
gjohn 38.58 ------- 30.34 41.06 35.80 40.54 32.79 40.36

Related Topics

l Fairshare Overview

4.7.9 mdiag -j

4.7.9.A Synopsis
mdiag -j [jobid] [-t <partition>] [-v] [-w] [--flags=policy] [-
-xml] [--blocking]

4.7.9.B Overview
The mdiag -j command provides detailed information about the state of jobs Moab is
currently tracking. This command also performs a large number of sanity and state checks.
The job configuration and status information, as well as the results of the various checks,
are presented by this command. The command gathers information from the Moab cache
that prevents it from interrupting the scheduler, but the --blocking option can be used
to bypass the cache and interrupt the scheduler. If the -v (verbose) flag is specified,
additional information about less common job attributes is displayed. If --
flags=policy is specified, information about job templates is displayed.

Chapter 4: Scheduler Commands

139 4.7 Moab Commands

4.7 Moab Commands 140

If used with the -t <partition> option on a running job, the only thing mdiag -j
shows is if the job is running on the specified partition. If used on job that is not running, it
shows if the job is able to run on the specified partition.

The -w flag enables you to specify specific job states, such as Running, Completed, Idle, or
ALL (see Job States for all valid options), or jobs associated with a given credential (user,
acct, class, group, jobgroup, qos). For example:

mdiag -j -w user=david # Displays only David's jobs
mdiag -j -w state=Idle,Running # Displays only idle or running jobs
mdiag -j -w jobgroup=workflow1 # displays jobs in jobgroup workflow1

The mdiag -j command does not show all subjobs of an array unless you use
mdiag -j --xml. In the XML, the master job element contains a child element
called ArraySubJobs that contains the subjobs in the array. Using mdiag -j -v
--xml shows the completed subjobs as well.

4.7.9.C XML Output
If XML output is requested (via the --format=xml argument), XML based node information
will be written to STDOUT in the following format:

<Data>
<job ATTR="VALUE" ... > </job>
...

</Data>

For information about legal attributes, refer to the XML Attributes table.

To show jobs in XML, use mdiag -j --xml -w
[completed=true|system=true|ALL=true] to limit or filter jobs. This is for
XML use only.

Related Topics

l checkjob

l mdiag

Chapter 4: Scheduler Commands

4.7.10 mdiag -n

4.7.10.A Synopsis
mdiag -n [-t partitionid][-A creds][-v][nodeid]

4.7.10.B Overview
The mdiag -n command provides detailed information about the state of nodes Moab is
currently tracking. This command also performs a large number of sanity and state checks.
The node configuration and status information and the results of the various checks are
presented by this command.

4.7.10.C Arguments

Flag Argument Description

[-A] {user|group|account|qos|class|job}:
<OBJECTID>

Report if each node is accessible by requested
job or credential.

[nodeid] Report on the specified node (default is all
nodes).

[-t] <partitionid> Report only nodes from specified partition.

[-v] --- Show verbose output (do not truncate columns
and add columns for additional node
attributes).

4.7.10.D Output
This command presents detailed node information in whitespace-delineated fields.

The output of this command can be extensive and the values for a number of fields can be
truncated. If truncated, the -v flag can be used to display full field content.

Column Format

Name <NODE NAME>

Chapter 4: Scheduler Commands

141 4.7 Moab Commands

4.7 Moab Commands 142

Column Format

State <NODE STATE>

Procs <AVAILABLE PROCS>:<CONFIGURED PROCS>

Memory <AVAILABLE MEMORY>:<CONFIGURED MEMORY>

Disk <AVAILABLE DISK>:<CONFIGURED DISK>

Swap <AVAILABLE SWAP>:<CONFIGURED SWAP>

Speed <RELATIVE MACHINE SPEED>

Opsys <NODE OPERATING SYSTEM>

Arch <NODE HARDWARE ARCHITECTURE>

Par <PARTITION NODE IS ASSIGNED TO>

Load <CURRENT 1 MINUTE BSD LOAD>

Rsv <NUMBER OF RESERVATIONS ON NODE>

Classes <CLASS NAME>

Network <NETWORK NAME>...

Features <NODE FEATURE>...

4.7.10.E Examples

> mdiag -n

compute node summary
Name State Procs Memory Opsys

opt-001 Busy 0:2 2048:2048 SUSE
opt-002 Busy 0:2 2048:2048 SUSE
opt-003 Busy 0:2 2048:2048 SUSE
opt-004 Busy 0:2 2048:2048 SUSE
opt-005 Busy 0:2 2048:2048 SUSE
opt-006 Busy 0:2 2048:2048 SUSE
WARNING: swap is low on node opt-006

Chapter 4: Scheduler Commands

opt-007 Busy 0:2 2048:2048 SUSE
opt-008 Busy 0:2 2048:2048 SUSE
opt-009 Busy 0:2 2048:2048 SUSE
opt-010 Busy 0:2 2048:2048 SUSE
opt-011 Busy 0:2 2048:2048 SUSE
opt-012 Busy 0:2 2048:2048 SUSE
opt-013 Busy 0:2 2048:2048 SUSE
opt-014 Busy 0:2 2048:2048 SUSE
opt-015 Busy 0:2 2048:2048 SUSE
opt-016 Busy 0:2 2048:2048 SUSE
x86-001 Busy 0:1 512:512 Redhat
x86-002 Busy 0:1 512:512 Redhat
x86-003 Busy 0:1 512:512 Redhat
x86-004 Busy 0:1 512:512 Redhat
x86-005 Idle 1:1 512:512 Redhat
x86-006 Idle 1:1 512:512 Redhat
x86-007 Idle 1:1 512:512 Redhat
x86-008 Busy 0:1 512:512 Redhat
x86-009 Down 1:1 512:512 Redhat
x86-010 Busy 0:1 512:512 Redhat
x86-011 Busy 0:1 512:512 Redhat
x86-012 Busy 0:1 512:512 Redhat
x86-013 Busy 0:1 512:512 Redhat
x86-014 Busy 0:1 512:512 Redhat
x86-015 Busy 0:1 512:512 Redhat
x86-016 Busy 0:1 512:512 Redhat
P690-001 Busy 0:1 16384:16384 AIX
P690-002 Busy 0:1 16384:16384 AIX
P690-003 Busy 0:1 16384:16384 AIX
P690-004 Busy 0:1 16384:16384 AIX
P690-005 Busy 0:1 16384:16384 AIX
P690-006 Busy 0:1 16384:16384 AIX
P690-007 Idle 1:1 16384:16384 AIX
P690-008 Idle 1:1 16384:16384 AIX
WARNING: node P690-008 is missing ethernet adapter
P690-009 Busy 0:1 16384:16384 AIX
P690-010 Busy 0:1 16384:16384 AIX
P690-011 Busy 0:1 16384:16384 AIX
P690-012 Busy 0:1 16384:16384 AIX
P690-013 Busy 0:1 16384:16384 AIX
P690-014 Busy 0:1 16384:16384 AIX
P690-015 Busy 0:1 16384:16384 AIX
P690-016 Busy 0:1 16384:16384 AIX
----- --- 6:64 745472:745472 -----

Total Nodes: 36 (Active: 30 Idle: 5 Down: 1)

Warning messages are interspersed with the node configuration information with all
warnings preceded by the keyword WARNING.

4.7.10.F XML Output
If XML output is requested (via the --format=xml argument), XML based node information
will be written to STDOUT in the following format:

mdiag -n --format=xml

Chapter 4: Scheduler Commands

143 4.7 Moab Commands

4.7 Moab Commands 144

<Data>
<node> <ATTR>="<VAL>" ... </node>
...

</Data>

4.7.10.G XML Attributes

Name Description

ACL Node Access Control List.

AGRES Available generic resources.

ALLOCRES Special allocated resources (like VLANs).

ARCH The node's processor architecture.

AVLCLASS Classes available on the node.

AVLETIME Time when the node will no longer be available (used in Utility
centers).

AVLSTIME Time when the node will be available (used in Utility centers).

CFGCLASS Classes configured on the node.

ENABLEPROFILING If true, a node's state and usage is tracked over time.

FEATURES A list of comma-separated custom features describing a node.

GEVENT A user-defined event that allows Moab to perform some action.

GMETRIC A list of comma-separated consumable resources associated with a
node.

GRES generic resources on the node.

HOPCOUNT How many hops the node took to reach this Moab (used in
hierarchical grids).

ISDELETED Node has been deleted.

Chapter 4: Scheduler Commands

Name Description

ISDYNAMIC Node is dynamic (used in Utility centers).

JOBLIST The list of jobs currently running on a node.

LOAD Current load as reported by the resource manager.

LOADWEIGHT Load weight used when calculating node priority.

MAXJOB See Node Policies for details.

MAXJOBPERUSER See Node Policies for details.

MAXLOAD See Node Policies for details.

MAXPROC See Node Policies for details.

MAXPROCPERUSER See Node Policies for details.

NETWORK The ability to specify which networks are available to a given node is
limited to only a few resource managers. Using the NETWORK
attribute, administrators can establish this node to network
connection directly through the scheduler. The NODECFG parameter
allows this list to be specified in a comma-delimited list.

NODEID The unique identifier for a node.

NODESTATE The state of a node.

OS A node's operating system.

OSLIST Operating systems the node can run.

OSMODACTION URL for changing the operating system.

OWNER Credential type and name of owner.

PARTITION The partition a node belongs to. See Node Location for details.

Chapter 4: Scheduler Commands

145 4.7 Moab Commands

4.7 Moab Commands 146

Name Description

POWER The state of the node's power. Either ON or OFF.

PRIORITY The fixed node priority relative to other nodes.

PROCSPEED A node's processor speed information specified in MHz.

RACK The rack associated with a node's physical location.

RADISK The total available disk on a node.

RAMEM The total available memory on a node.

RAPROC The total number of processors available on a node.

RASWAP The total available swap on a node.

RCMEM The total configured memory on a node.

RCPROC The total configured processors on a node.

RCSWAP The total configured swap on a node.

RequestID Dynamic Node RequestID set by the RM.

RESCOUNT Number of reservations on the node.

RESOURCES Deprecated (use GRES).

RSVLIST List of reservations on the node.

RMACCESSLIST A comma-separated list of resource managers who have access to a
node.

SIZE The number of slots or size units consumed by the node.

SLOT The first slot in the rack associated with the node's physical location.

SPEED A node's relative speed.

Chapter 4: Scheduler Commands

Name Description

SPEEDWEIGHT Speed weight used to calculate node's priority.

STATACTIVETIME Time node was active.

STATMODIFYTIME Time node's state was modified.

STATTOTALTIME Time node has been monitored.

STATUPTIME Time node has been up.

TASKCOUNT The number of tasks on a node.

TTL Dynamic Node Time To Live set by the RM (expiration date in epoch
format).

Related Topics

l checknode

4.7.11 mdiag -p

4.7.11.A Synopsis
mdiag -p [-t partition] [-v] [-v]

4.7.11.B Overview
The mdiag -p command is used to display at a glance information about the job priority
configuration and its effects on the current eligible jobs. The information presented by this
command includes priority weights, priority components, and the percentage contribution
of each component to the total job priority.

The command hides information about priority components that have been deactivated
(i.e., by setting the corresponding component priority weight to 0). For each displayed
priority component, this command gives a small amount of context sensitive information.
The following table documents this information. In all cases, the output is of the form

Chapter 4: Scheduler Commands

147 4.7 Moab Commands

4.7 Moab Commands 148

<PERCENT>(<CONTEXT INFO>) where <PERCENT> is the percentage contribution of
the associated priority component to the job's total priority.

By default, this command only shows information for jobs that are eligible for
immediate execution. Jobs that violate soft or hard policies, or have holds, job
dependencies, or other job constraints in place will not be displayed. If priority
information is needed for any of these jobs, use the -v flag or the checkjob command.

4.7.11.C Format

Flag Name Format Default Description Example

-t -t
partition

all
partitions

Constrain the report
to a particular
partition.

> mdiag -p -t
partition1

Display
priority
summary
information
for jobs in
partition1.

-v VERBOSE --- --- Display verbose
priority information.
If specified, display
priority breakdown
information for
blocked, eligible,
and active jobs.

By default,
only
information
for eligible
jobs is
displayed. To
view blocked
jobs in
addition to
eligible, run
mdiag -p -
v -v.

> mdiag -p -v

Display
priority
summary
information
for eligible
and active
jobs.

Chapter 4: Scheduler Commands

4.7.11.D Output

Priority
Component Format Description

Target <PERCENT>()

QOS <PERCENT>
(<QOS>:<QOSPRI>)

QOS— QOS associated with job
QOSPRI— Priority assigned to the QOS

FairShare <PERCENT>
(
<USR>
:
<GRP>
:<ACC>:<QOS>:<CLS>)

USR— user fs usage - user fs target
GRP— group fs usage - group fs target
ACC— account fs usage - account fs target
QOS— QOS fs usage - QOS fs target
CLS— class fs usage - class fs target

Service <PERCENT>
(<QT>:<XF>:<Byp>)

QTime— job queue time that is applicable
towards priority (in minutes)
XF— current theoretical minimum XFactor
is job were to start immediately
Byp— number of times job was bypassed
by lower priority jobs via backfill

Resource <PERCENT>
(
<NDE>:<PE>:<PRC>:<MEM>)

NDE— nodes requested by job
PE— Processor Equivalents as calculated
by all resources requested by job
PRC— processors requested by job
MEM— real memory requested by job

4.7.11.E Examples

Example 4-15: mdiag -p

diagnosing job priority information (partition: ALL)

Job PRIORITY* Cred(QOS) FS(Accnt) Serv(QTime)
Weights -------- 1(1) 1(1) 1(1)

13678 1321* 7.6(100.0) 0.2(2.7) 92.2(1218.)
13698 235* 42.6(100.0) 1.1(2.7) 56.3(132.3)
13019 8699 0.6(50.0) 0.3(25.4) 99.1(8674.)
13030 8699 0.6(50.0) 0.3(25.4) 99.1(8674.)
13099 8537 0.6(50.0) 0.3(25.4) 99.1(8512.)
13141 8438 0.6(50.0) 0.2(17.6) 99.2(8370.)
13146 8428 0.6(50.0) 0.2(17.6) 99.2(8360.)
13153 8360 0.0(1.0) 0.1(11.6) 99.8(8347.)

Chapter 4: Scheduler Commands

149 4.7 Moab Commands

4.7 Moab Commands 150

13177 8216 0.0(1.0) 0.1(11.6) 99.8(8203.)
13203 8127 0.6(50.0) 0.3(25.4) 99.1(8102.)
13211 8098 0.0(1.0) 0.1(11.6) 99.8(8085.)
...
13703 137 36.6(50.0) 12.8(17.6) 50.6(69.2)
13702 79 1.3(1.0) 5.7(4.5) 93.0(73.4)

Percent Contribution -------- 0.9(0.9) 0.4(0.4) 98.7(98.7)

* indicates system prio set on job

The mdiag -p command only displays information for priority components actually utilized. In the above example,
QOS, Account Fairshare, and QueueTime components are utilized in determining a job's priority. Other components,
such as Service Targets, and Bypass are not used and therefore are not displayed. See the Priority Overview for more
information. The output consists of a header, a job by job analysis of jobs, and a summary section.
The header provides column labeling and provides configured priority component and subcomponent weights. In the
above example, QOSWEIGHT is set to 1000 and FSWEIGHT is set to 100. When configuring fairshare, a site also
has the option of weighting the individual components of a job's overall fairshare, including its user, group, and
account fairshare components. In this output, the QoS and account fairshare weights are set to 1.
The job by job analysis displays a job's total priority and the percentage contribution to that priority of each of the
priority components. In this example, job 13019 has a total priority of 8699. Both QOS and Fairshare contribute to
the job's total priority although these factors are quite small, contributing 0.6% and 0.3% respectively with the
fairshare factor being contributed by an account fairshare target. For this job, the dominant factor is the service
subcomponent qtime, which is contributing 99.1% of the total priority since the job has been in the queue for
approximately 8600 minutes.
At the end of the job by job description, a Totals line is displayed, which documents the average percentage
contributions of each priority component to the current idle jobs. In this example, the QOS, Fairshare, and Service
components contributed an average of 0.9%, 0.4%, and 98.7% to the jobs' total priorities.

Related Topics

l Job Priority Overview

4.7.12 mdiag -q

4.7.12.A Synopsis
mdiag -q [qosid]

4.7.12.B Overview
The mdiag -q command is used to present information about each QOS maintained by
Moab. The information presented includes QOS name, membership, scheduling priority,
weights and flags.

Chapter 4: Scheduler Commands

4.7.12.C Examples

Example 4-16: Standard QOS Diagnostics

> mdiag -q
QOS Status
System QOS Settings: QList: DEFAULT (Def: DEFAULT) Flags: 0
Name * Priority QTWeight QTTarget XFWeight XFTarget QFlags
JobFlags Limits
DEFAULT 1 1 3 1 5.00 PREEMPTEE
[NONE] [NONE]
Accounts: it research
Classes: batch

[ALL] 0 0 0 0 0.00 [NONE]
[NONE] [NONE]
high 1000 1 2 1 10.00 PREEMPTOR
[NONE] [NONE]
Accounts: engineering it development research
Classes: fast

urgent 10000 1 1 1 7.00 PREEMPTOR
[NONE] [NONE]
Accounts: engineering it development

low 100 1 5 1 1.00 PREEMPTEE
[NONE] [NONE]
Accounts: engineering marketing it development research
Classes: long bigmem

4.7.13 mdiag -r

4.7.13.A Synopsis
mdiag -r [reservationid] [-v] [--blocking]

4.7.13.B Overview
The mdiag -r command allows administrators to look at detailed reservation
information. It provides the name, type, partition, starttime and endtime, proc and node
counts, as well as actual utilization figures. It also provides detailed information about
which resources are being used, how many nodes, how much memory, swap, and
processors are being associated with each task. Administrators can also view the Access
Control Lists for each reservation, as well as any flags that may be active in the reservation.
The command gathers information from the Moab cache, which prevents it from waiting for
the scheduler, but the --blocking option can be used to bypass the cache and allow
waiting for the scheduler.

Chapter 4: Scheduler Commands

151 4.7 Moab Commands

4.7 Moab Commands 152

4.7.13.C Examples

> mdiag -r
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
engineer.0.1 User A -6:29:00 INFINITY INFINITY 0 0
7

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==batch+:==long+:==fast+:==bigmem+ QOS==low-:==high+ JATTR==PREEMPTEE+
CL: RSV==engineer.0.1
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr10n01 fr10n03 fr10n05 fr10n07 fr10n09 fr10n11 fr10n13

fr10n15')
PH Allocated to Jobs: 43.77/45.44 (96.31%)
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 1:00:00:00 Days: ALL)

research.0.2 User A -6:29:00 INFINITY INFINITY 0 0
8

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==batch+:==long+:==fast+:==bigmem+ QOS==high+:==low- JATTR==PREEMPTEE+
CL: RSV==research.0.2
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr3n01 fr3n03 fr3n05 fr3n07 fr3n07 fr3n09 fr3n11 fr3n13

fr3n15')
PH Allocated to Jobs: 51.60/51.93 (99.36%)
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 1:00:00:00 Days: ALL)

fast.0.3 User A 00:14:05 5:14:05 5:00:00 0 0
16

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==fast+ QOS==high+:==low+:==urgent+:==DEFAULT+ JATTR==PREEMPTEE+
CL: RSV==fast.0.3
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr12n01 fr12n02 fr12n03 fr12n04 fr12n05 fr12n06 fr12n07

fr12n08 fr12n09 fr12n10 fr12n11 fr12n12 fr12n13 fr12n14 fr12n15 fr12n16')
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 5:00:00 Days:

Mon,Tue,Wed,Thu,Fri)
fast.1.4 User A 1:00:14:05 1:05:14:05 5:00:00 0 0
16

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==fast+ QOS==high+:==low+:==urgent+:==DEFAULT+ JATTR==PREEMPTEE+
CL: RSV==fast.1.4
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr12n01 fr12n02 fr12n03 fr12n04 fr12n05 fr12n06 fr12n07

fr12n08 fr12n09 fr12n10 fr12n11 fr12n12 fr12n13 fr12n14 fr12n15 fr12n16')
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 5:00:00 Days:

Mon,Tue,Wed,Thu,Fri)
job2411 Job A -00:01:00 00:06:30 Each tile contains a
summary information about the service it represents, including the following:

ACL: JOB==job2411=
CL: JOB==job2411 USER==jimf GROUP==newyork ACCT==it CLASS==bigmem QOS==low

JATTR==PREEMPTEE DURATION==00:07:30 PROC==6 PS==2700
job1292 Job A 00:00:00 00:07:30 00:07:30 0 0
4

ACL: JOB==job1292=
CL: JOB==job1292 USER==jimf GROUP==newyork ACCT==it CLASS==batch QOS==DEFAULT

JATTR==PREEMPTEE DURATION==00:07:30 PROC==4 PS==1800

Chapter 4: Scheduler Commands

Example 4-17:

With the -v option, a nodes line is included for each reservation and shows how many
nodes are in the reservation, as well as how many tasks are on each node.

> mdiag -r -v
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
Moab.6 Job B -00:01:05 00:00:35 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.6=
CL: JOB==Moab.6 USER==tuser1 GROUP==tgroup1 CLASS==fast QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node002:1'
Rsv-Group: Moab.6

Moab.4 Job B -00:01:05 00:00:35 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.4=
CL: JOB==Moab.4 USER==tuser1 GROUP==tgroup1 CLASS==batch QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node002:1'
Rsv-Group: Moab.4

Moab.5 Job A -00:01:05 00:00:35 00:01:40 3 3
6

Flags: ISACTIVE
ACL: JOB==Moab.5=
CL: JOB==Moab.5 USER==tuser1 GROUP==tgroup1 ACCT==marketing CLASS==long

QOS==low JPRIORITY<=0 DURATION==00:01:40 PROC==6 PS==600
Task Resources: PROCS: [ALL]
SubType: JobReservation
Nodes='node008:1,node007:1,node006:1'
Rsv-Group: Moab.5

Moab.7 Job A -00:01:04 00:00:36 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.7=
CL: JOB==Moab.7 USER==tuser1 GROUP==tgroup1 CLASS==bigmen QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node005:1'
Rsv-Group: Moab.7

Moab.2 Job A -00:01:07 3:58:53 4:00:00 1 2
2

Flags: ISACTIVE
ACL: JOB==Moab.2=
CL: JOB==Moab.2 USER==tuser1 GROUP==tgroup1 QOS==starter JPRIORITY<=0

DURATION==4:00:00 PROC==2 PS==28800
SubType: JobReservation
Nodes='node009:1'
Rsv-Group: Moab.2

Chapter 4: Scheduler Commands

153 4.7 Moab Commands

4.7 Moab Commands 154

Moab.8 Job A 3:58:53 7:58:53 4:00:00 8 16
16

Flags: PREEMPTEE
ACL: JOB==Moab.8=
CL: JOB==Moab.8 USER==tuser1 GROUP==tgroup1 ACCT==development CLASS==bigmen

QOS==starter JPRIORITY<=0 DURATION==4:00:00 PROC==16 PS==230400
SubType: JobReservation

Nodes='node009:1,node008:1,node007:1,node006:1,node005:1,node004:1,node003:1,node001:
1'

Attributes (Priority=148)
Rsv-Group: idle

system.3 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.3=
CL: RSV==system.3
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node254:1'
Attributes (HostExp='node254')
PH Allocated to Jobs: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

system.2 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.2=
CL: RSV==system.2
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node255:1'
Attributes (HostExp='node255')
PH Allocated to Jobs: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

system.1 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.1=
CL: RSV==system.1
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node256:1'
Attributes (HostExp='node256')
PH Allocated to Jobs: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

Chapter 4: Scheduler Commands

4.7.14 mdiag -R

4.7.14.A Synopsis
mdiag -R [-v] [-v] [resourcemanagerid]

4.7.14.B Overview
The mdiag -R command is used to present information about configured resource
managers. The information presented includes name, host, port, state, type, performance
statistics and failure notifications.

4.7.14.C Examples

> $ mdiag -R -v
diagnosing resource managers

RM[internal] State: --- Type: SSS ResourceType: COMPUTE
Max Fail/Iteration: 0
JobCounter: 6
Partition: SHARED
RM Performance: AvgTime=0.00s MaxTime=0.00s (55353 samples)
RM Languages: -
RM Sub-Languages: -

RM[torque] State: Active Type: PBS ResourceType: COMPUTE
Timeout: 30000.00 ms
Version: '4.2.4'
Job Submit URL: exec:///opt/torque-4.2/bin/qsub
Objects Reported: Nodes=1 (12 procs) Jobs=1
Nodes Reported: 1 (N/A)
Flags: executionServer
Partition: torque
Event Management: EPORT=15004 (last event: 00:03:07)
NOTE: SSS protocol enabled
Submit Command: /opt/torque-4.2/bin/qsub
DefaultClass: batch
Total Jobs Started: 1
RM Performance: AvgTime=0.00s MaxTime=35.00s (220097 samples)
RM Languages: PBS
RM Sub-Languages: PBS

RM[torque] Failures:
clusterquery (683 of 55349 failed)

-12days 'cannot connect to PBS server '' (pbs_errno=15033, 'Batch protocol
error')'

NOTE: use 'mrmctl -f messages <RMID>' to clear stats/failures

RM[FLEXlm] State: Active Type: NATIVE ResourceType: LICENSE
Timeout: 30000.00 ms
Cluster Query URL: exec://$TOOLSDIR/flexlm/license.mon.flexLM.pl
Licenses Reported: 6 types (250 of 282 available)
Partition: SHARED
License Stats: Avg License Avail: 239.01 (978 iterations)
Iteration Summary: Idle: 396.42 Active: 150.92 Busy: -447.34
License biocol 50 of 50 available (Idle: 100.00% Active: 0.00%)

Chapter 4: Scheduler Commands

155 4.7 Moab Commands

4.7 Moab Commands 156

License cloudform 100 of 100 available (Idle: 100.00% Active: 0.00%)
License mathworks 8 of 25 available (Idle: 52.00% Active: 48.00%)
License verity 25 of 25 available (Idle: 100.00% Active: 0.00%)
Event Management: (event interface disabled)
RM Performance: AvgTime=0.00s MaxTime=0.61s (1307618 samples)

clusterquery: AvgTime=0.02s MaxTime=0.61s (9465 samples)
queuequery: AvgTime=0.00s MaxTime=0.00s (1 samples)

rminitialize: AvgTime=0.00s MaxTime=0.00s (1 samples)
getdata: AvgTime=0.17s MaxTime=0.60s (978 samples)

RM Languages: NATIVE
RM Sub-Languages: NATIVE

AM[mam] Type: MAM State: 'Active'
Host: localhost
Port: 7112
Timeout: 15
Accounting Mode: strict-allocation
Job Charge Policy: All
Reservation Charge Policy: Select
Retry Failed Charges: TRUE

AM[mam] Failures:
Thu Jun 21 14:32:45 Create 'Failure registering job Create (1) with

accounting manager -- server rejected request with status code 740 - Insufficient
funds: There are no valid allocations to satisfy the quote'

4.7.15 mdiag -s

4.7.15.A Synopsis
mdiag -s [reservationid] [-v]>]

4.7.15.B Overview
The mdiag -s command allows administrators to look at detailed standing reservation
information. It provides the name, type, partition, starttime and endtime, period, task count,
host list, and a list of child instances.

4.7.15.C Examples

> mdiag -s

Chapter 4: Scheduler Commands

standing reservation overview
RsvID Type Par StartTime EndTime Duration Period
----- ---- --- --------- ------- -------- ------

TestSR User --- 00:00:00 --- 00:00:00 DAY
Days: ALL
Depth: 2
RsvList: testSR.1,testSR.2,testSR.3
HostExp: 'node1,node2,node4,node8'

test2 User --- 00:00:00 --- 00:00:00 DAY
Days: ALL
TaskCount: 4
Depth: 1
RsvList: test2.4,test2.5

4.7.16 mdiag -S

4.7.16.A Synopsis
mdiag -S [-v] [-v]

4.7.16.B Overview
The mdiag -S command is used to present information about the status of the scheduler
and grid interface.

This command will report on the following aspects of scheduling:

l General Scheduler Configuration
o Reports short and long term scheduler load
o Reports detected overflows of node, job, reservation, partition, and other
scheduler object tables

l High Availability
o Configuration
o Reports health of HA primary
o Reports health of HA backup

l Scheduling Status
o Reports if scheduling is paused
o Reports if scheduling is stopped

Chapter 4: Scheduler Commands

157 4.7 Moab Commands

4.7 Moab Commands 158

l System Reservation Status
o Reports if global system reservation is active

l Message Profiling/Statistics Status

l Moab scheduling activities (only with mdiag -S -v -v)
o Activity[JobStart]: Time Moab spends telling the RM to start a job and waiting
for a response.

o Activity[RMResourceLoad]: Time Moab spends querying license managers and
nodes.

o Activity[RMWorkloadLoad]: Time Moab spends querying resource managers
about jobs (as opposed to nodes)

o Activity[Schedule]: Time Moab spends prioritizing jobs and scheduling them
onto nodes.

o Activity[UIProcess]: Time Moab spends handling client commands.

4.7.16.C Examples

Example 4-18:

> mdiag -S
Moab Server running on orion-1:43225 (Mode: NORMAL)
Load(5m) Sched: 12.27% RMAction: 1.16% RMQuery: 75.30% User: 0.29% Idle: 10.98%
Load(24h) Sched: 10.14% RMAction: 0.93% RMQuery: 74.02% User: 0.11% Idle: 13.80%
HA Fallback Server: orion-2:43225 (Fallback is Ready)
Note: system reservation blocking all nodes
Message: profiling enabled (531 of 600 samples/5:00 interval)

4.7.17 mdiag -t

4.7.17.A Synopsis
mdiag -t [-v] [-v] [partitionid]

4.7.17.B Overview
The mdiag -t command is used to present configuration, usage, health, and diagnostic
information about partitions maintained by Moab. The information presented includes
partition name, limits, configured and available resources, allocation weights and policies.

Chapter 4: Scheduler Commands

4.7.17.C Examples

Example 4-19: Standard partition diagnostics

> mdiag -t
Partition Status
...

4.7.18 mdiag -T

4.7.18.A Synopsis
mdiag -T [triggerid] [-v] [--blocking]

4.7.18.B Overview
The mdiag -T command is used to present information about each Trigger. The
information presented includes TrigID, Object ID, Event (Etype) TType, Attype, ActionDate,
State. The command gathers information from the Moab cache, which prevents it from
waiting for the scheduler, but the --blocking option can be used to bypass the cache
and allow waiting for the scheduler.

4.7.18.C Examples

> mdiag -T
TrigID Object ID Event TType AType ActionDate
State
--------------------- -------------------- -------- -------- ----- -------------- ----

sched_trig.0 sched:Moab end generic exec -
Blocked
3 node:node010 threshol generic exec -
Blocked
5 job:Moab.7 preempt generic exec -
Blocked
6 job:Moab.8 preempt generic exec -
Blocked
7 qos:HIGH threshol elastic exec -
Blocked
4* job:Moab.5 start generic exec 0:00:36
Failure
* indicates trigger has completed

Example 4-20:

> mdiag -T -v

Chapter 4: Scheduler Commands

159 4.7 Moab Commands

4.7 Moab Commands 160

TrigID Object ID Event TType AType
ActionDate State
--------------------- -------------------- -------- -------- ------- ----------------
---- -----------
sched_trig.0 sched:Moab end generic exec
- Blocked
Name: sched_trig
Flags: globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: date
NOTE: trigger can launch

3 node:node010 threshol generic exec
- Blocked
Flags: globaltrig
BlockUntil: INFINITY ActiveTime: ---
Threshold: CPULoad > 3.00 (current value: 0.00)
Action Data: date
NOTE: trigger cannot launch - threshold not satisfied - threshold type not

supported

5 job:Moab.7 preempt generic exec
- Blocked
Flags: user,globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME

6 job:Moab.8 preempt generic exec
- Blocked
Flags: user,globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME
NOTE: trigger cannot launch - parent job Moab.8 is in state Idle

7 qos:HIGH threshol elastic exec
- Blocked
Flags: multifire,globaltrig
BlockUntil: INFINITY ActiveTime: ---
Timeout: 00:05:00
Threshold: BacklogCompletionTime > 500.00 (current value: 0.00)
Trigger Type: elastic
RearmTime: 00:00:10
Action Data: $HOME/geometry.pl $REQUESTGEOMETRY
NOTE: trigger cannot launch - threshold not satisfied - threshold not satisfied -

requires usage 0.000000 > 500.000000

4* job:Moab.5 start generic exec Mon Jan 16
12:33:00 Failure
Launch Time: -00:02:17
Flags: globaltrig
Last Execution State: Failure (ExitCode: 0)
BlockUntil: 00:00:00 ActiveTime: 00:00:00
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME
ALERT: trigger failure detected
Message: 'exec '/usr/test/moab/tools/preemptnotify.pl' cannot be located or is

not executable'

* indicates trigger has completed

Chapter 4: Scheduler Commands

4.7.19 mdiag -u

4.7.19.A Synopsis
mdiag -u [userid]

4.7.19.B Overview
The mdiag -u command is used to present information about user records maintained
by Moab. The information presented includes user name, UID, scheduling priority, default
job flags, default QOS level, List of accessible QOS levels, and list of accessible partitions.

4.7.19.C Examples

> mdiag -u
evaluating user information
Name Priority Flags QDef QOSList* PartitionList
Target Limits

jvella 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Engineering
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

[NONE] 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
reynolds 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Administration
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

mshaw 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Test
Message: profiling enabled (584 of 3000 samples/00:15:00 interval)

kforbes 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Shared
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

gastor 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Engineering
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

Note that only users who have jobs that are currently queued or have been queued since
Moab was most recently started are listed.

Related Topics

l showstats command (display user statistics)

Chapter 4: Scheduler Commands

161 4.7 Moab Commands

4.7 Moab Commands 162

4.7.20 mjobctl

4.7.20.A Synopsis
mjobctl -c jobexp

mjobctl -c -w [jobexp] attr=val

mjobctl -C jobexp

mjobctl -e jobid

mjobctl -F jobexp

mjobctl -h [User|System|Batch|Defer|All] jobexp

mjobctl -m attr{+=|=|-=}val jobexp [--flags=force]

mjobctl -N [<SIGNO>] jobexp

mjobctl -p <PRIORITY> jobexp

mjobctl -q {diag|starttime|hostlist} jobexp

mjobctl -r jobexp

mjobctl -R jobexp [--flags=force | unmigrate

mjobctl -s jobexp

mjobctl -u jobexp

mjobctl -w attr{+=|=|-=}val jobexp

mjobctl -x [-w flags=val jobexp

[--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.20.B Overview
The mjobctl command controls various aspects of jobs. It is used to submit, cancel,
execute, and checkpoint jobs. It can also display diagnostic information about each job. The
mjobctl command enables the Moab administrator to control almost all aspects of job
behavior. See General Job Administration for more details on jobs and their attributes.

Chapter 4: Scheduler Commands

4.7.20.C Options

-c - Cancel

Format JOBEXP

Description Cancel a job.

Use -w (following a -c flag) to specify job cancellation according to given
credentials or job attributes. See -c -w for more information.

You can use mjobctl -c flags=follow-dependency <job_id> to
cancel all jobs that the <job_id> depends on.

If you want to cancel all jobs that depend on this <job_id>, add
FLAGS=CANCELFAILEDDEPENDENCYJOBS to your SCHEDCFG entry
in moab.cfg file. See CANCELFAILEDDEPENDENCYJOBS for more
information.

Example > mjobctl -c job1045

Cancel job job1045.

-c -w - Cancel Where

Format [JOBEXP] <ATTR>=<VALUE>

where <ATTR>=[user | account | qos | class | reqreservation (RsvName) |
state (JobState) | jobname (JobName, not job ID)] | partition

Description Cancel a job based on a given credential or job attribute. Use -w following a -c
flag to specify job cancellation according to credentials or job attributes (see
examples) .
See Job States for a list of all valid job states.
Also, you can cancel jobs from given partitions using -w
partition=<PAR1>[<PAR2>...]]; however, you must also either use
another -w flag to specify a job or use the standard job expression.

Example > mjobctl -c -w state=USERHOLD

Cancels all jobs that currently have a USERHOLD on them.

> mjobctl -c -w user=user1 -w acct=acct1

Chapter 4: Scheduler Commands

163 4.7 Moab Commands

4.7 Moab Commands 164

-c -w - Cancel Where

Cancels all jobs assigned to user1 or acct1.

> mjobctl -c moab.48655 -w state=IDLE

Cancels job moab.48655, if it is idle.

-C - Checkpoint

Format JOBEXP

Description Checkpoint a job. See Checkpoint/Restart Facilities for more information.

Example > mjobctl -C job1045

Checkpoint job job1045.

-e - Rerun

Format JOBID

Description Rerun the completed Torque job. This works only for jobs that are completed
and show up in Torque as completed. This flag does not work with other
resource managers.

Example > mjobctl -e job1045

Rerun job job1045.

-F - Force Cancel

Format JOBEXP

Description Forces a job to cancel and ignores previous cancellation attempts.

Chapter 4: Scheduler Commands

-F - Force Cancel

Specifying this option tells Moab to purge a job from Torque
(equivalent to qdel -p). This only tells pbs_server to remove any

knowledge of the job from its internal memory. If the job is actually
running, this will not cause pbs_server to tell the nodes with the job to
cancel it. Therefore, users and administrators should only use this form
of mjobctl when they've confirmed that the job no longer exists on any
compute nodes, and want to force Torque to stop tracking the job.

Example > mjobctl -F job1045

Force cancel job job1045.

-h - Hold

Format <HOLDTYPE><JOBEXP>

<HOLDTYPE> = { user | batch | system | defer | ALL }

Default user

Description Set or release a job hold.

See Job Holds for more information

Example > mjobctl -h user job1045

Set a user hold on job job1045.

> mjobctl -u all job1045

Unset all holds on job job1045.

-m - Modify

Format <ATTR>{ += | =| -= } <VAL>

When using mjobctl -m with the hostlist attribute, only "=" is
supported.

Chapter 4: Scheduler Commands

165 4.7 Moab Commands

4.7 Moab Commands 166

-m - Modify

If using Torque and mjobctl -m with the partition attribute, only "="
is supported. "+=", "-=", and "=" are supported with other resource
managers (Native).

<ATTR>={ account | advres | arraylimit | awduration| class | cpuclock |
deadline | depend | eeduration | env | features | feature | flags | gres | group |
hold | hostlist | jobdisk | jobmem | jobname | jobswap | loglevel | maxmem |
messages | minstarttime | nodeaccess | nodecount | notificationaddress |
partition | priority | queue | qos | reqreservation | rmxstring | reqattr
| reqawduration | sysprio | tpn | trig | trigvar | user | userprio | var | wclimit}

Description Modify a specific job attribute.

If an mjobctl -m attribute can affect how a job starts, then it
generally cannot affect a job that is already running. For example, it is
not feasible to change the hostlist of a job that is already running.

The userprio attribute allows you to specify user priority. For job priority, use
the '-p' flag.
Modification of the job dependency is also communicated to the resource
manager in the case of PBS/Torque.
Adding --flags=warnifcompleted causes a warning message to print
when a job completes.
To define values for awduration, eeduration, minstarttime (Note
that the minstarttime attribute performs the same function as msub -a.),
reqawduration, and wclimit, use the time spec format.
A non-active job's partition list can be modified. If using Torque, only "=" (set)
is supported. If using a Native resource manager you can add or subtract
partitions, even multiple partitions. When adding or subtracting multiple
partitions, each partition must have its own -m partition{+= | = | -
=}name on the command line. An example for adding multiple partitions is
provided in the list of examples.
To modify a job's generic resources, use the following format: gres{ += |
= | -= } <gresName>[:<count>]. <gresName> is a single resource,
not a list. <count> is an integer that, if not specified, is assumed to be 1.
Modifying a job's generic resources causes Moab to append the new gres (+=),
subtract the specified gres (-=), or clear out all existing generic resources
attached to the job and override them with the newly-specified one (=). If
<gresName> is an empty string, all generic resources will be removed from
the job.
To modify the node access policy for a queued job, use nodeaccess=
[<policy>]. See 5.3 Node Access Policies - page 366 for a list of supported
node access policies.

Chapter 4: Scheduler Commands

-m - Modify

Example > mjobctl -m messages+="Adding a message" --flags=completed 1664

Set the message on the job, even if the job is completed.

> mjobctl -m reqawduration+=600 1664

Add 10 minutes to the job walltime.

> mjobctl -m eeduration=-1 1664

Reset job's effective queue time, to when the job was submitted.

> mjobctl -m var=Flag1=TRUE 1664

Set the job variable Flag1 to TRUE.

> mjobctl -m notificationaddress="name@server.com"

Sets the notification email address associated with a job to
name@server.com.

> mjobctl -m partition+=p3 -m partition+=p4 Moab.5

Adds multiple partitions (p3 and p4) to job Moab.5.
Torque only supports "=" . "+=", "-=", and "=" are supported with
other resource managers (Native).

> mjobctl -m arraylimit=10 sim.25

Changes the concurrently running subjob limit to 10 for array
sim.25.

> mjobctl -m gres=matlab:1 job0201

Overrides all generic resources applied to job job0201 and
replaces them with 1 matlab.

> mjobctl -m user=user.job

Modifies the user of a job that was submitted directly to moab
(msub) and has not yet been migrated.

> mjobctl -m userprio-=100 Moab.4

Reduces the user priority of Moab.4 by 100.

> mjobctl -m tpn=2 Moab.128

Changes the requested "tasks per node" for job Moab.128 to 2.

Chapter 4: Scheduler Commands

167 4.7 Moab Commands

4.7 Moab Commands 168

-m - Modify

> mjobctl -m maxmem=80mb 157

Modifies the total job memory of job 157. See MAXMEM - page 674
for more information.

-N - Notify

Format [signal=]<SIGID>JOBEXP

Description Send a signal to all jobs matching the job expression.

Example > mjobctl -N INT 1664

Send an interrupt signal to job 1664.

> mjobctl -N 47 1664

Send signal 47 to job 1664.

-p - Priority

Format [+|+=|-=]<VAL><JOBID> [--flags=relative]

Description Modify a job's system priority.

Example Priority is the job priority plus the system priority. Each format affects the job
and system priorities differently. Using the format <VAL><JOBID> or
+<VAL><JOBID> will set the system priority to the maximum system priority
plus the specified value. Using +=<VAL><JOBID> or <VAL><JOBID> --
flags=relative will relatively increase the job's priority and set the
system priority. Using the format -=<VAL> <JOBID> sets the system
priority to 0, and does not change priority based on <VAL> (it will not
decrease priority by that number).
For the following example, job1045 has a priority of 10, which is composed
of a job priority of 10 and a system priority of 0.

> mjobctl -p +1000 job1045

The system priority changes to the max system priority plus 1000
points, ensuring that this job will be higher priority than all normal
jobs. In this case, the job priority of 10 is not added, so the priority
of job1045 is now 1000001000.

Chapter 4: Scheduler Commands

-p - Priority

> mjobctl -p -=1 job1045

The system priority of job1045 resets to 0. The job priority is still
10, so the overall priority becomes 10.

> mjobctl -p 3 job1045 --flags=relative

Adds 3 points to the relative system priority. The priority for
job1045 changes from 10 to 13.

-q - Query

Format [diag(ALL)| hostlist | starttime| template] <JOBEXP>

Description Query a job.

Example > mjobctl -q diag job1045

Query job job1045.

> mjobctl -q diag ALL --format=xml

Query all jobs and return the output in machine-readable XML.

> mjobctl -q starttime job1045

Query the estimated starttime of job job1045. The method used to
estimate the start time can be specified by adding the --flags option
with a value of prio, rsv, hist or all. If the --flags option is not
specified, the value of the DEFAULTSTARTTIMEQUERY parameter
will determine the default estimation method to be used -- which
defaults to PRIORITY.

> mjobctl -q template <job>

Query job templates. If the <job> is set to ALL or empty, it will
return information for all job templates.

> mjobctl -q wiki <jobName>

Query a job with the output displayed in a WIKI string. The job's
name can be replaced with ALL.

--flags=completed will only work with the diag option.

Chapter 4: Scheduler Commands

169 4.7 Moab Commands

4.7 Moab Commands 170

-r - Resume

Format JOBEXP

Description Resume a job.

Example > mjobctl -r job1045

Resume job
job1045.

-R - Requeue

Format JOBEXP [--flags=force|unmigrate]

Description Requeue a job.
Adding --flags=force forces an asynchronous requeue on Torque systems.
Adding --flags=unmigrate causes Moab to pull a grid job back to the
central scheduler for further evaluation on all valid partitions.

Example > mjobctl -R job1045

Requeue job job1045.

-s - Suspend

Format JOBEXP

Description Suspend a job. For more information, see Suspend/Resume Handling.

Example > mjobctl -s job1045

Suspend job job1045.

-u - Unhold

Format [<TYPE>[,<TYPE>]]JOBEXP

<TYPE> = [user | system | batch | defer | ALL]

Chapter 4: Scheduler Commands

-u - Unhold

Default ALL

Description Release a hold on a job. See Job Holds for more information.

Example > mjobctl -u user,system scrib.1045

Release user and system holds on job
scrib.1045.

-w - Where

Format [CompletionTime | StartTime][<= | = | >=]<EPOCH_TIME>

Description Add a where constraint clause to the current command. As it pertains to
CompletionTime | StartTime, the where constraint only works for
completed jobs. CompletionTime filters according to the completed jobs'
completion times; StartTime filters according to the completed jobs' start
times.

Example > mjobctl -q diag ALL --flags=COMPLETED --format=xml
-w CompletionTime>=1246428000 -w CompletionTime<=1254376800

Prints all completed jobs still in memory that completed between
July 1, 2009 and October 1, 2009.

-x - Execute

Format JOBEXP

Description Execute a job. The -w option allows flags to be set for the job. Allowable flags
are, ignorepolicies, ignorenodestate, and ignorersv.

Example > mjobctl -x job1045

Execute job job1045.

> mjobctl -x -w flags=ignorepolicies job1046

Execute job job1046 and ignore policies, such as MaxJobPerUser.

Chapter 4: Scheduler Commands

171 4.7 Moab Commands

4.7 Moab Commands 172

4.7.20.D Parameters

JOB EXPRESSION

Format <STRING>

Descriptio
n

The name of a job or a regular expression for several jobs. The flags that
support job expressions can use node expression syntax as described in Node
Selection. Using x: indicates the following string is to be interpreted as a
regular expression, and using r: indicates the following string is to be
interpreted as a range. Job expressions do not work for array subjobs.

Moab uses regular expressions conforming to the POSIX 1003.2 standard.
This standard is somewhat different than the regular expressions
commonly used for filename matching in UNIX environments (see man 7
regex). To interpret a job expression as a regular expression, use x:.

In most cases, it is necessary to quote the job expression (for example,
job13[5-9]) to prevent the shell from intercepting and interpreting
the special characters.

The mjobctl command accepts a comma-delimited list of job
expressions. Example usage might be mjobctl -r job[1-2],job4
or mjobctl -c job1,job2,job4.

Example > mjobctl -c "x:80.*"
job '802' cancelled
job '803' cancelled
job '804' cancelled
job '805' cancelled
job '806' cancelled
job '807' cancelled
job '808' cancelled
job '809' cancelled

Cancel all jobs starting with 80.

> mjobctl -m priority+=200 "x:74[3-5]"
job '743' system priority modified
job '744' system priority modified
job '745' system priority modified

> mjobctl -h x:17.*
This puts a hold on any job that has a 17 that is followed by an unlimited
amount of any
character and includes jobs 1701, 17mjk10, and 17DjN_JW-07

> mjobctl -h r:1-17
This puts a hold on jobs 1 through 17.

Chapter 4: Scheduler Commands

4.7.20.E XML Output
mjobctl information can be reported as XML as well. This is done with the command
mjobctl -q diag <JOB_ID>.

XML Attributes

Name Description

Account The account assigned to the job

AllocNodeList The nodes allocated to the job

Args The job's executable arguments

AWDuration The active wall time consumed

BlockReason The block message index for the reason the job is not eligible

Bypass Number of times the job has been bypassed by other jobs

Calendar The job's timeframe constraint calendar

Class The class assigned to the job

CmdFile The command file path

CompletionCode The return code of the job as extracted from the RM

CompletionTime The time of the job's completion

Cost The cost of executing the job relative to an accounting manager

CPULimit The CPU limit for the job

Depend Any dependencies on the status of other jobs

DRM The master destination RM

DRMJID The master destination RM job ID

Chapter 4: Scheduler Commands

173 4.7 Moab Commands

4.7 Moab Commands 174

Name Description

EEDuration The duration of time the job has been eligible for scheduling

EFile The stderr file

Env The job's environment variables set for execution

EnvOverride The job's overriding environment variables set for execution

EState The expected state of the job

EstHistStartTime The estimated historical start time

EstPrioStartTime The estimated priority start time

EstRsvStartTime The estimated reservation start time

ExcHList The excluded host list

Flags Command delimited list of Moab flags on the job

GAttr The requested generic attributes

GJID The global job ID

Group The group assigned to the job

Hold The hold list

Holdtime The time the job was put on hold

HopCount The hop count between the job's peers

HostList The requested host list

IFlags The internal flags for the job

IsInteractive If set, the job is interactive

Chapter 4: Scheduler Commands

Name Description

IsRestartable If set, the job is restartable

IsSuspendable If set, the job is suspendable

IWD The directory where the job is executed

JobID The job's batch ID.

JobName The user-specified name for the job

JobGroup The job ID relative to its group

LogLevel The individual log level for the job

MasterHost The specified host to run primary tasks on

Messages Any messages reported by Moab regarding the job

MinPreemptTime The minimum amount of time the job must run before being eligible for
preemption

Notification Any events generated to notify the job's user

OFile The stdout file

OldMessages Any messages reported by Moab in the old message style regarding the
job

OWCLimit The original wallclock limit

PAL The partition access list relative to the job

QueueStatus The job's queue status as generated this iteration

QOS The QoS assigned to the job

QOSReq The requested QoS for the job

ReqAWDuration The requested active walltime duration

Chapter 4: Scheduler Commands

175 4.7 Moab Commands

4.7 Moab Commands 176

Name Description

ReqCMaxTime The requested latest allowed completion time

ReqMem The total memory requested/dedicated to the job

ReqNodes The number of requested nodes for the job

ReqProcs The number of requested procs for the job

ReqReservation The required reservation for the job

ReqRMType The required RM type

ReqSMinTime The requested earliest start time

RM The master source resource manager

RMXString The resource manager extension string

RsvAccess The list of reservations accessible by the job

RsvStartTime The reservation start time

RunPriority The effective job priority

Shell The execution shell's output

SID The job's system ID (parent cluster)

Size The job's computational size

STotCPU The average CPU load tracked across all nodes

SMaxCPU The max CPU load tracked across all nodes

STotMem The average memory usage tracked across all nodes

SMaxMem The max memory usage tracked across all nodes

Chapter 4: Scheduler Commands

Name Description

SRMJID The source RM's ID for the job

StartCount The number of the times the job has tried to start

StartPriority The effective job priority

StartTime The most recent time the job started executing

State The state of the job as reported by Moab

StatMSUtl The total number of memory seconds utilized

StatPSDed The total number of processor seconds dedicated to the job

StatPSUtl The total number of processor seconds utilized by the job

StdErr The path to the stderr file

StdIn The path to the stdin file

StdOut The path to the stdout file

StepID StepID of the job (used with LoadLeveler systems)

SubmitHost The host where the job was submitted

SubmitLanguage The RM language that the submission request was performed

SubmitString The string containing the entire submission request

SubmissionTime The time the job was submitted

SuspendDuration The amount of time the job has been suspended

SysPrio The admin specified job priority

SysSMinTime The system specified min. start time

Chapter 4: Scheduler Commands

177 4.7 Moab Commands

4.7 Moab Commands 178

Name Description

TaskMap The allocation taskmap for the job

TermTime The time the job was terminated

User The user assigned to the job

UserPrio The user specified job priority

UtlMem The utilized memory of the job

UtlProcs The number of utilized processors by the job

Variable

VWCTime The virtual wallclock limit

4.7.20.F Examples

Example 4-21:

> mjobctl -q diag ALL --format=xml
<Data><job AWDuration="346" Class="batch" CmdFile="jobsleep.sh" EEDuration="0"
EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test" JobID="11578"
QOS="high"
RMJID="11578.lolo.icluster.org" ReqAWDuration="00:10:00" ReqNodes="1" ReqProcs="1"
StartCount="1"
StartPriority="1" StartTime="1083861225" StatMSUtl="903.570" StatPSDed="364.610"
StatPSUtl="364.610"
State="Running" SubmissionTime="1083861225" SuspendDuration="0" SysPrio="0"
SysSMinTime="00:00:00"
User="test"><req AllocNodeList="hana" AllocPartition="access" ReqNodeFeature="[NONE]"
ReqPartition="access"></req></job><job AWDuration="346" Class="batch"
CmdFile="jobsleep.sh"
EEDuration="0" EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test"
JobID="11579"
QOS="high" RMJID="11579.lolo.icluster.org" ReqAWDuration="00:10:00" ReqNodes="1"
ReqProcs="1"
StartCount="1" StartPriority="1" StartTime="1083861225" StatMSUtl="602.380"
StatPSDed="364.610"
StatPSUtl="364.610" State="Running" SubmissionTime="1083861225" SuspendDuration="0"
SysPrio="0"
SysSMinTime="00:00:00" User="test"><req AllocNodeList="lolo" AllocPartition="access"
ReqNodeFeature="[NONE]" ReqPartition="access"></req></job></Data>

Chapter 4: Scheduler Commands

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l setspri

l canceljob

l runjob

4.7.21 mnodectl

4.7.21.A Synopsis
mnodectl -m attr{=|-=|+=}val nodeexp
mnodectl -q [cat|diag|profile|wiki] nodeexp
[--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.21.B Overview
Change specified attributes for a given node expression.

4.7.21.C Access
By default, this command can be run by any Moab Administrator.

4.7.21.D Options

-m - Modify

Format <ATTR>{=|-=|+=}<VAL>

Where <ATTR> is one of the following:
CFGCLASS,
FEATURES
GEVENT,

Chapter 4: Scheduler Commands

179 4.7 Moab Commands

4.7 Moab Commands 180

-m - Modify

GMETRIC,
MESSAGE,
OS,
POWER,
STATE,
VARIABLE
and -=, except when used for features, clears the attribute instead of
decrementing the attribute's value and = indicates that you are specifying a
new value to replace the old one(s), if any.
When the -= option is used to modify features, it removes the specified
features from the node. The += option, which is only available for features,
allows you to append additional features to the current list rather than
replacing the current list entirely.

Changing OS and POWER require a Moab Adaptive Computing Suite
license and a provisioning resource manager.

Description Modify the state or attribute of specified node(s).

Example > mnodectl -m cfgclass-=debug node1
> mnodectl -m features+=fastio,highmem node1
> mnodectl -m gevent=cpufail:'cpu02 has failed w/ec:0317' node1
> mnodectl -m gmetric=temp:131.2 node1
> mnodectl -m message='cpufailure:cpu02 has failed w/ec:0317' node1
> mnodectl -m OS=RHAS30 node1
> mnodectl -m power=off node1
> mnodectl -m state=idle node1
> mnodectl -m variable=IP=10.10.10.100,Location=R1S2 node1

-q - Query

Format {cat | diag | profile | wiki}

Description Query node categories or node profile information (see ENABLEPROFILING for
nodes).

The diag and profile options must use --xml.

Example

Chapter 4: Scheduler Commands

-q - Query

> mnodectl -q cat ALL
node categorization stats from Mon Jul 10 00:00:00 to Mon Jul 10 15:30:00
Node: moab
Categories:

busy: 96.88%
idle: 3.12%

Node: maka
Categories:

busy: 96.88%
idle: 3.12%

Node: pau
Categories:

busy: 96.88%
idle: 3.12%

Node: maowu
Categories:

busy: 96.88%
down-hw: 3.12%

Cluster Summary:
busy: 96.88%

down-hw: 0.78%
idle: 2.34%

> mnodectl -v -q profile
...

> mnodectl -q wiki <ALL>
GLOBAL STATE=Idle PARTITION=SHARED
n0 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n1 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n2 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n3 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n4 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n5 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n6 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n7 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n8 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED
n9 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base NODEACCESSPOLICY=SHARED

Query a node with the output displayed in a WIKI string.

Parameters

CFGCLASS

Format <STRING>

Description Class name.

Only "-=" is supported when modifying cfgclass on a node. To add or set
classes on a node, see HOSTLIST

Chapter 4: Scheduler Commands

181 4.7 Moab Commands

4.7 Moab Commands 182

CFGCLASS

Example > mnodectl -m cfgclass-=debug node1

FEATURES

Format <STRING>
One of the following:

l a comma-delimited list of features
l [NONE] (to clear features on the node)

Description Sets the features on a node.

These node features will be overwritten when an RM reports
features.

Example mnodectl -m features=fastio,highmem node1
mnodectl -m features=[NONE] node1

GEVENT

Format <EVENT>:<MESSAGE>

Description Creates a generic event on the node to which Moab can respond (see Enabling
Generic Events).

Example mnodectl -m gevent=powerfail:'power has failed' node1

GMETRIC

Format <ATTR>:<VALUE>

Description Sets the value for a generic metric on the node (see Enabling Generic Metrics).

When a gmetric set in Moab conflicts with what the resource manager
reports, Moab uses the set gmetric until the next time the resource
manager reports a different number.

Chapter 4: Scheduler Commands

GMETRIC

Example mnodectl -m gmetric=temp:120 node1

MESSAGE

Format '<MESSAGE>'

Description Sets a message to be displayed on the node.

Example mnodectl -m message='powerfailure: power has failed'
node1

NODEEXP

Format <STRING>
Where <NODEEXP> is a node name, regex or ALL

Node regex has the potential to unintentionally match many nodes (for
example, specifying n1 will match n10, n11, n12, n100, etc). To ensure
correct matching, explicitly use the "x:<node_regex>" when modifying
multiple nodes in one command. Currently, this is supported for features.

Description Identifies one or more nodes.

Example node1 - applies only to node1
fr10n* - all nodes starting with fr10n
ALL - all known nodes

OS

Format <STRING>

Description Operating System (see Resource Provisioning).

Example mnodectl node1 -m OS=RHELAS30

Chapter 4: Scheduler Commands

183 4.7 Moab Commands

4.7 Moab Commands 184

POWER

Format {off|on}

Description Set the power state of a node. Action will NOT be taken if the node is already
in the specified state.

If you power off a node, a green policy will try to turn it back on. If you
want the node to remain powered off, you must associate a reservation
with it.

If you request to power off a node that has active work on it, Moab
returns a status indicating that the node is busy with a job and will not
be powered off. You will see one of these messages:

l Ignoring node <name>: power ON in process
(indicates node is currently powering on)

l Ignoring node <name>: power OFF in process
(indicates node is currently powering off)

l Ignoring node <name>: has active jobs running
(indicates the node is currently running active jobs)

Once you resolve the activity on the node (by preempting or migrating
the jobs, for example), you can attempt to power the node off again.
You can use the --flags=force option to cause a force override.
However, doing this will power off the node regardless of whether or not
its jobs get migrated or preempted (i.e., you run the risk of losing the
jobs entirely). For example:

> mnodectl node1 -m power=off --flags=force

Example > mnodectl node1 -m power=off

STATE

Format {drained|idle}

Description Remove (drained) or add (idle) a node from scheduling.

Example mnodectl node1 -m state=drained

Moab ignores node1 when scheduling.

Chapter 4: Scheduler Commands

VARIABLE

Format <name>[=<value>],<name>[=<value>]...

Description Set a list of variables for a node.

Example > mnodectl node1 -m
variable=IP=10.10.10.100,Location=R1S2

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mdiag -n

l showres -n

l checknode

l showstats -n — report current and historical node statistics

4.7.22 moab

4.7.22.A Synopsis
moab --about --help --loglevel=<LOGLEVEL> --version [-c <CONFIG_FILE>] [-C] [-d] [-e] [-
h] [-P [<PAUSEDURATION>]] [-R <RECYCLEDURATION>] [-s] [-S [<STOPITERATION>]] [-
v]

4.7.22.B Options

Option Description

--about Displays build environment and version information.

--loglevel Sets the server loglevel to the specified value.

Chapter 4: Scheduler Commands

185 4.7 Moab Commands

4.7 Moab Commands 186

Option Description

--version Displays version information.

-c Configuration file the server should use.

-C Clears checkpoint files (.moab.ck, .moab.ck.1).

-d Debug mode (does not background itself).

-e Forces Moab to exit if there are any errors in the configuration file,
if it can't connect to the configured database, or if it can't find these
directories:

l statdir
l logdir
l spooldir
l toolsdir

-P Starts Moab in a paused state for the duration specified (default:
pause indefinitely; resume with mschedctl -r (or -R), or a
service restart).

-R Causes Moab to automatically recycle every time the specified
duration transpires.

-s Starts Moab in the state that was most recently checkpointed.

-S Suspends/stops scheduling at specified iteration (or at startup if no
iteration is specified).

-v Same as --version.

4.7.23 mrmctl

4.7.23.A Synopsis
mrmctl -f [<fobject>] {<rmid> | AM[:<amid>] | ID[:<imid>]}

mrmctl -l [<rmid> | AM[:<amid>]]

Chapter 4: Scheduler Commands

mrmctl -m <attr>=<value> [<rmid>]

mrmctl -p {<rmid> | AM[:<amid>]}

mrmctl -q AccountBalanceCache AM[:<amid>]

mrmctl -R {AM[:<amid>] | ID[:<imid>]}
[--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.23.B Overview
mrmctl allows an admin to query, list, modify, and ping the resource managers and
accounting managers in Moab. mrmctl also allows for a queue (often referred to as a
class) to be created for a resource manager.

4.7.23.C Access
By default, this command can be run by level 1 and level 2 Moab administrators (see
ADMINCFG).

4.7.23.D Options

-f

Format -f [<fobject>] where fobject is optional and one of messages or stats.

Default If no fobject is specified, then reported failures and performance data will
be flushed. If no resource manager ID is specified, the first resource manager
will be flushed.

Description Clears resource manager statistics. If messages is specified, then reported
failures, performance data, and messages will be flushed.

Example > mrmctl -f base

Moab will clear the statistics for RM base.

Chapter 4: Scheduler Commands

187 4.7 Moab Commands

4.7 Moab Commands 188

-l

Format -l

Default All RMs and AMs (when no RM/AM is specified).

Description List Resource and Accounting Manager(s).

Example > mrmctl -l

Moab will list all resource and accounting
managers.

-m

Format -m <attr>=<val>

Default All RMs and AMs (when no RM/AM is specified).

Description Modify Resource and Accounting Manager(s).

Example > mrmctl -m state=disabled peer13

-p

Format -p

Default First RM configured.

Description Ping Resource Manager.

Example > mrmctl -p base

Moab will ping
RM base.

-q

Format -q AccountBalanceCache

Chapter 4: Scheduler Commands

-q

Default ---

Description When an accounting manager is being used and the fast-allocation accounting
mode is configured, this option queries Moab's internal cache of account
balances. See 6.5.2 Accounting Mode - page 420. Also see 'Select an
Appropriate Accounting Mode' in the Moab Accounting Manager Administrator
Guide for more information.

Example > mrmctl -q AccountBalanceCache AM

-R

Format -R

Description Dynamically reloads server information for the identity manager service if ID
is specified; if AM is specified, reloads the accounting manager service.

Example > mrmctl -R ID

Reloads the identity manager on demand.

Resource manager interfaces can be enabled/disabled using the modify operation to
change the resource manager state as in the following example:

disable active resource manager interface
> mrmctl -m state=disabled torque
restore disabled resource manager interface
> mrmctl -m state=enabled torque

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mdiag -R

l mdiag -c

Chapter 4: Scheduler Commands

189 4.7 Moab Commands

4.7 Moab Commands 190

4.7.24 mrsvctl

4.7.24.A Synopsis
mrsvctl -BSRVSID

mrsvctl -c [-a ACL] [-b SUBTYPE] [-d DURATION] [-D DESCRIPTION] [-e ENDTIME] [-E
EXCLUSIVE] [-f FEATURES] [-F FLAGS] [-g RSVGROUP] [-h HOSTLIST] [-n NAME] [-o
OWNER] [-p PARTITION] [-P PROFILE] [-R RESOURCES] [-s STARTTIME] [-S SET
ATTRIBUTE] [-t TASKS] [-T TRIGGER] [-V VARIABLE] [-x JOBLIST]

mrsvctl -C [-g SRSVID] {RESERVATION PATTERN}

mrsvctl -l [{RESERVATION PATTERN | -i INDEX}]

mrsvctl -m
<duration|endtime|hostexp|loglevel|reqtaskcount|rsvaccesslist|
rsvgroup|starttime|variable>{=|+=|-=}<VAL> <hostexp>{+=|-=}<VAL>
<variable>{+=KEY=VAL|-=KEY_TO_REMOVE} {RESERVATION PATTERN | -i INDEX}

mrsvctl -q {RESERVATION PATTERN | -i INDEX} [--blocking]

mrsvctl -r {RESERVATION PATTERN | -i INDEX}
[--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.24.B Overview
mrsvctl controls the creation, modification, querying, and releasing of reservations.

The timeframe covered by the reservation can be specified on either an absolute or
relative basis. Only jobs with credentials listed in the reservation's access control list can
utilize the reserved resources. However, these jobs still have the freedom to utilize
resources outside of the reservation. The reservation will be assigned a name derived from
the ACL specified. If no reservation ACL is specified, the reservation is created as a system
reservation and no jobs will be allowed access to the resources during the specified
timeframe (valuable for system maintenance, etc.). See the Reservation Overview for more
information.

Reservations can be viewed using the -q flag and can be released using the -r flag.

By default, reservations are not exclusive and can overlap with other reservations
and jobs. Use the '-E' flag to adjust this behavior.

Chapter 4: Scheduler Commands

4.7.24.C Access
By default, this command can be run by level 1 and level 2 Moab administrators (see
ADMINCFG).

4.7.24.D Options

-a

Name ACL

Format <TYPE>==<VAL>[,<TYPE>==<VAL>]...

Where <TYPE> is one of the following:
ACCT,
CLASS,
DURATION,
GROUP,
JATTR,
PROC,
QOS,
USER

Description List of limitations for access to the reserved resources (see also ACL
Modifiers).

Example > mrsvctl -c -h node01 -a USER==john+,CLASS==batch-

Moab will make a reservation on node01 allowing access to user
john and restricting access from class batch when other resources
are available to class batch

> mrsvctl -m -a USER-=john system.1

Moab will remove user john from the system.1 reservation

Notes l When you specify multiple credentials, a user must only match one of
them in order to access the reservation. To require one or more of the
listed limitations for reservation access, each required specification must
end with an asterisk (*). If a user meets the required limitation(s), that
user has access to the reservation (without meeting any that are not
marked required).

l There are three different assignment operators that can be used for
modifying most credentials in the ACL. The operator == will reassess the

Chapter 4: Scheduler Commands

191 4.7 Moab Commands

4.7 Moab Commands 192

-a

list for that particular credential type. The += operator will append to the
list for that credential type, and -= will remove from the list. Two other
operators are used to specify DURATION and PROC: >= (greater than)
and <= (less than).

l To add multiple credentials of the same type with one command, use a
colon to separate them. To separate lists of different credential types, use
commas. For example, to reassign the user list to consist of users Joe and
Bob, and to append the group MyGroup to the groups list on the
system.1 reservation, you could use the command mrsvctl -m -a
USER==Joe:Bob,GROUP+=MyGroup system.1.

l Any of the ACL modifiers can be used. When using them, it is often useful
to put single quotes on either side of the assignment command. For
example, mrsvctl -m -a 'USER==&Joe' system.1.

l Some flags are mutually exclusive. For example, the ! modifier means that
the credential is blocked from the reservation and the & modifier means
that the credential must run on that reservation. Moab will take the most
recently parsed modifier. Modifiers can be placed on either the left or the
right of the argument, so USER==&JOE and USER==JOE& are equivalent.
Moab parses each argument starting from right to left on the right side of
the argument, then from left to right on the left side. So, if the command
was USER==!Joe&, Moab would keep the equivalent of USER==!Joe
because the ! would be the last one parsed.

l You can set a reservation to have a time limit for submitted jobs using
DURATION and the * modifier. For example, mrsvctl -m -a
'DURATION<=*1:00:00' system.1 would cause the system.1
reservation to not accept any jobs with a walltime greater than one hour.
Similarly, you can set a reservation to have a processor limit using PROC
and the * modifier. mrsvctl -a 'PROC>=2*' system.2 would
cause the system.2 reservation to only allow jobs requesting more than
2 procs to run on it.

l You can verify the ACL of a reservation using the mdiag -r command.
mrsvctl -m -a 'USER==Joe:Bob,GROUP-=BadGroup,ACCT+=GoodAccount,DURATION<=
*1:00:00' system.1

Moab will reassign the USER list to be Joe and Bob, will remove
BadGroup from the GROUP list, append GoodAccount to the
ACCT list, and only allow jobs that have a submitted walltime of an
hour or less on the system.1 reservation.

mrsvctl -m -a 'USER==Joe,USER==Bob' system.1

Moab will assign the USER list to Joe, and then reassign it again
to Bob. The final result will be that the USER list will just be Bob.
To add Joe and Bob, use mrsvctl -m -a USER==Joe:Bob
system.1 or mrsvctl -m -a USER==Joe,USER+=Bob

Chapter 4: Scheduler Commands

-a

system.1.

-b

Name SUBTYPE

Format One of the node category values or node category shortcuts.

Description Add subtype to reservation.

Example > mrsvctl -c -b SoftwareMaintenance -t ALL

Moab will associate the reserved nodes with the node category
SoftwareMaintenance.

-B

Name REBUILD

Format <SRSVID>

Description Rebuilds standing reservations while Moab is running.

Example > mrsvctl -B <SRSVID>

-c

Name CREATE

Format <ARGUMENTS>

Description Creates a reservation.

Chapter 4: Scheduler Commands

193 4.7 Moab Commands

4.7 Moab Commands 194

-c

If a created reservation has a given duration but the start time is in the
past, one of the following actions occur depending on whether the
present time falls within the reservation's given duration:

l If the present time is still within the reservation's duration time
frame, the start time does not change and the reservation shows
however long is left in the reservation (present time minus the
duration time).

l If present time is outside of the reservation's duration time frame,
the reservation start time automatically sets to the present time and
the reservation continues for its full given duration.

The -x flag, when used with -F ignjobrsv, lets users create
reservations but exclude certain nodes from being part of the
reservation because they are running specific jobs. The -F flag instructs
mrsvctl to still consider nodes with current running jobs.

Examples > mrsvctl -c -t ALL

Moab will create a reservation across all system resources.

> mrsvctl -c -t 5 -F ignjobrsv -x moab.5,moab.6

Moab will create the reservation while assigning the nodes. Nodes
running jobs moab5 and moab6 will not be assigned to the
reservation.

> mrsvctl -c -t 1 -d INFINITY

Moab will create an infinite reservation.

-C

Name CLEAR

Format <RSVID> | -g <SRSVID>

Description Clears any disabled time slots from standing reservations and allows the
recreation of disabled reservations.

Example > mrsvctl -C -g testing

Moab will clear any disabled timeslots from the standing

Chapter 4: Scheduler Commands

-C

reservation testing.

-d

Name DURATION

Format [[[DD:]HH:]MM:]SS

Default INFINITY

Description Duration of the reservation (not needed if ENDTIME is specified).

Example > mrsvctl -c -h node01 -d 5:00:00

Moab will create a reservation on node01 lasting 5 hours.

> mrsvctl -c -h node01 -d INFINITY

Moab will create a reservation with a duration of INFINITY
(no endtime).

-D

Name DESCRIPTION

Format <STRING>

Description Human-readable description of reservation or purpose.

Example > mrsvctl -c -h node01 -d 5:00:00 -D 'system maintenance to test
network'

Moab will create a reservation on node01 lasting 5 hours.

Chapter 4: Scheduler Commands

195 4.7 Moab Commands

4.7 Moab Commands 196

-e

Name ENDTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]SS

Default INFINITY

Description Absolute or relative time reservation will end (not required if Duration
specified). ENDTIME also supports an epoch timestamp.

Example > mrsvctl -c -h node01 -e +3:00:00

Moab will create a reservation on node01 ending in 3 hours.

-E

Name EXCLUSIVE

Description When specified, Moab will only create a reservation if there are no other
reservations (exclusive or otherwise) that would conflict with the time and
space constraints of this reservation. If exceptions are desired, the rsvaccesslist
attribute can be set or the ignrsv flag can be used.

Example > mrsvctl -c -h node01 -E

Moab will only create a reservation on node01 if no conflicting
reservations are found.

This flag is only used at the time of reservation creation. Once the
reservation is created, Moab allows jobs into the reservation based on
the ACL. Also, once the exclusive reservation is created, it is possible that
Moab will overlap it with jobs that match the ACL.

-f

Name FEATURES

Chapter 4: Scheduler Commands

-f

Format <STRING>[:<STRING>]...

Description List of node features that must be possessed by the reserved resources. You
can use a backslash and pipe to delimit features to indicate that Moab can use
one or the other.

Example > mrsvctl -c -h node[0-9] -f fast\|slow

Moab will create a reservation on nodes matching the expression
and which also have either the feature fast or the feature slow.

-F

Name FLAGS

Format <flag>[[,<flag>]...]

Description Comma-delimited list of flags to set for the reservation (see Managing
Reservations for flags).

Example > mrsvctl -c -h node01 -F ignstate

Moab will create a reservation on node01 ignoring any conflicting
node states.

-g

Name RSVGROUP

Format <STRING>

Description For a create operation, create a reservation in this reservation group. For list
and modify operations, take actions on all reservations in the specified
reservation group. The -g option can also be used in conjunction with the -r
option to release a reservation associated with a specified group. See
Reservation Group for more information.

Example > mrsvctl -c -g staff -h 'node0[1-9]'

Chapter 4: Scheduler Commands

197 4.7 Moab Commands

4.7 Moab Commands 198

-g

Moab will create a reservation on nodes matching the node
expression given and assign it to the reservation group staff.

-h

Name HOSTLIST

Format class:<classname>[,<classname>]...
or
<STRING>

or
'r:<nodeNameStart>[<beginRange>-<endRange>]'
or
ALL

Description Host expression or a class mapping indicating the nodes that the reservation
will allocate.

When you specify a <STRING>, the HOSTLIST attribute is always
treated as a regular expression. foo10 will map to foo10, foo101,

foo1006, etc. To request an exact host match, the expression can be
bounded by the carat and dollar op expression markers as in ^foo10$.

Example > mrsvctl -c -h 'r:node0[1-9]'

Moab will create a reservation on nodes node01, node02,
node03, node04, node05, node06, node07, node08, and
node09.

> mrsvctl -c -h class:batch

Moab will create a reservation on all nodes that support
class/queue batch.

-i

Name INDEX

Chapter 4: Scheduler Commands

-i

Format <STRING>

Description Use the reservation index instead of full reservation ID.

Example > mrsvctl -m -i 1 starttime=+5:00

Moab will create a reservation on nodes matching the
expression given.

-l

Name LIST

Format <RSV_ID> or ALL

RSV_ID can be the name of a reservation or a regular expression.

Default ALL

Description List reservation(s).

Example > mrsvctl -l system*

Moab will list all of the reservations whose names start
with system.

-m

Name MODIFY

Chapter 4: Scheduler Commands

199 4.7 Moab Commands

4.7 Moab Commands 200

-m

Format <ATTR>=<VAL>[-m <ATTR2>=<VAL2>]...

Where <ATTR> is one of the following:

flags

duration duration{+=|-=|=}<RELTIME>

endtime endtime{+=|-=}<RELTIME> or endtime=<ABSTIME>

hostexp hostexp[+=|-=]<node>[,<node>]

loglevel loglevel[=]<loglevel>

reqtaskcount reqtaskcount{+=|-=|=}<TASKCOUNT>

rsvaccesslist rsvaccesslist[=]<reservation>

rsvgroup rsvgroup[=]<rsvgroup>

starttime starttime{+=|-=}<RELTIME> or starttime=<ABSTIME>

variable variable[+=key1=val1|-=key_to_remove]

Description Modify aspects of a reservation.

Moab is constantly scheduling and updating reservations. Before
modifying a reservation it is recommended that you first stop the
scheduler (mschedclt -s) so that the scheduler and reservation are
in a stable and steady state. Once the reservation has been modified,
resume the scheduler with mschedctl -r.

Example > mrsvctl -m duration=2:00:00 system.1

Moab sets the duration of reservation system.1 to be exactly two
hours, therefore modifying the endtime of the reservation.

> mrsvctl -m duration+=5:00:00 system.1

Moab extends the duration of system.1 by five hours.

Chapter 4: Scheduler Commands

-m

> mrsvctl -m endtime+=5:00:00 system.1

Moab moves the endtime of reservation system.1 ahead by five
hours.

> mrsvctl -m endtime-=5:00:00 system.1

Moab moves the endtime of reservation system.1 five hours from
its current endtime (without modifying the starttime; therefore, this
action is equivalent to modifying the duration of the reservation).

> mrsvctl -m hostexp+=node02 system.1

Moab adds node02 to the hostlist for reservation system.1.

> mrsvctl -m loglevel=2 system.1

Overrides the global LOGLEVEL parameter when dealing with
events related to the reservation. LOGLEVEL values are 0-9, where
9 is most verbose.

> mrsvctl -m reqtaskcount+=5 system.1

Increases the TASKCOUNT for the system.1 reservation by 5.

> mrsvctl -m rsvaccesslist=network system.1

Gives the system.1 reservation access to the network
reservation.

> mrsvctl -m rsvgroup=network system.1

Changes reservation system.1 to the network RSVGROUP.

> mrsvctl -m starttime+=5:00:00 system.1

Moab advances the starttime of system.1 five hours from its
current starttime (without modifying the duration of the
reservation).

> mrsvctl -m starttime=15:00:00_7/6/22 system.1

Moab sets the starttime of reservation system.1 to 3:00 p.m. on
July 6, 2022.

> mrsvctl -m starttime-=5:00:00 system.1

Moab moves the starttime of reservation system.1 ahead five
hours.

Chapter 4: Scheduler Commands

201 4.7 Moab Commands

4.7 Moab Commands 202

-m

> mrsvctl -m variable+key1=val1 system.1

Moab adds the variable key1 with the value key2 to system.1.

> mrsvctl -m variable+=key1=val1 variable+=key2=val2 system.1

Moab adds the variable key1 with the value val1, and variable
key2 with val2 to system.1. (Note that each variable flag
requires a distinct -m entry.)

> mrsvctl -m variable-=key1 system.1

Moab deletes the variable key1 from system.1.

> mrsvctl -m variable-=key1 -m variable-=key2 system.1

Moab deletes the variables key1 and key2 from system.1.

Notes: l Modifying the starttime does not change the duration of the reservation,
so the endtime changes as well. The starttime can be changed to be before
the current time, but if the change causes the endtime to be before the
current time, the change is not allowed.

l Modifying the endtime changes the duration of the reservation as well
(and vice versa). An endtime cannot be placed before the starttime or
before the current time.

l Duration cannot be negative.
l The += and -= operators operate on the time of the reservation

(starttime+=5 adds five seconds to the current reservation starttime),
while + and - operate on the current time (starttime+5 sets the
starttime to five seconds from now).

l If the starttime or endtime specified is before the current time without a
date specified, it is set to the next time that fits the command. To force the
date, add the date as well. For the following examples, assume that the
current time is 9:00 a.m. on March 1, 2022.

> mrsvctl -m starttime=8:00:00_3/1/22 system.1

Moab moves system.1's starttime to 8:00 a.m., March 1.

> mrsvctl -m starttime=8:00:00 system.1

Moab moves system.1's starttime to 8:00 a.m., March 2.

> mrsvctl -m endtime=7:00:00 system.1

Moab moves system.1's endtime to 7:00 a.m., March 3. This
happens because the endtime must also be after the starttime, so

Chapter 4: Scheduler Commands

-m

Moab continues searching until it has found a valid time that is in
the future and after the starttime.

> mrsvctl -m endtime=7:00:00_3/2/22 system.1

Moab will return an error because the endtime cannot be before the
starttime.

-n

Name NAME

Format <STRING>

Description Name for new reservation.

If no name is specified, the reservation name is set to first name listed in
ACL or SYSTEM if no ACL is specified.

Reservation names cannot contain whitespace.

Example mrsvctl -c -h node01 -n John

Moab will create a reservation on node01 with the name John.

-o

Name OWNER

Format <CREDTYPE>:<CREDID>

Description The owner of a reservation. See Reservation Ownership for more information.

Example mrsvctl -c -h node01 -o USER:user1

Moab creates a reservation on node01 owned by user1.

Chapter 4: Scheduler Commands

203 4.7 Moab Commands

4.7 Moab Commands 204

-p

Name PARTITION

Format <STRING>

Description Only allocate resources from the specified partition.

Example mrsvctl -c -p switchB -t 14

Moab will allocate 14 tasks from the
switchB partition.

-P

Name PROFILE

Format <STRING>

Description Indicates the reservation profile to load when creating this reservation.

Example mrsvctl -c -P testing2 -t 14

Moab will allocate 14 tasks to a reservation defined by the
testing2 reservation profile.

-q

Name QUERY

Format <RSV_ID>— The -r option accepts x: node regular expressions and r: node
range expressions (asterisks (*) are supported wildcards as well).

Description Get diagnostic information or list all completed reservations. The command
gathers information from the Moab cache, which prevents it from interrupting
the scheduler, but the --blocking option can be used to bypass the cache
and interrupt the scheduler.

Example mrsvctl -q ALL

Chapter 4: Scheduler Commands

-q

Moab will query reservations.

mrsvctl -q system.1

Moab will query the reservation system.1.

-r

Name RELEASE

Format <RSV_ID>— The -r option accepts x: node regular expressions and r: node
range expressions (asterisks (*) are supported wildcards as well).

Description Releases the specified reservation.

When you release an instance of a standing reservation, Moab will
remember that and prevent a reservation from being created for that
same period (even after a restart of Moab). When Moab reaches the end
of the period, it will still create new reservations in the future to meet
the reservation depth requirement.

Example > mrsvctl -r system.1

Moab will release reservation system.1.

> mrsvctl -r -g idle

Moab will release all idle job reservations.

-R

Name RESOURCES

Format <tid>
or
<RES>=<VAL>[{,|+|;}<RES>=<VAL>]...

Chapter 4: Scheduler Commands

205 4.7 Moab Commands

4.7 Moab Commands 206

-R

Where <RES> is one of the following:
PROCS,
MEM,
DISK,
SWAP,
GRES

Default PROCS=-1

Description The resources to be reserved per task (-1 indicates all resources on node).

When specifying multiple resources, enclose the resource list in single
quotes and separate the resource identifiers with semicolons (example:
'MEM=100;PROCS=1'). Alternatively, you can omit the single quotes and
separate the resource identifiers with escaped semicolons (example:
MEM=100\;PROCS=1).

For GRES resources, <VAL> is specified in the format <GRESNAME>
[:<COUNT>]

Example > mrsvctl -c -R 'MEM=100;PROCS=2' -t 2

Moab will create a reservation for two tasks with the specified
resources.

> mrsvctl -c -R GRES:licenseA:100 -t 1

Moab will reserve 100 instances of "licenseA".

-s

Name STARTTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]SS

Default [NOW]

Description Absolute or relative time reservation will start. STARTTIME also supports an
epoch timestamp.

Chapter 4: Scheduler Commands

-s

Example > mrsvctl -c -t ALL -s 3:00:00_4/4/22

Moab will create a reservation on all system resources at 3:00 am
on April 4, 2022.

> mrsvctl -c -h node01 -s +5:00

Moab will create a reservation in 5 minutes on node01.

> mrsvctl -m -s -=5:00 system.1

This will decrement the start time by 5 minutes.

-S

Name SET ATTRIBUTE

Format <ATTR>=<VALUE> where <ATTR> is one of:

l aaccount - accountable account
l agroup - accountable group
l aqos - accountable QoS
l auser - accountable user
l reqarch - required architecture
l reqmemory - required node memory (in MB)
l reqos - required operating system
l rsvaccesslist - comma-delimited list of reservations or reservation groups

that can be accessed by this reservation request. Because each reservation
can access all other reservations by default, you should make any
reservation with a specified rsvaccesslist exclusive by setting the -E flag.
This setting gives the otherwise exclusive reservation access to
reservations specified in the list.

Description A reservation attribute will be used to create this reservation.

Example > mrsvctl -c -h node01 -S aqos=high

Moab will create a reservation on node01 and will use the QOS
high as the accountable credential.

Chapter 4: Scheduler Commands

207 4.7 Moab Commands

4.7 Moab Commands 208

-t

Name TASKS

Format <INTEGER>[-<INTEGER>]

Description The number of tasks to reserve. ALL indicates all resources available should be
reserved.

If the task value is set to ALL, Moab applies the reservation regardless of
existing reservations and exclusive issues. If an integer is used, Moab
only allocates accessible resources. If a range is specified Moab attempts
to reserve the maximum number of tasks, or at least the minimum.

Example > mrsvctl -c -t ALL

Moab will create a reservation on all resources.

> mrsvctl -c -t 3

Moab will create a reservation for three tasks.

> mrsvctl -c -t 3-10 -E

Moab will attempt to reserve 10 tasks but will fail if it cannot get at
least three.

-T

Name TRIGGER

Format <STRING>

Description Comma-delimited reservation trigger list following format described in the
trigger format section of the reservation configuration overview. See Creating a
Trigger for more information.

To cancel a standing reservation with a trigger, the SRCFG parameter's
attribute DEPTH must be set to 0.

Example > mrsvctl -c -h node01 -T offset=200,etype=start,atype=exec,action=/tmp/email.sh

Chapter 4: Scheduler Commands

-T

Moab will create a reservation on node01 and fire the script
/tmp/email.sh 200 seconds after it starts

-V

Name VARIABLE

Format <name>[=<value>][[;<name>[=<value>]]...]

Description Semicolon-delimited list of variables that will be set when the reservation is
created (see About Trigger Variables for more information). Names with no
values will simply be set to TRUE.

Example > mrsvctl -c -h node01 -V $T1=mac;var2=18.19

Moab will create a reservation on node01 and set $T1 to mac and
var2 to 18.19.

For information on modifying a variable on a reservation, see MODIFY.

-x

Name JOBLIST

Format -x <jobs to be excluded>

Description The -x flag, when used with -F ignjobrsv, lets users create reservations
but exclude certain nodes that are running the listed jobs. The -F flag instructs
mrsvctl to still consider nodes with current running jobs. The nodes are not
listed directly.

Example > mrsvctl -c -t 5 -F ignjobrsv -x moab.5,moab.6

Moab will create the reservation while assigning the nodes. Nodes
running jobs moab5 and moab6 will not be assigned to the
reservation.

Chapter 4: Scheduler Commands

209 4.7 Moab Commands

4.7 Moab Commands 210

4.7.24.E Parameters

RESERVATION PATTERN

Format <STRING>

Description A pattern specifying the reservation(s) to be affected by this action consisting
of a space-delimited list of one or more of the following reservation
expressions:

l The name of a reservation.
l The string "ALL", which matches all reservations.
l A regular expression matching zero or more reservations. A reservation

expression is treated as a regular expression if it has a prefix of "x:" or if it
contains one of the characters in "[] () * ^ $,". Moab does a case-
insensitive match using POSIX extended regular expressions and will
match any part of the reservation name unless anchored with "^" or "$".

Example '^system'

Specifies all reservations starting with the word "system".

4.7.24.F Resource Allocation Details
When allocating resources, the following rules apply:

l When specifying tasks, each task defaults to one full compute node unless otherwise
specified using the -R specification.

l When specifying tasks, the reservation will not be created unless all requested
resources can be allocated (this behavior can be changed by specifying -F besteffort).

l When specifying tasks or hosts, only nodes in an idle or running state will be
considered (this behavior can be changed by specifying -F ignstate).

4.7.24.G Reservation Timeframe Modification
Moab supports dynamically modifying the timeframe of existing reservations. This can be
accomplished using the mrsvctl -m flag. By default, Moab will perform advanced boundary
and resource access to verify that the modification does not result in an invalid scheduler
state. However, in certain circumstances administrators may want to FORCE the
modification in spite of any access violations. This can be done using the switch mrsvctl
-m --flags=force, which forces Moab to bypass any access verification and force the
change through.

Chapter 4: Scheduler Commands

4.7.24.H Extending a Reservation by Modifying the Endtime
The following increases the endtime of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:35:57 1:11:35:57 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime+=24:00:00 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:35:22 2:11:35:22 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following increases the endtime of a reservation by setting the endtime to an absolute
time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:33:18 1:11:33:18 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime=0_11/20 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:33:05 2:11:33:05 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

4.7.24.I Extending a Reservation by Modifying the Duration
The following increases the duration of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:28:46 1:11:28:46 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration+=24:00:00 system.1
duration for rsv 'system.1' changed
>$ showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:28:42 2:11:28:42 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following increases the duration of a reservation by setting the duration to an absolute
time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:26:41 1:11:26:41 1:00:00:00 1/2 Sat Nov 18

Chapter 4: Scheduler Commands

211 4.7 Moab Commands

4.7 Moab Commands 212

00:00:00
1 reservation located
$> mrsvctl -m duration=48:00:00 system.1
duration for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:26:33 2:11:26:33 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

4.7.24.J Shortening a Reservation by Modifying the Endtime
The following modifies the endtime of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:15:51 2:11:15:51 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime-=24:00:00 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:15:48 1:11:15:48 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following modifies the endtime of a reservation by setting the endtime to an absolute
time:

$ showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:14:00 2:11:14:00 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime=0_11/19 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:13:48 1:11:13:48 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

4.7.24.K Shortening a Reservation by Modifying the Duration
The following modifies the duration of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:12:20 2:11:12:20 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration-=24:00:00 system.1
duration for rsv 'system.1' changed
$> showres

Chapter 4: Scheduler Commands

ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:12:07 1:11:12:07 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following modifies the duration of a reservation by setting the duration to an absolute
time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:10:57 2:11:10:57 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration=24:00:00 system.1
duration for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:10:50 1:11:10:50 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

4.7.24.L Modifying the Starttime of a Reservation
The following increases the starttime of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:08:30 2:11:08:30 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime+=24:00:00 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 1:11:08:22 3:11:08:22 2:00:00:00 1/2 Sun Nov 19
00:00:00
1 reservation located

The following decreases the starttime of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:07:04 2:11:07:04 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime-=24:00:00 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - -12:53:04 1:11:06:56 2:00:00:00 1/2 Fri Nov 17
00:00:00
1 reservation located

The following modifies the starttime of a reservation using an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime

Chapter 4: Scheduler Commands

213 4.7 Moab Commands

4.7 Moab Commands 214

system.1 User - 11:05:31 2:11:05:31 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime=0_11/19 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 1:11:05:18 3:11:05:18 2:00:00:00 1/2 Sun Nov 19
00:00:00
1 reservation located

The following modifies the starttime of a reservation using an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:04:04 2:11:04:04 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime=0_11/17 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - -12:56:02 1:11:03:58 2:00:00:00 1/2 Fri Nov 17
00:00:00
1 reservation located

4.7.25 Examples
l Basic Reservation

l System Maintenance Reservation

l Explicit Task Description

l Dynamic Reservation Modification

l Reservation Modification

l Allocating Reserved Resources

l Modifying an Existing Reservation

Example 4-22: Basic Reservation

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24
hours.

> mrsvctl -c -a USER=john,USER=mary -starttime +24:00:00 -duration 8:00:00 -t 2
reservation 'system.1' created

Example 4-23: System Maintenance Reservation

Schedule a system wide reservation to allow a system maintenance on Jun 20, 8:00 AM
until Jun 22, 5:00 PM.

Chapter 4: Scheduler Commands

% mrsvctl -c -s 8:00:00_06/20 -e 17:00:00_06/22 -h ALL
reservation 'system.1' created

Example 4-24: Explicit Task Description

Reserve one processor and 512 MB of memory on nodes node003 through node
node006 for members of the group staff and jobs in the interactive class.

> mrsvctl -c -R PROCS=1,MEM=512 -a GROUP=staff,CLASS=interactive -h 'node00[3-6]'
reservation 'system.1' created

Example 4-25: Dynamic Reservation Modification

Modify reservation john.1 to start in 2 hours, run for 2 hours, and include node02 in
the hostlist.

> mrsvctl -m starttime=+2:00:00,duration=2:00:00,HostExp+=node02
Note: hosts added to rsv system.3

Example 4-26: Reservation Modification

Remove user John's access to reservation system.1

> mrsvctl -m -a USER=John system.1 --flags=unset
successfully changed ACL for rsv system.1

Example 4-27: Allocating Reserved Resources

Allocate resources for group dev that are exclusive except for resources found within
reservations myrinet.3 or john.6

> mrsvctl -c -E -a group=dev,rsv=myrinet.3,rsv=john.6 -h 'node00[3-6]'
reservation 'dev.14' created

Create exclusive network reservation on racks 3 and 4.

> mrsvctl -c -E -a group=ops -g network -f rack3 -h ALL
reservation 'ops.1' created
> mrsvctl -c -E -a group=ops -g network -f rack4 -h ALL
reservation 'ops.2' created

Allocate 64 nodes for 2 hours to new reservation and grant access to reservation
system.3 and all reservations in the reservation group network.

> mrsvctl -c -E -d 2:00:00 -a group=dev -t 64 -S rsvaccesslist=system.3,network
reservation 'system.23' created

Allocate 4 nodes for 1 hour to new reservation and grant access to idle job reservations.

> mrsvctl -c -E -d 1:00:00 -t 4 -S rsvaccesslist=idle
reservation 'system.24' created

Example 4-28: Modifying an Existing Reservation

Remove user john from reservation ACL.

Chapter 4: Scheduler Commands

215 4.7 Moab Commands

4.7 Moab Commands 216

> mrsvctl -m -a USER=john system.1 --flags=unset
successfully changed ACL for rsv system.1

Change reservation group.

> mrsvctl -m RSVGROUP=network ops.4
successfully changed RSVGROUP for rsv ops.4

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l Admin Reservation Overview

l showres

l mdiag -r

l mshow -a command to identify available resources

l job to rsv binding

4.7.26 mschedctl

4.7.26.A Synopsis
mschedctl -A '<MESSAGE>'

mschedctl -c message messagestring [-o type:val]

mschedctl -c trigger triggerid -o type:val

mschedctl -d trigger:triggerid

mschedctl -d message:index:wq

mschedctl -f {all|fairshare|usage}

mschedctl -k

mschedctl -l {config|feature|gmetric|gres|message|opsys|trigger|trans} [-v] [--xml]

mschedctl -L [<LOGLEVEL>[:<LOG_FILE>]]

mschedctl -m config string [-e]

mschedctl -m trigger triggerid attr=val[,attr=val...]

mschedctl -q mschedctl -q pactions --xml

Chapter 4: Scheduler Commands

mschedctl -p

mschedctl -r [resumetime]

mschedctl -R

mschedctl -s [STOPITERATION]

mschedctl -S [STEPITERATION]

mschedctl -W
[--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.26.B Overview
The mschedctl command controls various aspects of scheduling behavior. It is used to
manage scheduling activity, shutdown the scheduler, and create resource trace files. It can
also evaluate, modify, and create parameters, triggers, and messages.

With many flags, the --msg=<MSG> option can be specified to annotate the action in
the event log.

4.7.26.C Options

-A - ANNOTATE

Format <STRING>

Description Report the specified parameter modification to the event log and annotate it
with the specified message. The RECORDEVENTLIST parameter must be set
in order for this to work.

Example mschedctl -A 'increase logging' -m 'LOGLEVEL 6'

Adjust the LOGLEVEL parameter and record an associated
message.

-c - CREATE

Format One of:

Chapter 4: Scheduler Commands

217 4.7 Moab Commands

4.7 Moab Commands 218

-c - CREATE

l message <STRING> [-o <TYPE>:<VAL>]
l trigger<TRIGSPEC> -o <OBJECTTYPE>:<OBJECTID>
l gevent -n <NAME> [-m <message>]

Where <ATTR> is one of account, duration, ID, messages, profile,
reqresources, resources, rsvprofile, starttime, user, or variables.

Description Create a message, trigger, or gevent and attach it to the specified object.
To create a trigger on a default object, use the Moab configuration file
(moab.cfg) rather than the mschedctl command.

Example mschedctl -c message tell the admin to be nice

Create a message on the system table.

mschedctl -c trigger EType=start,AType=exec,Action="/tmp/email $OWNER
$TIME"
-o rsv:system.1

Create a trigger linked to system.1.

Creating triggers on default objects via mschedctl -c
trigger does not propagate the triggers to individual objects. To
propagate triggers to all objects, the triggers must be created
within the moab.cfg file; for example: NODECFG
[DEFAULT]TRIGGER.

mschedctl -c gevent -n diskfailure -m "node=n4"

Create a gevent indicating a disk failure on the node labeled
n4.

-d - DESTROY

Format One of:

l trigger:<TRIGID>
l message:<INDEX>

Description Delete a trigger or message.

Example mschedctl -d trigger:3

Chapter 4: Scheduler Commands

-d - DESTROY

Delete trigger 3.

mschedctl -d message:5

Delete message
with index 5.

-f - FLUSH

Format {all|fairshare|usage}

Description Reset all internally-stored Moab Scheduler statistics to the initial start-up state
as of the time the command was executed.

Flushing should only be used if you experience corrupt statistics. The
best practice is to pause the Moab scheduler with mschedctl -p
before running the flush command. After running the flush command,
unpause the Moab scheduler with mschedctl -r and the jobs will
start flowing again. For all external observers this will be a transparent
flush unless they are watching the stats.

Example mschedctl -f usage

Flush usage statistics.

-k - KILL

Description Stop scheduling and exit the scheduler.

Example mschedctl -k

Kill the scheduler.

-l - LIST

Format {config|feature|gmetric|gres|message|opsys|trans|trigger} [-v] [--xml]

Chapter 4: Scheduler Commands

219 4.7 Moab Commands

4.7 Moab Commands 220

-l - LIST

Using the --xml argument with the trans option returns XML that
states if the queried TID is valid or not.

Default config

Description List the generic metrics, generic resources, scheduler configuration, system
messages, operating systems, triggers, transactions, or node features
recognized by Moab.

This command does not show credential parameters (such as user,
group class, QoS, account).

Example mschedctl -l config

List system parameters.

The config command without the -v flag does not show the settings
of all scheduling parameters. To show the settings of all scheduling
parameters, use the -v flag. This will provide an extended output. This
output is often best used in conjunction with the grep command as the
output can be voluminous.

mschedctl -l feature

List all node features recognized by Moab.

mschedctl -l gmetric

List all configured generic metrics.

mschedctl -l gres

List all configured generic resources. Use the -v flag to display
generic resource traits (such as license or numa).

mschedctl -l message

List all system messages.

mschedctl -l opsys

List all recognized operating systems.

mschedctl -l trans 1

List transaction id 1.

Chapter 4: Scheduler Commands

-l - LIST

mschedctl -l trigger

List triggers.

-L - LOG

Format [<LOGLEVEL>[: <LOG_FILE>]]

Default 7 $MOABHOMEDIR/log/moab.log

Description Create a temporary log file with the specified loglevel. If no log file is given,
Moab creates a log file in the log directory whose filename extension is the
timestamp of when the command was run (for example,
"/opt/moab/log/moab.log.20220405081227").

Example mschedctl -L7:/tmp/moab.log

-m - MODIFY

Format One of:

l config [<STRING>]
[-e]
<STRING> is any string that would be acceptable in moab.cfg

o If no string is specified, <STRING> is read from STDIN.
o If -e is specified, the configuration string will be evaluated for

correctness but no configuration changes will take place. Any issues
with the provided string will be reported to STDERR.

Use of mschedctl --flags=persistent -m <config> has been
deprecated; use the following method instead:

1. Run mschedctl -m <config> to put the change into effect
dynamically.

2. Manually add the settings to the moab.cfg file, so that it always
goes into effect after any future Moab restarts/recycles.

Chapter 4: Scheduler Commands

221 4.7 Moab Commands

4.7 Moab Commands 222

-m - MODIFY

Dynamically modifying classes is not recommended. Moab should be
restarted whenever classes are modified. This is especially true
given the fact that sometimes the classes/queues/partitions are
under control of a resource manager. For dynamic operations, use
node sets/features or reservations.

l trigger:<TRIGID> <ATTR>=<VAL>
Where <ATTR> is one of action, atype, etype, iscomplete, oid, otype,
offset, or threshold.

Description Modify a system parameter or trigger.

Moab only loads the following list of parameters when first starting up.
Therefore, to change any of these, you must edit the setting in moab.cfg
and then restart/recycle with mschedctl -R.

l JOBMAXNODECOUNT
l MAXGMETRIC
l MAXGRES
l MAXJOB
l MAXNODE
l MAXRSVPERNODE
l STATPROC*
l STATTIME*

Example mschedctl -m config LOGLEVEL 9

Change the system loglevel to 9.

mschedctl -m trigger:2 AType=exec,Offset=200,OID=system.1

Change aspects of trigger 2.

-p - PAUSE

Description Disable scheduling but allow the scheduler to update its cluster and workload
state information.

Example mschedctl -p

Chapter 4: Scheduler Commands

-q QUERY PENDING ACTIONS

Default mschedctl -q pactions --xml

Description A way to view pending actions. Only an XML request is valid. Pending actions
can be system jobs.

Example mschedctl -q pactions --xml

-r - RESUME

Format mschedctl -r [[HH:[MM:]]SS]

Default 0

Description Resume scheduling in the specified amount of time (or immediately if none is
specified).

Example mschedctl -r

Resume scheduling immediately.

-R - RECYCLE

Description Recycle scheduler immediately (shut it down and restart it using the original
execution environment and command line arguments).

If Moab has been started under systemd, use systemctl restart
moab.service instead of using this option.

Example mschedctl -R

Recycle scheduler immediately.

To restart Moab with its last known scheduler state, use:
mschedctl -R savestate

Chapter 4: Scheduler Commands

223 4.7 Moab Commands

4.7 Moab Commands 224

-s - STOP

Format <INTEGER>

Default 0

Description Suspend/stop scheduling at specified iteration (or at the end of the current
iteration if none is specified). If the letter I follows <ITERATION>, Moab will
not process client requests until this iteration is reached.

Example mschedctl -s 100I

Stop scheduling at iteration 100 and ignore all client requests until
then.

-S - STEP

Format <INTEGER>

Default 0

Description Step the specified number of iterations (or to the next iteration if none is
specified) and suspend scheduling. If the letter I follows <ITERATION>, Moab
will not process client requests until this iteration is reached.

Example mschedctl -S

Step to the next iteration and stop scheduling.

-W

Description Preform a manual checkpoint file write.

Example mschedctl -W

Chapter 4: Scheduler Commands

4.7.26.D Examples

Example 4-29: Shutting down the Scheduler

mschedctl -k
scheduler will be shutdown immediately

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

4.7.27 mshow

4.7.27.A Synopsis
mshow [-a] [-q jobqueue=active] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.27.B Overview
The mshow command displays various diagnostic messages about the system and job
queues.

4.7.27.C Arguments

Flag Description

-a AVAILABLE RESOURCES

-q [<QUEUENAME>] Displays the job queues.

Chapter 4: Scheduler Commands

225 4.7 Moab Commands

4.7 Moab Commands 226

4.7.27.D Format

AVAILABLE RESOURCES

Format Can be combined with --flags=[tid|verbose|future] --
format=xml and/or -w

Description Display available resources.

Example > mshow -a -w user=john --flags=tid --format=xml

Show resources available to john in XML format with a transaction
id. See mshow -a for details.

JOB QUEUE

Format <QUEUENAME>, where the queue name is one of: active, eligible, or blocked.
Job queue names can be delimited by a comma to display multiple queues. If
no job queue name is specified, mshow displays all job queues.

Description Displays the job queues. If a job queue name is specified, mshow shows only
that job queue.

Example > mshow -q active,blocked
[Displays all jobs in the active and blocked queues]

...

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mshow -a command to show available resources

Chapter 4: Scheduler Commands

4.7.28 mshow -a

4.7.28.A Synopsis
mshow -a [-i] [-o] [-T] [-w where] [-x] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.28.B Overview
The mshow -a command allows for querying of available system resources.

4.7.28.C Arguments

[-i] INTERSECTION

[-o] NO AGGREGATE

[-T] TIMELOCK

[-w] WHERE

[-x] EXCLUSIVE

Table 4-1: Argument Format

--flags

Name Flags

Format --flags=[future | policy | tid | summary | verbose]

Description future will return resources available immediately and available in the future.

policy (Deprecated. May be removed in a future release.) will apply
charging policies to determine the total cost of each reported solution (only
enabled for XML responses).

summary will assign all jointly allocated transactions as dependencies of the

Chapter 4: Scheduler Commands

227 4.7 Moab Commands

4.7 Moab Commands 228

--flags

first transaction reported.

tid will associate a transaction ID with the reported results.

verbose will return diagnostic information.

Example > mshow -a -w user=john --flags=tid --xml

Show resources available to john in XML format with a transaction
ID.

--xml

Name XML

Format --xml

Description Report results in XML format.

Example > mshow -a -w user=john --flags=tid --xml

Show resources available to john in XML format with a
transaction ID.

-i

Name INTERSECTION

Description Specifies that an intersection should be performed during an mshow -a
command with multiple requirements.

-o

Name NO AGGREGATE

Description Specifies that the results of the command mshow -a with multiple
requirements should not be aggregated together.

Chapter 4: Scheduler Commands

-T

Name TIMELOCK

Description Specifies that the multiple requirements of an mshow -a command should be
timelocked.

Example > mshow -a -w minprocs=1,os=linux,duration=1:00:00 \
-w minprocs=1,os=aix,duration=10:00 \
--flags=tid,future -x -T

-w

Name WHERE

Format Comma-delimited list of <ATTR>=<VAL> pairs:
<ATTR>=<VAL> [,<ATTR>=<VAL>]...

If any of the <ATTR>=<VAL> pairs contains a sub-list that is also
comma-delimited, the entire -w string must be wrapped in single
quotations with the sub-list expression wrapped in double quotations.
See the example below.

Attributes are listed below in table 2.

Description Add a Where clause to the current command (currently supports up to six co-
allocation clauses).

Example > mshow -a -w minprocs=2,duration=1:00:00 -w nodemem=512,duration=1:00:00

Moab returns a list of all nodes with at least 2 processors and one
hour duration or with a memory of 512 and a duration of one hour.

> mshow -a -w nodefeature=\!vmware:gpfs --flags=future

Moab returns a list of all nodes that do not contain the vmware
feature but that do contain the gpfs feature.

> mshow -a -w 'duration=INFINITY,"excludehostlist=n01,n12,n23"'

Moab returns a list of all nodes with a duration of INFINITY,
except for nodes named n01, n12, and n23.
Note the use of single quotations containing the entire -w string
and the use of double quotations containing the
excludehostlist attribute.

Chapter 4: Scheduler Commands

229 4.7 Moab Commands

4.7 Moab Commands 230

-x

Name EXCLUSIVE

Description Specifies that the multiple requirements of an mshow -a command should be
exclusive (i.e., each node can only be allocated to a single requirement).

Example > mshow -a -w minprocs=1,os=linux -w minprocs=1,os=aix --flags=tid -x

Table 4-2: Request Attributes

Name Description

account The account credential of the requestor.

acl ACL to attach to the reservation.

This ACL must be enclosed in quotation marks. For example:
$ mshow -a ... -w acl=\"user=john\" ...

arch Select only nodes with the specified architecture.

class The class credential of the requestor.

coalloc The co-allocation group of the specific Where request (can be any string
but must match co-allocation group of at least one other Where request).

The number of tasks requested in each Where request must be
equal whether this taskcount is specified via minprocs,
mintasks, or gres.

count The number of profiles to apply to the resource request.

displaymode Possible value is future. (Example: displaymode=future).
Constrains how results are presented; setting future evaluates which
resources are available now and which resources will be available in the
future that match the requested attributes.

duration The duration for which the resources will be required in format
[[[DD:]HH:]MM:]SS

excludehostlist Do not select any nodes from the given list. The list must be comma-
delimited.

Chapter 4: Scheduler Commands

Name Description

> mshow -a -w 'duration=INFINITY,"excludehostlist=n01,n12,n23"'

Moab returns a list of all nodes with a duration of INFINITY,
except for nodes named n01, n12, and n23.
Note the use of single quotations to contain the entire -w string,
and the use of double quotations containing the
excludehostlist attribute.

gres Select only nodes that possess the specified generic resource.

group The group credential of the requestor.

hostlist Select only the specified resources. The list must be comma-delimited.

> mshow -a -w 'duration=INFINITY,"hostlist=n01,n12,n23"'

Moab returns a list of nodes from the selected hostlist that have
a duration of INFINITY.
Note the use of single quotations to contain the entire -w string,
and the use of double quotations containing the hostlist
attribute.

job Use the resource, duration, and credential information for the job specified
as a resource request template.

jobfeature Select only resources that would allow access to jobs with the specified job
features.

jobflags Select only resources that would allow access to jobs with the specified job
flags. The jobflags attribute accepts a colon delimited list of multiple
flags.

minnodes Return only results with at least the number of nodes specified. If used
with TIDs, return only solutions with exactly minnodes nodes available.

minprocs Return only results with at least the number of processors specified. If
used with TIDs, return only solutions with exactly minprocs processors
available.

mintasks FORMAT: <TASKCOUNT>[@<RESTYPE>:<COUNT>
[+<RESTYPE>:<COUNT>]...] where <RESTYPE> is one of procs, mem,
disk, or swap. Return only results with at least the number of tasks
specified. If used with TIDs, return only solutions with exactly mintasks

Chapter 4: Scheduler Commands

231 4.7 Moab Commands

4.7 Moab Commands 232

Name Description

available.

nodedisk Select only nodes with at least nodedisk MB of local disk configured.

nodefeature Select only nodes with all specified features present and nodes without all
\! specified features using format [\!]<feature>[:
[\!]<feature>]... You must set the future flag when specifying node
features.

nodemem Select only nodes with at least nodemem MB of memory configured.

offset Select only resources that can be co-allocated with the specified time offset
where offset is specified in the format [[[DD:]HH:]MM:]SS

os Select only nodes with have, or can be provisioned to have, the specified
operating system.

partition The partition where the resources must be located.

policylevel Enable policy enforcement at the specified policy constraint level.

qos The qos credential of the requestor.

rsvprofile Use the specified profile if committing a resulting transaction ID directly to
a reservation.

starttime Constrain the timeframe for the returned results by specifying one or more
ranges using the format <STIME>[-<ENDTIME>][;<STIME>[-
<ENDTIME>]] where each time is specified in the format in absolute,
relative, or epoch time format ([HH[:MM[:SS]]][_MO[/DD[/YY]]]
or +[[[DD:]HH:]MM:]SS or <EPOCHTIME>).

The starttime specified is not the exact time at which the returned
range must start, but is rather the earliest possible time the range
can start.

taskmem Require taskmem MB of memory per task located.

tpn Require exactly tpn tasks per node on all discovered resources.

Chapter 4: Scheduler Commands

Name Description

user The user credential of the requestor.

var Use associated variables in generating per transaction charging quotes.

variables Takes a string of the format variables='var[=attr]'[;'var
[=attr]' and passes the variables onto the reservation when used in
conjunction with --flags=tid and mrsvctl -c -R <tid>.

4.7.28.D Usage Notes
The mshow -a command allows for querying of available system resources. When
combined with the --flags=tid option these available resources can then be placed
into a packaged reservation (using mrsvctl -c -R). This allows system administrators to grab
and reserve available resources for whatever reason, without conflicting with jobs or
reservations that may be holding certain resources.

There are a few restrictions on which <ATTR> from the -w command can be placed in the
same req: minprocs, minnodes, and gres are all mutually exclusive, only one can be
used per -w request.

The allocation of available nodes will follow the global NODEALLOCATIONPOLICY.

When the '-o' flag is not used, multi-request results will be aggregated. This aggregation
will negate the use of offsets and request-specific starttimes.

The config parameter RESOURCEQUERYDEPTH controls the maximum number of options
that will be returned in response to a resource query.

4.7.28.E Examples

Example 4-30: Basic Compute Node Query and Reservation

> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobfeature=shared --
flags=tid,future

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:28:09_04/27 TID=4 ReqID=0
ALL 1 1 10:00:00 10:00:00 17:14:48_04/28 TID=5 ReqID=0
ALL 1 1 10:00:00 20:00:00 21:01:27_04/29 TID=6 ReqID=0
> mrsvctl -c -R 4
Note: reservation system.2 created

Chapter 4: Scheduler Commands

233 4.7 Moab Commands

4.7 Moab Commands 234

Example 4-31: Mixed Processor and License Query

Select one node with 4 processors and 1 matlab license where the matlab license is only
available for the last hour of the reservation. Also, select 16 additional processors that are
available during the same timeframe but which can be located anywhere in the cluster.
Group the resulting transactions together using transaction dependencies so only the first
transaction needs to be committed to reserve all associated resources.

> mshow -a -i -o -x -w mintasks=1@PROCS:4,duration=10:00:00,coalloc=a \
-w gres=matlab,offset=9:00:00,duration=1:00:00,coalloc=a \
-w minprocs=16,duration=10:00:00 --flags=tid,future,summary

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:28:09_04/27 TID=4 ReqID=0
ALL 1 1 10:00:00 10:00:00 17:14:48_04/28 TID=5 ReqID=0
ALL 1 1 10:00:00 20:00:00 21:01:27_04/29 TID=6 ReqID=0
> mrsvctl -c -R 4

Note: reservation system.2 created
Note: reservation system.3 created
Note: reservation system.4 created

Example 4-32: Request for Generic Resources

Query for a generic resource on a specific host (no processors, only a generic resource).

> mshow -a -i -x -o -w gres=dvd,duration=10:00,hostlist=node03 --flags=tid,future
Partition Tasks Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 00:00:00 00:10:00 11:33:25_07/27 TID=16
ReqID=0
ALL 1 1 00:10:00 00:10:00 11:43:25_07/27 TID=17
ReqID=0
ALL 1 1 00:20:00 00:10:00 11:53:25_07/27 TID=18
ReqID=0
> mrsvctl -c -R 16
Note: reservation system.6 created
> mdiag -r system.6
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
system.6 User loc -00:01:02 00:08:35 00:09:37 1 1
0

Flags: ISCLOSED
ACL: RSV==system.6=
CL: RSV==system.6
Accounting Creds: User:test
Task Resources: dvd: 1
Attributes (HostExp='^node03$')
Rsv-Group: system.6

Example 4-33: Allocation of Shared Resources

This example walks through a relatively complicated example where a set of resources can
be reserved to be allocated for shared requests. In the example below, the first mshow
query looks for resources within an existing shared reservation. In the example, this first

Chapter 4: Scheduler Commands

query fails because there is now existing reservation. The second query looks for
resources within an existing shared reservation. In the example, this first query fails
because there is now existing reservation. The second mshow request asks for resources
outside of a shared reservation and finds the desired resources. These resources are then
reserved as a shared pool. The third mshow request again asks for resources inside of a
shared reservation and this time finds the desired resources.

> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobflags=ADVRES,jobfeature=shared
--flags=tid

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
> mshow -a -w duration=100:00:00,minprocs=1,os=AIX53,jobfeature=shared --flags=tid
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 100:00:00 00:00:00 13:20:23_04/27 TID=1 ReqID=0
> mrsvctl -c -R 1
Note: reservation system.1 created
> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobflags=ADVRES,jobfeature=shared
--flags=tid
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:20:36_04/27 TID=2 ReqID=0
> mrsvctl -c -R 2
Note: reservation system.2 created

Example 4-34: Full Resource Query in XML Format

The following command will report information on all available resources that meet at least
the minimum specified processor and walltime constraints and which are available to the
specified user. The results will be reported in XML to allow for easy system processing.

> mshow -a -w class=grid,minprocs=8,duration=20:00 --format=xml --flags=future,verbose

<Data>
<Object>cluster</Object>
<job User="john" time="1162407604"></job>
<par Name="template">
<range duration="Duration" nodecount="Nodes" proccount="Procs"

starttime="StartTime"></range>
</par>

<par Name="ALL" feasibleNodeCount="131" feasibleTaskCount="163">
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

041:1,opt-042:1,x86-001:1,P690-001:1,P690-021:1,P690-022:1"
index="0" nodecount="10" proccount="8" reqid="0"

starttime="1162407604"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,x86-001:1,P690-001:1,P690-021:1,P690-022:1"
index="0" nodecount="11" proccount="8"reqid="0"

starttime="1162411204"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,x86-001:1,x86-002:1,x86-004:1,
x86-006:1,x86-013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1,P690-001:1,P690-

021:1,P690-022:1"
index="0" nodecount="19" proccount="8" reqid="0"

starttime="1162425519"></range>
</par>

<par Name="SharedMem">

Chapter 4: Scheduler Commands

235 4.7 Moab Commands

4.7 Moab Commands 236

<range duration="1200" hostlist="P690-001:1,P690-002:1,P690-003:1,P690-004:1,P690-
005:1,P690-006:1,P690-007:1,P690-008:1,P690-009:1,

P690-010:1,P690-011:1,P690-012:1,P690-013:1,P690-014:1,P690-015:1,P690-
016:1,P690-017:1,P690-018:1,P690-019:1,P690-020:1,P690-021:1,

P690-022:1,P690-023:1,P690-024:1,P690-025:1,P690-026:1,P690-027:1,P690-
028:1,P690-029:1,P690-030:1,P690-031:1,P690-032:1"

index="0" nodecount="32" proccount="8" reqid="0"
starttime="1163122507"></range>

</par>
<par Name="64Bit">
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1"
index="0" nodecount="7" proccount="8" reqid="0"

starttime="1162411204"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,opt-043:1,opt-044:1,opt-045:1,
opt-046:1,opt-047:1,opt-048:1,opt-049:1,opt-050:1"
index="0" nodecount="15" proccount="8" reqid="0"

starttime="1162428996"></range>
<range duration="1200" hostlist="opt-001:1,opt-006:1,opt-007:2,opt-008:2,opt-

009:2,opt-010:2,opt-011:2,opt-012:2,opt-013:2,opt-014:2,
opt-015:2,opt-016:2,opt-017:2,opt-018:2,opt-019:2,opt-020:2,opt-021:2,opt-

022:2,opt-023:2,opt-024:2,opt-025:1,opt-027:2,opt-039:1,
opt-041:1,opt-042:1,opt-043:1,opt-044:1,opt-045:1,opt-046:1,opt-047:1,opt-

048:1,opt-049:1,opt-050:1"
index="0" nodecount="33" proccount="8" reqid="0"

starttime="1162876617"></range>
</par>

<par Name="32Bit">
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1"
index="0" nodecount="9" proccount="8" reqid="0"

starttime="1162425519"></range>
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1,x86-042:1,x86-043:1"
index="0" nodecount="11" proccount="8" reqid="0"

starttime="1162956803"></range>
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-027:1,x86-028:1,
x86-029:1,x86-030:1,x86-037:1,x86-041:1,x86-042:1,x86-043:1,x86-046:1,x86-

047:1,x86-048:1,x86-049:1"
index="0" nodecount="20" proccount="8" reqid="0"

starttime="1163053393"></range>
</par>

</Data>

This command reports the original query, and the timeframe, resource size, and
hostlist associated with each possible time slot.

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mshow in a hosting environment

Chapter 4: Scheduler Commands

4.7.29 mshow -a (mshow in a Hosting Environment)

4.7.29.A Basic Current and Future Requests
The mshow command can report information on many aspects of the scheduling
environment. To request information on available resources, the -a flag should be used. By
default, the mshow command resource availability query only reports resources that are
immediately available. To request information on specific resources, the type of resources
required can be specified using the -w flag as in the following example:

> mshow -a -w taskmem=1500,duration=600
...

To view current and future resource availability, the future flag should be set as in the
following example:

> mshow -a -w taskmem=1500,duration=600 --flags=future
...

4.7.29.B Co-Allocation Resources Queries
In many cases, a particular request will need simultaneous access to resources of different
types. The mshow command supports a co-allocation request specified by using multiple -
w arguments. For example, to request 16 nodes with feature fastcpu and 2 nodes with
feature fastio, the following request might be used:

> mshow -a -w minprocs=16,duration=1:00:00,nodefeature=fastcpu -w
minprocs=2,nodefeature=fastio,duration=1:00:00 --flags=future
Partition Procs Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 16 8 00:00:00 1:00:00 13:00:18_08/25 ReqID=0
ALL 2 1 00:00:00 1:00:00 13:00:18_08/25 ReqID=1

The mshow -a documentation contains a list of the different resources that can be queried,
as well as examples on using mshow.

4.7.29.C Using Transaction IDs
By default, the mshow command reports simply when and where the requested resources
are available. However, when the tid flag is specified, the mshow command returns both
resource availability information and a handle to these resources called a Transaction ID as
in the following example:

> mshow -a -w minprocs=16,nodefeature=fastcpu,duration=2:00:00 --flags=future,tid
Partition Procs Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 16 16 00:00:00 2:00:00 13:00:18_08/25 TID=26 ReqID=0

Chapter 4: Scheduler Commands

237 4.7 Moab Commands

4.7 Moab Commands 238

In the preceding example, the returned transaction ID (TID) can then be used to reserve
the available resources using the mrsvctl -c -R command:

> mrsvctl -c -R 26
reservation system.1 successfully created

Any TID can be printed out using the mschedctl -l trans command:

Code example (replace with your own content)

> mschedctl -l trans 26 TID[26] A1='node01' A2='600' A3='1093465728' A4='ADVRES' A5='fastio'

Where A1 is the hostlist, A2 is the duration, A3 is the starttime, A4 are any flags, and A5
are any features.

4.7.29.D Using Reservation Profiles
Reservation profiles (RSVPROFILE) stand as templates against which reservations can be
created. They can contain a hostlist, startime, endtime, duration, access-control list, flags,
triggers, variables, and most other attributes of an Administrative Reservation. The
following example illustrates how to create a reservation with the exact same trigger-set:

moab.cfg

RSVPROFILE[test1] TRIGGER=Sets=$Var1.$Var2.$Var3.!Net,EType=start,AType=exec,

Action=/tmp/host/triggers/Net.sh,
Timeout=1:00:00

RSVPROFILE[test1] TRIGGER=Requires=$Var1.$Var2.$Var3,
Sets=$Var4.$Var5,EType=start,
AType=exec,Action=/tmp/host/triggers/
FS.sh+$Var1:$Var2:$Var3,Timeout=20:00

RSVPROFILE[test1]
TRIGGER=Requires=$Var1.$Var2.$Var3.$Var4.$Var5,

Sets=!NOOSinit.OSinit,Etype=start,
AType=exec,
Action=/tmp/host/triggers/
OS.sh+$Var1:$Var2:$Var3:$Var4:$Var5

RSVPROFILE[test1]
TRIGGER=Requires=NOOSini,AType=cancel,EType=start
RSVPROFILE[test1]
TRIGGER=EType=start,Requires=OSinit,AType=exec,

Action=/tmp/host/triggers/success.sh
...

To create a reservation with this profile the mrsvctl -c -P command is used:

> mrsvctl -c -P test1

reservation system.1 successfully created

Chapter 4: Scheduler Commands

4.7.29.E Using Reservation Groups
Reservation groups are a way for Moab to tie reservations together. When a reservation is
created using multiple Transaction IDs, these transactions and their resulting reservations
are tied together into one group.

> mrsvctl -c -R 34,35,36
reservation system.99 successfully created
reservation system.100 successfully created
reservation system.101 successfully created

In the preceding example, these three reservations would be tied together into a single
group. The mdiag -r command can be used to see which group a reservation belongs to.
The mrsvctl -q diag -g command can also be used to print out a specific group of
reservations. The mrsvctl -c -g command can also be used to release a group of
reservations.

Related Topics

l mshow

4.7.30 msub

4.7.30.A Synopsis
msub [-a datetime] [-A account] [-b retry_count] [-c interval] [-C directive_prefix] [-d path]
[-e path] [-E] [-F] [-h] [-I] [-j join] [-k keep] [-K] [-l resourcelist] [-L NUMA_resourcelist] [-m
mailoptions] [-M user_list] [-n node_exclusive] [-N name] [-o path] [-p priority] [-P <user>
[-q destination] [-r yn] [-S pathlist] [-t jobarrays] [-u userlist] [-v variablelist] [-V] [-w
<path>] [-W additionalattributes] [-x] [-z] [--stagein] [--stageout] [--stageinfile] [--
stageoutfile] [--stageinsize] [--stageoutsize] [--workflowjobids] [script] [--about] [--
help] [--host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.30.B Overview
msub allows users to submit jobs directly to Moab. When a job is submitted directly to a
resource manager (such as Torque), it is constrained to run on only those nodes that the
resource manager is directly monitoring. In many instances, a site may be controlling
multiple resource managers. When a job is submitted to Moab rather than to a specific

Chapter 4: Scheduler Commands

239 4.7 Moab Commands

4.7 Moab Commands 240

resource manager, it is not constrained as to what nodes it is executed on. msub can accept
command line arguments (with the same syntax as qsub), job scripts (in either PBS or
LoadLeveler syntax), or the SSS Job XML specification.

Moab must run as a root user in order for msub submissions to work. Workload
submitted via msub when Moab is running as a non-root user fail immediately.

Submitted jobs can then be viewed and controlled via the mjobctl command.

Flags specified in the following table are not necessarily supported by all resource
managers.

4.7.30.C Access
When Moab is configured to run as root, any user can submit jobs via msub.

4.7.30.D Options

-a

Name Eligible Date

Format [[[[CC]YY]MM]DD]hhmm[.SS]

Description Declares the time after which the job is eligible for execution.

Example > msub -a 12041300 cmd.pbs

Moab will not schedule the job until 1:00 pm on December 4, of the
current year.

-A

Name Account

Format <ACCOUNT NAME>

Description Defines the account associated with the job.

Chapter 4: Scheduler Commands

-A

Example > msub -A research cmd.pbs

Moab will associate this job with
account research.

-b

Name Retry count

Format <retry_count>

Description Defines the number of times msub should retry connecting to the server.

Example > msub -b 5 cmd.pbs

Moab will attempt to retry connecting to the server 5 times.

-c

Name Checkpoint Interval

Format [n|s|c|c=<minutes>]

Description Checkpoint of the job will occur at the specified interval.

n— No Checkpoint is to be performed.
s— Checkpointing is to be performed only when the server executing the job
is shut down.
c— Checkpoint is to be performed at the default minimum time for the server
executing the job.
c=<minutes>— Checkpoint is to be performed at an interval of minutes.

Example > msub -c c=12 cmd.pbs

The job will be checkpointed every 12 minutes.

Chapter 4: Scheduler Commands

241 4.7 Moab Commands

4.7 Moab Commands 242

-C

Name Directive Prefix

Format '<PREFIX NAME>'

Default First known prefix (#PBS, #@, #BSUB, #!, #MOAB, #MSUB)

Description Specifies which directive prefix should be used from a job script:

l It is best to submit with single quotes. '#PBS'
l An empty prefix will cause Moab to not search for any prefix. -C ''
l Command line arguments have precedence over script arguments.
l Custom prefixes can be used with the -C flag. -C '#MYPREFIX'
l Custom directive prefixes must use PBS syntax.
l If the -C flag is not given, Moab will take the first default prefix found.

Once a directive is found, others are ignored.

Example > msub -C '#MYPREFIX' cmd.pbs
#MYPREFIX -l walltime=5:00:00 (in cmd.pbs)

Moab will use the #MYPREFIX directive specified in cmd.pbs, setting
the wallclock limit to five hours.

-d

Name Initial Working Directory

Format <path>

Default Depends on the RM being used. If using Torque, the default is $HOME.

Description Specifies which directory the job should execute in.

Example > msub -d /home/test/job12 cmd.pbs

The job will begin execution in the /home/test/job12
directory.

Chapter 4: Scheduler Commands

-e

Name Error Path

Format [<hostname>:]<path>

Default $SUBMISSIONDIR/$JOBNAME.e$JOBID

Description Defines the path to be used for the standard error stream of the batch job.

Example > msub -e test12/stderr.txt

The STDERR stream of the job will be placed in the relative (to
execution) directory specified.

-E

Name Environment Variables

Description Moab adds the following variables, if populated, to the job's environment:

l MOAB_ACCOUNT — Account name.
l MOAB_BATCH — Set if a batch job (non-interactive).
l MOAB_CLASS — Class name.
l MOAB_DEPEND — Job dependency string.
l MOAB_GROUP — Group name.
l MOAB_JOBARRAYINDEX —For a job in an array, the index of the job.
l MOAB_JOBARRAYRANGE — For a system with job arrays, the range of all

job arrays.
l MOAB_JOBID — Job ID. If submitted from the grid, grid jobid.
l MOAB_JOBNAME— Job name.
l MOAB_MACHINE — Name of the machine (i.e., Destination RM) that the

job is running on.
l MOAB_NODECOUNT — Number of nodes allocated to job.
l MOAB_NODELIST — Comma-separated list of nodes (listed singly with no

ppn info).
l MOAB_PARTITION — Partition name the job is running in. If grid job,

cluster scheduler's name.
l MOAB_PROCCOUNT — Number of processors allocated to job.
l MOAB_QOS — QOS name.
l MOAB_SUBMITDIR — Directory from which the job was submitted.

Chapter 4: Scheduler Commands

243 4.7 Moab Commands

4.7 Moab Commands 244

-E

l MOAB_TASKMAP — Node list with procs per node listed.
<nodename>.<procs>

l MOAB_USER — User name.

This feature only works with Torque/PBS.

Example > msub -E mySim.cmd

The job mySim will be submitted with extra environment variables.

-F

Name Script Flags

Format "<STRING>"

Description Specifies the flags Torque will pass to the job script at execution time.

The -F flag is only compatible with Torque resource managers.

Example > msub -F "arg1 arg2" -1 nodes=1,walltime=60 files/job.sh

Torque will pass parameters arg1 and arg2 to the job.sh script
when the job executes.

-h

Name Hold

Description Specifies that a user hold be applied to the job at submission time.

Example > msub -h cmd.ll

The job will be submitted with a user hold on it.

-I

Name Interactive

Chapter 4: Scheduler Commands

-I

Description Declares the job is to be run interactively.

qsub must exist on the same host as msub if the interactive job is
destined for a Torque cluster, because the interactive msub request will
be converted to a qsub -I request.

Example > msub -I job117.sh

The job will be submitted in interactive mode.

-j

Name Join

Format [eo|oe|n]

Default n (not merged)

Description If eo is specified, the error and output streams are merged into the error
stream. If oe is specified, the error and output streams will be merged into the
output stream.

If using either the -e or the -o option and the -j eo|oe option, the -j
option takes precedence and all standard error and output messages go
to the chosen output file.

Example > msub -j oe cmd.sh

STDOUT and STDERR will be merged into one file.

-k

Name Keep

Format [e|o|eo|oe|n]

Default n (not retained)

Description Defines which (if either) of output and error streams will be retained on the

Chapter 4: Scheduler Commands

245 4.7 Moab Commands

4.7 Moab Commands 246

-k

execution host (overrides path for stream).

Example > msub -k oe myjob.sh

STDOUT and STDERR for the job will be retained on the execution
host.

-K

Name Continue Running

Format N/A

Description Tells the client to continue running until the submitted job is completed. The
client will query the status of the job every 5 seconds. The time interval
between queries can be specified or disabled via MSUBQUERYINTERVAL.

Use the -K option sparingly (if at all) as it slows down the Moab
scheduler with frequent queries. Running ten jobs with the -K option
creates an additional fifty queries per minute for the scheduler.

Example > msub -K newjob.sh
3
Job 3 completed*

*Only shows up after job completion.

-l

Name Resource List

Format <STRING>
-l [BANDWIDTH|DDISK|DEADLINE|DEPEND|DMEM|EXCLUDENODES|
FEATURE...|]

Additional options can be referenced on the resource manager extensions page.

Description Defines the resources that are required by the job and establishes a limit to the
amount of resource that can be consumed. Resources native to the resource
manager, scheduler resource manager extensions, or job flags can be specified.

Chapter 4: Scheduler Commands

-l

Note that resource lists are dependent on the resource manager in use.
For information on specifying multiple types of resources for allocation, see
Multi-Req Support.

Moab does not support the combination of msub -l excludenodes
and ENABLEHIGHTHROUGHPUT TRUE.

Example > msub -l nodes=32:ppn=2,pmem=1800mb,walltime=3600,VAR=testvar:myvalue cmd.sh

The job requires 32 nodes with 2 processors each, 1800 MB per
task, a walltime of 3600 seconds, and a variable named testvar
with a value of myvalue.

If JOBNODEMATCHPOLICY is not set, Moab does not reserve the
requested number of processors on the requested number of nodes. It
reserves the total number of requested processors (nodes x ppn) on any
number of nodes. Rather than setting
nodes=<value>:ppn=<value>, set procs=<value>, replacing
<value> with the total number of processors the job requires. Note
that JOBNODEMATCHPOLICY is not set by default.

> msub -l nodes=32:ppn=2 -l advres=!<resvid>

This entry would tell Moab to only consider resources other than the
specified <reservation id>.

-L

Name NUMA req_information

Description Available with Moab 9.0 or later with Torque 6.0 or later. This uses a
different syntax than the -l resource_list option.

Defines the NUMA-aware resource requests for NUMA hardware. This option
will work with non-NUMA hardware.
See '-L NUMA Resource Request' in the Torque Resource Manager
Administrator Guide for the syntax and valid values.

-m

Name Mail Options

Chapter 4: Scheduler Commands

247 4.7 Moab Commands

4.7 Moab Commands 248

-m

Format <STRING> (either n or one or more of the characters a, b, and e)

Description Defines the set of conditions (abort,begin,end) when the server will send a
mail message about the job to the user.

Example > msub -m be cmd.sh

Mail notifications will be sent when the job begins and ends.

-M

Name Mail List

Format <user>[@<host>][,<user>[@<host>],...]

Default $JOBOWNER

Description Specifies the list of users to whom mail is sent by the execution server.
Overrides the EMAILADDRESS specified on the USERCFG credential.

Example > msub -M jon@node01,bill@node01,jill@node02 cmd.sh

Mail will be sent to the specified users if the job is aborted.

-n

Name Node Exclusive

Description Allows a user to specify an exclusive-node access/allocation request for the job.
SeeSINGLEJOB - page 366 for more information.

Example > msub -n job1187.sh

Job will have exclusive access to each node on which it runs.

Chapter 4: Scheduler Commands

-N

Name Name

Format <STRING>

Default STDIN or name of job script

Description Specifies the user-specified job name attribute.

Example > msub -N chemjob3 cmd.sh

Job will be associated with the name
chemjob3.

-o

Name Output Path

Format [<hostname>:]<path> - %J and %I are acceptable variables. %J is the
master array name and %I is the array member index in the array.

Default $SUBMISSIONDIR/$JOBNAME.o$JOBID

Description Defines the path to be used for the standard output stream of the batch job.
More variables are allowed when they are used in the job script instead of
msub -o. In the job script, specify a #PBS -o line and input your desired
variables. The allowable variables are:

l OID
l OTYPE
l USER
l OWNER
l JOBID
l JOBNAME

Submitting a job script that has the line #PBS -o $(USER)_$(JOBID)_
$(JOBNAME).txt results in a file called <username>_<jobID>_
<jobName>.txt.
Do not use msub -o when submitting a job script that has a #PBS -o line
defined.

Chapter 4: Scheduler Commands

249 4.7 Moab Commands

4.7 Moab Commands 250

-o

Example > msub -o test12/stdout.txt

The STDOUT stream of the job will be placed in the relative (to
execution) directory specified.

> msub -t 1-2 -o /home/jsmith/simulations/%J-%I.out ~/sim5.sh

A job array is submitted and the name of the output files includes
the master array index and the array member index.

-p

Name Priority

Format <INTEGER> (between -1024 and 0)

Default 0

Description Defines the priority of the job. To enable priority range from -1024 to +1023,
see ENABLEPOSUSERPRIORITY.

Example > msub -p 25 cmd.sh

The job will have a user priority of 25.

-P

Name Proxy User

Format <user>[:<group>]

Description Allows a root user or manager to submit a job as another user. Moab treats
proxy jobs as though the jobs were submitted by the supplied username.

This option can only be used by users in the ADMINCFG[1] security
level.

Example msub -P user1 cmd.pbs

Chapter 4: Scheduler Commands

-q

Name Destination Queue (Class)

Format [<queue>][@<server>]

Default [<DEFAULT>]

Description Defines the destination of the job.

If no destination queue is specified and the environment variable MOAB_
DEFAULTQUEUE is present, msub will use the environment variable
when submitting the job.

Example > msub -q priority cmd.sh

The job will be submitted to the priority queue.

-r

Name Rerunable

Format [y|n]

Default n

Description: Declares whether the job is rerunable.

Example > msub -r n cmd.sh

The job cannot be rerun.

The default for qsub -r is 'y' (yes), which is opposite from msub -r. For
better clarity, use the following instead.

msub -l [flags|jobflags]=restartable]

-S

Name Shell

Chapter 4: Scheduler Commands

251 4.7 Moab Commands

4.7 Moab Commands 252

-S

Format <path>[@<host>][,<path>[@<host>],...]

Default $SHELL

Description Declares the shell that interprets the job script.

Example > msub -S /bin/bash

The job script will be interpreted by the
/bin/bash shell.

-t

Name Job Arrays

Format <name>[<indexlist>]%<limit>

Description Starts a job array with the jobs in the index list. The limit variable specifies
how many jobs can run at a time. For more information, see Submitting Job
Arrays.

Moab enforces an internal limit of 100,000 subjobs that a single array
job submission can specify.

Example > msub -t myarray[1-1000]%4

-u

Name User List

Format <user>[@<host>[,<user>[@<host>],...]

Default UID of msub command.

Description Defines the user name under which the job is to run on the execution system.

Example > msub -u bill@node01 cmd.sh

On node01 the job will run under Bill's UID, if permitted.

Chapter 4: Scheduler Commands

-v

Name Variable List

Format <string>[,<string>,...]

Description Retrieves the values of the included environment variables on the job
submission node (if no value is provided) or defines a name and value and
exports these variables to the job's compute node(s).

Example > msub -v DEBUG cmd.sh

The DEBUG environment variable on the job submission node will
be defined for the job.

> msub -v VAR1=xxx cmd.sh

The VAR1 environment variable will be defined for the job, with a
value of xxx.

-V

Name All Variables

Description Declares that all environment variables in the msub environment are exported
to the batch job.

Example > msub -V cmd.sh

All environment variables will be exported to the job.

-w

Name Working Directory

Format <path>

Description Defines the working directory path to be used for the job. If the -w option is
not specified, the default working directory is the current directory. This
option sets the environment variable PBS_O_WORKDIR.

Example > msub -l -w /tmp

Chapter 4: Scheduler Commands

253 4.7 Moab Commands

4.7 Moab Commands 254

-W

Name Additional Attributes

Format <string>

Description Allows for specification of additional job attributes (see Resource Manager
Extension).

Example > msub -W x=GRES:matlab:1 cmd.sh

The job requires one resource of matlab.

This flag can be used to set a filter for what namespaces will be passed from a
job to a trigger using a comma-delimited list. This limits the trigger's action to
objects contained in certain workflows. For more information, see Requesting
Name Space Variables.

> msub -W x="trigns=vc1,vc2"

The job passes namespaces vc1 and vc2 to triggers.

-x

Format <script> or <command>

Description When running an interactive job, the -x flag makes it so that the
corresponding script won't be parsed for PBS directives, but is instead a
command that is launched once the interactive job has started. The job
terminates at the completion of this command. This option works only when
using Torque.

The -x option for msub differs from qsub in that qsub does not require
the script name to come directly after the flag. The msub command
requires a script or command immediately after the -x declaration.

Example > msub -I -x ./script.pl
> msub -I -x /tmp/command

-z

Name Silent Mode

Chapter 4: Scheduler Commands

-z

Description The job's identifier will not be printed to stdout upon submission.

Example > msub -z cmd.sh

No job identifier will be printout the stdout upon successful
submission.

Staging Data
Data staging, or the ability to copy data required for a job from one location to another or to
copy resulting data to a new location (see Data Staging Example for more information),
must be specified at job submission. To stage data in, you would use the msub --
stagein and/or --stageinfile option, optionally with --stageinsize. You would
use similar options the same way for staging out: --stageout, --stageoutfile,
and --stageoutsize. --stagein and --stageout, which you can use multiple
times in the same msub command, allow you to specify a single file or directory to stage in
or out. --stageinfile and --stageoutfile allow you to specify a text file that lists
the files to stage in or out. The --stageinsize and [--stageoutsize] options allow
you to estimate the total size of the files and directories that you want to stage in or out,
which can help Moab make an intelligent guess about how long it will take to stage the data
in or out, therefore ensuring that the job can start as soon as possible after the staging has
occurred.

Staging a File or Directory
The --stagein and --stageout options use the same format.
--<stagein|stageout><=| ><source>%<destination>

Where <source> and <destination> take on the following format:
[<user>@]<host>:/<path>[/<fileName>]

Specifying a user and file name are optional. If you do not specify a file name, Moab will
assume a directory.

> msub ... --stagein=student@biology:/stats/file001%admin@moab:/tmp/staging
<jobScript>

This msub commands tells Moab that the job requires file001 from student's stats directory on the
biology server to be staged to admin's staging directory on the moab server prior to the job's starting.

You can specify the option multiple times for the same msub command; however, staging
large number of files is easier with --stageinfile or --stageoutfile.

Chapter 4: Scheduler Commands

255 4.7 Moab Commands

4.7 Moab Commands 256

You can also use #MSUB or #PBS within a job script to specify data staging options. For
example:

#MSUB --stageinsize=1gb
#MSUB --stagein=...

See Sample User Job Script for more information. Note that the data staging options are not
compatible with qsub.

Staging Multiple Files or Directories
The --stageinfile and --stageoutfile options use the same format. You must
include the path to a text file that lists each file to stage in or out on its own line. Each file
specification follows the same format as a --stagein or --stageout specification as
described above. The format of the command options looks like this:
--<stageinfile|stageoutfile><=| ><path>/<fileName>

The file contains multiple lines with the following format:

[<user>@]<host>:/<path>[/<fileName>]%[<user>@]<host>:/<path>
[/<fileName>]

...

Moab ignores blank lines in the file. You can comment out lines by preceding them with a
pound sign (#). The following examples demonstrate what the --stageinfile option
looks like on the command line and what the file it specifies might look like.

> msub ... --stageinfile=/tmp/myStagingFile <jobScript>

/tmp/myStagingFile:

student@biology:/stats/file001%moab:/tmp/staging
student@biology:/stats/file002%moab:/tmp/staging
student@biology:/stats/file003%moab:/tmp/staging
#student@biology:/stats/file004%moab:/tmp/staging
student@biology:/stats/file005%moab:/tmp/staging

student@biology:/stats/file006%moab:/tmp/staging
student@biology:/stats/file007%moab:/tmp/staging
student@biology:/stats/file008%moab:/tmp/staging
student@biology:/stats/file009%moab:/tmp/staging
student@biology:/stats/file010%moab:/tmp/staging

Moab stages in each file listed in myStagingFile to the /tmp/staging directory. Each file resides on the
biology host as the student user. Moab ignores the blank line and the line specifying file004.

Stage in or out File Size
The optional --stageinsize and --stageoutsize options give you the opportunity
to estimate the size of the file(s) or directory(-ies) being staged to aid Moab in choosing an
appropriate start time. Both options use the same format:
--<stageinsize|stageoutsize>=<integer>[unit]

Chapter 4: Scheduler Commands

The integer indicates the size of the file(s) and directory(-ies) in megabytes unless you
specify a different unit. Moab accepts the follow case-insensitive suffixes: KB, MB, GB, or TB.

> msub --stageinfile=/stats/file003 --stageinsize=100 <jobScript>

Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes, from the
biology node to the host where the job will run prior to job start.

> msub --stageinfile=/stats/file002 --stageinsize=1gb <jobScript>

Moab copies all files specified in the /davidharris/research/recordlist file, which add up to
approximately 1 gigabyte, to the host where the job will run prior to job start.

Return all the Job IDs in the Workflow at Submission Time
By default, msub will print the job ID to stdout at the time of submission. If you want msub
to print all of the jobs that are created as part of the workflow template, you can use the
msub --workflowjobids option to show all the job IDs at submission time:

$ echo sleep 60 | msub -l walltime=15 --workflowjobids

MoabA.3.dsin MoabA.3 MoabA.3.dsout

Job Script
The msub command supports job scripts written in any one of the following languages:

Language Notes

PBS/Torque Job Submission Language ---

SSS XML Job Object Specification ---

Low Latency
The msub can be configured to return a job ID very quickly by eliminating the processing
of some job attributes, filters, remap classes, job arrays, templates, workflows, limits and
other information when a job is submitted. This can be done globally by configuring
DISPLAYFLAGS USENOBLOCKMSUB or on the individual job submission by appending "--
noblock" to the command line.

It is recommended that when using a non-blocking msub that JOBIDFORMAT be
configured (and PROXYJOBSUBMISSION if desired).

Chapter 4: Scheduler Commands

257 4.7 Moab Commands

4.7 Moab Commands 258

4.7.30.E /etc/msubrc
Sites that want to automatically add parameters to every job submission can populate the
file /etc/msubrc with global parameters that every job submission will inherit.

For example, if a site wanted every job to request a particular generic resource the
following /etc/msubrc could be used:

-W x=GRES:matlab:2

4.7.30.F Usage Notes
msub is designed to be as flexible as possible, allowing users accustomed to PBS or
LoadLeveler syntax, to continue submitting jobs as they normally would. It is not
recommended that different styles be mixed together in the same msub command.

When only one resource manager is configured inside of Moab, all jobs are immediately
staged to the only resource manager available. However, when multiple resource
managers are configured Moab will determine which resource manager can run the job
soonest. Once this has been determined, Moab will stage the job to the resource manager.

It is possible to have Moab take a best effort approach at submission time using the
forward flag. When this flag is specified, Moab will do a quick check and make an
intelligent guess as to which resource manager can run the job soonest and then
immediately stage the job.

Moab can be configured to instantly stage a job to the underlying resource manager (like
Torque/LOADLEVELER) through the parameter INSTANTSTAGE. When set inside
moab.cfg, Moab will migrate the job instantly to an appropriate resource manager. Once
migrated, Moab will destroy all knowledge of the job and refresh itself based on the
information given to it from the underlying resource manager.

In most instances Moab can determine what syntax style the job belongs to (PBS or
LoadLeveler); if Moab is unable to make a guess, it will default the style to whatever
resource manager was configured at compile time. If LoadLeveler and PBS were both
compiled then LoadLeveler takes precedence.

Moab can translate a subset of job attributes from one syntax to another. It is therefore
possible to submit a PBS style job to a LoadLeveler resource manager, and vice versa,
though not all job attributes will be translated.

4.7.30.G Examples

> msub -l nodes=3:ppn=2,walltime=1:00:00,pmem=100kb script2.pbs.cmd
4364.orion

Chapter 4: Scheduler Commands

This example is the XML-formatted version of the above example. See Submitting Jobs via
msub in XML for more information.

<job>
<InitialWorkingDirectory>/home/user/test/perlAPI
</InitialWorkingDirectory>
<Executable>/home/user/test/perlAPI/script2.pbs.cmd
</Executable>
<SubmitLanguage>PBS</SubmitLanguage>
<Requested>
<Feature>ppn2</Feature>
<Processors>3</Processors>
<WallclockDuration>3600</WallclockDuration>

</Requested>
</job>

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mjobctl command to view, modify, and cancel jobs

l checkjob command to view detailed information about the job

l mshow command to view all jobs in the queue

l MSUBQUERYINTERVAL parameter

l SUBMITFILTER parameter

l Applying the msub Submit Filter for job script sample

4.7.30.H Applying the msub Submit Filter
When you use msub to submit a job, msub processes the input, converts it to XML, and
sends the job specification XML to the Moab scheduler. You can create a submission filter
to modify the job XML based on the criteria you set before Moab receives and processes it.

Chapter 4: Scheduler Commands

259 4.7 Moab Commands

4.7 Moab Commands 260

Image 4-1: Job submission process

The filter gives you the ability to customize the submission process, which is helpful if jobs
should have certain defaults assigned to them, if you want to keep detailed submission
statistics, or if you want to change job requests based on custom needs.

The submit filter, is a simple executable or script that receives XML via its standard input
and returns the modified XML in its standard output. It modifies the attributes of the job
specification XML based on policies you specify. It can perform various other actions at
your request, too; for instance, logging. Once the submit filter has modified the
job XML based on your criteria, it writes the XML representing the actual job submission to
stdout. The new XML could potentially match the original XML, depending on whether the
job met the criteria for modification set in the job submit filter script. Job submissions you
want to proceed will leave the filter with an exit code of 0 and continue to Moab for
scheduling. If the job meets the filter's specified criteria for rejection, it exits with a non-
zero value, aborting the job submission process. You can configure the filter script to write
a descriptive rejection message to stderr.

Job submit filters follow these rejection rules: 1) msub will reject job XML with an exit code
of anything other than zero, 2) the msub command displays filter's error output on the
command line, 3) msub will reject the job if the filter outputs invalid job XML, and
4) msubwill reject the job if it violates any policies in your general Moab configuration; you
cannot use a submit filter to bypass other policies.

To see the schema for job submission XML, refer to Submitting Jobs via msub in XML.

Submit Filter Types
You can implement submit filters on either the client or server side of a job submission.
The primary differences between the two submit filter types are the location from which
the filter runs, the powers and privileges of the user running the filter, and whether a user
can bypass the filter. Client-based submit filters run from the msub client as the user who
submits the job and can be bypassed, and server-based submit filters run from the Moab
server as the user as which the server is running and cannot be bypassed.

Chapter 4: Scheduler Commands

Client-Based Submit Filter

Client-based filters run from the msub client as the user who is submitting the job. Because
they do not have elevated privileges, the risk of client-based submit filters' being abused is
low; however, it is possible for the client to specify its own configuration file and bypass the
filter or substitute its own filter. Job submissions do not even reach the server if a client-
based submit filter rejects it.

To configure msub to use the submit filter, give each submission host access to the submit
filter script and add a SUBMITFILTER parameter to the Moab configuration file
(moab.cfg) on each submission host. The following example demonstrates how you
might modify the moab.cfg file:

SUBMITFILTER /home/submitfilter/filter.pl

If you experience problems with your submit filter and want to debug its interaction with
msub, enter msub --loglevel=9. This will cause msub to print verbose log messages
to the terminal.

Server-Based Submit Filter

Server-based submit filters run from the Moab server as the user as which the server is
running. Because it runs as a privileged user, you must evaluate the script closely for
security implications. A client configuration cannot bypass the filter.

To configure Moab to automatically apply a filter to all job submissions, use the
SERVERSUBMITFILTER parameter. SERVERSUBMITFILTER specifies the path to a global
job submit filter script, which Moab will run on the head node and apply to every job
submitted.

SERVERSUBMITFILTER /opt/moab/scripts/jobFilter.pl

Moab runs jobFilter.pl, located in the /opt/moab/scripts directory, on the head node, applying the filter
to all jobs submitted.

OutputFormat XML Tag

The 'OutputFormat' element is used by a job submit filter to alter the output of the msub
command when it reports the submitted job's job ID. For example, if a job submit filter
performs a complex procedure on behalf of the user, such as submitting system jobs for a
pre-defined workflow to accomplish some function, the filter can set this element to a value
that permits it to return the job IDs of the system jobs it submitted in addition to the user's
job ID the msub command returns (The Moab integration with Cray's SSD-based DataWarp
service does precisely this using a job submit filter).

Chapter 4: Scheduler Commands

261 4.7 Moab Commands

4.7 Moab Commands 262

To illustrate this element's functionality using the Moab/DataWarp integration example, a
DataWarp job submit filter submits a 'DataWarp instance creation/input data staging'
script as a system job and a corresponding 'output data staging/DataWarp instance
destruction' script as another system job, and then ties them together with job
dependencies in a 'DataWarp job workflow' that causes the user job's execution to depend
on the successful completion of the DataWarp creation/input staging job and the
DataWarp output staging/DataWarp Destruction system job to depend on the user job,
regardless whether it completes successfully or not, or is cancelled. This DataWarp 3-job
workflow guarantees the proper creation and destruction of job-based DataWarp storage;
all set up and accomplished by a job submit filter.

However, users often create job workflows that have dependencies between their own jobs
and may require the job IDs of all jobs to be made available in order to build a desired job
workflow (i.e., 'jobB' may require 'jobA' to complete before 'jobB' is able to run). For
example, if jobA was a DataWarp job and jobB should not run unless JobA successfully
completes, but not until JobA's output data files are successfully staged, jobB must depend
on jobA's job ID, as well as jobA's 'output data staging/DataWarp instance destruction'
system job's job ID. The user can indicate jobB's job dependencies when jobA is a
DataWarp job using the job submission option:
-l depend=afterok:<jobAid>:<jobAoutputSystemJobId>.

The OutputFormat XML tag provides a way for a job submit filter to pass the job IDs of
additional jobs it submitted to perform a service on behalf of the user's job.

The <OutputFormat> tag must be added to the job tag. If it is outside, it is treated as
an invalid XML.

For example, you might submit a job and a job submit filter submits two additional jobs to
assist it; the first additional job, 'job11', will run before your job, and the second additional
job, 'job12', needs to run after your job finishes. If the job submit filter requires them to
output in the order of 'pre', 'user', and 'post' job IDs (which is the same order Moab
outputs job IDs for user jobs with input and output data-staging options), it would return
the following OutputFormat element as the user's job ID string:

<OutputFormat>moab.11 %s moab.12</OutputFormat>

msub displays the user ID string as "Moab.11 Moab.13 Moab.12"

This means that you can have all three job IDs delivered to the end user, or a job workflow
generation script in an easy to read format.

Chapter 4: Scheduler Commands

Sample Submit Filter Script
The following example is a trivial implementation that will not affect whether a job is
submitted. Use it as reference to verify that you are writing your filter properly.

#!/usr/bin/perl
use strict;

Simple filter example that re-directs the output to a file.

my $file = "xmllog.out";

open FILE,">>$file" or die "Couldn't open $file: $!";
while (<>)
{
print FILE;
print;
}
close FILE;

4.7.30.I Submitting Jobs Via msub in XML
The following describes the XML format used with the msub command to submit a job to a
Moab server. This information can be used to implement a filter and modify the XML
normally generated by the msub command. The XML format described in what follows is
based on a variant of the Scalable Systems Software Job Object Specification.

Overall XML Format
The overall format of an XML request to submit a job can be shown through the following
example:

<job>
job attribute children
</job>

An example of a simple job element with all the required children for a job submission is as
follows:

<job>
<Owner>user</Owner>
<UserId>user</UserId>
<GroupId>group</GroupId>
<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory>
<UMask>18</UMask>
<Executable>/full/path/to/script/or/first/line/of/stdin</Executable>
<SubmitLanguage>Resource Manager Type</SubmitLanguage>
<SubmitString>\START\23!/usr/bin/ruby\0contents\20of\20script</SubmitString>

</job>

Chapter 4: Scheduler Commands

263 4.7 Moab Commands

4.7 Moab Commands 264

The section that follows entitled Job Element Format describes the possible attributes and
their meanings in detail. In actuality, all that is needed to run a job in Moab is something
similar to the following:

<job>
<SubmitString>\START\23!/bin/sh\0asleep\201000</SubmitString>

</job>

This piece of XML requests Moab to submit a job using the contents of the SubmitString tag as a script, which is in
this case a simple sh script to sleep for 1000 seconds. The msub command will create default values for all other
needed attributes.

Job Element Format
The job element of the submission request contains a list of children and string values
inside the children that represent the attribute/value pairs for the job. The earlier section,
Overall XML Format, gives an example of this format. This section explains these attributes
in detail.

Arguments— The arguments to be passed to the program are normally specified as
arguments after the first argument specifying the script to be executed.

EligibleTime— The minimum time after which the job is eligible. This is the equivalent of
the -a option in msub. Format: [[[[CC]YY]MM]DD]hhmm[.SS]

Environment— The semi-colon list of environment variables that are exported to the job
(taken from the msub command environment). The -V msub flag, for example, adds all the
environment variables present at the time msub is invoked. Environment variables are
delimited by the ~rs; characters. Following is an example of the results of the msub -v
arg1=1,arg2=2 command:

<Environment>arg1=1~rs;arg2=2~rs;</Environment>

ErrorFile— Defines the path to be used for the standard error stream of the batch job.
This is equivalent to the -e flag in msub.

Executable— This is normally either the name of the script to be executed, or the first line
of the script if it is passed to msub through standard input.

Extension— The resource manager extension string. This can be specified via the
command line in a number of ways, including the -W x= directive. Some other requests,
such as some extensions used in the -l flag, are also converted to an extension string. The
element has the following format:

<Extension>x=extension</Extension>

See Using the Extension Element to Submit Triggers for additional information on the
extension element.

Chapter 4: Scheduler Commands

GroupId— The string name of the group of the user submitting the job. This will
correspond to the user's primary group on the operating system.

Hold— Specifies that a user hold be applied to the job at submission time. This is the
equivalent to the msub flag -h. It will have the form:

<Hold>User</Hold>

InitialWorkingDirectory— Specifies in which directory the job should begin executing.
This is equivalent to the -d flag in the msub command.

<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory>

Interactive— Specifies that the job is to be interactive. This is the equivalent of the -I flag
in msub.

<Interactive>TRUE</Interactive>

JobName— The user-specified job name attribute. This is equivalent to the -N flag in
msub.

NotificationList— The job states after which an email should be sent and also specifies
the users to be emailed. This is the equivalent of the -m and -M options in msub.

<NotificationList URI=user1:user2>JobFail,JobStart,JobEnd</NotificationList>

In this example, the command msub -m abe -M user1:user2 ran indicating that emails should be sent when
a job fails, starts, or ends, and that they should be sent to user1 and user2.

OutputFile— Defines the path to be used for the standard output stream of the batch job.
This is the equivalent of the -o flag in msub.

Priority— A user-requested priority value. This is the equivalent to the msub -p flag.

ProjectId— Defines the account associated with the job. This is equivalent to the -A msub
flag.

QueueName— The requested class of the job. This is the equivalent of the msub -q flag.

Requested— Specifies resources and attributes the job specifically requests and has the
following form:

<Requested>
<... requested attributes>

</Requested>

See the section dedicated to requestable attributes in this element.

RMFlags— Flags that will get passed directly to the resource manager on job submission.
This is equivalent to any arguments listed after the -l msub flag.

<RMFlags>arg1 arg2 arg3</RMFlags>

Chapter 4: Scheduler Commands

265 4.7 Moab Commands

4.7 Moab Commands 266

ShellName— Declares the shell that interprets the job script. This is equivalent to the
msub flag -S.

SubmitLanguage— Resource manager whose language the job is using. Use Torque to
specify a Torque resource manager.

SubmitString— Contains the contents of the script to be run, retrieved either from an
actual script or from standard input. This also includes all resource manager specific
directives that may have been in the script already or added as a result of other command
line arguments.

TaskGroup— Groups a set of requested resources together. It does so by encapsulating a
Requested element. For example, the command msub -l nodes=2+nodes=3:ppn=2
generates the following XML:

<TaskGroup>
<Requested>
<Processors>2</Processors>
<TPN>2</TPN>

</Requested>
</TaskGroup>
<TaskGroup>
<Requested>
<Processors>2</Processors>

</Requested>
</TaskGroup>

UserId— The string value of the user ID of the job owner. This will correspond to the
user's name on the operating system.

Using the Extension Element to Submit Triggers
Use the Extension element to submit triggers. With the exception of certain characters, the
syntax for trigger creation is the same for non-XML trigger submission. See Object Triggers
for detailed information on triggers. The ampersand (&) and less than sign (<) characters
must be replaced for the XML to be valid. The following example shows how the Extension
element is used to submit multiple triggers (separated by a semi-colon). Note that
ampersand characters are replaced with & in the example:

<Job>
<UserId>user1</UserId>
<GroupId>user1</GroupId>
<Arguments>60</Arguments>
<Executable>/bin/sleep</Executable>

<Extension>x=trig:AType=exec&Action="env"&EType=start;trig:AType=exec&Acti
on="trig2.sh"&EType=end</Extension>
<Processors>3</Processors>
<Disk>500</Disk>
<Memory>1024</Memory>
<Swap>600</Swap>
<WallclockDuration>300</WallclockDuration>
<Environment>PERL5LIB=/perl5:</Environment>

Chapter 4: Scheduler Commands

</Job>

Elements Found in Requested Element
The following describes the tags that can be found in the Requested sub-element of the job
element in a job submission request.

Nodes— A list of nodes that the job requests to be run on. This is the equivalent of the -l
hosts=<host-list> msub directive.

<Requested>
<Nodes>
<Node>n1:n2</Node>

</Nodes>
</Requested>

In this example, the users requested the hosts n1 and n2 with the command msub -l host=n1:n2.

Processors— The number of processors requested by the job. The following example was
generated with the command msub -l nodes=5:

<Requested>
<Processors>5</Processors>

</Requested>

TPN— Tasks per node. This is generated using the ppn resource manager extensions. For
example, from msub -l nodes=3:ppn=2, the following results:

<Requested>
<Processors>6</Processors>
<TPN>2</TPN>

</Requested>

WallclockDuration— The requested wallclock duration of the job. This attribute is
specified in the Requested element.

<Requested>
<WallclockDuration>3600</WallclockDuration>

</Requested>

Related Topics

l Applying the msub Submit Filter

l SUBMITFILTER parameter

Chapter 4: Scheduler Commands

267 4.7 Moab Commands

4.7 Moab Commands 268

4.7.31 mvcctl (Moab Virtual Container Control)

4.7.31.A Synopsis
mvcctl -a <OType>:<OName>[,<OType>:<OName>] <name>

mvcctl -c [<description>]

mvcctl -d <name>

mvcctl -m <ATTR>=VAL[,<ATTR>=<VAL>] <name>

mvcctl -q [<name>|ALL] [--xml][--blocking][--flags=fullxml]

mvcctl -r <OType>:<OName>[,<OType>:<OName>] <name>

mvcctl -x <action><name>
[--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.31.B Overview
A virtual container (VC) is a logical grouping of objects with a shared variable space and
applied policies. Containers can hold virtual machines, jobs, reservations, and nodes.
Containers can also be nested inside other containers.

A VC can be owned by a user, group, or account. Users can only view VCs to which they
have access. Level 1 administrators (Admin1) can view and modify all VCs. The owner can
also be changed. When modifying the owner, you must also specify the owner type:

mvcctl -m OWNER=acct:bob myvc

Adding objects to VCs at submission: You associate jobs and reservations with a specified
VC upon submission. For example:

l mrsvctl -c ... -H <VC>

l msub ... -W x="vc=<VC>"

The user who submits objects must have access to the VC or the command is rejected.

4.7.31.C FullXML flag
The FullXML flag will cause the mvcctl -q command to show VCs in a hierarchical
manner. If doing a non-XML (plaintext) query, sub-VCs will be listed inside their parent

Chapter 4: Scheduler Commands

VCs. Each VC will be indented more than its parent.

VC[vc1] (vc1)
Owner: user:jason
VCs:
VC[vc2] (vc2)

Owner: user:jason
Jobs: Moab.1
Rsvs: system.1
VCs:
VC[vc3] (vc3)

Owner: user:jason
VC[vc4] (vc4)

Owner: user:jason

If doing an XML query, the XML for all sub-objects (VCs, but also reservations, jobs, etc.)
will also be included in the VC.

<Data>
<vcs>

<vc CREATETIME="1460666817" CREATOR="tshaw" DESCRIPTION="vc1"
NAME="vc1" OWNER="user:tshaw" VCS="vc2,vc4">
<ACL aff="positive" cmp="%=" name="tshaw" type="USER" />

</vc>
<vc CREATETIME="1460666818" CREATOR="tshaw" DESCRIPTION="vc2"
JOBS="moab.1" NAME="vc2" OWNER="user:tshaw" RSVS="system.2"
VCS="vc3">
<ACL aff="positive" cmp="%=" name="tshaw" type="USER" />

</vc>
<vc CREATETIME="1460666818" CREATOR="tshaw" DESCRIPTION="vc3"
NAME="vc3" OWNER="user:tshaw">
<ACL aff="positive" cmp="%=" name="tshaw" type="USER" />

</vc>
<vc CREATETIME="1460666818" CREATOR="tshaw" DESCRIPTION="vc4"
NAME="vc4" OWNER="user:tshaw">
<ACL aff="positive" cmp="%=" name="tshaw" type="USER" />

</vc>
</vcs>

</Data>

Note that the XML from the blocking and non-blocking commands may differ.

4.7.31.D Virtual Container Flags
The following table indicates available virtual container (VC) flags and associated
descriptions. Note that the Deleting, HasStarted, and Workflow flags cannot be set
by a user but are helpful indicators of status.

VC Flags

DestroyObjects When the VC is destroyed, any reservations and jobs in the VC
are also destroyed. This is recursive, so any objects in sub-VCs
are also destroyed. Nodes are not removed.

Chapter 4: Scheduler Commands

269 4.7 Moab Commands

4.7 Moab Commands 270

VC Flags

DestroyWhenEmpty When the VC is empty, it is destroyed.

Deleting Set by the scheduler when the VC has been instructed to be
removed.

Internal flag. Administrators cannot set or clear this
flag.

HasStarted This flag is set on a VC workflow where at least one job has
started.

Internal flag. Administrators cannot set or clear this
flag.

HoldJobs This flag will place a hold on any job that is submitted to the
VC while this flag is set. It is not applied for already existing
jobs that are added into the VC. If a job with a workflow is
submitted to the VC, all jobs within the workflow are placed
on hold.

NoReleaseWhenScheduled Prevents Moab from lifting the UserHold on the workflow
when it is scheduled. This enables an approval method where
an administrator must release the hold manually before the
service is allowed to start as scheduled.

Workflow Designates this VC as a VC that is for workflows. This flag is
set when generated by a job template workflow. Workflow
jobs can only be attached to one workflow VC.

Internal flag. Administrators cannot set or clear this
flag.

4.7.31.E Options

-a

Format mvcctl -a<OType>:<OName>[,<OType>:<OName>] <name>
Where <OType> is one of JOB, RSV, NODE, or VC.

Chapter 4: Scheduler Commands

-a

Description Add the given object(s).

Example mvcctl -a JOB:Moab.45 vc13
>>job 'Moab.45' added to VC 'vc13'

-c

Format mvcctl -c [<description>]

Description Create a virtual container (VC). The VC name is auto-generated. It is
recommended that you supply a description; otherwise the description is the
same as the auto-generated name.

Example mvcctl -c "Linux testing machine"
>>VC 'vc13' created

-d

Format mvcctl -d<lab01>

Description Destroy the VC.

Example mvcctl -d vc13
>>VC 'vc13' destroyed

-m

Format mvcctl -m<ATTR>=VAL[,<ATTR>=<VAL>] <name>

Description Modify the VC. Attributes are flags, owner, reqstarttime, reqnodeset, variables,
and owner; note that only the owner can modify owner. Use reqstarttime
when implementing guaranteed start time to specify when jobs should start.
The reqnodeset attribute indicates the node set that jobs should run in that
are submitted to a virtual container.

Chapter 4: Scheduler Commands

271 4.7 Moab Commands

4.7 Moab Commands 272

-m

Example mvcctl -m variables+=HV=node8 vc13
>>VC 'vc13' successfully modified

mvcctl -m flags+=DESTROYWHENEMPTY vc1
>>VC 'vc1' successfully modified

mvcctl -m messages="\"This VC is for internal use, etc.\"" vc5
>>VC 'vc5' successfully modified

-q

Format mvcctl -q [<name>|ALL] [--xml][--blocking][--flags=fullxml]

Description Query VCs.

Example mvcctl -q ALL
VC[vc13] (Linux testing machine)
Create Time: 1311027343 Creator: jdoe
Owner: user:jdoe
ACL: USER=%=jdoe+;
Jobs: Moab.45
Vars: HV=node88
Flags: DESTROYWHENEMPTY

-r

Format mvcctl -r<OType>:<OName>[,<OType>:<OName>] <name>
Where <OType> is one of JOB, RSV, NODE, or VC.

Description Remove the given object(s) from the VC.

Example mvcctl -r JOB:Moab.45 vc13
>>job 'Moab.45' removed from VC 'vc13'

-x

Format mvcctl -x<action><name>

Description Executes the given action on the virtual container (VC).

Example mvcctl -x schedulevc vc1

Chapter 4: Scheduler Commands

4.7.32 showbf

4.7.32.A Synopsis
showbf [-a account] [-A] [-c class] [-d duration] [-D] [-f features] [-g group] [-h] [-L] [-m
[==|>|>=|<|<=] memory] [-n nodecount] [-p partition] [-q qos] [-r processorcount] [-u user]
[-v] [--blocking] [--about] [--help] [--host=<serverHostName>] [-
-loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.32.B Overview
Shows what resources are available for immediate use.

The results Moab returns do not include resources that may be freed due to
preemption.

This command can be used by any user to find out how many processors are available for
immediate use on the system. It is anticipated that users will use this information to submit
jobs that meet these criteria and therefore obtain quick job turnaround times. This
command incorporates down time, reservations, and node state information in determining
the available backfill window.

If specific information is not specified, showbf will return information for the user
and group running but with global access for other credentials. For example, if -q
qos is not specified, Moab will return resource availability information for a job as if
it were entitled to access all QOS based resources (i.e., resources covered by
reservations with a QOS based ACL), if -c class is not specified, the command will
return information for resources accessible by any class.

The showbf command incorporates node configuration, node utilization, node state,
and node reservation information into the results it reports. This command does not
incorporate constraints imposed by credential based fairness policies on the results it
reports.

Chapter 4: Scheduler Commands

273 4.7 Moab Commands

4.7 Moab Commands 274

4.7.32.C Access
By default, this command can be used by any user or administrator.

4.7.32.D Parameters

Parameter Description

ACCOUNT Account name.

CLASS Class/queue required.

DURATION Time duration specified as the number of seconds or in
[DD:]HH:MM:SS notation.

FEATURELIST Colon separated list of node features required.

GROUP Specify particular group.

MEMCMP Memory comparison used with the -m flag. Valid signs are >, >=, ==,
<=, and <.

MEMORY Specifies the amount of required real memory configured on the node,
(in MB), used with the -m flag.

NODECOUNT Specify number of nodes for inquiry with -n flag.

PARTITION Specify partition to check with -p flag.

PROCESSORCOUNT Specify number of processors required.

QOS Specify QOS to check with -q flag.

USER Specify particular user to check with -u flag.

Chapter 4: Scheduler Commands

4.7.32.E Options

Option Description

-a Show resource availability information only for the specified
account.

-A Show resource availability information for all users, groups, and
accounts. By default, showbf uses the default user, group, and
account ID of the user issuing the command.

--blocking Do not use cache information in the output. The --blocking flag
retrieves results exclusively from the scheduler.

-c Show resource availability only for the specified class.

-d Show resource availability information for specified duration.

-D Display current and future resource availability notation.

-f Display availability for the specified colon-separated list of node
features.

-g Show resource availability information only for specified group.

-h Help for this command.

-L Enforce Hard limits when showing available resources.

-m Allows user to specify the memory requirements for the backfill
nodes of interest. It is important to note that if the optional
MEMCMP and MEMORY parameters are used, they must be enclosed
in single ticks (') to avoid interpretation by the shell. For example,
enter showbf -m '==256' to request nodes with 256 MB
memory.

-n Show resource availability information for a specified number of
nodes. That is, this flag can be used to force showbf to display only
blocks of resources with at least this many nodes available.

-p Show resource availability information for the specified partition.

-q Show information for the specified QOS.

Chapter 4: Scheduler Commands

275 4.7 Moab Commands

4.7 Moab Commands 276

Option Description

-r Show resource availability for the specified processor count.

-u Show resource availability information only for specified user.

-v Displays verbose information.

4.7.32.F Examples
In this example, a job requiring up to 2 processors could be submitted for immediate
execution in partition ClusterA for any duration. Additionally, a job requiring 1
processor could be submitted for immediate execution in partition ClusterB. Note that
by default, each task is tracked and reported as a request for a single processor.

> showbf
Partition Tasks Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 3 3 00:00:00 INFINITY 11:32:38_08/19
ReqID=0
ClusterA 1 1 00:00:00 INFINITY 11:32:38_08/19
ReqID=0
ClusterB 2 2 00:00:00 INFINITY 11:32:38_08/19
ReqID=0

StartOffset is the amount of time remaining before resources will be available.

Example 4-35:

In this example, the output verifies that a backfill window exists for jobs requiring a 3 hour
runtime and at least 16 processors. Specifying job duration is of value when time based
access is assigned to reservations (i.e., using the SRCFG TIMELIMIT ACL).

> showbf -r 16 -d 3:00:00
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- -------- ----------- ---------
ALL 20 20 INFINITY 00:00:00 09:22:25_07/19

Example 4-36:

In this example, a resource availability window is requested for processors located only on
nodes with at least 512 MB of memory.

> showbf -m ' =512'
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- -------- ----------- ---------
ALL 20 20 INFINITY 00:00:00 09:23:23_07/19
ClusterA 10 10 INFINITY 00:00:00 09:23:23_07/19

Chapter 4: Scheduler Commands

ClusterB 10 10 INFINITY 00:00:00 09:23:23_07/19

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l showq

l mdiag -t

4.7.33 showq

4.7.33.A Synopsis
showq [-b] [-g] [-l] [-c|-i|-r] [-n] [-N] [-o] [-p partition] [-R rsvid] [-s] [-S] [-u] [-v] [-w
<CONSTRAINT>] [--blocking] [--noblock] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.33.B Overview
Displays information about active, eligible, blocked, and/or recently completed jobs. Since
the resource manager is not actually scheduling jobs, the job ordering it displays is not
valid. The showq command displays the actual job ordering under the Moab Workload
Manager. When used without flags, this command displays all jobs in active, idle, and non-
queued states.

4.7.33.C Access
By default, this command can be run by any user. However, the -c, -i, and -r flags can
only be used by level 1, 2, or 3 Moab administrators.

Chapter 4: Scheduler Commands

277 4.7 Moab Commands

4.7 Moab Commands 278

4.7.33.D Options

Option Argument Description

-b --- Display blocked jobs only.

-c --- Display details about recently completed jobs (see
example, JOBCPURGETIME).

-g --- Display grid job and system IDs for all jobs.

-i --- Display extended details about idle jobs.

-l --- Display local/remote view. For use in a Grid
environment, displays job usage of both local and
remote compute resources.

-n --- Displays normal showq output, but lists job names
under JOBID.

-N --- Show the node/task allocation of the job.

-o --- Displays jobs in the active queue in the order
specified (uses format showq -o
<specifiedOrder>). Valid options include
REMAINING, REVERSEREMAINING, JOB, USER,
STATE, and STARTTIME. The default is REMAINING.

-p partition Display only jobs assigned to the specified partition.

-r --- Display extended details about active (running) jobs
(see example).

-R rsvid Display only jobs that overlap the specified
reservation.

-s --- Display workload summary.

-S --- Display system jobs.

-u --- Display all running jobs for a particular user.

Chapter 4: Scheduler Commands

Option Argument Description

-v --- Display local and full resource manager job IDs, as
well as partitions. If specified with the -i option,
will display job reservation time. To see a summary
of array subjobs, run checkjob -v <jobID>. To
see array subjobs in showq, include the --
blocking option.

-w constraint Display only jobs associated with the specified
constraint. Valid constraints include user, group,
jobgroup, acct, nodefeature, class, and qos (see
showq -w examples).

--blocking --- Do not use cache information in the output. The --
blocking flag retrieves results exclusively from
the scheduler. This option also causes showq to
display an individual line for each array subjob.

--noblock --- Use cache information for a faster response.

4.7.33.E Details
Beyond job information, the showq command will also report if the scheduler is stopped or
paused or if a system reservation is in place. Further, the showq command will also report
public system messages.

4.7.33.F Examples

l Default Report
o Detailed Active/Running Job Report
o Eligible Jobs
o Detailed Completed Job Report

l Filtered Job Report

Default Report
The output of this command is divided into three parts, Active Jobs, Eligible Jobs, and
Blocked Jobs.

> showq

Chapter 4: Scheduler Commands

279 4.7 Moab Commands

4.7 Moab Commands 280

active jobs------------------------
JOBIDUSERNAMESTATEPROCSREMAINING STARTTIME

12941 sartois Running 25 2:44:11 Thu Sep 1 15:02:50
12954 tgates Running 4 2:57:33 Thu Sep 1 15:02:52
12944 eval1 Running 16 6:37:31 Thu Sep 1 15:02:50
12946 tgates Running 2 1:05:57:31 Thu Sep 1 15:02:50

4 active jobs 47 of 48 processors active (97.92%)
32 of 32 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

12956 cfosdyke Idle 32 6:40:00 Thu Sep 1 15:02:50
12969 cfosdyke Idle 4 6:40:00 Thu Sep 1 15:03:23
12939 eval1 Idle 16 3:00:00 Thu Sep 1 15:02:50
12940 mwillis Idle 2 3:00:00 Thu Sep 1 15:02:50
12947 mwillis Idle 2 3:00:00 Thu Sep 1 15:02:50
12949 eval1 Idle 2 3:00:00 Thu Sep 1 15:02:50
12953 tgates Idle 10 4:26:40 Thu Sep 1 15:02:50
12955 eval1 Idle 2 4:26:40 Thu Sep 1 15:02:50
12957 tgates Idle 16 3:00:00 Thu Sep 1 15:02:50
12963 eval1 Idle 16 1:06:00:00 Thu Sep 1 15:02:52
12964 tgates Idle 16 1:00:00:00 Thu Sep 1 15:02:52
12937 allendr Idle 9 1:00:00:00 Thu Sep 1 15:02:50
12962 aacker Idle 6 00:26:40 Thu Sep 1 15:02:50
12968 tamaker Idle 1 4:26:40 Thu Sep 1 15:02:52

14 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 18

The fields are as follows:

Column Description

JOBID Job identifier.

USERNAME User owning job.

STATE Job State. Current batch state of the job.

PROCS Number of processors being used by the job.

REMAINING/WCLIMIT For active jobs, the time the job has until it has reached its wallclock
limit or for idle/blocked jobs, the amount of time requested by the
job. Time specified in [DD:]HH:MM:SS notation.

Chapter 4: Scheduler Commands

Column Description

STARTTIME Time job started running.

Active Jobs

Active jobs are those that are Running or Starting and consuming resources. Displayed are
the job ID*, the job's owner, and the job state. Also displayed are the number of processors
allocated to the job, the amount of time remaining until the job completes (given in
HH:MM:SS notation), and the time the job started. All active jobs are sorted in 'Earliest
Completion Time First' order.

*Job IDs can be marked with a single character to specify the following conditions:

Character Description

_ (underbar) job violates usage limit

* (asterisk) job is backfilled AND is preemptible

+ (plus) job is backfilled AND is NOT preemptible

- (hyphen) job is NOT backfilled AND is preemptible

Detailed active job information can be obtained using the -r flag.

Eligible Jobs

Eligible Jobs are those that are queued and eligible to be scheduled. They are all in the Idle
job state and do not violate any fairness policies or have any job holds in place. The jobs in
the Idle section display the same information as the Active Jobs section except that the
wallclock CPULIMIT is specified rather than job time REMAINING, and job QUEUETIME is
displayed rather than job STARTTIME. The jobs in this section are ordered by job priority.
Jobs in this queue are considered eligible for both scheduling and backfilling.

Detailed eligible job information can be obtained using the -i flag.

Chapter 4: Scheduler Commands

281 4.7 Moab Commands

4.7 Moab Commands 282

Blocked Jobs

Blocked jobs are those that are ineligible to be run or queued. Jobs listed here could be in a
number of states for the following reasons:

State Description

Idle Job violates a fairness policy. Use diagnose -q for more information.

UserHold A user hold is in place.

SystemHold An administrative or system hold is in place.

BatchHold A scheduler batch hold is in place (used when the job cannot be run because
the requested resources are not available in the system or because the
resource manager has repeatedly failed in attempts to start the job).

Deferred A scheduler defer hold is in place (a temporary hold used when a job has been
unable to start after a specified number of attempts. This hold is automatically
removed after a short period of time).

NotQueued Job is in the resource manager state NQ (indicating the job's controlling
scheduling daemon in unavailable).

A summary of the job queue's status is provided at the end of the output.

Example 4-37: Detailed Active/Running Job Report

> showq -r

active jobs------------------------
JOBID S PAR EFFIC XFACTOR Q USER GROUP MHOST PROCS
REMAINING STARTTIME

12941 R 3 100.00 1.0 - sartois Arches G5-014 25
2:43:31 Thu Sep 1 15:02:50
12954 R 3 100.00 1.0 Hi tgates Arches G5-016 4
2:56:54 Thu Sep 1 15:02:52
12944 R 2 100.00 1.0 De eval1 RedRock P690-016 16
6:36:51 Thu Sep 1 15:02:50
12946 R 3 100.00 1.0 - tgates Arches G5-001 2
1:05:56:51 Thu Sep 1 15:02:50

4 active jobs 47 of 48 processors active (97.92%)
32 of 32 nodes active (100.00%)

Total jobs: 4

After displaying the running jobs, a summary is provided indicating the number of jobs, the
number of allocated processors, and the system utilization.

Chapter 4: Scheduler Commands

Column Description

JOBID Name of active job.

S Job State. Either R for Running or S for Starting.

PAR Partition in which job is running.

EFFIC CPU efficiency of job.

XFACTOR See Expansion Factor (XFACTOR) Subcomponent for a detailed description.

Q Quality Of Service specified for job.

USER User owning job.

GROUP Primary group of job owner.

MHOST Master Host running primary task of job.

PROCS Number of processors being used by the job.

REMAINING Time the job has until it has reached its wallclock limit. Time specified in
HH:MM:SS notation.

STARTTIME Time job started running.

> showq -i

eligible jobs----------------------
JOBID PRIORITY XFACTOR Q USER GROUP PROCS WCLIMIT
CLASS SYSTEMQUEUETIME

12956* 20 1.0 - cfosdyke RedRock 32 6:40:00
batch Thu Sep 1 15:02:50
12969* 19 1.0 - cfosdyke RedRock 4 6:40:00
batch Thu Sep 1 15:03:23
12939 16 1.0 - eval1 RedRock 16 3:00:00
batch Thu Sep 1 15:02:50
12940 16 1.0 - mwillis Arches 2 3:00:00
batch Thu Sep 1 15:02:50
12947 16 1.0 - mwillis Arches 2 3:00:00
batch Thu Sep 1 15:02:50
12949 16 1.0 - eval1 RedRock 2 3:00:00
batch Thu Sep 1 15:02:50
12953 16 1.0 - tgates Arches 10 4:26:40

Chapter 4: Scheduler Commands

283 4.7 Moab Commands

4.7 Moab Commands 284

batch Thu Sep 1 15:02:50
12955 16 1.0 - eval1 RedRock 2 4:26:40
batch Thu Sep 1 15:02:50
12957 16 1.0 - tgates Arches 16 3:00:00
batch Thu Sep 1 15:02:50
12963 16 1.0 - eval1 RedRock 16 1:06:00:00
batch Thu Sep 1 15:02:52
12964 16 1.0 - tgates Arches 16 1:00:00:00
batch Thu Sep 1 15:02:52
12937 1 1.0 - allendr RedRock 9 1:00:00:00
batch Thu Sep 1 15:02:50
12962 1 1.2 - aacker RedRock 6 00:26:40
batch Thu Sep 1 15:02:50
12968 1 1.0 - tamaker RedRock 1 4:26:40
batch Thu Sep 1 15:02:52

14 eligible jobs

Total jobs: 14

The fields are as follows:

Column Description

JOBID Name of job.

PRIORITY Calculated job priority.

XFACTOR See Expansion Factor (XFACTOR) Subcomponent for a detailed
description.

Q Quality Of Service specified for job.

USER User owning job.

GROUP Primary group of job owner.

PROCS Minimum number of processors required to run job.

WCLIMIT Wallclock limit specified for job. Time specified in HH:MM:SS notation.

CLASS Class requested by job.

SYSTEMQUEUETIME Time job was admitted into the system queue.

Chapter 4: Scheduler Commands

An asterisk at the end of a job (job 12956* in this example) indicates that the job has
a job reservation created for it. The details of this reservation can be displayed using
the checkjob command.

Example 4-38: Detailed Completed Job Report

> showq -c
completed jobs------------------------
JOBID SCCODE PAR EFFIC XFACTOR Q USERNAME GROUP MHOST
PROC WALLTIME STARTTIME
13098 C 0 bas 93.17 1.0 - sartois Arches G5-014
25 2:43:31 Thu Sep 1 15:02:50
13102 C 0 bas 99.55 2.2 Hi tgates Arches G5-016
4 2:56:54 Thu Sep 1 15:02:52
13103 C 2 tes 99.30 2.9 De eval1 RedRock P690-016
16 6:36:51 Thu Sep 1 15:02:50
13115 C 0 tes 97.04 1.0 - tgates Arches G5-001
2 1:05:56:51 Thu Sep 1 15:02:50
3 completed jobs

The fields are as follows:

Column Description

JOBID job ID for completed job.

S Job State. Either C for Completed or V for Vacated.

CCODE Completion code reported by the job.

PAR Partition in which job ran.

EFFIC CPU efficiency of job.

XFACTOR See Expansion Factor (XFACTOR) Subcomponent for a detailed description.

Q Quality of Service specified for job.

USERNAME User owning job.

GROUP Primary group of job owner.

MHOST Master Host that ran the primary task of job.

Chapter 4: Scheduler Commands

285 4.7 Moab Commands

4.7 Moab Commands 286

Column Description

PROCS Number of processors being used by the job.

WALLTIME Wallclock time used by the job. Time specified in [DD:]HH:MM:SS notation.

STARTTIME Time job started running.

After displaying the active jobs, a summary is provided indicating the number of jobs, the
number of allocated processors, and the system utilization.

If the DISPLAYFLAGS parameter is set to ACCOUNTCENTRIC, job group information
will be replaced with job account information.

Example 4-39: Filtered Job Report

Show only jobs associated with user john, class benchmark, and nodefeature bigmem.

> showq -w class=benchmark -w user=john -w nodefeature=bigmem
...

Example 4-40: Filtered Job Report

Show only jobs associated with jobgroup workflow1.

> showq -w jobgroup=workflow1
...

4.7.33.G Job Array
Job arrays show the name of the job array and then in parenthesis, the number of subjobs
in the job array that are in the specified state.

> showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.1(14) aesplin Running 14 00:59:41 Fri May 27 14:58:57

14 active jobs 14 of 14 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Chapter 4: Scheduler Commands

Moab.1(4) aesplin Idle 4 1:00:00 Fri May 27 14:58:52

4 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.1(2) aesplin Blocked 2 1:00:00 Fri May 27 14:58:52

2 blocked jobs

Total jobs: 20

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l showbf - command to display resource availability.

l mdiag -j - command to display detailed job diagnostics.

l checkjob - command to check the status of a particular job.

l JOBCPURGETIME - parameter to adjust the duration of time Moab preserves
information about completed jobs

l DISPLAYFLAGS - parameter to control what job information is displayed

4.7.34 showhist.moab.pl

4.7.34.A Synopsis
showhist.moab.pl [-a accountname]
[-c classname] [-e enddate]
[-g groupname] [-j jobid] [-n days]
[-q qosname] [-s startdate]
[-u username]

4.7.34.B Overview
The showhist.moab.pl script displays historical job information. Its purpose is similar
to the checkjob command's, but showhist.moab.pl displays information about jobs
that have already completed.

Chapter 4: Scheduler Commands

287 4.7 Moab Commands

4.7 Moab Commands 288

4.7.34.C Access
By default, this script's use is limited to administrators on the head node; however, end
users can also be given power to run the script. To grant access to the script to end users,
move showhist.moab.pl from the tools directory to the bin directory.

4.7.34.D Options

-a (Account)

Format <ACCOUNTNAME>

Description Displays job records matching the specified account.

Example > showhist.moab.pl -a myAccount

Information about jobs related to the account myAccount
is displayed.

-c (Class)

Format <CLASSNAME>

Description Displays job records matching the specified class (queue).

Example > showhist.moab.pl -c newClass

Information about jobs related to the class newClass
is displayed.

-e (End Date)

Format YYYY-MM-DD

Description Displays the records of jobs recorded before or on the specified date.

Example > showhist.moab.pl -e 2022-01-03

Information about all jobs recorded on or before January 3, 2022
is displayed.

Chapter 4: Scheduler Commands

-e (End Date)

> showhist.moab.pl -s 2022-01-01 -e 2022-01-31

Information is displayed about all jobs recorded in January 2022.

-g (Group)

Format <GROUPNAME>

Description Displays job records matching the specified group.

Example > showhist.moab.pl -g admins

Information about jobs related to the group admins
is displayed.

-j (Job ID)

Format <JOBID>

Description Displays job records matching the specified job ID.

Example > showhist.moab.pl -j moab01

Information about job moab01 is
displayed.

-n (Number of Days)

Format <INTEGER>

Description Restricts the number of past jobs to search by a specified number of days
relative to today.

Example > showhist.moab.pl -n 90 -j moab924

Displays job information for job moab924. The search is restricted
to the last 90 days.

Chapter 4: Scheduler Commands

289 4.7 Moab Commands

4.7 Moab Commands 290

-q (QoS)

Format <QOSNAME>

Description Displays job records matching the specified quality of service.

Example > showhist.moab.pl -q myQos

Information about jobs related to the QoS myQos
is displayed.

-s (Start Date)

Format YYYY-MM-DD

Description Displays the records of jobs that recorded on the specified date and later.

Example > showhist.moab.pl -s 1776-07-04

Information about all jobs recorded on July 4, 1776 and later is
displayed.

> showhist.moab.pl -s 2020-07-05 -e 2022-07-05

Information is displayed about all jobs recorded between July 5,
2020 and July 5, 2022.

-u (User)

Format <USERNAME>

Description Displays job records matching the specified user.

Example > showhist.moab.pl -u bob

Information about user bob's jobs is
displayed.

Sample Output
> showhist.moab.pl

Chapter 4: Scheduler Commands

Job Id : Moab.4
User Name : user1
Group Name : company
Queue Name : NONE
Processor Count : 4
Wallclock Duration: 00:00:00
Submit Time : Mon Nov 21 10:48:32 2022
Start Time : Mon Nov 21 10:49:37 2022
End Time : Mon Nov 21 10:49:37 2022
Exit Code : 0
Allocated Nodelist: 10.10.10.3

Job Id : Moab.1
Executable : 4
User Name : user1
Group Name : company
Account Name : 1321897709
Queue Name : NONE
Quality Of Service: 0M
Processor Count : -0
Wallclock Duration: 00:01:05
Submit Time : Mon Nov 21 10:48:29 2022
Start Time : Mon Nov 21 10:48:32 2022
End Time : Mon Nov 21 10:49:37 2022
Exit Code : 0
Allocated Nodelist: 512M

Information is displayed for all completed jobs.

When a job's Start Time and End Time are the same, the job is infinite and still
running.

Related Topics

l checkjob - explains how to query for a status report for a specified job

l mdiag -j command - display additional detailed information regarding jobs

l showq command - showq high-level job summaries

4.7.35 showres

4.7.35.A Synopsis
showres [-f] [-n [-g]] [-o] [-r] [-v] [reservationid] [--blocking][--about] [--
help] [--host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

Chapter 4: Scheduler Commands

291 4.7 Moab Commands

4.7 Moab Commands 292

4.7.35.B Overview
This command displays all reservations currently in place within Moab. The default
behavior is to display reservations on a reservation-by-reservation basis.

4.7.35.C Access
By default, this command can be run by any Moab administrator.

4.7.35.D Options

Option Description

-f Show free (unreserved) resources rather than reserved resources. The -f flag
cannot be used in conjunction with the any other flag.

-g When used with the -n flag, shows grep-able output with nodename on every line.

-n Display information regarding all nodes reserved by <RSVID>

-o Display all reservations that overlap <RSVID> (in time and space).

Not supported with -n flag

-r Display reservation timeframes in relative time mode.

-v Show verbose output. If used with the -n flag, the command will display all
reservations found on nodes contained in <RSVID>. Otherwise, it will show long
reservation start dates including the reservation year.

Parameter Description

RSVID ID of reservation of interest — optional

4.7.35.E Examples

> showres

ReservationID Type S Start End Duration N/P StartTime

12941 Job R -00:05:01 2:41:39 2:46:40 13/25 Thu Sep 1

Chapter 4: Scheduler Commands

15:02:50
12944 Job R -00:05:01 6:34:59 6:40:00 16/16 Thu Sep 1
15:02:50
12946 Job R -00:05:01 1:05:54:59 1:06:00:00 1/2 Thu Sep 1
15:02:50
12954 Job R -00:04:59 2:55:01 3:00:00 2/4 Thu Sep 1
15:02:52
12956 Job I 1:05:54:59 1:12:34:59 6:40:00 16/32 Fri Sep 2
21:02:50
12969 Job I 6:34:59 13:14:59 6:40:00 4/4 Thu Sep 1
21:42:50

6 reservations located

The above example shows all reservations on the system.

The fields are as follows:

Column Description

Type Reservation Type. This will be one of the following: Job or User.

ReservationID This is the name of the reservation. Job reservation names are identical to
the job name. User, Group, or Account reservations are the user, group, or
account name followed by a number. System reservations are given the
name SYSTEM followed by a number.

S State. This field is valid only for job reservations. It indicates whether the
job is (S)tarting, (R)unning, or (I)dle.

Start Relative start time of the reservation. Time is displayed in HH:MM:SS
notation and is relative to the present time.

End Relative end time of the reservation. Time is displayed in HH:MM:SS
notation and is relative to the present time. Reservations that will not
complete in 1,000 hours are marked with the keyword INFINITY.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting
more than 1,000 hours are marked with the keyword INFINITY.

Nodes Number of nodes involved in reservation.

StartTime Time Reservation became active.

Example 4-41:

> showres -n
reservations on Thu Sep 1 16:49:59

Chapter 4: Scheduler Commands

293 4.7 Moab Commands

4.7 Moab Commands 294

NodeName Type ReservationID JobState Task Start Duration
StartTime

G5-001 Job 12946 Running 2 -1:47:09 1:06:00:00 Thu
Sep 1 15:02:50
G5-001 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-002 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-002 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-003 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-003 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-004 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-004 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-005 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-005 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-006 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-006 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-007 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-007 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-008 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-008 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-009 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-009 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-010 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-010 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-011 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-011 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-012 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-012 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-013 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-013 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-014 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-014 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-015 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-015 Job 12949 Running 2 -00:08:57 3:00:00 Thu

Chapter 4: Scheduler Commands

Sep 1 16:41:02
G5-016 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-016 Job 12947 Running 2 -00:08:57 3:00:00 Thu
Sep 1 16:41:02
P690-001 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-002 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-003 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-004 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-005 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-006 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-007 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-008 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-009 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-010 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-011 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-012 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-013 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-013 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-014 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-014 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-015 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-015 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-016 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-016 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50

52 nodes reserved

This example shows reservations for nodes.

The fields are as follows:

Column Description

NodeName Node on which reservation is placed.

Type Reservation Type. This will be one of the following: Job or User.

Chapter 4: Scheduler Commands

295 4.7 Moab Commands

4.7 Moab Commands 296

Column Description

ReservationID This is the name of the reservation. Job reservation names are identical to
the job name. User, Group, or Account reservations are the user, group, or
account name followed by a number. System reservations are given the
name SYSTEM followed by a number.

JobState This field is valid only for job reservations. It indicates the state of the job
associated with the reservation.

Start Relative start time of the reservation. Time is displayed in HH:MM:SS
notation and is relative to the present time.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting
more than 1000 hours are marked with the keyword INFINITY.

StartTime Time Reservation became active.

Example 4-42:

> showres 12956

ReservationID Type S Start End Duration N/P StartTime

12956 Job I 1:04:09:32 1:10:49:32 6:40:00 16/32 Fri Sep 2
21:02:50

1 reservation located

In this example, information for a specific reservation (job) is displayed.

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mrsvctl -c - create new reservations

l mrsvctl -r - release existing reservations

l mdiag -r - diagnose/view the state of existing reservations

l Reservation Overview - description of reservations and their use

Chapter 4: Scheduler Commands

4.7.36 showstart

4.7.36.A Synopsis
showstart {jobid|proccount[@duration]|s3jobspec} [-e {all|hist|prio|rsv}] [-f] [-g [peer]]
[-l qos=<QOS>] [--blocking] [--format=xml] [-v] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.36.B Overview
This command displays the estimated start time of a job based a number of analysis types.
This analysis may include information based on historical usage, earliest available
reservable resources, and priority based backlog analysis. Each type of analysis will
provide somewhat different estimates based on current cluster environmental conditions.
The default estimation method used is determined by the value of the
DEFAULTSTARTTIMEQUERY parameter, which defaults to PRIORITY.

showstart is a processor-intensive command. Multiple submissions per iteration may
slow Moab's scheduling, especially on larger/busier systems.

The start time estimate Moab returns does not account for resources that will become
available due to preemption.

showstart only determines where a job would run if it were to run next, taking into
account all currently running jobs, queued idle jobs with advance reservations, and
all current standing and administrative reservations in the system.

For example, assume RESERVATIONDEPTH is set to 1 (the default value), job 12300
is at the top of the idle queue and has an advance reservation to run next, and job
12312 is in position 12 in the idle queue. If the owner of job 12312 runs showstart
12312, in calculating where the job will run, Moab does not consider jobs 12301-
12311. It only estimates where and when job 12312 would be scheduled to run after
job 12300 starts.

Historical analysis utilizes historical queue times for jobs that match a similar processor
count and job duration profile. This information is updated on a sliding window, which is
configurable within moab.cfg

Chapter 4: Scheduler Commands

297 4.7 Moab Commands

4.7 Moab Commands 298

Reservation based start time estimation incorporates information regarding current
administrative, user, and job reservations to determine the earliest time the specified job
could allocate the needed resources and start running. In essence, this estimate will
indicate the earliest time the job would start assuming this job was the highest priority job
in the queue.

Priority based job start analysis determines when the queried job would fit in the queue
and determines the estimated amount of time required to complete the jobs that are
currently running or scheduled to run before this job can start.

In all cases, if the job is running, this command will return the time the job started. If the
job already has a reservation, this command will return the start time of the reservation.

4.7.36.C Access
By default, this command can be run by any user.

4.7.36.D Parameters

Parameters Description

DURATION Duration of pseudo-job to be checked in format [[[DD:]HH:]MM:]SS (default
duration is 1 second).

QOS Specifies what QOS the job must start under, using the same syntax as the
msub command. Currently, no other resource manager extensions are
supported. This flag only applies to hypothetical jobs by using the proccount
[@duration] syntax.

JOBID Job to be checked.

PROCCOUNT Number of processors in pseudo-job to be checked.

S3JOBSPEC XML describing the job according to the Dept. of Energy Scalable Systems
Software/S3 job specification.

Chapter 4: Scheduler Commands

4.7.36.E Options

Parameters Description

--blocking Do not use cache information in the output. The --blocking flag
retrieves results exclusively from the scheduler.

-e Estimate method. If not specified, Moab will use the value of the
DEFAULTSTARTTIMEQUERY parameter, which defaults to PRIORITY.

-f Use feedback. If specified, Moab will apply historical accuracy information
to improve the quality of the estimate. See ENABLESTARTESTIMATESTATS
for more information.

-g Grid mode. Obtain showstart information from remote resource managers.
If -g is not used and Moab determines that job is already migrated, Moab
obtains showstart information from the remote Moab where the job was
migrated to. All resource managers can be queried by using the keyword
'all', which returns all information in a table.
$ showstart -g all head.1
Estimated Start Times
[Remote RM] [Reservation] [Priority] [Historical]
[c1] [00:15:35] [] []
[c2] [3:15:38] [] []

-l qos=<QOS> Specifies what QOS the job must start under, using the same syntax as the
msub command. Currently, no other resource manager extensions are
supported. This flag only applies to hypothetical jobs by using the
proccount[@duration] syntax.

-v Displays verbose information.

4.7.36.F Examples

> showstart orion.13762
job orion.13762 requires 2 procs for 0:33:20
Estimated Rsv based start in 1:04:55 on Fri Jul 15 12:53:40
Estimated Rsv based completion in 2:44:55 on Fri Jul 15 14:33:40
Estimated Priority based start in 5:14:55 on Fri Jul 15 17:03:40
Estimated Priority based completion in 6:54:55 on Fri Jul 15 18:43:40
Estimated Historical based start in 00:00:00 on Fri Jul 15 11:48:45
Estimated Historical based completion in 1:40:00 on Fri Jul 15 13:28:45
Best Partition: fast

Chapter 4: Scheduler Commands

299 4.7 Moab Commands

4.7 Moab Commands 300

Example 4-43:

> showstart 12@3600
job 12@3600 requires 12 procs for 1:00:00
Earliest start in 00:01:39 on Wed Aug 31 16:30:45
Earliest completion in 1:01:39 on Wed Aug 31 17:30:45
Best Partition: 32Bit

You cannot specify job flags when running showstart, and since a job by default
can only run on one partition, showstart fails when querying for a job requiring
more nodes than the largest partition available.

4.7.36.G Additional Information
For reservation based estimates, the information provided by this command is more highly
accurate if the job is highest priority, if the job has a reservation, or if the majority of the
jobs that are of higher priority have reservations. Consequently, sites wanting to make
decisions based on this information might want to consider using the RESERVATIONDEPTH
parameter to increase the number of priority based reservations. This can be set so that
most or even all idle jobs receive priority reservations and make the results of this
command generally useful. The only caution of this approach is that increasing the
RESERVATIONDEPTH parameter more tightly constrains the decisions of the scheduler
and might result in slightly lower system utilization (typically less than 8% reduction).

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l checkjob

l showres

l showstats -f eststarttime

l showstats -f avgqtime

l Job Start Estimates

Chapter 4: Scheduler Commands

4.7.37 showstate

4.7.37.A Synopsis
showstate [--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.37.B Overview
This command provides a summary of the state of the system. It displays a list of all active
jobs and a text-based map of the status of all nodes and the jobs they are servicing. Basic
diagnostic tests are also performed and any problems found are reported.

4.7.37.C Access
By default, this command can be run by any Moab Administrator.

4.7.37.D Examples

> showstate
cluster state summary for Wed Nov 23 12:00:21

JobID S User Group Procs Remaining StartTime
------------------ - --------- -------- ----- ----------- -------------------

(A) fr17n11.942.0 R johns staff 16 13:21:15 Nov 22 12:00:21
(B) fr17n12.942.0 S johns staff 32 13:07:11 Nov 22 12:00:21
(C) fr17n13.942.0 R johns staff 8 11:22:25 Nov 22 12:00:21
(D) fr17n14.942.0 S johns staff 8 10:43:43 Nov 22 12:01:21
(E) fr17n15.942.0 S johns staff 8 9:19:25 Nov 22 12:01:21
(F) fr17n16.942.0 R johns staff 8 9:01:16 Nov 22 12:01:21
(G) fr17n17.942.0 R johns staff 1 7:28:25 Nov 22 12:03:22
(H) fr17n18.942.0 R johns staff 1 3:05:17 Nov 22 12:04:22
(I) fr17n19.942.0 S johns staff 24 0:54:38 Nov 22 12:00:22
Usage Summary: 9 Active Jobs 106 Active Nodes

[0][0][0][0][0][0][0][0][0][1][1][1][1][1][1][1]
[1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6]

Frame 2: XXXXXXXXXXXXXXXXXXXXXXXX[][A][C][][A][C][C][A]
Frame 3: [][][][][][][A][][I][][I][][][][][]
Frame 4: [][I][][][][A][][I][][][][E][][I][][E]
Frame 5: [F][][E][][][][F][F][F][I][][][E][][E][E]
Frame 6: [][I][I][E][I][][I][I][][I][F][I][I][I][I][F]
Frame 7: []XXX[]XXX[]XXX[]XXX[b]XXX[]XXX[]XXX[#]XXX
Frame 9: [][][][][][][][][][][][][][][E][]
Frame 11: [][][][][][][I][F][@][][A][I][][F][][A]
Frame 12: [A][][][A][][][C][A][][C][A][A][][][][]
Frame 13: [D]XXX[I]XXX[]XXX[]XXX[]XXX[]XXX[I]XXX[I]XXX
Frame 14: [D]XXX[I]XXX[I]XXX[D]XXX[]XXX[H]XXX[I]XXX[]XXX
Frame 15: [b]XXX[b]XXX[b]XXX[b]XXX[D]XXX[b]XXX[b]XXX[b]XXX
Frame 16: [b]XXX[]XXX[b]XXX[]XXX[b]XXX[b]XXX[]XXX[b]XXX
Frame 17: [][][][][][][][][][][][][][][][]

Chapter 4: Scheduler Commands

301 4.7 Moab Commands

4.7 Moab Commands 302

Frame 21: []XXX[b]XXX[b]XXX[]XXX[b]XXX[b]XXX[b]XXX[b]XXX
Frame 22: [b]XXX[b]XXX[b]XXX[]XXX[b]XXX[]XXX[b]XXX[b]XXX
Frame 27: [b]XXX[b]XXX[]XXX[b]XXX[b]XXX[b]XXX[b]XXX[b]XXX
Frame 28: [G]XXX[]XXX[D]XXX[]XXX[D]XXX[D]XXX[D]XXX[]XXX
Frame 29: [A][C][A][A][C][][A][C]XXXXXXXXXXXXXXXXXXXXXXXX
Key: XXX:Unknown [*]:Down w/Job [#]:Down [']:Idle w/Job []:Idle [@]:Busy w/No Job
[!]:Drained
Key: [a]:(Any lower case letter indicates an idle node that is assigned to a job)

Check Memory on Node fr3n07
Check Memory on Node fr4n06
Check Memory on Node fr4n09

In this example, nine active jobs are running on the system. Each job listed in the top of the output is associated with
a letter. For example, job fr17n11.942.0 is associated with the letter A. This letter can now be used to determine
where the job is currently running. By looking at the system map, it can be found that job fr17n11.942.0 (job
A) is running on nodes fr2n10, fr2n13, fr2n16, fr3n07 ...
The key at the bottom of the system map can be used to determine unusual node states. For example, fr7n15 is
currently in the state down.
After the key, a series of warning messages may be displayed indicating possible system problems. In this case,
warning message indicate that there are memory problems on three nodes, fr3n07, fr4n06, and fr4n09. Also,
warning messages indicate that job fr15n09.1097.0 is having difficulty starting. Node fr11n08 is in state BUSY
but has no job assigned to it (it possibly has a runaway job running on it).

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l Specifying Node Rack/Slot Location

4.7.38 showstats

4.7.38.A Synopsis
showstats

showstats -a [accountid] [-v] [-t <TIMESPEC>]

showstats -c [classid] [-v] [-t <TIMESPEC>]

showstats -f <statistictype>

showstats -g [groupid] [-v] [-t <TIMESPEC>]

showstats -j [jobtemplate] [-t <TIMESPEC>]

showstats -n [nodeid] [-t <TIMESPEC>]

showstats -q [qosid] [-v] [-t <TIMESPEC>]

showstats -s

Chapter 4: Scheduler Commands

showstats -T [leafid | tree-level]

showstats -u [userid] [-v] [-t <TIMESPEC>]
[--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.38.B Overview
This command shows various accounting and resource usage statistics for the system.
Historical statistics cover the timeframe from the most recent execution of the mschedctl -f
command.

4.7.38.C Access
By default, this command can be run by any Moab level 1, 2, or 3 Administrator.

4.7.38.D Options

Option Description

-a[<ACCOUNTID>] Display account statistics. See Account Statistics for an example.

-c[<CLASSID>] Display class statistics.

-f <statistictype> Display full matrix statistics (see showstats -f for full details).

-g[<GROUPID>] Display group statistics. See Group Statistics for an example.

-j[<JOBTEMPLATE>] Display template statistics.

-n[<NODEID>] Display node statistics (ENABLEPROFILING must be set). See Node
Statistics for an example.

-q [<QOSID>] Display QoS statistics.

-s Display general scheduler statistics.

-t Display statistical information from the specified timeframe:

Chapter 4: Scheduler Commands

303 4.7 Moab Commands

4.7 Moab Commands 304

Option Description

<START_TIME>[,<END_TIME>]
(ABSTIME: [HH[:MM[:SS]]][_MO[/DD[/YY]]] ie 14:30_06/20)
(RELTIME: -[[[DD:]HH:]MM:]SS)

See Statistics from an Absolute Time Frame and Statistics from a
Relative Time Frame for examples.

Profiling must be enabled for the credential type you want
statistics for. See Credential Statistics for information on how
to enable profiling. Also, -t is not a stand-alone option. It must
be used in conjunction with the -a, -c, -g, -n, -q, or -u flag.

-T Display fairshare tree statistics. See Fairshare Tree Statistics for an
example.

-u[<USERID>] Display user statistics. See User Statistics for an example.

-v Display verbose information. See Verbose Statistics for an example.

4.7.38.E Examples

Example 4-44: Account Statistics

> showstats -a
Account Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
Account Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
137651 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00 0.77
8.15 5.21 90.70 34.69
462212 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25 0.71
5.40 3.14 98.64 40.83
462213 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25 0.37
4.88 0.52 82.01 24.14
005810 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 ----- 1.53

14.81 0.42 98.73 28.40
175436 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50 1.78
8.61 5.60 83.64 17.04
000102 0 0 0.00 1 0.17 64 0.16 5.1 0.03 ----- 10.85

10.85 10.77 27.90 7.40
000023 0 0 0.00 1 0.17 12 0.03 0.2 0.00 ----- 0.04
0.04 0.19 21.21 1.20

This example shows a statistical listing of all active accounts. The top line (Account Statistics Initialized...) of the
output indicates the beginning of the timeframe covered by the displayed statistics.
The statistical output is divided into two categories, Running and Completed. Running statistics include information
about jobs that are currently running. Completed statistics are compiled using historical information from both
running and completed jobs.

Chapter 4: Scheduler Commands

The fields are as follows:

Column Description

Account Account Number.

Jobs Number of running jobs.

Procs Number of processors allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by account.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were
requested by account.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours
dedicated to a job are calculated by multiplying the number of allocated procs
by the length of time the procs were allocated, regardless of the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by account.

FSTgt Fairshare target. An account's fairshare target is specified in the fs.cfg file.
This value should be compared to the account's node-hour dedicated percentage
to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor)
is calculated by the following formula: (QueuedTime + RunTime) /
WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-
hours of CPU time used by the job by the node-hours allocated to the job.

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated

Chapter 4: Scheduler Commands

305 4.7 Moab Commands

4.7 Moab Commands 306

Column Description

by dividing a job's actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its
requested walltime it will report an accuracy of 100%.

* These fields are empty until an account has completed at least one job.

Example 4-45: Group Statistics

> showstats -g
Group Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
GroupName GID Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc

univ 214 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00
0.77 8.15 5.21 90.70 34.69

daf 204 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25
0.71 5.40 3.14 98.64 40.83

dnavy 207 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25
0.37 4.88 0.52 82.01 24.14

govt 232 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 -----
1.53 14.81 0.42 98.73 28.40

asp 227 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50
1.78 8.61 5.60 83.64 17.04

derim 229 0 0 0.00 74 12.65 669 1.64 352.5 2.09 -----
0.50 1.93 0.51 96.03 32.60

dchall 274 0 0 0.00 3 0.51 447 1.10 169.2 1.00 25.00
0.52 0.88 2.49 95.82 33.67

nih 239 0 0 0.00 17 2.91 170 0.42 148.1 0.88 -----
0.95 1.83 0.14 97.59 84.31

darmy 205 0 0 0.00 31 5.30 366 0.90 53.9 0.32 6.25
0.14 0.59 0.07 81.33 12.73
systems 80 0 0 0.00 6 1.03 67 0.16 22.4 0.13 -----

4.07 8.49 1.23 28.68 37.34
pdc 252 0 0 0.00 1 0.17 64 0.16 5.1 0.03 -----

10.85 10.85 10.77 27.90 7.40
staff 1 0 0 0.00 1 0.17 12 0.03 0.2 0.00 -----

0.04 0.04 0.19 21.21 1.20

This example shows a statistical listing of all active groups. The top line (Group Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.
The statistical output is divided into two categories, Running and Completed. Running statistics include information
about jobs that are currently running. Completed statistics are compiled using historical information from both
running and completed jobs.

The fields are as follows:

Chapter 4: Scheduler Commands

Column Description

GroupName Name of group.

GID Group ID of group.

Jobs Number of running jobs.

Procs Number of procs allocated to running jobs.

ProcHours Number of proc hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by group.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were
requested by group.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours
dedicated to a job are calculated by multiplying the number of allocated procs
by the length of time the procs were allocated, regardless of the job's CPU
usage.

% Percentage of total proc-hours dedicated that were dedicated by group.

FSTgt Fairshare target. A group's fairshare target is specified in the fs.cfg file. This
value should be compared to the group's node-hour dedicated percentage to
determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion
factor) is calculated by the following formula: (QueuedTime + RunTime) /
WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-
hours of CPU time used by the job by the node-hours allocated to the job.

Chapter 4: Scheduler Commands

307 4.7 Moab Commands

4.7 Moab Commands 308

Column Description

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated
by dividing a job's actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its
requested walltime it will report an accuracy of 100%.

* These fields are empty until a group has completed at least one job.

Example 4-46: Node Statistics

> showstats -n
node stats from Mon Jul 10 00:00:00 to Mon Jul 10 16:30:00
node CfgMem MinMem MaxMem AvgMem | CfgProcs MinLoad MaxLoad AvgLoad
node01 58368 0 21122 5841 32 0.00 32.76 27.62
node02 122880 0 19466 220 30 0.00 33.98 29.54
node03 18432 0 9533 2135 24 0.00 25.10 18.64
node04 60440 0 17531 4468 32 0.00 30.55 24.61
node05 13312 0 2597 1189 8 0.00 9.85 8.45
node06 13312 0 3800 1112 8 0.00 8.66 5.27
node07 13312 0 2179 1210 8 0.00 9.62 8.27
node08 13312 0 3243 1995 8 0.00 11.71 8.02
node09 13312 0 2287 1943 8 0.00 10.26 7.58
node10 13312 0 2183 1505 8 0.00 13.12 9.28
node11 13312 0 3269 2448 8 0.00 8.93 6.71
node12 13312 0 10114 6900 8 0.00 13.13 8.44
node13 13312 0 2616 2501 8 0.00 9.24 8.21
node14 13312 0 3888 869 8 0.00 8.10 3.85
node15 13312 0 3788 308 8 0.00 8.40 4.67
node16 13312 0 4386 2191 7 0.00 18.37 8.36
node17 13312 0 3158 1870 8 0.00 8.95 5.91
node18 13312 0 5022 2397 8 0.00 19.25 8.19
node19 13312 0 2437 1371 8 0.00 8.98 7.09
node20 13312 0 4474 2486 8 0.00 8.51 7.11
node21 13312 0 4111 2056 8 0.00 8.93 6.68
node22 13312 0 5136 2313 8 0.00 8.61 5.75
node23 13312 0 1850 1752 8 0.00 8.39 5.71
node24 13312 0 3850 2539 8 0.00 8.94 7.80
node25 13312 0 3789 3702 8 0.00 21.22 12.83
node26 13312 0 3809 1653 8 0.00 9.34 4.91
node27 13312 0 5637 70 4 0.00 17.97 2.46
node28 13312 0 3076 2864 8 0.00 22.91 10.33

Example 4-47: Verbose Statistics

> showstats -v
current scheduler time: Sat Aug 18 18:23:02 2007
moab active for 00:00:01 started on Wed Dec 31 17:00:00
statistics for iteration 0 initialized on Sat Aug 11 23:55:25
Eligible/Idle Jobs: 6/8 (75.000%)
Active Jobs: 13

Chapter 4: Scheduler Commands

Successful/Completed Jobs: 167/167 (100.000%)
Preempt Jobs: 0
Avg/Max QTime (Hours): 0.34/2.07
Avg/Max XFactor: 1.165/3.26
Avg/Max Bypass: 0.40/8.00
Dedicated/Total ProcHours: 4.46K/4.47K (99.789%)
Preempt/Dedicated ProcHours: 0.00/4.46K (0.000%)
Current Active/Total Procs: 32/32 (100.0%)
Current Active/Total Nodes: 16/16 (100.0%)
Avg WallClock Accuracy: 64.919%
Avg Job Proc Efficiency: 99.683%
Min System Utilization: 87.323% (on iteration 46)
Est/Avg Backlog: 02:14:06/03:02:567

This example shows a concise summary of the system scheduling state. Note that showstats and showstats -s
are equivalent.
The first line of output indicates the number of scheduling iterations performed by the current scheduling process,
followed by the time the scheduler started. The second line indicates the amount of time the Moab Scheduler has been
scheduling in HH:MM:SS notation followed by the statistics initialization time.

The fields are as follows:

Column Description

Active Jobs Number of jobs currently active (Running or Starting).

Eligible Jobs Number of jobs in the system queue (jobs that are considered when
scheduling).

Idle Jobs Number of jobs both in and out of the system queue that are in the
LoadLeveler Idle state.

Completed Jobs Number of jobs completed since statistics were initialized.

Successful Jobs Jobs that completed successfully without abnormal termination.

XFactor Average expansion factor of all completed jobs.

Max XFactor Maximum expansion factor of completed jobs.

Max Bypass Maximum bypass of completed jobs.

Available
ProcHours

Total proc-hours available to the scheduler.

Dedicated
ProcHours

Total proc-hours made available to jobs.

Chapter 4: Scheduler Commands

309 4.7 Moab Commands

4.7 Moab Commands 310

Column Description

Effic Scheduling efficiency (DedicatedProcHours / Available ProcHours).

Min Efficiency Minimum scheduling efficiency obtained since scheduler was started.

Iteration Iteration on which the minimum scheduling efficiency occurred.

Available Procs Number of procs currently available.

Busy Procs Number of procs currently busy.

Effic Current system efficiency (BusyProcs/AvailableProcs).

WallClock
Accuracy

Average wallclock accuracy of completed jobs (job-weighted average).

Job Efficiency Average job efficiency (UtilizedTime / DedicatedTime).

Est Backlog Estimated backlog of queued work in hours.

Avg Backlog Average backlog of queued work in hours.

Example 4-48: User Statistics

> showstats -u
User Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
UserName UID Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
moorejt 2617 1 16 58.80 2 0.34 221 0.54 1896.6 11.25 -----

1.02 1.04 0.14 99.52 100.00
zhong 1767 3 24 220.72 20 3.42 2306 5.65 1511.3 8.96 -----

0.71 0.96 0.49 99.37 67.48
lui 2467 0 0 0.00 16 2.74 1970 4.82 1505.1 8.93 -----

1.02 6.33 0.25 98.96 57.72
evans 3092 0 0 0.00 62 10.60 4960 12.14 1464.3 8.69 5.0

0.62 1.64 5.04 87.64 30.62
wengel 2430 2 64 824.90 1 0.17 767 1.88 630.3 3.74 -----

0.18 0.18 4.26 99.63 0.40
mukho 2961 2 16 71.06 6 1.03 776 1.90 563.5 3.34 -----

0.31 0.82 0.20 93.15 30.28
jimenez 1449 1 16 302.29 2 0.34 768 1.88 458.3 2.72 -----

0.80 0.98 2.31 97.99 70.30
neff 3194 0 0 0.00 74 12.65 669 1.64 352.5 2.09 10.0

0.50 1.93 0.51 96.03 32.60

Chapter 4: Scheduler Commands

cholik 1303 0 0 0.00 2 0.34 552 1.35 281.9 1.67 -----
1.72 3.07 25.35 99.69 66.70
jshoemak 2508 1 24 572.22 1 0.17 576 1.41 229.1 1.36 -----
0.55 0.55 3.74 99.20 39.20

kudo 2324 1 8 163.35 6 1.03 1152 2.82 211.1 1.25 -----
0.12 0.34 1.54 96.77 5.67

xztang 1835 1 8 18.99 ---- ------ ----- ------ 176.3 1.05 10.0 -----
- ------ ------ 99.62 ------

feller 1880 0 0 0.00 17 2.91 170 0.42 148.1 0.88 -----
0.95 1.83 0.14 97.59 84.31

maxia 2936 0 0 0.00 1 0.17 191 0.47 129.1 0.77 7.5
0.88 0.88 4.49 99.84 69.10
ktgnov71 2838 0 0 0.00 1 0.17 192 0.47 95.5 0.57 -----
0.53 0.53 0.34 90.07 51.20

This example shows a statistical listing of all active users. The top line (User Statistics Initialized...) of the output
indicates the timeframe covered by the displayed statistics.
The statistical output is divided into two statistics categories, Running and Completed. Running statistics include
information about jobs that are currently running. Completed statistics are compiled using historical information
from both running and completed jobs.

The fields are as follows:

Column Description

UserName Name of user.

UID User ID of user.

Jobs Number of running jobs.

Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by user.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were
requested by user.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours
dedicated to a job are calculated by multiplying the number of allocated procs
by the length of time the procs were allocated, regardless of the job's CPU usage.

Chapter 4: Scheduler Commands

311 4.7 Moab Commands

4.7 Moab Commands 312

Column Description

% Percentage of total proc-hours dedicated that were dedicated by user.

FSTgt Fairshare target. A user's fairshare target is specified in the fs.cfg file. This
value should be compared to the user's node-hour dedicated percentage to
determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor)
is calculated by the following formula: (QueuedTime + RunTime) /
WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-
hours of CPU time used by the job by the node-hours allocated to the job.

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated
by dividing a job's actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its
requested walltime it will report an accuracy of 100%.

* These fields are empty until a user has completed at least one job.

Example 4-49: Fairshare Tree Statistics

> showstats -T
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc

root 0 0 0.00 0 56 100.00 2.47K 100.00 1.58K 48.87 -----
1.22 0.00 0.24 100.00 58.84

l1.1 0 0 0.00 0 25 44.64 845.77 34.31 730.25 22.54 -----
1.97 0.00 0.20 100.00 65.50
Administrati 0 0 0.00 0 10 17.86 433.57 17.59 197.17 6.09 -----
3.67 0.00 0.25 100.00 62.74
Engineering 0 0 0.00 0 15 26.79 412.20 16.72 533.08 16.45 -----
0.83 0.00 0.17 100.00 67.35

l1.2 0 0 0.00 0 31 55.36 1.62K 65.69 853.00 26.33 -----
0.62 0.00 0.27 100.00 53.46
Shared 0 0 0.00 0 3 5.36 97.17 3.94 44.92 1.39 -----
0.58 0.00 0.56 100.00 31.73
Test 0 0 0.00 0 3 5.36 14.44 0.59 14.58 0.45 -----

Chapter 4: Scheduler Commands

0.43 0.00 0.17 100.00 30.57
Research 0 0 0.00 0 25 44.64 1.51K 61.16 793.50 24.49 -----
0.65 0.00 0.24 100.00 58.82

> showstats -T 2
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
Test 0 0 0.00 0 22 4.99 271.27 0.55 167.42 0.19 -----
3.86 0.00 2.89 100.00 60.76
Shared 0 0 0.00 0 59 13.38 12.30K 24.75 4.46K 5.16 -----
6.24 0.00 10.73 100.00 49.87
Research 0 0 0.00 0 140 31.75 9.54K 19.19 5.40K 6.25 -----
2.84 0.00 5.52 100.00 57.86
Administrati 0 0 0.00 0 84 19.05 7.94K 15.96 4.24K 4.91 -----
4.77 0.00 0.34 100.00 62.31
Engineering 0 0 0.00 0 136 30.84 19.67K 39.56 28.77K 33.27 -----
3.01 0.00 3.66 100.00 63.70

> showstats -T l1.1
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
l1.1 0 0 0.00 0 220 49.89 27.60K 55.52 33.01K 38.17 -----
3.68 0.00 2.39 100.00 63.17
Administrati 0 0 0.00 0 84 19.05 7.94K 15.96 4.24K 4.91 -----
4.77 0.00 0.34 100.00 62.31
Engineering 0 0 0.00 0 136 30.84 19.67K 39.56 28.77K 33.27 -----
3.01 0.00 3.66 100.00 63.70

Example 4-50: Statistics from an Absolute Time Frame

> showstats -c batch -v -t 00:00:01_01/01/22,23:59:59_12/31/22
statistics initialized Wed Jan 1 00:00:00

-------- Active --------- --------------------- Completed --------------------

class Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
batch 0 0 0.00 0 23 100.00 15 100.00 1 100.00 ----- 0.40
5.01 0.00 88.94 39.87

Moab returns information about the class batch from January 1, 2022 to December 31, 2022. For more information
about specifying absolute dates, see "Absolute Time Format" in TIMESPEC.

Example 4-51: Statistics from a Relative Time Frame

> showstats -u bob -v -t -30:00:00:00
statistics initialized Mon Nov 11 15:30:00

-------- Active --------- --------------------- Completed --------------------

Chapter 4: Scheduler Commands

313 4.7 Moab Commands

4.7 Moab Commands 314

user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
bob 0 0 0.00 0 23 100.00 15 100.00 1 100.00 ----- 0.40
5.01 0.00 88.94 39.87

Moab returns information about user bob from the past 30 days. For more information about specifying relative
dates, see "Relative Time Format" in TIMESPEC.

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mschedctl -f command - re-initialize statistics

l showstats -f command - display full matrix statistics

4.7.38.F TIMESPEC

Relative Time Format
The relative time format specifies a time by using the current time as a reference and
specifying a time offset.

Format

+[[[DD:]HH:]MM:]SS

Examples

2 days, 3 hours and 57 seconds in the future:

+02:03:0:57

21 days (3 weeks) in the future:

+21:0:0:0

30 seconds in the future:

+30

Absolute Time Format
The absolute time format specifies a specific time in the future.

Format

[HH[:MM[:SS]]][_MO[/DD[/YY]]] (i.e., 14:30_06/20)

Chapter 4: Scheduler Commands

Examples

1 PM, March 1 (this year)

13:00_03/01

4.7.39 showstats -f

4.7.39.A Synopsis
showstats -f <statistictype> [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.39.B Overview
Shows table of various scheduler statistics.

This command displays a table of the selected Moab Scheduler statistics, such as expansion
factor, bypass count, jobs, proc-hours, wallclock accuracy, and backfill information.

Statistics are aggregated over time. This means statistical information is not available
for time frames and the -t option is not supported with showstats -f.

4.7.39.C Access
This command can be run by any Moab Scheduler Administrator.

4.7.39.D Options

Options Description

AVGBYPASS The number of times a priority job has been 'bypassed' by backfill,
allowing a lower priority job to run ahead of it. See Example 4-52 for more
information.

AVGQTIME Average queue time. Includes summary of job-weighted queue time and
total samples.

Chapter 4: Scheduler Commands

315 4.7 Moab Commands

4.7 Moab Commands 316

Options Description

AVGXFACTOR Average expansion factor. Includes summary of job-weighted expansion
factor, processor-weighted expansion factor, processor-hour-weighted
expansion factor, and total number of samples.

BFCOUNT Number of jobs backfilled. Includes summary of job-weighted backfill job
percent and total samples.

BFPHRUN Number of proc-hours backfilled. Includes summary of job-weighted
backfill proc-hour percentage and total samples.

ESTSTARTTIME Job start time estimate for jobs meeting specified processor/duration
criteria. This estimate is based on the reservation start time analysis
algorithm.

JOBCOUNT Number of jobs. Includes summary of total jobs and total samples.

MAXBYPASS Maximum bypass count. Includes summary of overall maximum bypass and
total samples.

MAXXFACTOR Maximum expansion factor. Includes summary of overall maximum
expansion factor and total samples.

PHREQUEST proc-hours requested. Includes summary of total proc-hours requested and
total samples.

PHRUN proc-hours run. Includes summary of total proc-hours run and total
samples.

QOSDELIVERED Quality of service delivered. Includes summary of job-weighted quality of
service success rate and total samples.

WCACCURACY Wallclock accuracy. Includes summary of overall wall clock accuracy and
total samples.

4.7.39.E Examples

> showstats -f AVGXFACTOR
Average XFactor Grid
[NODES][00:02:00][00:04:00][00:08:00][00:16:00][00:32:00][01:04:00][
02:08:00][04:16:00][08:32:00][17:04:00][34:08:00][TOTAL]
[1][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]

Chapter 4: Scheduler Commands

[2][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[4][--------][--------][--------][--------][--------][--------][
1.00 1][--------][1.12 2][--------][--------][1.10 3]
[8][--------][--------][--------][--------][--------][--------][
1.00 2][1.24 2][--------][--------][--------][1.15 4]
[16][--------][--------][--------][--------][--------][1.01 2][---
-----][--------][--------][--------][--------][1.01 2]
[32][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[64][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[128][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[256][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[T TOT][--------][--------][--------][--------][--------][1.01 2][
1.00 3][1.24 2][1.12 2][--------][--------]
Job Weighted X Factor: 1.0888
Node Weighted X Factor: 1.1147
NS Weighted X Factor: 1.1900
Total Samples: 9

The showstats -f command returns a table with data for the specified STATISTICTYPE parameter. The left-most
column shows the maximum number of processors required by the jobs shown in the other columns. The column
headers indicate the maximum wallclock time (in HH:MM:SS notation) requested by the jobs shown in the columns.
The data returned in the table varies by the STATISTICTYPE requested. For table entries with one number, it is of the
data requested. For table entries with two numbers, the left number is the data requested and the right number is the
number of jobs used to calculate the average. Table entries that contain only dashes (-------) indicate no job has
completed that matches the profile associated for this inquiry. The bottom row shows the totals for each column.
Following each table is a summary, which varies by the STATISTICTYPE requested.

The column and row break down can be adjusted using the STATPROC* and STATTIME* parameters
respectively.

This particular example shows the average expansion factor grid. Each table entry indicates two pieces of
information — the average expansion factor for all jobs that meet this slot's profile and the number of jobs that were
used to calculate this average. For example, the XFactors of two jobs were averaged to obtain an average XFactor of
1.24 for jobs requiring over 2 hours 8 minutes, but not more than 4 hours 16 minutes and between 5 and 8
processors. Totals along the bottom provide overall XFactor averages weighted by job, processors, and processor-
hours.

Example 4-52:

> showstats -f AVGBYPASS
Average Bypass (bypass count)
[PROCS][0:15:00][1:00:00][4:00:00][16:00:00][64:00:00][256:00:00][TOTAL
]
[1][0.00 10][0.00 70][0.00 31][0.00 34][0.00 6][------------][0.00 150]
[4][------------][------------][------------][------------][------------][----------
--][------------]
[16][0.08 37687][0.08 164307][0.32 117767][0.10 34073][0.58 1282][------------]
[0.16 355116]
[64][0.18 769][0.13 1839][0.18 8084][0.82 2812][0.00 34][------------][0.31
13538]
[256][0.39 316][1.40 778][4.40 494][1.77 28917][0.33 6][------------][1.79
30511]
[TOTAL][0.08 38782][0.09 166994][0.33 126376][0.86 65835][0.57 1328][----------
--]
Job Weighted X Bypass: 0.2932
Total Samples: 399315

Chapter 4: Scheduler Commands

317 4.7 Moab Commands

4.7 Moab Commands 318

The showstats -f command returns a table with data for the specified STATISTICTYPE parameter, in this case
for AVGBYPASS. In this particular example, the upper left cell indicates that 10 jobs were run by Moab, which had 0-
15 minutes of requested walltime and 0-1 procs allocated. The 0.00 indicates that of the 10 jobs, the average number
of times the jobs were bypassed was 0, meaning it did not occur. Further, looking at row 256 and column 4:00, we see
that 494 jobs have been run by Moab that meet this criteria. On average, these jobs were each bypassed 4.40 times.

Related Topics

l (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

l mschedctl -f command

l showstats command

l STATPROCMIN parameter

l STATPROCSTEPCOUNT parameter

l STATPROCSTEPSIZE parameter

l STATTIMEMIN parameter

l STATTIMESTEPCOUNT parameter

l STATTIMESTEPSIZE parameter

4.7.40 Deprecated Commands

In this topic:

canceljob
changeparam
diagnose
releasehold
releaseres
resetstats
runjob
sethold
setqos
setres

Chapter 4: Scheduler Commands

setspri
showconfig

4.7.40.A canceljob

This command is deprecated. Use mjobctl -c instead.

Synopsis
canceljob jobid [jobid]...

Overview
The canceljob command is used to selectively cancel the specified job(s) (active, idle, or
non-queued) from the queue.

Access
This command can be run by any Moab Administrator and by the owner of the job (see
ADMINCFG).

Flag Name Format Default Description Example

-h HELP N/A Display usage
information.

> canceljob -h

JOB
ID

<STRING> --- A jobid, a job expression,
or the keyword ALL.

> canceljob 13001
13003

Examples

Example 4-53: Cancel job 6397

> canceljob 6397

Chapter 4: Scheduler Commands

319 4.7 Moab Commands

4.7 Moab Commands 320

4.7.40.B changeparam

This command is deprecated. Use mschedctl -m instead.

Synopsis
changeparam parameter value

Overview
The changeparam command is used to dynamically change the value of any parameter
that can be specified in the moab.cfg file. The changes take effect at the beginning of the
next scheduling iteration. They are not persistent, only lasting until Moab is shut down.

changeparam is a compact command of mschedctl -m.

Access
This command can be run by a level 1 Moab administrator.

4.7.40.C diagnose

This command is deprecated. Use mdiag instead.

Synopsis
diagnose -a [accountid]

diagnose -b [-l policylevel] [-t partition]

diagnose -c [classid]

diagnose -C [configfile]

diagnose -f [-o user|group|account|qos|class]

diagnose -g [groupid]

diagnose -j [jobid]

diagnose -L

diagnose -m [rackid]

diagnose -n [-t partition] [nodeid]

diagnose -p [-t partition]

Chapter 4: Scheduler Commands

diagnose -q [qosid]

diagnose -r [reservationid]

diagnose -R [resourcemanagername]

diagnose -s [standingreservationid]

diagnose -S diagnose -u [userid]

diagnose -v

diagnose -x

Overview
The diagnose command is used to display information about various aspects of
scheduling and the results of internal diagnostic tests.

4.7.40.D releasehold

This command is deprecated. Use mjobctl -u instead.

Synopsis
releasehold [-a|-b] jobexp

Overview
Release hold on specified job(s).

This command allows you to release batch holds or all holds (system, user, and batch) on
specified jobs. Any number of jobs can be released with this command.

Access
By default, this command can be run by any Moab Scheduler Administrator.

Parameters

JOBEXP Job expression of job(s) to release.

Flags

-a Release all types of holds (user, system, batch) for specified job(s).

Chapter 4: Scheduler Commands

321 4.7 Moab Commands

4.7 Moab Commands 322

-b Release batch hold from specified job(s).

-h Help for this command.

Examples

Example 4-54: releasehold -b

> releasehold -b 6443
batch hold released for job 6443

In this example, a batch hold was released from this one job.

Example 4-55: releasehold -a

> releasehold -a "81[1-6]"
holds modified for job 811
holds modified for job 812
holds modified for job 813
holds modified for job 814
holds modified for job 815
holds modified for job 816

In this example, all holds were released from the specified jobs.

Related Topics

l sethold

l mjobctl

4.7.40.E releaseres

This command is deprecated. Use mrsvctl -r instead.

Synopsis
releaseres [arguments] reservationid [reservationid...]

Overview
Release existing reservation.

This command allows Moab Scheduler Administrators to release any user, group, account,
job, or system reservation. Users are allowed to release reservations on jobs they own.

Chapter 4: Scheduler Commands

Note that releasing a reservation on an active job has no effect since the reservation will be
automatically recreated.

Access
Users can use this command to release any reservation they own. Level 1 and level 2 Moab
administrators can use this command to release any reservation.

Parameters

RESERVATION ID Name of reservation to release.

Examples

Example 4-56: Release two existing reservations

> releaseres system.1 bob.2
released User reservation 'system.1'
released User reservation 'bob.2'

4.7.40.F resetstats

This command is deprecated. Use mschedctl -f instead.

Synopsis
resetstats

Overview
This command resets all internally-stored Moab Scheduler statistics to the initial start-up
state as of the time the command was executed.

Access
By default, this command can be run by level 1 scheduler administrators.

Examples
> resetstats Statistics Reset at time Wed Feb 25 23:24:55 2022

Chapter 4: Scheduler Commands

323 4.7 Moab Commands

4.7 Moab Commands 324

4.7.40.G runjob

This command is deprecated. Use mjobctl -x instead.

Synopsis
runjob [-c|-f|-n nodelist|-p partition|-s|-x] jobid

Overview
This command will attempt to immediately start the specified job.

runjob is a deprecated command, replaced by mjobctl.

Access
By default, this command can be run by any Moab administrator.

Parameters

JOBID Name of the job to run.

Args Description

-c Clear job parameters from previous runs (used to clear PBS
neednodes attribute after PBS job launch failure)

-f Attempt to force the job to run, ignoring throttling policies

-n <NODELIST> Attempt to start the job using the specified nodelist where nodenames
are comma or colon delimited

-p <PARTITION> Attempt to start the job in the specified partition

-s Attempt to suspend the job

-x Attempt to force the job to run, ignoring throttling policies, QoS
constraints, and reservations

Chapter 4: Scheduler Commands

Examples

Example 4-57: Run job cluster.231

> runjob cluster.231
job cluster.231 successfully started

See Also
l mjobctl

l canceljob - cancel a job

l checkjob - show detailed status of a job

l showq - list queued jobs

4.7.40.H sethold

This command is deprecated. Use mjobctl -h instead.

Synopsis
sethold [-b] jobid [jobid...]

Overview
Set hold on specified job(s).

Permissions
This command can be run by any Moab Scheduler Administrator.

Parameters

JOB Job number of job to hold.

Flags

-b Set a batch hold. Typically, only the scheduler places batch holds. This flag allows an
administrator to manually set a batch hold.

-h Help for this command.

Chapter 4: Scheduler Commands

325 4.7 Moab Commands

4.7 Moab Commands 326

Examples
> sethold -b fr17n02.1072.0 fr15n03.1017.0
Batch Hold Placed on All Specified Jobs

In this example, a batch hold is placed on job fr17n02.1072.0 and job fr15n03.1017.0.

4.7.40.I setqos

This command is deprecated. Use mjobctl -m instead.

Synopsis
setqos qosid jobid

Overview
Set Quality Of Service for a specified job.

This command allows users to change the QOS of their own jobs.

Access
This command can be run by any user.

Parameters

JOBID Job name.

QOSID QOS name.

Examples
> setqos high_priority moab.3

Job QOS Adjusted

This example sets the Quality Of Service to a value of high_priority for job moab.3.

4.7.40.J setres

This command is deprecated. Use mrsvctl -c instead.

Chapter 4: Scheduler Commands

Synopsis
setres [arguments] resourceexpression
[-a <ACCOUNT_LIST>]
[-b <SUBTYPE>]
[-c <CHARGE_SPEC>]
[-d <DURATION>]
[-e <ENDTIME>]
[-E] // EXCLUSIVE
[-f <FEATURE_LIST>]
[-g <GROUP_LIST>]
[-n <NAME>]
[-o <OWNER>]
[-p <PARTITION>]
[-q <QUEUE_LIST>] // (i.e., CLASS_LIST)
[-Q <QOSLIST>]
[-r <RESOURCE_DESCRIPTION>]
[-R <RESERVATION_PROFILE>]
[-s <STARTTIME>]
[-T <TRIGGER>]
[-u <USER_LIST>]
[-x <FLAGS>]

Overview
Reserve resources for use by jobs with particular credentials or attributes.

Access
This command can be run by level 1 and level 2 Moab administrators.

Parameters

Name Format Default Description

ACCOUNT_LIST <STRING>
[:<STRING>]...

--- List of accounts that will be allowed
access to the reserved resources

SUBTYPE <STRING> --- Specify the subtype for a reservation

CHARGE_SPEC <ACCOUNT>
[,<GROUP>
[,<USER>]]

--- Specifies which credentials will be
accountable for unused resources
dedicated to the reservation

CLASS_LIST <STRING> --- List of classes that will be allowed

Chapter 4: Scheduler Commands

327 4.7 Moab Commands

4.7 Moab Commands 328

Name Format Default Description

[:<STRING>]... access to the reserved resource

DURATION [[[DD:]HH:]MM:]SS INFINITY Duration of the reservation (not
needed if ENDTIME is specified)

ENDTIME [HH[:MM[:SS]]][_
MO[/DD[/YY]]]
or
+
[[[DD:]HH:]MM:]SS

INFINITY Absolute or relative time reservation
will end (not required if Duration
specified)

EXCLUSIVE N/A N/A Requests exclusive access to
resources

FEATURE_LIST <STRING>
[:<STRING>]...

--- List of node features that must be
possessed by the reserved resources

FLAGS <STRING>
[:<STRING>]...

--- List of reservation flags (see
Managing Reservations for details)

GROUP_LIST <STRING>
[:<STRING>]...

--- List of groups that will be allowed
access to the reserved resources

NAME <STRING> Name set
to first
name listed
in ACL or
SYSTEM if
no ACL
specified

Name for new reservation

OWNER <CREDTYPE>
:<CREDID> where
CREDTYPE is one
of user, group,
acct, class, or qos

N/A Specifies which credential is granted
reservation ownership privileges

PARTITION <STRING> [ANY] Partition where resources must be
located

QOS_LIST <STRING>
[:<STRING>]...

--- List of QOSs that will be allowed
access to the reserved resource

Chapter 4: Scheduler Commands

Name Format Default Description

RESERVATION_
PROFILE

Existing
reservation profile
ID

N/A Requests that default reservation
attributes be loaded from the
specified reservation profile (see
RSVPROFILE)

RESOURCE_
DESCRIPTION

Colon delimited
list of zero or
more of the
following
<ATTR>
=<VALUE> pairs
PROCS=
<INTEGER>
MEM=
<INTEGER>
DISK=<INTEGER>
SWAP=
<INTEGER>
GRES=<STRING>

PROCS=-1 The resources to be reserved per
task. (-1 indicates all resources on
node)

RESOURCE_
EXPRESSION

ALL
or
TASKS
{
==
|
>=
}<TASKCOUNT>
or
<HOST_REGEX>

Required
Field. No
Default

The tasks to reserve. ALL indicates
all resources available should be
reserved.

If ALL or a host expression is
specified, Moab will apply the
reservation regardless of
existing reservations and
exclusive issues. If TASKS is
used, Moab will only allocate
accessible resources.

STARTTIME [HH[:MM[:SS]]][_
MO[/DD[/YY]]]
or
+
[[[DD:]HH:]MM:]SS

NOW Absolute or relative time reservation
will start

TRIGGER <STRING> N/A Comma-delimited reservation trigger
list following format described in the
trigger format section of the
reservation configuration overview

USER_LIST <STRING>
[:<STRING>]...

--- List of users that will be allowed
access to the reserved resources

Chapter 4: Scheduler Commands

329 4.7 Moab Commands

4.7 Moab Commands 330

Description
The setres command allows an arbitrary block of resources to be reserved for use by
jobs that meet the specified access constraints. The timeframe covered by the reservation
can be specified on either an absolute or relative basis. Only jobs with credentials listed in
the reservation ACL (i.e., USERLIST, GROUPLIST,...) can utilize the reserved resources.
However, these jobs still have the freedom to utilize resources outside of the reservation.
The reservation will be assigned a name derived from the ACL specified. If no reservation
ACL is specified, the reservation is created as a system reservation and no jobs will be
allowed access to the resources during the specified timeframe (valuable for system
maintenance, etc.). See the Reservation Overview for more information.

Reservations can be viewed using the showres command and can be released using the
releaseres command.

Examples
> setres -u john:mary -s +24:00:00 -d 8:00:00 TASKS==2
reservation 'john.1' created on 2 nodes (2 tasks)
node001:1
node005:1

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24 hours.

Example 4-58:

> setres -s 8:00:00_06/20 -e 17:00:00_06/22 ALL
reservation 'system.1' created on 8 nodes (8 tasks)
node001:1
node002:1
node003:1
node004:1
node005:1
node006:1
node007:1
node008:1

Schedule a system wide reservation to allow system maintenance on Jun 20, 8:00 AM until Jun 22, 5:00 PM.

Example 4-59:

> setres -r PROCS=1:MEM=512 -g staff -l interactive 'node00[3-6]'
reservation 'staff.1' created on 4 nodes (4 tasks)
node003:1
node004:1
node005:1
node006:1

Reserve one processor and 512 MB of memory on nodes node003 through node node006 for members of the
group staff and jobs in the interactive class.

Chapter 4: Scheduler Commands

4.7.40.K setspri

This command is deprecated. Use mjobctl -p instead.

Synopsis
setspri [-r] priorityjobid

Overview
(This command is deprecated by the mjobctl command)

Set or remove absolute or relative system priorities for a specified job.

This command allows you to set or remove a system priority level for a specified job. Any
job with a system priority level set is guaranteed a higher priority than jobs without a
system priority. Jobs with higher system priority settings have priority over jobs with lower
system priority settings.

Access
This command can be run by any Moab Scheduler Administrator.

Parameters

JOB Name of job.

PRIORITY System priority level. By default, this priority is an absolute priority overriding
the policy generated priority value. Range is 0 to clear, 1 for lowest, 1000 for
highest. The given value is added onto the system priority (see 32-bit and 64-bit
values below), except for a given value of zero. If the '-r' flag is specified, the
system priority is relative, adding or subtracting the specified value from the
policy generated priority.
If a relative priority is specified, any value in the range +/- 1,000,000,000 is
acceptable.

Flags

-r Set relative system priority on job.

Examples
> setspri 10 orion.4752
job system priority adjusted

In this example, a system priority of 10 is set for job orion.4752.

Chapter 4: Scheduler Commands

331 4.7 Moab Commands

4.7 Moab Commands 332

Example 4-60:

> setspri 0 clusterB.1102
job system priority adjusted

In this example, system priority is cleared for job clusterB.1102.

Example 4-61:

> setspri -r 100000 job.00001
job system priority adjusted

In this example, the job's priority will be increased by 100000 over the value determine by configured priority
policy.

This command is deprecated. Use mjobctl instead.

4.7.40.L showconfig

Synopsis
showconfig [-v] [--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

Overview
View the current configurable parameters of the Moab Scheduler.

The showconfig command shows the current scheduler version and all scheduler
parameters. These parameters are set via internal defaults, command line arguments,
environment variable settings, parameters in the moab.cfg file, and via the mschedctl -m
command. Because of the many sources of configuration settings, the output may differ
from the contents of the moab.cfg file. The output is such that it can be saved and used
as the contents of the moab.cfg file if desired.

The showconfig command does not show credential parameters (such as user, group
class, QoS, account).

Access
This command can be run by a level 1, 2, or 3 Moab administrator.

Chapter 4: Scheduler Commands

Flags

-h Help for this command.

-v This optional flag turns on verbose mode, which shows all possible Moab
Scheduler parameters and their current settings. If this flag is not used, this
command operates in context-sensitive terse mode, which shows only certain
parameter settings.

Examples

Example 4-62: showconfig

> showconfig
moab scheduler version 4.2.4 (PID: 11080)
BACKFILLPOLICY FIRSTFIT
BACKFILLMETRIC NODES
ALLOCATIONPOLICY MINRESOURCE
RESERVATIONPOLICY CURRENTHIGHEST
...

The showconfig command without the -v flag does not show the settings of all
scheduling parameters. To show the settings of all scheduling parameters, use the -v
(verbose) flag. This will provide an extended output. This output is often best used in
conjunction with the grep command as the output can be voluminous.

Related Topics

l Use the mschedctl -m command to change the various Moab Scheduler
parameters

l See the Moab Parameters appendix for details about configurable parameters

Chapter 4: Scheduler Commands

333 4.7 Moab Commands

334

Chapter 5: Prioritizing Jobs and Allocating Resources

In this chapter:

5.1 Job Prioritization 335
5.1.1 Priority Overview 335
5.1.2 Job Priority Factors 336
5.1.3 Fairshare Job Priority Example 348
5.1.4 Common Priority Usage 349
5.1.5 Prioritization Strategies 352
5.1.6 Manual Job Priority Adjustment 353

5.2 Node Allocation Policies 354
5.2.1 Node Allocation Overview 354
5.2.2 Node Selection Factors 358
5.2.3 Resource-Based Algorithms 358
5.2.4 User-Defined Algorithms 364
5.2.5 Specifying Per Job Resource Preferences 365

5.3 Node Access Policies 366
5.3.1 Node Access Policy Descriptions 366
5.3.2 Configuring Node Access Policies 367

5.4 Node Availability Policies 368
5.4.1 Node Resource Availability Policies 369
5.4.2 Node Categorization 370
5.4.3 Node Failure/Performance Based Notification 372
5.4.4 Node Failure/Performance Based Triggers 372
5.4.5 Handling Transient Node Failures 373
5.4.6 Allocated Resource Failure Policy for Jobs 374

Chapter 5: Prioritizing Jobs and Allocating Resources

5.1 Job Prioritization

In general, prioritization is the process of determining which of many options best fulfills
overall goals. In the case of scheduling, a site will often have multiple, independent goals
that may include maximizing system utilization, giving preference to users in specific
projects, or making certain that no job sits in the queue for more than a given period of
time. The approach used by Moab in representing a multi-faceted set of site goals is to
assign weights to the various objectives so an overall value or priority can be associated
with each potential scheduling decision. With the jobs prioritized, the scheduler can
roughly fulfill site objectives by starting the jobs in priority order.

In this chapter:

5.1.1 Priority Overview 335
5.1.2 Job Priority Factors 336
5.1.3 Fairshare Job Priority Example 348
5.1.4 Common Priority Usage 349
5.1.5 Prioritization Strategies 352
5.1.6 Manual Job Priority Adjustment 353

Related Topics

l mdiag -p (Priority Diagnostics)

5.1.1 Priority Overview
Moab's prioritization mechanism allows component and subcomponent weights to be
associated with many aspects of a job to enable fine-grained control over this aspect of
scheduling. To allow this level of control, Moab uses a simple priority-weighting hierarchy
where the contribution of each priority subcomponent is calculated as follows:

<COMPONENTWEIGHT> * <SUBCOMPONENTWEIGHT> * <PRIORITY SUBCOMPONENT
VALUE>

Each priority component contains one or more subcomponents as described in the section
titled Job Priority Factors. For example, the Resource component consists of Node,
Processor, Memory, Swap, Disk, Walltime, and PE subcomponents. While there are
numerous priority components and many more subcomponents, a site need only focus on
and configure the subset of components related to their particular priority needs. In actual

Chapter 5: Prioritizing Jobs and Allocating Resources

335 5.1 Job Prioritization

5.1 Job Prioritization 336

usage, few sites use more than a small fraction (usually 5 or fewer) of the available priority
subcomponents. This results in fairly straightforward priority configurations and tuning. By
mixing and matching priority weights, sites can generally obtain the desired job-start
behavior. At any time, you can issue the mdiag -p command to determine the impact of the
current priority-weight settings on idle jobs. Likewise, the command showstats -f can assist
the administrator in evaluating priority effectiveness on historical system usage metrics
such as queue time or expansion factor.

As mentioned above, a job's priority is the weighted sum of its activated subcomponents.
By default, the value of all component and subcomponent weights is set to 1 and 0
respectively. The one exception is the 'QUEUETIME' subcomponent weight that is set to 1.
This results in a total job priority equal to the period of time the job has been queued,
causing Moab to act as a simple FIFO. Once the summed component weight is determined,
this value is then bounded resulting in a priority ranging between 0 and MAX_PRIO_VAL,
which is currently defined as 1000000000 (one billion). In no case will a job obtain a
priority in excess of MAX_PRIO_VAL through its priority subcomponent values.

Negative priority jobs can be allowed if desired; see ENABLENEGJOBPRIORITY and
REJECTNEGPRIOJOBS for more information.

Using the mjobctl -p command, site administrators can adjust the base calculated job
priority by either assigning a relative priority adjustment or an absolute system priority. A
relative priority adjustment causes the base priority to be increased or decreased by a
specified value. Setting an absolute system priority, SPRIO, causes the job to receive a
priority equal to MAX_PRIO_VAL + SPRIO, and therefore guaranteed to be of higher value
than any naturally occurring job priority.

Related Topics

l REJECTNEGPRIOJOBS parameter

5.1.2 Job Priority Factors

In this topic:

5.1.2.A Job Priority Factors and Subfactors - page 337
5.1.2.B Credential (CRED) Component - page 340
5.1.2.C Fairshare (FS) Component - page 341

Chapter 5: Prioritizing Jobs and Allocating Resources

5.1.2.D Resource (RES) Component - page 342
5.1.2.E Service (SERVICE) Component - page 343
5.1.2.F Target Service (TARG) Component - page 346
5.1.2.G Usage (USAGE) Component - page 346
5.1.2.H Job Attribute (ATTR) Component - page 347

5.1.2.A Job Priority Factors and Subfactors
Moab allows jobs to be prioritized based on a range of job related factors. These factors are
broken down into a two-tier hierarchy of priority factors and subfactors, each of which can
be independently assigned a weight. This approach provides the administrator with
detailed yet straightforward control of the job selection process.

Each factor and subfactor can be configured with independent priority weight and priority
cap values (described later). In addition, per credential and per QoS priority weight
adjustments can be specified for a subset of the priority factors. For example, QoS
credentials can adjust the queuetime subfactor weight and group credentials can adjust
fairshare subfactor weight.

The following table highlights the factors and subfactors that make up a job's total priority:

Factor SubFactor Metric

CRED
(job credentials)

USER user-specific priority (see USERCFG)

GROUP group-specific priority (see GROUPCFG)

ACCOUNT account-specific priority (see ACCOUNTCFG)

QOS QoS-specific priority (see QOSCFG)

CLASS class/queue-specific priority (see CLASSCFG)

FS
(fairshare
usage)

FSUSER user-based historical usage (see Fairshare
Overview)

FSGROUP group-based historical usage (see Fairshare
Overview)

FSACCOUNT account-based historical usage (see Fairshare

Chapter 5: Prioritizing Jobs and Allocating Resources

337 5.1 Job Prioritization

5.1 Job Prioritization 338

Factor SubFactor Metric

Overview)

FSQOS QoS-based historical usage (see Fairshare
Overview)

FSCLASS class/queue-based historical usage (see
Fairshare Overview)

FSGUSER imported global user-based historical usage
(see ID Manager and Fairshare Overview)

FSGGROUP imported global group-based historical usage
(see ID Manager and Fairshare Overview)

FSGACCOUNT imported global account-based historical usage
(see ID Manager and Fairshare Overview)

FSJPU current active jobs associated with job user

FSPPU current number of processors allocated to
active jobs associated with job user

FSPSPU current number of processor-seconds allocated
to active jobs associated with job user

WCACCURACY user's current historical job wallclock accuracy
calculated as total processor-seconds dedicated
/ total processor-seconds requested

Factor values are in the range of 0.0 to
1.0.

Chapter 5: Prioritizing Jobs and Allocating Resources

Factor SubFactor Metric

RES
(requested job
resources)

NODE number of nodes requested

PROC number of processors requested

MEM total real memory requested (in MB)

SWAP total virtual memory requested (in MB)

DISK total local disk requested (in MB)

PS total processor-seconds requested

PE total processor-equivalent requested

WALLTIME total walltime requested (in seconds)

SERV
(current service
levels)

QUEUETIME time job has been queued (in minutes)

XFACTOR minimum job expansion factor

BYPASS number of times job has been bypassed by
backfill

STARTCOUNT number of times job has been restarted

DEADLINE proximity to job deadline

SPVIOLATION Boolean indicating whether the active job
violates a soft usage limit

USERPRIO user-specified job priority

TARGET
(target service
levels)

TARGETQUEUETIME time until queuetime target is reached
(exponential)

TARGETXFACTOR distance to target expansion factor
(exponential)

Chapter 5: Prioritizing Jobs and Allocating Resources

339 5.1 Job Prioritization

5.1 Job Prioritization 340

Factor SubFactor Metric

USAGE
(consumed
resources --
active jobs only)

CONSUMED processor-seconds dedicated to date

REMAINING processor-seconds outstanding

PERCENT percent of required walltime consumed

EXECUTIONTIME seconds since job started

ATTR
(job attribute-
based
prioritization)

ATTRATTR Attribute priority if specified job attribute is set
(attributes can be user-defined or one of
preemptor, or preemptee). Default is 0.

ATTRSTATE Attribute priority if job is in specified state (see
Job States). Default is 0.

ATTRGRES Attribute priority if a generic resource is
requested. Default is 0.

*CAP parameters (FSCAP, for example) are available to limit the maximum absolute
value of each priority component and subcomponent. If set to a positive value, a
priority cap will bound priority component values in both the positive and negative
directions.

All *CAP and *WEIGHT parameters are specified as positive or negative integers.
Non-integer values are not supported.

5.1.2.B Credential (CRED) Component
The credential component allows a site to prioritize jobs based on political issues such as
the relative importance of certain groups or accounts. This allows direct political priorities
to be applied to jobs.

The priority calculation for the credential component is as follows:

Priority += CREDWEIGHT * (
USERWEIGHT * Job.User.Priority +
GROUPWEIGHT * Job.Group.Priority +
ACCOUNTWEIGHT * Job.Account.Priority +
QOSWEIGHT * Job.Qos.Priority +
CLASSWEIGHT * Job.Class.Priority)

Chapter 5: Prioritizing Jobs and Allocating Resources

All user, group, account, QoS, and class weights are specified by setting the PRIORITY
attribute of using the respective *CFG parameter (namely, USERCFG, GROUPCFG,
ACCOUNTCFG, QOSCFG, and CLASSCFG).

For example, to set user and group priorities, you could use the following:

CREDWEIGHT 1
USERWEIGHT 1
GROUPWEIGHT 1
USERCFG[john] PRIORITY=2000
USERCFG[paul] PRIORITY=-1000
GROUPCFG[staff] PRIORITY=10000

Class (or queue) priority can also be specified via the resource manager where
supported (as in PBS queue priorities). However, if Moab class priority values are
also specified, the resource manager priority values will be overwritten.

All priorities can be positive or negative.

5.1.2.C Fairshare (FS) Component
Fairshare components allow a site to favor jobs based on short-term historical usage. The
Fairshare Overview describes the configuration and use of fairshare in detail.

The fairshare factor is used to adjust a job's priority based on current and historical
percentage system utilization of the job's user, group, account, class, or QoS. This allows
sites to steer workload toward a particular usage mix across user, group, account, class,
and QoS dimensions.

The fairshare priority factor calculation is as follows:

Priority += FSWEIGHT * MIN(FSCAP, (
FSUSERWEIGHT * DeltaUserFSUsage +
FSGROUPWEIGHT * DeltaGroupFSUsage +
FSACCOUNTWEIGHT * DeltaAccountFSUsage +
FSQOSWEIGHT * DeltaQOSFSUsage +
FSCLASSWEIGHT * DeltaClassFSUsage +
FSJPUWEIGHT * ActiveUserJobs +
FSPPUWEIGHT * ActiveUserProcs +
FSPSPUWEIGHT * ActiveUserPS +
WCACCURACYWEIGHT * UserWCAccuracy))

All *WEIGHT parameters just listed are specified on a per partition basis in the
moab.cfg file. The Delta*Usage components represent the difference in actual
fairshare usage from the corresponding fairshare usage target. Actual fairshare usage is
determined based on historical usage over the time frame specified in the fairshare
configuration. The target usage can be a target, floor, or ceiling value as specified in the

Chapter 5: Prioritizing Jobs and Allocating Resources

341 5.1 Job Prioritization

5.1 Job Prioritization 342

fairshare configuration file. See the Fairshare Overview for further information on
configuring and tuning fairshare. Additional insight may be available in the fairshare usage
example. The ActiveUser* components represent current usage by the job's user
credential.

How violated ceilings and floors affect fairshare-based priority

Moab determines FSUsageWeight in the previous section. In order to account for
violated ceilings and floors, Moab multiplies that number by the FSUsagePriority as
demonstrated in the following formula:

FSPriority = FSUsagePriority * FSUsageWeight

When a ceiling or floor is violated, FSUsagePriority = 0, so FSPriority = 0.
This means the job will gain no priority because of fairshare. If fairshare is the only
component of priority, then violation takes the priority to 0. For more information, see
Priority-Based Fairshare and Fairshare Targets.

5.1.2.D Resource (RES) Component
Weighting jobs by the amount of resources requested allows a site to favor particular types
of jobs. Such prioritization may allow a site to better meet site mission objectives, improve
fairness, or even improve overall system utilization.

Resource based prioritization is valuable when you want to favor jobs based on the
resources requested. This is good in three main scenarios: (1) when you need to favor
large resource jobs because it's part of your site's mission statement, (2) when you want to
level the response time distribution across large and small jobs (small jobs are more easily
backfilled and therefore generally have better turnaround time), and (3) when you want to
improve system utilization. While this might be surprising, system utilization actually
increases as large resource jobs are pushed to the front of the queue. This keeps the
smaller jobs in the back where they can be selected for backfill and therefore increase
overall system utilization. The situation is like the story about filling a cup with golf balls
and sand. If you put the sand in first, it gets in the way and you are unable to put in as
many golf balls. However, if you put in the golf balls first, the sand can easily be poured in
around them completely filling the cup.

The calculation for determining the total resource priority factor is as follows:

Priority += RESWEIGHT* MIN(RESCAP, (
NODEWEIGHT * TotalNodesRequested +
PROCWEIGHT * TotalProcessorsRequested +
MEMWEIGHT * TotalMemoryRequested +
SWAPWEIGHT * TotalSwapRequested +
DISKWEIGHT * TotalDiskRequested +
WALLTIMEWEIGHT* TotalWalltimeRequested +
PEWEIGHT * TotalPERequested))

Chapter 5: Prioritizing Jobs and Allocating Resources

The sum of all weighted resources components is then multiplied by the RESWEIGHT
parameter and capped by the RESCAP parameter. Memory, Swap, and Disk are all
measured in megabytes (MB). The final resource component, PE, represents Processor
Equivalents. This component can be viewed as a processor-weighted maximum percentage
of total resources factor.

For example, if a job requested 25% of the processors and 50% of the total memory on a
128-processor system, it would have a PE value of MAX(25,50) * 128, or 64. The concept of
PEs is a highly effective metric in shared resource systems.

Ideal values for requested job processor count and walltime can be specified using
PRIORITYTARGETPROCCOUNT and PRIORITYTARGETDURATION.

5.1.2.E Service (SERVICE) Component
The Service component specifies which service metrics are of greatest value to the site.
Favoring one service subcomponent over another generally improves that service metric.

The priority calculation for the service priority factor is as follows:

Priority += SERVICEWEIGHT * (
QUEUETIMEWEIGHT * <QUEUETIME> +
XFACTORWEIGHT * <XFACTOR> +
BYPASSWEIGHT * <BYPASSCOUNT> +
STARTCOUNTWEIGHT * <STARTCOUNT> +

 DEADLINEWEIGHT * <DEADLINE> +
SPVIOLATIONWEIGHT * <SPBOOLEAN> +
USERPRIOWEIGHT * <USERPRIO>)

QueueTime (QUEUETIME) Subcomponent
In the priority calculation, a job's queue time is a duration measured in minutes. Using this
subcomponent tends to prioritize jobs in a FIFO order. Favoring queue time improves
queue time based fairness metrics and is probably the most widely used single job priority
metric. In fact, under the initial default configuration, this is the only priority subcomponent
enabled within Moab. It is important to note that within Moab, a job's queue time is not
necessarily the amount of time since the job was submitted. The parameter
JOBPRIOACCRUALPOLICY allows a site to select how a job will accrue queue time based on
meeting various throttling policies. Regardless of the policy used to determine a job's
queue time, this effective queue time is used in the calculation of the QUEUETIME,
XFACTOR, TARGETQUEUETIME, and TARGETXFACTOR priority subcomponent values.

The need for a distinct effective queue time is necessitated by the fact that many sites have
users who like to work the system, whatever system it happens to be. A common practice at
some long existent sites is for some users to submit a large number of jobs and then place

Chapter 5: Prioritizing Jobs and Allocating Resources

343 5.1 Job Prioritization

5.1 Job Prioritization 344

them on hold. These jobs remain with a hold in place for an extended period of time and
when the user is ready to run a job, the needed executable and data files are linked into
place and the hold released on one of these pre-submitted jobs. The extended hold time
guarantees that this job is now the highest priority job and will be the next to run. The use
of the JOBPRIOACCRUALPOLICY parameter can prevent this practice and prevent
'queue stuffers' from doing similar things on a shorter time scale. These 'queue stuffer'
users submit hundreds of jobs at once to swamp the machine and consume use of the
available compute resources. This parameter prevents the user from gaining any
advantage from stuffing the queue by not allowing these jobs to accumulate any queue
time based priority until they meet certain idle and active Moab fairness policies (such as
max job per user and max idle job per user).

As a final note, you can adjust the QUEUETIMEWEIGHT parameter on a per QoS basis using
the QOSCFG parameter and the QTWEIGHT attribute. For example, the line QOSCFG
[special] QTWEIGHT=5000 causes jobs using the QoS special to have their queue
time subcomponent weight increased by 5000.

Expansion Factor (XFACTOR) Subcomponent
The expansion factor subcomponent has an effect similar to the queue time factor but
favors shorter jobs based on their requested wallclock run time. In its traditional form, the
expansion factor (XFactor) metric is calculated as follows:

XFACTOR = 1 + <QUEUETIME> / <EXECUTIONTIME>

However, a couple of aspects of this calculation make its use more difficult. First, the length
of time the job will actually run—<EXECUTIONTIME>—is not actually known until the job
completes. All that is known is how much time the job requests. Secondly, as described in
the Queue Time Subcomponent section, Moab does not necessarily use the raw time since
job submission to determine <QUEUETIME> to prevent various scheduler abuses.
Consequently, Moab uses the following modified equation:

XFACTOR = 1 + <EFFQUEUETIME> / <WALLCLOCKLIMIT>

In the equation Moab uses, <EFFQUEUETIME> is the effective queue time subject to the
JOBPRIOACCRUALPOLICY parameter and <WALLCLOCKLIMIT> is the user—or system—
specified job wallclock limit.

Using this equation, it can be seen that short running jobs will have an XFactor that will
grow much faster over time than the xfactor associated with long running jobs. The
following table demonstrates this favoring of short running jobs:

Job Queue
Time 1 hour 2 hours 4 hours 8 hours 16 hours

XFactor for 1
hour job

1 + (1 / 1)
= 2.00

1 + (2 / 1)
= 3.00

1 + (4 / 1)
= 5.00

1 + (8 / 1)
= 9.00

1 + (16 / 1)
= 17.0

Chapter 5: Prioritizing Jobs and Allocating Resources

Job Queue
Time 1 hour 2 hours 4 hours 8 hours 16 hours

XFactor for 4
hour job

1 + (1 / 4)
= 1.25

1 + (2 / 4)
= 1.50

1 + (4 / 4)
= 2.00

1 + (8 / 4)
= 3.00

1 + (16 / 4)
= 5.0

Since XFactor is calculated as a ratio of two values, it is possible for this subcomponent to
be almost arbitrarily large, potentially swamping the value of other priority
subcomponents. This can be addressed either by using the subcomponent cap
XFACTORCAP, or by using the XFMINWCLIMIT parameter. If the latter is used, the
calculation for the XFactor subcomponent value becomes:

XFACTOR = 1 + <EFFQUEUETIME> / MAX(<XFMINWCLIMIT>,<WALLCLOCKLIMIT>)

Using the XFMINWCLIMIT parameter allows a site to prevent very short jobs from
causing the XFactor subcomponent to grow inordinately.

Some sites consider XFactor to be a more fair scheduling performance metric than queue
time. At these sites, job XFactor is given far more weight than job queue time when
calculating job priority and job XFactor distribution consequently tends to be fairly level
across a wide range of job durations. (That is, a flat XFactor distribution of 1.0 would result
in a one-minute job being queued on average one minute, while a 24-hour job would be
queued an average of 24 hours.)

Like queue time, the effective XFactor subcomponent weight is the sum of two weights, the
XFACTORWEIGHT parameter and the QoS-specific XFWEIGHT setting. For example, the
line QOSCFG[special] XFWEIGHT=5000 causes jobs using the QoS special to
increase their expansion factor subcomponent weight by 5000.

Bypass (BYPASS) Subcomponent
The bypass factor is based on the bypass count of a job where the bypass count is
increased by one every time the job is bypassed by a lower priority job via backfill. Backfill
starvation has never been reported, but if encountered, use the BYPASS subcomponent.

StartCount (STARTCOUNT) Subcomponent
Apply the startcount factor to sites with trouble starting or completing due to policies or
failures. The primary causes of an idle job having a startcount greater than zero are
resource manager level job start failure, administrator based requeue, or requeue based
preemption.

Deadline (DEADLINE) Subcomponent
The deadline factor allows sites to take into consideration the proximity of a job to its
DEADLINE. As a jobs moves closer to its deadline its priority increases linearly. This is an
alternative to the strict deadline discussed in QOS SERVICE.

Chapter 5: Prioritizing Jobs and Allocating Resources

345 5.1 Job Prioritization

5.1 Job Prioritization 346

Soft Policy Violation (SPVIOLATION) Subcomponent
The soft policy violation factor allows sites to favor jobs that do not violate their associated
soft resource limit policies.

User Priority (USERPRIO) Subcomponent
The user priority subcomponent allows sites to consider end-user specified job priority in
making the overall job priority calculation. Under Moab, end-user specified priorities can
only be negative and are bounded in the range 0 to -1024. See Manual Priority Usage and
Enabling End-user Priorities for more information.

User priorities can be positive, ranging from -1024 to 1023, if
ENABLEPOSUSERPRIORITY TRUE is specified in moab.cfg.

5.1.2.F Target Service (TARG) Component
The target factor component of priority takes into account job scheduling performance
targets. Currently, this is limited to target expansion factor and target queue time. Unlike
the expansion factor and queue time factors described earlier that increase gradually over
time, the target factor component is designed to grow exponentially as the target metric is
approached. This behavior causes the scheduler to do essentially all in its power to make
certain the scheduling targets are met.

The priority calculation for the target factor is as follows:

Priority += TARGETWEIGHT* (
TARGETQUEUETIMEWEIGHT * QueueTimeComponent +
TARGETXFACTORWEIGHT * XFactorComponent)

The queue time and expansion factor target are specified on a per QoS basis using the
XFTARGET and QTTARGET attributes with the QOSCFG parameter. The QueueTime and
XFactor component calculations are designed to produce small values until the target value
begins to approach, at which point these components grow very rapidly. If the target is
missed, this component remains high and continues to grow, but it does not grow
exponentially.

5.1.2.G Usage (USAGE) Component
The Usage component applies to active jobs only. The priority calculation for the usage
priority factor is as follows:

Priority += USAGEWEIGHT * (
USAGECONSUMEDWEIGHT * ProcSecondsConsumed +

 USAGEHUNGERWEIGHT * ProcNeededToBalanceDynamicJob +
USAGEREMAININGWEIGHT * ProcSecRemaining +

Chapter 5: Prioritizing Jobs and Allocating Resources

USAGEEXECUTIONTIMEWEIGHT * SecondsSinceStart +
USAGEPERCENTWEIGHT * WalltimePercent)

5.1.2.H Job Attribute (ATTR) Component
The Attribute component allows the incorporation of job attributes into a job's priority. The
most common usage for this capability is to do one of the following:

l adjust priority based on a job's state (favor suspended jobs)

l adjust priority based on a job's requested node features (favor jobs that request
attribute pvfs)

l adjust priority based on internal job attributes (disfavor backfill or preemptee
jobs)

l adjust priority based on a job's requested licenses, network consumption, or generic
resource requirements

To use job attribute based prioritization, the JOBPRIOF parameter must be specified to set
corresponding attribute priorities. To favor jobs based on node feature requirements, the
parameter NODETOJOBATTRMAP must be set to map node feature requests to job
attributes.

The priority calculation for the attribute priority factor is as follows:

Priority += ATTRWEIGHT * (
ATTRATTRWEIGHT * <ATTRPRIORITY> +
ATTRSTATEWEIGHT * <STATEPRIORITY> +
ATTRGRESWEIGHT * <GRESPRIORITY>
JOBIDWEIGHT * <JOBID> +
JOBNAMEWEIGHT * <JOBNAME_INTEGER>)

Example 5-1:

ATTRWEIGHT 100
ATTRATTRWEIGHT 1
ATTRSTATEWEIGHT 1
ATTRGRESWEIGHT 5
favor suspended jobs
disfavor preemptible jobs
favor jobs requesting 'matlab'

JOBPRIOF STATE[Running]=100 STATE[Suspended]=1000 ATTR[PREEMPTEE]=-200 ATTR
[gpfs]=30 GRES[matlab]=400
map node features to job features

NODETOJOBATTRMAP gpfs,pvfs
...

Chapter 5: Prioritizing Jobs and Allocating Resources

347 5.1 Job Prioritization

5.1 Job Prioritization 348

Related Topics

l Node Allocation Priority

l Per Credential Priority Weight Offsets

l Managing Consumable Generic Resources

5.1.3 Fairshare Job Priority Example
Consider the following information associated with calculating the fairshare factor for job X.

Job X
User A
Group B
Account C
QOS D
Class E

User A
Fairshare Target: 50.0
Current Fairshare Usage: 45.0

Group B
Fairshare Target: [NONE]
Current Fairshare Usage: 65.0

Account C
Fairshare Target: 25.0
Current Fairshare Usage: 35.0

QOS D
Fairshare Target: 10.0+
Current Fairshare Usage: 25.0

Class E
Fairshare Target: [NONE]
Current Fairshare Usage: 20.0

Priority Weights:
FSWEIGHT 100
FSUSERWEIGHT 10
FSGROUPWEIGHT 20
FSACCOUNTWEIGHT 30
FSQOSWEIGHT 40
FSCLASSWEIGHT 0

Chapter 5: Prioritizing Jobs and Allocating Resources

In this example, the Fairshare component calculation would be as follows:

Priority += 100 * (
10 * 5 +
20 * 0 +
30 * (-10) +
40 * 0 +
0 * 0)

User A is 5% below his target so fairshare increases the total fairshare factor accordingly.
Group B has no target so group fairshare usage is ignored. Account C is above its 10%
above its fairshare usage target so this component decreases the job's total fairshare
factor. QOS D is 15% over its target but the '+' in the target specification indicates that this
is a 'floor' target, only influencing priority when fairshare usage drops below the target
value. Therefore, the QOS D fairshare usage delta does not influence the fairshare factor.

Fairshare is a great mechanism for influencing job turnaround time via priority to favor a
particular distribution of jobs. However, it is important to realize that fairshare can only
favor a particular distribution of jobs, it cannot force it. If user X has a fairshare target of
50% of the machine but does not submit enough jobs, no amount of priority favoring will
get user X's usage up to 50%.

Related Topics

l 6.3 Fairshare - page 402

5.1.4 Common Priority Usage

In this topic:

5.1.4.A Credential Priority Factors - page 350
5.1.4.B Service Level Priority Factors - page 350
5.1.4.C Priority Factor Caps - page 351
5.1.4.D User Selectable Prioritization - page 352

Site administrators vary widely in their preferred manner of prioritizing jobs. Moab's
scheduling hierarchy allows sites to meet job control needs without requiring adjustments
to dozens of parameters. Some choose to use numerous subcomponents, others a few, and
still others are content with the default FIFO behavior. Any subcomponent that is not of
interest can be safely ignored.

Chapter 5: Prioritizing Jobs and Allocating Resources

349 5.1 Job Prioritization

5.1 Job Prioritization 350

5.1.4.A Credential Priority Factors
To help clarify the use of priority weights, a brief example may help. Suppose a site wanted
to maintain the FIFO behavior but also incorporate some credential based prioritization to
favor a special user. Particularly, the site would like the user john to receive a higher
initial priority than all other users. Configuring this behavior requires two steps. First, the
user credential subcomponent must be enabled and second, john must have his relative
priority specified. Take a look at the sample moab.cfg file:

USERWEIGHT 1
USERCFG[john] PRIORITY=300

The 'USER' priority subcomponent was enabled by setting the USERWEIGHT
parameter. In fact, the parameters used to specify the weights of all components and
subcomponents follow this same '*WEIGHT' naming convention (as in RESWEIGHT
and TARGETQUEUETIMEWEIGHT.

The second part of the example involves specifying the actual user priority for the user
john. This is accomplished using the USERCFG parameter. Why was the priority 300
selected and not some other value? Is this value arbitrary? As in any priority system, actual
priority values are meaningless, only relative values are important. In this case, we are
required to balance user priorities with the default queue time based priorities. Since
queuetime priority is measured in minutes queued, the user priority of 300 places a job by
user john on par with a job submitted 5 minutes earlier by another user.

Is this what the site wants? Maybe, maybe not. At the onset, most sites are uncertain what
they want in prioritization. Often, an estimate initiates prioritization and adjustments occur
over time. Cluster resources evolve, the workload evolves, and even site policies evolve,
resulting in changing priority needs over time. Anecdotal evidence indicates that most sites
establish a relatively stable priority policy within a few iterations and make only occasional
adjustments to priority weights from that point.

5.1.4.B Service Level Priority Factors
In another example, suppose a site administrator wants to do the following:

l Favor jobs in the low, medium, and high QoSs so they will run in QoS order

l Balance job expansion factor

l Use job queue time to prevent jobs from starving

Under such conditions, the sample moab.cfg file might appear as follows:

QOSWEIGHT 1
XFACTORWEIGHT 1

Chapter 5: Prioritizing Jobs and Allocating Resources

QUEUETIMEWEIGHT 10
TARGETQUEUETIMEWEIGHT 1
QOSCFG[low] PRIORITY=1000
QOSCFG[medium] PRIORITY=10000
QOSCFG[high] PRIORITY=100000
QOSCFG[DEFAULT] QTTARGET=4:00:00

This example is a bit more complicated but is more typical of the needs of many sites. The
desired QoS weightings are established by enabling the QoS subfactor using the
QOSWEIGHT parameter while the various QoS priorities are specified using QOSCFG.
XFACTORWEIGHT is then set as this subcomponent tends to establish a balanced
distribution of expansion factors across all jobs. Next, the queuetime component is used to
gradually raise the priority of all jobs based on the length of time they have been queued.
Note that in this case, QUEUETIMEWEIGHT was explicitly set to 10, overriding its default
value of 1. Finally, the TARGETQUEUETIMEWEIGHT parameter is used in conjunction with
the USERCFG line to specify a queue time target of 4 hours.

5.1.4.C Priority Factor Caps
Assume now that the site administrator is content with this priority mix but has a problem
with users submitting large numbers of very short jobs. Very short jobs would tend to have
rapidly growing XFactor values and would consequently quickly jump to the head of the
queue. In this case, a factor cap would be appropriate. Such caps allow a site to limit the
contribution of a job's priority factor to be within a defined range. This prevents certain
priority factors from swamping others. Caps can be applied to either priority components
or subcomponents and are specified using the <COMPONENTNAME>CAP parameter (such
as QUEUETIMECAP, RESCAP, and SERVCAP). Note that both component and
subcomponent caps apply to the pre-weighted value, as in the following equation:

Priority =
C1WEIGHT * MIN(C1CAP,SUM(
S11WEIGHT * MIN(S11CAP,S11S) +
S12WEIGHT * MIN(S12CAP,S12S) +
...)) +

C2WEIGHT * MIN(C2CAP,SUM(
S21WEIGHT * MIN(S21CAP,S21S) +
S22WEIGHT * MIN(S22CAP,S22S) +
...)) +

...

Example 5-2: Priority cap

QOSWEIGHT 1
QOSCAP 10000
XFACTORWEIGHT 1
XFACTORCAP 1000
QUEUETIMEWEIGHT 10
QUEUETIMECAP 1000

Chapter 5: Prioritizing Jobs and Allocating Resources

351 5.1 Job Prioritization

5.1 Job Prioritization 352

5.1.4.D User Selectable Prioritization
Moab allows users to specify a job priority to jobs they own or manage. This priority can be
set at job submission time or it can be dynamically modified (using setspri or mjobctl) after
submitting the job. For fairness reasons, users can only apply a negative priority to their
job and therefore slide it further back in the queue. This enables users to allow their more
important jobs to run before their less important ones without gaining unfair advantage
over other users.

User priorities can be positive if ENABLEPOSUSERPRIORITY TRUE is specified in
moab.cfg.

In order to set ENABLEPOSUSERPRIORITY, you must change the
USERPRIOWEIGHT from its default value of 0. For example:

USERPRIOWEIGHT 100

> setspri -r 100 332411
successfully modified job priority

Specifying a user priority at job submission time is resource manager specific. See the
associated resource manager documentation for more information.

User Selectable Priority w/QoS
Using the QoS facility, organizations can set up an environment where users can more
freely select the desired priority of a given job. Organizations can enable access to a
number of QoSs each with its own charging rate, priority, and target service levels. Users
can then assign job importance by selecting the appropriate QoS. If desired, this can allow a
user to jump ahead of other users in the queue if they are willing to pay the associated
costs.

Related Topics

l User Selectable Priority

5.1.5 Prioritization Strategies
Each component or subcomponent can be used to accomplish different objectives.
WALLTIME can be used to favor (or disfavor) jobs based on their duration. Likewise,

Chapter 5: Prioritizing Jobs and Allocating Resources

ACCOUNT can be used to favor jobs associated with a particular project while QUEUETIME
can be used to favor those jobs waiting the longest.

l Queue Time

l Expansion Factor

l Resource

l Fairshare

l Credential

l Target Metrics

Each priority factor group can contain one or more subfactors. For example, the Resource
factor consists of Node, Processor, Memory, Swap, Disk, and PE components. From the table
in Job Priority Factors section, it is apparent that the prioritization problem is fairly
complex since every site needs to prioritize a bit differently. When calculating a priority,
the various priority factors are summed and then bounded between 0 and MAX_PRIO_VAL,
which is currently defined as 100000000 (one billion).

The mdiag -p command assists with visualizing the priority distribution resulting from the
current job priority configuration. Also, the showstats -f command helps indicate the impact
of the current priority settings on scheduler service distributions.

5.1.6 Manual Job Priority Adjustment
Batch administrators regularly find a need to adjust the calculated priority of a job to meet
current needs. Current needs often are broken into two categories:

1. The need to run an administrator test job as soon as possible.

2. The need to pacify a disserviced user.

You can use the setspri command to handle these issues in one of two ways; this command
allows the specification of either a relative priority adjustment or the specification of an
absolute priority. Using absolute priority specification, administrators can set a job priority
guaranteed to be higher than any calculated value. Where Moab-calculated job priorities
are in the range of 0 to 1 billion, system administrator assigned absolute priorities start at
1 billion and go up. Issuing the setspri <PRIO> <JOBID> command, for example,
assigns a priority of 1 billion + <PRIO> to the job. Therefore, setspri 5 job.1294 sets
the priority of 'job.1294' to 1000000005.

For more information, see Common Priority Usage - End-user Adjustment.

Chapter 5: Prioritizing Jobs and Allocating Resources

353 5.1 Job Prioritization

5.2 Node Allocation Policies 354

5.2 Node Allocation Policies

While job prioritization allows a site to determine which job to run, node allocation policies
allow a site to specify how available resources should be allocated to each job. The
algorithm used is specified by the parameter NODEALLOCATIONPOLICY. There are
multiple node allocation policies to choose from allowing selection based on reservation
constraints, node configuration, resource usage, preferences, and other factors. You can
specify these policies with a system-wide default value, on a per-partition basis, or on a
per-job basis. Note that LASTAVAILABLE is the default policy.

Available algorithms are described in detail in the following sections and include
CONTIGUOUS, CPULOAD, FIRSTAVAILABLE, LASTAVAILABLE, MINRESOURCE,
MAXBALANCE, PLUGIN, PRIORITY.

In this topic:

5.2.1 Node Allocation Overview - page 354
5.2.1.A Heterogeneous Resources - page 355
5.2.1.B Shared Nodes - page 355
5.2.1.C Reservations or Service Guarantees - page 357
5.2.1.D Non-Flat Network - page 358

5.2.2 Node Selection Factors - page 358
5.2.3 Resource-Based Algorithms - page 358
5.2.4 User-Defined Algorithms - page 364

5.2.4.A PLUGIN - page 364
5.2.5 Specifying Per Job Resource Preferences - page 365

5.2.5.A Specifying Resource Preferences - page 365
5.2.5.B Selecting Preferred Resources - page 365

5.2.1 Node Allocation Overview
Node allocation is the process of selecting the best resources to allocate to a job from a list
of available resources. Making this decision intelligently is important in an environment
that possesses one or more of the following attributes:

l Heterogeneous resources (resources which vary from node to node in terms of
quantity or quality)

l Shared nodes (nodes can be utilized by more than one job)

l Reservations or service guarantees

Chapter 5: Prioritizing Jobs and Allocating Resources

l Non-flat network (a network where a perceptible performance degradation may
potentially exist depending on workload placement)

5.2.1.A Heterogeneous Resources
Moab analyzes job processing requirements and assigns resources to maximize hardware
utility.

For example, suppose two nodes are available in a system, A and B. Node A has 768 MB of
RAM and node B has 512 MB. The next two jobs in the queue are X and Y. Job X requests
256 MB and job Y requests 640 MB. Job X is next in the queue and can fit on either node,
but Moab recognizes that job Y (640 MB) can only fit on node A (768 MB). Instead of
putting job X on node A and blocking job Y, Moab can put job X on node B and job Y on
node A.

5.2.1.B Shared Nodes

Symmetric Multiprocessing (SMP)
When sharing SMP-based compute resources amongst tasks from more than one job,
resource contention and fragmentation issues arise. In SMP environments, the general goal
is to deliver maximum system utilization for a combination of compute-intensive and
memory-intensive jobs while preventing overcommitment of resources.

By default, most current systems do not do a good job of logically partitioning the resources
(such as CPU, memory, and network bandwidth) available on a given node. Consequently
contention often arises between tasks of independent jobs on the node. This can result in a
slowdown for all jobs involved, which can have significant ramifications if large-way
parallel jobs are involved. Virtualization, CPU sets, and other techniques are maturing
quickly as methods to provide logical partitioning within shared resources.

On large-way SMP systems (> 32 processors/node), job packing can result in intra-node
fragmentation. For example, take two nodes, A and B, each with 64 processors. Assume
they are currently loaded with various jobs and A has 24 and B has 12 processors free.
Two jobs are submitted; job X requests 10 processors and job Y requests 20 processors.
Job X can start on either node but starting it on node A prevents job Y from running. An
algorithm to handle intra-node fragmentation is straightforward for a single resource case,
but the algorithm becomes more involved when jobs request a combination of processors,
memory, and local disk. These workload factors should be considered when selecting a
site's node allocation policy, as well as identifying appropriate policies for handling
resource utilization limit violations.

Chapter 5: Prioritizing Jobs and Allocating Resources

355 5.2 Node Allocation Policies

5.2 Node Allocation Policies 356

Interactive Nodes
In many cases, sites are interested in allowing multiple users to simultaneously use one or
more nodes for interactive purposes. Workload is commonly not compute intensive
consisting of intermittent tasks including coding, compiling, and testing. Because these jobs
are highly variant in terms of resource usage over time, sites are able to pack a larger
number of these jobs onto the same node. Consequently, a common practice is to restrict
job scheduling based on utilized, rather than dedicated resources.

Interactive Node Example
The example configuration files that follow show one method by which node sharing can be
accomplished within a Torque + Moab environment. This example is based on a
hypothetical cluster composed of 4 nodes each with 4 cores. For the compute nodes, job
tasks are limited to actual cores preventing overcommitment of resources. For the
interactive nodes, up to 32 job tasks are allowed, but the node also stops allowing
additional tasks if either memory is fully utilized or if the CPU load exceeds 4.0. Therefore,
Moab continues packing the interactive nodes with jobs until carrying capacity is reached.

Example 5-3: /opt/moab/etc/moab.cfg

constrain interactive jobs to interactive nodes
constrain interactive jobs to 900 proc-seconds
CLASSCFG[interactive] HOSTLIST=interactive01,interactive02
CLASSCFG[interactive] MAX.CPUTIME=900
RESOURCELIMITPOLICY CPUTIME:ALWAYS:CANCEL
base interactive node allocation on load and jobs
NODEALLOCATIONPOLICY PRIORITY
NODECFG[interactive01] PRIORITYF='-20*LOAD - JOBCOUNT'
NODECFG[interactive02] PRIORITYF='-20*LOAD - JOBCOUNT'

Example 5-4: /var/spool/torque/server_priv/nodes

interactive01 np=32
interactive02 np=32
compute01 np=4
compute02 np=4

Example 5-5: /var/spool/torque/mom_priv/config on "interactive01"

interactive01
$max_load 4.0

Example 5-6: /var/spool/torque/mom_priv/config on "interactive02"

interactive02
$max_load 4.0

Chapter 5: Prioritizing Jobs and Allocating Resources

5.2.1.C Reservations or Service Guarantees
A reservation-based system adds the time dimension into the node allocation decision. With
reservations, node resources must be viewed in a type of two dimension node-time space.
Allocating nodes to jobs fragments this node-time space and makes it more difficult to
schedule jobs in the remaining, more constrained node-time slots. Allocation decisions
should be made in such a way as to minimize this fragmentation and maximize the
scheduler's ability to continue to start jobs in existing slots. The following figure shows that
job A and job B are running. A reservation, X, is created some time in the future. Assume
that job A is 2 hours long and job B is 3 hours long. Again, two new single-processor jobs
are submitted, C and D; job C requires 3 hours of compute time while job D requires 5
hours. Either job will just fit in the free space located above job A or in the free space
located below job B. If job C is placed above job A, job D, requiring 5 hours of time will be
prevented from running by the presence of reservation X. However, if job C is placed below
job B, job D can still start immediately above job A.

Image 5-1: Job A, Job B, and Reservation X scheduled on nodes

The preceding example demonstrates the importance of time based reservation
information in making node allocation decisions, both at the time of starting jobs and at the
time of creating reservations. The impact of time based issues grows significantly with the
number of reservations in place on a given system. The LASTAVAILABLE algorithm

Chapter 5: Prioritizing Jobs and Allocating Resources

357 5.2 Node Allocation Policies

5.2 Node Allocation Policies 358

works on this premise, locating resources that have the smallest space between the end of
a job under consideration and the start of a future reservation.

5.2.1.D Non-Flat Network
On systems where network connections do not resemble a flat all-to-all topology, task
placement may impact performance of communication intensive parallel jobs. If latencies
and network bandwidth between any two nodes vary significantly, the node allocation
algorithm should attempt to pack tasks of a given job as close to each other as possible to
minimize impact of bandwidth and latency differences.

5.2.2 Node Selection Factors
While the node allocation policy determines which nodes a job will use, other factors
narrow the options before the policy makes the final decision. The following process
demonstrates how Moab executes its node allocation process and how other policies affect
the decision:

1. Moab eliminates nodes that do not meet the hard resource requirements set by the job.

2. Moab gathers affinity information, first from workload proximity rules and then from
reservation affinity rules (see Affinity for more information). Reservation affinity rules
trump workload proximity rules.

3. Moab allocates nodes using the allocation policy:

l If more than enough nodes with Required affinity exist, only they are passed down
for the final sort by the node allocation policy.

l If the number of nodes with Required affinity matches the number of nodes
requested exactly, then the node allocation policy is skipped entirely and all of those
nodes are assigned to the job.

l If too few nodes have Required affinity, all of them are assigned to the job, then the
node allocation policy is applied to the remaining eligible nodes (after Required,
Moab will use Positive, then Neutral, then Negative).

5.2.3 Resource-Based Algorithms
Moab contains a number of allocation algorithms that address some of the needs described
earlier. You can also create allocation algorithms and interface them with the Moab
scheduling system. Each of these policies has a name and descriptive alias. They can be
configured using either one, but Moab will only report their names.

Chapter 5: Prioritizing Jobs and Allocating Resources

If ENABLEHIGHTHROUGHPUT is TRUE, you must set NODEALLOCATIONPOLICY to
FIRSTAVAILABLE.

The current suite of algorithms is described in the table below:

Chapter 5: Prioritizing Jobs and Allocating Resources

359 5.2 Node Allocation Policies

5.2 Node Allocation Policies 360

Allocation Algorithms

Allocation
Algorithm
Name

Alias Description

CONTIGUOU
S

Contiguous Allocates nodes in contiguous (linear) blocks as
required by the Compaq RMS system.

CPULOAD ProcessorLoad Nodes are selected that have the maximum
amount of available, unused CPU power (<#of
CPU's> - <CPU load>). CPULOAD is a good
algorithm for timesharing node systems and
applies to jobs starting immediately. For the
purpose of future reservations, the
MINRESOURCE algorithm is used.

FIRSTAVAIL
ABLE

InReportedOrder Simple first come, first served algorithm where
nodes are allocated in the order they are
presented by the resource manager. This is a
very simple, and very fast algorithm.

LASTAVAIL
ABLE

InReserveReportedOr
der

Nodes are allocated in descending order that
they are presented by the resource manager, or
the reverse of FIRSTAVAILABLE.

MAXBALAN
CE

ProcessorSpeedBalanc
e

Attempts to allocate the most balanced set of
nodes possible to a job. In most cases, but not
all, the metric for balance of the nodes is node
procspeed. Therefore, if possible, nodes with
identical procspeeds are allocated to the job. If
identical procspeed nodes cannot be found, the
algorithm allocates the set of nodes with the
minimum node procspeed span or range.

MINRESOUR
CE

MinimumConfiguredR
esources

Prioritizes nodes according to the configured
memory resources on each node. Those nodes
with the fewest configured memory resources,
that still meet the job's resource constraints, are
selected.

PRIORITY CustomPriority Allows a site to specify the priority of various
static and dynamic aspects of compute nodes
and allocate them with preference for higher
priority nodes. It is highly flexible allowing node
attribute and usage information to be combined

Chapter 5: Prioritizing Jobs and Allocating Resources

Allocation
Algorithm
Name

Alias Description

with reservation affinity. Using node allocation
priority, you can specify the following priority
components:

l ADISK - Local disk currently available to
batch jobs in MB.

l AMEM - Real memory currently available to
batch jobs in MB.

l APROCS - Processors currently available to
batch jobs on node (configured procs -
dedicated procs).

l ARCH[<ARCH>] - Processor architecture.

l ASWAP - Virtual memory currently
available to batch jobs in MB.

l CDISK - Total local disk allocated for use
by batch jobs in MB.

l CMEM - Total real memory on node in MB.
l COST - Based on node CHARGERATE.
l CPROCS - Total processors on node.

l CSWAP - Total virtual memory configured
on node in MB.

l FEATURE[<FNAME>] - Boolean; specified
feature is present on node.

l FREETIME - FREETIME is calculated as the
time during which there is no reservation
on the machine. It uses either the job
wallclock limit (if there is a job), or 2
months. The more free time a node has
within either the job wallclock limit or 2
months, the higher this value will be.

l GMETRIC[<GMNAME>] - Current value of
specified generic metric on node.

l JOBCOUNT - Number of jobs currently
running on node.

l JOBFREETIME - The number of seconds
that the node is idle between now and
when the job is scheduled to start.

l LOAD - Current 1 minute load average.
l MTBF - Mean time between failures (in

Chapter 5: Prioritizing Jobs and Allocating Resources

361 5.2 Node Allocation Policies

5.2 Node Allocation Policies 362

Allocation
Algorithm
Name

Alias Description

seconds).
l NODEINDEX - Node's nodeindex as

specified by the resource manager.
l OS - True if job compute requirements

match node operating system.

l PARAPROCS - Processors currently
available to batch jobs within partition
(configured procs - dedicated procs).

l POWER - TRUE if node is ON.
l PREF - Boolean; node meets job specific

resource preferences.
l PRIORITY - Administrator specified node

priority.
l RANDOM - Per iteration random value

between 0 and 1. (Allows introduction of
random allocation factor.)

Regardless of coefficient, the
contribution of this weighted factor
cannot exceed 32768.
The coefficient, if any, of the RANDOM
component must precede, not follow,
the component in order to work
correctly. For example:

100 * RANDOM

l SPEED - If set, node processor speed
(procspeed); otherwise, relative node
speed.

l SUSPENDEDJCOUNT - Number of
suspended jobs currently on the node.

l USAGE - Percentage of time node has been
running batch jobs since the last statistics
initialization.

l WINDOWTIME - The window of time
between the end of one reservation and the
beginning of another. This algorithm, given
a negative value, can be used to pack
reservations as close together on a node as
possible.

Chapter 5: Prioritizing Jobs and Allocating Resources

Allocation
Algorithm
Name

Alias Description

The node allocation priority function can be
specified on a node by node or cluster wide
basis. In both cases, the recommended approach
is to specify the PRIORITYF attribute with the
NODECFG parameter. Some examples follow.

Example 1: Favor the fastest nodes with the
most available memory that are running the
fewest jobs.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='SPEED + .01 * AMEM -
10 * JOBCOUNT'
...

If spaces are placed within the priority
function for readability, the priority
function value must be quoted to allow
proper parsing.

Example 2: Favor the nodes with the least
amount of idle time between now and the job's
scheduled start time.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=-JOBFREETIME

Moab stacks jobs on the nodes that
are busiest between now and the
job's scheduled start time.

Example 3: A site has a batch system consisting
of two dedicated 'batchX' nodes, as well as
numerous desktop systems. The allocation
function should favor batch nodes first, followed
by desktop systems that are the least loaded and
have received the least historical usage.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='-LOAD - 5*USAGE'
NODECFG[batch1] PRIORITY=1000
PRIORITYF='PRIORITY + APROCS'
NODECFG[batch2] PRIORITY=1000
PRIORITYF='PRIORITY + APROCS'
...

Chapter 5: Prioritizing Jobs and Allocating Resources

363 5.2 Node Allocation Policies

5.2 Node Allocation Policies 364

Allocation
Algorithm
Name

Alias Description

Example 4: Pack tasks onto loaded nodes first.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=JOBCOUNT
...

Example 5: Pack tasks onto nodes with the most
processors available and the lowest CPU
temperature.

RMCFG[torque] TYPE=pbs
RMCFG[temp] TYPE=NATIVE
CLUSTERQUERYURL=exec://$TOOLSDIR/hwmon.pl
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='100*APROCS - GMETRIC
[temp]'
...

5.2.4 User-Defined Algorithms
User-defined algorithms allow administrators to define their own algorithms based on
factors such as their system's network topology. When node allocation is based on topology,
jobs finish faster, administrators see better cluster productivity and users pay less for
resources.

5.2.4.A PLUGIN
This algorithm allows administrators to define their own node allocation policy and create a
plug-in that allocates nodes based on factors such as a cluster's network topology. This has
the following advantages:

l plug-ins keep the source code of the cluster's interconnect network for node
allocation separate from Moab's source code (customers can implement plug-ins
independent of Moab's release schedule)

l plug-ins can be independently created and tailored to specific hardware and network
topology

l plug-ins can be modified without assistance from Adaptive Computing

Chapter 5: Prioritizing Jobs and Allocating Resources

5.2.5 Specifying Per Job Resource Preferences
While the resource based node allocation algorithms can make a good guess at what
compute resources would best satisfy a job, sites often possess a subset of jobs that benefit
from more explicit resource allocation specification. For example, one job might perform
best on a particular subset of nodes due to direct access to a tape drive, another might be
very memory intensive. Resource preferences are distinct from node requirements. While
the former describes what a job needs to run at all, the latter describes what the job needs
to run well. In general, a scheduler must satisfy a job's node requirement specification and
then satisfy the job's resource preferences as well as possible.

5.2.5.A Specifying Resource Preferences
A number of resource managers natively support the concept of resource preferences
(such as Loadleveler). When using these systems, the language specific preferences
keywords can be used. For systems that do not support resource preferences natively,
Moab provides a resource manager extension keyword 'PREF', which you can use to
specify desired resources. This extension allows specification of node features, memory,
swap, and disk space conditions that define whether the node is considered preferred.

Moab 5.2 (and earlier) only supports feature-based preferences.

5.2.5.B Selecting Preferred Resources
Enforcing resource preferences is not completely straightforward. A site might have a
number of potentially conflicting requirements that the scheduler is asked to
simultaneously satisfy. For example, a scheduler may be asked to maximize the proximity
of the allocated nodes at the same time it is supposed to satisfy resource preferences and
minimize node overcommitment. To allow site specific weighting of these varying
requirements, Moab allows resource preferences to be enabled through the PRIORITY
node allocation algorithm. For example, to use resource preferences together with node
load, the following configuration might be used:

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='5 * PREF - LOAD'
...

To request specific resource preferences, a user could then submit a job indicating those
preferences. In the case of a PBS job, the following can be used:

> qsub -l nodes=4,walltime=1:00:00,pref=feature:fast

Chapter 5: Prioritizing Jobs and Allocating Resources

365 5.2 Node Allocation Policies

5.3 Node Access Policies 366

Related Topics

l Generic Metrics

l Per Job Node Allocation Policy Specification via Resource Manager Extensions

5.3 Node Access Policies

Moab allocates resources to jobs on the basis of a job task—an atomic collection of
resources that must be co-located on a single compute node. A given job may request 20
tasks where each task is defined as one processor and 128 MB of RAM. Compute nodes
with multiple processors often possess enough resources to support more than one task
simultaneously. When it is possible for more than one task to run on a node, node access
policies determine which tasks can share the compute node's resources.

In this topic:

5.3.1 Node Access Policy Descriptions - page 366
5.3.2 Configuring Node Access Policies - page 367

5.3.1 Node Access Policy Descriptions
Moab supports a distinct number of node access policies that are listed in the following
table:

Policy Description

SHARED Tasks from any combination of jobs can use available resources.

SHAREDONLY Only jobs requesting shared node access can use available resources.

SINGLEACCOUNT Tasks from any jobs owned by the same account can use available
resources.

SINGLECLASS Tasks from any jobs owned by the same class can use available resources.

SINGLEGROUP Tasks from any jobs owned by the same group can use available
resources.

SINGLEJOB Only tasks from a single job can use the node's resources.

Chapter 5: Prioritizing Jobs and Allocating Resources

Policy Description

When enforcing limits using CLASSCFG attributes, use MAX.NODE
instead of MAX.PROC. MAX.PROC enforces the requested
processors, not the actual processors dedicated to the job.

SINGLETASK Only a single task from a single job can run on the node.

SINGLEUSER Tasks from any jobs owned by the same user can use available resources.

UNIQUEUSER Any number of tasks from a single job can allocate resources from a node
but only if the user has no other jobs running on that node.
UNIQUEUSER limits the number of jobs a single user can run on a node,
allowing other users to run jobs with the remaining resources.

This policy is useful in environments where job epilog/prologs
scripts are used to clean up processes based on userid.

5.3.2 Configuring Node Access Policies
The global node access polices can be specified via the parameter NODEACCESSPOLICY.
This global default can be overridden on a per node basis with the ACCESS attribute of the
NODECFG parameter or on a per job basis using the resource manager extension
NACCESSPOLICY. Finally, a per queue node access policy can also be specified by setting
either the NODEACCESSPOLICY or FORCENODEACCESSPOLICY attributes of the CLASSCFG
parameter. FORCENODEACCESSPOLICY overrides any per job specification in all cases,
whereas NODEACCESSPOLICY is overridden by per job specification.

When multiple node access policies apply to a given job or node (for example
SINGLEJOB is configured globally but the class is configured as SHARED) then the
more restrictive policy applies. The most restrictive policy is SINGLETASK, followed
by SINGLEJOB, the single credentials, and SHARED being the least restrictive.

By default, nodes are accessible using the setting of the system wide
NODEACCESSPOLICY parameter unless a specific ACCESS policy is specified on a per
node basis using the NODECFG parameter. Jobs can override this policy and subsequent
jobs are bound to conform to the access policies of all jobs currently running on a given
node. For example, if the NODEACCESSPOLICY parameter is set to SHARED, a new job
can be launched on an idle node with a job specific access policy of SINGLEUSER. While
this job runs, the effective node access policy changes to SINGLEUSER and subsequent
job tasks can only be launched on this node provided they are submitted by the same user.

Chapter 5: Prioritizing Jobs and Allocating Resources

367 5.3 Node Access Policies

5.4 Node Availability Policies 368

When all single user jobs have completed on that node, the effective node access policy
reverts back to SHARED and the node can again be used in SHARED mode.

For example, to set a global policy of SINGLETASK on all nodes except nodes 13 and 14,
use the following:

by default, enforce dedicated node access on all nodes
NODEACCESSPOLICY SINGLETASK
allow nodes 13 and 14 to be shared
NODECFG[node13] ACCESS=SHARED
NODECFG[node14] ACCESS=SHARED

You can also set SINGLEJOB using the qsub node-exclusive option (-n). For example:

qsub -n jobscript.sh

This will set node_exclusive = True in the output for qstat -f <job Id>.

Alternatively, you could also use either of the following:

qsub -l naccesspolicy=singlejob jobscript.sh
qsub -W x=naccesspolicy:singlejob jobscript.sh

Related Topics

l Per job naccesspolicy specification via Resource Manager Extensions

l JOBNODEMATCHPOLICY parameter

l NODEAVAILABILITYPOLICY parameter

5.4 Node Availability Policies

In this topic:

5.4.1 Node Resource Availability Policies - page 369
5.4.1.A Per Resource Availability Policies - page 370

5.4.2 Node Categorization - page 370
5.4.3 Node Failure/Performance Based Notification - page 372
5.4.4 Node Failure/Performance Based Triggers - page 372
5.4.5 Handling Transient Node Failures - page 373

5.4.5.A Creating Automatic Reservations - page 373
5.4.5.B Blocking Out Down Nodes - page 374

Chapter 5: Prioritizing Jobs and Allocating Resources

5.4.6 Allocated Resource Failure Policy for Jobs - page 374
5.4.6.A Failure Responses - page 374
5.4.6.B Policy Precedence - page 375
5.4.6.C Failure Definition - page 375
5.4.6.D Torque Failure Details - page 376

Moab enables several features relating to node availability. These include policies that
determine how per node resource availability should be reported, how node failures are
detected, and what should be done in the event of a node failure.

5.4.1 Node Resource Availability Policies
Moab allows a job to be launched on a given compute node as long as the node is not full or
busy. The NODEAVAILABILITYPOLICY parameter allows a site to determine what criteria
constitute a node being busy. The legal settings are listed in the following table:

Availability
Policy

Description

DEDICATED The node is considered busy if dedicated resources equal or exceed configured
resources.

UTILIZED The node is considered busy if utilized resources equal or exceed configured
resources.

COMBINED The node is considered busy if either dedicated or utilized resources equal or
exceed configured resources.

The default setting for all nodes is COMBINED, indicating that a node can accept workload
so long as the jobs that the node was allocated to do not request or use more resources
than the node has available. In a load balancing environment, this might not be the desired
behavior. Setting the NODEAVAILABILITYPOLICY parameter to UTILIZED allows jobs
to be packed onto a node even if the aggregate resources requested exceed the resources
configured. For example, assume a scenario with a 4-processor compute node and 8 jobs
requesting 1 processor each. If the resource availability policy was set to COMBINED, this
node would only allow 4 jobs to start on this node even if the jobs induced a load of less
than 1.0 each. With the resource availability policy set to UTILIZED, the scheduler
continues allowing jobs to start on the node until the node's load average exceeds a per
processor load value of 1.0 (in this case, a total load of 4.0). To prevent a node from being
over populated within a single scheduling iteration, Moab artificially raises the node's load

Chapter 5: Prioritizing Jobs and Allocating Resources

369 5.4 Node Availability Policies

5.4 Node Availability Policies 370

for one scheduling iteration when starting a new job. On subsequent iterations, the actual
measured node load information is used.

5.4.1.A Per Resource Availability Policies
By default, the NODEAVAILABILITYPOLICY sets a global per node resource availability
policy. This policy applies to all resource types on each node such as processors, memory,
swap, and local disk. However, the syntax of this parameter is as follows:
<POLICY>[:<RESOURCETYPE>] ...

This syntax allows per resource availability specification. For example, consider the
following:

NODEAVAILABILITYPOLICY DEDICATED:PROC COMBINED:MEM COMBINED:DISK
...

This configuration causes Moab to only consider the quantity of processing resources
actually dedicated to active jobs running on each node and ignore utilized processor
information (such as CPU load). For memory and disk, both utilized resource information
and dedicated resource information should be combined to determine what resources are
actually available for new jobs.

5.4.2 Node Categorization
Moab allows organizations to detect and use far richer information regarding node status
than the standard batch 'idle,' 'busy,' 'down states' commonly found. Using node
categorization, organizations can record, track, and report on per node and cluster level
status including the following categories:

Category Description

Active Node is healthy and currently executing batch workload.

BatchFailure Node is unavailable due to a failure in the underlying batch
system (such as a resource manager server or resource manager
node daemon).

Benchmark Node is reserved for benchmarking.

EmergencyMaintenance Node is reserved for unscheduled system maintenance.

GridReservation Node is reserved for grid use.

Chapter 5: Prioritizing Jobs and Allocating Resources

Category Description

HardwareFailure Node is unavailable due to a failure in one or more aspects of its
hardware configuration (such as a power failure, excessive
temperature, memory, processor, or swap failure).

HardwareMaintenance Node is reserved for scheduled system maintenance.

Idle Node is healthy and is currently not executing batch workload.

JobReservation Node is reserved for job use.

NetworkFailure Node is unavailable due to a failure in its network adapter or in
the switch.

Other Node is in an uncategorized state.

OtherFailure Node is unavailable due to a general failure.

PersonalReservation Node is reserved for dedicated use by a personal reservation.

Site[1-8] Site specified usage categorization.

SoftwareFailure Node is unavailable due to a failure in a local software service
(such as automounter, security or information service such as
NIS, local databases, or other required software services).

SoftwareMaintenance Node is reserved for software maintenance.

StandingReservation Node is reserved by a standing reservation.

StorageFailure Node is unavailable due to a failure in the cluster storage system
or local storage infrastructure (such as failures in Lustre, GPFS,
PVFS, or SAN).

UserReservation Node is reserved for dedicated use by a particular user or group
and may or may not be actively executing jobs.

Node categories can be explicitly assigned by cluster administrators using the mrsvctl -c
command to create a reservation and associate a category with that node for a specified
timeframe. Further, outside of this explicit specification, Moab automatically mines all
configured interfaces to learn about its environment and the health of the resources it is
managing. Consequently, Moab can identify many hardware failures, software failures, and

Chapter 5: Prioritizing Jobs and Allocating Resources

371 5.4 Node Availability Policies

5.4 Node Availability Policies 372

batch failures without any additional configuration. However, it is often desirable to make
additional information available to Moab to allow it to integrate this information into
reports; automatically notify managers, users, and administrators; adjust internal policies
to steer workload around failures; and launch various custom triggers to rectify or mitigate
the problem.

You can specify the FORCERSVSUBTYPE parameter to require all administrative
reservations be associated with a node category at reservation creation time. For
example:

NODECFG[DEFAULT] ENABLEPROFILING=TRUE
FORCERSVSUBTYPE TRUE

Node health and performance information from external systems can be imported into
Moab using the native resource manager interface. This is commonly done using generic
metrics or consumable generic resources for performance and node categories or node
variables for status information. Combined with arbitrary node messaging information,
Moab can combine detailed information from remote services and report this to other
external services.

Use the NODECATCREDLIST parameter to generate extended node category based
statistics.

5.4.3 Node Failure/Performance Based Notification
Moab can be configured to cause node failures and node performance levels that cross
specified thresholds to trigger notification events. This is accomplished using the
GEVENTCFG parameter as described in the Generic Event Overview section. For example,
the following configuration can be used to trigger an email to administrators each time a
node is marked down:

GEVENTCFG[nodedown] ACTION=notify REARM=00:20:00
...

5.4.4 Node Failure/Performance Based Triggers
Moab supports per node triggers that can be configured to fire when specific events are
fired or specific thresholds are met. These triggers can be used to modify internal policies
or take external actions. A few examples follow:

l decrease node allocation priority if node throughput drops below threshold X

l launch local diagnostic/recovery script if parallel file system mounts become stale

Chapter 5: Prioritizing Jobs and Allocating Resources

l reset high performance network adapters if high speed network connectivity fails

l create general system reservation on node if processor or memory failure occurs

As mentioned, Moab triggers can be used to initiate almost any action, from sending mail to
updating a database, to publishing data for an SNMP trap, to driving a web service.

5.4.5 Handling Transient Node Failures
Since Moab actively schedules both current and future actions of the cluster, it is often
important for it to have a reasonable estimate of when failed nodes will be again available
for use. This knowledge is particularly useful for proper scheduling of new jobs and
management of resources in regard to backfill. With backfill, Moab determines which
resources are available for priority jobs and when the highest priority idle jobs can run. If
a node experiences a failure, Moab should have a concept of when this node will be
restored.

When Moab analyzes down nodes for allocation, one of two issues may occur with the
highest priority jobs. If Moab believes that down nodes will not be recovered for an
extended period of time, a transient node failure within a reservation for a priority job
might cause the reservation to slide far into the future allowing other lower priority jobs to
allocate and launch on nodes previously reserved for it. Moments later, when the transient
node failures are resolved, Moab might be unable to restore the early reservation start
time as other jobs may already have been launched on previously available nodes.

In the reverse scenario, if Moab recognizes a likelihood that down nodes will be restored
too quickly, it might make reservations for top priority jobs that allocate those nodes. Over
time, Moab slides those reservations further into the future as it determines that the
reserved nodes are not being recovered. While this does not delay the start of the top
priority jobs, these unfulfilled reservations can end up blocking other jobs that should have
properly been backfilled and executed.

5.4.5.A Creating Automatic Reservations
If a node experiences occasional transient failures (often not associated with a node state
of down), Moab can automatically create a temporary reservation over the node to allow
the transient failure time to clear and prevent Moab from attempting to re-use the node
while the failure is active. This reservation behavior is controlled using the
NODEFAILURERESERVETIME parameter as in the following example:

reserve nodes for 1 minute if transient failures are detected
NODEFAILURERESERVETIME 00:01:00

Chapter 5: Prioritizing Jobs and Allocating Resources

373 5.4 Node Availability Policies

5.4 Node Availability Policies 374

5.4.5.B Blocking Out Down Nodes
If one or more resource managers identify failures and mark nodes as down, Moab can be
configured to associate a default unavailability time with this failure and the node state
down. This is accomplished using the NODEDOWNSTATEDELAYTIME parameter. This
delay time floats and is measured as a fixed time into the future from the time 'NOW'; it is
not associated with the time the node was originally marked down. For example, if the
delay time was set to 10 minutes, and a node was marked down 20 minutes ago, Moab
would still consider the node unavailable until 10 minutes into the future.

While it is difficult to select a good default value that works for all clusters, the following is
a general rule of thumb:

l Increase NODEDOWNSTATEDELAYTIME if jobs are getting blocked due to priority
reservations sliding as down nodes are not recovered.

l Decrease NODEDOWNSTATEDELAYTIME if high priority job reservations are getting
regularly delayed due to transient node failures.

assume down nodes will not be recovered for one hour
NODEDOWNSTATEDELAYTIME 01:00:00

5.4.6 Allocated Resource Failure Policy for Jobs
If a failure occurs within a collection of nodes allocated to a job, Moab can automatically re-
allocate replacement resources. This can be configured with JOBACTIONONNODEFAILURE.

How an active job behaves when one or more of its allocated resources fail depends on the
allocated resource failure policy. Depending on the type of job, type of resources, and type
of middleware infrastructure, a site may choose to have different responses based on the
job, the resource, and the type of failure.

5.4.6.A Failure Responses
By default, Moab cancels a job when an allocated resource failure is detected. However,
you can specify the following actions:

Option Policy Action

CANCEL Cancels the job

FAIL Terminates the job as a failed job

HOLD Places a hold on the job. This option is only applicable if you are using check-
pointing

Chapter 5: Prioritizing Jobs and Allocating Resources

Option Policy Action

IGNORE Ignores the failed node, allowing the job to proceed

NOTIFY Notifies the administrator and user of failure but takes no further action

REQUEUE Requeues job and allows it to run when alternate resources become available

5.4.6.B Policy Precedence
For a given job, the applied policy can be set at various levels with policy precedence
applied in the job, class/queue, partition, and then system level. The following table
indicates the available methods for setting this policy:

Object Parameter Example

Job RESFAILPOLICY resource
manager extension

> qsub -l resfailpolicy=requeue

Class/Queue RESFAILPOLICY attribute of
CLASSCFG parameter

CLASSCFG[batch] RESFAILPOLICY=CANCEL

Partition JOBACTIONONNODE
FAILURE attribute of PARCFG
parameter

PARCFG[web3]
JOBACTIONONNODEFAILURE=NOTIFY

System NODEALLOCRESFAILURE
POLICY parameter

NODEALLOCRESFAILUREPOLICY=MIGRATE

5.4.6.C Failure Definition
Any allocated node going down constitutes a failure. However, for certain types of
workload, responses to failures may be different depending on whether it is the master
task (task 0) or a slave task that fails. To indicate that the associated policy should only take
effect if the master task fails, the allocated resource failure policy should be specified with
a trailing asterisk (*), as in the following example:

CLASSCFG[virtual_services] RESFAILPOLICY=requeue*

Chapter 5: Prioritizing Jobs and Allocating Resources

375 5.4 Node Availability Policies

5.4 Node Availability Policies 376

5.4.6.D Torque Failure Details
When a node fails to send a status update within a configurable time frame (default 600
seconds, see node_check_rate in the Torque Resource Manager Administrator Guide),
pbs_server determines that the node is down. Depending on the
JOBACTIONONNODEFAILURE parameter setting, Moab may then notify administrators,
hold the job, requeue the job, allocate replacement resources to the job, or cancel the job. If
Moab requests that Torque cancel or requeue the job, Torque immediately frees all non-
failed resources, making them available for use by other jobs. pbs_mom also cleans up
parallel jobs after a configurable time frame (default 600 seconds, see $job_exit_wait_time
in the Torque Resource Manager Administrator Guide). Once the failed node is recovered,
it contacts the resource manager, determines that the associated job has been
canceled/requeued, cleans up, and makes itself available for new workload.

Related Topics

l Node State Overview

l JOBACTIONONNODEFAILURE parameter

l NODEFAILURERESERVETIME parameter

l NODEDOWNSTATEDELAYTIME parameter (down nodes will be marked unavailable
for the specified duration)

l NODEDRAINSTATEDELAYTIME parameter (offline nodes will be marked unavailable
for the specified duration)

l NODEBUSYSTATEDELAYTIME parameter (nodes with unexpected background load
will be marked unavailable for the specified duration)

l NODEALLOCRESFAILUREPOLICY parameter (action to take if executing jobs have
one or more allocated nodes fail)

Chapter 5: Prioritizing Jobs and Allocating Resources

377

Chapter 6: Managing Fairness - Throttling Policies,
Fairshare, Allocation Management

In this chapter:

6.1 Fairness Overview 378
6.1.1 Fairness Facilities 378
6.1.2 Selecting the Correct Policy Approach 381

6.2 Usage Limits/Throttling Policies 382
6.2.1 Fairness via Throttling Policies 382
6.2.2 Override Limits 394
6.2.3 Idle Job Limits 395
6.2.4 Hard and Soft Limits 397
6.2.5 Per-partition Limits 398
6.2.6 Usage-based limits 399

6.3 Fairshare 402
6.3.1 Fairshare Parameters 403
6.3.2 Using Fairshare Information 407
6.3.3 Hierarchical Fairshare/Share Trees 413

6.4 Sample FairShare Data File 418
6.5 Accounting, Charging, and Allocation Management 419

6.5.1 Accounting Manager Overview 419
6.5.2 Accounting Mode 420
6.5.3 Accounting Manager Interface Types 421
6.5.4 Charging for Jobs 424
6.5.5 Charging for Reservations 425
6.5.6Accounting Properties Reported to the Accounting Manager 426
6.5.7 Accounting Stages 431
6.5.8 Accounting Events 434
6.5.9 Blocking Versus Non-Blocking Accounting Actions 434
6.5.10 Retrying Failed Charges 435

6.6 AMCFG Parameters and Flags 438
6.6.1 AMCFG Parameters 438
6.6.2 AMCFG Flags 461

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6.1 Fairness Overview

The concept of cluster fairness varies widely from person to person and site to site. While
some interpret it as giving all users equal access to compute resources, more complicated
concepts incorporating historical resource usage, political issues, and job value are equally
valid. While no scheduler can address all possible definitions of fair, Moab provides one of
the industry's most comprehensive and flexible set of tools allowing most sites the ability to
address their many and varied fairness management needs.

In this topic:

6.1.1 Fairness Facilities - page 378
6.1.2 Selecting the Correct Policy Approach - page 381

6.1.1 Fairness Facilities
Under Moab, most fairness policies are addressed by a combination of the facilities
described in the following table:

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

378 6.1 Fairness Overview

6.1 Fairness Overview 379

Fairness Facilities

Job Prioritization

Description Specifies what is most important to the scheduler. Using service based
priority factors allows a site to balance job turnaround time, expansion
factor, or other scheduling performance metrics.

Example SERVICEWEIGHT 1
QUEUETIMEWEIGHT 10

Causes jobs to increase in priority by 10 points for every minute
they remain in the queue.

Usage Limits (Throttling Policies)

Description Specifies limits on exactly what resources can be used at any given instant.

Example USERCFG[john] MAXJOB=3
GROUPCFG[DEFAULT] MAXPROC=64
GROUPCFG[staff] MAXPROC=128

Allows john to only run 3 jobs at a time. Allows the group
staff to use up to 128 total processors and all other groups to
use up to 64 processors.

Fairshare

Description Specifies usage targets to limit resource access or adjust priority based on
historical cluster and grid level resource usage.

Example USERCFG[steve] FSTARGET=25.0+
FSWEIGHT 1
FSUSERWEIGHT 10

Enables priority based fairshare and specifies a fairshare target
for user steve such that his jobs are favored in an attempt to
keep his jobs using at least 25.0% of delivered compute cycles.

Allocation Management

Description Specifies long term, credential-based resource usage limits.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Allocation Management

Example AMCFG[mam] TYPE=MAM HOST=server.sys.net

Enables the Moab Accounting Manager allocation management
interface. Within the accounting manager, project or account
based allocations can be configured. These allocations can, for
example, do such things as allow project X to use up to 100,000
processor-hours per quarter, provide various QoS sensitive charge
rates, and share allocation access.

Quality of Service

Description Specifies additional resource and service access for particular users, groups,
and accounts. QoS facilities can provide special priorities, policy exemptions,
reservation access, and other benefits (as well as special charge rates).

Example QOSCFG[orion] PRIORITY=1000 XFTARGET=1.2
QOSCFG[orion] QFLAGS=PREEMPTOR,IGNSYSTEM,RESERVEALWAYS

Enables jobs requesting the orion QoS a priority increase, an
expansion factor target to improve response time, the ability to
preempt other jobs, an exemption from system level job size
policies, and the ability to always reserve needed resources if it
cannot start immediately.

Standing Reservations

Description Reserves blocks of resources within the cluster for specific, periodic time
frames under the constraints of a flexible access control list.

Example SRCFG[jupiter] HOSTLIST=node01[1-4]
SRCFG[jupiter] STARTTIME=9:00:00 ENDTIME=17:00:00
SRCFG[jupiter] USERLIST=john,steve ACCOUNTLIST=jupiter

Reserve nodes node011 through node014 from 9:00 AM until
5:00 PM for use by jobs from user john or steve or from the
project jupiter.

Class/Queue Constraints

Description Associates users, resources, priorities, and limits with cluster classes or

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

380 6.1 Fairness Overview

6.1 Fairness Overview 381

Class/Queue Constraints

cluster queues that can be assigned to or selected by end-users.

Example CLASSCFG[long] HOSTLIST=acn[1-4][0-9]
CLASSCFG[long] MIN.WCLIMIT=24:00:00
SRCFG[jupiter] PRIORITY=10000
SRCFG[jupiter] CLASSLIST=long&

Assigns long jobs a high priority but only allows them to run on
certain nodes.

6.1.2 Selecting the Correct Policy Approach
Moab supports a rich set of policy controls in some cases allowing a particular policy to be
enforced in more than one way. For example, cycle distribution can be controlled using
usage limits, fairshare, or even queue definitions. Selecting the most correct policy depends
on site objectives and needs; consider the following when making such a decision:

l Minimal end-user training
o Does the solution use an approach familiar to or easily learned by existing
users?

l End-user transparency
o Can the configuration be enabled or disabled without impacting user behavior
or job submission?

l Impact on system utilization and system responsiveness

l Solution complexity
o Is the impact of the configuration readily intuitive, and is it easy to identify
possible side effects?

l Solution extensibility and flexibility
o Will the proposed approach allow the solution to be easily tuned and extended
as cluster needs evolve?

Related Topics

l Job Prioritization

l Usage Limits (Throttling Policies)

l Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

l Allocation Management

l Quality of Service

l Standing Reservations

l Class/Queue Constraints

6.2 Usage Limits/Throttling Policies

A number of Moab policies allow an administrator to control job flow through the system.
These throttling policies work as filters allowing or disallowing a job to be considered for
scheduling by specifying limits regarding system usage for any given moment. These
policies can be specified as global or specific constraints specified on a per user, group,
account, QoS, or class basis.

In this topic:

6.2.1 Fairness via Throttling Policies - page 382
6.2.1.A Basic Fairness Policies - page 383
6.2.1.B Multi-Dimension Fairness Policies and Per Credential Overrides -

page 387
6.2.2 Override Limits - page 394
6.2.3 Idle Job Limits - page 395
6.2.4 Hard and Soft Limits - page 397
6.2.5 Per-partition Limits - page 398

6.2.5.A Configuring Per-partition Limits - page 398
6.2.5.B Supported Credentials and Limits - page 399

6.2.6 Usage-based limits - page 399
6.2.6.A Configuring Actions - page 399
6.2.6.B Format - page 400
6.2.6.C Specifying Hard and Soft Policy Violations - page 401
6.2.6.D Constraining Walltime Usage - page 402

6.2.1 Fairness via Throttling Policies
Moab allows significant flexibility with usage limits, or throttling policies. At a high level,
Moab allows resource usage limits to be specified in three primary workload categories:
(1) active, (2) idle, and (3) system job limits.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

382 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 383

6.2.1.A Basic Fairness Policies

Workload
category Description

Active job limits Constrain the total cumulative resources available to active jobs at a
given time.

Idle job limits Constrain the total cumulative resources available to idle jobs at a given
time.

System job limits Constrain the maximum resource requirements of any single job.

These limits can be applied to any job credential (user, group, account, QoS, and class), or
on a system-wide basis. Using the keyword DEFAULT, a site can also specify the default
setting for the desired user, group, account, QoS, and class. Additionally, you can configure
QoS to allow limit overrides to any particular policy.

To run, a job must meet all policy limits. Limits are applied using the *CFG set of
parameters, particularly USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and
SYSCFG. Limits are specified by associating the desired limit to the individual or default
object. The usage limits currently supported are listed in the following table.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Usage Limits

MAXARRAYJOB

Units Number of simultaneous active array job subjobs.

Description Limits the number of simultaneously active (starting or running) array
subjobs a credential can have.

Example USERCFG[gertrude] MAXARRAYJOB=10

Gertrude can have a maximum of 10 active job array subjobs.

MAXGRES

Units # of concurrent uses of a generic resource

Description Limits the concurrent usage of a generic resource to a specific quantity or
quantity range.

Example USERCFG[joe] MAXGRES[matlab]=2
USERCFG[jim] MAXGRES[matlab]=2,4

MAXJOB

Units # of jobs

Description Limits the number of jobs a credential can have active (starting or running)
at any given time. Moab places a hold on all new jobs submitted by that
credential once it has reached its maximum number of allowable jobs.

MAXJOB=0 is not supported. You can, however, achieve similar
results by using the HOLD attribute of the USERCFG parameter:

USERCFG[john] HOLD=yes

Example USERCFG[DEFAULT] MAXJOB=8
GROUPCFG[staff] MAXJOB=2,4

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

384 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 385

MAXMEM

Units total memory in MB

Description Limits the total amount of dedicated memory (in MB) that can be allocated
by a credential's active jobs at any given time.

Example ACCOUNTCFG[jasper] MAXMEM=2048

MAXNODE

Units # of nodes

Description Limits the total number of compute nodes that can be in use by active jobs
at any given time.

Adaptive Computing recommends that you set
JOBNODEMATCHPOLICY EXACTNODE when using MAXNODE. This
ensures jobs submitted using the msub/qsub "-l nodes=#" syntax will
have a node count associated with the request.

On some systems (including Torque/PBS), nodes have been softly
defined rather than strictly defined; that is, a job may request 2
nodes but Torque will translate this request into 1 node with 2
processors. This can prevent Moab from enforcing a MAXNODE
policy correctly for a single job. Correct behavior can be achieved
using MAXPROC.

Example CLASSCFG[batch] MAXNODE=64

MAXPE

Units # of processor equivalents

Description Limits the total number of dedicated processor-equivalents that can be
allocated by active jobs at any given time.

Example QOSCFG[base] MAXPE=128

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

MAXPROC

Units # of processors

Description Limits the total number of dedicated processors that can be allocated by
active jobs at any given time per credential. To set MAXPROC per job, use
msub -W.

Example CLASSCFG[debug] MAXPROC=32

MAXPS

Units <# of processors> * <walltime>

Description Limits the number of outstanding processor-seconds a credential can have
allocated at any given time. For example, if a user has a 4-processor job
that will complete in 1 hour and a 2-processor job that will complete in 6
hours, they have 4 * 1 * 3600 + 2 * 6 * 3600 = 16 * 3600 outstanding
processor-seconds. The outstanding processor-second usage of each
credential is updated each scheduling iteration, decreasing as jobs
approach their completion time.

Example USERCFG[DEFAULT] MAXPS=720000

MAXSUBMITJOBS

Units # of jobs

Description Limits the number of jobs a credential can submit and have in the system
at once. Moab will reject any job submitted beyond this limit.
If you use a Torque resource manager, you should also set max_user_
queuable in case the user submits jobs via qsub instead of msub. See
'Queue Attributes' in the Torque Administrator Guide for more
information.

Example USERCFG[DEFAULT] MAXSUBMITJOBS=5

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

386 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 387

MAXWC

Units job duration [[[DD:]HH:]MM:]SS

Description Limits the cumulative remaining walltime a credential can have associated
with active jobs. It behaves identically to the MAXPS limit (listed earlier)
only lacking the processor weighting. Like MAXPS, the cumulative
remaining walltime of each credential is also updated each scheduling
iteration.

MAXWC does not limit the maximum wallclock limit per job. For this
capability, use MAX.WCLIMIT.

Example USERCFG[ops] MAXWC=72:00:00

The following example demonstrates a simple limit specification:

USERCFG[DEFAULT] MAXJOB=4
USERCFG[john] MAXJOB=8

This example allows user john to run up to 8 jobs while all other users can only run up to 4.

Simultaneous limits of different types can be applied per credential and multiple types of
credentials can have limits specified. The next example demonstrates this mixing of limits
and is a bit more complicated.

USERCFG[steve] MAXJOB=2 MAXNODE=30
GROUPCFG[staff] MAXJOB=5
CLASSCFG[DEFAULT] MAXNODE=16
CLASSCFG[batch] MAXNODE=32

This configuration may potentially apply multiple limits to a single job. As discussed
previously, a job can only run if it satisfies all applicable limits. Thus, in this example, the
scheduler will be constrained to allow at most 2 simultaneous user steve jobs with an
aggregate node consumption of no more than 30 nodes. However, if the job is submitted to
a class other than batch, it may be limited further. Here, only 16 total nodes can be used
simultaneously by jobs running in any given class with the exception of the class batch. If
steve submitted a job to run in the class interactive, for example, and there were
jobs already running in this class using a total of 14 nodes, his job would be blocked unless
it requested 2 or fewer nodes by the default limit of 16 nodes per class.

6.2.1.B Multi-Dimension Fairness Policies and Per Credential Overrides
Multi-dimensional fairness policies allow a site to specify policies based on combinations of
job credentials. A common example might be setting a maximum number of jobs allowed
per queue per user or a total number of processors per group per QoS. As with basic

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

fairness policies, multi-dimension policies are specified using the *CFG parameters or
through the identity manager interface. Moab supports the most commonly used multi-
dimensional fairness policies (listed in the table below) using the following format:
*CFG[X] <LIMITTYPE>[<CRED>]=<LIMITVALUE>

*CFG is one of USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, or CLASSCFG, the
<LIMITTYPE> policy is one of the policies listed in the table in section 6.2.1.1, and
<CRED> is of the format <CREDTYPE>[:<VALUE>] with CREDTYPE being one of USER,
GROUP, ACCT, QoS, or CLASS. The optional <VALUE> setting can be used to specify that
the policy only applies to a specific credential value. For example, the following
configuration sets limits on the class fast, controlling the maximum number of jobs any
group can have active at any given time and the number of processors in use at any given
time for user steve.

CLASSCFG[fast] MAXJOB[GROUP]=12
CLASSCFG[fast] MAXPROC[USER:steve]=50
CLASSCFG[fast] MAXIJOB[USER]=10

The following example configuration may clarify further:

allow class batch to run up the 3 simultaneous jobs
allow any user to use up to 8 total nodes within class
CLASSCFG[batch] MAXJOB=3 MAXNODE[USER]=8
allow users steve and bob to use up to 3 and 4 total processors respectively within
class
CLASSCFG[fast] MAXPROC[USER:steve]=3 MAXPROC[USER:bob]=4

Multi-dimensional policies cannot be applied on DEFAULT credentials.

The table below lists the currently implemented, multi-dimensional usage limit
permutations. The "slmt" stands for "Soft Limit" and "hlmt" stands for "Hard Limit."

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

388 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 389

Multi-dimensional Usage Limit Permutations

Multi-dimension usage limit permutations

ACCOUNTCFG[name] MAXIJOB[QOS]=hlmt
MAXIJOB[QOS:qosname]=hlmt

MAXIPROC[QOS]=hlmt
MAXIPROC[QOS:qosname]=hlmt

MAXJOB[QOS]=slmt,hlmt
MAXJOB[QOS:qosname]=slmt,hlmt

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[QOS]=slmt,hlmt
MAXPE[QOS:qosname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPROC[QOS]=slmt,hlmt
MAXPROC[QOS:qosname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[QOS]=slmt,hlmt
MAXPS[QOS:qosname]=slmt,hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimension usage limit permutations

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

CLASSCFG[name] MAXIJOB[USER]=hlmt

MAXJOB[GROUP]=slmt,hlmt
MAXJOB[GROUP:groupname]=slmt,hlmt

MAXJOB[QOS:qosname]=hlmt

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP]=slmt,hlmt

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP:groupname]=slmt,hlmt

MAXMEM[QOS:qosname]=hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[GROUP]=slmt,hlmt
MAXNODE[GROUP:groupname]=slmt,hlmt

MAXNODE[QOS:qosname]=hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[GROUP]=slmt,hlmt
MAXPE[GROUP:groupname]=slmt,hlmt

MAXPE[QOS:qosname]=hlmt

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

390 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 391

Multi-dimension usage limit permutations

MAXPE[USER]=slmt,hlmt
MAXPE[USER:username]=slmt,hlmt

MAXPROC[GROUP]=slmt,hlmt
MAXPROC[GROUP:groupname]=slmt,hlmt

MAXPROC[QOS:qosname]=hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[GROUP]=slmt,hlmt
MAXPS[GROUP:groupname]=slmt,hlmt

MAXPS[QOS:qosname]=hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[GROUP]=slmt,hlmt
MAXWC[GROUP:groupname]=slmt,hlmt

MAXWC[QOS:qosname]=hlmt

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimension usage limit permutations

GROUPCFG[name] MAXJOB[CLASS:classname]=slmt,hlmt

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

MAXMEM[CLASS:classname]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[CLASS:classname]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[CLASS:classname]=slmt,hlmt

MAXPE[USER]=slmt,hlmt
MAXPE[USER:username]=slmt,hlmt

MAXPROC[CLASS:classname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[CLASS:classname]=slmt,hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[CLASS:classname]=slmt,hlmt

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

QOSCFG[name] MAXIJOB[ACCT]=hlmt

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

392 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 393

Multi-dimension usage limit permutations

MAXIJOB[ACCT:accountname]=hlmt

MAXIJOB[USER]=hlmt
MAXIJOB[USER:class+classname]=hlmt

MAXINODE[ACCT]=slmt,hlmt
MAXINODE[ACCT:accountname]=slmt,hlmt

MAXINODE[USER]=hlmt
MAXINODE[USER:username]=slmt,hlmt

MAXIPROC[ACCT]=hlmt
MAXIPROC[ACCT:accountname]=hlmt

MAXJOB[ACCT]=slmt,hlmt
MAXJOB[ACCT:accountname]=slmt,hlmt

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[ACCT]=slmt,hlmt
MAXPE[ACCT:accountname]=slmt,hlmt

MAXPE[USER]=slmt,hlmt
MAXPE[USER:username]=slmt,hlmt

MAXPROC[ACCT]=slmt,hlmt
MAXPROC[ACCT:accountname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimension usage limit permutations

MAXPROC[USER:username]=slmt,hlmt

MAXPS[ACCT]=slmt,hlmt
MAXPS[ACCT:accountname]=slmt,hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

USERCFG[name] MAXJOB[GROUP]=slmt,hlmt
MAXJOB[GROUP:groupname]=slmt,hlmt

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP:groupname]=slmt,hlmt

MAXNODE[GROUP]=slmt,hlmt
MAXNODE[GROUP:groupname]=slmt,hlmt

MAXPE[GROUP]=slmt,hlmt
MAXPE[GROUP:groupname]=slmt,hlmt

MAXPROC[GROUP]=slmt,hlmt
MAXPROC[GROUP:groupname]=slmt,hlmt

MAXPS[GROUP]=slmt,hlmt
MAXPS[GROUP:groupname]=slmt,hlmt

MAXWC[GROUP]=slmt,hlmt
MAXWC[GROUP:groupname]=slmt,hlmt

6.2.2 Override Limits
Like all job credentials, the QoS object can be associated with resource usage limits.
However, this credential can also be given special override limits that supersede the limits
of other credentials, effectively causing all other limits of the same type to be ignored. See

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

394 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 395

QoS Usage Limits and Overrides for a complete list of policies that can be overridden. The
following configuration provides an example of this in the last line:

USERCFG[steve] MAXJOB=2 MAXNODE=30
GROUPCFG[staff] MAXJOB=5
CLASSCFG[DEFAULT] MAXNODE=16
CLASSCFG[batch] MAXNODE=32
QOSCFG[hiprio] OMAXJOB=3 OMAXNODE=64

Only 3 hiprio QoS jobs can run simultaneously and hiprio QoS jobs can run with up to 64 nodes per credential
ignoring other credential MAXNODE limits.

Given the preceding configuration, assume a job is submitted with the credentials, user
steve, group staff, class batch, and QoS hiprio.

Such a job will start so long as running it does not lead to any of the following conditions:

l Total nodes used by user steve does not exceed 64.

l Total active jobs associated with user steve does not exceed 2.

l Total active jobs associated with group staff does not exceed 5.

l Total nodes dedicated to class batch does not exceed 64.

l Total active jobs associated with QoS hiprio does not exceed 3.

While the preceding example is a bit complicated for most sites, similar combinations may
be required to enforce policies found on many systems.

6.2.3 Idle Job Limits
Idle (or queued) job limits control which jobs are eligible for scheduling. To be eligible for
scheduling, a job must meet the following conditions:

l Be idle as far as the resource manager is concerned (no holds).

l Have all job prerequisites satisfied (no outstanding job or data dependencies).

l Meet all idle job throttling policies.

If a job fails to meet any of these conditions, it will not be considered for scheduling and will
not accrue service based job prioritization (see Service (SERVICE) Component and
JOBPRIOACCRUALPOLICY.) The primary purpose of idle job limits is to ensure fairness
among competing users by preventing queue stuffing and other similar abuses. Queue
stuffing occurs when a single entity submits large numbers of jobs, perhaps thousands, all
at once so they begin accruing queue time based priority and remain first to run despite
subsequent submissions by other users.

Idle limits are specified in a manner almost identical to active job limits with the insertion of
the capital letter I into the middle of the limit name. The following tables describe the

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

MAXIARRAYJOB, MAXIJOB, and MAXINODE limits, which are idle limit equivalents to
MAXARRAYJOB, MAXJOB, and MAXNODE limits, respectively.

MAXIARRAYJOB

Units Number of simultaneous idle array job subjobs.

Description Limits the number of simultaneously idle (eligible) job array subjobs across all
job arrays submitted by a credential.

Example USERCFG[gertrude] MAXARRAYJOB=10 MAXIARRAYJOB=5

Gertrude can have a maximum of 10 active job array subjobs and 5
eligible job array subjobs.

MAXIJOB

Units # of jobs

Description Limits the number of idle (eligible) jobs a credential can have at any given
time.

Example USERCFG[DEFAULT] MAXIJOB=8
GROUPCFG[staff] MAXIJOB=4

MAXINODE

Units # of nodes

Description Limits the total number of compute nodes that can be requested by jobs in the
eligible/idle queue at any time. Once the limit is exceeded, the remaining jobs
will be placed in the blocked queue. The number of nodes is determined by
<tasks> / <maximumProcsOnOneNode> or, if using
JOBNODEMATCHPOLICY EXACTNODE, by the number of nodes requested.

Example USERCFG[DEFAULT] MAXINODE=2

Idle limits can constrain the total number of jobs considered to be eligible on a per
credential basis. Further, like active job limits, idle job limits can also constrain eligible jobs
based on aggregate requested resources. This could, for example, allow a site to indicate
that for a given user, only jobs requesting up to a total of 64 processors, or 3200
processor-seconds would be considered at any given time. Which jobs to select is

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

396 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 397

accomplished by prioritizing all idle jobs and then adding jobs to the eligible list one at a
time in priority order until jobs can no longer be added. This eligible job selection is done
only once per scheduling iteration, so, consequently, idle job limits only support a single
hard limit specification. Any specified soft limit is ignored.

All single dimensional job limit types supported as active job limits are also supported as
idle job limits. In addition, Moab also supports MAXIJOB[USER] and MAXIPROC[USER]
policies on a per class basis (see Basic Fairness Policies.)

Example:

USERCFG[steve] MAXIJOB=2
GROUPCFG[staff] MAXIJOB=5
CLASSCFG[batch] MAXIJOB[USER]=2 MAXIJOB[USER:john]=6
QOSCFG[hiprio] MAXIJOB=3

6.2.4 Hard and Soft Limits
Hard and soft limit specification allows a site to balance both fairness and utilization on a
given system. Typically, throttling limits are used to constrain the quantity of resources a
given credential (such as user or group) is allowed to consume. These limits can be very
effective in enforcing fair usage among a group of users. However, in a lightly loaded
system, or one in which there are significant swings in usage from project to project, these
limits can reduce system utilization by blocking jobs even when no competing jobs are
queued.

Soft limits help address this problem by providing additional scheduling flexibility. They
allow sites to specify two tiers of limits; the more constraining limits soft limits are in effect
in heavily loaded situations and reflect tight fairness constraints. The more flexible hard
limits specify how flexible the scheduler can be in selecting jobs when there are idle
resources available after all jobs meeting the tighter soft limits have started. Soft and hard
limits are specified in the format [<SOFTLIMIT>,]<HARDLIMIT>. For example, a given
site may want to use the following configuration:

USERCFG[DEFAULT] MAXJOB=2,8

With this configuration, the scheduler would select all jobs that meet the per user MAXJOB limit of 2. It would then
attempt to start and reserve resources for all of these selected jobs. If after doing so there still remain available
resources, the scheduler would then select all jobs that meet the less constraining hard per user MAXJOB limit of 8
jobs. These jobs would then be scheduled and reserved as available resources allow.
If no soft limit is specified or the soft limit is less constraining than the hard limit, the soft limit is set equal to the
hard limit.

Example:

USERCFG[steve] MAXJOB=2,4 MAXNODE=15,30
GROUPCFG[staff] MAXJOB=2,5
CLASSCFG[DEFAULT] MAXNODE=16,32
CLASSCFG[batch] MAXNODE=12,32
QOSCFG[hiprio] MAXJOB=3,5 MAXNODE=32,64

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Job preemption status can be adjusted based on whether the job violates a soft policy
using the ENABLESPVIOLATIONPREEMPTION parameter.

6.2.5 Per-partition Limits
Per-partition scheduling can set limits and enforce credentials and polices on a per-
partition basis. Configuration for per-partition scheduling is done on the Moab Grid Control.
In a grid, each Moab cluster is considered a partition. Per-partition scheduling is typically
used in a Moab Grid Control / Moab Grid Member grid.

To enable per-partition scheduling, add the following to moab.cfg:

PERPARTITIONSCHEDULING TRUE
JOBMIGRATEPOLICY JUSTINTIME

With per-partition scheduling, it is recommended that limits go on the specific
partitions and not on the global level. If limits are specified on both levels, Moab will
take the more constricting of the limits. Also, note that a DEFAULT policy on the global
partition is not overridden by any policy on a specific partition.

6.2.5.A Configuring Per-partition Limits
You can configure per-job limits and credential usage limits on a per-partition basis in the
moab.cfg file. Here is a sample configuration for partitions g02 and g03 in moab.cfg.

PARCFG[g02] CONFIGFILE=/opt/moab/parg02.cfg
PARCFG[g03] CONFIGFILE=/opt/moab/parg03.cfg

You can then add per-partition limits in each partition configuration file:

/opt/moab/parg02.cfg
CLASSCFG[pbatch] MAXJOB=5

/opt/moab/parg03.cfg
CLASSCFG[pbatch] MAXJOB=10

You can configure Moab so that jobs submitted to any partition besides g02and g03 get
the default limits in moab.cfg:

stl

CLASSCFG[pbatch] MAXJOB=2

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

398 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 399

6.2.5.B Supported Credentials and Limits
The user, group, account, QoS, and class credentials are supported in per-partition
scheduling.

The following per-job limits are supported:

l MAX.NODE

l MAX.WCLIMIT

l MAX.PROC

The following credential usage limits are supported:

l MAXJOB

l MAXNODE

l MAXPROC

l MAXWC

l MAXSUBMITJOBS

Multi-dimensional limits are supported for the listed credentials and per-job limits. For
example:

CLASSCFG[pbatch] MAXJOB[user:frank]=10

6.2.6 Usage-based limits
Resource usage limits constrain the amount of resources a given job can consume. These
limits are generally proportional to the resources requested and can include walltime, any
standard resource, or any specified generic resource. The parameter
RESOURCELIMITPOLICY controls which resources are limited, what limit policy is enforced
per resource, and what actions the scheduler should take in the event of a policy violation.

6.2.6.A Configuring Actions
The RESOURCELIMITPOLICY parameter accepts a number of policies, resources, and
actions using the format and values defined below.

If walltime is the resource to be limited, be sure that the resource manager is
configured to not interfere if a job surpasses its given walltime. For Torque, this is
done by using $ignwalltime in the configuration on each MOM node.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6.2.6.B Format
RESOURCELIMITPOLICY<RESOURCE>:[<SPOLICY>,]<HPOLICY>:
[<SACTION>,]<HACTION>[:[<SVIOLATIONTIME>,]<HVIOLATIONTIME>]...

Resource Description

CPUTIME Maximum total job proc-seconds used by any single job (allows scheduler
enforcement of cpulimit).

DISK Local disk space (in MB) used by any single job task.

JOBMEM Maximum real memory/RAM (in MB) used by any single job.

JOBMEM will only work with the MAXMEM flag.

JOBPROC Maximum processor load associated with any single job. You must set
MAXPROC to use JOBPROC.

MEM Maximum real memory/RAM (in MB) used by any single job task.

MINJOBPROC Minimum processor load associated with any single job (action taken if job is
using 5% or less of potential CPU usage).

NETWORK Maximum network load associated with any single job task.

PROC Maximum processor load associated with any single job task.

SWAP Maximum virtual memory/SWAP (in MB) used by any single job task.

WALLTIME Requested job walltime.

Policy Description

ALWAYS take action whenever a violation is detected

EXTENDEDVIOLATION take action only if a violation is detected and persists for
greater than the specified time limit

BLOCKEDWORKLOADONLY take action only if a violation is detected and the constrained
resource is required by another job

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

400 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 401

Action Description

CANCEL terminate the job

CHECKPOINT checkpoint and terminate job

MIGRATE requeue the job and require a different set of hosts for execution

NOTIFY notify admins and job owner regarding violation

REQUEUE terminate and requeue the job

SUSPEND suspend the job and leave it suspended for an amount of time defined by the
MINADMINSTIME parameter

Example 6-1: Notify and then cancel job if requestedmemory is exceeded

if job exceeds memory usage, immediately notify owner
if job exceeds memory usage for more than 5 minutes, cancel the job
RESOURCELIMITPOLICY MEM:ALWAYS,EXTENDEDVIOLATION:NOTIFY,CANCEL:00:05:00

Example 6-2: Checkpoint job on walltime violations

if job exceeds requested walltime, checkpoint job
RESOURCELIMITPOLICY WALLTIME:ALWAYS:CHECKPOINT
when checkpointing, send term signal, followed by kill 1 minute later
RMCFG[base] TYPE=PBS CHECKPOINTTIMEOUT=00:01:00 CHECKPOINTSIG=SIGTERM

Example 6-3: Cancel jobs that use 5% or less of potential CPU usage for more than 5minutes

RESOURCELIMITPOLICY MINJOBPROC:EXTENDEDVIOLATION:CANCEL:5:00

Example 6-4: Migrating a job when it blocks other workload

RESOURCELIMITPOLICY JOBPROC:BLOCKEDWORKLOADONLY:MIGRATE

6.2.6.C Specifying Hard and Soft Policy Violations
Moab is able to perform different actions for both hard and soft policy violations. In most
resource management systems, a mechanism does not exist to allow the user to specify
both hard and soft limits. To address this, Moab provides the RESOURCELIMITMULTIPLIER
parameter that allows per partition and per resource multiplier factors to be specified to
generate the actual hard and soft limits to be used. If the factor is less than one, the soft
limit will be lower than the specified value and a Moab action will be taken before the
specified limit is reached. If the factor is greater than one, the hard limit will be set higher
than the specified limit allowing a buffer space before the hard limit action is taken.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

In the following example, job owners will be notified by email when their memory reaches
100% of the target, and the job will be canceled if it reaches 125% of the target. For
wallclock usage, the job will be requeued when it reaches 90% of the specified limit if
another job is waiting for its resources, and it will be checkpointed when it reaches the full
limit.

RESOURCELIMITPOLICY MEM:ALWAYS,ALWAYS:NOTIFY,CANCEL
RESOURCELIMITPOLICY WALLTIME:BLOCKEDWORKLOADONLY,ALWAYS:REQUEUE,CHECKPOINT
RESOURCELIMITMULTIPLIER MEM:1.25,WALLTIME:0.9

6.2.6.D Constraining Walltime Usage
While Moab constrains walltime using the parameter RESOURCELIMITPOLICY like other
resources, it also allows walltime exception policies that are not available with other
resources. In particular, Moab allows jobs to exceed the requested wallclock limit by an
amount specified on a global basis using the JOBMAXOVERRUN parameter or on a per
credential basis using the WCOVERRUN attribute of the CLASSCFG parameter.

JOBMAXOVERRUN 00:10:00
CLASSCFG[debug] wcoverrun=00:00:30

Related Topics

l RESOURCELIMITPOLICY parameter

l FSTREE parameter (set usage limits within share tree hierarchy)

l Credential Overview

l JOBMAXOVERRUN parameter

l WCVIOLATIONACTION parameter

l RESOURCELIMITMULTIPLIER parameter

6.3 Fairshare

Fairshare allows historical resource utilization information to be incorporated into job
feasibility and priority decisions. This feature allows site administrators to set system
utilization targets for users, groups, accounts, classes, and QoS levels. Administrators can
also specify the time frame over which resource utilization is evaluated in determining
whether the goal is being reached. Parameters allow sites to specify the utilization metric,
how historical information is aggregated, and the effect of fairshare state on scheduling
behavior. You can specify fairshare targets for any credentials (such as user, group, and
class) that administrators want such information to affect.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

402 6.3 Fairshare

6.3 Fairshare 403

In this topic:

6.3.1 Fairshare Parameters - page 403
6.3.1.A FSPOLICY - Specifying the Metric of Consumption - page 404
6.3.1.B Specifying Fairshare Timeframe - page 405
6.3.1.C Managing Fairshare Data - page 406

6.3.2 Using Fairshare Information - page 407
6.3.2.A Fairshare Targets - page 407
6.3.2.B Fairshare Caps - page 409
6.3.2.C Priority-Based Fairshare - page 410
6.3.2.D Credential-Specific Fairshare Weights - page 411
6.3.2.E Fairshare Usage Scaling - page 411
6.3.2.F Extended Fairshare Examples - page 412

6.3.3 Hierarchical Fairshare/Share Trees - page 413
6.3.3.A Defining the Tree - page 413
6.3.3.B Controlling Tree Evaluation - page 414

6.3.1 Fairshare Parameters
Fairshare is configured at two levels. First, at a system level, configuration is required to
determine how fairshare usage information is to be collected and processed. Second, some
configuration is required at the credential level to determine how this fairshare
information affects particular jobs. The following are system level parameters:

Parameter Description

FSINTERVAL Duration of each fairshare window.

FSDEPTH Number of fairshare windows factored into current fairshare utilization.

FSDECAY Decay factor applied to weighting the contribution of each fairshare window.

FSPOLICY Metric to use when tracking fairshare usage.

Credential level configuration consists of specifying fairshare utilization targets using the
*CFG suite of parameters, including ACCOUNTCFG, CLASSCFG, GROUPCFG, QOSCFG, and
USERCFG.

If global (multi-cluster) fairshare is used, Moab must be configured to synchronize this
information with an identity manager.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Image 6-1: Effective fairshare over 7 days

6.3.1.A FSPOLICY - Specifying the Metric of Consumption
As Moab runs, it records how available resources are used. Each iteration
(RMPOLLINTERVAL seconds) it updates fairshare resource utilization statistics. Resource
utilization is tracked in accordance with the FSPOLICY parameter allowing various aspects
of resource consumption information to be measured. This parameter allows selection of
both the types of resources to be tracked and the method of tracking. It provides the option
of tracking usage by dedicated or consumed resources, where dedicated usage tracks what
the scheduler assigns to the job and consumed usage tracks what the job actually uses.

Metric Description

DEDICATEDPES Usage tracked by processor-equivalent seconds dedicated to each job. This
is based on the total number of dedicated processor-equivalent seconds
delivered in the system. Useful in dedicated and shared nodes
environments.

DEDICATEDPS Usage tracked by processor seconds dedicated to each job. This is based
on the total number of dedicated processor seconds delivered in the
system. Useful in dedicated node environments.

DEDICATEDPS% Usage tracked by processor seconds dedicated to each job. This is based
on the total number of dedicated processor seconds available in the

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

404 6.3 Fairshare

6.3 Fairshare 405

Metric Description

system.

[NONE] Disables fairshare.

UTILIZEDPS Usage tracked by processor seconds used by each job. This is based on the
total number of utilized processor seconds delivered in the system. Useful
in shared node/SMP environments.

Example 6-5:

An example may clarify the use of the FSPOLICY parameter. Assume a 4-processor job is
running a parallel /bin/sleep for 15 minutes. It will have a dedicated fairshare usage of
1 processor-hour but a consumed fairshare usage of essentially nothing since it did not
consume anything. Most often, dedicated fairshare usage is used on dedicated resource
platforms while consumed tracking is used in shared SMP environments.

FSPOLICY DEDICATEDPS%
FSINTERVAL 24:00:00
FSDEPTH 28
FSDECAY 0.75

6.3.1.B Specifying Fairshare Timeframe
When configuring fairshare, it is important to determine the proper timeframe that should
be considered. Many sites choose to incorporate historical usage information from the last
one to two weeks while others are only concerned about the events of the last few hours.
The correct setting is very site dependent and usually incorporates both average job
turnaround time and site mission policies.

With Moab's fairshare system, time is broken into a number of distinct fairshare windows.
Sites configure the amount of time they want to consider by specifying two parameters,
FSINTERVAL and FSDEPTH. The FSINTERVAL parameter specifies the duration of each
window while the FSDEPTH parameter indicates the number of windows to consider.
Therefore, the total time evaluated by fairshare is simply FSINTERVAL * FSDEPTH.

Many sites want to limit the impact of fairshare data according to its age. The FSDECAY
parameter allows this, causing the most recent fairshare data to contribute more to a
credential's total fairshare usage than older data. This parameter is specified as a standard
decay factor, which is applied to the fairshare data. Generally, decay factors are specified
as a value between 1 and 0 where a value of 1 (the default) indicates no decay should be
specified. The smaller the number, the more rapid the decay using the calculation
WeightedValue = Value * <DECAY> ^ <N> where <N> is the window number.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

The following table shows the impact of a number of commonly used decay factors on the
percentage contribution of each fairshare window:

Decay
Factor Win0 Win1 Win2 Win3 Win4 Win5 Win6 Win7

1.00 100% 100% 100% 100% 100% 100% 100% 100%

0.80 100% 80% 64% 51% 41% 33% 26% 21%

0.75 100% 75% 56% 42% 31% 23% 17% 12%

0.50 100% 50% 25% 13% 6% 3% 2% 1%

While selecting how the total fairshare time frame is broken up between the number and
length of windows is a matter of preference, it is important to note that more windows will
cause the decay factor to degrade the contribution of aged data more quickly.

6.3.1.C Managing Fairshare Data
Using the selected fairshare usage metric, Moab continues to update the current fairshare
window until it reaches a fairshare window boundary, at which point it rolls the fairshare
window and begins updating the new window. The information for each window is stored
in its own file located in the Moab statistics directory. Each file is named
FS.<EPOCHTIME>[.<PNAME>] where <EPOCHTIME> is the time the new fairshare
window became active (see sample data file) and <PNAME> is only used if per-partition
share trees are configured. Each window contains utilization information for each entity, as
well as for total usage.

Historical fairshare data is recorded in the fairshare file using the metric specified by
the FSPOLICY parameter. By default, this metric is processor-seconds.

Historical fairshare data can be directly analyzed and reported using the mdiag -f -v
command.

When Moab needs to determine current fairshare usage for a particular credential, it
calculates a decay-weighted average of the usage information for that credential using the
most recent fairshare intervals where the number of windows evaluated is controlled by
the FSDEPTH parameter. For example, assume the credential of interest is user john and
the following parameters are set:

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

406 6.3 Fairshare

6.3 Fairshare 407

FSINTERVAL 12:00:00
FSDEPTH 4
FSDECAY 0.5

Further assume that the fairshare usage intervals have the following usage amounts:

Fairshare interval Total user john usage Total cluster usage

0 60 110

1 0 125

2 10 100

3 50 150

Based on this information, the current fairshare usage for user john would be calculated
as follows:

Usage = (60 * 1 + .5^1 * 0 + .5^2 * 10 + .5^3 * 50) / (110 + .5^1*125 + .5^2*100 + .5^3*150)

The current fairshare usage is relative to the actual resources delivered by the
system over the timeframe evaluated, not the resources available or configured
during that time.

Historical fairshare data is organized into a number of data files, each file containing
the information for a length of time as specified by the FSINTERVAL parameter.
Although FSDEPTH, FSINTERVAL, and FSDECAY can be freely and dynamically
modified, such changes might result in unexpected fairshare status for a period of
time as the fairshare data files with the old FSINTERVAL setting are rolled out.

6.3.2 Using Fairshare Information

6.3.2.A Fairshare Targets
Once the global fairshare policies have been configured, the next step involves applying
resulting fairshare usage information to affect scheduling behavior. As mentioned in the
Fairshare Overview, by specifying fairshare targets, site administrators can configure how
fairshare information impacts scheduling behavior. The targets can be applied to user,
group, account, QoS, or class credentials using the FSTARGET attribute of *CFG credential

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

parameters. These targets allow fairshare information to affect job priority and each target
can be independently selected to be one of the types documented in the following table:

Target type - Ceiling

Target
modifier

-

Job impact Priority

Format Percentage Usage

Description Adjusts job priority down when usage exceeds target. See How violated ceilings
and floors affect fairshare-based priority for more information on how ceilings
affect job priority.

Target type - Floor

Target
modifier

+

Job impact Priority

Format Percentage Usage

Description Adjusts job priority up when usage falls below target. See How violated ceilings
and floors affect fairshare-based priority for more information on how floors
affect job priority.

Target type - Target

Target modifier N/A

Job impact Priority

Format Percentage Usage

Description Adjusts job priority when usage does not meet target.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

408 6.3 Fairshare

6.3 Fairshare 409

Setting a fairshare target value of 0 indicates that there is no target and that the
priority of jobs associated with that credential should not be affected by the
credential's previous fairshare target. If you want a credential's cluster usage near
0%, set the target to a very small value, such as 0.001.

Example

The following example increases the priority of jobs belonging to user john until he
reaches 16.5% of total cluster usage. All other users have priority adjusted both up and
down to bring them to their target usage of 10%.

FSPOLICY DEDICATEDPS
FSWEIGHT 1
FSUSERWEIGHT 100
USERCFG[john] FSTARGET=16.5+
USERCFG[DEFAULT] FSTARGET=10
...

6.3.2.B Fairshare Caps
Where fairshare targets affect a job's priority and position in the eligible queue, fairshare
caps affect a job's eligibility. Caps can be applied to users, accounts, groups, classes, and
QoSs using the FSCAP attribute of *CFG credential parameters and can be configured to
modify scheduling behavior. Unlike fairshare targets, if a credential reaches its fairshare
cap, its jobs can no longer run and are therefore removed from the eligible queue and
placed in the blocked queue. In this respect, fairshare targets behave like soft limits and
fairshare caps behave like hard limits. Fairshare caps can be absolute or relative as
described in the following table. If no modifier is specified, the cap is interpreted as
relative.

Absolute Cap

Cap
Modifier

^

Job Impact Feasibility

Format Absolute Usage

Description Constrains job eligibility as an absolute quantity measured according to the
scheduler charge metric as defined by the FSPOLICY parameter.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Relative Cap

Cap
Modifier

%

Job Impact Feasibility

Format Percentage Usage

Description Constrains job eligibility as a percentage of total delivered cycles measured
according to the scheduler charge metric as defined by the FSPOLICY
parameter.

Example

The following example constrains the marketing account to use no more than 16,500
processor seconds during any given floating one week window. At the same time, all other
accounts are constrained to use no more than 10% of the total delivered processor seconds
during any given one week window.

FSPOLICY DEDICATEDPS
FSINTERVAL 12:00:00
FSDEPTH 14
ACCOUNTCFG[marketing] FSCAP=16500^
ACCOUNTCFG[DEFAULT] FSCAP=10
...

6.3.2.C Priority-Based Fairshare
The most commonly used type of fairshare is priority based fairshare. In this mode,
fairshare information does not affect whether a job can run, but rather only the job's
priority relative to other jobs. In most cases, this is the desired behavior. Using the
standard fairshare target, the priority of jobs of a particular user who has used too many
resources over the specified fairshare window is lowered. Also, the standard fairshare
target increases the priority of jobs that have not received enough resources.

While the standard fairshare target is the most commonly used, Moab can also specify
fairshare ceilings and floors. These targets are like the default target; however, ceilings
only adjust priority down when usage is too high and floors only adjust priority up when
usage is too low.

Since fairshare usage information must be integrated with Moab's overall priority
mechanism, it is critical that the corresponding fairshare priority weights be set.
Specifically, the FSWEIGHT component weight parameter and the target type
subcomponent weight (such as FSACCOUNTWEIGHT, FSCLASSWEIGHT, FSGROUPWEIGHT,
FSQOSWEIGHT, and FSUSERWEIGHT) be specified.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

410 6.3 Fairshare

6.3 Fairshare 411

If these weights are not set, the fairshare mechanism will be enabled but have no
effect on scheduling behavior. See the Job Priority Factor Overview for more
information on setting priority weights.

Example

set relative component weighting
FSWEIGHT 1
FSUSERWEIGHT 10
FSGROUPWEIGHT 50

FSINTERVAL 12:00:00
FSDEPTH 4
FSDECAY 0.5
FSPOLICY DEDICATEDPS
all users should have a FS target of 10%
USERCFG[DEFAULT] FSTARGET=10.0
user john gets extra cycles
USERCFG[john] FSTARGET=20.0
reduce staff priority if group usage exceed 15%
GROUPCFG[staff] FSTARGET=15.0-
give group orion additional priority if usage drops below 25.7%
GROUPCFG[orion] FSTARGET=25.7+

Job preemption status can be adjusted based on whether the job violates a fairshare
target using the ENABLEFSVIOLATIONPREEMPTION parameter.

6.3.2.D Credential-Specific Fairshare Weights
Credential-specific fairshare weights can be set using the FSWEIGHT attribute of the
ACCOUNT, GROUP, and QOS credentials as in the following example:

FSWEIGHT 1000
ACCOUNTCFG[orion1] FSWEIGHT=100
ACCOUNTCFG[orion2] FSWEIGHT=200
ACCOUNTCFG[orion3] FSWEIGHT=-100
GROUPCFG[staff] FSWEIGHT=10

If specified, a per-credential fairshare weight is added to the global component fairshare
weight.

The FSWEIGHT attribute is only enabled for ACCOUNT, GROUP, and QOS credentials.

6.3.2.E Fairshare Usage Scaling
Moab uses the FSSCALINGFACTOR attribute for QOS credentials to get the calculated
fairshare usage of a job.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

QOSCFG[qos1] FSSCALINGFACTOR=<double>

Moab will multiple the actual fairshare usage by this value to get the calculated fairshare
usage of a job. The actual fairshare usage is calculated based on the FSPOLICY parameter.

For an example, if FSPOLICY is set to DEDICATEDPS and a job runs on two processors for
100 seconds then the actual fairshare usage would be 200. If the job ran on a qos with
FSSCALINGFACTOR=.5 then Moab would multiply 200*.5=100. If the job ran on a partition
with FSSCALINGFACTOR=2 then Moab would multiply 200*2=400.

PARCFG also lets you specify the FSSCALINGFACTOR for partitions. See 7.2.5 Per-
Partition Settings - page 523.

6.3.2.F Extended Fairshare Examples

Example 6-6: Multi-Cred Cycle Distribution

Example 1 represents a university setting where different schools have access to a cluster.
The Engineering department has put the most money into the cluster and therefore has
greater access to the cluster. The Math, Computer Science, and Physics departments have
also pooled their money into the cluster and have reduced relative access. A support group
also has access to the cluster, but since they only require minimal compute time and
shouldn't block the higher-paying departments, they are constrained to five percent of the
cluster. At this time, users Tom and John have specific high-priority projects that need
increased cycles.

#global general usage limits - negative priority jobs are considered in scheduling
ENABLENEGJOBPRIORITY TRUE
site policy - no job can last longer than 8 hours
USERCFG[DEFAULT] MAX.WCLIMIT=8:00:00
Note: default user FS target only specified to apply default user-to-user balance
USERCFG[DEFAULT] FSTARGET=1
high-level fairshare config
FSPOLICY DEDICATEDPS
FSINTERVAL 12:00:00
FSDEPTH 32 #recycle FS every 16 days
FSDECAY 0.8 #favor more recent usage info
qos config
QOSCFG[inst] FSTARGET=25
QOSCFG[supp] FSTARGET=5
QOSCFG[premium] FSTARGET=70
account config (QoS access and fstargets)
Note: user-to-account mapping handled via accounting manager
Note: FS targets are percentage of total cluster, not percentage of QOS
ACCOUNTCFG[cs] QLIST=inst FSTARGET=10
ACCOUNTCFG[math] QLIST=inst FSTARGET=15

ACCOUNTCFG[phys] QLIST=supp FSTARGET=5
ACCOUNTCFG[eng] QLIST=premium FSTARGET=70
handle per-user priority exceptions
USERCFG[tom] PRIORITY=100
USERCFG[john] PRIORITY=35

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

412 6.3 Fairshare

6.3 Fairshare 413

define overall job priority
USERWEIGHT 10 # user exceptions
relative FS weights (Note: QOS overrides ACCOUNT which overrides USER)
FSUSERWEIGHT 1
FSACCOUNTWEIGHT 10
FSQOSWEIGHT 100
apply XFactor to balance cycle delivery by job size fairly
Note: queuetime factor also on by default (use QUEUETIMEWEIGHT to adjust)
XFACTORWEIGHT 100
enable preemption
PREEMPTPOLICY REQUEUE
temporarily allow phys to preempt math
ACCOUNTCFG[phys] JOBFLAGS=PREEMPTOR PRIORITY=1000
ACCOUNTCFG[math] JOBFLAGS=PREEMPTEE

6.3.3 Hierarchical Fairshare/Share Trees
Moab supports arbitrary depth hierarchical fairshare based on a share tree. In this model,
users, groups, classes, and accounts can be arbitrarily organized and their usage tracked
and limited. Moab extends common share tree concepts to allow mixing of credential types,
enforcement of ceiling and floor style usage targets, and mixing of hierarchical fairshare
state with other priority components.

You can terminate your tnode with '</tnode>' or '<tnode />'.

6.3.3.A Defining the Tree
The FSTREE parameter can be used to define and configure the share tree used in
fairshare configuration. This parameter supports the following attributes:

SHARES

Format <COUNT>[@<PARTITION>][,<COUNT>[@<PARTITION>]]... where <COUNT>
is a double and <PARTITION> is a specified partition name.

Description The node target usage or share.

Example FSTREE[Eng] SHARES=1500.5
FSTREE[Sales] SHARES=2800

MEMBERLIST

Format Comma-delimited list of child nodes of the format [<OBJECT_
TYPE>]:<OBJECT_ID> where object types are only specified for leaf nodes

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

MEMBERLIST

associated with user, group, class, qos, or acct credentials.

Description The tree objects associated with this node.

Example FSTREE[root] SHARES=100 MEMBERLIST=Eng,Sales
FSTREE[Eng] SHARES=1500.5 MEMBERLIST=user:john,user:steve,user:bob
FSTREE[Sales] SHARES=2800 MEMBERLIST=Sales1,Sales2,Sales3
FSTREE[Sales1] SHARES=30 MEMBERLIST=user:kellyp,user:sam
FSTREE[Sales2] SHARES=10 MEMBERLIST=user:ux43,user:ux44,user:ux45
FSTREE[Sales3] SHARES=60 MEMBERLIST=user:robert,user:tjackson

Current tree configuration and monitored usage distribution is available using the mdiag -f
-v commands.

6.3.3.B Controlling Tree Evaluation
Moab provides multiple policies to customize how the share tree is evaluated.

Policy Description

FSTREETIERMULTIPLIER Decreases the value of sub-level usage discrepancies. It can be a
positive or negative value. When positive, the parent's usage in
the tree takes precedence; when negative, the child's usage takes
precedence. The usage amount is not changed, only the
coefficient used when calculating the value of fstree usage in
priority. When using this parameter, it is recommended that you
research how it changes the values in mdiag -p to determine
the appropriate use.

FSTREECAP Caps lower level usage factors to prevent them from exceeding
upper tier discrepancies.

Using FS Floors and Ceilings with Hierarchical Fairshare
All standard fairshare facilities including target floors, target ceilings, and target caps are
supported when using hierarchical fairshare.

Multi-Partition Fairshare
Moab supports independent, per-partition hierarchical fairshare targets allowing each
partition to possess independent prioritization and usage constraint settings. This is
accomplished by setting the PERPARTITIONSCHEDULING attribute of the FSTREE

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

414 6.3 Fairshare

6.3 Fairshare 415

parameter to TRUE in moab.cfg and setting partition="name" in your <fstree>
leaf.

FSTREE[tree]
<fstree>
<tnode partition="slave1" name="root" type="acct" share="100" limits="MAXJOB=6">
<tnode name="accta" type="acct" share="50" limits="MAXSUBMITJOBS=2 MAXJOB=1">
<tnode name="fred" type="user" share="1" limits="MAXWC=1:00:00">
</tnode>

</tnode>
<tnode name="acctb" type="acct" share="50" limits="MAXSUBMITJOBS=4 MAXJOB=3">
<tnode name="george" type="user" share="1" >
</tnode>

</tnode>
</tnode>
<tnode partition="slave2" name="root" type="acct" share="100"

limits="MAXSUBMITJOBS=6 MAXJOB=5">
<tnode name="accta" type="acct" share="50">
<tnode name="paul" type="user" share="1">
</tnode>

</tnode>
<tnode name="acctb" type="acct" share="50">
<tnode name="ringo" type="user" share="1">
</tnode>

</tnode>
</tnode>

</fstree>

If no partition is specified for a given share value, then this value is assigned to the
global partition. If a partition exists for which there are no explicitly specified shares
for any node, this partition will use the share distribution assigned to the global
partition.

Dynamically Importing Share Tree Data
Share trees can be centrally defined within a database, flat file, information service, or
other system and this information can be dynamically imported and used within Moab by
setting the FSTREE parameter within the Identity Managers. This interface can be used to
load current information at startup and periodically synchronize this information with the
master source.

To Create a Fairshare Tree in a Separate XML File and Import it into
Moab

1. Create a file to store your fair share tree specification. Give it a descriptive name and
store it in your Moab home directory ($MOABHOMEDIR or $MOABHOMEDIR/etc). In
this example, the file is called fstree.dat.

2. In the first line of fstree.dat, set FSTREE[myTree] to indicate that this is a
fairshare file.

3. Build a tree in XML to match your needs. For example:

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8 MAXPROC=24
MAXWC=01:00:00"></tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5"></tnode>
</tnode>
</fstree>

This configuration creates a fairshare tree where users share a value of 100. Users john and jane share the
value equally, because each has been given 50.

Because 100 is an arbitrary number, users john and jane could be assigned 10000
and 10000 respectively and still have a 50% share under the parent leaf. To keep the
example simple, however, it is recommended that you use 100 as your arbitrary share
value and distribute the share as percentages. In this case, john and jane each have
50%.

If the users' numbers do not add up to at least the fairshare value of 100, the remaining
value is shared among all users under the tree. For instance, if the tree had a value of
100, user john had a value of 50, and user jane had a value of 25, then 25% of the
fairshare tree value would belong to all other users associated with the tree. By default,
tree leaves do not limit who can run under them.

Each value specified in the tnode elements must be contained in quotation
marks.

4. Optional: Share trees defined within a flat file can be cumbersome; consider running
tidy for xml to improve readability. Sample usage:

> tidy -i -xml mam-tiy.cfg <filename> <output file>

Sample output

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8
MAXPROC=24 MAXWC=01:00:00">
</tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5">
</tnode>

</tnode>
</fstree>

5. Link the new file to Moab using the IDCFG parameter in your Moab configuration file:

IDCFG[myTree] server="FILE:///$MOABHOMEDIR/etc/fstree.dat" REFRESHPERIOD=INFINITY

Moab imports the myTree fairshare tree from the fstree.dat file. Setting REFRESHPERIOD to INFINITY
causes Moab to read the file each time it starts or restarts, but setting a positive interval (e.g., 4:00:00) cause
Moab to read the file more often. See Refreshing Identity Manager Data for more information.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

416 6.3 Fairshare

6.3 Fairshare 417

6. To view your fairshare tree configuration, run mdiag -f. If it is configured correctly, the
tree information will appear beneath all the information about your fairshare settings
configured in moab.cfg.

> mdiag -f
Share Tree Overview for partition 'ALL'
Name Usage Target (FSFACTOR)
---- ----- ------ ------------
root 100.00 100.00 of 100.00 (node: 1171.81) (0.00)
- john 16.44 50.00 of 100.00 (user: 192.65) (302.04) MAXJOB=8
MAXPROC=24 MAXWC=3600
- jane 83.56 50.00 of 100.00 (user: 979.16) (-302.04) MAXJOB=5

The settings you configured in fstree.dat appear in the output. The tree of 100 is shared equally between users
john and jane.

Specifying Share Tree Based Limits
Limits can be specified on internal nodes of the share tree using standard credential limit
semantics. The following credential usage limits are valid:

l MAXIJOB (Maximum number of idle jobs allowed for the credential)

l MAXJOB

l MAXMEM

l MAXNODE

l MAXPROC

l MAXSUBMITJOBS

l MAXWC

Example 6-7: FSTREE limits example

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8
MAXPROC=24 MAXWC=01:00:00">
</tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5">
</tnode>

</tnode>
</fstree>

Specifying a Default Account in a Fair Share Tree
The adef attribute in a fair share tree can be used to specify a default account for a
credential and its children. This is useful for sites with many users who need access to an
account and who use an identity manager to import credentials.

The rules are as follows:

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

l When you define an adef attribute on a credential such as a user or qos, then the
child under the tnode inherits the credential.

l When a child has an adef, then that adef overrides the parent.

To define an adef, add a qdef attribute to the tnode for the user:

<tnode name="jane" type="user" adef="acct2" share="1"
qlist="batch,special,standby,test,exempt,expedite,super"> </tnode>

Other Uses of Share Trees
If a share tree is defined, it can be used for purposes beyond fairshare, including
organizing general usage and performance statistics for reporting purposes (see showstats
-T), enforcement of tree node based usage limits, and specification of resource access
policies.

Related Topics

l mdiag -f command (provides diagnosis and monitoring of the fairshare facility)

l FSENABLECAPPRIORITY parameter

l ENABLEFSPREEMPTION parameter

l FSTARGETISABSOLUTE parameter

6.4 Sample FairShare Data File
FS.<EPOCHTIME>

FS Data File (Duration: 43200 seconds) Starting: Sat Jul 8 06:00:20
user jvella 134087.910
user reynolds 98283.840
user gastor 18751.770
user uannan 145551.260
user mwillis 149279.140
...
group DEFAULT 411628.980
group RedRock 3121560.280
group Summit 500327.640
group Arches 3047918.940
acct Administration 653559.290
acct Engineering 4746858.620
acct Shared 75033.020
acct Research 1605984.910
qos Deadline 2727971.100
qos HighPriority 4278431.720
qos STANDARD 75033.020
class batch 7081435.840
sched iCluster 7081435.840

The total usage consumed in this time interval is 7081435.840 processor-seconds. Since every job in this example

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

418 6.4 Sample FairShare Data File

6.5 Accounting, Charging, and Allocation Management 419

scenario had a user, group, account, and QOS assigned to it, the sum of the usage of all members of each category
should equal the total usage value: USERA + USERB + USERC + USERD = GROUPA + GROUPB = ACCTA + ACCTB +
ACCTC = QOS0 + QOS1 + QOS2 = SCHED.

6.5 Accounting, Charging, and Allocation Management

In this topic:

6.5.1 Accounting Manager Overview - page 419
6.5.2 Accounting Mode - page 420
6.5.3 Accounting Manager Interface Types - page 421

6.5.3.A MAM - page 421
6.5.3.B Native - page 422

6.5.4 Charging for Jobs - page 424
6.5.5 Charging for Reservations - page 425
6.5.6 Accounting Properties Reported to the Accounting Manager - page 426
6.5.7 Accounting Stages - page 431
6.5.8 Accounting Events - page 434
6.5.9 Blocking Versus Non-Blocking Accounting Actions - page 434
6.5.10 Retrying Failed Charges - page 435

For a complete list of and additional information on the AMCFG parameters and flags, see
6.6 AMCFG Parameters and Flags - page 438.

6.5.1 Accounting Manager Overview
An accounting manager is a software system that enables tracking and charging for job
resource usage. Moab Accounting Manager is a commercial charge-back accounting system
that has built-in integration with Moab Workload Manager. Moab Accounting Manager can
be used in a variety of accounting modes such as for usage tracking, notional charging or
allocation enforcement.

When used for usage tracking only, the accounting manager simply records workload
usage details. When configured additionally to perform charging, resource charge rates are
used to impute a charge for each job. When configured to enforce resource allocation
limits, jobs are charged against allocations and new jobs may be blocked from running if
their account runs out of funds. See Accounting Mode and see 'Select an Appropriate
Accounting Mode' in the Moab Accounting Manager Administrator Guide for more details on
supported accounting modes.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

In a typical allocation enforcement use case, credits are allocated to accounts for
designated time periods; establishing limits on the use of compute resources. The base
currency credits can be defined in terms of system resource units (e.g., Processor-Seconds)
or a real currency (e.g., U.S. dollars). Charge rates are established for the use of resources.
Accounts are created and users are given access to the appropriate accounts. Deposits are
made into funds associated with the account’s creating allocations. An allocation cycle can
be established whereby funds are reset on a regular periodic basis (such as yearly,
quarterly, or monthly) and where allocations are renewed for accepted accounts. Before a
job is started, Moab Workload Manager will verify that the user has sufficient credits to run
the job by attempting to place a hold against their funds (referred to as a lien). When a job
completes, the user's funds will be debited via a charge, usage information will be recorded
for the job, and the lien will be removed.

6.5.2 Accounting Mode
The accounting mode (specified via the AMCFG[] MODE parameter) modifies the way in
which accounting-relevant job and reservation stages (e.g., create, start, end, etc.) are
processed. See 6.5.7 Accounting Stages - page 431 for more information on the behaviors
of the different values of the accounting mode.

The following table describes the valid values for the accounting mode:

Value Description

strict-allocation Use this mode if you want to strictly enforce allocation limits. Under
this mode, holds (called liens) will be placed against allocations in order
to prevent multiple jobs from starting up on the same funds. Jobs and
reservations can be prevented from running if the end-users do not
have sufficient funds. This is the default.

fast-allocation Use this mode if you want to debit allocations, but need higher
throughput by eliminating the lien and quote operations of strict-
allocation mode. Under this mode, jobs and reservations check a cached
account balance, and can be prevented from running after the balance
has become zero or negative.

The cached account balances in Moab can be viewed by running
'mrmctl -q AccountBalanceCache AM'.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

420 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 421

Value Description

If you are using fast-allocation, funds are assumed to have
account-based constraints only. Moab will reject funds having no
constraints or having non-account constraints. It is highly
recommended that you enable ENFORCEACCOUNTACCESS to
TRUE and AMCFG[] CREATECRED=TRUE with an appropriate
refresh period (via AMCFG[] REFRESHPERIOD) so that Moab
can prevent jobs from running under accounts that the user does
not belong to (this is enforced via liens in the strict-allocation
accounting mode). Also, the configured refresh period will apply
to both credential updates and account balance updates. See Moab
Parameters for more information on the
ENFORCEACCOUNTACCESS parameter.

notional-charging Use this mode if you want to calculate and record charges for workload
usage, but not keep track of fund balances or allocation limits.

usage-tracking Use this mode if you want to record workload usage details, but not to
calculate a charge nor keep track of fund balances or allocation limits.

6.5.3 Accounting Manager Interface Types
Moab Workload Manager supports two accounting manager interface types:

l MAM - When using the MAM interface type, Moab communicates directly over the
network with Moab Accounting Manager using the SSS wire protocol.

l Native - When using the Native accounting manager interface type, Moab invokes
scripts that can be customized to interact with Moab Accounting Manager or other
third party accounting systems.

6.5.3.A MAM
The MAM accounting manager interface type enables direct communication between Moab
Workload Manager and Moab Accounting Manager. This often results in the fastest
accounting performance. Use this interface type if you do not need to customize the
interaction with the accounting manager.

To configure Moab to use the MAM accounting manager interface, run configure using the
--with-am option.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Example 6-8:

./configure -with-am=mam ...

Consequently, make install will add the essential configuration and connection entries
into the moab.cfg and moab-private.cfg files.

The following are typical entries in the Moab configuration files for using the MAM
interface:

l moab.cfg

AMCFG[mam] TYPE=MAM HOST=localhost

l moab-private.cfg

CLIENTCFG[AM:mam] KEY=UiW7EihzKyUyVQg6dKirDhV3

Synchronize the secret key with Moab Accounting Manager by copying the value of the
token.value parameter from the MAM_PREFIX/etc/mam-site.conf file, which is
randomly generated during the Moab Accounting Manager install process.

When using the MAM accounting manager interface, by default Moab will communicate
directly with Moab Accounting Manager via the SSS wire protocol. However, it is possible to
enable a hybrid model and override individual accounting actions by specifying the exec
protocol and the path of a custom script to the appropriate AMCFG[] *URL parameters.

Moab Accounting Manager should be installed, started, and initialized. See 'Initial Setup' in
the Moab Accounting Manager Administrator Guide for examples of how to initialize MAM
for your initial mode of operation.

6.5.3.B Native
The Native accounting manager interface type provides a customization layer between
Moab Workload Manager and Moab Accounting Manager. This interface can be used where
greater accounting customization is required. The native interface can also be customized
to interact with third-party accounting manager systems. Moab passes job accounting
details to scripts that handle the interaction with the external system.

To configure Moab to use the MAM accounting manager interface, run configure using the
--with-am=native option.

Additionally, you might need to use the --with-am-dir configure option to specify the
prefix directory for Moab Accounting Manager if MAM has been installed in a non-default
location.

Example 6-9:

./configure --with-am=native ...

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

422 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 423

Consequently, make install will add the essential accounting manager entries into
moab.cfg and install the accounting-related scripts
($PREFIX/tools/mam/usage.*.mam.pl) in the correct locations..

Moab will default to using a set of stock scripts for the accounting stages. To view the
scripts that are currently in use, run mdiag -R -v am: (even more information may be
available in mdiag -R -v --xml). The following shows sample output from running
the mdiag -R -v am: command:

AM[mam] Type: Native State: 'Active'
Timeout: 15
Accounting Mode: strict-allocation
Job Charge Policy: All
Reservation Charge Policy: Select
Create URL: exec:///opt/moab/tools/mam/usage.quote.mam.pl
Start URL: exec:///opt/moab/tools/mam/usage.reserve.mam.pl
Pause URL: exec:///opt/moab/tools/mam/usage.charge.mam.pl
Resume URL: exec:///opt/moab/tools/mam/usage.reserve.mam.pl
Update URL: exec:///opt/moab/tools/mam/usage.charge.mam.pl
Continue URL: exec:///opt/moab/tools/mam/usage.reserve.mam.pl
End URL: exec:///opt/moab/tools/mam/usage.charge.mam.pl
Delete URL: exec:///opt/moab/tools/mam/lien.delete.mam.pl
Query URL: exec:///opt/moab/tools/mam/account.query.mam.pl
Retry Failed Charges: TRUE

Moab will invoke the native accounting manager scripts by passing the job or reservation
information via XML to the standard input of the script. You can override any of the default
scripts with a custom script by specifying the appropriate AMCFG URL parameter in the
moab server configuration file. See 6.6 AMCFG Parameters and Flags - page 438 for
CREATEURL, STARTURL, PAUSEURL, RESUMEURL, UPDATEURL, CONTINUEURL,
ENDURL, DELETEURL, and QUERYURL values for more information.

The XML sent to the scripts is in the form of an SSS Request that is identical to the Request
sent to MAM when you use the MAM Accounting Manager Interface type. For example, the
XML sent to the usage.charge.mam.pl script in a final charge consists of an encapsulating
Request element with an action attribute that has a value of 'Charge'; an object element
with a value of 'UsageRecord'; one or more optional Option elements; and a Data element.
The Data element has a single UsageRecord element with property elements describing the
job or reservation properties. For example:

<Request action="Charge"><Object>UsageRecord</Object><Option
name="Duration">1234</Option><Data><UsageRecord><Type>Job</Type><Instance>Moab.165</In
stance><User>amy</User><Group>staff</Group><Account>chemistry</Account><Class>batch</C
lass><QualityOfService>high</QualityOfService><Machine>colony</Machine><Nodes>1</Nodes
><NodeType>Fast</NodeType><NodeCharge>2.000000</NodeCharge><Partition>Torque</Partitio
n><Processors
consumptionRate="0.50">2</Processors><Memory>2048</Memory><Matlab>2</Matlab><StartTime
>1398805354</StartTime><EndTime>1398805357</EndTime><CompletionCode>0</CompletionCode>
<OpSys>CentOS</Opsys><Temp>87.00</Temp></UsageRecord></Data></Request> *

In the sample XML above, Matlab is an example of a generic resource, Opsys is an example
of a job variable, and Temp is an example of a generic metric.

A reservation charge, or quote or lien, is very similar. For example:

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

<Request action="Charge"><Object>UsageRecord</Object><Option
name="Duration">7200</Option><Data><UsageRecord><Type>Reservation</Type><Instance>rese
rvation.7</Instance><User>amy</User><Machine>colony</Machine><Nodes>1</Nodes><Processo
rsconsumptionRate="0.76">12</Processors><Duration>7200</Duration><StartTime>1398797430
</StartTime><EndTime>1398804630</EndTime></UsageRecord></Data></Request>

The majority of the scripts use this same basic XML format; for instance,
usage.quote.mam.pl, usage.reserve.mam.pl, and usage.charge.mam.pl.

The XML sent to the lien.delete.mam.pl script to clean up after a failure consists of an
encapsulating Request element with an action attribute that has a value of 'Delete'; an
object element with the value of 'Lien'; and a condition (Where) element indicating the lien
instance to delete. For example:

<Request action="Delete"><Object>Lien</Object><Where
name="Instance">Moab.127</Where></Request>

The script should return a return code (zero for success), data on standard out and
messages on standard error. A failure in CREATEURL, STARTURL, RESUMEURL, or
CONTINUEURL should result in the application of the CREATEFAILUREACTION,
STARTFAILUREACTION, RESUMEFAILUREACTION, or CONTINUEFAILUREACTION
respectively.

Moab Accounting Manager should be installed, started, and initialized. The simplest
procedure is to install it on the same server as Moab Workload Manager so that the Moab
Accounting Manager can share libraries and configuration files with the Moab Workload
Manager and Moab Accounting Manager scripts. See 'Initial Setup' in the Moab Accounting
Manager Administrator Guide for examples of how to initialize MAM for your initial mode of
operation.

6.5.4 Charging for Jobs
Moab can be configured to charge for the resources used in jobs.

Job tracking and charging via an accounting manager is enabled or disabled by the AMCFG
[] JOBCHARGEPOLICY parameter. By default, if an accounting manager is defined in Moab,
Moab will charge for all jobs, independent of the job’s exit status (derived from an internal
default of AMCFG[] JOBCHARGEPOLICY=All). This is the policy that is most frequently used
because of the unfortunate fact that a clever user can fake a job failure to avoid being
charged for their job. Jobs that are discovered to have failed due to system issues can be
proactively refunded by the system admin, or the user may be required to apply for a
refund. Charges can be restricted to jobs that complete successfully by setting AMCFG[]
JOBCHARGEPOLICY=Successful. To disable charging for jobs entirely, set AMCFG[]
JOBCHARGEPOLICY=None.

When using the default accounting mode of strict-allocation, before Moab starts a job, it
contacts the accounting manager and requests an allocation reservation (or lien) be placed
on the associated account. The lien amount is equivalent to the total cost of resources that

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

424 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 425

could be consumed by the job (based on the job's wallclock limit) and is used to prevent
the possibility of allocation oversubscription. Moab then starts the job. When the job
completes, Moab debits the allocation by the amount actually consumed by the job and then
releases the lien.

These steps should be transparent to users. Only when an account has insufficient
allocations to run a requested job will the presence of the accounting manager be noticed.
The policies guiding what action should taken if a user is out of funds is dictated by the
AMCFG[] STARTFAILUREACTION (and related) parameters. If desired, a fallback account
can be specified for use when a job's primary account is out of allocations. This account,
specified using the AMCFG parameter's FALLBACKACCOUNT attribute, is often associated
with a low QoS privilege, priority, and cost and is often configured to run only when no
other jobs are present.

The actual policies that determine what resources are charged for and in what amounts
are specified by the charge rates defined in the accounting manager. Moab will pass the job
properties (shown in 6.5.6 Accounting Properties Reported to the Accounting Manager -
page 426) to the accounting manager. It is the task of the accounting manager to record
and charge for the job according to site objectives.

6.5.5 Charging for Reservations
Moab can be configured to charge for the unused cycles in reservations. One of the
hesitations with dedicating resources to a particular group is that if the resources are not
used by that group, they go idle and are wasted. By configuring a reservation to be
chargeable, sites can charge every idle cycle of the reservation to a particular account.
When the reservation is in use, the consumed resources will be charged to the jobs using
the resources. When the resources are idle, the resources will be charged to the
reservation's charge account. See AMCFG[] RESERVATIONCHARGEPOLICY.

If RESERVATIONCHARGEPOLICY is set to Select (the default), charging can be
enabled for select reservations by specifying the CHARGEACCOUNT and CHARGEUSER
attributes for the reservation. For standing reservations, these are set via the SRCFG[X]
CHARGEACCOUNT and CHARGEUSER parameters. For administrative reservations, these
are set via the -S aaccount and auser options.

Example 6-10: Enabling charging in a standing reservation

SRCFG[foo] PERIOD=DAY DAYS=Mon,Tue,Wed,Thu,Fri DEPTH=1 USERLIST=amy
CHARGEACCOUNT=chemistry CHARGEUSER=amy RESOURCES=PROCS:1 TASKCOUNT=2

Example 6-11: Enabling charging in an administrative reservation

mrsvctl -c -a USER=amy -S aaccount=chemistry -S auser=amy -R procs=1 -t 1 -d 7200

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

If RESERVATIONCHARGEPOLICY is set to All, idle cycles will be charged for all
reservations unless disabled for individual reservations by specifying the reservation
Charge attribute with a value of False. For standing reservations, this are set via the
SRCFG CHARGE parameter. For administrative reservations, this is set via the -S charge
options.

Example 6-12: Disabling charging in a standing reservation

SRCFG[foo] PERIOD=DAY DAYS=Mon,Tue,Wed,Thu,Fri DEPTH=1 USERLIST=amy CHARGE=False
RESOURCES=PROCS:1 TASKCOUNT=2

Example 6-13: Disabling charging in an administrative reservation

mrsvctl -c -a USER=amy -S charge=False -R procs=1 -t 1 -d 7200

If RESERVATIONCHARGEPOLICY is set to None, idle cycles will not be charged for any
reservations, regardless of what attributes are specified with the reservation.

When utilizing the accounting manager to track or charge for idle cycles in any
reservations, the accounting manager must be configured to track and charge for
reservation-relevant properties. See the examples for 'Enabling Reservation Statistics' and
'Charging for the unused cycles in reservations' in the Moab Accounting Manager
Administrator Guide for steps on how to do this for the Moab Accounting Manager.

6.5.6 Accounting Properties Reported to the Accounting Manager
Moab can send the following information to the accounting manager via charging actions.

6.5.6.A For Jobs

Property name in
the Accounting
Manager Usage
Record

Description of property value recorded in the Accounting
Manager Usage Record

Account Account name.

BlockedProcessors* Number of processors blocked from use to other jobs. This might
be more than the allocated or requested processors if entire nodes
are given exclusive access to the job (e.g., from a node access policy
or node exclusivity flag).

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

426 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 427

Property name in
the Accounting
Manager Usage
Record

Description of property value recorded in the Accounting
Manager Usage Record

Tracking or charging for BlockedProcessors should only be
used with policies that allow only a single job to dedicate a
node such as with a Node Access Policy of SINGLEJOB or
SINGLETASK, or using a QOS with the DEDICATED flag.
Using BlockedProcessors with any policy allowing more than
one job to dedicate a node (such as a Node Access Policy of
SINGLEUSER, SINGLECLASS, SINGLEACCOUNT or
UNIQUEUSER) will yield inconsistent results and is not
recommended or supported.

Charge If the AMCFG LOCALCOST flag is set, Moab will calculate and pass
the Charge amount to MAM. If it is not, MAM will calculate the
charge based on the transmitted job properties.

Class Class/queue name.

Cores* NUMA cores allocated to the job.
Cores will be reported to the accounting manager when using the -
L NUMA Resource Request syntax and specifying place=socket,
place=numanode or place=core.

CPUTime CPU time. The value sent by Moab to the accounting manager is
the cumulative CPU time for the job.

Using this value as the basis of charging is not compatible
with periodic charging.

Duration Moab sends the wallclock time for the job charge(s) in seconds.
This is aggregated in MAM as Duration.

EndTime Job end time.

Exit Code
(formerly
CompletionCode*)

Exit code.

Features* Allocated node features.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Property name in
the Accounting
Manager Usage
Record

Description of property value recorded in the Accounting
Manager Usage Record

Node features are sent in the JSON object format {"<node_
feature_or_combo_name>":<node_feature_or_
combo_count>,...}.
Node features are not passed to the accounting manager unless
configured to do so via the AMCFG[] IncludeFeatures parameter.

GPUs* Number of GPUs allocated to the job.

Group Group name.

Instance Job ID.

Licenses License generic resources allocated to the job. License generic
resources are sent in the JSON object format {"<license_
generic_resource_name>":<license_generic_
resource_value>,...}. The license generic resource value is
the number of this license generic resource consumed by the job.
License generic resources are distinguished by those generic
resources having the license trait. Generic resources can be marked
as license generic resources in two primary ways:

l Any generic resources seen on nodes reported via a native
resource manager having the server configuration parameter
RMCFG[] RESOURCETYPE=License will be marked as a license
generic resource.

l Generic resources defined in Moab can be identified as license
types by using the Moab configuration parameter GRESCFG[]
LICENSE=TRUE.

You can distinguish the generic resources having the license trait
via the command `mschedctl -l gres -v`.

Machine Cluster (RM) name.

Memory Dedicated or utilized memory in megabytes.

Metrics Generic metrics are sent in the JSON object format {"<generic_
metric_name>":<generic_metric_value>,...} where
the generic metric value is the average value of the generic metric
across the nodes of the job and across time.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

428 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 429

Property name in
the Accounting
Manager Usage
Record

Description of property value recorded in the Accounting
Manager Usage Record

MICs* Number of MICs allocated to the job.

NodeCharge* Aggregate node charge rate. See NODECHARGEPOLICY and
CHARGERATE for more information.

Nodes Node count.

NodeType* Node type. See NODETYPE for more information.

NumaNodes* NUMA nodes allocated to the job. NumaNodes will be reported to
the accounting manager when using the -L NUMA Resource
Request syntax and specifying place=socket or place=numanode.

Partition* Partition name.

ProcessorEquivalents* Processor Equivalents.

Processors Number of processors allocated to the job. This is normally
equivalent to the requested processors.

QualityOfService QoS name.

QueueDuration* Effective duration the job was in the idle state.

RequestedDuration Requested wallclock limit.

Resources Generic resources are sent in the JSON object format
{"<generic_resource_name>":<generic_resource_
value>,...}. The generic resource value is the number of this
generic resource consumed by the job.

Sockets* NUMA sockets allocated to the job. Sockets will be reported to the
accounting manager when using the -L NUMA Resource Request
syntax and specifying place=socket.

Stage Accounting stage.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Property name in
the Accounting
Manager Usage
Record

Description of property value recorded in the Accounting
Manager Usage Record

StartTime Job start time.

SubmitTime Job submission time.

Threads* NUMA threads allocated to the job. Threads will be reported to
the accounting manager when using the -L NUMA Resource
Request syntax and specifying place=socket, place=numanode,
place=core or place=thread.

Type Set to 'Job'.

User User name.

Variables Job variables are sent in the JSON object format {"<job_
variable_name>":"<job_variable_value>",...}.

* For this property to be recorded in the MAM Usage Record, you must define a custom
usage record attribute in MAM for it. See 'Customizing the Usage Record Object' in the
Moab Accounting Manager Administrator Guide for more information.

6.5.6.B For Reservations

Property name in
MAM Usage Record

Description of property value recorded in MAM Usage
Record

Account Charge account.

Duration Moab sends the wallclock time for the reservation in
seconds. This is aggregated in MAM as Duration.

EndTime Reservation end time.

IdleProcessorSeconds Processor seconds not blocked by jobs within the reservation.
This is the metric typically used to charge for spare cycles not
attributed to jobs within the reservation.

Instance Reservation ID.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

430 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 431

Property name in
MAM Usage Record

Description of property value recorded in MAM Usage
Record

Machine Cluster (RM) name.

Nodes Number of node allocated to the reservation.

Partition Partition name.

Processors Number of processors allocated to the reservation.

ReservedProcessorSeconds Total processor seconds included within the reservation (to-
date)

Stage Accounting stage.

StartTime Reservation start time.

Type Set to 'Reservation'.

User Charge user or reservation owner.

6.5.7 Accounting Stages
The accounting manager performs various actions throughout different stages of a job or
reservation lifetime. For a stock configuration (meaning you have not overridden the
accounting actions with custom scripts), the following describes the stages and the
respective actions that occur at these stages depending on the accounting mode:

l Create stage – When a job is submitted or a chargeable reservation is created and
either AMCFG[] VALIDATEJOBSUBMISSION is TRUE or an AMCFG[]
FALLBACKACCOUNT or FALLBACKQOS are specified:

o If the accounting mode is strict-allocation, Moab will check with the
accounting manager to verify that sufficient funds exist for the job or
reservation to run.

o If the accounting mode is fast-allocation, Moab will check its cached
balance for the job's or reservation's account, to verify that sufficient funds
exist for the fund or reservation to run.

o Otherwise, it does nothing.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

l Start stage – When a job or a chargeable reservation is about to start:
o If the accounting mode is strict-allocation, Moab will attempt to place a
hold against the allocation in the accounting manager in order to prevent
multiple jobs or reservations from starting on the same funds.

o If the accounting mode is fast-allocation, Moab will check its cached
balance for the job's or reservation's account, to verify that sufficient funds
exist for the job or reservation to run.*

o Otherwise, it does nothing.

l Delete stage – If a job or chargeable reservation fails to start:
o If the accounting mode is strict-allocation and Moab has already
placed a hold on an allocation for the job or reservation, Moab will contact the
accounting manager to remove the lien.

o Otherwise, it does nothing.

l Pause stage – If a job becomes suspended, Moab will make a charge for the
resources used for the time the job has run this far:

o If the accounting mode is strict-allocation, the usage record will be
updated with resource usage and charge amounts, the allocation will be
debited, and the lien will be reduced.

o If the accounting mode is fast-allocation, the usage record will be
updated with resource usage and charge amounts, and the allocation will be
debited.

o If the accounting mode is notional-charging, the usage record will be
updated with resource usage and charge amounts.

o If the accounting mode is usage-tracking, the usage record will be
updated with resource usage.

l Resume stage – If a suspended job is resumed:
o If the accounting mode is strict-allocation, Moab will attempt to place a
hold against the funds in the accounting manager for the smaller of (the
duration of the next charge period, or the remaining duration of the job or
reservation).

o If the accounting mode is fast-allocation, Moab will check its cached
balance for the job's or reservation's account, to verify that sufficient funds
exist for the job or reservation to run for the smaller of (the duration of the
next charge period, or the remaining duration of the job or reservation).*

o Otherwise, it does nothing.

l Update stage – If AMCFG[] FLUSHINTERVAL is set and Moab has reached the end of
a charge period, Moab will make an incremental charge for all running jobs and

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

432 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 433

active chargeable reservations for the resources used during the last charge period:
o If the accounting mode is strict-allocation, the usage record will be
updated with resource usage and charge amounts, the allocation will be
debited, and the lien will be reduced.

o If the accounting mode is fast-allocation, the usage record will be
updated with resource usage and charge amounts, and the allocation will be
debited.

o If the accounting mode is notional-charging, the usage record will be
updated with resource usage and charge amounts.

o If the accounting mode is usage-tracking, the usage record will be
updated with resource usage.

l Continue stage – If AMCFG[] FLUSHINTERVAL is set and Moab is beginning a new
charge period for a job or reservation:

o If the accounting mode is strict-allocation, Moab will attempt to place a
hold against the funds in the accounting manager for the smaller of (the
duration of the next charge period, or the remaining duration of the job or
reservation).

o If the accounting mode is fast-allocation, Moab will check its cached
balance for the job's or reservation's account, to verify that sufficient funds
exist for the job or reservation to run for the smaller of (the duration of the
next charge period, or the remaining duration of the job or reservation*

o Otherwise, it does nothing.

l End stage – If a job or chargeable reservation ends, Moab will make a final charge
for the remainder of the resources used by the job or reservation:

o If the accounting mode is strict-allocation, the usage record will be
updated with resource usage and charge amounts, the allocation will be
debited, and the lien will be removed.

o If the accounting mode is fast-allocation, the usage record will be
updated with resource usage and charge amounts, and the allocation will be
debited.

o If the accounting mode is notional-charging, the usage record will be
updated with resource usage and charge amounts.

o If the accounting mode is usage-tracking, the usage record will be
updated with resource usage.

* The cached account balances in Moab can be viewed by running 'mrmctl -q
AccountBalanceCache AM'.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6.5.8 Accounting Events
You can add accounting events to the event log by specifying one or more of the following
with RECORDEVENTLIST:

Event Description

AMCREATE Record accounting events trigger when an object is created; for example, when
a balance check occurs at job submission.

AMDELETE Record accounting events triggered when an object's normal accounting
lifecycle is interrupted; for example, when the lifecycle is interrupted to clean
up reservations for a failed job start.

AMEND Record accounting events triggered when an object ends; for example, when a
charge occurs at the end of a job.

AMPAUSE Record accounting events triggered when an object is paused; for example,
when a partial charge occurs when a job is paused.

AMQUOTE Record accounting events triggered when an object requires a quote amount.

AMRESUME Record accounting events triggered when an object is resumed; for example,
when a lien is made when a job is resumed.

AMSTART Record accounting events triggered when an object is started; for example,
when a lien is made when a job starts.

AMUPDATE Record accounting events triggered when an object continues past a flush
interval; for example, when a partial charge occurs and new lien is made for a
job.

6.5.9 Blocking Versus Non-Blocking Accounting Actions
Moab uses a thread pool to perform non-blocking actions. Instead of blocking the
scheduling thread, the request is added to a queue that is serviced by the accounting
thread pool. Using the thread pool to perform non-blocking accounting actions can result in
faster aggregate scheduling and better client response times, though individual actions can,
in some cases, be shortly delayed. By default, Moab uses non-blocking calls for the final
charge only. The default behavior for individual accounting actions (such as Create, Start,
End) can be overridden via the associated parameter (CONTINUEISBLOCKING,
CREATEISBLOCKING, DELETEISBLOCKING, ENDISBLOCKING, PAUSEISBLOCKING,
RESUMEISBLOCKING, STARTISBLOCKING).

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

434 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 435

For best performance when using non-blocking accounting actions, it is
recommended to specify an RM poll interval with a minimum poll time of zero (such
as RMPOLLINTERVAL=0,30). Setting a non-zero minimum poll time can prevent
Moab from responding quickly to accounting actions and can result in increased
latency in job scheduling.

When using the fast-allocation accounting mode, if the charge action is set to
be non-blocking (which is the default), Moab's account balance cache is not updated
with the effects of the charge until the iteration after the charge is issued.

6.5.10 Retrying Failed Charges
If the AMCFG[] RETRYFAILEDCHARGES parameter is set to true (this is the default), job
charges will be retried if they have failed due to a connection failure. When a job charge or
usage record update (such as might occur when a job is suspended, at the periodic charge
interval, or when a job completes) results in a connection failure between Moab and the
accounting manager, then the charge request will be saved to a file in
SPOOLDIR/am/retrying/. Once Moab detects that the connection with the accounting
manager has been restored, the charge will be retried up to CHARGERETRYCOUNT times.

Charges that fail due to reasons other than a connection failure, or connection failures that
surpass the CHARGERETRYCOUNT, will be saved to files in SPOOLDIR/am/failed/.
Although these failures generally represent permanent failures, in some cases it might be
possible to reissue some of these charges with a slight modification. For example, a user
might have been moved from one account to another after the job started causing the final
charge to fail. For such circumstances, a script has been provided (TOOLSDIR/mam/mam-
charge-retry.pl) to facilitate the re-issuance of a failed usage charge from a failed charge
retry file.

[root]# /software/moab-accounting/tools/mam/mam-charge-retry.pl --help

The mam-charge-retry.pl script mimics the mam-charge command in making a charge to
MAM. The specified command-line options will override the original values contained in the
failed charge file. The --dry-run option can be used to issue the retry as a quote rather than
a charge in order to see if the charge would be successful. The --delete-on-success option
can be used to delete the retry file after a successful charge. This script cannot be used to
rerun a command when the accounting action uses a native script. In such cases, the
modified request XML from the charge retry file can be passed as the standard input to the
native script to reissue a charge.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6.5.10.A Using the Script
This section provides synopsis information and an example on using the
TOOLSDIR/mam/mam-charge-retry.pl script

Synopsis
mam-charge-retry {[--filename] <retry_filename>} [-J <instance_name>] [-j
<usage_record_id>] [-q <quote_id>] [-l <lien_id>] [-T <usage_record_
type>] [-u <user_name>] [-g <group_name>] [-a <account_name>] [-o
<organization_name>] [-c <class_name>] [-Q <quality_of_service>] [-m
<machine_name>] [-N <nodes>] [-P <processors>] [-C <cpu_time>] [-M
<memory>] [-D <disk>] [--stage <lifecycle_stage>] [-X, --extension
<property>=<value>]... [-t <charge_duration>] [-s <charge_start_time>]
[-e <charge_end_time>] [-d <charge_description>] [-z <charge_amount>]]
[-f <fund_id>]] [--incremental] [-R <charge_rate_name>][{<charge_rate_
value>]}]=<charge_rate_amount>],...]... [--hours] [--itemize] [--delete-on-success] [-
-dry-run] [--debug] [--site <site_name>]] [--help] [--man] [--quiet] [--verbose] [--
version]

* For this property to be recorded in the MAM Usage Record, you must define a custom
usage record attribute in MAM for it. See 'Customizing the Usage Record Object' in the
Moab Accounting Manager Administrator Guide for more information.

Reissuing a Charge that has Failed Example
First we will list the files in the SPOOLDIR/am/failed directory to see if there are any
'permanently' failed charges that we might want to reissue.

[root]# cd /opt/moab/spool/am/failed
[root]# ls
job.250

We see there is a failed charge for job 250. It might be useful to check the charge file and
examine the message to see what went wrong.

[root]# cat job.250
{"action":"End","message":"Failure registering job End (250) with accounting manager -
- Unable to invoke AM request - server rejected request with status code 740 - Failed
charging 1.00 credits for instance 250 and created usage record
25\nUser amy is not a valid member of Account biology","request":"<Request
action=\"Charge\"><Object>UsageRecord</Object><Option name=\"AccountingMode\">strict-
allocation</Option><Option name=\"StartTime\">1432070300</Option><Option
name=\"Duration\">300</Option><Data><UsageRecord><Stage>End</Stage><Type>Job</Type><In
stance>
250</Instance><User>amy</User><Group>staff</Group><Account>biology</Account><Class>bat
ch</Class><QualityOfService>premium</QualityOfService>

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

436 6.5 Accounting, Charging, and Allocation Management

6.5 Accounting, Charging, and Allocation Management 437

<Machine>colony</Machine><Nodes>1</Nodes><Partition>colony</Partition><Processors
consumptionRate=\"1.00\">12</Processors><StartTime>1432070300</StartTime><SubmitTime>1
432070300</SubmitTime><EndTime>1432070600</EndTime>
<CompletionCode>0</CompletionCode></UsageRecord></Data></Request>"}

We can see that this charge failed because the user (amy) was not a member of the
specified account (biology). In this case, the user was a member of the biology account
when the job started, but had been moved to the account chemistry by the time the job
ended, resulting in a charge failure.

If we were to reissue the charge without modification, it would fail again, as we can see by
using the script with the --dry-run option.

[root]# /opt/moab/tools/mam/mam-charge-retry.pl job.250 --dry-run

User amy is not a valid member of Account biology

We can reissue the charge after changing the request to use her new chemistry account.

[root]# /opt/moab/tools/mam/mam-charge-retry.pl job.250 -a chemistry --dry-run
Successfully quoted 1.00 credits for instance 250

Since that looks like it will work correctly, we'll issue the corrected charge request and
delete the charge file.

[root]# /opt/moab/tools/mam/mam-charge-retry.pl job.250 -a chemistry --delete-on-
success
Successfully charged 1.00 credits for instance 250 and created usage record 35

Related Topics

l 6.6 AMCFG Parameters and Flags - page 438

l Per Class DISABLEAM - page 73 attribute

l ENFORCEACCOUNTACCESS parameter

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6.6 AMCFG Parameters and Flags

In this topic:

6.6.1 AMCFG Parameters - page 438
6.6.2 AMCFG Flags - page 461

6.6.1 AMCFG Parameters
Moab's accounting manager policies are defined using the AMCFG[] parameter. All AMCFG
parameters must use the same accounting manager name between the square brackets
(e.g., AMCFG[mam]).

The following AMCFG parameter values are supported:

ALWAYSCHARGERESERVATIONS
BACKUPHOST
BLOCKINGACTIONS
CHARGEPOLICY
CHARGERETRYCOUNT
CONTINUEFAILUREACTION
CONTINUEISBLOCKING
CONTINUEURL
CREATECRED
CREATEFAILUREACTION
CREATEISBLOCKING
CREATEURL
DELETEISBLOCKING
DELETEURL
DISABLEDACTIONS

ENDISBLOCKING
ENDURL
FALLBACKACCOUNT
FALLBACKQOS
FLAGS
FLUSHINTERVAL
HOST
INCLUDEFEATURES
JOBCHARGEPOLICY
LIENGRANULARITY
MODE
NODECHARGEPOLICY
PAUSEISBLOCKING
PAUSEURL
PORT

QUERYURL
REFRESHPERIOD
RESERVATIONCHARGEPOLICY
RESUMEFAILUREACTION
RESUMEISBLOCKING
RESUMEURL
RETRYFAILEDCHARGES
SERVER
STARTFAILUREACTION
STARTISBLOCKING
STARTURL
TIMEOUT
TYPE
UPDATEURL
VALIDATEJOBSUBMISSION

ALWAYSCHARGERESERVATIONS

Description This parameter is deprecated beginning with the Moab 9.1.0
release and may be removed in future releases.

Use RESERVATIONCHARGEPOLICY instead.

l If you were using AMCFG[] ALWAYSCHARGERESERVATIONS=True,

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

438 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 439

ALWAYSCHARGERESERVATIONS

comparable functionality can be obtained by using the new AMCFG
[] RESERVATIONCHARGEPOLICY=All.

l If you were using AMCFG[] ALWAYSCHARGERESERVATIONS=False,
comparable functionality can be obtained by using the new AMCFG
[] RESERVATIONCHARGEPOLICY=Select.

BACKUPHOST

Format STRING

Default ---

Description The backup host name for the accounting manager server daemon.

Example AMCFG[mam] BACKUPHOST=headnode2

Use the backup accounting manager server on headnode2 if the
connection fails to the primary accounting manager server.

BLOCKINGACTIONS

Description This parameter is deprecated and may be removed in a future release.

Instead, specify the corresponding AMCFG[] CREATEISBLOCKING,
DELETEISBLOCKING, ENDISBLOCKING, PAUSEISBLOCKING,
RESUMEISBLOCKING, and STARTISBLOCKING parameters.

CHARGERETRYCOUNT

Format <INTEGER> (non-negative)

Default 24

Description Only applicable if RETRYFAILEDCHARGES is enabled.

The maximum number of times that Moab will retry failed connection charges.
Moab will continue to retry until the charge succeeds, the charge fails due to a

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

CHARGERETRYCOUNT

non-connection failure, or until the CHARGERETRYCOUNT limit is reached. If
set to zero, no retries will be performed, and all charge failures will be written
to files in the SPOOL/am/failed/ directory.

Example AMCFG[mam] RETRYFAILEDCHARGES=TRUE CHARGERETRYCOUNT=12

Moab will retry connection-oriented charge failures up to 12 times.

CHARGEPOLICY

Description This parameter is deprecated beginning with the Moab 9.1.0 release
and may be removed in a future release.

The policy guiding whether to charge for all jobs or just successful jobs has
been subsumed into the new AMCFG[] JOBCHARGEPOLICY parameter. Rather
than specifying in Moab whether you want to charge for allocated processors,
blocked processors, processor equivalents, or CPU time, Moab now sends all of
these resource usage properties to the accounting manager so that they can be
tracked and charged independently.

CONTINUEFAILUREACTION

Format <GeneralFailureAction>[,<FundsFailureAction>
[,<ConnectionFailureAction>]] where the action is one of CANCEL or
IGNORE

Default IGNORE,IGNORE,IGNORE

Description Setting this parameter to IGNORE can result in under-charging, and
possibly over-charging of jobs. We recommend using

DEFER,CANCEL,DEFER in most cases, unless it is acceptable to
have occasional errors in the job charges.

If periodic charging is enabled (via the AMCFG[] FLUSHINTERVAL
parameter), this parameter specifies the action to be taken if a failure is
detected when Moab performs its periodic accounting update (e.g., to
determine whether the job should be continued):

l Moab applies <ConnectionFailureAction> to a job if it is rejected due to
a connection failure to MAM.

l Moab applies <FundsFailureAction> to a job if it is rejected due to
insufficient funds.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

440 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 441

CONTINUEFAILUREACTION

l Moab applies <GeneralFailureAction> to a job if the accounting
manager rejects it for any other reason.

l If you do not specify a <ConnectionFailureAction>, or if you do not
specify a <FundsFailureAction>, then Moab will apply the
<GeneralFailureAction> for the unspecified case.

If the action is set to CANCEL, Moab cancels the job; for IGNORE, Moab
ignores the failure and continues running the job.

Example AMCFG[mam] CONTINUEFAILUREACTION=IGNORE,CANCEL,IGNORE

A job will be canceled if there are insufficient funds when Moab
performs its periodic accounting update; but will be allowed to
continue running if MAM is down, or for any other reason.

CONTINUEISBLOCKING

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, the scheduler will block while authorizing the continuation of
a job with the accounting manager. If set to FALSE, the accounting operation
will be queued to the accounting thread pool and scheduling will continue;
but application of the failure action will be delayed until a response is
received.

Example AMCFG[mam] CONTINUEISBLOCKING=FALSE

Specifies that Moab should use non-blocking calls with the
accounting manager when checking to see if a job should be
continued after a periodic accounting update.

CONTINUEURL

Format exec://<fullPathToContinueScript> or null:

Default exec://$TOOLSDIR/mam/usage.reserve.mam.pl if TYPE=Native; otherwise it
will make a direct call to MAM (mam:)

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

CONTINUEURL

Description If periodic charging is enabled (via AMCFG[] FLUSHINTERVAL), when Moab
performs a periodic accounting update for a job, this script is invoked to
determine whether there are sufficient allocations for it to continue running
for another period.
For jobs, the CONTINUEFAILUREACTION attribute specifies the action that
Moab should take if the authorization fails (such as for insufficient funds). If
you use a job charge policy of Successful, Moab will not call the script because
it does not yet know the completion status of the job.
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] CONTINUEURL=exec://$TOOLSDIR/mam/usage.continue.custom.pl

Moab calls the usage.continue.custom.pl script for authorization
when checking to see if a job should be continued after a periodic
accounting update.

CREATECRED

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab will be enabled to query accounts, users, user
membership in accounts, and users' default accounts from Moab Accounting
Manager and define them in Moab. These credentials can be manually updated
by running mrmctl -R AM or automatically updated be setting the AMCFG[]
REFRESHPERIOD parameter.
If you want Moab to enforce the imported account-user memberships, you will
need to set the ENFORCEACCOUNTACCESS parameter to TRUE. See Moab
Parameters for more information on the ENFORCEACCOUNTACCESS
parameter.

Example AMCFG[mam] CREATECRED=TRUE REFRESHPERIOD=30:00

Moab will automatically update account credential information
from MAM every half hour.

CREATEFAILUREACTION

Format <GeneralFailureAction>[,<FundsFailureAction>[,<ConnectionFailureAction>]]

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

442 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 443

CREATEFAILUREACTION

where the action is one of CANCEL, DEFER, HOLD, or IGNORE

Default IGNORE,IGNORE,IGNORE

Description Before creating a job that should be tracked or charged within the
accounting manager, Moab contacts the accounting manager for
authorization:

l If the job creation is rejected due to a connection failure with MAM,
Moab applies the <ConnectionFailureAction> to the job.

l If the job creation is rejected due to lack of funds, Moab applies the
<FundsFailureAction> to the job.

l For any other rejection reason, Moab applies the
<GeneralFailureAction> to the job.

l If you do not specify a <ConnectionFailureAction>, or if you do not
specify a <FundsFailureAction>, then Moab will apply the
<GeneralFailureAction> for the unspecified case.

If the action is set to CANCEL, Moab cancels the job; DEFER, Moab defers
the job; HOLD, Moab puts the job on hold; IGNORE, Moab ignores the failure
and continues to start the job.

In order for the CREATEFAILUREACTION policy to be applied, the
AMCFG[] VALIDATEJOBSUBMISSION parameter must be set to true.

If you have FALLBACKQOS or FALLBACKACCOUNT defined and a user
requests an account with insufficient funds, the job will still be moved
to the fallback credential, regardless of the action defined for
CREATEFAILUREACTION.

Example AMCFG[mam] CREATEFAILUREACTION=CANCEL,HOLD,IGNORE

A job will be placed on hold when submitted if there are
insufficient funds for it to start. However, it will be allowed to be
submitted if there is a connection problem with MAM. The job will
be canceled if there is any other failure (e.g., the user does not
belong to the specified account).

CREATEISBLOCKING

Format <BOOLEAN>

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

CREATEISBLOCKING

Default TRUE

Description If set to TRUE, the scheduler will block while authorizing the creation of a job
with the accounting manager. If set to FALSE, the accounting operation will be
queued to the accounting thread pool and scheduling will continue, but further
consideration for the job will be delayed until a response is received.

Example AMCFG[mam] CREATEISBLOCKING=FALSE

Specifies that Moab should use non-blocking calls with the
accounting manager when creating jobs.

CREATEURL

Format exec://<fullPathToCreateScript> or null:

Default exec://$TOOLSDIR/mam/usage.quote.mam.pl if TYPE=Native; otherwise it
will make a direct call to MAM (mam:)

Description Moab runs this script at the time a job or reservation is being created.
For jobs, the CREATEFAILUREACTION attribute specifies the action that
should be taken if the authorization fails (such as for insufficient funds).
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] CREATEURL=exec://$TOOLSDIR/mam/usage.create.custom.pl

Moab calls the usage.create.custom.pl script for
authorization before starting a job or reservation.

DELETEISBLOCKING

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, the scheduler will block while contacting the accounting
manager to clean up after a failed job start. If set to FALSE, the accounting
operation will be queued to the accounting thread pool and scheduling will

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

444 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 445

DELETEISBLOCKING

continue.

Example AMCFG[mam] DELETEISBLOCKING=FALSE

Specifies that Moab should use non-blocking calls with the
accounting manager when cleaning up after failed job starts.

DELETEURL

Format exec://<fullPathToDeleteScript> or null:

Default exec://$TOOLSDIR/mam/lien.delete.mam.pl if TYPE=Native; otherwise it
will make a direct call to MAM (mam:)

Description Moab runs this script to clean up after an interrupted job or reservation life-
cycle. The default behavior is to remove outstanding liens.
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] DELETEURL=exec://$TOOLSDIR/mam/usage.delete.custom.pl

Moab calls the usage.delete.custom.pl script to clean up
after an interrupted job or reservation.

DISABLEDACTIONS

Description This parameter is deprecated and may be removed in a future release.

Instead, specify an empty value or a protocol of 'null:' for the corresponding
AMCFG[] CREATEURL, DELETEURL, ENDURL, PAUSEURL, RESUMEURL,
STARTURL, and UPDATEURL parameters.

ENDISBLOCKING

Format <BOOLEAN>

Default FALSE

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

ENDISBLOCKING

Description If set to TRUE, the scheduler will block while registering the end of a job with
the accounting manager. If set to FALSE, the accounting operation will be
queued to the accounting thread pool and scheduling will continue.

Example AMCFG[mam] ENDISBLOCKING=FALSE

Specifies that Moab should use non-blocking calls with the
accounting manager when a job ends.

ENDURL

Format exec://<fullPathToEndScript> or null:

Default exec://$TOOLSDIR/mam/usage.charge.mam.pl if TYPE=Native; otherwise it
will make a direct call to MAM (mam:)

Description Moab runs this script after the end of a chargeable job or reservation in order
to make a final charge or update the accounting record. The default behavior is
to make a prorated charge for the job or reservation.
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] ENDURL=exec://$TOOLSDIR/mam/usage.end.custom.pl

Moab calls the usage.end.custom.pl script to make the final
charge for a job or reservation.

FALLBACKACCOUNT

Format <STRING>

Default ---

Description If specified, Moab verifies adequate allocations for all new jobs. If adequate
allocations are not available in the job's primary account, Moab changes the
job's credentials to use the fallback account. If not specified, Moab places a
hold on jobs that do not have adequate allocations in their primary account.

Example AMCFG[mam] FALLBACKACCOUNT=freecycle

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

446 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 447

FALLBACKACCOUNT

Moab assigns the account freecycle to jobs that do not have
adequate allocations in their primary account.

FALLBACKQOS

Format <STRING>

Default ---

Description If specified, Moab verifies adequate allocations for all new jobs. If adequate
allocations are not available in the job's primary QoS, Moab changes the job's
credentials to use the fallback QoS. If not specified, Moab places a hold on jobs
that do not have adequate allocations in their primary QoS.

Example AMCFG[mam] FALLBACKQOS=freecycle

Moab assigns the QoS freecycle to jobs that do not have
adequate allocations in their primary QoS.

FLAGS

Format <STRING>

Default ---

Description AMCFG flags are used to enable special services.

Example AMCFG[mam] FLAGS=LOCALCOST

Moab calculates the charge for the job locally and sends that as a
charge to the accounting manager, which then charges that amount
for the job.

The LOCALCOST flag is deprecated beginning in Moab 9.1.0 and may be
removed in a future release.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

FLUSHINTERVAL

Format [[[DD:]HH:]MM:]SS or INFINITY

The former values of HOUR, DAY, WEEK, MONTH, or NONE are
deprecated and may be removed in a future release.

Default INFINITY

Description Indicates the amount of time between accounting manager updates for long
running reservations and jobs. If FLUSHINTERVAL is set to a positive time
period, Moab will update the accounting manager (e.g., make an incremental
charge) on the specified period relative to the start of the job or reservation. If
FLUSHINTERVAL is set to INFINITY, the update will only occur at the end
of the job or reservation.

Example AMCFG[mam] FLUSHINTERVAL=1:00:00:00

Moab will make periodic accounting updates every 24 hours for
long running jobs and reservations.

HOST

Format <STRING>

Default localhost

Description The host name for the accounting manager server daemon.

Example AMCFG[mam] HOST=my-mam-server

Moab will communicate with the MAM server running on my-
mam-server.

INCLUDEFEATURES

Format One of NodeCombination, NodeCount, TaskCombination,
TaskCount, or NONE

Default NONE

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

448 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 449

INCLUDEFEATURES

Description Moab will pass allocated node features to the accounting manager under the
Features property according to the specified policy:

l If set to NodeCombination, Moab will pass a list of aggregate
combinations of features for each node in the job.

l If set to NodeCount, Moab will pass a list of features counted over each
node in the job.

l If set to TaskCombination, Moab will pass a list of aggregate
combinations of features for each node in each task in the job.

l If set to TaskCount, Moab will pass a list of features counted over each
node in each task in the job.

Example For example, assuming a job that runs with two tasks on each of eight nodes
(e.g., -l nodes=8:ppn=2); four nodes; two having a single bigmem feature, two
having a single fastcpu feature, two having both the bigmem and the fastcpu
feature, and two having no features. The following parameter values would
pass the accompanying Features value to the accounting manager.
AMCFG[mam] IncludeFeatures=NodeCombination

Features=bigmem:2,bigmem+fastcpu:2,fastcpu:2,None:2
AMCFG[mam] IncludeFeatures=NodeCount

Features=bigmem:4,fastcpu:4
AMCFG[mam] IncludeFeatures=TaskCombination

Features=bigmem:4,bigmem+fastcpu:4,fastcpu:4,None:4
AMCFG[mam] IncludeFeatures=TaskCount

Features=bigmem:8,fastcpu:8

JOBCHARGEPOLICY

Format One of All, None, or Successful

Default All

Description Specifies whether all, successful only, or no jobs should be charged for their
resource usage:

l If set to All (the default), all jobs are charged for their resource usage,
independent of their completion status.

l If set to None, no jobs will be tracked or charged for their resource usage.
l If set to Successful, only jobs having a successful exit status (0) are

charged for their resource usage.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

JOBCHARGEPOLICY

If the LOCALCOST flag (AMCFG[] FLAGS=LOCALCOST) is set, Moab
overrides the charge sent to the accounting manager and instead charges
a value of the processors times duration (additionally factoring in
NODECHARGE is defined).
If LOCALCOST is not set, Moab allows the accounting manager to
calculate the job charges.

The LOCALCOST flag is deprecated beginning with the Moab 9.1.0
release and may be removed in a future release.

Example AMCFG[mam] JOBCHARGEPOLICY=Successful

Charge only for jobs having a successful exit status.

LIENGRANULARITY

Format One of Partial or Combined

Default Partial

Description When periodic charging is enabled via AMCFG[] FLUSHINTERVAL, lien
granularity controls whether a combined lien is sought for the duration of the
entire job (Combined) or whether partial liens are sought for the duration of
each periodic charge interval (Partial):

l When using a lien granularity of Partial, a job or reservation may get
started if it has enough funds to run for the FLUSHINTERVAL, but it
might trigger a CONTINUEFAILUREACTION if it runs out of funds before
completion.

l When using a lien granularity of Combined, the funds for the entire job or
reservation must be available before it starts, but the funds will be
protected by the lien and consumed on a periodic interval.

Example AMCFG[mam] LIENGRANULARITY=Combined

When using periodic charging, Moab will seek to obtain a lien for
the entire duration of the job or reservation before starting it.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

450 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 451

MODE

Format One of strict-allocation, fast-allocation, notional-
charging, or usage-tracking

Default strict-allocation

Description The accounting mode. The accounting mode modifies the way in which
accounting-relevant job stages (e.g., create, start, end, etc.) are processed. See
6.5.2 Accounting Mode - page 420 for details on the behavior of the accounting
modes.

Example AMCFG[mam] MODE=notional-charging

Configures Moab to use the notional-charging accounting mode
when interacting with the accounting manager.

NODECHARGEPOLICY

Format One of AVG, MAX, or MIN

Default MIN

Description When charging for resource usage, the accounting manager will charge by node
allocation according to the specified policy. For AVG, MAX, and MIN, the
accounting manager will charge by the average, maximum, and minimum node
charge rate of all allocated nodes.
If you use this feature in conjunction with the AMCFG[] LOCALCOST flag, Moab
will include the calculation of the node charge value sent to MAM. See
LOCALCOST.

The LOCALCOST flag is deprecated beginning with the Moab 9.1.0
release and may be removed in a future release.

If you do not use this feature in conjunction with the AMCFG[] LOCALCOST
flag, you must perform the following MAM commands to include node charges
in charge calculations:
1. Add NodeCharge as a usage record property.

mam-shell Attribute Create Object=UsageRecord Name=NodeCharge
DataType=Float Description="\"Node Charge\""

2. Add NodeCharge as a multiplier charge rate.

mam-create-chargerate -n NodeCharge -z "*1" -d "Node Charge Multiplier"

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

NODECHARGEPOLICY

Example NODECFG[node01] CHARGERATE=1.5
NODECFG[node02] CHARGERATE=1.75
AMCFG[mam] NODECHARGEPOLICY=MAX

Charge jobs by the maximum allocated node's charge rate.

PAUSEISBLOCKING

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, the scheduler will block while registering the suspension of a
job with the accounting manager. If set to FALSE, the accounting operation
will be queued to the accounting thread pool and scheduling will continue.

Example AMCFG[mam] PAUSEISBLOCKING=FALSE

Specifies that Moab should use non-blocking calls with the
accounting manager when suspending jobs.

PAUSEURL

Format exec://<fullPathToPauseScript> or null:

Default exec://$TOOLSDIR/mam/usage.charge.mam.pl if TYPE=Native; otherwise it
will make a direct call to MAM (mam:)

Description Moab runs this script after preempting a job that might be resumed later. The
default behavior is to make an incremental charge but not create a fresh lien. If
you use a job charge policy of Successful, Moab will not call the script because
it does not yet know the completion status of the job.
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] PAUSEURL=exec://$TOOLSDIR/mam/usage.pause.custom.pl

Moab calls the usage.pause.custom.pl script after pausing a
job.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

452 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 453

PORT

Format <INTEGER>

Default 7112

Description The listening port for the accounting manager server daemon.

Example AMCFG[mam] PORT=7731

Moab will communicate with the MAM server listening on
port 7731.

QUERYURL

Format exec://<fullPathToQueryScript> or null:

Default exec://$TOOLSDIR/mam/account.query.mam.pl if TYPE=Native; otherwise
it will make a direct call to MAM (mam:)

Description Moab runs this script to customize and forward the Moab query to the
accounting manager. The standard input to the script will be an XML Request
in SSS format and is used directly between Moab and Moab Accounting
Manager. Its primary purpose is to synchronize accounts and user information
with the accounting manager if the CREATECRED parameter is specified.
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] QUERYURL=exec://$TOOLSDIR/mam/cred.query.custom.pl

Moab calls the cred.query.custom.pl script in order to obtain
account and user information from the accounting manager.

REFRESHPERIOD

Format [[[DD:]HH:]MM:]SS or INFINITY

The former values of MINUTE, HOUR, DAY or NONE are deprecated and
may be removed in a future release.

Default INFINITY

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

REFRESHPERIOD

Description Indicates the period at which Moab will poll for updated information from
Moab Accounting Manager (MAM):

l If AMCFG[] CREATECRED is set to TRUE, Moab will update the accounting
credentials from MAM on the specified period.

l If AMCFG[] MODE is set to fast-allocation, Moab will update the
account balance cache from MAM on the specified period.

Moab will poll MAM for updated information when it first starts up unless
REFRESHPERIOD is set to 0. If REFRESHPERIOD is set to a positive time
period, Moab will refresh the accounting credentials on the specified period
relative to the scheduler start time. If REFRESHPERIOD is set to INFINITY,
Moab will only request updated information from MAM when first started. Use
mrmctl -R am to force an immediate refresh.

Example AMCFG[mam] REFRESHPERIOD=2:00:00

Moab will request an update from MAM every two hours.

RESERVATIONCHARGEPOLICY

Format One of All, None, or Select

Default Select

Description If set to All, idle cycles in reservations will be charged to the accounting
manager by default, even if the ChargeAccount and ChargeUser are not
specified for the reservation. For reservations that you do not want to be
charged with the accounting manager, specify the reservation Charge
attribute with a value of False.
If set to None, idle cycles in reservations will never be charged to the
accounting manager, even if you have specified the ChargeAccount,
ChargeUser or the Charge attribute with a value of True.
If set to Select (the default), idle cycles in reservations will not be
charged to the accounting manager unless you specify the reservation
ChargeAccount or ChargeUser attributes or set the reservation Charge
attribute with a value of True.

Example AMCFG[mam] RESERVATIONCHARGEPOLICY=All

By default, Moab will charge for idle cycles in reservations
unless overridden with Charge=False.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

454 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 455

RESUMEFAILUREACTION

Format <GeneralFailureAction>[,<FundsFailureAction>[,<ConnectionFailureAction>]]
where the action is one of CANCEL, DEFER, HOLD, IGNORE, or RETRY

Default IGNORE,IGNORE,IGNORE

Description Setting this parameter to IGNORE can result in under-charging, and
possibly over-charging of jobs. We recommend using

DEFER,CANCEL,DEFER in most cases, unless it is acceptable to have
occasional errors in the job charges.

This action is applied after a failure with the accounting manager when a job
is being resumed (e.g., after being suspended):

l Moab will apply <ConnectionFailureAction> to a job if there is a
connection failure between Moab and the accounting manager.

l Moab applies <FundsFailureAction> to the job if it is rejected due to
insufficient funds.

l Moab applies <GeneralFailureAction> to a job if the accounting manager
rejects it for any other reason.

l If you do not specify a <ConnectionFailureAction>, or if you do not
specify a <FundsFailureAction>, then Moab will apply the
<GeneralFailureAction> for the unspecified case.

If the action is set to CANCEL, Moab cancels the job; DEFER, Moab defers
the job; HOLD, Moab puts the job on hold; IGNORE, Moab ignores the failure
and continues to resume the job; RETRY, Moab does not resume the job on
this attempt but will continue to try to resume the job at the next
opportunity.

Example AMCFG[mam] RESUMEFAILUREACTION=HOLD,HOLD,IGNORE

A job will be resumed if Moab is unable to contact the accounting
manager. Otherwise, the job will be placed on hold if there is any
other failure with the accounting manager when Moab tries to
resume it.

RESUMEISBLOCKING

Format <BOOLEAN>

Default TRUE

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

RESUMEISBLOCKING

Description If set to TRUE, the scheduler will block while authorizing the resumption of a
job with the accounting manager. If set to FALSE, the accounting operation
will be queued to the accounting thread pool and scheduling will continue, but
resumption of the job will be delayed until a response is received.

Example AMCFG[mam] RESUMEISBLOCKING=FALSE

Specifies that Moab should use non-blocking calls with the
accounting manager when resuming jobs.

RESUMEURL

Format exec://<fullPathToResumeScript> or null:

Default exec://$TOOLSDIR/mam/usage.reserve.mam.pl if TYPE=Native; otherwise it
will make a direct call to MAM (mam:)

Description Moab runs this script before resuming a suspended job to determine whether
there it has authorization to resume (e.g., has sufficient funds).
For jobs, the RESUMEFAILUREACTION attribute specifies the action that
Moab should take if the authorization fails (such as for insufficient funds). If
you use a job charge policy of Successful, Moab will not call the script because
it does not yet know the completion status of the job.
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] RESUMEURL=exec://$TOOLSDIR/mam/usage.resume.custom.pl

Moab calls the usage.resume.custom.pl script for
authorization before resuming a suspended job.

RETRYFAILEDCHARGES

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, job charges will be retried if they have failed due to a
connection failure. When a job charge or usage record update (such as might
occur when a job is suspended, at the periodic charge interval, or when a job

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

456 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 457

RETRYFAILEDCHARGES

completes) results in a connection failure between Moab and the accounting
manager, then the charge request will be saved to a file in
SPOOLDIR/am/retrying/. Once Moab detects that the connection with
the accounting manager has been restored, the charge will be retried up to
CHARGERETRYCOUNT times. Charges that fail due to reasons other than a
connection failure, or connection failures that surpass the
CHARGERETRYCOUNT, will be saved to files in SPOOLDIR/am/failed/.

Example AMCFG[mam] RETRYFAILEDCHARGES=TRUE

Moab will retry connection-oriented charge failures.

SERVER

Format <URL>

Default N/A

Description The type and location of the accounting manager service.

Example AMCFG[mam] SERVER=mam://tiny.supercluster.org:4368

STARTFAILUREACTION

Format <GeneralFailureAction>[,<FundsFailureAction>[,<ConnectionFailureAction>]]
where the action is one of CANCEL, DEFER, HOLD, IGNORE, or RETRY

Default IGNORE,IGNORE,IGNORE

Description Setting this parameter to IGNORE can result in under-charging, and
possibly over-charging of jobs. We recommend using

DEFER,CANCEL,DEFER in most cases, unless it is acceptable to have
occasional errors in the job charges.

Moab applies the appropriate failure action if there is a failure when
registering the job start with the accounting manager:

l Moab applies <ConnectionFailureAction> to the job if there is a
communication problem with the accounting manager.

l Moab applies <FundsFailureAction> to the job if it is rejected due to

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

STARTFAILUREACTION

insufficient funds.
l Moab applies <GeneralFailureAction> to a job if the accounting manager

rejects it for any other reason.
l If you do not specify a <ConnectionFailureAction>, or if you do not

specify a <FundsFailureAction>, then Moab will apply the
<GeneralFailureAction> for the unspecified case.

If the action is set to CANCEL, Moab cancels the job; DEFER, Moab defers the
job; HOLD, Moab puts the job on hold; IGNORE, Moab ignores the failure and
continues to start the job; and RETRY, Moab does not start the job on this
attempt but attempts to start the job at the next opportunity.

Example AMCFG[mam] STARTFAILUREACTION=CANCEL,HOLD,IGNORE

A job will be placed on hold if there are insufficient funds when it is
time for it to start. It will be allowed to start if Moab is unable to
reach the accounting manager. For all other failures with the
accounting manager, the job will be canceled.

STARTISBLOCKING

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, the scheduler will block while authorizing the starting of a job
with the accounting manager. If set to FALSE, the accounting operation will be
queued to the accounting thread pool and scheduling will continue, but the
start of the job will be delayed until a response is received.

If using Moab in a Peer-to-Peer grid, do not set this parameter to FALSE.
The Start action is not supported as a non-blocking action in Peer-to-Peer
grids.

Example AMCFG[mam] STARTISBLOCKING=FALSE

Specifies that Moab should use non-blocking calls with the
accounting manager when starting jobs.

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

458 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 459

STARTURL

Format exec://<fullPathToStartScript> or null:

Default exec://$TOOLSDIR/mam/usage.reserve.mam.pl if TYPE=Native; otherwise it
will make a direct call to MAM (mam:)

Description Moab runs this script on a chargeable job or reservation to determine whether
it should start.
For jobs, the STARTFAILUREACTION attribute specifies the action that Moab
should take if the authorization fails (such as for insufficient funds).
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] STARTURL=exec://$TOOLSDIR/mam/usage.start.custom.pl

Moab calls the usage.start.custom.pl script for
authorization before starting a job or reservation.

THREADPOOLSIZE

Description This parameter is undocumented
in 9.0.

TIMEOUT

Format [[[DD:]HH:]MM:]SS

Default 15

Description The maximum delay allowed for communications with the accounting manager.

Example AMCFG[mam] TIMEOUT=30

TYPE

Format One of MAM or Native

Default MAM

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

TYPE

Description The accounting manager interface type.

Example AMCFG[mam] TYPE=MAM

Configures Moab to interact with MAM using the direct SSS
wire protocol.

UPDATEURL

Format exec://<fullPathToUpdateScript> or null:

Default exec://$TOOLSDIR/mam/usage.charge.mam.pl if TYPE=Native; otherwise it
will make a direct call to MAM (mam:)

Description If you have FLUSHINTERVAL set, Moab runs this script every flush interval
for each chargeable job or reservation to charge for the previous interval. This
call is usually followed by a call to the CONTINUEURL script, if defined, to
check whether there are sufficient funds to run for the next interval. If you use
a job charge policy of Successful, Moab will not call the script because it does
not yet know the completion status of the job.
To disable a script from being run at this stage, use 'null:' as the parameter
value.

Example AMCFG[mam] UPDATEURL=exec://$TOOLSDIR/mam/usage.update.custom.pl

Moab calls the usage.update.custom.pl script for
authorization to continue a job or reservation.

VALIDATEJOBSUBMISSION

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, when a new job is submitted, Moab will execute the
CREATEURL script (for TYPE=Native) or seek a job quote from Moab
Accounting Manager (TYPE=MAM) before allowing the job to be submitted.
Otherwise, the fund validation step is just utilized by reservations and
fallback account checks. If the call fails (for example, if the user's account
does not have sufficient funds or specifies an invalid account), Moab applies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

460 6.6 AMCFG Parameters and Flags

6.6 AMCFG Parameters and Flags 461

VALIDATEJOBSUBMISSION

the CREATEFAILUREACTION.

Example AMCFG[mam] VALIDATEJOBSUBMISSION=True CREATEFAILUREACTION=Hold

Verify jobs have sufficient funds to run at the time they are
submitted.

6.6.2 AMCFG Flags
AMCFG flags can be used to enable special services and to disable default services. These
services are enabled/disabled by setting the AMCFG FLAGS attribute (see FLAGS).

Flag Name Description

ACCOUNTFAILASFUNDS When this flag is set, logic failures within the accounting manager
are treated as fund failures and are canceled. When
ACCOUNTFAILASFUNDS is not set, accounting manager failures
are treated as a server failure and the result is a job that requests
an account to which the user does not have access.

LOCALCOST This flag is deprecated beginning with the Moab 9.1.0
release and may be removed in a future release.

STRICTQUOTE Sends an estimated process count to the accounting manager
when an initial quote is requested for a newly-submitted job.

Related Topics

l 6.5 Accounting, Charging, and Allocation Management - page 419

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

462

Chapter 7: Controlling Resource Access -
Reservations, Partitions, and QoS Facilities

In this chapter:

7.1 Advance Reservations 463
7.1.1 Reservation Overview 463
7.1.2 Administrative Reservations 469
7.1.3 Standing Reservations 471
7.1.4 Reservation Policies 471
7.1.5 Configuring and Managing Reservations 476

7.1.6Personal/User Reservations - Enabling Reservations for EndUsers 516
7.2 Partitions 519

7.2.1 Partition Overview 520
7.2.2 Defining Partitions 521
7.2.3 Managing Partition Access 521
7.2.4 Requesting Partitions 523
7.2.5 Per-Partition Settings 523
7.2.6 Miscellaneous Partition Issues 524

7.3 Quality of Service (QoS) Facilities 525
7.3.1 QoS Overview 525
7.3.2 QoS Enabled Privileges 526
7.3.3 Managing QoS Access 534
7.3.4 Requesting QoS Services at Job Submission 535
7.3.5 Restricting Access to Special Attributes 536

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

7.1 Advance Reservations

An advance reservation is the mechanism by which Moab guarantees the availability of a
set of resources at a particular time. Each reservation consists of three major components:
(1) a set of resources, (2) a time frame, and (3) an access control list. It is a scheduler role
to ensure that the access control list is not violated during the reservation's lifetime (that is,
its time frame) on the resources listed. For example, a reservation may specify that
node002 is reserved for user Tom on Friday. The scheduler is therefore constrained to
make certain that only Tom's jobs can use node002 at any time on Friday. Advance
reservation technology enables many features including backfill, deadline based
scheduling, grid scheduling, and QOS support.

The mrsvctl command is used to create, modify, query, and release reservations.

In this chapter:

7.1.1 Reservation Overview 463
7.1.2 Administrative Reservations 469
7.1.3 Standing Reservations 471
7.1.4 Reservation Policies 471
7.1.5 Configuring and Managing Reservations 476
7.1.6Personal/User Reservations - Enabling Reservations for End Users 516

7.1.1 Reservation Overview
Every reservation consists of 3 major components: (1) a set of resources, (2) a time frame,
and (3) an access control list. Additionally, a reservation can also have a number of optional
attributes controlling its behavior and interaction with other aspects of scheduling.
Reservation attribute descriptions follow.

In this topic:

7.1.1.A Resources - page 464
7.1.1.B Time Frame - page 465
7.1.1.C Access Control List - page 465
7.1.1.D Job to Reservation Binding - page 465

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

463 7.1 Advance Reservations

7.1 Advance Reservations 464

7.1.1.E Reservation Specification - page 467
7.1.1.F Reservation Behavior - page 467
7.1.1.G Reservation Group - page 468
7.1.1.H Infinite Jobs and Reservations - page 468

7.1.1.A Resources
Under Moab, the resources specified for a reservation are specified by way of a task
description. Conceptually, a task can be thought of as an atomic, or indivisible, collection of
resources. If reservation resources are unspecified, a task is a node by default. To define a
task, specify resources. The resources can include processors, memory, swap, local disk,
and so forth. For example, a single task may consist of one processor, 2 GB of memory, and
10 GB of local disk.

A reservation consists of one or more tasks. In attempting to locate the resources required
for a particular reservation, Moab examines all feasible resources and locates the needed
resources in groups specified by the task description. An example may help clarify this
concept:

Reservation A requires four tasks. Each task is defined as 1 processor and 1 GB of memory.

Node X has 2 processors and 3 GB of memory available
Node Y has 2 processors and 1 GB of memory available
Node Z has 2 processors and 2 GB of memory available

When collecting the resources needed for the reservation, Moab examines each node in
turn. Moab finds that Node X can support 2 of the 4 tasks needed by reserving 2
processors and 2 GB of memory, leaving 1 GB of memory unreserved. Analysis of Node Y
shows that it can only support 1 task reserving 1 processor and 1 GB of memory, leaving 1
processor unreserved. Note that the unreserved memory on Node X cannot be combined
with the unreserved processor on Node Y to satisfy the needs of another task because a
task requires all resources to be located on the same node. Finally, analysis finds that node
Z can support 2 tasks, fully reserving all of its resources.

Both reservations and jobs use the concept of a task description in specifying how
resources should be allocated. It is important to note that although a task description is
used to allocate resources to a reservation, this description does not in any way constrain
the use of those resources by a job. In the above example, a job requesting resources
simply sees 4 processors and 4 GB of memory available in reservation A. If the job has
access to the reserved resources and the resources meet the other requirements of the
job, the job could use these resources according to its own task description and needs.

Currently, the resources that can be associated with reservations include processors,
memory, swap, local disk, initiator classes, and any number of arbitrary resources.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Arbitrary resources can include peripherals such as tape drives, software licenses, or any
other site specific resource.

7.1.1.B Time Frame
Associated with each reservation is a time frame. This specifies when the resources will be
reserved or dedicated to jobs that meet the reservation's access control list (ACL). The time
frame simply consists of a start time and an end time. When configuring a reservation, this
information can be specified as a start time together with either an end time or a duration.

7.1.1.C Access Control List
A reservation's access control list specifies which jobs can use a reservation. Only jobs that
meet one or more of a reservation's access criteria are allowed to use the reserved
resources during the reservation time frame. Currently, the reservation access criteria
include the following: users, groups, accounts, classes, QOS, job attributes, job duration, and
job templates.

7.1.1.D Job to Reservation Binding
While a reservation's ACL will allow particular jobs to use reserved resources, it does not
force any job to use these resources. With each job, Moab attempts to locate the best
possible combination of available resources whether these are reserved or unreserved.
For example, in the following figure, note that job X, which meets access criteria for both
reservation A and B, allocates a portion of its resources from each reservation and the
remainder from resources outside of both reservations.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

465 7.1 Advance Reservations

7.1 Advance Reservations 466

Image 7-1: Job X uses resources from reservations A and B

Although by default, reservations make resources available to jobs that meet particular
criteria, Moab can be configured to constrain jobs to only run within accessible
reservations. This can be requested by the user on a job by job basis using a resource
manager extension flag, or it can be enabled administratively via a QoS flag. For example,
assume two reservations were created as follows:

> mrsvctl -c -a GROUP==staff -d 8:00:00 -h 'node[1-4]'
reservation staff.1 created

> mrsvctl -c -a USER==john -t 2
reservation john.2 created

If the user 'john,' who happened to also be a member of the group 'staff,' wanted to force a
job to run within a particular reservation, 'john' could do so using the FLAGS resource
manager extension. Specifically, in the case of a PBS job, the following submission would
force the job to run within the 'staff.1' reservation:

> msub -l nodes=1,walltime=1:00:00,flags=ADVRES:staff.1 testjob.cmd

Note that for this to work, PBS needs to have resource manager extensions enabled as
described in the PBS Resource Manager Extension Overview. (Torque has resource
manager extensions enabled by default.) If the user wants the job to run on reserved
resources but does not care which, the user could submit the job with the following:

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

> msub -l nodes=1,walltime=1:00:00,flags=ADVRES testjob.cmd

To enable job to reservation mapping via QoS, the QoS flag USERESERVED should be set in
a similar manner.

Use the reservation BYNAME flag to require explicit binding for reservation access.

To lock jobs linked to a particular QoS into a reservation or reservation group, use the
REQRID attribute.

7.1.1.E Reservation Specification
There are two main types of reservations that sites typically deal with. The first,
administrative reservations, are typically one-time reservations created for special
purposes and projects. These reservations are created using the mrsvctl or setres
commands. These reservations provide an integrated mechanism to allow graceful
management of unexpected system maintenance, temporary projects, and time critical
demonstrations. This command allows an administrator to select a particular set of
resources or just specify the quantity of resources needed. For example an administrator
could use a regular expression to request a reservation be created on the nodes 'blue0[1-
9]' or could simply request that the reservation locate the needed resources by specifying
a quantity based request such as 'TASKS==20.'

The second type of reservation is called a standing reservation. It is specified using the
SRCFG parameter and is of use when there is a recurring need for a particular type of
resource distribution. Standing reservations are a powerful, flexible, and efficient means
for enabling persistent or periodic policies such as those often enabled using classes or
queues. For example, a site could use a standing reservation to reserve a subset of its
compute resources for quick turnaround jobs during business hours on Monday thru
Friday. The Standing Reservation Overview provides more information about configuring
and using these reservations.

7.1.1.F Reservation Behavior
As previously mentioned, a given reservation can have one or more access criteria. A job
can use the reserved resources if it meets at least one of these access criteria. It is possible
to stack multiple reservations on the same node. In such a situation, a job can only use the
given node if it has access to each active reservation on the node.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

467 7.1 Advance Reservations

7.1 Advance Reservations 468

7.1.1.G Reservation Group
Reservations groups are ways of associating multiple reservations. This association is
useful for variable namespace and reservation requests. The reservations in a group
inherit the variables from the reservation group head, but if the same variable is set locally
on a reservation in the group, the local variable overrides the inherited variable. Variable
inheritance is useful for triggers as it provides greater flexibility with automating certain
tasks and system behaviors.

Jobs can be bound to a reservation group (instead of a single reservation) by using the
resource manager extension ADVRES.

7.1.1.H Infinite Jobs and Reservations
To allow infinite walltime jobs, you must have the following scheduler flag set:

SCHEDCFG[Moab] FLAGS=allowinfinitejobs

You can submit an infinite job by completing:

msub -l walltime=INFINITY

Or an infinite reservation by completing:

mrsvctl -c -d INFINITY

Infinite jobs can run in infinite reservations. Infinite walltime also works with job templates
and advres.

Output XML for infinite jobs will print 'INFINITY' in the ReqAWDuration, and XML for
infinite rsvs will print 'INFINITY' in duration and endtime:

<Data>
<rsv AUser="jgardner" AllocNodeCount="1" AllocNodeList="n5"
AllocProcCount="4" AllocTaskCount="1" HostExp="n5"
LastChargeTime="0" Name="jgardner.1" Partition="base"
ReqNodeList="n5:1" Resources="PROCS=[ALL]" StatCBPS="0"
StatCRPS="800" StatTBPS="0" StatTRPS="0" SubType="Other"
Type="User" cost="0.000000" ctime="1302127058"
duration="INFINITY" endtime="INFINITY" starttime="1302127058">
<ACL aff="neutral" cmp="%=" name="jgardner.1" type="RSV"></ACL>
<ACL cmp="%=" name="jgardner" type="USER"></ACL>
<ACL cmp="%=" name="company" type="GROUP"></ACL>
<ACL aff="neutral" cmp="%=" name="jgardner.1" type="RSV"></ACL>
<History>
<event state="PROCS=4" time="1302127058"></event>

</History>
</rsv>

</Data>

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Related Topics

l Reservation Allocation Policies

7.1.2 Administrative Reservations
Administrative reservations behave much like standing reservations but are generally
created to address non-periodic, one-time issues. All administrative reservations are
created using the mrsvctl -c (or setres) command and are persistent until they expire or
are removed using the mrsvctl -r (or releaseres) command.

In this topic:

7.1.2.A Annotating Administrative Reservations - page 469
7.1.2.B Using Reservation Profiles - page 469
7.1.2.C Optimizing Maintenance Reservations - page 470

7.1.2.A Annotating Administrative Reservations
Reservations can be labeled and annotated using comments allowing other administrators,
local users, portals and other services to obtain more detailed information regarding the
reservations. Naming and annotations are configured using the -n and -D options of the
mrsvctl command respectively, as in the following example:

> mrsvctl -c -D 'testing infiniband performance' -n nettest -h 'r:agt[15-245]'

7.1.2.B Using Reservation Profiles
You can set up reservation profiles to avoid manually and repetitively inputting standard
reservation attributes. Profiles can specify reservation names, descriptions, ACLs,
durations, hostlists, triggers, flags, and other aspects that are commonly used. With a
reservation profile defined, a new administrative reservation can be created that uses this
profile by specifying the -P flag as in the following example:

RSVPROFILE[mtn1] TRIGGER=AType=exec,Action="/tmp/trigger1.sh",EType=start
RSVPROFILE[mtn1] USERLIST=steve,marym
RSVPROFILE[mtn1] HOSTEXP="r:50-250"

> mrsvctl -c -P mtn1 -s 12:00:00_10/03 -d 2:00:00

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

469 7.1 Advance Reservations

7.1 Advance Reservations 470

Example 7-1: Non-Blocking System Reservations with Scheduler Pause:

RSVPROFILE[pause] TRIGGER=atype=exec,etype=start,action="/opt/moab/bin/mschedctl -p"
RSVPROFILE[pause] TRIGGER=atype=exec,etype=cancel,action="/opt/moab/bin/mschedctl -r"
RSVPROFILE[pause] TRIGGER=atype=exec,etype=end,action="/opt/moab/bin/mschedctl -r"

> mrsvctl -c -P pause -s 12:00:00_10/03 -d 2:00:00

7.1.2.C Optimizing Maintenance Reservations
Any reservation causes some negative impact on cluster performance as it further limits
the scheduler's ability to optimize scheduling decisions. You can mitigate this impact by
using flexible ACLs and triggers.

In particular, a maintenance reservation can be configured to reduce its effective
reservation shadow by allowing overlap with checkpointable/preemptible jobs until the
time the reservation becomes active. This can be done using a series of triggers that
perform the following actions:

l Modify the reservation to disable preemption access.

l Preempt jobs that may overlap the reservation.

l Cancel any jobs that failed to properly checkpoint and exit.

The following example highlights one possible configuration:

RSVPROFILE[adm1] JOBATTRLIST=PREEMPTEE
RSVPROFILE[adm1] DESCRIPTION="regular system maintenance"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-
300,AType=internal,Action="rsv:-:modify:acl:jattr-=PREEMPTEE"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-240,AType=jobpreempt,Action="checkpoint"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-60,AType=jobpreempt,Action="cancel"

> mrsvctl -c -P adm1 -s 12:00:00_10/03 -d 8:00:00 -h ALL

This reservation reserves all nodes in the cluster for a period of eight hours. Five minutes
before the reservation starts, the reservation is modified to remove access to new
preemptible jobs. Four minutes before the reservation starts, preemptible jobs that overlap
the reservation are checkpointed. One minute before the reservation, all remaining jobs
that overlap the reservation are canceled.

Related Topics

l Backfill

l Preemption

l mrsvctl command

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

7.1.3 Standing Reservations
Standing reservations build upon the capabilities of advance reservations to enable a site
to enforce advanced usage policies in an efficient manner. Standing reservations provide a
superset of the capabilities typically found in a batch queuing system's class or queue
architecture. For example, queues can be used to allow only particular types of jobs access
to certain compute resources. Also, some batch systems allow these queues to be
configured so that they only allow this access during certain times of the day or week.
Standing reservations allow these same capabilities but with greater flexibility and
efficiency than is typically found in a normal queue management system.

Standing reservations provide a mechanism by which a site can dedicate a particular block
of resources for a special use on a regular daily or weekly basis. For example, node X could
be dedicated to running jobs only from users in the accounting group every Friday from 4
to 10 p.m. See the Reservation Overview for more information about the use of
reservations. The Managing Reservations section provides a detailed explanation of the
concepts and steps involved in the creation and configuration of standing reservations.

A standing reservation is a powerful means of doing the following:

l Controlling local credential based access to resources.

l Controlling external peer and grid based access to resources.

l Controlling job responsiveness and turnaround.

Related Topics

l SRCFG

l Moab Workload Manager for Grids

l mdiag -s (diagnose standing reservations)

7.1.4 Reservation Policies

In this topic:

7.1.4.A Controlling Priority Reservation Creation - page 472
7.1.4.B Priority Reservation Creation Policy - page 472
7.1.4.C Managing Resource Failures - page 474

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

471 7.1 Advance Reservations

7.1 Advance Reservations 472

7.1.4.D Resource Allocation Policy - page 475
7.1.4.E Accounting for Reserved Resources - page 475

7.1.4.A Controlling Priority Reservation Creation
In addition to standing and administrative reservations, Moab can also create priority
reservations. These reservations are used to allow the benefits of out-of-order execution
(such as is available with backfill) without the side effect of job starvation. Starvation can
occur in any system where the potential exists for a job to be overlooked by the scheduler
for an indefinite period. In the case of backfill, small jobs may continue to run on available
resources as they become available while a large job sits in the queue, never able to find
enough nodes available simultaneously on which to run.

To avoid such situations, priority reservations are created for high priority jobs that cannot
run immediately. When making these reservations, the scheduler determines the earliest
time the job could start and then reserves these resources for use by this job at that future
time.

7.1.4.B Priority Reservation Creation Policy
Organizations have the ability to control how priority reservations are created and
maintained. It is possible that one job can be at the top of the priority queue for a time and
then get bypassed by another job submitted later. The parameter RESERVATIONPOLICY
allows a site to determine how existing reservations should be handled when new
reservations are made.

Value Description

HIGHEST All jobs that have ever received a priority reservation up to the
RESERVATIONDEPTH number will maintain that reservation until
they run, even if other jobs later bypass them in priority value.
For example, if there are four jobs with priorities of 8, 10,12, and 20.

RESERVATIONPOLICY HIGHEST
RESERVATIONDEPTH 3

Only jobs 20, 12, and 10 get priority reservations. Later, if a job with
priority higher than 20 is submitted into the queue, it will also get a
priority reservation along with the jobs listed previously. If four jobs
higher than 20 were to be submitted into the queue, only three would
get priority reservations, in accordance with the condition set in the
RESERVATIONDEPTH policy.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Value Description

With HIGHEST, Moab may appear to exceed the
RESERVATIONDEPTH if it has already scheduled the maximum
number of priority reservations and then users submit jobs with higher
priority than those already given a priority reservation. Moab keeps all
of the previously-created priority reservations and creates new ones for
jobs with higher priority (again up to the quantity specified with
RESERVATIONDEPTH). This means that, if your
RESERVATIONDEPTH is set to 3, Moab can potentially schedule up to
3 new priority reservations each scheduling iteration, as long as new
higher-priority jobs are continually submitted. This behavior ensures
that the highest-priority jobs receive attention while the former
highest-priority jobs do not lose their priority reservation.

CURRENTHIGHEST Only the current top <RESERVATIONDEPTH> priority jobs receive
reservations. Under this policy, all job reservations are destroyed each
iteration when the queue is re-prioritized. The top jobs in the queue
are then given new reservations.

NEVER No priority reservations are made.

Priority Reservation Depth
By default, only the highest priority job receives a priority reservation. However, this
behavior is configurable via the RESERVATIONDEPTH policy. Moab's default behavior of
only reserving the highest priority job allows backfill to be used in a form known as liberal
backfill. Liberal backfill tends to maximize system utilization and minimize overall average
job turnaround time. However, it does lead to the potential of some lower priority jobs
being indirectly delayed and might lead to greater variance in job turnaround time. The
RESERVATIONDEPTH parameter can be set to a very large value, essentially enabling
what is called conservative backfill where every job that cannot run is given a reservation.
Most sites prefer the liberal backfill approach associated with the default
RESERVATIONDEPTH of 1 or else select a slightly higher value. It is important to note that
to prevent starvation in conjunction with reservations, monotonically increasing priority
factors such as queue time or job XFactor should be enabled. See 5.1.1 Priority Overview -
page 335 for more information on priority factors.

Another important consequence of backfill and reservation depth is how they affect job
priority. In Moab, all jobs are prioritized. Backfill allows jobs to be run out of order and
therefore, to some extent, job priority to be ignored. This effect, known as priority dilution,
can cause many site policies implemented via Moab prioritization policies to be ineffective.
Setting the RESERVATIONDEPTH parameter to a higher value gives job priority more
teeth at the cost of slightly lower system utilization. This lower utilization results from the
constraints of these additional reservations, decreasing the scheduler's freedom and its

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

473 7.1 Advance Reservations

7.1 Advance Reservations 474

ability to find additional optimizing schedules. Anecdotal evidence indicates that these
utilization losses are fairly minor, rarely exceeding 8%.

It is difficult to know the right setting for the RESERVATIONDEPTH parameter. Surveys
indicate that the vast majority of sites use the default value of 1. Sites that do modify this
value typically set it somewhere in the range of 2 to 10. The following guidelines may be
useful in determining if and how to adjust this parameter:

Reasons to Increase RESERVATIONDEPTH
l The estimated job start time information provided by the showstart command is
heavily used and the accuracy needs to be increased.

l Priority dilution prevents certain key mission objectives from being fulfilled.

l Users are more interested in knowing when their job will run than in having it run
sooner.

Reasons to Decrease RESERVATIONDEPTH
l Scheduling efficiency and job throughput need to be increased.

Assigning Per-QoS Reservation Creation Rules
QoS based reservation depths can be enabled via the RESERVATIONQOSLIST parameter.
This parameter allows varying reservation depths to be associated with different sets of
job QoSs. For example, the following configuration creates two reservation depth
groupings:

RESERVATIONDEPTH[0] 8
RESERVATIONQOSLIST[0] highprio,interactive,debug
RESERVATIONDEPTH[1] 2
RESERVATIONQOSLIST[1] batch

This example causes that the top 8 jobs belonging to the aggregate group of highprio, interactive, and
debug QoS jobs will receive priority reservations. Additionally, the top two batch QoS jobs will also receive priority
reservations. Use of this feature allows sites to maintain high throughput for important jobs by guaranteeing that a
significant proportion of these jobs progress toward starting through use of the priority reservation.

By default, the following parameters are set inside Moab:

RESERVATIONDEPTH[DEFAULT] 1
RESERVATIONQOSLIST[DEFAULT] ALL

This allows one job with the highest priority to get a reservation. These values can be overwritten by modifying the
DEFAULT policy.

7.1.4.C Managing Resource Failures
Moab allows organizations to control how to best respond to a number of real-world issues.
Occasionally when a reservation becomes active and a job attempts to start, various

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

resource manager race conditions or corrupt state situations will prevent the job from
starting. By default, Moab assumes the resource manager is corrupt, releases the
reservation, and attempts to re-create the reservation after a short timeout. However, in
the interval between the reservation release and the re-creation timeout, other priority
reservations may allocate the newly available resources, reserving them before the original
reservation gets an opportunity to reallocate them. Therefore, when the original job
reservation is re-established, its original resource may be unavailable and the resulting
new reservation might be delayed several hours from the earlier start time. The parameter
RESERVATIONRETRYTIME allows a site that is experiencing frequent resource manager
race conditions and/or corruption situations to tell Moab to hold on to the reserved
resource for a period of time in an attempt to allow the resource manager to correct its
state.

7.1.4.D Resource Allocation Policy
By default, when a standing or administrative reservation is created, Moab allocates nodes
in accordance with the specified taskcount, node expression, node constraints, and the
MINRESOURCE node allocation policy.

7.1.4.E Accounting for Reserved Resources
If an accounting manager is configured within Moab, resources consumed by jobs are
tracked and charged by default. However, resources dedicated to a reservation are not
charged by default although they are recorded within the reservation event record. In
particular, total processor seconds reserved by the reservation and total processor
seconds blocked by jobs are among the statistics recorded. While some of this information
is available in real-time using the mdiag -r command (see the 'PH Allocated to Jobs' field), it
is not written to the event log until reservation completion.

It is possible to track or charge for the total and unused cycles in a reservation with the
accounting manager. See 6.5.5 Charging for Reservations - page 425for details on
configuring Moab to use the accounting manger to track or charge for unused processors
in a reservation.

Related Topics

l Reservation Overview

l Backfill

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

475 7.1 Advance Reservations

7.1 Advance Reservations 476

7.1.5 Configuring and Managing Reservations

In this topic:

7.1.5.A Reservation Attributes - page 476
7.1.5.B Configuring Standing Reservations - page 484
7.1.5.C Managing Administrative Reservations - page 515

7.1.5.A Reservation Attributes
All reservations possess a time frame of activity, an access control list (ACL), and a list of
resources to be reserved. Additionally, reservations can also possess a number of
extension attributes including epilog/prolog specification, reservation ownership and
accountability attributes, and special flags that modify the reservation's behavior.

Start/End Time
All reservations possess a start and an end time that define the reservation's active time.
During this active time, the resources within the reservation can only be used as specified
by the reservation access control list (ACL). This active time can be specified as either a
start/end pair or a start/duration pair. Reservations exist and are visible from the time
they are created until the active time ends at which point they are automatically removed.

Access Control List (ACL)
For a reservation to be useful, it must be able to limit who or what can access the resources
it has reserved.

By default, a reservation can allocate resources that possess credentials that meet the
submitter's ACL. In other words, a user's reservation won't necessarily allocate only
free and idle nodes. If a reservation exists that coincides with the submitter's ACL, the
nodes under that reservation are also considered for allocation. This is referred to as
ACL overlap. To make new reservations allocate only free and idle nodes, you must
use the NOACLOVERLAP flag.

This is handled by way of an ACL. With reservations, ACLs can be based on credentials,
resources requested, or performance metrics. In particular, with a standing reservation,
the attributes USERLIST, GROUPLIST, ACCOUNTLIST, CLASSLIST, QOSLIST,
JOBATTRLIST, PROCLIMIT, MAXTIME, or TIMELIMIT can be specified. See Affinity
and Modifiers.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Reservation access can be adjusted based on a job's requested node features by
mapping node feature requests to job attributes as in the following example:

NODECFG[DEFAULT] FEATURES=ia64
NODETOJOBATTRMAP ia64,ia32
SRCFG[pgs] JOBATTRLIST=ia32

> mrsvctl -c -a jattr=gpfs\! -h "r:13-500"

Selecting Resources
When specifying which resources to reserve, the administrator has a number of options.
These options allow control over how many resources are reserved and where they are
reserved. The following reservation attributes allow the administrator to define resources.

Task Description

Moab uses the task concept extensively for its job and reservation management. A task is
simply an atomic collection of resources, such as processors, memory, or local disk, which
must be found on the same node. For example, if a task requires 4 processors and 2 GB of
memory, the scheduler must find all processors AND memory on the same node; it cannot
allocate 3 processors and 1 GB on one node and 1 processor and 1 GB of memory on
another node to satisfy this task. Tasks constrain how the scheduler must collect resources
for use in a standing reservation; however, they do not constrain the way in which the
scheduler makes these cumulative resources available to jobs. A job can use the resources
covered by an accessible reservation in whatever way it needs. If reservation X allocates 6
tasks with 2 processors and 512 MB of memory each, it could support job Y that requires
10 tasks of 1 processor and 128 MB of memory or job Z that requires 2 tasks of 4
processors and 1 GB of memory each. The task constraints used to acquire a reservation's
resources are transparent to a job requesting use of these resources.

SRCFG[test] RESOURCES=PROCS:2,MEM:1024

Taskcount

Using the task description, the taskcount attribute defines how many tasks must be
allocated to satisfy the reservation request. To create a reservation, a taskcount and/or a
hostlist must be specified.

SRCFG[test] TASKCOUNT=256

Hostlist

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

477 7.1 Advance Reservations

7.1 Advance Reservations 478

A hostlist constrains the set of resources available to a reservation. If no taskcount is
specified, the reservation attempts to reserve one task on each of the listed resources. If a
taskcount is specified that requests fewer resources than listed in the hostlist, the
scheduler reserves only the number of tasks from the hostlist specified by the taskcount
attribute. If a taskcount is specified that requests more resources than listed in the hostlist,
the scheduler reserves the hostlist nodes first and then seeks additional resources outside
of this list.

When specifying resources for a hostlist, you can specify exact set, superset, or subset of
nodes on which the job must run. Use the caret (^) or asterisk (*) characters to specify a
hostlist as superset or subset respectively.

l An exact set is defined without a caret or asterisk. An exact set means all the hosts in
the specified hostlist must be selected for the job.

l A subset means the specified hostlist is used first to select hosts for the job. If the job
requires more hosts than are in the subset hostlist, they will be obtained from
elsewhere if possible. If the job does not require all of the nodes in the subset hostlist,
it will use only the ones it needs.

l A superset means the hostlist is the only source of hosts that should be considered
for running the job. If the job can't find the necessary resources in the superset
hostlist it should not run. No other hosts should be considered in allocating the job.

SRCFG[test] HOSTLIST=node01,node1[3-5]

Example 7-2: Subset

SRCFG[one] HOSTLIST=node1,node5* TASKCOUNT=5 PERIOD=DAY USERLIST=user1

Example 7-3: Superset

SRCFG[two] HOSTLIST=node1,node2,node3,node4,node5^ TASKCOUNT=3 PERIOD=DAY
USERLIST=user1

Node Features

Node features can be specified to constrain which resources are considered.

Example 7-4:

SRCFG[test] NODEFEATURES=fastos

Partition

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

A partition can be specified to constrain which resources are considered.

SRCFG[test] PARTITION=core3

Flags
Reservation flags allow specification of special reservation attributes or behaviors.
Supported flags are listed in the following table:

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

479 7.1 Advance Reservations

7.1 Advance Reservations 480

Flags

Flag Name Description

ACLOVERLAP Deprecated (this is now a default flag). In
addition to free or idle nodes, a reservation can
also reserve resources with job reservations
possessing credentials that meet the reservation's
ACL. To change this behavior, set the
NOACLOVERLAP flag.

ADVRESJOBDESTROY All jobs that have an ADVRES matching this
reservation are canceled when the reservation is
destroyed.

ALLOWGRID By default, jobs migrated from one Moab to
another Moab in a grid are not allowed within
local reservations. This flag allows migrated jobs to
access local reservations when they match the ACL.

ALLOWJOBOVERLAP A job is allowed to start in a reservation that may
end before the job completes. When the
reservation ends before the job completes, the job
will not be canceled but will continue to run.

BESTEFFORT Reservation is placed, even if only some of the
specified resources are available.

BYNAME Reservation only allows access to jobs that meet
reservation ACLs and explicitly request the
resources of this reservation using the job ADVRES
flag. See Job to Reservation Binding.

DEDICATEDRESOURCE
(a.k.a. EXCLUSIVE)

Reservation placed only on resources that are not
reserved by any other reservation including job,
system, and user reservation. There are two
exceptions to this:
1. Reserved resources could be allocated when

DEDICATEDRESOURCE is combined with
IGNJOBRSV*

2. Reserved resources could be allocated when a
reservation matches the submitter's ACL. In this
case, to make DEDICATEDRESOURCE truly
exclusive, use the NOACLOVERLAP flag.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Flag Name Description

The order that SRCFG reservations are listed
in the configuration is important when using
DEDICATEDRESOURCE, because
reservations made afterwards can steal
resources later. During configuration, list
DEDICATEDRESOURCE reservations last to
guarantee exclusiveness.

ENFORCENODESET Moab will ensure global NODESET rules are
followed when initially placing the reservation.

EVACVMS Reservation will automatically evacuate virtual
machines from the reservation nodelist.

The same action can be accomplished by
using reservation profiles. For more
information, see Optimizing Maintenance
Reservations.

IGNIDLEJOBS* Reservation can be placed on top of idle job
reservations.

This flag is meant to be used in conjunction
with DEDICATEDRESOURCE.

IGNJOBRSV* Ignores existing job reservations, allowing the
reservation to be forced onto available resources
even if it conflicts with existing job reservations.
User and system reservation conflicts are still valid.
It functions the same as IGNIDLEJOBS plus allows a
reservation to be placed on top of an existing
running job's reservation.

This flag is meant to be used in conjunction
with DEDICATEDRESOURCE.

IGNRSV* Request ignores existing resource reservations
allowing the reservation to be forced onto
available resources even if this conflicts with other
reservations. It functions the same as IGNJOBRSV
plus allows the reservation to be placed on top of

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

481 7.1 Advance Reservations

7.1 Advance Reservations 482

Flag Name Description

the system reservations.

This flag is meant to be used in conjunction
with DEDICATEDRESOURCE.

IGNSTATE* Reservation ignores node state when assigning
nodes. It functions the same as IGNRSV plus allows
the reservation to be placed on nodes that are not
currently available. Also ignores resource
availability on nodes.

IGNSTATE is specified by default when using
a HOSTLIST to define nodes. However, if
using a HOSTLIST and a TASKCOUNT, you
need to specify IGNSTATE if you want Moab
to ignore the node state when assigning
nodes to the reservation.

NOACLOVERLAP All resources must be free or idle, with no existing
reservations. Moab will not allocate in-use
resources even if they match the reservation's ACL.

mrsvctl -c -t 12 -E -F noacloverlap -a user==john

Moab looks for resources that are
exclusive (free). Without the flag, Moab
would look for resources that are
exclusive or that are already running
john's jobs.

This flag is meant to be used in conjunction
with DEDICATEDRESOURCE.

OWNEREXCLUSIVEBF When the owner of the reservation has an idle job
in the queue only owner jobs will be allowed to
backfill into the reservation. This blocks non-
owner jobs from backfilling into the reservation.

ENABLEPROFILING must be set for the
owner credential.

OWNERPREEMPT Jobs by the reservation owner are allowed to

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Flag Name Description

preempt non-owner jobs using reservation
resources.

OWNERPREEMPTIGNOREMINTIME Allows the OWNERPREEMPT flag to "trump" the
PREEMPTMINTIME setting for jobs already
running on a reservation when the owner of the
reservation submits a job. For example: without
the OWNERPREEMPTIGNOREMINTIME flag set, a
job submitted by the owner of a reservation will
not preempt non-owner jobs already running on
the reservation until the PREEMPTMINTIME
setting (if set) for those jobs is passed.
With the OWNERPREEMPTIGNOREMINTIME flag
set, a job submitted by the owner of a reservation
immediately preempts non-owner jobs already
running on the reservation, regardless of whether
PREEMPTMINTIME is set for the non-owner jobs.

OWNERPREEMPTQT Specifies how much time a job from OWNER must
wait in the queue before preempting jobs within
the standing reservation.

SRCFG[test] OWNERPREEMPTQT=2:00:00

OWNER jobs must wait 2 hours in the
queue before preempting.

REQFULL Reservation is only created when all resources can
be allocated.

SINGLEUSE Reservation is automatically removed after
completion of the first job to use the reserved
resources.

SPACEFLEX Deprecated (this is now a default flag).
Reservation is allowed to adjust resources
allocated over time in an attempt to optimize
resource utilization.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

483 7.1 Advance Reservations

7.1 Advance Reservations 484

* IGNIDLEJOBS, IGNJOBRSV, IGNRSV, and IGNSTATE flags are built on one
another and form a hierarchy. IGNJOBRSV performs the function of IGNIDLEJOBS
plus its own functions. IGNRSV performs the function of IGNJOBSRV and
IGNIDLEJOBS plus its own functions. IGNSTATE performs the function of IGNRSV,
IGNJOBRSV, and IGNIDLEJOBS plus its own functions. While you can use
combinations of these flags, it is not necessary. If you set one flag, you do not need to
set other flags that fall beneath it in the hierarchy.

Most flags can be associated with a reservation via the mrsvctl -c -F command or the
SRCFG parameter.

7.1.5.B Configuring Standing Reservations
Standing reservations allow resources to be dedicated for particular uses. This dedication
can be configured to be permanent or periodic, recurring at a regular time of day and/or
time of week. There is extensive applicability of standing reservations for everything from
daily dedicated job runs to improved use of resources on weekends. By default, standing
reservations can overlap other reservations. Unless you set an ignore-type flag
(ACLOVERLAP, DEDICATEDRESOURCE, IGNIDLEJOBS, or IGNJOBRSV), they are
automatically given the IGNRSV flag. All standing reservation attributes are specified via
the SRCFG parameter using the attributes listed in the table below.

Standing Reservation Attributes

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Standing Reservation Attributes

ACCESS

Format DEDICATED or SHARED

Default ---

Description If set to SHARED, allows a standing reservation to use resources already
allocated to other non-job reservations. Otherwise, these other
reservations block resource access.

Example SRCFG[test] ACCESS=SHARED

Standing reservation test can access resources allocated to
existing standing and administrative reservations.

The order that SRCFG reservations are listed in the configuration are
important when using DEDICATED, because reservations made
afterwards can steal resources later. During configuration, list
DEDICATED reservations last to guarantee exclusiveness.

ACCOUNTLIST

Format List of valid, comma-delimited account names (see ACL Modifiers).

Default ---

Description Specifies that jobs with the associated accounts can use the resources
contained within this reservation.

Example SRCFG[test] ACCOUNTLIST=ops,staff

Jobs using the account ops or staff are granted access to the
resources in standing reservation test.

CHARGE

Format <BOOLEAN>

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

485 7.1 Advance Reservations

7.1 Advance Reservations 486

CHARGE

Default ---

Description Overrides the default charging behavior:

l If set to True, overrides AMCFG[]
RESERVATIONCHARGEPOLICY=Select to indicate that this reservation
should be charged, even if no ChargeAccount or ChargeUser are
specified.

l If set to False, overrides AMCFG []
RESERVATIONCHARGEPOLICY=All to indicate that this reservation
should not be charged.

If AMCFG[] RESERVATIONCHARGEPOLICY=None, this parameter has no
effect.

Example SRCFG[sr_mam1] CHARGE=False

Prevents charges to this reservation (e.g., when AMCFG[]
RESERVATIONCHARGEPOLICY=ALL).

CHARGEACCOUNT

Format Any valid account name.

Default ---

Description Specifies that idle cycles for this reservation should be charged against the
specified account (via the Accounting Manager).

CHARGEACCOUNT must be used in conjunction with CHARGEUSER.

Example SRCFG[sr_mam1] CHARGEACCOUNT=math
SRCFG[sr_mam1] CHARGEUSER=john

Moab charges all idle cycles within reservations supporting
standing reservation sr_mam1 to account math.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

CHARGEUSER

Format Any valid username.

Default ---

Description Specifies that idle cycles for this reservation should be charged against the
specified user (via the Accounting Manager).

CHARGEUSER must be used in conjunction with CHARGEACCOUNT.

Example SRCFG[sr_mam1] CHARGEACCOUNT=math
SRCFG[sr_mam1] CHARGEUSER=john

Moab charges all idle cycles within reservations supporting
standing reservation sr_mam1 to user john.

CLASSLIST

Format List of valid, comma-delimited classes/queues (see ACL Modifiers).

Default ---

Description Specifies that jobs with the associated classes/queues can use the resources
contained within this reservation.

Example SRCFG[test] CLASSLIST=!interactive

Jobs not using the class interactive are granted access to
the resources in standing reservation test.

CLUSTERLIST

Format List of valid, comma-delimited peer clusters (see Moab Workload Manager
for Grids).

Default ---

Description Specifies that jobs originating within the listed clusters can use the
resources contained within this reservation.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

487 7.1 Advance Reservations

7.1 Advance Reservations 488

CLUSTERLIST

Example SRCFG[test] CLUSTERLIST=orion2,orion7

Moab grants jobs from the listed peer clusters access to the
reserved resources.

COMMENT

Format <STRING>

If the string contains whitespace, it should be enclosed in single (')
or double quotes (").

Default ---

Description Specifies a descriptive message associated with the standing reservation
and all child reservations.

Example SRCFG[test] COMMENT='rsv for network testing'

Moab annotates the standing reservation test and all child
reservations with the specified message. These messages show
up within Moab client commands, Moab web tools, and
graphical administrator tools.

DAYS

Format One or more of the following (comma-delimited):

l Mon
l Tue
l Wed
l Thu
l Fri
l Sat
l Sun
l [ALL]

Default [ALL]

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

DAYS

Description Specifies which days of the week the standing reservation is active.

Example SRCFG[test] DAYS=Mon,Tue,Wed,Thu,Fri

Standing reservation test is active Monday through
Friday.

DEPTH

Format <INTEGER>

Default 2

Description Specifies the depth of standing reservations to be created (one per period).

To satisfy the DEPTH, Moab creates new reservations at the
beginning of the specified PERIOD. If your reservation ends at the
same time that a new PERIOD begins, the number of reservations
might not match the requested DEPTH. To prevent or resolve this
issue, set the ENDTIME a couple minutes before the beginning of the
next PERIOD. For example, set the ENDTIME to 23:58 instead of
00:00.

Example SRCFG[test] PERIOD=DAY DEPTH=6

Specifies that six reservations will be created for standing
reservation test.

DISABLE

Format <BOOLEAN>

Default FALSE

Description Specifies that the standing reservation should no longer spawn child
reservations.

Example SRCFG[test] PERIOD=DAY DEPTH=7 DISABLE=TRUE

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

489 7.1 Advance Reservations

7.1 Advance Reservations 490

DISABLE

Specifies that reservations are created for standing reservation
test for today and the next six days.

ENDTIME

Format [[[DD:]HH:]MM:]SS

Default 24:00:00

Description Specifies the time of day the standing reservation period ends (end of day
or end of week depending on PERIOD).

Example SRCFG[test] STARTTIME=8:00:00
SRCFG[test] ENDTIME=17:00:00
SRCFG[test] PERIOD=DAY

Standing reservation test is active from 8:00 AM until 5:00
PM.

FLAGS

Format Comma-delimited list of zero or more flags listed in the reservation flags
overview.

Default ---

Description Specifies special reservation attributes.

Example SRCFG[test] FLAGS=BYNAME,DEDICATEDRESOURCE

Jobs can only access the resources within this reservation if they
explicitly request the reservation by name. Further, the
reservation is created to not overlap with other reservations.

GROUPLIST

Format One or more comma-delimited group names.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

GROUPLIST

Default [ALL]

Description Specifies the groups allowed access to this standing reservation (see ACL
Modifiers).

Example SRCFG[test] GROUPLIST=staff,ops,special
SRCFG[test] CLASSLIST=interactive

Moab allows jobs with the listed group IDs or which request the
job class interactive to use the resources covered by the
standing reservation.

HOSTLIST

Format One or more comma-delimited host names or host expressions or the
string "class:<classname>".

Default ---

Description Specifies the set of hosts that the scheduler can search for resources to
satisfy the reservation. If specified using the "class:X" format, Moab only
selects hosts that support the specified class. If TASKCOUNT is also
specified, only TASKCOUNT tasks are reserved. Otherwise, all matching
hosts are reserved.

The HOSTLIST attribute is treated as host regular expression so
foo10 will map to foo10, foo101, foo1006, and so forth. To
request an exact host match, the expression can be bounded by the
carat and dollar symbol expression markers as in ^foo10$.

When specifying resources for a hostlist, you can specify exact set,
superset, or subset of nodes on which the job must run. Use the
caret (^) or asterisk (*) characters to specify a hostlist as superset or
subset respectively. See hostlist in Selecting Resources for more
information.

When using r: ensure your node indexes are correct by customizing
the NODEIDFORMAT parameter. See NODEIDFORMAT for more
information.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

491 7.1 Advance Reservations

7.1 Advance Reservations 492

HOSTLIST

Example SRCFG[test] HOSTLIST=node001,node002,node003
SRCFG[test] RESOURCES=PROCS:2;MEM:512
SRCFG[test] TASKCOUNT=2

Moab reserves a total of two tasks with 2 processors and 512
MB each, using resources located on node001, node002,
and/or node003.

SRCFG[test] HOSTLIST=node01,node1[3-5]

The reservation will consume all nodes that have "node01"
somewhere in their names and all nodes that have both "node1"
and either a "3," "4," or "5" in their names.

SRCFG[test] HOSTLIST=r:node[1-6]

The reservation will consume all nodes with names that begin
with "node" and end with any number 1 through 6. In other
words, it will reserve node1, node2, node3, node4, node5, and
node6.

JOBATTRLIST

Format Comma-delimited list of one or more of the following job attributes:

l PREEMPTEE
l INTERACTIVE

l Any generic attribute configured through NODECFG

Default ---

Description Specifies job attributes that grant a job access to the reservation.

Values can be specified with a "!="assignment to only allow jobs
NOT requesting a certain feature inside the reservation.

To enable/disable reservation access based on requested node
features, use the parameter NODETOJOBATTRMAP. This applies to
any attribute, including PREEMPTEE and INTERACTIVE (which
require uppercase).

JOBATTRLIST can serve as an ACL on its own. See Access Control
List (ACL) for more information.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

JOBATTRLIST

Example SRCFG[test] JOBATTRLIST=PREEMPTEE
NODETOJOBATTRMAP PREEMPTEE

Preemptible jobs can access the resources reserved within this
reservation.

MAXJOB

Format <INTEGER>

Default ---

Description Specifies the maximum number of jobs that can run in the reservation.

Example SRCFG[test] MAXJOB=1

Only one job will be allowed to run in this reservation.

MAXTIME

Format [[[DD:]HH:]MM:]SS[+]

Default ---

Description Specifies the maximum time for jobs allowable. Can be used with Affinity to
attract jobs with same MAXTIME.

The MAXTIME and TIMELIMIT reservation attributes perform the
same function, and are therefore interchangeable. Also, either will
serve as an ACL, as described in Access Control List (ACL), above.

Example SRCFG[test] MAXTIME=1:00:00+

Jobs with a time of 1:00:00 are attracted to this reservation.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

493 7.1 Advance Reservations

7.1 Advance Reservations 494

NODEFEATURES

Format Comma-delimited list of node features.

Default ---

Description Specifies the required node features for nodes that are part of the standing
reservation.

Example SRCFG[test] NODEFEATURES=wide,fddi

All nodes allocated to the standing reservation must have both
the wide and fddi node attributes.

OWNER

Format <CREDTYPE>:<CREDID>
Where <CREDTYPE> is one of USER, GROUP, ACCT, QoS, CLASS or
CLUSTER and <CREDTYPE> is a valid credential ID of that type.

Default ---

Description Specifies the owner of the reservation. Setting ownership for a reservation
grants the user management privileges, including the power to release it.

Setting a USER as the OWNER of a reservation gives that user
privileges to query and release the reservation.

For sandbox reservations, sandboxes are applied to a specific peer
only if OWNER is set to CLUSTER:<PEERNAME>.

Example SRCFG[test] OWNER=ACCT:jupiter

User jupiter owns the reservation and can be granted special
privileges associated with that ownership.

PARTITION

Format Valid partition name.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

PARTITION

Default [ALL]

Description Specifies the partition in which to create the standing reservation.

Example SRCFG[test] PARTITION=OLD

The standing reservation will only select resources from
partition OLD.

PERIOD

Format One of DAY, WEEK, or INFINITY

Default DAY

Description Specifies the period of the standing reservation.

Example SRCFG[test] PERIOD=WEEK

Each standing reservation covers a one week period.

PROCLIMIT

Format <QUALIFIER><INTEGER>
<QUALIFIER> can be one of the following <, <=, ==, >=, >

Default ---

Description Specifies the processor limit for jobs requesting access to this standing
reservation.

PROCLIMIT can serve as an ACL on its own. See Access Control List
(ACL) for more information.

Example SRCFG[test] PROCLIMIT<=4

Jobs requesting 4 or fewer processors are allowed to run.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

495 7.1 Advance Reservations

7.1 Advance Reservations 496

PSLIMIT

Format <QUALIFIER><INTEGER>
<QUALIFIER> can be one of the following <, <=, ==, >=, >

Default ---

Description Specifies the processor-second limit for jobs requesting access to this
standing reservation.

Example SRCFG[test] PSLIMIT<=40000

Jobs requesting 40000 or fewer processor-seconds are allowed
to run.

QOSLIST

Format Zero or more valid, comma-delimited QoS names.

Default ---

Description Specifies that jobs with the listed QoS names can access the reserved
resources.

Example SRCFG[test] QOSLIST=hi,low,special

Moab allows jobs using the listed QOSs access to the reserved
resources.

REQUIREDACCTLIST

Format One or more comma-delimited accounts.

Default ---

Description When present, any jobs in the reservation must match one of the listed
accounts.
This attribute can also be used in conjunction with REQUIREDUSERLIST. If
both REQUIREDACCTLIST and REQUIREDUSERLIST are specified, all jobs
in the reservation must match both.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

REQUIREDACCTLIST

It is recommended that any entries in the REQUIREDACCTLIST be
present in the ACCOUNTLIST attribute to handle reservation
affinities.

Example SRCFG[test] REQUIREDUSERLIST=john,bob USERLIST=john,bob
SRCFG[test] REQUIREDACCTLIST=eng,chem ACCOUNTLIST=eng,chem

A job must belong to either user "john" or "bob" AND either
account "eng" or "chem".

REQUIREDTPN

Format <QUALIFIER><INTEGER>
<QUALIFIER> can be one of the following <, <=, ==, >=, >

Default ---

Description Restricts access to reservations based on the job's TPN (tasks per node).

Example SRCFG[test] REQUIREDTPN==4

Jobs with tpn=4 or ppn=4 would be allowed within the
reservation, but any other TPN value would not. (For more
information, see TPN (Exact Tasks Per Node).)

REQUIREDUSERLIST

Format One or more comma-delimited accounts.

Default ---

Description When present, any jobs in the reservation must match one of the listed
users.
This attribute also be used in conjunction with REQUIREDACCTLIST. If
both REQUIREDACCTLIST and REQUIREDUSERLIST are specified, all jobs
in the reservation must match both.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

497 7.1 Advance Reservations

7.1 Advance Reservations 498

REQUIREDUSERLIST

It is recommended that any entries in the REQUIREDUSERLIST be
present in the USERLIST attribute to handle reservation affinities.

Example SRCFG[test] REQUIREDUSERLIST=john,bob USERLIST=john,bob
SRCFG[test] REQUIREDACCTLIST=eng,chem ACCOUNTLIST=eng,chem

A job must belong to either user "john" or "bob" AND either
account "eng" or "chem".

RESOURCES

Format Semicolon delimited <ATTR>:<VALUE> pairs, where <ATTR> can be one
of PROCS, MEM, SWAP, DISK, or GRES.

Default PROCS:-1 (All processors available on node)

Description Specifies what resources constitute a single standing reservation task.
(Each task must be able to obtain all of its resources as an atomic unit on a
single node.) Supported resources currently include the following:

l PROCS (number of processors)
l MEM (real memory in MB)
l SWAP (virtual memory in MB)
l DISK (local disk in MB)
l GRES (generic resource specified in the format GRES:<GRESNAME>

[:<COUNT>])

Example SRCFG[test] RESOURCES=PROCS:1;MEM:512;GRES=matlab:3;GRES=fluent:12

Each standing reservation task reserves one processor, 512 MB
of real memory, 3 matlab generic resources and 12 fluent
generic resources.

ROLLBACKOFFSET

Format [[[DD:]HH:]MM:]SS

Default ---

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

ROLLBACKOFFSET

Description Specifies the minimum time in the future at which the reservation can start.
This offset is rollback meaning the start time of the reservation will
continuously roll back into the future to maintain this offset. Rollback
offsets are a good way of providing guaranteed resource access to users
under the conditions that they must commit their resources in the future
or lose dedicated access. See QoS for more info about quality of service and
service level agreements; also see Rollback Reservation Overview.

Neither credlock nor advres is compatible on the jobs submitted for
this reservation.

Example SRCFG[ajax] ROLLBACKOFFSET=24:00:00 TASKCOUNT=32
SRCFG[ajax] PERIOD=INFINITY ACCOUNTLIST=ajax

The standing reservation guarantees access to up to 32
processors within 24 hours to jobs from the ajax account.

Adding an asterisk to the ROLLBACKOFFSET value pins rollback
reservation start times when an idle reservation is created in the rollback
reservation. For example:

SRCFG[staff] ROLLBACKOFFSET=18:00:00* PERIOD=INFINITY

RSVACCESSLIST

Format <RESERVATION>[,...]

Default ---

Description A list of reservations to which the specified reservation has access.

Example SRCFG[test] RSVACCESSLIST=rsv1,rsv2,rsv3

RSVGROUP

Format <STRING>

Default ---

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

499 7.1 Advance Reservations

7.1 Advance Reservations 500

RSVGROUP

Description See section Reservation Group for a detailed description.

Example SRCFG[test] RSVGROUP=rsvgrp1
SRCFG[ajax] RSVGROUP=rsvgrp1

STARTTIME

Format [[[DD:]HH:]MM:]SS

Default 00:00:00:00 (midnight)

Description Specifies the time of day/week the standing reservation becomes active.
Whether this indicates a time of day or time of week depends on the
setting of the PERIOD attribute.

If specified within a reservation profile, a value of 0 indicates the
reservation should start at the earliest opportunity.

Example SRCFG[test] STARTTIME=08:00:00
SRCFG[test] ENDTIME=17:00:00
SRCFG[test] PERIOD=DAY

The standing reservation will be active from 8:00 a.m. until 5:00
p.m. each day.

TASKCOUNT

Format <INTEGER>

Default 0 (unlimited tasks)

Description Specifies how many tasks should be reserved for the reservation.

Example SRCFG[test] RESOURCES=PROCS:1;MEM:256
SRCFG[test] TASKCOUNT=16

Standing reservation test reserves 16 tasks worth of
resources; in this case, 16 processors and 4 GB of real memory.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

TIMELIMIT

Format [[[DD:]HH:]MM:]SS

Default -1 (no time based access)

Description Specifies the maximum allowed overlap between the standing reservation
and a job requesting resource access.

The MAXTIME and TIMELIMIT reservation attributes perform the
same function, and are therefore interchangeable. Also, either will
serve as an ACL, as described in Access Control List (ACL), above.

Example SRCFG[test] TIMELIMIT=1:00:00

Moab allows jobs to access up to one hour of resources in the
standing reservation.

TPN (Exact Tasks Per Node)

Format <INTEGER>

Default 0 (no TPN constraint)

Description Specifies the exact number of tasks per node that must be available on
eligible nodes.

Example SRCFG[2] TPN=4
SRCFG[2] RESOURCES=PROCS:2;MEM:256

Moab must locate four tasks on each node that is to be part of
the reservation. That is, each node included in standing
reservation 2 must have 8 processors and 1 GB of memory
available.

TRIGGER

Format See Creating a Trigger for syntax.

Default N/A

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

501 7.1 Advance Reservations

7.1 Advance Reservations 502

TRIGGER

Description Specifies event triggers to be launched by the scheduler under the
scheduler's ID. These triggers can be used to conditionally cancel
reservations, or launch various actions at specified event offsets. See
Object Triggers for more detail.

Example SRCFG[fast]
TRIGGER=EType=start,Offset=5:00:00,AType=exec,Action="/usr/local/
domail.pl"

Moab launches the domail.pl script 5 hours after any fast
reservation starts.

USERLIST

Format Comma-delimited list of users.

Default ---

Description Specifies which users have access to the resources reserved by this
reservation (see ACL Modifiers).

Example SRCFG[test] USERLIST=bob,joe,mary

Users bob, joe and mary can all access the resources reserved
within this reservation.

Standing Reservation Overview
A standing reservation is similar to a normal administrative reservation in that it also
places an access control list on a specified set of resources. Resources are specified on a
per-task basis and currently include processors, local disk, real memory, and swap. The
access control list supported for standing reservations includes users, groups, accounts, job
classes, and QoS levels. Standing reservations can be configured to be permanent or
periodic on a daily or weekly basis and can accept a daily or weekly start and end time.
Regardless of whether permanent or recurring on a daily or weekly basis, standing
reservations are enforced using a series of reservations, extending a number of periods
into the future as controlled by the DEPTH attribute of the SRCFG parameter.

The following examples demonstrate possible configurations specified with the SRCFG
parameter.

Basic Business Hour Standing Reservation

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

SRCFG[interactive] TASKCOUNT=6 RESOURCES=PROCS:1,MEM:512
SRCFG[interactive] PERIOD=DAY DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] STARTTIME=9:00:00 ENDTIME=17:00:00
SRCFG[interactive] CLASSLIST=interactive

When using the SRCFG parameter, attribute lists must be delimited using the comma
(,), pipe (|), or colon (:) characters; they cannot be space delimited. For example, to
specify a multi-class ACL, specify:

SRCFG[test] CLASSLIST=classA,classB

Only one STARTTIME and one ENDTIME value can be specified per reservation. If
varied start and end times are desired throughout the week, complementary standing
reservations should be created. For example, to establish a reservation from 8:00
p.m. until 6:00 a.m. the next day during business days, two reservations should be
created-one from 8:00 p.m. until midnight, and the other from midnight until 6:00 a.m.
Jobs can run across reservation boundaries allowing these two reservations to
function as a single reservation that spans the night. The following example
demonstrates how to span a reservation across 2 days on the same nodes:

SRCFG[Sun] PERIOD=WEEK
SRCFG[Sun] STARTTIME=00:20:00:00 ENDTIME=01:00:00:00
SRCFG[Sun] HOSTLIST=node01,node02,node03

SRCFG[Mon] PERIOD=WEEK
SRCFG[Mon] STARTTIME=01:00:00:00 ENDTIME=01:06:00:00
SRCFG[Sun] HOSTLIST=node01,node02,node03

The preceding example fully specifies a reservation including the quantity of resources
requested using the TASKCOUNT and RESOURCES attributes. In all cases, resources are
allocated to a reservation in units called tasks where a task is a collection of resources that
must be allocated together on a single node. The TASKCOUNT attribute specifies the
number of these tasks that should be reserved by the reservation. In conjunction with this
attribute, the RESOURCES attribute defines the reservation task by indicating what
resources must be included in each task. In this case, the scheduler must locate and
reserve 1 processor and 512 MB of memory together on the same node for each task
requested.

As mentioned previously, a standing reservation reserves resources over a given time
frame. The PERIOD attribute can be set to a value of DAY, WEEK, or INFINITY to indicate
the period over which this reservation should recur. If not specified, a standing
reservation recurs on a daily basis. If a standing reservation is configured to recur daily,
the attribute DAYS can be specified to indicate which days of the week the reservation
should exist. This attribute takes a comma-delimited list of days where each day is specified
as the first three letters of the day in all capital letters: MON or FRI. The preceding

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

503 7.1 Advance Reservations

7.1 Advance Reservations 504

example specifies that this reservation is periodic on a daily basis and should only exist on
business days.

The time of day during which the requested tasks are to be reserved is specified using the
STARTTIME and ENDTIME attributes. These attributes are specified in standard military
time HH:MM:SS format and both STARTTIME and ENDTIME specification is optional
defaulting to midnight at the beginning and end of the day respectively. In the preceding
example, resources are reserved from 9:00 a.m. until 5:00 p.m. on business days.

The final aspect of any reservation is the access control list indicating who or what can use
the reserved resources. In the preceding example, the CLASSLIST attribute is used to
indicate that jobs requesting the class "interactive" should be allowed to use this
reservation.

Specifying Reservation Resources
In most cases, only a small subset of standing reservation attributes must be specified in
any given case. For example, by default, RESOURCES is set to PROCS=-1, which indicates
that each task should reserve all of the processors on the node on which it is located. This,
in essence, creates a one task equals one node mapping. In many cases, particularly on
uniprocessor systems, this default behavior might be easiest to work with. However, in SMP
environments, the RESOURCES attribute provides a powerful means of specifying an
exact, multi-dimensional resource set.

An examination of the parameters documentation shows that the default value of
PERIOD is DAYS. Therefore, specifying this parameter in the preceding above was
unnecessary. It was used only to introduce this parameter and indicate that other
options exist beyond daily standing reservations.

Host Constrained Standing Reservation

Although the first example did specify a quantity of resources to reserve, it did not specify
where the needed tasks were to be located. If this information is not specified, Moab
attempts to locate the needed resources anywhere it can find them. The Example 1
reservation essentially discovers hosts where the needed resources can be found. If the
SPACEFLEX reservation flag is set, then the reservation continues to float to the best hosts
over the life of the reservation. Otherwise, it will be locked to the initial set of allocated
hosts.

If a site wanted to constrain a reservation to a subset of available resources, this could be
accomplished using the HOSTLIST attribute. The HOSTLIST attribute is specified as a
comma-separated list of hostnames and constrains the scheduler to only select tasks from
the specified list. This attribute can exactly specify hosts or specify them using host regular
expressions. The following example demonstrates a possible use of the HOSTLIST
attribute:

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

SRCFG[interactive] DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] PERIOD=DAY
SRCFG[interactive] STARTTIME=10:00:00 ENDTIME=15:00:00
SRCFG[interactive] RESOURCES=PROCS:2,MEM:256
SRCFG[interactive] HOSTLIST=node001,node002,node005,node020
SRCFG[interactive] TASKCOUNT=6
SRCFG[interactive] CLASSLIST=interactive

Note that the HOSTLIST attribute specifies a non-contiguous list of hosts. Any combination of hosts can be specified
and hosts can be specified in any order. In this example, the TASKCOUNT attribute is also specified. These two
attributes both apply constraints on the scheduler with HOSTLIST specifying where the tasks can be located and
TASKCOUNT indicating how many total tasks can be allocated. In this example, six tasks are requested but only four
hosts are specified. To handle this, if adequate resources are available, the scheduler may attempt to allocate more
than one task per host. For example, assume that each host is a quad-processor system with 1 GB of memory. In such
a case, the scheduler could allocate up to two tasks per host and even satisfy the TASKCOUNT constraint without
using all of the hosts in the hostlist.

It is important to note that even if there is a one to one mapping between the value of
TASKCOUNT and the number of hosts in HOSTLIST, the scheduler will not
necessarily place one task on each host. If, for example, node001 and node002 were 8
processor SMP hosts with 1 GB of memory, the scheduler could locate up to four tasks
on each of these hosts fully satisfying the reservation taskcount without even partially
using the remaining hosts. (Moab will place tasks on hosts according to the policy
specified with the NODEALLOCATIONPOLICY parameter.) If the hostlist provides
more resources than what is required by the reservation as specified via
TASKCOUNT, the scheduler will simply select the needed resources within the set of
hosts listed.

Enforcing Policies Via Multiple Reservations
Single reservations enable multiple capabilities. Combinations of reservations can further
extend a site's capabilities to impose specific policies.

Reservation Stacking

If HOSTLIST is specified but TASKCOUNT is not, the scheduler will pack as many tasks as
possible onto all of the listed hosts. For example, assume the site added a second standing
reservation named debug to its configuration that reserved resources for use by certain
members of its staff using the following configuration:

SRCFG[interactive] DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] PERIOD=DAY
SRCFG[interactive] STARTTIME=10:00:00 ENDTIME=15:00:00
SRCFG[interactive] RESOURCES=PROCS:2,MEM:256
SRCFG[interactive] HOSTLIST=node001,node002,node005,node020
SRCFG[interactive] TASKCOUNT=6
SRCFG[interactive] CLASSLIST=interactive
SRCFG[debug] HOSTLIST=node001,node002,node003,node004
SRCFG[debug] USERLIST=helpdesk
SRCFG[debug] GROUPLIST=operations,sysadmin

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

505 7.1 Advance Reservations

7.1 Advance Reservations 506

SRCFG[debug] PERIOD=INFINITY

The new standing reservation is quite simple. Since RESOURCES is not specified, it will
allocate all processors on each host that is allocated. Since TASKCOUNT is not specified, it
will allocate every host listed in HOSTLIST. Since PERIOD is set to INFINITY, the
reservation is always in force and there is no need to specify STARTTIME, ENDTIME, or
DAYS.

The standing reservation has two access parameters set using the attributes USERLIST and
GROUPLIST. This configuration indicates that the reservation can be accessed if any one
of the access lists specified is satisfied by the job. In essence, reservation access is logically
ORed allowing access if the requester meets any of the access constraints specified. In this
example, jobs submitted by either user helpdesk or any member of the groups
operations or sysadmin can use the reserved resources (see ACL Modifiers).

Unless ACL Modifiers are specified, access is granted to the logical OR of access lists
specified within a standing reservation and granted to the logical AND of access lists across
different standing reservations. A comparison of the standing reservations interactive
and debug in the preceding example indicates that they both can allocate hosts node001
and node002. If node001 had both of these reservations in place simultaneously and a
job attempted to access this host during business hours when standing reservation
interactive was active. The job could only use the doubly reserved resources if it
requests the run class interactive and it meets the constraints of reservation
debug—that is, that it is submitted by user helpdesk or by a member of the group
operations or sysadmin.

As a rule, the scheduler does not stack reservations unless it must. If adequate resources
exist, it can allocate reserved resources side by side in a single SMP host rather than on top
of each other. In the case of a 16 processor SMP host with two 8 processor standing
reservations, 8 of the processors on this host will be allocated to the first reservation, and 8
to the next. Any configuration is possible. The 16 processor hosts can also have 4
processors reserved for user "John," 10 processors reserved for group "Staff," with the
remaining 2 processors available for use by any job.

Stacking reservations is not usually required but some site administrators choose to do it to
enforce elaborate policies. There is no problem with doing so as long as you can keep
things straight. It really is not too difficult a concept; it just takes a little getting used to. See
the Reservation Overview section for a more detailed description of reservation use and
constraints.

As mentioned earlier, by default the scheduler enforces standing reservations by creating
a number of reservations where the number created is controlled by the DEPTH attribute.
Each night at midnight, the scheduler updates its periodic non-floating standing
reservations. By default, DEPTH is set to 2, meaning when the scheduler starts up, it will
create two 24-hour reservations covering a total of two days' worth of time-a reservation
for today and one for tomorrow. For daily reservations, at midnight, the reservations roll,

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

meaning today's reservation expires and is removed, tomorrow's reservation becomes
today's, and the scheduler creates a new reservation for the next day.

With this model, the scheduler continues creating new reservations in the future as time
moves forward. Each day, the needed resources are always reserved. At first, all appears
automatic but the standing reservation DEPTH attribute is in fact an important aspect of
reservation rollback, which helps address certain site specific environmental factors. This
attribute remedies a situation that might occur when a job is submitted and cannot run
immediately because the system is backlogged with jobs. In such a case, available
resources might not exist for several days out and the scheduler must reserve these future
resources for this job. With the default DEPTH setting of two, when midnight arrives, the
scheduler attempts to roll its standing reservations but a problem arises in that the job has
now allocated the resources needed for the standing reservation two days out. Moab
cannot reserve the resources for the standing reservation because they are already
claimed by the job. The standing reservation reserves what it can but because all needed
resources are not available, the resulting reservation is now smaller than it should be, or is
possibly even empty.

If a standing reservation is smaller than it should be, the scheduler will attempt to add
resources each iteration until it is fully populated. However, in the case of this job, the job is
not going to release its reserved resources until it completes and the standing reservation
cannot claim them until this time. The DEPTH attribute allows a site to specify how deep
into the future a standing reservation should reserve its resources allowing it to claim the
resources first and prevent this problem. If a partial standing reservation is detected on a
system, it might be an indication that the reservation's DEPTH attribute should be
increased.

In Example 3, the PERIOD attribute is set to INFINITY. With this setting, a single,
permanent standing reservation is created and the issues of resource contention do not
exist. While this eliminates the contention issue, infinite length standing reservations
cannot be made periodic.

Multiple ACL Types

In most cases, access lists within a reservation are logically ORed together to determine
reservation access. However, exceptions to this rule can be specified by using the required
ACL marker-the asterisk (*). Any ACL marked with this symbol is required and a job is only
allowed to use a reservation if it meets all required ACLs and at least one non-required
ACL (if specified). A common use for this facility is in conjunction with the TIMELIMIT
attribute. This attribute controls the length of time a job can use the resources within a
standing reservation. This access mechanism can be ANDed or ORed to the cumulative set
of all other access lists as specified by the required ACL marker. Consider the following
example configuration:

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

507 7.1 Advance Reservations

7.1 Advance Reservations 508

SRCFG[special] TASKCOUNT=32
SRCFG[special] PERIOD=WEEK
SRCFG[special] STARTTIME=1:08:00:00
SRCFG[special] ENDTIME=5:17:00:00
SRCFG[special] NODEFEATURES=largememory
SRCFG[special] TIMELIMIT=1:00:00*
SRCFG[special] QOSLIST=high,low,special-
SRCFG[special] ACCOUNTLIST=!projectX,!projectY

The above configuration requests 32 tasks, which translate to 32 nodes. The PERIOD
attribute makes this reservation periodic on a weekly basis while the attributes
STARTTIME and ENDTIME specify the week offsets when this reservation is to start and
end (note that the specification format has changed to DD:HH:MM:SS). In this case, the
reservation starts on Monday at 8:00 a.m. and runs until Friday at 5:00 p.m. The
reservation is enforced as a series of weekly reservations that only cover the specified time
frame. The NODEFEATURES attribute indicates that each of the reserved nodes must have
the node feature "largememory" configured.

As described earlier, TIMELIMIT indicates that jobs using this reservation can only use it
for one hour. This means the job and the reservation can only overlap for one hour. Clearly
jobs requiring an hour or less of wallclock time meet this constraint. However, a four-hour
job that starts on Monday at 5:00 a.m. or a 12-hour job that starts on Friday at 4:00 p.m.
also satisfies this constraint. Also, note the TIMELIMIT required ACL marker, *; it is set
indicating that jobs must not only meet the TIMELIMIT access constraint but must also
meet one or more of the other access constraints. In this example, the job can use this
reservation if it can use the access specified via QOSLIST or ACCOUNTLIST; that is, it is
assigned a QoS of high, low, or special , or the submitter of the job has an account that
satisfies the !projectX and !projectY criteria. See the QoS Overview for more info
about QoS configuration and usage.

Affinity
Reservation ACLs allow or deny access to reserved resources but they can be configured to
also impact a job's affinity for a particular reservation. By default, jobs gravitate toward
reservations through a mechanism known as positive affinity. This mechanism allows jobs
to run on the most constrained resources leaving other, unreserved resources free for use
by other jobs that might not be able to access the reserved resources. Normally this is a
desired behavior. However, sometimes, it is desirable to reserve resources for use only as
a last resort-using the reserved resources only when there are no other resources
available. This last resort behavior is known as negative affinity. Note the '-' (hyphen or
negative sign) following the special in the QOSLIST values. This special mark indicates
that QoS special should be granted access to this reservation but should be assigned
negative affinity. Therefore, the QOSLIST attribute specifies that QoS high and low
should be granted access with positive affinity (use the reservation first where possible)
and QoS special granted access with negative affinity (use the reservation only when no
other resources are available).

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Affinity status is granted on a per access object basis rather than a per access list basis and
always defaults to positive affinity. In addition to negative affinity, neutral affinity can also
be specified using the equal sign (=) as in QOSLIST[0] normal= high debug=
low-.

When a job matches multiple ACLs for a reservation, the final node affinity for the node,
job, and reservation combination is based on the last matching ACL entry found in the
configuration file.

For example, given the following reservation ACLs, a job matching both will receive a
negative affinity:

SRCFG[res1] USERLIST=joe+ MAXTIME<=4:00:00-

With the following reservation ACLs, a job matching both will receive a positive affinity:

SRCFG[res1] MAXTIME<=4:00:00- USERLIST=joe+

To configure the behavior when multiple reservations with varying affinities are on
the same node, see NODEAFFINITYPOLICY.

ACL Modifiers
ACL modifiers allow a site to change the default behavior of ACL processing. By default, a
reservation can be accessed if one or more of its ACLs can be met by the requestor. This
behavior can be changed using the following modifiers.

Not

Symbol: ! (exclamation point)

Description If attribute is met, the requestor is denied access regardless of any other
satisfied ACLs.

Example SRCFG[test] GROUPLIST=staff USERLIST=!steve

Allow access to all staff members other than steve.

Required

Symbol: * (asterisk)

Description All required ACLs must be satisfied for requestor access to be granted.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

509 7.1 Advance Reservations

7.1 Advance Reservations 510

Required

Example SRCFG[test] QOSLIST=*high MAXTIME=*2:00:00

Only jobs in QoS high that request less than 2 hours of walltime
are granted access.

XOR

Symbol: ^ (carat)

Description All attributes of the type specified other than the ones listed in the ACL satisfy
the ACL.

Example SRCFG[test] QOSLIST=^high

All jobs other than those requesting QoS high are granted access.

CredLock

Symbol:
& (ampersand)

Description Matching jobs will be required to run on the resources reserved by this
reservation. You can use this modifier on accounts, classes, groups, qualities of
service, and users.

Example SRCFG[test] USERLIST=&john

All of user john's jobs must run in this reservation.

HPEnable (hard policy enable)

Symbol: ~ (tilde)

Description ACLs marked with this modifier are ignored during soft policy scheduling and
are only considered for hard policy scheduling once all eligible soft policy jobs
start.

Example SRCFG[johnspace] USERLIST=john CLASSLIST=~debug

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

HPEnable (hard policy enable)

All of user john's jobs are allowed to run in the reservation at any
time. Debug jobs are also allowed to run in this reservation but are
only considered after all of John's jobs are given an opportunity to
start. User john's jobs are considered before debug jobs regardless
of job priority.

If HPEnable and Not markers are used in conjunction, then specified
credentials are blocked-out of the reservation during soft-policy
scheduling.

Note the ACCOUNTLIST values in are preceded with an exclamation point, or NOT
symbol. This indicates that all jobs with accounts other than projectX and projectY
meet the account ACL. Note that if a !<X> value (!projectX) appears in an ACL line, that ACL
is satisfied by any object not explicitly listed by a NOT entry. Also, if an object matches a
NOT entry, the associated job is excluded from the reservation even if it meets other ACL
requirements. For example, a QoS 3 job requesting account projectX is denied access to
the reservation even though the job QoS matches the QoS ACL.

Example 7-5: Binding Users to Reservations at Reservation Creation

create a 4 node reservation for john and bind all of john's jobs to that reservation
> mrsvctl -c -a user=&john -t 4

Reservation Ownership
Reservation ownership allows a site to control who owns the reserved resources during
the reservation time frame. Depending on needs, this ownership can be identical to, a
subset of, or completely distinct from the reservation ACL. By default, reservation
ownership implies resource accountability and resources not consumed by jobs are
accounted against the reservation owner. In addition, ownership can also be associated
with special privileges within the reservation.

Ownership is specified using the OWNER attribute in the format
<CREDTYPE>:<CREDID>, as in OWNER=USER:john. To enable john's jobs to preempt
other jobs using resources within the reservation, the SRCFG attribute FLAG should be set
to OWNERPREEMPT. In the example below, the jupiter project chooses to share
resources with the saturn project but only when it does not currently need them.

Limited Shared Access

ACCOUNTCFG[jupiter] PRIORITY=10000
SRCFG[jupiter] HOSTLIST=node0[1-9]
SRCFG[jupiter] PERIOD=INFINITY
SRCFG[jupiter] ACCOUNTLIST=jupiter,saturn-
SRCFG[jupiter] OWNER=ACCT:jupiter

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

511 7.1 Advance Reservations

7.1 Advance Reservations 512

SRCFG[jupiter] FLAGS=OWNERPREEMPT

Partitions
A reservation can be used in conjunction with a partition. Configuring a standing
reservation on a partition allows constraints to be (indirectly) applied to a partition.

Example 7-6: TimeConstraints by Partition

The following example places a 3-day wall-clock limit on two partitions and a 64 processor-
hour limit on jobs running on partition small:

SRCFG[smallrsv] PARTITION=small MAXTIME=3:00:00:00 PSLIMIT<=230400 HOSTLIST=ALL
SRCFG[bigrsv] PARTITION=big MAXTIME=3:00:00:00 HOSTLIST=ALL

Resource Allocation Behavior
As mentioned, standing reservations can operate in one of two modes, floating, or non-
floating (essentially node-locked). A floating reservation is created when the flag
SPACEFLEX is specified. If a reservation is non-floating, the scheduler allocates all
resources specified by the HOSTLIST parameter regardless of node state, job load, or
even the presence of other standing reservations. Moab interprets the request for a non-
floating reservation as, "I want a reservation on these exact nodes, no matter what!"

If a reservation is configured to be floating, the scheduler takes a more relaxed stand,
searching through all possible nodes to find resources meeting standing reservation
constraints. Only Idle, Running, or Busy nodes are considered and further, only considered
if no reservation conflict is detected. The reservation attribute ACCESS modifies this
behavior slightly and allows the reservation to allocate resources even if reservation
conflicts exist.

If a TASKCOUNT is specified with or without a HOSTEXPRESSION, Moab will, by
default, only consider "up" nodes for allocation. To change this behavior, the
reservation flag IGNSTATE can be specified as in the following example:

SRCFG[nettest] GROUPLIST=sysadm
SRCFG[nettest] FLAGS=IGNSTATE
SRCFG[nettest] HOSTLIST=node1[3-8]
SRCFG[nettest] STARTTIME=9:00:00
SRCFG[nettest] ENDTIME=17:00:00

Access to existing reservations can be controlled using the reservation flag IGNRSV.

Other standing reservation attributes not covered here include PARTITION and
CHARGEACCOUNT. These parameters are described in some detail in the parameters
documentation.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Using Reservations to Guarantee Turnover

In some cases, it is desirable to make certain a portion of a cluster's resources are available
within a specific time frame. The following example creates a floating reservation belonging
to the jupiter account that guarantees 16 tasks for use by jobs requesting up to one
hour:

SRCFG[shortpool] OWNER=ACCT:jupiter
SRCFG[shortpool] FLAGS=SPACEFLEX
SRCFG[shortpool] MAXTIME=1:00:00
SRCFG[shortpool] TASKCOUNT=16
SRCFG[shortpool] STARTTIME=9:00:00
SRCFG[shortpool] ENDTIME=17:00:00
SRCFG[shortpool] DAYS=Mon,Tue,Wed,Thu,Fri

This reservation enables a capability similar to what was known in early Maui releases as
'shortpool'. The reservation covers every weekday from 9:00 a.m. to 5:00 p.m., reserving
16 tasks and allowing jobs to overlap the reservation for up to one hour. The SPACEFLEX
flag indicates that the reservation can be dynamically modified--over time to re-locate to
more optimal resources. In the case of a reservation with the MAXTIME ACL, this would
include migrating to resources that are in use but that free up within the MAXTIME time
frame. Additionally, because the MAXTIME ACL defaults to positive affinity, any jobs that fit
the ACL attempt to use available reserved resources first before looking elsewhere.

Rollback Reservations
Rollback reservations are enabled using the ROLLBACKOFFSET attribute and can be used
to allow users guaranteed access to resources, but the guaranteed access is limited to a
time-window in the future. This functionality forces users to commit their resources in the
future or lose access. In Iteration 1 of the diagram below, a rollback reservation is in place
for nodes 2 and 3 for a 6.5 hour block, 2 hours in the future. If the user for whom the
reservation is made does not make use of the reserved nodes, other jobs are scheduled on
the nodes. In Iteration 2, the rollback reservation remains in place for the same nodes, 2
hours in the future.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

513 7.1 Advance Reservations

7.1 Advance Reservations 514

Image 7-2: Rollback reservation Iteration 1

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Image 7-3: Rollback reservation Iteration 2

Rollback Reservations

SRCFG[ajax] ROLLBACKOFFSET=24:00:00 TASKCOUNT=32
SRCFG[ajax] PERIOD=INFINITY ACCOUNTLIST=ajax

Adding an asterisk to the ROLLBACKOFFSET value pins rollback reservation start times
when an idle reservation is created in the rollback reservation. For example: SRCFG
[staff] ROLLBACKOFFSET=18:00:00* PERIOD=INFINITY.

7.1.5.C Managing Administrative Reservations
A default reservation with no ACL is termed an administrative reservation, but is
occasionally referred to as a system reservation. It blocks access to all jobs because it
possesses an empty access control list. It is often useful when performing administrative
tasks but cannot be used for enforcing resource usage policies.

Administrative reservations are created and managed using the mrsvctl command. With
this command, all aspects of reservation time frame, resource selection, and access control
can be dynamically modified. The mdiag -r command can be used to view configuration,

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

515 7.1 Advance Reservations

7.1 Advance Reservations 516

state, allocated resource information, as well as identify any potential problems with the
reservation. The following table briefly summarizes commands used for common actions.
More detailed information is available in the command summaries.

Action Command

create reservation mrsvctl -c <RSV_DESCRIPTION>

list reservations mrsvctl -l

release reservation mrsvctl -r <RSVID>

modify reservation mrsvctl -m <ATTR>=<VAL> <RSVID>

query reservation configuration mdiag -r <RSVID>

display reservation hostlist mrsvctl -q resources <RSVID>

Related Topics

l SRCFG (configure standing reservations)

l RSVPROFILE (create reservation profiles)

7.1.6 Personal/User Reservations - Enabling Reservations for End
Users

In this topic:

7.1.6.A Enabling Personal Reservation Management - page 517
7.1.6.B Reservation Accountability - page 517
7.1.6.C Reservation Limits - page 518
7.1.6.D Reservation and Job Binding - page 518

By default, advance reservations are only available to scheduler administrators. While
administrators can create and manage reservations to provide resource access to end-
users, end-users cannot create, modify, or destroy these reservations. Moab extends the
ability to manage reservations to end-users and provides control facilities to keep these

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

features manageable. Reservations created by end-users are called personal reservations
or user reservations.

7.1.6.A Enabling Personal Reservation Management
User, or personal, reservations can be enabled on a per QoS basis by setting the
ENABLEUSERRSV flag as in the following example:

QOSCFG[titan] QFLAGS=ENABLEUSERRSV # allow 'titan' QOS jobs to create user
reservations
USERCFG[DEFAULT] QDEF=titan # allow all users to access 'titan' QOS
...

If set, end-users are allowed to create, modify, cancel, and query reservations they own. As
with jobs, users can associate a personal reservation with any QoS or account to which they
have access. This is accomplished by specifying per reservation accountable credentials as
in the following example:

> mrsvctl -c -S AQOS=titan -h node01 -d 1:00:00 -s 1:30:00
Note: reservation test.126 created

As in the preceding example, a non-administrator user who wants to create a reservation
must ALWAYS specify an accountable QoS with the mrsvctl -S flag. This specified QoS must
have the ENABLEUSERRSVflag. By default, a personal reservation is created with an ACL
of only the user who created it.

Example 7-7: Allow All Users in Engineering Group to Create Personal Reservations

QOSCFG[rsv] QFLAGS=ENABLEUSERRSV # allow 'rsv' QOS jobs to create user
reservations
GROUPCFG[sales] QDEF=rsv # allow all users in group sales to access 'rsv'
QOS
...

Example 7-8: Allow Specific Users to Create Personal Reservations

special qos has higher job priority and ability to create user reservations
QOSCFG[special] QFLAGS=ENABLEUSERRSV
QOSCFG[special] PRIORITY=1000
allow betty and steve to use the special qos
USERCFG[betty] QDEF=special
USERCFG[steve] QLIST=fast,special,basic QDEF=rsv
...

7.1.6.B Reservation Accountability
Personal reservations must be configured with a set of accountable credentials. These
credentials (user, group, account, and so forth) indicate who is responsible for the
resources dedicated by the reservation. If resources are dedicated by a reservation but not
consumed by a job, these resources can be charged against the specified accountable

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

517 7.1 Advance Reservations

7.1 Advance Reservations 518

credentials. Administrators are allowed to create reservations and specify any accountable
credentials for that reservation. While end-users can also be allowed to create and
otherwise modify personal reservations, they are only allowed to create reservations with
accountable credentials to which they have access. Further, while administrators can
manage any reservation, end-users can only control reservations they own.

Like jobs, reservation accountable credentials specify which credentials are charged for
reservation usage and what policies are enforced as far as usage limits and allocation
management is concerned. See the mrsvctl command documentation for more information
on setting personal reservation credentials. While similar to jobs, personal reservations do
have a separate set of usage limits and different allocation charging policies.

Setting Reservation Default Attributes
Organizations can use reservation profiles to set default attributes for personal
reservations. These attributes can include reservation aspects such as management
policies, charging credentials, ACLs, host constraints, and time frame settings.

7.1.6.C Reservation Limits
Allowing end-users the ability to create advance reservations can lead to potentially unfair
and unproductive resource usage. This results from the fact that by default, there is
nothing to prevent a user from reserving all resources in a given system or reserving
resources during time slots that would greatly impede the scheduler's ability to schedule
jobs efficiently. Because of this, it is highly advised that sites initially place either usage or
allocation based constraints on the use of personal reservations. This can be achieved
using Moab Accounting Manager (see the Moab Accounting Manager Administrator Guide).

7.1.6.D Reservation and Job Binding
Moab allows job-to-reservation binding to be configured at an administrator or end-user
level. This binding constrains how job to reservation mapping is allowed.

Constraining a Job to Only Run in a Particular Reservation
Jobs can be bound to a particular reservation at submit time (using the RM extension
ADVRES) or dynamically using the mjobctl command (see Job to Reservation Mapping). In
either case, once bound to a reservation, a job can only run in that reservation even if other
resources can be found outside of that reservation. The mjobctl command can also be
used to dynamically release a job from reservation binding.

Example 7-9: Bind job to reservation

> mjobctl -m flags+=advres:grid.3 job1352

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Example 7-10: Release job from reservation binding

> mjobctl -m flags-=advres job1352

Constraining a Reservation to Only Accept Certain Jobs
Binding a job to a reservation is independent of binding a reservation to a job. For example,
a reservation may be created for user 'steve.' User 'steve' may then submit a number of
jobs including one that is bound to that reservation using the ADVRES attribute. However,
this binding simply forces that one job to use the reservation, it does not prevent the
reservation from accepting other jobs submitted by user 'steve.' To prevent these other
jobs from using the reserved resources, reservation to job binding must occur. This binding
is accomplished by specifying either general job binding or specific job binding.

General job binding is the most flexible form of binding. Using the BYNAME attribute, a
reservation can be created that only accepts jobs specifically bound to it.

Specific job binding is more constraining. This form of binding causes the reservation to
only accept specific jobs, regardless of other job attributes and is set using the JOB
reservation ACL.

Example 7-11: Configure a reservation to accept only jobs that are bound to it

> mrsvctl -m flags+=byname grid.3

Example 7-12: Remove general reservation to job binding

> mrsvctl -m flags-=byname grid.3

Example 7-13: Configure a reservation to accept a specific job

> mrsvctl -m -a JOB=3456 grid.3

Example 7-14: Remove a specific reservation to job binding

> mrsvctl -m -a JOB=3456 grid.3 --flags=unset

7.2 Partitions

In this topic:

7.2.1 Partition Overview - page 520
7.2.2 Defining Partitions - page 521

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

519 7.2 Partitions

7.2 Partitions 520

7.2.3 Managing Partition Access - page 521
7.2.3.A Credential Based Access - page 521
7.2.3.B Per Job Resource Limits - page 522

7.2.4 Requesting Partitions - page 523
7.2.5 Per-Partition Settings - page 523
7.2.6 Miscellaneous Partition Issues - page 524

7.2.1 Partition Overview
Partitions are a logical construct that divide available resources. Any single resource
(compute node) can only belong to a single partition. Often, natural hardware or resource
manager bounds delimit partitions such as in the case of disjoint networks and diverse
processor configurations within a cluster. For example, a cluster might consist of 256 nodes
containing four 64 port switches. This cluster might receive excellent interprocess
communication speeds for parallel job tasks located within the same switch but sub-stellar
performance for tasks that span switches. To handle this, the site may choose to create four
partitions, allowing jobs to run within any of the four partitions but not span them.

While partitions do have value, it is important to note that within Moab, the standing
reservation facility provides significantly improved flexibility and should be used in the
vast majority of politically motivated cases where partitions may be required under other
resource management systems. Standing reservations provide time flexibility, improved
access control features, and more extended resource specification options. Also, another
Moab facility called Node Sets allows intelligent aggregation of resources to improve per
job node allocation decisions. In cases where system partitioning is considered for such
reasons, node sets may be able to provide a better solution.

Still, one key advantage of partitions over standing reservations and node sets is the ability
to specify partition specific policies, limits, priorities, and scheduling algorithms although
this feature is rarely required. An example of this need may be a cluster consisting of 48
nodes owned by the Astronomy Department and 16 nodes owned by the Mathematics
Department. Each department may be willing to allow sharing of resources but wants to
specify how their partition will be used. As mentioned, many of Moab's scheduling policies
can be specified on a per partition basis allowing each department to control the
scheduling goals within their partition.

The partition associated with each node should be specified as indicated in the Node
Location section. With this done, partition access lists can be specified on a per job or per
QoS basis to constrain which resources a job can have access to. See the QoS Overview for
more information. By default, QoSs and jobs allow global partition access. Note that by
default, a job can only use resources within a single partition.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

If no partition is specified, Moab creates one partition per resource manager into which all
resources corresponding to that resource manager are placed. This partition is given the
same name as the resource manager.

A partition can not span multiple resource managers. In addition to these resource
manager partitions, a pseudo-partition named ' [ALL]' is created that contains the
aggregate resources of all partitions.

While the resource manager partitions are real partitions containing resources not
explicitly assigned to other partitions, the '[ALL]' partition is only a convenience
object and is not a real partition; therefore it cannot be requested by jobs or included
in configuration ACLs.

7.2.2 Defining Partitions
Node to partition mappings can be established directly using the NODECFG parameter or
indirectly using the FEATUREPARTITIONHEADER parameter. If using direct mapping, this
is accomplished as shown in the example that follows.

NODECFG[node001] PARTITION=astronomy
NODECFG[node002] PARTITION=astronomy
...
NODECFG[node049] PARTITION=math
...

By default, Moab creates two partitions, 'DEFAULT' and '[ALL].' These are used
internally, and consume spots in the 31-partition maximum defined in the MMAX_PAR
parameter. If more partitions are needed, you can adjust the maximum partition
count. See Adjusting Default Limits for information on increasing the maximum
number of partitions.

7.2.3 Managing Partition Access
Partition access can be constrained by credential ACLs and by limits based on job resource
requirements.

7.2.3.A Credential Based Access
Determining who can use which partition is specified using the *CFG parameters
(USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and SYSCFG). These
parameters allow you to select a partition access list on a credential or system wide basis

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

521 7.2 Partitions

7.2 Partitions 522

using the PLIST attribute. By default, the access associated with any given job is the
logical OR of all partition access lists assigned to the job's credentials.

For example, assume a site with two partitions, general, and test. The site management
would like everybody to use the general partition by default. However, one user, Steve,
needs to perform the majority of his work on the test partition. Two special groups, staff
and management will also need access to use the test partition from time to time but will
perform most of their work in the general partition. The following example configuration
enables the needed user and group access and defaults for this site:

SYSCFG[base] PLIST=general:test
USERCFG[DEFAULT] PLIST=general
USERCFG[steve] PLIST=general:test
GROUPCFG[staff] PLIST=general:test
GROUPCFG[mgmt] PLIST=general:test

While using a logical OR approach allows sites to add access to certain jobs, some sites
prefer to work the other way around. In these cases, access is granted by default and
certain credentials are then restricted from accessing various partitions. To use this model,
a system partition list must be specified as in the following example:

SYSCFG[base] PLIST=general,test&
USERCFG[demo] PLIST=test&
GROUPCFG[staff] PLIST=general&

In the preceding example, note the ampersand (&). This character, which can be located
anywhere in the PLIST line, indicates that the specified partition list should be logically
ANDed with other partition access lists. In this case, the configuration limits jobs from user
demo to running in partition test and jobs from group staff to running in partition
general. All other jobs are allowed to run in either partition.

When using AND-based partition access lists, the base system access list must be
specified with SYSCFG.

7.2.3.B Per Job Resource Limits
Access to partitions can be constrained based on the resources requested on a per job
basis with limits on both minimum and maximum resources requested. All limits are
specified using PARCFG. See Usage Limits for more information on the available limits.

PARCFG[amd] MAX.PROC=16
PARCFG[pIII] MAX.WCLIMIT=12:00:00 MIN.PROC=4
PARCFG[aix] MIN.NODE=12

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

7.2.4 Requesting Partitions
Users can request to use any partition they have access to on a per job basis. This is
accomplished using the resource manager extensions since most native batch systems do
not support the partition concept. For example, on a Torque system, a job submitted by a
member of the group staff could request that the job run in the test partition by
adding the line -l partition=test to the qsub command line. See the resource
manager extension overview for more information on configuring and using resource
manager extensions.

7.2.5 Per-Partition Settings
The following settings can be specified on a per-partition basis using the PARCFG
parameter:

Setting Description

FSSCALINGFACTOR Moab will multiple the actual fairshare usage by this value to
get the calculated fairshare usage of a job. The actual fairshare
usage is calculated based on the FSPOLICY parameter.
For an example, if FSPOLICY is set to DEDICATEDPS and a job
runs on two processors for 100 seconds then the actual
fairshare usage would be 200. If the job ran on a partition with
FSSCALINGFACTOR=.5 then Moab would multiply 200*.5=100.
If the job ran on a partition with FSSCALINGFACTOR=2 then
Moab would multiply 200*2=400.

PARCFG[par1] FSSCALINGFACTOR=<double>

FSSECONDARYGROUPS Map unix groups to fairshare groups.

GMETRIC Specifies a generic metric to apply to the partition. It is
configured like a Moab parameter, with the gmetric name
inside square brackets. Specify multiple gmetrics by separating
each configuration with a space. For example:

PARCFG[par1] GMETRIC[GM1]=20 GMETRIC[GM2]=10

Partition par1 has a GM1 metric of 20 and a GM2
metric of 10.

JOBNODEMATCHPOLICY Specifies the JOBNODEMATCHPOLICY to be applied to jobs that
run in the specified partition.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

523 7.2 Partitions

7.2 Partitions 524

Setting Description

NODEACCESSPOLICY Specifies the NODEACCESSPOLICY to be applied to jobs that
run in the specified partition.

NODEALLOCATIONPOLICY Specifies the NODEALLOCATIONPOLICY to be applied to jobs
that run in the specified partition.

RESOURCELIMITMULTIPL
IER

Specifies the RESOURCELIMITMULTIPLIER[<PARID>] to be
applied to jobs that run in the specified partition.

This can only be viewed with 'showconfig -v'

PARCFG[A] RESOURCELIMITMULTIPLER=PROC:1.1
RESOURCELIMITMULTIPLIER=MEM:2.0

RESOURCELIMITPOLICY Specifies the RESOURCELIMITPOLICY to be applied to jobs that
run in the specified partition.

This can only be viewed with 'showconfig -v'

PARCFG[A] RESOURCELIMITPOLICY=WALLTIME:ALWAYS:CANCEL
PARCFG[B] RESOURCELIMITPOLICY=WALLTIME:ALWAYS:REQUEUE

7.2.6 Miscellaneous Partition Issues
A brief caution: Use of partitions has been quite limited in recent years as other, more
effective approaches are selected for site scheduling policies. Consequently, some aspects
of partitions have received only minor testing. Still, note that partitions are fully supported
and any problem found will be rectified.

Related Topics

l Standing Reservations

l Node Sets

l FEATUREPARTITIONHEADER parameter

l PARCFG parameter

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

7.3 Quality of Service (QoS) Facilities

This section describes how to do the following:

l Allow key projects access to special services (such as preemption, resource
dedication, and advance reservations).

l Provide access to special resources by requested QoS.

l Enable special treatment within priority and fairshare facilities by requested QoS.

l Provide exemptions to usage limits and other policies by requested QoS.

l Specify delivered service and response time targets.

l Enable job deadline guarantees.

l Control the list of QoSs available to each user and job.

l Enable special charging rates based on requested or delivered QoS levels.

l Enable limits on the extent of use for each defined QoS.

l Monitor current and historical usage for each defined QoS.

In this topic:

7.3.1 QoS Overview - page 525
7.3.2 QoS Enabled Privileges - page 526

7.3.2.A Special Prioritization - page 526
7.3.2.B Service Access and Constraints - page 527
7.3.2.C Usage Limits and Overrides - page 531
7.3.2.D Service Access Thresholds - page 532
7.3.2.E QoS Metrics - page 533
7.3.2.F Preemption Management - page 533

7.3.3 Managing QoS Access - page 534
7.3.4 Requesting QoS Services at Job Submission - page 535
7.3.5 Restricting Access to Special Attributes - page 536

7.3.1 QoS Overview
Moab's QoS facility allows a site to give special treatment to various classes of jobs, users,
groups, and so forth. Each QoS object can be thought of as a container of special privileges

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

525 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 526

ranging from fairness policy exemptions, to special job prioritization, to special functionality
access. Each QoS object also has an extensive access list of users, groups, and accounts that
can access these privileges.

Sites can configure various QoSs each with its own set of priorities, policy exemptions, and
special resource access settings. They can then configure user, group, account, and class
access to these QoSs. A given job will have a default QoS and may have access to several
additional QoSs. When the job is submitted, the submitter can request a specific QoS or just
allow the default QoS to be used. Once a job is submitted, a user can adjust the QoS of the
job at any time using the setqos command. The setqos command will only allow the user
to modify the QoS of that user's jobs and only change the QoS to a QoS that this user has
access to. Moab administrators can change the QOS of any job to any value.

Jobs can be granted access to QoS privileges if the QoS is listed in the system default
configuration QDEF (QoS default) or QLIST (QoS access list), or if the QoS is specified in the
QDEF or QLIST of a user, group, account, or class associated with that job. Alternatively, a
user can access QoS privileges if that user is listed in the QoSs MEMBERULIST attribute.

The mdiag -q command can be used to obtain information about the current QoS
configuration including specified credential access.

7.3.2 QoS Enabled Privileges
The privileges enabled via QoS settings can be broken into the following categories:

l Special Prioritization

l Service Access and Constraints

l Usage Limits and Overrides

l Service Access Thresholds

l Preemption Management

All privileges are managed via the QOSCFG parameter.

7.3.2.A Special Prioritization

Attribute
Name

Description

FSTARGET Specifies QoS fairshare target.

FSWEIGHT Sets QoS fairshare weight offset affecting a job's fairshare priority
component.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Attribute
Name

Description

PRIORITY Assigns priority to all jobs requesting particular QoS.

PROCWEIGHT Sets QoS PROCWEIGHT weight offset affecting a job's resource priority
component.

QTTARGET Sets QoS queuetime target affecting a job's target priority component and
QoS delivered.

QTWEIGHT Sets QoS queuetime weight offset affecting a job's service priority
component.

XFTARGET Sets QoS XFactor target affecting a job's target priority component and QoS
delivered.

XFWEIGHT Sets QoS XFactor weight offset affecting a job's service priority component.

Example 7-15:

assign priority for all qos geo jobs

QOSCFG[geo] PRIORITY=10000

7.3.2.B Service Access and Constraints
The QoS facility can be used to enable special services and to disable default services.
These services are enabled/disabled by setting the QoS QFLAGS attribute.

Flag Name Description

DEADLINE Job can request an absolute or relative completion deadline and
Moab will reserve resources to meet that deadline. (An
alternative priority based deadline behavior is discussed in the
PRIORITY FACTORS section.)

DEDICATED Moab dedicates all resources of an allocated node to the job
meaning that the job will not share a node's compute resources
with any other job.

ENABLEUSERRSV Allow user or personal reservations to be created and managed.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

527 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 528

Flag Name Description

IGNALL Scheduler ignores all resource usage policies for jobs associated
with this QoS.

JOBPRIOACCRUALPOLICY Specifies how Moab should track the dynamic aspects of a job's
priority. The two valid values are ACCRUE and RESET:

l ACCRUE indicates that the job will accrue queuetime based
priority from the time it is submitted unless it violates any
of the policies not specified in JOBPRIOEXCEPTIONS.

l RESET indicates that it will accrue priority from the time it
is submitted unless it violates any of the
JOBPRIOEXCEPTIONS. However, with RESET, if the job
does violate JOBPRIOEXCEPTIONS then its queuetime
based priority will be reset to 0.

JOBPRIOACCRUALPOLICY is a global parameter, but
can be configured to work only in QOSCFG:

QOSCFG[arrays] JOBPRIOACCRUALPOLICY=ACCRUE

The following old JOBPRIOACCRUALPOLICY values have been
deprecated and should be adjusted to the following values:

l QUEUEPOLICY = ACCRUE and JOBPRIOEXCEPTIONS
SOFTPOLICY,HARDPOLICY

l QUEUEPOLICYRESET = RESET and JOBPRIOEXCEPTIONS
SOFTPOLICY,HARDPOLICY

l ALWAYS = ACCRUE and JOBPRIOEXCEPTIONS ALL
l FULLPOLICY = ACCRUE and JOBPRIOEXCEPTIONS NONE
l FULLPOLICYRESET = RESET and JOBPRIOEXCEPTIONS

NONE

JOBPRIOEXCEPTIONS Specifies exceptions for calculating a job's dynamic priority
(QUEUETIME, XFACTOR, TARGETQUEUETIME). Valid values
are a comma-delimited list of any of the following: DEFER,
DEPENDS, SOFTPOLICY, HARDPOLICY, IDLEPOLICY,
USERHOLD, BATCHHOLD, and SYSTEMHOLD (ALL or NONE can
also be specified on their own).
Normally, when a job violates a policy, is placed on hold, or has
an unsatisfied dependency, it will not accrue priority. Exceptions
can be configured to allow a job to accrue priority in spite of
any of these violations. With DEPENDS a job will increase in
priority even if there exists an unsatisfied dependency. With
SOFTPOLICY, HARDPOLICY, or IDLEPOLICY a job can

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Flag Name Description

accrue priority despite violating a specific limit. With DEFER,
USERHOLD, BATCHHOLD, or SYSTEMHOLD a job can accrue
priority despite being on hold.

JOBPRIOEXCEPTIONS is a global parameter, but can be
configured to work only in QOSCFG:

QOSCFG[arrays] JOBPRIOEXCEPTIONS=IDLEPOLICY

NOBF Job is not considered for backfill.

NORESERVATION Job should never reserve resources regardless of priority.

NTR Job is prioritized as next to run (NTR) and backfill is disabled to
prevent other jobs from jumping in front of ones with the NTR
flag.

It is important to note that jobs marked with this flag
should not be blocked. If they are, Moab will stop
scheduling because if a job is marked with this flag, no
other jobs will be run until the flagged NTR (Next to Run)
job starts. Consider using the PRIORITY attribute of the
QOSCFG[<QOSID>] parameter instead, when possible. Or,
as you may encounter a scheduling delay for NTR-flagged
jobs to start, consider using the RESERVATIONDEPTH and
RESERVATIONQOSLIST parameters to provide better
scheduling flow. See Reservation Policies (especially the
section on Assigning Per-QoS Reservation Creation Rules)
for more information.

PREEMPTCONFIG User jobs can specify options to alter how preemption impacts
the job such as minpreempttime.

PREEMPTEE Job can be preempted by higher priority PREEMPTOR jobs.

PREEMPTFSV Job can be preempted by higher priority PREEMPTOR jobs if it
exceeds its fairshare target when started.

PREEMPTOR Job can preempt lower priority PREEMPTEE jobs.

PREEMPTSPV Job can be preempted by higher priority PREEMPTOR jobs if it
currently violates a soft usage policy limit.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

529 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 530

Flag Name Description

PROVISION If the job cannot locate available resources with the needed OS
or software, the scheduler can provision a number of nodes to
meet the needed OS or software requirements.

RESERVEALWAYS Job should create resource reservation regardless of job priority.

RUNNOW Boosts a job's system priority and makes the job a preemptor.

RUNNOW overrides resource restrictions such as MAXJOB
or MAXPROC.

TRIGGER The job is able to directly specify triggers.

USERESERVED[:<RSVID>] Job can only use resources within accessible reservations. If
<RSVID> is specified, job can only use resources within the
specified reservation.

Example 7-16: For lowprio QoS job, disable backfill andmake job preemptible

QOSCFG[lowprio] QFLAGS=NOBF,PREEMPTEE

Example 7-17: Bind all jobs to chemistry reservation

QOSCFG[chem-b] QFLAGS=USERESERVED:chemistry

Other QoS Attributes
In addition to the flags, there are attributes that alter service access.

Attribute name Description

SYSPRIO Sets the system priority on jobs associated with this QoS.
Example: All jobs submitted under a QoS sample receive a system
priority of 1.

QOSCFG[sample] SYSPRIO=1

Once a system priority has been added to a job, either
manually or through configuration, it can only be removed
manually.

REQUESTGEOMETRY Defines the size that is requested when Elastic Computing occurs.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Attribute name Description

Potential values are 'PRIORITYJOBSIZE' or
'<NODECOUNT>@<DURATION>'. If PRIORITYJOBSIZE is set, then the
nodecount and duration for Elastic Computing is set in realtime to
whatever is the size of the highest priority idle job.
Example:

QOSCFG[sample] REQUESTGEOMETRY=12@4:00:00:00

Per QoS Required Reservations
If desired, jobs associated with a particular QoS can be locked into a reservation or
reservation group using the REQRID attribute. For example, to force jobs using QoS
jasper to only use the resources within the failsafe standing reservation, use the
following:

QOSCFG[jasper] REQRID=failsafe
...

7.3.2.C Usage Limits and Overrides
All credentials, including QoS, allow specification of job usage limits as described in the
6.2.1.A Basic Fairness Policies - page 383 overview. In such cases, jobs are constrained by
the most limiting of all applicable policies. With QoSs, an override limit can also be specified
and with this limit, jobs are constrained by the override, regardless of other limits
specified. Using override limits, you can create custom QoSs that allow for more jobs or
more processors.

Example 7-18:

staff QoS should have a limit of 48 jobs, ignoring the user limit
USERCFG[DEFAULT] MAXJOB=10
QOSCFG[staff] OMAXJOB=48

(See 6.2.2 Override Limits - page 394.)

The following parameters can override the throttling policies from other credentials:

Parameter
Name

Description

OMAXJOB Overrides a credential's limit on the number of jobs the credential can have
active (starting or running) at any given time. Moab places a hold on all new
jobs submitted by that credential once it has reached its maximum number of
allowable jobs. Overrides a limit set using the MAXJOB parameter).

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

531 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 532

Parameter
Name

Description

OMAXNODE Overrides a credential's limit on the total number of compute nodes that can
be in use by active jobs at any given time. Overrides a limit set using the
MAXNODE parameter.

OMAXPE Overrides a credential's limit on the total number of dedicated processor-
equivalents the credential can have allocated by active jobs at any given time.
Overrides a limit set using the MAXPE parameter.

OMAXPROC Overrides a credential's limit on the total number of dedicated processors the
credential can have allocated by active jobs at any given time. Overrides a limit
set using the MAXPROC parameter.

OMAXPS Overrides a credential's limit on the number of outstanding processor-seconds
the credential can have allocated at any given time. Overrides a limit set using
the MAXPS parameter.

OMAXJPROC Overrides a limit on the total number of dedicated processors that can be
allocated to an active job at a given time. Overrides limits set using msub -W
x=MAXPROC or the CLASSCFG MAX.PROC attribute.

OMAXJPS Limits the number of outstanding processor-seconds allocated to a job at any
given time. Overrides a limit set using the CLASSCFG MAX.PS attribute.

OMAXJWC Overrides a maximum wallclock limit per job. Overrides a limit set using the
CLASSCFG MAX.WCLIMIT attribute.

OMAXJNODE Overrides a limit on the total number of compute nodes that can be in use by a
job at any given time. Overrides a limit set using the CLASSCFG MAX.NODE
attribute.

7.3.2.D Service Access Thresholds
Jobs can be granted access to services such as preemption and reservation creation, and
they can be granted access to resource reservations. However, with QoS thresholds, this
access can be made conditional on the current queuetime and XFactor metrics of an idle
job. The following table lists the available QoS service thresholds:

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Threshold attribute Description

PREEMPTQTTHRESHOLD A job with this QoS becomes a preemptor if the specified
queuetime threshold is reached.

PREEMPTXFTHRESHOLD A job with this QoS becomes a preemptor if the specified XFactor
threshold is reached.

RSVQTTHRESHOLD A job with this QoS can create a job reservation to guarantee
resource access if the specified queuetime threshold is reached.

RSVXFTHRESHOLD A job with this QoS can create a job reservation to guarantee
resource access if the specified XFactor threshold is reached.

ACLQTTHRESHOLD A job with this QoS can access reservations with a corresponding
QoS ACL only if the specified queuetime threshold is reached.

ACLXFTHRESHOLD A job with this QoS can access reservations with a corresponding
QoS ACL only if the specified XFactor threshold is reached.

TRIGGERQTTHRESHOLD If a job with this QoS fails to run before this threshold is
reached, any failure triggers associated with this QoS will fire.

7.3.2.E QoS Metrics

Metric Name Description

BACKLOGCOM-
PLETIONTIME

The estimated run-time to all idle jobs for a certain QoS. More specifically, it
is the processor second count of all the idle jobs in the QOS, divided by the
total processors on the system.
QQOSCFG[HIGH
TRIGGER=EType=threshold,AType=exec,TType=elastic,threshold=BACKLOGCOMPLETIONT
IME>1,Action="$HOME/geometry.pl blah",timeout=5:00

In order to calculate the BacklogCompletionTime, the QoS must have
ENABLEPROFILING=TRUE, either on the QoS itself or on the
DEFAULT QoS.

7.3.2.F Preemption Management
Job preemption facilities can be controlled on a per-QoS basis using the PREEMPTEE and
PREEMPTOR flags. Jobs that are preemptible can optionally be constrained to only be

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

533 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 534

preempted in a particular manner by specifying the QoS PREEMPTPOLICY attribute as in
the following example:

QOSCFG[special] QFLAGS=PREEMPTEE PREEMPTPOLICY=CHECKPOINT

For preemption to be effective, a job must be marked as a preemptee and must be enabled
for the requested preemption type. For example, if the PREEMPTPOLICY is set to suspend,
a potential target job must be both a preemptee and marked with the job flag
SUSPENDABLE. See suspension for more information. If the target job is not suspendable,
it will be either requeued or canceled. Likewise, if the PREEMPTPOLICY is set to
requeue, the job will be requeued if it is marked restartable. Otherwise, it will be
canceled.

The minimum time a job must run before being considered eligible for preemption can also
be configured on a per-QoS basis using the PREEMPTMINTIME parameter, which is
analogous to the JOBPREEMPTMINACTIVETIME. Conversely, PREEMPTMAXTIME sets a
threshold for which a job is no longer eligible for preemption; see
JOBPREEMPTMAXACTIVETIME for analogous details.

The PREEMPTEES attribute allows you to specify which QoSs that a job in a specific QoS is
allowed to preempt. The PREEMPTEES list is a comma-delimited list of QoS IDs. When a
PREEMPTEES attribute is specified, a job using that QoS can only preempt jobs using QoSs
listed in the PREEMPTEES list. In turn, those QoSs must be flagged as PREEMPTEE as in
the following example:

QOSCFG[a] QFLAGS=PREEMPTOR PREEMPTEES=b,c
QOSCFG[b] QFLAGS=PREEMPTEE
QOSCFG[c] QFLAGS=PREEMPTEE

In the example, jobs in the 'a' QoS can only preempt jobs in the b and c QoSs.

7.3.3 Managing QoS Access

7.3.3.A Specifying Credential Based QoS Access
You can define the privileges allowed within a QoS by using the QOSCFG parameter;
however, in most cases access to the QoS is enabled via credential specific *CFG
parameters, specifically the USERCFG, GROUPCFG, ACCOUNTCFG, and CLASSCFG
parameters, which allow defining QoS access lists and QoS defaults. Specify credential
specific QoS access by using the QLIST and/or QDEF attributes of the associated
credential parameter.

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

7.3.3.B QOS Access via Logical OR
To enable QoS access, the QLIST and/or QDEF attributes of the appropriate user, group,
account, or class/queue should be specified as in the following example:

user john's jobs can access QOS geo, chem, or staff with geo as default
USERCFG[john] QDEF=geo QLIST=geo,chem,staff
group system jobs can access the development qos
GROUPCFG[systems] QDEF=development
class batch jobs can access the normal qos
CLASSCFG[batch] QDEF=normal

By default, jobs can request a QoS if access to that QoS is allowed by any of the job's
credentials. (In the previous example, a job from user john submitted to the class batch
could request QoSs geo, chem, staff, or normal).

7.3.3.C QOS Access via Logical AND
If desired, QoS access can be masked or logically ANDed if the QoS access list is specified
with a terminating ampersand (&) as in the following example:

user john's jobs can access QOS geo, chem, or staff with geo as default
USERCFG[john] QDEF=geo QLIST=geo,chem,staff
group system jobs can access the development qos
GROUPCFG[systems] QDEF=development
class batch jobs can access the normal qos
CLASSCFG[batch] QDEF=normal
class debug jobs can only access the development or lowpri QoSs regardless of other
credentials
CLASSCFG[debug] QLIST=development,lowpri&

Specifying QoS Based Access
QoS access can also be specified from within the QoS object using the QoS MEMBERULIST
attribute as in the following example:

define qos premiere and grant access to users steve and john
QOSCFG[premiere] PRIORITY=1000 QFLAGS=PREEMPTOR MEMBERULIST=steve,john

By default, if a job requests a QoS that it cannot access, Moab places a hold on that
job. The QOSREJECTPOLICY can be used to modify this behavior.

7.3.4 Requesting QoS Services at Job Submission
By default, jobs inherit a default QoS based on the user, group, class, and account
associated with the job. If a job has access to multiple QoS levels, the submitter can
explicitly request a particular QoS using the QoS resource manager extension as in the
following example:

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

535 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 536

> msub -l nodes=1,walltime=100,qos=special3 job.cmd

7.3.5 Restricting Access to Special Attributes
This feature is removed for Moab 9.0 and later. You can achieve the same results using job
templates.

Related Topics

l Credential Overview

l Allocation Management Overview

l Rollback Reservations

l Job Deadlines

l Using QoS preemption

Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities

8.1 Optimization Overview 537

Chapter 8: Optimizing Scheduling Behavior – Backfill
and Node Sets

In this chapter:

8.1 Optimization Overview 537
8.2 Backfill 538

8.2.1 Backfill Overview 538
8.2.2 Backfill Algorithms 540
8.2.3 Configuring Backfill 542

8.3 Node Set Overview 545
8.3.1 Node Set Usage Overview 545
8.3.2 Node Set Configuration Examples 546
8.3.3 Requesting Node Sets for Job Submission 552
8.3.4 Configuring Node Sets for Classes 552

8.1 Optimization Overview

Moab optimizes cluster performance. Every policy, limit, and feature is designed to allow
maximum scheduling flexibility while enforcing the required constraints. A driving
responsibility of the scheduler is to do all in its power to maximize system use and to
minimize job response time while honoring the policies that make up the site's mission
goals.

However, as all jobs are not created equal, optimization must be abstracted slightly further
to incorporate this fact. Cluster optimization must also focus on targeted cycle delivery. In
the scientific HPC community, the true goal of a cluster is to maximize delivered research.
For businesses and other organizations, the purposes may be slightly different, but all
organizations agree on the simple tenet that the cluster should optimize the site's mission
goals.

To obtain this goal, the scheduler has several levels of optimization it performs:

Level Description

Workload
Ordering

Prioritizing workload and utilizing backfill

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

Level Description

Intelligent
Resource
Allocation

Selecting those resources that best meet the job's needs or best enable future
jobs to run (see node allocation)

Maximizing
Intra-Job
Efficiency

Selecting the type of nodes, collection of nodes, and proximity of nodes
required to maximize job performance by minimizing both job compute and
inter-process communication time (see node sets and node allocation)

Job
Preemption

Preempting jobs to allow the most important jobs to receive the best response
time (see preemption)

Utilizing
Flexible
Policies

Using policies that minimize blocking and resource fragmentation while
enforcing needed constraints (see soft throttling policies and reservations)

8.2 Backfill

In this topic:

8.2.1 Backfill Overview - page 538
8.2.2 Backfill Algorithms - page 540

8.2.2.A Liberal Versus Conservative Backfill - page 542
8.2.3 Configuring Backfill - page 542

8.2.3.A Backfill Policies - page 542
8.2.3.B Backfill Chunking - page 543
8.2.3.C Virtual Wallclock Time Scaling - page 544

8.2.1 Backfill Overview
Backfill is a scheduling optimization that allows a scheduler to make better use of available
resources by running jobs out of order. When Moab schedules, it prioritizes the jobs in the
queue according to a number of factors and then orders the jobs into a highest priority
first (or priority FIFO) sorted list. It starts the jobs one by one stepping through the priority
list until it reaches a job it cannot start. Because all jobs and reservations possess a start
time and a wallclock limit, Moab can determine the completion time of all jobs in the queue.

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

538 8.2 Backfill

8.2 Backfill 539

Consequently, Moab can also determine the earliest the needed resources will become
available for the highest priority job to start.

Backfill operates based on this earliest job start information. Because Moab knows the
earliest the highest priority job can start, and which resources it will need at that time, it
can also determine which jobs can be started without delaying this job. Enabling backfill
allows the scheduler to start other, lower-priority jobs so long as they do not delay the
highest priority job. If backfill is enabled, Moab protects the highest priority job's start time
by creating a job reservation to reserve the needed resources at the appropriate time.
Moab then can start any job that will not interfere with this reservation.

Backfill offers significant scheduler performance improvement. In a typical large system,
enabling backfill increases system utilization by about 20% and improves turnaround time
by an even greater amount. Because of the way it works, essentially filling in holes in node
space, backfill tends to favor smaller and shorter running jobs more than larger and longer
running ones. It is common to see over 90% of these small and short jobs backfilled.
Consequently, sites will see marked improvement in the level of service delivered to the
small, short jobs and moderate to little improvement for the larger, long ones.

With most algorithms and policies, there is a trade-off. Backfill is not an exception but the
negative effects are minor. Because backfill locates jobs to run from throughout the idle job
queue, it tends to diminish the influence of the job prioritization a site has chosen and
therefore may negate some desired workload steering attempts through this prioritization.
Although by default the start time of the highest priority job is protected by a reservation,
there is nothing to prevent the third priority job from starting early and possibly delaying
the start of the second priority job. This issue is addressed along with its trade-offs later in
this section.

Another problem is a little more subtle. Consider the following scenario involving a two-
processor cluster. Job A has a four-hour wallclock limit and requires one processor. It
started one hour ago (time zero) and will reach its wallclock limit in three more hours. Job
B is the highest priority idle job and requires two processors for one hour. Job C is the next
highest priority job and requires one processor for two hours. Moab examines the jobs and
correctly determines that job A must finish in three hours and therefore, the earliest job B
can start is in three hours. Moab also determines that job C can start and finish in less than
this amount of time. Consequently, Moab starts job C on the idle processor at time one. One
hour later (time two), job A completes early. Apparently, the user overestimated the
amount of time job A would need by a few hours. Since job B is now the highest priority job,
it should be able to run. However, job C, a lower priority job was started an hour ago and
the resources needed for job B are not available. Moab re-evaluates job B's reservation
and determines that it can slide forward an hour. At time three, job B starts.

In review, backfill provided positive benefits. Job A successfully ran to completion. Job C
was started immediately. Job B was able to start one hour sooner than its original target
time, although, had backfill not been enabled, job B would have been able to run two hours
earlier.

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

The scenario just described occurs quite frequently because user estimates for job
duration are generally inaccurate. Job wallclock estimate accuracy, or wallclock accuracy, is
defined as the ratio of wall time required to actually run the job divided by the wall time
requested for the job. Wallclock accuracy varies from site to site but the site average is
rarely better than 50%. Because the quality of the walltime estimate provided by the user
is so low, job reservations for high priority jobs are often later than they need to be.

Although there do exist some minor drawbacks with backfill, its net performance impact on
a site's workload is very positive. While a few of the highest priority jobs may get
temporarily delayed, their position as highest priority was most likely accelerated by the
fact that jobs in front of them were able to start earlier due to backfill. Studies have shown
that only a very small number of jobs are truly delayed and when they are, it is only by a
fraction of their total queue time. At the same time, many jobs are started significantly
earlier than would have occurred without backfill.

8.2.2 Backfill Algorithms

BACKFILLPOLICY controls which job gets selected first to be backfilled. Backfill
jobs are still placed on nodes according to the NODEALLOCATIONPOLICY.

The algorithm behind Moab backfill scheduling is straightforward, although there are a
number of issues and parameters that should be highlighted. First of all, Moab makes two
backfill scheduling passes. For each pass, Moab selects a list of jobs that are eligible for
backfill. On the first pass, only those jobs that meet the constraints of the soft fairness
throttling policies are considered and scheduled. The second pass expands this list of jobs
to include those that meet the hard (less constrained) fairness throttling policies.

The second important concept regarding Moab backfill is the concept of backfill windows.
The figure below shows a simple batch environment containing two running jobs and a
reservation for a third job. The present time is represented by the leftmost end of the box
with the future moving to the right. The light gray boxes represent currently idle nodes
that are eligible for backfill. For this example, let's assume that the space represented
covers 8 nodes and a 3 hour time frame. To determine backfill windows, Moab analyzes the
idle nodes essentially looking for largest node-time rectangles. It determines that there are
two backfill windows. The first window, Window 1, consists of 4 nodes that are available for
only one hour (because some of the nodes are blocked by the reservation for Job 3). The
second window contains only one node but has no time limit because this node is not
blocked by the reservation for Job 3. It is important to note that these backfill windows
overlap.

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

540 8.2 Backfill

8.2 Backfill 541

Image 8-1: Backfillable nodes create backfill windows 1 and 2

Once the backfill windows have been determined, Moab begins to traverse them. The
current behavior is to traverse these windows widest window first (most nodes to fewest

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

nodes). As each backfill window is evaluated, Moab applies the backfill algorithm specified
by the BACKFILLPOLICY parameter.

If the FIRSTFIT algorithm is applied, the following steps are taken:

1. The list of feasible backfill jobs is filtered, selecting only those that will actually fit in the
current backfill window.

2. The first job is started.

3. While backfill jobs and idle resources remain, repeat step 1.

If the BESTFIT algorithm is applied, the following steps are taken:

1. The list of feasible backfill jobs is filtered, selecting only those that actually fit in the
current backfill window.

2. The degree of fit of each job is determined based on the BACKFILLMETRIC parameter
(processors, seconds, processor-seconds).

3. The job with the best fit starts.

4. While backfill jobs and idle resources remain, repeat step 1.

If NONE is set, the backfill policy is disabled.

Other backfill policies behave in a generally similar manner. The parameters
documentation provides further details.

8.2.2.A Liberal Versus Conservative Backfill
By default, Moab reserves only the highest priority job resulting in a liberal and aggressive
backfill. This reservation guarantees that backfilled jobs will not delay the highest priority
job, although they might delay other jobs. The parameter RESERVATIONDEPTH controls
how conservative or liberal the backfill policy is. This parameter controls how deep down
the queue priority reservations will be made. While increasing this parameter improves
guarantees that priority jobs will not be bypassed, it reduces the freedom of the scheduler
to backfill resulting in somewhat lower system utilization. The significance of the trade-offs
should be evaluated on a site by site basis.

8.2.3 Configuring Backfill

8.2.3.A Backfill Policies
Backfill is enabled in Moab by specifying the BACKFILLPOLICY parameter. The
BACKFILLPOLICY parameter is used to control which job gets selected first to be backfilled.
Once the job has been selected, it is still placed on nodes according to the

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

542 8.2 Backfill

8.2 Backfill 543

NODEALLOCATIONPOLICY you have defined. By default, backfill is enabled in Moab using
the FIRSTFIT algorithm. However, this parameter can also be set to NONE (disabled).

The number of reservations that protect the resources required by priority jobs can be
controlled using RESERVATIONDEPTH. This depth can be distributed across job QoS levels
using RESERVATIONQOSLIST.

8.2.3.B Backfill Chunking
In a batch environment saturated with serial jobs, serial jobs will, over time, dominate the
resources available for backfill at the expense of other jobs. This is due to the time-
dimension fragmentation associated with running serial jobs. For example, given an
environment with an abundance of serial jobs, if a multi-processor job completes freeing
processors, one of three things will happen:

1. The freed resources are allocated to another job requiring the same number of
processors.

2. Additional jobs may complete at the same time allowing a larger job to allocate the
aggregate resources.

3. The freed resources are allocated to one or more smaller jobs.

In environments where the scheduling iteration is much higher than the average time
between completing jobs, case 3 occurs far more often than case 2, leading to smaller and
smaller jobs populating the system over time.

To address this issue, the scheduler incorporates the concept of chunking. Chunking allows
the scheduler to favor case 2 maintaining a more controlled balance between large and
small jobs. The idea of chunking involves establishing a time-based threshold during which
resources available for backfill are aggregated. This threshold is set using the parameter
BFCHUNKDURATION. When resources are freed, they are made available only to jobs of a
certain size (set using the parameter BFCHUNKSIZE) or larger. These resources remain
protected from smaller jobs until either additional resources are freed up and a larger job
can use the aggregate resources, or until the BFCHUNKDURATION threshold time expires.

Backfill chunking is only activated when a job of size BFCHUNKSIZE or larger is
blocked in backfill due to lack of resources.

It is important to note that the optimal settings for these parameters is very site-specific
and will depend on the workload (including the average job turnaround time, job size, and
mix of large to small jobs), cluster resources, and other scheduling environmental factors.
Setting too restrictive values needlessly reduces utilization while settings that are too
relaxed do not allowed the desired aggregation to occur.

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

Backfill chunking is only enabled in conjunction with the FIRSTFIT backfill policy.

The current implementation of backfill chunking in Moab behaves as follows:

l When Moab starts, if backfill chunking is enabled, it starts immediately in a chunking
window (with duration dictated by BFChunkDuration).

l Each time a job completes, the chunking window is re-enabled and extended to the
chunking duration (current time + BFChunkDuration).

l While within this potentially continuously extending chunking window, the first
backfill job, whether large or small, will always be evaluated without hindrance. Jobs
will continue to be evaluated with the behavior that the first large job (based on
BFChunkSize) to be encountered (including the first) will prevent subsequent
small jobs from being backfilled.

l If a timeframe occurs where a job has not completed within BFChunkDuration of
the previous job completion, then all job sizes can be freely backfilled.

l Backfill chunking does not kick in again until BFChunkDuration past the next job
completion.

8.2.3.C Virtual Wallclock Time Scaling
In most environments, users submit jobs with rough estimations of the wallclock times.
Within the HPC industry, a job typically runs for 40% of its specified wallclock time. Virtual
Wallclock Time Scaling takes advantage of this fact to implement a form of optimistic
backfilling. Jobs that are eligible for backfilling and not restricted by other policies are
virtually scaled by the BFVIRTUALWALLTIMESCALINGFACTOR (assuming that the jobs
finish before this new virtual wallclock limit). The scaled jobs are then compared to backfill
windows to see if there is space and time for them to be scheduled. The scaled jobs are
only scheduled if there is no possibility that it will conflict with a standing or administrator
reservation. Conflicts with such reservations occur if the virtual wallclock time overlaps a
reservation, or if the original non-virtual wallclock time overlaps a standing or
administrator reservation. Jobs that can fit into an available backfill window without having
their walltime scaled are backfilled 'as-is' (meaning, without virtually scaling the original
walltime).

Virtual Wallclock Time Scaling is only enabled when the
BFVIRTUALWALLTIMESCALINGFACTOR parameter is defined.

If a virtually-scaled job fits into a window, and is backfilled, it will run until completion or
until it comes within one scheduling iteration (RMPOLLINTERVAL defines the exact time of
an iteration) of the virtual wallclock time expiration. In the latter case the job's wallclock
time is restored to its original time and Moab checks and resolves conflicts caused by this

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

544 8.2 Backfill

8.3 Node Set Overview 545

'expansion.' Conflicts may occur when the backfilled job is restored to its full duration
resulting in reservation overlap. The BFVIRTUALWALLTIMECONFLICTPOLICY parameter
controls how Moab handles these conflicts.

If the BFVIRTUALWALLTIMECONFLICTPOLICY parameter is set to NONE or is not
specified, the overlapped job reservations are rescheduled.

Related Topics

l BACKFILLDEPTH Parameter

l BACKFILLPOLICY Parameter

l BFMINVIRTUALWALLTIME

l Reservation Policy Overview

8.3 Node Set Overview

In this topic:

8.3.1 Node Set Usage Overview - page 545
8.3.2 Node Set Configuration Examples - page 546

8.3.2.A Fixed Configuration Example - page 546
8.3.2.B Dynamic Example - page 549
8.3.2.C NODESETPLUS - page 551
8.3.2.D Nested Node Sets - page 551

8.3.3 Requesting Node Sets for Job Submission - page 552
8.3.4 Configuring Node Sets for Classes - page 552

8.3.1 Node Set Usage Overview
While backfill improves the scheduler's performance, this is only half the battle. The
efficiency of a cluster, in terms of actual work accomplished, is a function of both
scheduling performance and individual job efficiency. In many clusters, job efficiency can
vary from node to node, as well as with the node mix allocated. Most parallel jobs written in
popular languages such as MPI or PVM do not internally load balance their workload and
therefore run only as fast as the slowest node allocated. Consequently, these jobs run most
effectively on homogeneous sets of nodes. However, while many clusters start out as
homogeneous, they quickly evolve as new generations of compute nodes are integrated
into the system. Research has shown that this integration, while improving scheduling

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

performance due to increased scheduler selection, can actually decrease average job
efficiency.

A feature called node sets allows jobs to request sets of common resources without
specifying exactly what resources are required. Node set policy can be specified globally or
on a per-job basis. In addition to their use in forcing jobs onto homogeneous nodes, these
policies can also be used to guide jobs to one or more types of nodes on which a particular
job performs best, similar to job preferences available in other systems. For example, an
I/O intensive job might run best on a certain range of processor speeds, running slower on
slower nodes, while wasting cycles on faster nodes. A job can specify
ANYOF:FEATURE:bigmem,fastos to request nodes with the bigmem or fastos
feature. Alternatively, if a simple feature-homogeneous node set is desired,
ONEOF:FEATURE can be specified. On the other hand, a job may request a feature based
node set with the configuration ONEOF:FEATURE:bigmem,fastos, in which case
Moab will first attempt to locate adequate nodes where all nodes contain the bigmem
feature. If such a set cannot be found, Moab will look for sets of nodes containing the other
specified features. In highly heterogeneous clusters, the use of node sets improves job
throughput by 10 to 15%.

Node sets can be requested on a system wide or per job basis. System wide configuration is
accomplished via the NODESET* parameters while per job specification occurs via the
resource manager extensions.

The GLOBAL node is included in all feature node sets.

When creating node sets, you have the option of using a fixed configuration or of creating
node sets dynamically (by using the msub command). This topic explains how to set up
both node set use cases.

8.3.2 Node Set Configuration Examples
Global node sets are defined using the NODESETPOLICY, NODESETATTRIBUTE,
NODESETLIST, and NODESETISOPTIONAL parameters. As stated before, you can create
node sets dynamically (see Dynamic Example) or with a fixed configuration (see Fixed
Configuration Example). The use of these parameters can be best highlighted with two
examples.

8.3.2.A Fixed Configuration Example
In this example, a large site possesses a Myrinet based interconnect and wants to,
whenever possible, allocate nodes within Myrinet switch boundaries. To accomplish this,
they could assign node attributes to each node indicating which switch it was associated

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

546 8.3 Node Set Overview

8.3 Node Set Overview 547

with (switchA, switchB, and so forth) and then use the following system wide node set
configuration:

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETISOPTIONAL TRUE
NODESETLIST switchA,switchB,switchC,switchD
...

Node Set Policy
In the preceding example, the NODESETPOLICY parameter is set to the policy ONEOF and
tells Moab to allocate nodes within a single attribute set. Other node set policies are listed
in the following table:

Policy Description

ANYOF Select resources from all sets contained in node set list. The job could span
multiple node sets.

FIRSTOF Select resources from first set to match specified constraints.

ONEOF Select a single set that contains adequate resources to support job.

Node Set Attribute
The example's NODESETATTRIBUTE parameter is set to FEATURE, specifying that the
node sets are to be constructed along node feature boundaries.

You could also set the NODESETATTRIBUTE to VARATTR, specifying that node sets are to
be constructed according to VARATTR values on the job.

You could also set the NODESETATTRIBUTE to RESERVATION, specifying that node sets
are to be constructed according to the reservations (or reservation groups) specified in the
NODESETLIST parameter.

Node Set Constraint Handling
The next parameter, NODESETISOPTIONAL, indicates that Moab should not delay the start
time of a job if the desired node set is not available but adequate idle resources exist
outside of the set. Setting this parameter to TRUE basically tells Moab to attempt to use a
node set if it is available, but if not, run the job as soon as possible anyway.

Setting NODESETISOPTIONAL to FALSE will force the job to always run in a
complete nodeset regardless of any start delay this imposes.

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

Node Set List
Finally, the NODESETLIST value of switchA switchB... tells Moab to only use node
sets based on the listed feature values. This is necessary since sites will often use node
features for many purposes and the resulting node sets would be of little use for switch
proximity if they were generated based on irrelevant node features indicating things such
as processor speed or node architecture.

To add nodes to the NODESETLIST, you must configure features on your nodes using the
NODECFG FEATURES attribute.

NODECFG[node01] FEATURES=switchA
NODECFG[node02] FEATURES=switchA
NODECFG[node03] FEATURES=switchB

Nodes node01 and node02 contain the switchA feature, and node node03 contains the switchB feature.

Node Set Priority
When resources are available in more than one resource set, the NODESETPRIORITYTYPE
parameter allows control over how the best resource set is selected. Legal values for this
parameter are described in the following table:

Priority
Type

Description Details

AFFINITY Avoid a resource set with
negative affinity.

Choosing this type causes Moab to select a node
set with no negative affinity nodes (nodes that
have a reservation that with negative affinity). If
all node sets have negative affinity, then Moab
will select the first matching node set.

BESTFIT Select the smallest resource
set possible.

Choosing this type causes Moab, when selecting
a node set, to eliminate sets that do not have all
the required resources. From the remaining
sets, Moab chooses the set with the least
amount of resources. This priority type most
closely matches the job requirements in order
to waste the least amount of resources.
This type minimizes fragmentation of larger
resource sets.

FIRSTFIT Select the first set with
enough resources.

Moab will select the first nodeset with enough
resources to satisfy the job. This is the fastest of
the priority types.

MINLOSS Select the resource set that
results in the minimal

Choosing this type works only when using the
following configuration:

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

548 8.3 Node Set Overview

8.3 Node Set Overview 549

Priority
Type

Description Details

wasted resources assuming
no internal job load
balancing is available.
(Assumes parallel jobs only
run as fast as the slowest
allocated node.)

NODESETATTRIBUTE FEATURE

In a SHAREDMEM environment (see Moab-
NUMA-Support Integration Guide for more
information), Moab will select the node set
based on NUMA properties (the smallest
feasible node set).

WORSTFIT Select the largest resource
set possible.

This type causes Moab, when choosing a node
set, to eliminate sets that do not have all the
required resources. From the remaining sets,
Moab chooses the set with the greatest amount
of resources.
This type minimizes fragmentation of smaller
resource sets, but increases fragmentation of
larger resource sets.

8.3.2.B Dynamic Example
In this example, a site wants to be able to dynamically specify which VARATTR values the
node set will be based on. To accomplish this, the following configuration in the moab.cfg
file could be used:

NODESETISOPTIONAL FALSE
NODESETPOLICY FIRSTOF
NODESETATTRIBUTE VARATTR

Node Set Attribute
The example's NODESETATTRIBUTE parameter is set to FEATURE, specifying that the
node sets are to be constructed along node feature boundaries.

You could also set the NODESETATTRIBUTE to VARATTR, specifying that node sets are to
be constructed according to VARATTR values on the job.

You could also set the NODESETATTRIBUTE to RESERVATION, specifying that node sets
are to be constructed according to the reservations (or reservation groups) specified in the
NODESETLIST parameter.

Node Set Policy
In the preceding example, the NODESETPOLICY parameter is set to the policy FIRSTOF
and tells Moab to allocate nodes from the first set that matches specified constraints.

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

Node Set Constraint Handling
The parameter, NODESETISOPTIONAL, indicates that Moab should not delay the start time
of a job if the desired node set is not available but adequate idle resources exist outside of
the set. Setting this parameter to FALSE will force the job to always run in a complete node
set regardless of any start delay this imposes.

msub Example
With the configuration (above) set in the moab.cfg, Moab is configured for dynamic node
sets. You can create node sets dynamically by using the msub -l command. For more
information, see Resource Manager Extensions. Use the following format:
msub -l nodeset=FIRSTOF:VARATTR:<var>[=<value>],...

For example, if you wanted to create a dynamic node set for the Provo datacenter:

msub -l nodeset=FIRSTOF:VARATTR:datacenter=Provo

This command causes Moab to set datacenter=Provo as the node set.

You can specify more than one VARATTR in the command. For example, if you want
to create a dynamic node set for the Provo datacenter and the SaltLake datacenter:

msub -l nodeset=FIRSTOF:VARATTR:datacenter=Provo:datacenter=SaltLake

If you specify only datacenter (without specifying a value, such as =Provo), Moab will
look up all possible values (values reported on the node for that VARATTR), and then
choose one. So if, for example, you have nodes that have VARATTRs
datacenter=Provo, datacenter=SaltLake, and datacenter=StGeorge, then
specifying msub -l nodeset=FIRSTOF:VARATTR:datacenter will cause the job
to run in Provo or SaltLake or StGeorge.

You should also note that Moab also adds the VARATTR (whether you specify it or if Moab
chooses it) to the required attribute (REQATTR) of the job. For example, if you specify
datacenter=Provo as the VARATTR, datacenter=Provo will also be added to the
job REQATTR. Likewise, if you specify only datacenter, and Moab chooses
datacenter=SaltLake, then datacenter=SaltLake will be added to the job
REQATTR.

If you do not request a VARATTR in the nodeset of the msub -l command, the job will
run as if it did not use node sets at all, and nothing will be added to its REQATTR.

If you manually specify a different REQATTR on a job (for example,
datacenter=SaltLake) from the node set VARATTR (for example,
datacenter=Provo), the job will never run.

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

550 8.3 Node Set Overview

8.3 Node Set Overview 551

8.3.2.C NODESETPLUS
Moab supports additional NodeSet behavior by specifying the NODESETPLUS parameter.
Possible values when specifying this parameter are SPANEVENLY and DELAY.

Neither SPANEVENLY nor DELAY will work with multi-req jobs or preemption.

Value Description

SPANEVENLY Moab attempts to fit all jobs within one node set, or it spans any number of
node sets evenly. When a job specifies a NODESETDELAY, Moab attempts to
contain the job within a single node set; if unable to do so, it spans node sets
evenly, unless doing so would delay the job beyond the requested
NODESETDELAY.

DELAY Moab attempts to schedule the job within a nodeset for the configured
NODESETDELAY. If Moab cannot find space for the job to start within
NODESETDELAY (Moab considers future workload to determine if space will
open up in time and might create a future reservation), then Moab schedules
the job and ignores the nodeset requirement.

8.3.2.D Nested Node Sets
Moab attempts to fit jobs on node sets in the order they are specified in the
NODESETLIST. You can create nested node sets by listing your node sets in a specific
order. Here is an example of a 'smallest to largest' nested node set:

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETISOPTIONAL FALSE
NODESETLIST
blade1a,blade1b,blade2a,blade2b,blade3a,blade3b,blade4a,blade4b,quad1a,quad1b,quad2a,q
uad2b,octet1,octet2,sixteen

The accompanying cluster would look like this:

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

Image 8-2: Octet, quad, and blade node sets on a cluster

In this example, Moab tries to fit the job on the nodes in the blade sets first. If that doesn't
work, it moves up to the nodes in the quad sets (a set of four blade sets). If the quads are
insufficient, it tries the nodes in the octet sets (a set of four quad node sets).

8.3.3 Requesting Node Sets for Job Submission
On a per job basis, each user can specify the equivalent of all parameters except
NODESETDELAY. As mentioned previously, this is accomplished using the resource
manager extensions.

8.3.4 Configuring Node Sets for Classes
Classes can be configured with a default node set. In the configuration file, specify
DEFAULT.NODESET with the following syntax:

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

552 8.3 Node Set Overview

8.3 Node Set Overview 553

DEFAULT.NODESET=<SETTYPE>:<SETATTR>[:<SETLIST>[,<SETLIST>]...].

For example, in a heterogeneous cluster with two different types of processors, the
following configuration confines jobs assigned to the amd class to run on either ATHLON or
OPTERON processors:

CLASSCFG[amd] DEFAULT.NODESET=ONEOF:FEATURE:ATHLON,OPTERON
...

Related Topics

l Resource Manager Extensions

l CLASSCFG

l Partition Overview

Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets

9.1 Moab Performance Evaluation Overview 554

Chapter 9: Evaluating System Performance - Statistics,
Profiling and Testing

In this chapter:

9.1 Moab Performance Evaluation Overview 554
9.2 Accounting: Job and System Statistics 554

9.2.1 Accounting Overview 555
9.2.2 Real-Time Statistics 556

9.3 Testing New Versions and Configurations 557
9.3.1 MONITOR Mode 557
9.3.2 INTERACTIVE Mode 558

9.1 Moab Performance Evaluation Overview

Moab Workload Manager tracks numerous performance statistics for jobs, accounting,
users, groups, accounts, classes, QoS, the system, and so forth. These statistics can be
accessed through various commands or Moab Cluster Manager/Monitor.

9.2 Accounting: Job and System Statistics

Moab provides extensive accounting facilities that allow resource usage to be tracked by
resources (compute nodes), jobs, users, and other objects. The accounting facilities can be
used in conjunction with, and correlated with, the accounting records provided by the
resource and accounting manager.

Moab maintains both raw persistent data and a large number of processed in memory
statistics allowing instant summaries of cycle delivery and system utilization. With this
information, Moab can assist in accomplishing any of the following tasks:

l Determining cumulative cluster performance over a fixed time frame.

l Graphing changes in cluster utilization and responsiveness over time.

l Identifying which compute resources are most heavily used.

l Charting resource usage distribution among users, groups, projects, and classes.

Chapter 9: Evaluating System Performance - Statistics, Profiling and Testing

l Determining allocated resources, responsiveness, and failure conditions for jobs
completed in the past.

l Providing real-time statistics updates to external accounting systems.

This topic describes how to accomplish each of these tasks using Moab tools and accounting
information.

In this topic:

9.2.1 Accounting Overview - page 555
9.2.1.A Job and Reservation Accounting - page 555
9.2.1.B Resource Accounting - page 555
9.2.1.C Credential Accounting - page 556

9.2.2 Real-Time Statistics - page 556
9.2.2.A FairShare Usage Statistics - page 556

9.2.1 Accounting Overview
Moab provides accounting data correlated to most major objects used within the cluster
scheduling environment. These records provide job and reservation accounting, resource
accounting, and credential-based accounting.

9.2.1.A Job and Reservation Accounting
As each job or reservation completes, Moab creates a complete persistent trace record
containing information about who ran, the time frame of all significant events, and what
resources were allocated. In addition, actual execution environment, failure reports,
requested service levels, and other pieces of key information are also recorded. A complete
description of each accounting data field can be found within section Workload Traces.

9.2.1.B Resource Accounting
The load on any given node is available historically allowing identification of not only its
usage at any point in time, but the actual jobs that were running on it. Moab Cluster
Manager can show load information (assuming load is configured as a generic metric), but
not the individual jobs that were running on a node at some point in the past. For
aggregated, historical statistics covering node usage and availability, the showstats
command can be run with the -n flag.

Chapter 9: Evaluating System Performance - Statistics, Profiling and Testing

555 9.2 Accounting: Job and System Statistics

9.2 Accounting: Job and System Statistics 556

9.2.1.C Credential Accounting
Current and historical usage for users, groups, account, QoSs, and classes are determined
in a manner similar to that available for evaluating nodes. For aggregated, historical
statistics covering credential usage and availability, the showstats command can be run
with the corresponding credential flag.

If needed, detailed credential accounting can also be enabled globally or on a credential by
credential basis. With detailed credential accounting enabled, real-time information
regarding per-credential usage over time can be displayed. To enable detailed per
credential accounting, the ENABLEPROFILING attribute must be specified for credentials
that are to be monitored. For example, to track detailed credentials, the following should be
used:

USERCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE

Credential level profiling operates by maintaining a number of time-based statistical
records for each credential. The parameters PROFILECOUNT and PROFILEDURATION
control the number and duration of the statistical records.

9.2.2 Real-Time Statistics
Moab provides real-time statistical information about how the machine is running from a
scheduling point of view. The showstats command is actually a suite of commands
providing detailed information on an overall scheduling basis, as well as a per user, group,
account and node basis. This command gets its information from in memory statistics that
are loaded at scheduler start time from the scheduler checkpoint file. See
Checkpoint/Restart for more information. This checkpoint file is updated periodically and
when the scheduler is shut down allowing statistics to be collected over an extended time
frame. At any time, real-time statistics can be reset using the mschedctl -f command.

In addition to the showstats command, the showstats -f command also obtains its
information from the in memory statistics and checkpoint file. This command displays a
processor-time based matrix of scheduling performance for a wide variety of metrics.
Information such as backfill effectiveness or average job queue time can be determined on
a job size/duration basis.

9.2.2.A FairShare Usage Statistics
Regardless of whether fairshare is enabled, detailed credential based fairshare statistics
are maintained. Like job traces, these statistics are stored in the directory pointed to by the
STATDIR parameter. Fairshare stats are maintained in a separate statistics file using the

Chapter 9: Evaluating System Performance - Statistics, Profiling and Testing

format FS.<EPOCHTIME> (FS.982713600, for example) with one file created per
fairshare window. See the Fairshare Overview for more information. These files are also
flat text and record credential based usage statistics. Information from these files can be
seen via the mdiag -f command.

Related Topics

l Generic Consumable Resources

l Object Variables

9.3 Testing New Versions and Configurations

In this topic:

9.3.1 MONITOR Mode - page 557
9.3.2 INTERACTIVE Mode - page 558

9.3.1 MONITOR Mode
Moab supports a scheduling mode called MONITOR. In this mode, the scheduler initializes,
contacts the resource manager and other peer services, and conducts scheduling cycles
exactly as it would if running in NORMAL or production mode. Job are prioritized,
reservations created, policies and limits enforced, and administrator and end-user
commands enabled. The key difference is that although live resource management
information is loaded, MONITOR mode disables Moab's ability to start, preempt, cancel, or
otherwise modify jobs or resources. Moab continues to attempt to schedule exactly as it
would in NORMAL mode but its ability to actually impact the system is disabled. Using this
mode, a site can quickly verify correct resource manager configuration and scheduler
operation. This mode can also be used to validate new policies and constraints. In fact,
Moab can be run in MONITOR mode on a production system while another scheduler or
even another version of Moab is running on the same system. This unique ability can allow
new versions and configurations to be fully tested without any exposure to potential
failures and with no cluster downtime.

To run Moab in MONITOR mode, simply set the MODE attribute of the SCHEDCFG
parameter to MONITOR and start Moab. Normal scheduler commands can be used to
evaluate configuration and performance. Diagnostic commands can be used to look for any
potential issues. Further, the Moab log file can be used to determine which jobs Moab
attempted to start, and which resources Moab attempted to allocate.

Chapter 9: Evaluating System Performance - Statistics, Profiling and Testing

557 9.3 Testing New Versions and Configurations

9.3 Testing New Versions and Configurations 558

If another instance of Moab is running in production and a site administrator wants to
evaluate an alternate configuration or new version, this is easily done but care should be
taken to avoid conflicts with the primary scheduler. Potential conflicts include statistics
files, logs, checkpoint files, and user interface ports. One of the easiest ways to avoid these
conflicts is to create a new test directory with its own log and stats subdirectories. The new
moab.cfg file can be created from scratch or based on the existing moab.cfg file
already in use. In either case, make certain that the PORT attribute of the SCHEDCFG
parameter differs from that used by the production scheduler by at least two ports. If
testing with the production binary executable, the MOABHOMEDIR environment variable
should be set to point to the new test directory to prevent Moab from loading the
production moab.cfg file.

9.3.2 INTERACTIVE Mode
INTERACTIVE mode allows for evaluation of new versions and configurations in a
manner different from MONITOR mode. Instead of disabling all resource and job control
functions, Moab sends the desired change request to the screen and asks for permission to
complete it. For example, before starting a job, Moab might post something like the
following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying it
correctly meets desired site policies. Moab then executes the specified command. This
mode is highly useful in validating scheduler behavior and can be used until configuration
is appropriately tuned and all parties are comfortable with the scheduler's performance. In
most cases, sites will want to set the scheduling mode to NORMAL after verifying correct
behavior.

Related Topics

l Testing New Releases and Policies

l Side-by-Side Mode

Chapter 9: Evaluating System Performance - Statistics, Profiling and Testing

559

Chapter 10: General Job Administration

In this chapter:

10.1 Job Holds 560
10.1.1 Holds and Deferred Jobs 560
10.1.2 User Holds 560
10.1.3 System Holds 560
10.1.4 Batch Holds 561
10.1.5 Job Defer 561

10.2 Job Priority Management 562
10.3 Suspend/Resume Handling 562
10.4 Checkpoint/Restart Facilities 563
10.5 Job Dependencies 564

10.5.1 Basic Job Dependency Support 564
10.5.2 Job Dependency Syntax 565

10.6 Job Defaults and Per Job Limits 567
10.6.1 Job Defaults 567
10.6.2 Per Job Maximum Limits 567
10.6.3 Per Job Minimum Limits 568

10.7 General Job Policies 568
10.7.1 Multi-Node Support 568
10.7.2 Multi-Req Support 568
10.7.3 Malleable Job Support 569
10.7.4 Enabling Job User Proxy 569

10.8 Using a Local Queue 570
10.9 Job Deadlines 573

10.9.1 Deadline Overview 574
10.9.2 Setting Job Deadlines via QoS 574
10.9.3 Job Termination Date 575
10.9.4 Conflict Policies 576

10.10 Job Arrays 576
10.10.1 Job Array Overview 577
10.10.2 Enabling Job Arrays 577
10.10.3 Subjob Definitions 577

Chapter 10: General Job Administration

10.10.4Using Environment Variables to Specify Array Index Values 578
10.10.5 Job Array Cancellation Policies 580
10.10.6 Minimizing the Impact of Very Large Job Arrays 581
10.10.7 Examples 584

10.1 Job Holds

In this topic:

10.1.1 Holds and Deferred Jobs - page 560
10.1.2 User Holds - page 560
10.1.3 System Holds - page 560
10.1.4 Batch Holds - page 561
10.1.5 Job Defer - page 561

10.1.1 Holds and Deferred Jobs
Moab supports job holds applied by users (user holds), administrators (system holds), and
resource managers (batch holds). There is also a temporary hold known as a job defer.

10.1.2 User Holds
User holds are very straightforward. Many, if not most, resource managers provide
interfaces by which users can place a hold on their own job that tells the scheduler not to
run the job while the hold is in place. Users can use this capability because the job's data is
not yet ready, or they want to be present when the job runs to monitor results. Such user
holds are created by, and under the control of a non-privileged user and can be removed
at any time by that user. As would be expected, users can only place holds on their jobs.
Jobs with a user hold in place will have a Moab state of Hold or UserHold depending on
the resource manager being used.

10.1.3 System Holds
The system hold is put in place by a system administrator either manually or by way of an
automated tool. As with all holds, the job is not allowed to run so long as this hold is in

Chapter 10: General Job Administration

560 10.1 Job Holds

10.1 Job Holds 561

place. A batch administrator can place and release system holds on any job regardless of
job ownership. However, unlike a user hold, normal users cannot release a system hold
even on their own jobs. System holds are often used during system maintenance and to
prevent particular jobs from running in accordance with current system needs. Jobs with a
system hold in place will have a Moab state of Hold or SystemHold depending on the
resource manager being used.

10.1.4 Batch Holds
Batch holds are placed on a job by the scheduler itself when it determines that a job cannot
run. The reasons for this vary but can be displayed by issuing the checkjob<JOBID>
command. Possible reasons are included in the following list:

l No Resources — The job requests resources of a type or amount that do not exist on
the system.

l System Limits — The job is larger or longer than what is allowed by the specified
system policies.

l Bank Failure — The allocations bank is experiencing failures.

l No Allocations — The job requests use of an account that is out of allocations and no
fallback account has been specified.

l RM Reject — The resource manager refuses to start the job.

l RM Failure — The resource manager is experiencing failures.

l Policy Violation — The job violates certain throttling policies preventing it from
running now and in the future.

l No QOS Access — The job does not have access to the QoS level it requests.

Jobs that are placed in a batch hold will show up within Moab in the state BatchHold.

10.1.5 Job Defer
In most cases, a job violating these policies is not placed into a batch hold immediately;
rather, it is deferred. The parameter DEFERTIME indicates how long it is deferred. At this
time, it is allowed back into the idle queue and again considered for scheduling. If it again is
unable to run at that time or at any time in the future, it is again deferred for the timeframe
specified by DEFERTIME. A job is released and deferred up to DEFERCOUNT times at
which point the scheduler places a batch hold on the job and waits for a system
administrator to determine the correct course of action. Deferred jobs have a Moab state of
Deferred. As with jobs in the BatchHold state, the reason the job was deferred can be
determined by use of the checkjob command.

Chapter 10: General Job Administration

At any time, a job can be released from any hold or deferred state using the releasehold
command. The Moab logs should provide detailed information about the cause of any batch
hold or job deferral.

Under Moab, the reason a job is deferred or placed in a batch hold is stored in
memory but is not checkpointed. Therefore this information is available only until
Moab is recycled at which point the checkjob command no longer displays this reason
information.

Related Topics

l DEFERSTARTCOUNT - number of job start failures allowed before job is deferred

10.2 Job Priority Management

Job priority management is controlled via both configured and manual intervention
mechanisms:

l Priority Configuration - see Job Prioritization

l Manual Intervention with setspri

10.3 Suspend/Resume Handling

When supported by the resource manager, Moab can suspend and resume jobs. By default,
a job is suspended for one minute before it can be resumed by Moab. You can modify this
default time using the MINADMINSTIME parameter.

Moab schedules suspended jobs each iteration to see if they can be resumed. If the
node the jobs are running on is free, then Moab automatically resumes the job.

Alternatively, a user can suspend his/her own jobs, but only an administrator can resume
them. The administrator can resume jobs before the time set for Moab to resume.

A job must be marked as suspendable for Moab to suspend and resume it. To do so,
either submit the job with the suspendable flag attached to it or configure a credential
to pass the flag to its associated jobs. These methods are demonstrated in the examples
below:

Chapter 10: General Job Administration

562 10.2 Job Priority Management

10.4 Checkpoint/Restart Facilities 563

msub -l flags=suspendable

GROUPCFG[default] JOBFLAGS=SUSPENDABLE

Once the job is suspendable, Moab allows you to suspend jobs using the two following
methods: (1) manually on the command line and (2) automatically in the moab.cfg file.

To manually suspend jobs, use the mjobctl command as demonstrated in the following
example:

> mjobctl -s job05

Moab suspends job05, preventing it from running immediately in the job queue.

If you are an administrator and want to resume a job, use the mjobctl command as
demonstrated in the following example:

> mjobctl -r job05

Moab removes job05 from a suspended state and allows it to run.

You can also configure the Moab preemption policy to suspend and resume jobs
automatically by setting the PREEMPTPOLICY parameter to SUSPEND. A sample Moab
configuration looks like this:

PREEMPTPOLICY SUSPEND
...
USERCFG[tom] JOBFLAGS=SUSPENDABLE

Moab suspends jobs submitted by user tom if necessary to make resources available for jobs with higher priority.

If your resource manager has a native interface, you must configure
JOBSUSPENDURL to suspend and resume jobs.

For more information about suspending and resuming jobs in Moab, see the following
sections:

l manual preemption with the mjobctl command

l Job preemption

10.4 Checkpoint/Restart Facilities

Checkpointing records the state of a job, allowing for it to restart later without interruption
to the job's execution. Checkpointing can be performed manually, as the result of triggers
or events, or in conjunction with various QoS policies.

Moab's ability to checkpoint is dependent upon both the cluster's resource manager and
operating system. In most cases, two types of checkpoint are enabled, including (1)

Chapter 10: General Job Administration

checkpoint and continue and (2) checkpoint and terminate. While either checkpointing
method can be activated using the mjobctl command, only the checkpoint and terminate
type is used by internal scheduling and event managements facilities.

Checkpointing behavior can be configured on a per-resource manager basis using various
attributes of the RMCFG parameter.

Related Topics

l Job Preemption Overview

l PREEMPTPOLICY Parameter

l Resource Manager CHECKPOINTSIG Attribute

l Resource Manager CHECKPOINTTIMEOUT Attribute

10.5 Job Dependencies

In this topic:

10.5.1 Basic Job Dependency Support - page 564
10.5.2 Job Dependency Syntax - page 565

10.5.1 Basic Job Dependency Support
By default, basic single step job dependencies are supported through completed/failed
step evaluation. Basic dependency support does not require special configuration and is
activated by default. Dependent jobs are only supported through a resource manager and
therefore submission methods depend upon the specific resource manager being used.

Use the -l depend=<STRING> flag for the Torque qsub command and the Moab msub
command. See documentation for the DEPEND resource manager extension value for more
information.

Torque qsub also supports the -W x=depend=<STRING> or -W
depend=<STRING> flag. Moab msub command also supports the -W
x=depend=<STRING> flag.

Chapter 10: General Job Administration

564 10.5 Job Dependencies

10.5 Job Dependencies 565

Dependencies submitted with -W are handled by Torque, while dependencies
submitted with -l are handled by Moab. For array dependencies, if any subjob fails
then the status of the entire job array will be marked with a failure and any
afterok dependencies will not be satisfied. Moab does not use the Torque
afteranyarray/afterokarray syntax but instead uses the after/afterok
syntax for both normal jobs and job arrays.

For other resource managers, consult the resource manager specific documentation.

10.5.2 Job Dependency Syntax

Dependency Format Description

after after:<job>
[:<job>]...

Job can start at any time after specified jobs have
started execution.

afterany afterany:<job>
[:<job>]...

Job can start at any time after all specified jobs
have completed regardless of completion status.

afterok afterok:<job>
[:<job>]...

Job can start at any time after all specified jobs
have successfully completed.

afternotok afternotok:<job>
[:<job>]...

Job can start at any time after all specified jobs
have completed unsuccessfully.

before before:<job>
[:<job>]...

Job can start at any time before specified jobs
have started execution.

beforeany beforeany:<job>
[:<job>]...

Job can start at any time before all specified jobs
have completed regardless of completion status.

beforeok beforeok:<job>
[:<job>]...

Job can start at any time before all specified jobs
have successfully completed.

beforenotok beforenotok:<job>
[:<job>]...

Job can start at any time before any specified jobs
have completed unsuccessfully.

on on:<count> Job can start after <count> dependencies on
other jobs have been satisfied.

synccount synccount:<count> Job is the first in a set of jobs to be executed at
the same time. <count> is the number of

Chapter 10: General Job Administration

Dependency Format Description

additional jobs in the set, which can be up to 5.
synccount is valid for single-request jobs
with Torque as the resource manager.

syncwith syncwith:<job> Job is an additional member of a set of jobs to be
executed at the same time. Moab supports up to
5 jobs. syncwith is valid for single-request jobs
with Torque as the resource manager.

<job>={jobname.jobname|jobid}

When using JobName dependencies, prepend 'jobname.' to avoid ambiguity.

The before*, synccount, and syncwith dependencies do not work with jobs
submitted with msub; they work only with qsub.

before* - we do not recommend using these dependencies because the job
numbers of follow-up jobs would not be known yet.

Any of the dependencies containing before must be used in conjunction with the on
dependency. So, if job A must run before job B, job B must be submitted with
depend=on:1, as well as job A having depend=before:A. This means job B cannot
run until one dependency of another job on job B has been fulfilled. This prevents job B
from running until job A can be successfully submitted.

When you submit a dependency job and the dependency is not met, the job will remain idle
in the queue indefinitely. To configure Moab to automatically cancel these failed
dependency jobs, set the CANCELFAILEDDEPENDENCYJOBS scheduler flag. Moab also lets
you cancel all jobs that a specified <job_id> depends on using mjobctl -c
flags=follow-dependency <job_id>.

Related Topics

l Job Deadlines

Chapter 10: General Job Administration

566 10.5 Job Dependencies

10.6 Job Defaults and Per Job Limits 567

10.6 Job Defaults and Per Job Limits

In this topic:

10.6.1 Job Defaults - page 567
10.6.2 Per Job Maximum Limits - page 567
10.6.3 Per Job Minimum Limits - page 568

10.6.1 Job Defaults
Job defaults can be specified on a per queue basis. These defaults are specified using the
CLASSCFG parameter. The following table shows the applicable attributes:

Attribute Format Example

DEFAULT.FEATURES comma-delimited list of
node features

CLASSCFG[batch] DEFAULT.FEATURES=fast,io

Jobs submitted to class batch
will request nodes features
fast and io.

DEFAULT.WCLIMIT [[[DD:]HH:]MM:]SS CLASSCFG[batch] DEFAULT.WCLIMIT=1:00:00

Jobs submitted to class batch
will request one hour of
walltime by default.

10.6.2 Per Job Maximum Limits
Job maximum limits can be specified on a per queue basis. These defaults are specified
using the CLASSCFG parameter. The following table shows the applicable attributes:

Attribute Format Example

MAX.WCLIMIT [[[DD:]HH:]MM:]SS CLASSCFG[batch] MAX.WCLIMIT=1:00:00

Jobs submitted to class batch can
request no more than one hour of
walltime.

Chapter 10: General Job Administration

10.6.3 Per Job Minimum Limits
Furthermore, minimum job defaults can be specified with the CLASSCFG parameter. The
following table shows the applicable attributes:

Attribute Format Example

MIN.PROC <integer> CLASSCFG[batch] MIN.PROC=10

Jobs submitted to class batch can request no less
than ten processors.

Related Topics

l Usage-based Limits

10.7 General Job Policies

In this topic:

10.7.1 Multi-Node Support - page 568
10.7.2 Multi-Req Support - page 568
10.7.3 Malleable Job Support - page 569
10.7.4 Enabling Job User Proxy - page 569

There are a number of configurable policies that help control advanced job functions.
These policies help determine allowable job sizes and structures.

10.7.1 Multi-Node Support
You can configure the ability to allocate resources from multiple nodes to a job with the
MAX.NODE limit.

10.7.2 Multi-Req Support
Jobs can specify multiple types of resources for allocation. For example, a job could request
4 nodes with 256 MB of memory and 8 nodes with feature fast present.

Resources specified in a multi-req job are delimited with a plus sign (+).

Chapter 10: General Job Administration

568 10.7 General Job Policies

10.7 General Job Policies 569

Neither SPANEVENLY nor DELAY values of the NODESETPLUS parameter will work
with multi-req jobs or preemption.

Example 10-1:

-l nodes=4:ppn=1+10:ppn=5+2:ppn=2

This example requests 4 nodes with 1 proc each, 10 nodes with 5 procs each, and 2 nodes with 2 procs each. The total
number of processors requested is (4*1) + (10*5) + (2*2), or 58 processors.

Example 10-2:

-l nodes=15+1:ppn=4

The job submitted in this example requests a total of 16 nodes. 15 of these nodes have no specific requirements, but
the remaining node must have 4 processors.

Example 10-3:

-l nodes=3:fast+1:io

The job requests a total of 4 nodes: 3 nodes with the fast feature and 1 node with the io feature.

10.7.3 Malleable Job Support
A job can specify whether it is able to use more processors or less processors and what
effect, if any, that has on its wallclock time. For example, a job may run for 10 minutes on 1
processor, 5 minutes on 2 processors and 3 minutes on 3 processors. When a job is
submitted with a task request list attached, Moab determines which task request fits best
and molds the job based on its specifications. To submit a job with a task request list and
allow Moab to mold it based on the current scheduler environment, use the TRL (Format 1)
or the TRL (Format 2) flag in the Resource Manager Extension.

10.7.4 Enabling Job User Proxy
By default, user proxying is disabled. To be enabled, it must be authorized using the
PROXYLIST attribute of the USERCFG parameter. This parameter can be specified either
as a comma-delimited list of users or as the keyword validate. If the keyword
validate is specified, the RMCFG attribute JOBVALIDATEURL should be set and used
to confirm that the job's owner can proxy to the job's execution user. An example script
performing this check for ssh-based systems is provided in the tools directory (see Job
Validate Tool Overview).

For some resource managers (RM), proxying must also be enabled at the RM level. The
following example shows how ssh-based proxying can be accomplished in a Moab+Torque
with SSH environment.

Chapter 10: General Job Administration

To validate proxy users, Moab must be running as root.

Example 10-4: SSH Proxy Settings

USERCFG[DEFAULT] PROXYLIST=validate
RMCFG[base] TYPE=<resource manager>
JOBVALIDATEURL=exec://$HOME/tools/job.validate.sshproxy.pl

> qmgr -c 's s allow_proxy_user=true'
> su - testuser
> qsub -I -u testuser2
qsub: waiting for job 533.igt.org to start
qsub: job 533.igt.org ready
testuser2@igt:~$

In this example, the validate tool, 'job.validate.sshproxy.pl', can verify proxying is allowed by becoming
the submit user and determining if the submit user can achieve passwordless access to the specified execution user.
However, site-specific tools can use any method to determine proxy access including a flat file look-up, database
lookup, querying of an information service such as NIS or LDAP, or other local or remote tests. For example, if proxy
validation is required but end-user accounts are not available on the management node running Moab, the job
validate service could perform the validation test on a representative remote host such as a login host.

This feature supports qsub only.

The job validate tool is highly flexible allowing any combination of job attributes to be
evaluated and tested using either local or remote validation tests. The validate tool allows
not only pass/fail responses but also allows the job to be modified, or rejected in a custom
manner depending on the site or the nature of the failure.

Related Topics

l Usage Limits

l qmgr -c in the Torque Administrator Guide

l qsub -I in the Torque Administrator Guide

10.8 Using a Local Queue

Moab allows jobs to be submitted directly to the scheduler. With a local queue, Moab is able
to directly manage the job or translate it for resubmission to a standard resource manager
queue. There are multiple advantages to using a local queue:

l Jobs can be translated from one resource manager job submission language to
another (such as submitting a PBS job and running it on a Loadleveler cluster).

l Jobs can be migrated from one local resource manager to another.

Chapter 10: General Job Administration

570 10.8 Using a Local Queue

10.8 Using a Local Queue 571

l Jobs can be migrated to remote systems using Moab peer-to-peer functionality.

l Jobs can be dynamically modified and optimized by Moab to improve response time
and system utilization.

l Jobs can be dynamically modified to account for system hardware failures or other
issues.

l Jobs can be dynamically modified to conform to site policies and constraints.

l Grid jobs are supported.

Local Queue Configuration
A local queue is configured just like a standard resource manager queue. It can have
defaults, limits, resource mapping, and credential access constraints. The following table
describes the most common settings:

Default queue

Format RMCFG[internal] DEFAULTCLASS=<CLASSID>

Description The job class/queue assigned to the job if one is not explicitly requested by the
submitter.

All jobs submitted directly to Moab are initially received by the pseudo-
resource manager internal. Therefore, default queue configuration
can only be applied to it.

Example RMCFG[internal] DEFAULTCLASS=batch

Class default resource requirements

Format CLASSCFG[<CLASSID>] DEFAULT.FEATURES=<X> CLASSCFG
[<CLASSID>] DEFAULT.MEM=<X> CLASSCFG[<CLASSID>]
DEFAULT.NODE=<X> CLASSCFG[<CLASSID>]
DEFAULT.NODESET=<X> CLASSCFG[<CLASSID>]
DEFAULT.PROC=<X> CLASSCFG[<CLASSID>]
DEFAULT.WCLIMIT=<X>

Description The settings assigned to the job if not explicitly set by the submitter. Default
values are available for node features, per task memory, node count, nodeset
configuration, processor count, and wallclock limit.

Example CLASSCFG[batch] DEFAULT.WCLIMIT=4 DEFAULT.FEATURES=matlab

Chapter 10: General Job Administration

Class default resource requirements

or

CLASSCFG[batch] DEFAULT.WCLIMIT=4
CLASSCFG[batch] DEFAULT.FEATURES=matlab

Class maximum resource limits

Format CLASSCFG[<CLASSID>] MAX.FEATURES=<X> CLASSCFG
[<CLASSID>] MAX.NODE=<X> CLASSCFG[<CLASSID>]
MAX.PROC=<X> CLASSCFG[<CLASSID>] MAX.WCLIMIT=<X>

Description The maximum node features, node count, processor count, and wallclock limit
allowed for a job submitted to the class/queue. If these limits are not satisfied,
the job is not accepted and the submit request fails. MAX.FEATURES indicates
that only the listed features can be requested by a job.

Example CLASSCFG[smalljob] MAX.PROC=4 MAX.FEATURES=slow,matlab

or

CLASSCFG[smalljob] MAX.PROC=4
CLASSCFG[smalljob] MAX.FEATURES=slow,matlab

Class minimum resource limits

Format CLASSCFG[<CLASSID>] MIN.FEATURES=<X> CLASSCFG
[<CLASSID>] MIN.NODE=<X> CLASSCFG[<CLASSID>]
MIN.PROC=<X> CLASSCFG[<CLASSID>] MIN.WCLIMIT=<X>

Description The minimum node features, node count, processor count, and wallclock limit
allowed for a job submitted to the class/queue. If these limits are not satisfied,
the job is not accepted and the submit request fails. MIN.FEATURES indicates
that only the listed features can be requested by a job.

Example CLASSCFG[bigjob] MIN.PROC=4 MIN.WCLIMIT=1:00:00

or

CLASSCFG[bigjob] MIN.PROC=4
CLASSCFG[bigjob] MIN.WCLIMIT=1:00:00

Chapter 10: General Job Administration

572 10.8 Using a Local Queue

10.9 Job Deadlines 573

Class access

Format CLASSCFG[<CLASSID>] REQUIREDUSERLIST=<USERID>
[,<USERID>]...

Description The list of users who can submit jobs to the queue.

Example CLASSCFG[math] REQUIREDUSERLIST=john,steve

Available resources

Format CLASSCFG[<CLASSID>] HOSTLIST=<HOSTID>[,<HOSTID>]...

Description The list of nodes that jobs in the queue can use.

Example CLASSCFG[special] HOSTLIST=node001,node003,node13

Class mapping between multiple sites is described in the section on Moab grid facilities.

If a job is submitted directly to the resource manager used by the local queue, the class
default resource requirements are not applied. Also, if the job violates a local queue
limitation, the job is accepted by the resource manager, but placed in the Blocked state.

10.9 Job Deadlines

In this topic:

10.9.1 Deadline Overview - page 574
10.9.2 Setting Job Deadlines via QoS - page 574

10.9.2.A Setting Job Deadlines at Job Submission - page 574
10.9.2.B Submitting a Job to a QoS with a Preconfigured Deadline - page

575
10.9.3 Job Termination Date - page 575
10.9.4 Conflict Policies - page 576

Chapter 10: General Job Administration

10.9.1 Deadline Overview
Job deadlines can be specified on a per job and per credential basis and are also supported
using both absolute and QoS based specifications. A job requesting a deadline is first
evaluated to determine if the deadline is acceptable. If so, Moab adds it to the list of
deadline jobs and allocates resources to guarantee that all accepted deadline jobs are able
to complete on or before their requested deadline. Once the scheduler confirms that all
deadlines can be satisfied, it then optimizes resource allocation (in priority order)
attempting to execute all jobs at the earliest possible time.

10.9.2 Setting Job Deadlines via QoS
Two types of job deadlines exist in Moab. The priority-based deadline linearly increases a
job's priority as its deadline approaches (see Deadline (DEADLINE) Subcomponent for
more information). The QoS method allows you to set a job completion time on job
submission if, and only if, it requests and is allowed to access a QoS with the DEADLINE
QFLAG set. This method is more powerful than the priority method, because Moab will
attempt to make a reservation for the job as soon as the job enters the queue in order to
meet the deadline, essentially bumping it to the front of the queue.

When a job is submitted to a QoS with the DEADLINE flag set, the job's -l deadline
attribute is honored. If such QoS access is not available, or if resources do not exist at job
submission time to allow the deadline to be satisfied, the job's deadline request is ignored.

Two methods exist for setting deadlines with a QoS:

l Submitting a job to a deadline-enabled QoS and specifying a deadline using msub -
l.

l Submitting a job to a deadline-enabled QoS with a QTTARGET specified.

10.9.2.A Setting Job Deadlines at Job Submission
This method of setting a job deadline allows you to specify a job deadline as you submit the
job. You can set the deadline as either an exact date and time or as an amount of time after
job submission (i.e., three hours after submission).

To specify a deadline on job submission

1. In moab.cfg, create a QoS with the DEADLINE flag enabled:

...
QOSCFG[special] QFLAGS=DEADLINE

Jobs requesting the QoS special may submit jobs with a deadline that Moab will honor.

Chapter 10: General Job Administration

574 10.9 Job Deadlines

10.9 Job Deadlines 575

2. Submit a job to the QoS and set a deadline. This can be either absolute or relative.

a. For an absolute deadline, use the format hh:mm:ss_mm/dd/yy. The following
configuration sets a deadline for a job to finish by 8 a.m. on March 15th, 2022:

msub -l qos=special deadline=08:00:00_03/15/22 job.sh

The job must finish running by 8 A.M. on March 15, 2022.

b. For a relative deadline, or the completion deadline of the job relative to its
submission time, use the time format [[[DD:]HH:]MM:]SS:

msub -l qos=special deadline=5:00:00 job.sh

The job's deadline is 5 hours after its submission.

10.9.2.B Submitting a Job to a QoS with a Preconfigured Deadline
You can also set a relative job deadline by limiting the job's queue time. This method allows
you to pre-configure the deadline rather than giving the power to specify a deadline to the
user submitting the job. For jobs requesting these QoSes, Moab identifies and sets job
deadlines to satisfy the corresponding response time targets.

To submit a job to a QoS with a preconfigured deadline

1. In moab.cfg, create a QoS with both the DEADLINE QFLAG and a response time
target (QTTARGET). The QTTARGET is the maximum amount of time that Moab should
allow the job to be idle in the queue.

...
QOSCFG[special2] QFLAGS=DEADLINE QTTARGET=1:00:00

Given this configuration, a job requesting QoS special2 must spend a maximum of one hour in the queue.

2. Submit a job requesting the special2 quality of service:

msub -l qos=special2 walltime=2:00:00 job.sh

This two-hour job has a completion time deadline set to three hours after its submission (one hour of target
queue time and two hours of run time).

10.9.3 Job Termination Date
In addition to job completion targets, jobs can also be submitted with a TERMTIME
attribute. The scheduler attempts to complete the job prior to the termination date, but if it
is unsuccessful, it will terminate (cancel) the job once the termination date is reached.

Chapter 10: General Job Administration

10.9.4 Conflict Policies
The specific policy can be configured using the DEADLINEPOLICY parameter. Moab does
not have a default policy for this parameter.

Policy Description

CANCEL The job is canceled and the user is notified that the deadline could not be satisfied.

HOLD The job has a batch hold placed on it indefinitely. The administrator can then
decide what action to take.

RETRY The job continually retries each iteration to meet its deadline; note that when used
with QTTARGET the job's deadline continues to slide with relative time.

IGNORE The job has its request ignored and is scheduled as normal.

Deadline scheduling might not function properly with per partition scheduling
enabled. Check that PARALLOCATIONPOLICY is disabled to ensure
DEADLINEPOLICY will work correctly.

Related Topics

l QoS Facilities

l Job Submission Eligible Start Time constraints

10.10 Job Arrays

In this topic:

10.10.1 Job Array Overview - page 577
10.10.2 Enabling Job Arrays - page 577
10.10.3 Subjob Definitions - page 577
10.10.4 Using Environment Variables to Specify Array Index Values - page 578

10.10.4.A Control - page 578
10.10.4.B Reporting - page 578

Chapter 10: General Job Administration

576 10.10 Job Arrays

10.10 Job Arrays 577

10.10.5 Job Array Cancellation Policies - page 580
10.10.6 Minimizing the Impact of Very Large Job Arrays - page 581

10.10.6.A Potential Problems with Very Large Job Arrays - page 581
10.10.6.B Mitigating the Impact of Job Arrays - page 582

10.10.7 Examples - page 584
10.10.7.A Submitting Job Arrays - page 584

10.10.1 Job Array Overview
You can submit an array of jobs to Moab via the msub command. Array jobs are an easy
way to submit many subjobs that perform the same work using the same script, but
operate on different sets of data. Subjobs are the jobs created by a job array and are
identified by the job array ID and an index; for example, if 235[1] is an identifier, the
number 235 is a job array ID, and 1 is the subjob.

Subjobs of an array are executed in subjob index order.

Moab job arrays are different from Torque job arrays.

10.10.2 Enabling Job Arrays
To enable job arrays, include the ENABLEJOBARRAYS parameter in the Moab configuration
file (moab.cfg).

10.10.3 Subjob Definitions
Like a normal job, an array job submits a job script, but it additionally has a start index
(sidx) and an end index (eidx); array jobs also have increment (incr) values, which
Moab uses to create subjobs, all executing the same script. The model for subjob creation
follows the formula of end index minus start index plus increment divided by the
increment value: (eidx - sidx + incr) / incr.

To illustrate, suppose an array job has a start index of 1, an end index of 100, and an
increment of 1. This is an array job that creates (100 - 1 + 1) / 1 = 100 subjobs with
indexes of 1, 2, 3, ..., 100. An increment of 2 produces (100 - 1 + 2) / 2 = 50 subjobs with
indexes of 1, 3, 5, ..., 99. An increment of 2 with a start index of 2 produces (100 - 2 + 2) / 2
= 50 subjobs with indexes of 2, 4, 6, ..., 100. Again, subjobs are jobs in their own right that
have a slightly different job naming convention jobID[subJobIndex] (e.g.,
mycluster.45[37] or 45[37]).

Chapter 10: General Job Administration

10.10.4 Using Environment Variables to Specify Array Index Values
The script can use an environment variable to obtain the array index value to form data file
and/or directory names unique to a job array's particular subjob. The following two
environment variables are supplied so job scripts can recognize what index in the array
they are in; use the msub command with the -V option to pass the environment parameters
to the resource manager, or include the parameters in a job script; for example: #PBS -V
MOAB_JOBARRAYRANGE.

Environment
Parameter Description

MOAB_
JOBARRAYINDEX

Used to create dataset file names, directory names, and so forth, when
splitting up a single problem into multiple jobs.
For example, a user may split up a problem into 20 separate jobs, each
with its own input and output data files whose names contain the
numbers 1-20.
To illustrate, assume a user submits the 20 subjobs using two msub
commands; one to submit the ten even-numbered jobs and one to
submit the ten odd-numbered jobs.
msub -t job1.[1-20:2]
msub -t job2.[2-20:2]
The MOAB_JOBARRAYINDEX environment variable value would
populate each of the two job arrays' ten subjobs as 1, 3, 5, 7, 9, 11, 13,
15, 17 and 19 for the first job array's ten subjobs, and 2, 4, 6, 8, 10,
12, 14, 16, 18, and 20 for the second job array's ten subjobs.

MOAB_
JOBARRAYRANGE

The count of jobs in the array.

10.10.4.A Control
Users can control individual subjobs in the same manner as normal jobs. In addition, a job
array represents its group of subjobs and any user or administrator commands performed
on a job array apply to its subjobs; for example, the command canceljob <arrayJobId>
cancels all subjobs that belong to the job array. For more information about job control, see
the documentation for the mjobctl command.

10.10.4.B Reporting
In the first example below, the parts unique to array subjobs are in bold:

$ checkjob -v Moab.1[1]
job Moab.1[1]

Chapter 10: General Job Administration

578 10.10 Job Arrays

10.10 Job Arrays 579

AName: Moab
State: Running
Creds: user:user1 group:usergroup1
WallTime: 00:00:17 of 8:20:00
SubmitTime: Thu Nov 4 11:50:03
(Time Queued Total: 00:00:00 Eligible: INFINITY)
StartTime: Thu Nov 4 11:50:03
Total Requested Tasks: 1
Req[0] TaskCount: 1 Partition: base
Average Utilized Procs: 0.96
NodeCount: 1
Allocated Nodes:
[node010:1]

Job Group: Moab.1
Parent Array ID: Moab.1
Array Index: 1
Array Range: 10
SystemID: Moab
SystemJID: Moab.1[1]
Task Distribution: node010
IWD: /home/user1
UMask: 0000
Executable: /opt/moab/spool/moab.job.3CvNjl
StartCount: 1
Partition List: base
SrcRM: internal DstRM: base DstRMJID: Moab.1[1]
Flags: ARRAYJOB,GLOBALQUEUE
StartPriority: 1
PE: 1.00
Reservation 'Moab.1[1]' (-00:00:19 -> 8:19:41 Duration: 8:20:00)

If the array range is not provided, the output displays all the jobs in the array:

$ checkjob -v Moab.1
job Moab.1

AName: Moab
Job Array Info:
Name: Moab.1
1 : Moab.1[1] : Running
2 : Moab.1[2] : Running
3 : Moab.1[3] : Running
4 : Moab.1[4] : Running
5 : Moab.1[5] : Running
6 : Moab.1[6] : Running
7 : Moab.1[7] : Running
8 : Moab.1[8] : Running
9 : Moab.1[9] : Running
10 : Moab.1[10] : Running
11 : Moab.1[11] : Running
12 : Moab.1[12] : Running
13 : Moab.1[13] : Running
14 : Moab.1[14] : Running
15 : Moab.1[15] : Running
16 : Moab.1[16] : Running
17 : Moab.1[17] : Running
18 : Moab.1[18] : Running
19 : Moab.1[19] : Running
20 : Moab.1[20] : Running
Totals:

Chapter 10: General Job Administration

Active: 20
Idle: 0
Complete: 0

You can also use showq. This displays the array master job with a count of how many
subjobs are in each queue:

$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.1(5) aesplin Running 5 00:52:41 Thu Jun 23 17:05:56
Moab.2(1) aesplin Running 1 00:53:41 Thu Jun 23 17:06:56

6 active jobs 6 of 6 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.2(4) aesplin Idle 4 1:00:00 Thu Jun 23 17:06:56

4 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.2(1) aesplin Blocked 1 1:00:00 Thu Jun 23 17:06:56

1 blocked job

Total jobs: 11

Moab.1 has five subjobs running. Moab.2 has one subjob running, four waiting to run, and one that is currently
blocked.

10.10.5 Job Array Cancellation Policies
Job arrays can be canceled based on the success or failure of the first subjob, the first
success or failure of any subjob, or if any subjob exits with a specified exit code. The job
array cancellation policies are:

Cancel Policy Description Exclusi
vity

CancelOnFirstFai
lure

Cancels the job array if the first subjob (JOBARRAYINDEX
= 1) fails.

> msub -t myarray[1-1000]%50 -l
...,flags=CancelOnFirstFailure

Mutually
exclusive

CancelOnFirstSu
ccess

Cancels the job array if the first subjob (JOBARRAYINDEX

Chapter 10: General Job Administration

580 10.10 Job Arrays

10.10 Job Arrays 581

Cancel Policy Description Exclusi
vity

= 1) succeeds.

> msub -t myarray[1-1000]%50 -l
...,flags=CancelOnFirstSuccess

CancelOnAnyFail
ure

Cancels the job array if any subjob fails.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnAnyFailure

CancelOnAnySuc
cess

Cancels the job array if any subjob succeeds.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnAnySuccess

CancelOnExitCod
e

Cancels the job array if any subjob returns the specified exit
code.

> msub -t myarray[1-1000%50] -l
...,flags=CancelOnExitCode:<error code list>

The syntax for the error code list are ranges specified with
a dash and individual codes delimited by a plus (+) sign,
such as: 1-4+9+15
Exit codes 1-387 are accepted.

Up to two cancellation polices can be specified for an array and the two policies must be
delimited by a colon (:). The two 'first subjob' policies are mutually exclusive, as are the
three 'any subjob' policies. You can use either 'first subjob' policy with one of the 'any
subjob' policies, as shown in this example:

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnFirstFailure:CancelOnExitCode:3-7+11

10.10.6 Minimizing the Impact of Very Large Job Arrays

10.10.6.A Potential Problems with Very Large Job Arrays
Since Moab uses multiple files to track jobs, including each subjob of a job array, a very
large job array can add thousands of files that Moab has to create and manage. On each
iteration, all of those subjobs are evaluated, and those eligible to run are considered for
scheduling.

The jobs also need to be migrated to the workload manager (for this discussion, we’ll just
use Torque). That also adds additional work to both Moab and Torque. With default

Chapter 10: General Job Administration

settings, it's possible that very large job arrays with a large number of job files, can cause
problems in both Moab and Torque.

10.10.6.B Mitigating the Impact of Job Arrays
Fortunately, there are some settings that can be made to make Moab’s work of handling a
large job array much easier. This section will help you choose the best configuration
options for your site.

For the settings in this section to be most effective, users must submit large job arrays
using msub instead of qsub. The reason for this is when a job array is submitted using
qsub, Torque creates all of the subjobs in its own queues, then passes that information
onto Moab during the cluster query process. This prevents Moab from managing the
creation of subjobs in both Moab and Torque.

JOBMIGRATEPOLICY
This option tells Moab how to handle the migration of jobs to the resource manager,
typically Torque. This option applies to both normal jobs, as well as array subjobs. The
default for this setting, if not specified, is AUTO, which allows Moab to decide how to
migrate each job based on its current situation. If set to IMMEDIATE, that tells Moab to
migrate all jobs to the RM as soon as they are created. Both of these will result in Torque
having the files for all array subjobs soon after the job has been submitted, even if it does
not run for days.

The best option is to configure Moab with JOBMIGRATEPOLICY JUSTINTIME. This option
tells Moab to only migrate jobs once they have been scheduled to run, which minimizes the
job count in the resource manager, as well as simplifying the management of jobs. It also
simplifies cancellation of array jobs, as Torque only needs to cancel the ones it knows
about, and Moab does not need to tell the RM about jobs it has not yet migrated.

MAXARRAYJOB
This option sets an overall limit for the total number of running, plus idle jobs that can
simultaneously exist. Jobs that exceed that limit remain in the blocked state until other jobs
free up space. If the available resources allow more than this number of jobs to be running,
then Moab will only run that number of jobs from the array and fill in the remaining
resources with other jobs. In this situation, the Idle (or 'eligible') queue will be empty.

This limit can be applied to multiple credentials, as described in 'Credentials for
MAXARRAYJOB and MAXIARRAYJOB' below.

MAXIARRAYJOB
The default behavior for Moab is to migrate all of the subjobs to the Idle (or 'eligible')
queue as soon as possible. Since with large job arrays it's highly unlikely that all of the

Chapter 10: General Job Administration

582 10.10 Job Arrays

10.10 Job Arrays 583

subjobs can be run at once, this results in a lot of extra overhead during Moab’s
scheduling. Moab is continually checking and sometimes updating the job status, and
updating the job files.

By setting the option MAXIARRAYJOB, the number of subjobs being considered at once for
scheduling can be controlled. The option specifies how many jobs will be simultaneously
allowed in the Idle (or 'eligible') queue. The array subjobs that don’t fit remain in the
blocked state. As jobs migrate to the running state, Moab will migrate additional subjobs to
Idle state until the limit is again reached. For example, if the setting was 200, a job array
with 10,000 subjobs would keep 200 subjobs in the idle queue, run as many as could be
run at once, and the remaining subjobs remain blocked until there’s room for them. By
selecting a value slightly greater than the maximum number of jobs that could be expected
to be started at once, the huge job array should complete in the same time.

If the MAXARRAYJOB option is also configured, and Moab is able to run that limit of jobs at
once, then the Idle queue will be empty no matter what this setting is.

This limit can be applied to multiple credentials, as described in 'Credentials for
MAXARRAYJOB and MAXIARRAYJOB' below.

Credentials for MAXARRAYJOB and MAXIARRAYJOB
Both of these limits can be applied to USERCFG, QOSCFG, CLASSCFG, and even JOBCFG. For
QOSCFG and CLASSCFG, the limit will apply cumulatively to all jobs running under that
credential, which can result in some users being blocked. In the case of USERCFG, the limit
is applied to the specified user, or if DEFAULT is used, it will apply the limit to each user
that does not have the limit defined in their own USERCFG.

When using JOBCFG, you are defining a job template. This makes understanding the results
a lot more complicated, and for this reason we recommend avoiding this unless there is a
specific reason. The problem is all jobs that match a job template are aggregated under this
single limit, so a higher priority large array could potentially block all other arrays from
running.

The Nitro Product
Finally, if job arrays often contain serial workload (no MPI/parallel jobs) that can all run on
a single node, the best solution may be the Nitro product. Instead of having a Moab job for
each of these serial tasks, this product can run any number of tasks within a single Moab
job. A task file is used to specify the command lines that need to be executed, and they are
run with no Moab scheduling overhead. Nitro tracks the progress, and can even resume an
interrupted run. A single Nitro job running trivial workload (hostname, for example) can
easily run well over a thousand tasks per second.

Chapter 10: General Job Administration

10.10.7 Examples
Operations can be performed on individual jobs, a selection of jobs in a job array, or on the
entire array.

10.10.7.A Submitting Job Arrays
The syntax for submitting job arrays is: msub -t [<jobname>]<indexlist>
[%<limit>] arrayscript.sh

The <jobname> and <limit> are optional. The jobname does not override the jobID
Moab assigns to the array. When submitting an array with a jobname, Moab returns the
jobID, which is the scheduler name followed by a unique ID.

For example, if the scheduler name in moab.cfg is Moab (SCHEDCFG[Moab]),
submitting an array with a jobname responds like this:

> msub -t myarray[1-10] job.sh

Moab.6

To specify that only a certain number of subjobs in the array can run at a time, use the
percent sign (%) delimiter. In this example, only five subjobs in the array can run at a time:

> msub -t myarray[1-1000]%5

To submit a specific set of array subjobs, use the comma delimiter in the array index list:

> msub -t myarray[1,2,3,4]
> msub -t myarray[1-5,7,10]

You can use the checkjob command on either the jobID or the jobname you specified:

> msub -t myarray[1-2] job.sh

Moab.10

$ checkjob -v myarray
job Moab.10

AName: myarray
Job Array Info:

Name: Moab.10
1 : Moab.10[1] : Running
2 : Moab.10[2] : Running

Sub-jobs: 2
Active: 2 (100.0%)
Eligible: 0 (0.0%)
Blocked: 0 (0.0%)
Completed: 0 (0.0%)

State: Idle
Creds: user:tuser1 group:tgroup1

Chapter 10: General Job Administration

584 10.10 Job Arrays

10.10 Job Arrays 585

WallTime: 00:00:00 of 99:23:59:59
SubmitTime: Thu Jun 2 16:37:17

(Time Queued Total: 00:00:33 Eligible: 00:00:00)

Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

To submit a job with a step size, use a colon in the array range and specify how many jobs
to step. In the example below, a step size of 2 is requested. The subjobs will be numbered
according to the step size inside the index limit. The array master job name will be the
same as explained above.

$ msub -t myarray[2-10:2] job.sh

job Moab.15

$ checkjob -v myarray #or you could use 'checkjob -v Moab.15'
job Moab.15

AName: myarray
Job Array Info:

Name: Moab.15
2 : Moab.15[2] : Running
4 : Moab.15[4] : Running
6 : Moab.15[6] : Running
8 : Moab.15[8] : Running
10 : Moab.15[10] : Running

Sub-jobs: 5
Active: 5 (100.0%)
Eligible: 0 (0.0%)
Blocked: 0 (0.0%)
Completed: 0 (0.0%)

State: Idle
Creds: user:tuser1 group:tgroup1
WallTime: 00:00:00 of 99:23:59:59
SubmitTime: Thu Jun 2 16:37:17

(Time Queued Total: 00:00:33 Eligible: 00:00:00)

Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

Related Topics

l Moab Workload Manager for Grids

l Job Dependencies

Chapter 10: General Job Administration

586

Chapter 11: General Node Administration

Moab has a very flexible and generalized definition of a node. This flexible definition,
together with the fact that Moab must inter-operate with many resource managers of
varying capacities, requires that Moab must possess a complete set of mechanisms for
managing nodes that in some cases might be redundant with resource manager facilities.

In this chapter:

11.1 Node Attribute Types 587
11.1.1 Resource Manager Specified 'Opaque' Attributes 587
11.1.2 Scheduler Specified Default Node Attributes 588
11.1.3 Scheduler Specified Node Attributes 588

11.2 Node Location 588
11.2.1 Partitions 589
11.2.2 Racks 589
11.2.3 Queues 589
11.2.4 Node Selection 590

11.3 Node Attributes 592
11.3.1 Configurable Node Attributes 592
11.3.2 Node Features/Node Properties 601

11.4 Node Specific Policies 602
11.4.1 Node Usage/Throttling Policies 602
11.4.2 Node Access Policies 604

11.5 Managing Shared Cluster Resources (Floating Resources) 605
11.5.1 Shared Cluster Resource Overview 605
11.5.2 Configuring Generic Consumable Floating Resources 606
11.5.3 Configuring Cluster File Systems 606
11.5.4 Configuring Cluster Licenses 607
11.5.5 Configuring Generic Resources as Features 607
11.5.6 Configuring Generic Resources as Licenses 609

11.6 Managing Node State 609
11.6.1 Node State Definitions 610
11.6.2Specifying Node States within Native Resource Managers 611
11.6.3 Moab Based Node State Adjustment 611
11.6.4Adjusting Scheduling Behavior Based on Reported Node State 611

Chapter 11: General Node Administration

11.6.5 Adding or Removing Nodes 611
11.7 Managing Consumable Generic Resources 612

11.7.1Differences Between Node Features and ConsumableResources 613
11.7.2Configuring Node-locked Consumable Generic Resources 613
11.7.3 Managing Generic Resource Race Conditions 615

11.8 Enabling Generic Metrics 616
11.8.1 Configuring Generic Metrics 616
11.8.2 Example Generic Metric Usage 618

11.9 Enabling Generic Events 619
11.9.1 Configuring Generic Events 620
11.9.2 Reporting Generic Events 623
11.9.3 Generic Events Attributes 624
11.9.4 Manually Creating Generic Events 624

11.1 Node Attribute Types

In this topic:

11.1.1 Resource Manager Specified 'Opaque' Attributes - page 587
11.1.2 Scheduler Specified Default Node Attributes - page 588
11.1.3 Scheduler Specified Node Attributes - page 588

11.1.1 Resource Manager Specified 'Opaque' Attributes
Many resource managers support the concept of opaque node attributes, allowing a site to
assign arbitrary strings to a node. These strings are opaque in the sense that the resource
manager passes them along to the scheduler without assigning any meaning to them.
Nodes possessing these opaque attributes can then be requested by various jobs. Using
certain Moab parameters, sites can assign a meaning within Moab to these opaque node
attributes and extract specific node information. For example, setting the parameter
FEATUREPROCSPEEDHEADER xps causes a node with the opaque string xps950 to be
assigned a processor speed of 950 MHz within Moab.

Chapter 11: General Node Administration

587 11.1 Node Attribute Types

11.2 Node Location 588

11.1.2 Scheduler Specified Default Node Attributes
Some default node attributes can be assigned on a rack or partition basis. In addition, many
node attributes can be specified globally by configuring the DEFAULT node template using
the NODECFG parameter (i.e., NODECFG[DEFAULT] PROCSPEED=3200). Unless
explicitly specified otherwise, nodes inherit node attributes from the associated rack or
partition or from the default node template.

11.1.3 Scheduler Specified Node Attributes
The NODECFG parameter also allows direct per-node specification of virtually all node
attributes supported via other mechanisms and also provides a number of additional
attributes not found elsewhere. For example, a site administrator might want to specify
something such as the following:

NODECFG[node031] MAXJOB=2 PROCSPEED=600 PARTITION=small

These approaches can be mixed and matched according to the site's local needs.
Precedence for the approaches generally follows the order listed earlier in cases
where conflicting node configuration information is specified through one or more
mechanisms.

11.2 Node Location

Nodes can be assigned three types of location information based on partitions, racks, and
queues.

In this topic:

11.2.1 Partitions - page 589
11.2.2 Racks - page 589
11.2.3 Queues - page 589

11.2.3.A Torque Queue to Node Mapping - page 590
11.2.4 Node Selection - page 590

11.2.4.A Node Lists - page 590
11.2.4.B Exact Lists - page 590
11.2.4.C Node Range - page 591
11.2.4.D Node Regular Expression - page 591

Chapter 11: General Node Administration

11.2.1 Partitions
The first form of location assignment, the partition, allows nodes to be grouped according to
physical resource constraints or policy needs. By default, jobs are not allowed to span more
than one partition so partition boundaries are often valuable if an underlying network
topology make certain resource allocations undesirable. Additionally, per-partition policies
can be specified to grant control over how scheduling is handled on a partition by partition
basis. See the Partition Overview for more information.

11.2.2 Racks
Rack-based location information is orthogonal to the partition based configuration and is
mainly an organizational construct. In general rack based location usage, a node is assigned
both a rack and a slot number. This approach has descended from the IBM SP2
organizational approach where a rack can contain any number of slots, but typically
contains between 1 and 99. Using the rack and slot number combo, individual compute
nodes can be grouped and displayed in a more ordered manner in certain Moab
commands (i.e., showstate). Currently, rack information can only be specified directly by
the system via the SDR interface on SP2/Loadleveler systems. In all other systems, this
information must be specified using an information service or specified manually using the
RACK, SLOT, and SIZE attributes of the NODECFG parameter.

Sites can arbitrarily assign nodes to racks and rack slots without impacting
scheduling behavior. Neither rack numbers nor rack slot numbers need to be
contiguous; their use is simply for convenience purposes in displaying and analyzing
compute resources.

Example 11-1:

NODECFG[node024] RACK=1 SLOT=1
NODECFG[node025] RACK=1 SLOT=2
NODECFG[node026] RACK=2 SLOT=1 PARTITION=special
...

When specifying node and rack information, slot values must be in the range of 1 to 99,
and racks must be in the range of 1 to 399.

11.2.3 Queues
Some resource managers allow queues (or classes) to be defined and then associated with
a subset of available compute resources. With systems such as Loadleveler or PBSPro
these queue to node mappings are automatically detected. On resource managers that do
not provide this service, Moab provides alternative mechanisms for enabling this feature.

Chapter 11: General Node Administration

589 11.2 Node Location

11.2 Node Location 590

11.2.3.A Torque Queue to Node Mapping
Under Torque, queue to node mapping can be accomplished by using the qmgr command
to set the queue acl_hosts parameter to the mapping hostlist desired. Further, the acl_
host_enable parameter should be set to False.

Setting acl_hosts and then setting acl_host_enable to True constrains the
list of hosts from which jobs can be submitted to the queue.

The following example highlights this process and maps the queue debug to the nodes
host14 through host17:

> qmgr
Max open servers: 4
Qmgr: set queue debug acl_hosts = "host14,host15,host16,host17"
Qmgr: set queue debug acl_host_enable = false
Qmgr: quit

All queues that do not have acl_hosts specified are global; that is, they show up on
every node. To constrain these queues to a subset of nodes, each queue requires its
own acl_hosts parameter setting.

11.2.4 Node Selection
When selecting or specifying nodes either via command line tools or via configuration file
based lists, Moab offers three types of node expressions that can be based on node lists,
exact lists, node ranges, or regular expressions.

11.2.4.A Node Lists
Node lists can be specified as one or more comma or whitespace delimited node IDs.
Specified node IDs can be based on either short or fully qualified hostnames. Each element
will be interpreted as a regular expression.

SRCFG[basic] HOSTLIST=cl37.icluster,ax45,ax46
...

11.2.4.B Exact Lists
When Moab receives a list of nodes it will, by default, interpret each element as a regular
expression. To disable this and have each element interpreted as a string node name, the
l: can be used as in the following example:

Chapter 11: General Node Administration

> setres l:n00,n01,n02

11.2.4.C Node Range
Node lists can be specified as one or more comma or whitespace delimited node ranges.
Each node range can be based using either <STARTINDEX>-<ENDINDEX> or
<HEADER>[<STARTINDEX>-<ENDINDEX>] format. To explicitly request a range, the
node expression must be preceded with the string r: as in the following example:

> setres r:37-472,513,516-855

When you specify a <HEADER> for the range, note that it must only contain alphabetical
characters. As always, the range must be numeric.

CLASSCFG[long] HOSTLIST=r:anc-b[37-472]

Only one expression is allowed with node ranges.

By default, Moab attempts to extract a node's node index assuming this information is
built into the node's naming convention. If needed, this information can be explicitly
specified in the Moab configuration file using NODECFG's NODEINDEX attribute, or it
can be extracted from alternatively formatted node IDs by specifying the
NODEIDFORMAT parameter.

11.2.4.D Node Regular Expression
Node lists can also be specified as one or more comma or whitespace delimited regular
expressions. Each node regular expression must be specified in a format acceptable by the
standard C regular expression libraries that allow support for wildcard and other special
characters such as the following:

l * (asterisk)

l . (period)

l [] (left and right bracket)

l ^ (caret)

l $ (dollar)

Node lists are by default interpreted as a regular expression but can also be explicitly
requested with the string x: as in the following examples:

select nodes cl30 thru cl55

Chapter 11: General Node Administration

591 11.2 Node Location

11.3 Node Attributes 592

SRCFG[basic] HOSTLIST=x:cl[34],cl5[0-5]
...

select nodes cl30 thru cl55
SRCFG[basic] HOSTLIST=cl[34],cl5[0-5]
...

To control node selection search ordering, set the OBJECTELIST parameter to one
of the following options: exact, range, regex, rangere, or rerange.

11.3 Node Attributes

In this topic:

11.3.1 Configurable Node Attributes - page 592
11.3.2 Node Features/Node Properties - page 601

11.3.1 Configurable Node Attributes
Nodes can possess a large number of attributes describing their configuration, which are
specified using the NODECFG parameter. The majority of these attributes such as operating
system or configured network interfaces can only be specified by the direct resource
manager interface. However, the number and detail of node attributes varies widely from
resource manager to resource manager. Sites often have interest in making scheduling
decisions based on scheduling attributes not directly supplied by the resource manager.
Configurable node attributes are listed in the following table; click an attribute for more
detailed information:

Chapter 11: General Node Administration

Node Attributes

ACCESS
ARCH
CHARGERATE
COMMENT
ENABLEPROFILING
FEATURES
GRES
MAXJOB
MAXJOBPERUSER
MAXLOAD
MAXPE
MAXPEPERJOB
MAXPROC

NODEAVAILABILITYPOLICY
NODEINDEX
NODETYPE
OS
OSLIST
PARTITION
POWERPOLICY
PREEMPTMAXCPULOAD
PREEMPTMINMEMAVAIL
PREEMPTPOLICY
PRIORITY
PRIORITYF
PROCSPEED

PROVRM
RACK
RADISK
RAMEM
RCDISK
RCMEM
RCPROC
RCSWAP
SIZE
SLOT
SPEED
TRIGGER
VARIABLE

Attribute Description

ACCESS The node access policy that can be one of SHARED,
SHAREDONLY, SINGLEJOB, SINGLETASK, or SINGLEUSER.
See Node Access Policies for more details.

NODECFG[node013] ACCESS=singlejob

ARCH The node's processor architecture.
NODECFG[node013] ARCH=opteron

CHARGERATE Allows a site to assign specific charging rates to the usage of
particular resources. The CHARGERATE value can be specified
as a floating point value and is integrated into a job's total
charge (as documented in the Charging and Allocation
Management section).

NODECFG[DEFAULT] CHARGERATE=1.0
NODECFG[node003] CHARGERATE=1.5
NODECFG[node022] CHARGERATE=2.5

COMMENT Allows an organization to annotate a node via the configuration
file to indicate special information regarding this node to both
users and administrators. The COMMENT value can be specified
as a quote delimited string as shown in the example that
follows. Comment information is visible using checknode,
mdiag, and Moab Cluster Manager.

NODECFG[node013] COMMENT="Login Node"

Chapter 11: General Node Administration

593 11.3 Node Attributes

11.3 Node Attributes 594

Attribute Description

ENABLEPROFILING Allows an organization to track node state over time. This
information is available using showstats -n.

NODECFG[DEFAULT] ENABLEPROFILING=TRUE

FEATURES Not all resource managers allow specification of opaque node
features (also known as node properties). For these systems,
the NODECFG parameter can be used to directly assign a list of
node features to individual nodes. To append node features, use
FEATURES=<X>; to overwrite or remove a node's features, you
must update them in your Moab configuration file or resource
manager.

NODECFG[node013] FEATURES=gpfs,fastio

Node node013 now has features gpfs and
fastio in addition to any other features configured
in this file or the resource manager.

The total number of supported node features is limited as
described in the Adjusting Default Limits section.

If supported by the resource manager, the resource
manager specific manner of requesting node
features/properties within a job can be used. (Within
Torque, use qsub -l
nodes=<NODECOUNT>:<NODEFEATURE>.) However, if
either not supported within the resource manager or if
support is limited, the Moab feature resource manager
extension can be used.

GRES Many resource managers do not allow specification of
consumable generic node resources. For these systems, the
NODECFG parameter can be used to directly assign a list of
consumable generic attributes to individual nodes or to the
special pseudo-node global, which provides shared cluster
(floating) consumable resources. To set/overwrite a node's
generic resources, use GRES=<NAME>[:<COUNT>]. See
Managing Consumable Generic Resources.

NODECFG[node013] GRES=quickcalc:20

MAXJOB See Node Policies for details.

Chapter 11: General Node Administration

Attribute Description

MAXJOBPERUSER See Node Policies for details.

MAXLOAD See Node Policies for details.

MAXPE See Node Policies for details.

MAXPEPERJOB Maximum allowed Processor Equivalent per job on this node. A
job will not be allowed to run on this node if its PE exceeds this
number.

NODECFG[node024] MAXPEPERJOB=10000
...

MAXPROC Maximum dedicated processors allowed on this node. No jobs
are scheduled on this node when this number is reached. See
Node Policies for more information.

NODECFG[node024] MAXPROC=8
...

NODEAVAILABILITYP
OLICY

Specifies how available node resources are reported.

This sets the NODEAVAILABILITYPOLICY at the local
level and uses a different format from the
NODEAVAILIBILITYPOLICY server parameter. See
NODEAVAILABILITYPOLICY.

NODECFG[node00]
NODEAVAILABILITYPOLICY=DEDICATED:PROC,UTILIZED:MEM,COMBINED:DISK

NODEINDEX The node's index. See Node Location for details.

NODETYPE The NODETYPE attribute is most commonly used in
conjunction with an accounting manager such as Moab
Accounting Manager. In these cases, each node is assigned a
node type and within the accounting manager, each node type is
assigned a charge rate. For example, a site administrator might
want to charge users more for using large memory nodes and
might assign a node type of BIGMEM to these nodes. The
accounting manager would then charge a premium rate for jobs
using BIGMEM nodes. See the Accounting, Charging, and
Allocation Management for more information.

Chapter 11: General Node Administration

595 11.3 Node Attributes

11.3 Node Attributes 596

Attribute Description

Node types are specified as simple strings. If no node type is
explicitly set, the node will possess the default node type of
DEFAULT. Node type information can be specified directly using
NODECFG or through use of the FEATURENODETYPEHEADER
parameter.

NODECFG[node024] NODETYPE=BIGMEM

OS This attribute specifies the node's operating system.

NODECFG[node013] OS=suse15

Because the Torque operating system overwrites the
Moab operating system, change the operating system
with opsys instead of OS if you are using Torque, and/or
you can use RMCFG[torque] FLAGS=IgnOS to override
that.

OSLIST This attribute specifies the list of operating systems the node
can run.

NODECFG[compute002] OSLIST=linux,windows

PARTITION See Node Location for details.

POWERPOLICY The POWERPOLICY can be set to OnDemand or STATIC. It
defaults to STATIC if not set. If set to STATIC, Moab will
never automatically change the power status of a node. If set to
OnDemand, Moab will turn the machine off and on based on
workload and global settings. See Chapter 16: Green Computing
- page 767 for further details.

PREEMPTMAXCPULO
AD

If the node CPU load exceeds the specified value, any batch jobs
running on the node are preempted using the preemption
policy specified with the node's PREEMPTPOLICY attribute. If
this attribute is not specified, the global default policy specified
with PREEMPTPOLICY parameter is used. See Sharing Server
Resources for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMAXCPULOAD=1.2
...

Chapter 11: General Node Administration

Attribute Description

PREEMPTMINMEMAV
AIL

If the available node memory drops below the specified value,
any batch jobs running on the node are preempted using the
preemption policy specified with the node's PREEMPTPOLICY
attribute. If this attribute is not specified, the global default
policy specified with PREEMPTPOLICY parameter is used. See
Sharing Server Resources for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMINMEMAVAIL=256
...

PREEMPTPOLICY If any node preemption policies are triggered (such as
PREEMPTMAXCPULOAD or PREEMPTMINMEMAVAIL) any
batch jobs running on the node are preempted using this
preemption policy if specified. If not specified, the global default
preemption policy specified with PREEMPTPOLICY parameter is
used. See Sharing Server Resources for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMAXCPULOAD=1.2
...

PRIORITY The PRIORITY attribute specifies the fixed node priority
relative to other nodes. It is only used if
NODEALLOCATIONPOLICY is set to PRIORITY. The default
node priority is 0. A default cluster-wide node priority can be
set by configuring the PRIORITY attribute of the DEFAULT
node. See Priority Node Allocation for more details.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[node024] PRIORITY=120
...

PRIORITYF The PRIORITYF attribute specifies the function to use when
calculating a node's allocation priority specific to a particular
job. It is only used if NODEALLOCATIONPOLICY is set to
PRIORITY. The default node priority function sets a node's
priority exactly equal to the configured node priority. The
priority function allows a site to indicate that various
environmental considerations such as node load, reservation
affinity, and ownership be taken into account as well using the
following format:
<COEFFICIENT> * <ATTRIBUTE> [+
<COEFFICIENT> * <ATTRIBUTE>]...
<ATTRIBUTE> is an attribute from the table found in the
Priority Node Allocation section.

Chapter 11: General Node Administration

597 11.3 Node Attributes

11.3 Node Attributes 598

Attribute Description

A default cluster-wide node priority function can be set by
configuring the PRIORITYF attribute of the DEFAULT node.
See Priority Node Allocation for more details.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[node024] PRIORITYF='APROC + .01 * AMEM - 10 * JOBCOUNT'
...

PROCSPEED Knowing a node's processor speed can help the scheduler
improve intra-job efficiencies by allocating nodes of similar
speeds together. This helps reduce losses due to poor internal
job load balancing. Moab's node set scheduling policies allow a
site to control processor speed based allocation behavior.
Processor speed information is specified in MHz and can be
indicated directly using NODECFG or through use of the
FEATUREPROCSPEEDHEADER parameter.

PROVRM Provisioning resource managers can be specified on a per node
basis. This allows flexibility in mixed environments. If the node
does not have a provisioning resource manager, the default
provisioning resource manager will be used. The default is
always the first one listed in moab.cfg.

RMCFG[prov] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[prov] PROVDURATION=10:00
RMCFG[prov] NODEMODIFYURL=exec://$HOME/tools/os.switch.pl
...
NODECFG[node024] PROVRM=prov

RACK The rack associated with the node's physical location. Valid
values range from 1 to 400. See Node Location for details.

RADISK Jobs can request a certain amount of disk space through the RM
Extension String's DDISK parameter. When done this way,
Moab can track the amount of disk space available for other
jobs. RADISK is used as an initial value and is subsequently
determined by RCDISK - <JOB USAGE>.

RAMEM The total available memory on a node. Jobs can request a
certain amount of real memory (RAM) in MB through the RM
Extension String's DMEM parameter. When done this way, Moab
can track the amount of memory available for other jobs.
RAMEM is used as an initial value and is subsequently
determined by RCMEM - <JOB USAGE>.

Chapter 11: General Node Administration

Attribute Description

RCDISK Jobs can request a certain amount of disk space (in MB)
through the RM Extension String's DDISK parameter. When
done this way, Moab can track the amount of disk space
available for other jobs. The RCDISK attribute constrains the
amount of disk reported by a resource manager while the
RADISK attribute specifies the amount of disk available to jobs.
If the resource manager does not report available disk, the
RADISK attribute should be used.

RCMEM Jobs can request a certain amount of real memory (RAM) in MB
through the RM Extension String's DMEM parameter. When done
this way, Moab can track the amount of memory available for
other jobs. The RCMEM attribute constrains the amount of RAM
reported by a resource manager while the RAMEM attribute
specifies the amount of RAM available to jobs. If the resource
manager does not report available memory, the RAMEM
attribute should be used.
Note that memory reported by the resource manager will
override the configured value unless a trailing caret (^) is used.

NODECFG[node024] RCMEM=2048
...

If the resource manager does not report any
memory, then Moab will assign node024 2048 MB
of memory.

NODECFG[node024] RCMEM=2048^
...

Moab will assign 2048 MB of memory to node024
regardless of what the resource manager reports.

RCPROC The RCPROC specifies the number of processors available on a
compute node.

NODECFG[node024] RCPROC=8
...

RCSWAP Jobs can request a certain amount of swap space in MB.

Chapter 11: General Node Administration

599 11.3 Node Attributes

11.3 Node Attributes 600

Attribute Description

RCSWAP works similarly to RCMEM. Setting RCSWAP on a
node will set the swap but can be overridden by swap
reported by the resource manager. If the trailing caret (^)
is used, Moab will ignore the swap reported by the
resource manager and use the configured amount.

NODECFG[node024] RCSWAP=2048
...

If the resource manager does not report any
memory, Moab will assign node024 2048 MB of
swap.

NODECFG[node024] RCSWAP=2048^
...

Moab will assign 2048 MB of swap to node024
regardless of what the resource manager reports.

SIZE The number of slots or size units consumed by the node. This
value is used in graphically representing the cluster using
showstate or Moab Cluster Manager. See Node Location for
details. For display purposes, legal size values include 1, 2, 3, 4,
6, 8, 12, and 16.

NODECFG[node024] SIZE=2
...

SLOT The first slot in the rack associated with the node's physical
location. Valid values range from 1 to MMAX_RACKSIZE
(default=64). See Node Location for details.

SPEED Because today's processors have multiple cores and adjustable
clock frequency, this feature has no meaning and will be
deprecated.

The SPEED specification must be in the range of 0.01 to
100.0.

TRIGGER See Object Triggers for information.

VARIABLE Variables associated with the given node, which can be used in
job scheduling. See -l PREF.

Chapter 11: General Node Administration

Attribute Description

NODECFG[node024] VARIABLE=var1
...

11.3.2 Node Features/Node Properties
A node feature (or node property) is an opaque string label that is associated with a
compute node. Each compute node can have any number of node features assigned to it,
and jobs can request allocation of nodes that have specific features assigned. Node features
are labels and their association with a compute node is not conditional, meaning they
cannot be consumed or exhausted.

Node features can be assigned by the resource manager, and this information can be
imported by Moab or node features can be specified within Moab directly. Moab supports
hyphens and underscores in node feature names.

As a convenience feature, certain node attributes can be specified via node features using
the parameters listed in the following table:

Parameter Description

FEATURENODETYPEHEADER Set Node Type

FEATUREPARTITIONHEADER Set Partition

FEATUREPROCSPEEDHEADER Set Processor Speed

FEATURERACKHEADER Set Rack

FEATURESLOTHEADER Set Slot

Example 11-2:

FEATUREPARTITIONHEADER par
FEATUREPROCSPEEDHEADER cpu

Related Topics

l Job Preferences

l Specifying Node Features (Node Properties) in the Torque Administrator Guide

Chapter 11: General Node Administration

601 11.3 Node Attributes

11.4 Node Specific Policies 602

l Configuring Node Features in Moab with NODECFG

l Viewing Feature Availability Breakdown with mdiag -t

l Differences between Node Features and Managing Consumable Generic Resources

11.4 Node Specific Policies

Node policies within Moab allow specification of not only how the node's load should be
managed, but who can use the node, and how the node and jobs should respond to various
events. These policies allow a site administrator to specify on a node by node basis what
the node will and will not support. Node policies can be applied to specific nodes or applied
system-wide using the specification NODECFG[DEFAULT]

In this topic:

11.4.1 Node Usage/Throttling Policies - page 602
11.4.1.A MAXJOB - page 602
11.4.1.B MAXJOBPERUSER - page 602
11.4.1.C MAXJOBPERGROUP - page 603
11.4.1.D MAXLOAD - page 603
11.4.1.E MAXPE - page 603
11.4.1.F MAXPROC - page 603
11.4.1.G MAXPROCPERUSER - page 603
11.4.1.H MAXPROCPERGROUP - page 603

11.4.2 Node Access Policies - page 604

11.4.1 Node Usage/Throttling Policies

11.4.1.A MAXJOB
This policy constrains the number of total independent jobs a given node can run
simultaneously. It can only be specified via the NODECFG parameter.

On Cray XT systems, use the NID (node ID) instead of the node name.

11.4.1.B MAXJOBPERUSER
Constrains the number of total independent jobs a given node can run simultaneously
associated with any single user. It can only be specified via the NODECFG parameter.

Chapter 11: General Node Administration

11.4.1.C MAXJOBPERGROUP
Constrains the number of total independent jobs a given node can run simultaneously
associated with any single group. It can only be specified via the NODECFG parameter.
Setting MAXLOAD here to -1 unsets the NODEMAXLOAD parameter setting.

11.4.1.D MAXLOAD
MAXLOAD constrains the CPU load the node will support as opposed to the number of jobs.
This maximum load policy can also be applied system wide using the parameter
NODEMAXLOAD.

11.4.1.E MAXPE
This policy constrains the number of total dedicated processor-equivalents a given node
can support simultaneously. It can only be specified via the NODECFG parameter. For more
information, see the subsection 'PE (Processor Equivalent) Calculation' under Scheduling
Environment.

11.4.1.F MAXPROC
This policy constrains the number of total dedicated processors a given node can support
simultaneously. It can only be specified via the NODECFG parameter.

11.4.1.G MAXPROCPERUSER
This policy constrains the number of total processors a given node can have dedicated to
any single user. It can only be specified via the NODECFG parameter.

11.4.1.H MAXPROCPERGROUP
This policy constrains the number of total processors a given node can have dedicated to
any single group. It can only be specified via the NODECFG parameter.

Chapter 11: General Node Administration

603 11.4 Node Specific Policies

11.4 Node Specific Policies 604

Node throttling policies are used strictly as constraints. If a node is defined as having
a single processor or the NODEACCESSPOLICY is set to SINGLETASK, and a
MAXPROC policy of 4 is specified, Moab will not run more than one task per node. A
node's configured processors must be specified so that multiple jobs can run and
then the MAXJOB policy will be effective. The number of configured processors per
node is specified on a resource manager specific basis. PBS, for example, allows this
to be adjusted by setting the number of virtual processors with the np parameter for
each node in the PBS nodes file.

Example 11-3:

NODECFG[node024] MAXJOB=4 MAXJOBPERUSER=2
NODECFG[node025] MAXJOB=2
NODECFG[node026] MAXJOBPERUSER=1
NODECFG[DEFAULT] MAXLOAD=2.5
...

11.4.2 Node Access Policies
While most sites require only a single cluster wide node access policy (commonly set using
NODEACCESSPOLICY), it is possible to specify this policy on a node by node basis using the
ACCESS attributes of the NODECFG parameter. This attribute can be set to any of the valid
node access policy values listed in the Node Access Policies section.

Example 11-4:

To set a global policy of SINGLETASK on all nodes except nodes 13 and 14, use the
following:

by default, enforce dedicated node access on all nodes
NODEACCESSPOLICY SINGLETASK
allow nodes 13 and 14 to be shared
NODECFG[node13] ACCESS=SHARED
NODECFG[node14] ACCESS=SHARED

Related Topics

l mnodectl

Chapter 11: General Node Administration

11.5 Managing Shared Cluster Resources (Floating
Resources)

This section describes how to configure, request, and reserve cluster file system space and
bandwidth, software licenses, and generic cluster resources.

In this topic:

11.5.1 Shared Cluster Resource Overview - page 605
11.5.2 Configuring Generic Consumable Floating Resources - page 606

11.5.2.A Requesting Consumable Floating Resources - page 606
11.5.3 Configuring Cluster File Systems - page 606
11.5.4 Configuring Cluster Licenses - page 607
11.5.5 Configuring Generic Resources as Features - page 607

11.5.5.A Managing Feature GRES via Moab Commands - page 608
11.5.5.B Managing Feature GRES via the Resource Manager - page 609

11.5.6 Configuring Generic Resources as Licenses - page 609

11.5.1 Shared Cluster Resource Overview
Shared cluster resources such as file systems, networks, and licenses can be managed
through creating a pseudo-node. You can configure a pseudo-node via the NODECFG
parameter much as a normal node would be but additional information is required to allow
the scheduler to contact and synchronize state with the resource.

In the following example, a license manager is added as a cluster resource by defining the
GLOBAL pseudo-node and specifying how the scheduler should query and modify its state.

NODECFG[GLOBAL] RMLIST=NATIVE
NODECFG[GLOBAL] QUERYCMD=/usr/local/bin/flquery.sh
NODECFG[GLOBAL] MODIFYCMD=/usr/local/bin/flmodify.sh

In some cases, pseudo-node resources might be very comparable to node-locked generic
resources however there are a few fundamental differences that determine when one
method of describing resources should be used over the other. The following table
contrasts the two resource types:

Attribute Pseudo-Node Generic Resource

Node-Locked No - Resources can be
encapsulated as an independent
node.

Yes - Must be associated with an
existing compute node.

Chapter 11: General Node Administration

605 11.5 Managing Shared Cluster Resources (Floating Resources)

11.5 Managing Shared Cluster Resources (Floating Resources) 606

Attribute Pseudo-Node Generic Resource

Requires
exclusive
batch system
control over
resource

No - Resources (such as file
systems and licenses) can be
consumed both inside and
outside of batch system
workload.

Yes - Resources must only be
consumed by batch workload. Use
outside of batch control results in loss
of resource synchronization.

Allows
scheduler
level
allocation of
resources

Yes - If required, the scheduler
can take external administrative
action to allocate the resource to
the job.

No - The scheduler can only maintain
logical allocation information and
cannot take any external action to
allocate resources to the job.

11.5.2 Configuring Generic Consumable Floating Resources
Consumable floating resources are configured in the same way as node-locked generic
resources with the exception of using the GLOBAL node instead of a particular node.

NODECFG[GLOBAL] GRES=tape:4,matlab:2
...

In this setup, four resources of type tape and 2 of type matlab are floating and available across all nodes.

11.5.2.A Requesting Consumable Floating Resources
Floating resources are requested on a per task basis using native resource manager job
submission methods or using the GRES resource manager extensions.

11.5.3 Configuring Cluster File Systems
Moab allows both the file space and bandwidth attributes or a cluster file system to be
tracked, reserved, and scheduled. With this capability, a job or reservation can request a
particular quantity of file space and a required amount of I/O bandwidth to this file system.
While file system resources are managed as a cluster generic resource, they are specified
using the FS attribute of the NODECFG parameter as in the following example:

NODECFG[GLOBAL] FS=PV1:10000@100,PV2:5000@100
...

In this example, PV1 defines a 10 GB file system with a maximum throughput of 100 MB/s while PV2 defines a 5 GB
file system also possessing a maximum throughput of 100 MB/s.

A job can request cluster file system resources using the fs resource manager extension.
For a Torque based system, the following could be used:

>qsub -l nodes=1,walltime=1:00:00 -W x=fs:10@50

Chapter 11: General Node Administration

11.5.4 Configuring Cluster Licenses
Jobs can request and reserve software licenses using native methods or using the GRES
resource manager extension. If the cluster license manager does not support a query
interface, license availability can be specified within Moab using the GRES attribute of the
NODECFG parameter.

Example 11-5: ConfigureMoab to support four floating quickcalc and two floating matlab licenses.

NODECFG[GLOBAL] GRES=quickcalc:4,matlab:2
...

Example 11-6: Submit a Torque job requesting a node-locked or floating quickcalc license.

> qsub -l nodes=1,software=quickcalc,walltime=72000 testjob.cmd

11.5.5 Configuring Generic Resources as Features
Moab can be configured to treat generic resources as features in order to provide more
control over server access. For instance, if a node is configured with a certain GRES and
that GRES is turned off, jobs requesting the node will not run. To turn a GRES into a
feature, set the FEATUREGRES attribute of GRESCFG to TRUE in the moab.cfg file.

GRESCFG[gres1] FEATUREGRES=TRUE

Moab now treats gres1 as a scheduler-wide feature rather than a normal generic resource.

Note that jobs are submitted normally using the same GRES syntax.

If you are running a grid, verify that FEATUREGRES=TRUE is set on all members of
the grid.

You can safely upgrade an existing cluster to use the feature while jobs are running.
If you are in a grid, upgrade all clusters at the same time.

Two methods exist for managing GRES features: via Moab commands and via the resource
manager. Using Moab commands means that feature changes are not checkpointed; they
do not remain in place when Moab restarts. Using the resource manager causes changes to
be reported by the RM, so any changes made before a Moab restart are still present after
it.

These methods are mutually exclusive. Use one or the other, but do not mix methods.

Chapter 11: General Node Administration

607 11.5 Managing Shared Cluster Resources (Floating Resources)

11.5 Managing Shared Cluster Resources (Floating Resources) 608

11.5.5.A Managing Feature GRES via Moab Commands
In the following example, gres1 and gres2 are configured in the moab.cfg file. gres1
is not currently functioning correctly, so it is set to 0, turning the feature off. Values above 0
and non-specified values turn the feature on.

NODECFG[GLOBAL] GRES=gres1:0
NODECFG[GLOBAL] GRES=gres2:10000
GRESCFG[gres1] FEATUREGRES=TRUE
GRESCFG[gres2] FEATUREGRES=TRUE

Moab now treats gres1 and gres2 as features.

To verify that this is set up correctly, run mdiag -S -v. It returns the following:

> mdiag -S -v
...
 Scheduler FeatureGres: gres1:off,gres2:on

Once Moab has started, use mschedctl -m to modify whether the feature is turned on or off.

mschedctl -m sched featuregres:gres1=on

INFO: FeatureGRes 'gres1' turned on

You can verify that the feature turned on or off by once again running mdiag -S -v.

If Moab restarts, it will not checkpoint the state of these changed feature generic
resources. Instead, it will read the moab.cfg file to determine whether the feature
GRES is on or off.

With feature GRES configured, jobs are submitted normally, requesting GRES type gres1
and gres2. Moab ignores GRES counts and reads the feature simply as on or off.

> msub -l nodes=1,walltime=600,gres=gres1

1012
> checkjob 1012
job 1012

AName: STDIN
State: Running
.....
StartTime: Tue Jul 3 15:33:28
Feature GRes: gres1
Total Requested Tasks: 1

If you request a feature that is currently turned off, the state is not reported as Running,
but as Idle. A message such as the following returns:

BLOCK MSG: requested feature gres 'gres2' is off

Chapter 11: General Node Administration

11.5.5.B Managing Feature GRES via the Resource Manager
You can automate the process of having a feature GRES turn on and off by setting up an
external tool and configuring Moab to query the tool the same way that Moab queries a
license manager. For example:

RMCFG[myRM] CLUSTERQUERYURL=file:///$HOME/tools/myRM.dat TYPE=NATIVE
RESOURCETYPE=LICENSE

GRESCFG[gres1] FEATUREGRES=TRUE
GRESCFG[gres2] FEATUREGRES=TRUE

LICENSE means that the RM does not contain any compute resources and that Moab should not attempt to use it to
manage any jobs (start, cancel, submit, etc.).

The myRM.dat file should contain something such as the following:

GLOBAL state=Idle cres=gres1:0,gres2:10

External tools can easily update the file based on filesystem availability. Switching any of
the feature GRES to 0 turns it off and switching it to a positive value turns it on. If you use
this external mechanism, you do not need to use mschedctl -m to turn a feature GRES
on or off. You also do not need to worry about whether Moab has checkpointed the
information or not, since the information is provided by the RM and not by any external
commands.

11.5.6 Configuring Generic Resources as Licenses
Moab can be configured to treat generic resources as licenses in order to distinguish them
as licenses in terms of tracking and charging with the accounting manager. To turn a GRES
into a license, set the LICENSE attribute of GRESCFG to TRUE in the moab.cfg file.

For example:

GRESCFG[matlab] LICENSE=TRUE

Moab will pass the matlab generic resource to the accounting manager in the Licenses property rather than the
Resources property.

Related Topics

l Managing Resources Directly with the Native Interface

11.6 Managing Node State

There are multiple models where Moab can operate allowing it to either honor the node
state set by an external service or locally determine and set the node state. This section

Chapter 11: General Node Administration

609 11.6 Managing Node State

11.6 Managing Node State 610

covers the following:

l Identifying meanings of particular node states

l Specifying node states within locally developed services and resource managers

l Adjusting node state within Moab based on load, policies, and events

In this topic:

11.6.1 Node State Definitions - page 610
11.6.2 Specifying Node States within Native Resource Managers - page 611
11.6.3 Moab Based Node State Adjustment - page 611
11.6.4 Adjusting Scheduling Behavior Based on Reported Node State - page

611
11.6.4.A Down State - page 611

11.6.5 Adding or Removing Nodes - page 611

11.6.1 Node State Definitions

State Definition

Down Node is either not reporting status, is reporting status but failures are detected, or
is reporting status but has been marked down by an administrator.

Idle Node is reporting status, currently is not executing any workload, and is ready to
accept additional workload.

Busy Node is reporting status, currently is executing workload, and cannot accept
additional workload due to load.

Running Node is reporting status, currently is executing workload, and can accept
additional workload.

Drained Node is reporting status, currently is not executing workload, and cannot accept
additional workload due to administrative action.

Draining Node is reporting status, currently is executing workload, and cannot accept
additional workload due to administrative action.

Chapter 11: General Node Administration

11.6.2 Specifying Node States within Native Resource Managers
Native resource managers can report node state implicitly and explicitly, using
NODESTATE, LOAD, and other attributes. See Managing Resources Directly with the Native
Interface for more information.

11.6.3 Moab Based Node State Adjustment
Node state can be adjusted based on reported processor, memory, or other load factors. It
can also be adjusted based on reports of one or more resource managers in a multi-
resource manager configuration. Also, both generic events and generic metrics can be used
to adjust node state.

l Torque health scripts (allow compute nodes to detect and report site specific
failures).

11.6.4 Adjusting Scheduling Behavior Based on Reported Node
State
Based on reported node state, Moab can support various policies to make better use of
available resources. For more information, see the Green Computing.

11.6.4.A Down State

l JOBACTIONONNODEFAILURE parameter (cancel/requeue jobs if allocated nodes
fail).

l Triggers (take specified action if failure is detected).

11.6.5 Adding or Removing Nodes
When a node has been deleted by a resource manager and the resource manager no
longer reports data for the node, the node continues to exist in Moab until the next restart.

As a best practice, Adaptive Computing recommends adding or removing nodes only
during cluster maintenance, rather than during periods of production activity. A restart of
Moab must follow the addition and/or removal of nodes. This guarantees that Moab will
handle nodes in a reliable, predictable way. If you want to remove nodes from service, but
cannot immediately restart Moab after doing so, we recommend marking the nodes offline
(for example, with pbsnodes -o <nodeID> or mnodectl -m state=down
<nodeID>) and/or placing an administrative reservation over the nodes, until such time

Chapter 11: General Node Administration

611 11.6 Managing Node State

11.7 Managing Consumable Generic Resources 612

as you can follow the recommended removal procedure during a planned maintenance
window.

Related Topics

l Managing Resources Directly with the Native Interface

l License Management

l Adjusting Node Availability

l NODEMAXLOAD parameter

l Green computing overview

11.7 Managing Consumable Generic Resources

Each time a job is allocated to a compute node, it consumes one or more types of resources.
Standard resources such as CPU, memory, disk, network adapter bandwidth, and swap are
automatically tracked and consumed by Moab. However, in many cases, additional
resources may be provided by nodes and consumed by jobs that must be tracked. The
purpose of this tracking may include accounting, billing, or the prevention of resource over-
subscription. Generic consumable resources can be used to manage software licenses, I/O
usage, bandwidth, application connections, or any other aspect of the larger compute
environment; they can be associated with compute nodes, networks, storage systems, or
other real or virtual resources.

These additional resources can be managed within Moab by defining one or more generic
resources. The first step in defining a generic resource involves naming the resource.
Generic resource availability can then be associated with various compute nodes and
generic resource usage requirements can be associated with jobs.

In this topic:

11.7.1 Differences Between Node Features and Consumable Resources - page
613

11.7.2 Configuring Node-locked Consumable Generic Resources - page 613
11.7.2.A Requesting Consumable Generic Resources - page 613
11.7.2.B Using Generic Resource Requests in Conjunction with other

Constraints - page 614
11.7.2.C Requesting Resources with No Generic Resources - page 615

Chapter 11: General Node Administration

11.7.2.D Requesting Generic Resources Automatically within a
Queue/Class - page 615

11.7.3 Managing Generic Resource Race Conditions - page 615

11.7.1 Differences Between Node Features and Consumable
Resources
A node feature (or node property) is an opaque string label that is associated with a
compute node. Each compute node can have any number of node features assigned to it
and jobs can request allocation of nodes that have specific features assigned. Node features
are labels and their association with a compute node is not conditional, meaning they
cannot be consumed or exhausted.

11.7.2 Configuring Node-locked Consumable Generic Resources
Consumable generic resources are supported within Moab using either direct
configuration or resource manager auto-detect (as when using Torque and accelerator
hardware). For direct configuration, node-locked consumable generic resources (or
generic resources) are specified using the NODECFG parameter's GRES attribute. This
attribute is specified using the format <ATTR>:<COUNT> as in the following example:

NODECFG[titan001] GRES=tape:4
NODECFG[login32] GRES=matlab:2,prime:4
NODECFG[login33] GRES=matlab:2
...

By default, Moab supports up to 128 independent generic resource types.

11.7.2.A Requesting Consumable Generic Resources
Generic resources can be requested on a per task or per job basis using the GRES
resource manager extension. If the generic resource is located on a compute node,
requests are by default interpreted as a per task request. If the generic resource is located
on a shared, cluster-level resource (such as a network or storage system), then the request
defaults to a per job interpretation.

Chapter 11: General Node Administration

613 11.7 Managing Consumable Generic Resources

11.7 Managing Consumable Generic Resources 614

Generic resources are specified per task, not per node. When you submit a job, each
processor becomes a task. For example, a job asking for
nodes=3:ppn=4,gres=test:5 asks for 60 gres of type test ((3*4
processors)*5).

If using Torque, the GRES or software resource can be requested as in the following
examples:

Example 11-7: Per Task Requests

NODECFG[compute001] GRES=dvd:2 SPEED=2200
NODECFG[compute002] GRES=dvd:2 SPEED=2200
NODECFG[compute003] GRES=dvd:2 SPEED=2200
NODECFG[compute004] GRES=dvd:2 SPEED=2200
NODECFG[compute005] SPEED=2200
NODECFG[compute006] SPEED=2200
NODECFG[compute007] SPEED=2200
NODECFG[compute008] SPEED=2200

submit job which will allocate only from nodes 1 through 4 requesting one dvd per
task
> qsub -l nodes=2,walltime=100,gres=dvd job.cmd

In this example, Moab determines that compute nodes exist that possess the requested generic resource. A compute
node is a node object that possesses processors on which compute jobs actually execute. License server, network, and
storage resources are typically represented by non-compute nodes. Because compute nodes exist with the requested
generic resource, Moab interprets this job as requesting two compute nodes each of which must also possess a DVD
generic resource.

Example 11-8: Per Job Requests

NODECFG[network] PARTITION=shared GRES=bandwidth:2000000

submit job which will allocate 2 nodes and 10000 units of network bandwidth
> qsub -l nodes=2,walltime=100,gres=bandwidth:10000 job.cmd

In this example, Moab determines that there exist no compute nodes that also possess the generic resource
bandwidth so this job is translated into a multiple-requirement—multi-req—job. Moab creates a job that has a
requirement for two compute nodes and a second requirement for 10000 bandwidth generic resources. Because
this is a multi-req job, Moab knows that it can locate these needed resources separately.

11.7.2.B Using Generic Resource Requests in Conjunction with other
Constraints
Jobs can explicitly specify generic resource constraints. However, if a job also specifies a
hostlist, the hostlist constraint overrides the generic resource constraint if the request is
for per task allocation. In the Per Task Requests example, if the job also specified a hostlist,
the DVD request is ignored.

Chapter 11: General Node Administration

11.7.2.C Requesting Resources with No Generic Resources
In some cases, it is valuable to allocate nodes that currently have no generic resources
available. This can be done using the special value none as in the following example:

> qsub -l nodes=2,walltime=100,gres=none job.cmd

In this case, the job only allocates compute nodes that have no generic resources associated with them.

11.7.2.D Requesting Generic Resources Automatically within a Queue/Class
Generic resource constraints can be assigned to a queue or class and inherited by any jobs
that do not have a gres request. This allows targeting of specific resources, automation of
co-allocation requests, and other uses. To enable this, use the DEFAULT.GRES attribute of
the CLASSCFG parameter as in the following example:

CLASSCFG[viz] DEFAULT.GRES=graphics:2

For each node requested by a viz job, also request two graphics cards.

11.7.3 Managing Generic Resource Race Conditions
A software license race condition 'window of opportunity' opens when Moab checks a
license server for sufficient available licenses and closes when the user's software actually
checks out the software licenses. The time between these two events can be seconds to
many minutes depending on overhead factors such as node OS provisioning, job startup,
licensed software startup, and so forth.

During this window, another Moab-scheduled job or a user or job external to the cluster or
cloud can obtain enough software licenses that by the time the job attempts to obtain its
software licenses, there are an insufficient quantity of available licenses. In such cases a job
will sit and wait for the license, and while it waits it occupies but does not use resources
that another job could have used. Use the STARTDELAY parameter to prevent such a
situation.

GRESCFG[<license>] STARTDELAY=<window_of_opportunity>

With the STARTDELAY parameter enabled (on a per generic resource basis) Moab blocks
any idle jobs requesting the same generic resource from starting until the <window_of_
opportunity> passes. The window is defined by the customer on a per generic
resource basis.

Chapter 11: General Node Administration

615 11.7 Managing Consumable Generic Resources

11.8 Enabling Generic Metrics 616

Related Topics

l GRESCFG parameter

l Generic Events

l General Node Attributes

l Floating Generic Resources

l Per Class Assignment of Generic Resource Consumption

l mnodectl -m command to dynamically modify node resources

l Favoring Jobs Based On Generic Resource Requirements

11.8 Enabling Generic Metrics

Moab allows organizations to enable generic performance metrics. These metrics allow
decisions to be made and reports to be generated based on site specific environmental
factors. This increases Moab's awareness of what is occurring within a given cluster
environment, and allows arbitrary information to be associated with resources and the
workload within the cluster. Uses of these metrics are widespread and can cover anything
from tracking node temperature, to memory faults, to application effectiveness.

l Execute triggers when specified thresholds are reached

l Modify node allocation affinity for specific jobs

l Initiate automated notifications when thresholds are reached

l Display current, average, maximum, and minimummetrics values in reports and
charts within Moab Cluster Manager

In this topic:

11.8.1 Configuring Generic Metrics - page 616
11.8.2 Example Generic Metric Usage - page 618

11.8.1 Configuring Generic Metrics
A new generic metric is automatically created and tracked at the server level if it is
reported by either a node or a job.

To associate a generic metric with a job or node, a native resource manager must be set up
and the GMETRIC attribute must be specified. For example, to associate a generic metric of

Chapter 11: General Node Administration

temp with each node in a Torque cluster, the following could be reported by a native
resource manager:

temperature output
node001 GMETRIC[temp]=113
node002 GMETRIC[temp]=107
node003 GMETRIC[temp]=83
node004 GMETRIC[temp]=85
...

Generic metrics are tracked as floating point values allowing virtually any number to
be reported.

In the preceding example, the new metric, temp, can now be used to monitor system usage
and performance or to allow the scheduler to take action should certain thresholds be
reached. Some uses include the following:

l Executing triggers based on generic metric thresholds

l Adjust a node's availability for accepting additional workload

l Adjust a node's allocation priority

l Initiate administrator notification of current, minimum, maximum, or average generic
metric values

l Use metrics to report resource and job performance

l Use metrics to report resource and job failures

l Using job profiles to allow Moab to learn which resources best run which applications

l Tracking effective application efficiency to identify resource brown outseven when no
node failure is obvious

l Viewing current and historical cluster-wide generic metric values to identify failure,
performance, and usage

l Enable charging policies based on consumption of generic metrics patterns

l View changes in generic metrics on nodes, jobs, and cluster wide over time

l Submit jobs with generic metric based node-allocation requirements

Generic metric values can be viewed using checkjob, checknode, mdiag -n,mdiag -j, or Moab
Cluster Manager Charting and Reporting Features.

Historical job and node generic metric statistics can be cleared using the mjobctl and
mnodectl commands.

Chapter 11: General Node Administration

617 11.8 Enabling Generic Metrics

11.8 Enabling Generic Metrics 618

11.8.2 Example Generic Metric Usage
As an example, consider a cluster with two primary purposes for generic metrics. The first
purpose is to track and adjust scheduling behavior based on node temperature to mitigate
overheating nodes. The second purpose is to track and charge for utilization of a locally
developed data staging service.

The first step in enabling a generic metric is to create probes to monitor and report this
information. Depending on the environment, this information may be distributed or
centralized. In the case of temperature monitoring, this information is often centralized by
a hardware monitoring service and available via command line or an API. If monitoring a
locally developed data staging service, this information might need to be collected from
multiple remote nodes and aggregated to a central location. The following are popular
freely available monitoring tools:

Tool Link

Ganglia https://ganglia.sourceforge.net

Monit https://www.tildeslash.com/monit

Nagios https://www.nagios.org

Once the needed probes are in place, a native resource manager interface must be created
to report this information to Moab. Creating a native resource manager interface should be
very simple, and in most cases a script similar to those found in the $TOOLSDIR
($PREFIX/tools) directory can be used as a template. For this example, we will assume
centralized information and will use the RM script that follows:

#!/usr/bin/perl
'hwctl outputs information in format '<NODEID> <TEMP>'
open(TQUERY,"/usr/sbin/hwctl -q temp |");
while (<TQUERY>)
{
my $nodeid,$temp = split /\w+/;
$dstage=GetDSUsage($nodeid);
print "$nodeid GMETRIC[temp]=$temp GMETRIC[dstage]=$dstage

";
}

With the script complete, the next step is to integrate this information into Moab. This is
accomplished with the following configuration line:

RMCFG[local] TYPE=NATIVE CLUSTERQUERYURL=file://$TOOLSDIR/node.query.local.pl
...

Moab can now be recycled and temperature and data staging usage information will be integrated into Moab
compute node reports.

If the checknode command is run, output similar to the following is reported:

Chapter 11: General Node Administration

http://ganglia.sourceforge.net/
http://www.tildeslash.com/monit
http://www.nagios.org/

> checknode cluster013
...
Generic Metrics: temp=113.2,dstage=23748
...

Moab Cluster Manager reports full current and historical generic metric information in its visual cluster overview
screen.

The next step in configuring Moab is to inform Moab to take certain actions based on the
new information it is tracking. For this example, there are two purposes. The first purpose
is to get jobs to avoid hot nodes when possible. This is accomplished using the GMETRIC
attribute of the Node Allocation Priority function as in the following example:

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=PRIORITY-10*GMETRIC[temp]
...

This simple priority function reduces the priority of the hottest nodes making such less
likely to be allocated.

The example cluster is also interested in notifying administrators if the temperature of a
given node ever exceeds a critical threshold. This is accomplished using a trigger. The
following line will send email to administrators any time the temperature of a node exceeds
120 degrees:

NODECFG[DEFAULT] TRIGGER=atype=mail,etype=threshold,threshold=gmetric
[temp]>120,action='warning: node $OID temp high'
...

Related Topics

l Generic Consumable Resources

l Object Variables

11.9 Enabling Generic Events

Generic events are used to identify failures and other occurrences that Moab or other
systems must be made aware. This information may result in automated resource
recovery, notifications, adjustments to statistics, or changes in policy. Generic events also
have the ability to carry an arbitrary human readable message that may be attached to
associated objects or passed to administrators or external systems. Generic events typically
signify the occurrence of a specific event as opposed to generic metrics, which indicate a
change in a measured value.

Chapter 11: General Node Administration

619 11.9 Enabling Generic Events

11.9 Enabling Generic Events 620

Using generic events, Moab can be configured to automatically address many failures and
environmental changes improving the overall performance. Some sample events that sites
might be interested in monitoring, recording, and taking action on include:

l Machine Room Status
o Excessive Room Temperature
o Power Failure or Power Fluctuation
o Chiller Health

l Network File Server Status
o Failed Network Connectivity
o Server Hardware Failure
o Full Network File System

l Compute Node Status
o Machine Check Event (MCE)
o Network Card (NIC) Failure
o Excessive Motherboard/CPU Temperature
o Hard Drive Failures

In this topic:

11.9.1 Configuring Generic Events - page 620
11.9.1.A Action Types - page 621
11.9.1.B Named Events - page 622
11.9.1.C Generic Metric (GMetric) Events - page 622

11.9.2 Reporting Generic Events - page 623
11.9.3 Generic Events Attributes - page 624
11.9.4 Manually Creating Generic Events - page 624

11.9.1 Configuring Generic Events
Generic events are defined in the moab.cfg file and have several different configuration
options. The only required option is action.

The full list of configurable options for generic events is contained in the following table:

Chapter 11: General Node Administration

Attribute Description

ACTION Comma-delimited list of actions to be processed when a new event is received.

ECOUNT Number of events that must occur before launching action.

Action will be launched each <ECOUNT> event if rearm is set.

REARM Minimum time between events specified in [[[DD:]HH:]MM:]SS format.

SEVERITY An arbitrary severity level from 1 through 4, inclusive. SEVERITY appears in the
output of mdiag -n -v -v --xml.

The severity level will not be used for any other purpose.

11.9.1.A Action Types
The impact of the event is controlled using the ACTION attribute of the GEVENTCFG
parameter. The ACTION attribute is comma-delimited and can include any combination of
the actions in the following table:

Value Description

DISABLE
[:<OTYPE>:<OID>]

Marks event object (or specified object) down until event report is
cleared.

EXECUTE Executes a script at the provided path. The value of EXECUTE is not
contained in quotation marks. Arguments are allowed at the end of the
path and are separated by question marks (?). Trigger variables (such
as $OID) are allowed.

NOTIFY Notifies administrators of the event occurrence.

OBJECTXMLSTDIN If the EXECUTE action type is also specified, this flag passes an XML
description of the firing gevent to the script.

OFF Powers off node or resource.

ON Powers on node or resource.

Chapter 11: General Node Administration

621 11.9 Enabling Generic Events

11.9 Enabling Generic Events 622

Value Description

PREEMPT
[:<POLICY>]

Preempts workload associated with object (valid for node, job,
reservation, partition, resource manager, user, group, account, class,
QoS, and cluster objects).

RECORD Records events to the event log. The record action causes a line to be
added to the event log regardless of whether or not
RECORDEVENTLIST includes GEVENT.

RESERVE
[:<DURATION>]

Reserves node for specified duration (default: 24 hours).

RESET Resets object (valid for nodes - causes reboot).

SIGNAL[:<SIGNO>] Sends signal to associated jobs or services (valid for node, job,
reservation, partition, resource manager, user, group, account, class,
QoS, and cluster objects).

This is an example of using objectxmlstdin with a gevent:

<gevent name="bob" statuscode="0" time="1320334763">Testing</gevent>

11.9.1.B Named Events
In general, generic events are named, with the exception of those based on generic metrics.
Names are used primarily to differentiate between different events and do not have any
intrinsic meaning to Moab. It is suggested that the administrator choose names that denote
specific meanings within the organization.

Example 11-9:

Note: cpu failures require admin attention, create maintenance reservation
GEVENTCFG[cpufail] action=notify,record,disable,reserve rearm=01:00:00# Note: power
failures are transient, minimize future use
GEVENTCFG[powerfail] action=notify,record, rearm=00:05:00
Note: fs full can be automatically fixed
GEVENTCFG[fsfull] action=notify,execute:/home/jason/MyPython/cleartmp.py?$OID?nodefix
Note: memory errors can cause invalid job results, clear node immediately
GEVENTCFG[badmem] action=notify,record,preempt,disable,reserve

11.9.1.C Generic Metric (GMetric) Events
GMetric events are generic events based on generic metrics. They are used for executing
an action when a generic metric passes a defined threshold. Unlike named events, GMetric
events are not named and use the following format:
GEVENTCFG[GMETRIC<COMPARISON>VALUE] ACTION=...

Chapter 11: General Node Administration

Example 11-10:

GEVENTCFG[cputemp>150] action=off

This form of generic events uses the GMetric name, as returned by a GMETRIC attribute in
a native Resource Manager interface.

Only one generic event can be specified for any given generic metric.

Valid comparative operators are shows in the following table:

Type Comparison Notes

> greater than Numeric values only

> = greater than or equal to Numeric values only

= = equal to Numeric values only

< less than Numeric values only

< = less than or equal to Numeric values only

< > not equal Numeric values only

11.9.2 Reporting Generic Events
Unlike generic metrics, generic events can be optionally configured at the global level to
adjust rearm policies, and other behaviors. In all cases, this is accomplished using the
GEVENTCFG parameter.

To report an event associated with a job or node, use the native Resource Manager
interface or the mjobctl or mnodectl commands. You can report generic events on the
scheduler with the mschedctl command.

If using the native Resource Manager interface, use the GEVENT attribute as in the
following example:

node001 GEVENT[hitemp]='temperature exceeds 150 degrees'
node017 GEVENT[fullfs]='/var/tmp is full'

Chapter 11: General Node Administration

623 11.9 Enabling Generic Events

11.9 Enabling Generic Events 624

The time at which the event occurred can be passed to Moab to prevent multiple
processing of the same event. This is accomplished by specifying the event type in the
format <GEVENTID>[:<EVENTTIME>] as in what follows:

node001 GEVENT[hitemp:1130325993]='temperature exceeds 150 degrees'
node017 GEVENT[fullfs:1130325142]='/var/tmp is full'

11.9.3 Generic Events Attributes
Each node will record the following about reported generic events:

l status - is event active

l message - human readable message associated with event

l count - number of event incidences reported since statistics were cleared

l time - time of most recent event

Each event can be individually cleared, annotated, or deleted by cluster administrators
using a mnodectl command.

Generic events are only available in Moab 4.5.0 and later.

11.9.4 Manually Creating Generic Events
Generic events can be manually created on a physical node.

To add GEVENT event with message "hello" to node02, do the following:

> mnodectl -m gevent=event:"hello" node02

Related Topics

l Generic Consumable Resources

l Object Variables

Chapter 11: General Node Administration

625

Chapter 12: Resource Managers and Interfaces

In this chapter:

12.1 Resource Manager Overview 627
12.1.1 Scheduler/Resource Manager Interactions 628

12.1.2Resource Manager Specific Details (Limitations/SpecialFeatures) 629
12.1.3 Synchronizing Conflicting Information 629
12.1.4Evaluating Resource Manager Availability and Performance 630

12.2 Resource Manager Configuration 630
12.2.1 Defining and Configuring Resource Manager Interfaces 630
12.2.2 Resource Manager Configuration Details 656
12.2.3 Scheduler/Resource Manager Interactions 661

12.3 Resource Manager Extensions 662
12.3.1 Resource Manager Extension Specification 662
12.3.2 Resource Manager Extension Values 663
12.3.3 Resource Manager Extension Examples 690
12.3.4 Configuring dynamic features in Torque and Moab 691

12.4 Adding New Resource Manager Interfaces 692
12.4.1 Resource Manager Specific Interfaces 692
12.4.2 Wiki Interface 692
12.4.3 SSS Interface 692

12.5 Managing Resources Directly with the Native Interface 693
12.5.1 Native Interface Overview 693
12.5.2 Configuring the Native Interface 694
12.5.3 Generating Cluster Query Data 695
12.5.4 Interfacing with FlexNet (Formerly FLEXlm) 696
12.5.5 Interfacing to Nagios 697
12.5.6 Configuring Resource Types 698
12.5.7 Creating New Tools to Manage the Cluster 699

12.6 Utilizing Multiple Resource Managers 704
12.6.1 Multi-RM Overview 704
12.6.2Configuring Multiple Independent Resource Manager Partitions 705
12.6.3 Migrating Jobs between Resource Managers 705

Chapter 12: Resource Managers and Interfaces

12.6.4 Aggregating Information into a Cohesive Node View 705
12.7 License Management 706

12.7.1 License Management Overview 707
12.7.2 Controlling and Monitoring License Availability 707
12.7.3 Requesting Licenses within Jobs 708

12.8 Resource Provisioning 709
12.8.1 Resource Provisioning Overview 710
12.8.2 Configuring Provisioning 710

12.9 Managing Networks 710
12.9.1 Network Management Overview 711
12.9.2 Dynamic VLAN Creation 711
12.9.3 Network Load and Health Monitoring 712
12.9.4Creating a Resource Management Interface for a New Network 712
12.9.5 Per-Job Network Monitoring 713

12.10 Intelligent Platform Management Interface 714
12.10.1 IPMI Overview 714
12.10.2 Node IPMI Configuration 714
12.10.3 Installing IPMItool 715
12.10.4 [Optional] Creating the IPMI BMC-Node Map File 715
12.10.5 Configuring the Moab IPMI Tools 716
12.10.6 Configuring Moab 716
12.10.7 Ensuring Proper Setup 717

12.11 Resource Manager Translation 717
12.11.1 Translation Overview 717
12.11.2 Translation Enablement Steps 718

Moab provides a powerful resource management interface that enables significant
flexibility in how resources and workloads are managed. Highlights of this interface are
listed in what follows:

Highlight Description

Support for Generic Resource
Manager Interfaces

Manage cluster resources securely via locally developed or
open source projects using simple flat text interfaces or
XML over HTTP.

Support for Multiple Integrate resource and workload streams from multiple

Chapter 12: Resource Managers and Interfaces

626

12.1 Resource Manager Overview 627

Highlight Description

Simultaneous Resource
Managers

independent sources reporting disjoint sets of resources.

Independent Workload and
Resource Management

Allow one system to manage your workload (queue
manager) and another to manage your resources.

Support for Rapid
Development Interfaces

Load resource and workload information directly from a
file, a URL, or from the output of a configurable script or
other executable.

Resource Extension
Information

Integrate information from multiple sources to obtain a
cohesive view of a compute resource. (That is, mix
information from a resource manager and a cluster
performance monitor to obtain a single node image with a
coordinated state and a more extensive list of node
configuration and utilization attributes.)

12.1 Resource Manager Overview

For most installations, the Moab Workload Manager uses the services of a resource
manager to obtain information about the state of compute resources (nodes) and workload
(jobs). Moab also uses the resource manager to manage jobs, passing instructions
regarding when, where, and how to start or otherwise manipulate jobs.

Moab can be configured to manage more than one resource manager simultaneously, even
resource managers of different types. Using a local queue, jobs can even be migrated from
one resource manager to another. However, there are currently limitations regarding jobs
submitted directly to a resource manager (not to the local queue.) In such cases, the job is
constrained to only run within the bound of the resource manager to which it was
submitted.

In this topic:

12.1.1 Scheduler/Resource Manager Interactions - page 628
12.1.1.A Resource Manager Commands - page 628
12.1.1.B Resource Manager Flow - page 629

12.1.2 Resource Manager Specific Details (Limitations/Special Features) - page
629

Chapter 12: Resource Managers and Interfaces

12.1.3 Synchronizing Conflicting Information - page 629
12.1.4 Evaluating Resource Manager Availability and Performance - page 630

12.1.1 Scheduler/Resource Manager Interactions
Moab interacts with all resource managers using a common set of commands and objects.
Each resource manager interfaces, obtains, and translates Moab concepts regarding
workload and resources into native resource manager objects, attributes, and commands.

Information on creating a new scheduler resource manager interface can be found in the
Adding New Resource Manager Interfaces section.

12.1.1.A Resource Manager Commands
For many environments, Moab interaction with the resource manager is limited to the
following objects and functions:

Object Function Details

Job Query Collect detailed state, requirement, and utilization information
about jobs

Modify Change job state and/or attributes

Start Execute a job on a specified set of resources

Cancel Cancel an existing job

Preempt/Resume Suspend, resume, checkpoint, restart, or requeue a job

Node Query Collect detailed state, configuration, and utilization information
about compute resources

Modify Change node state and/or attributes

Queue Query Collect detailed policy and configuration information from the
resource manager

Using these functions, Moab is able to fully manage workload, resources, and cluster
policies. More detailed information about resource manager specific capabilities and

Chapter 12: Resource Managers and Interfaces

628 12.1 Resource Manager Overview

12.1 Resource Manager Overview 629

limitations for each of these functions can be found in the individual resource manager
overviews (PBS or WIKI).

Beyond these base functions, other commands exist to support advanced features such as
provisioning and cluster level resource management.

12.1.1.B Resource Manager Flow
In general, Moab interacts with resource managers in a sequence of steps each scheduling
iteration. These steps are outlined in what follows:

1. load global resource information

2. load node specific information (optional)

3. load job information

4. load queue/policy information (optional)

5. cancel/preempt/modify jobs according to cluster policies

6. start jobs in accordance with available resources and policy constraints

7. handle user commands

Typically, each step completes before the next step is started. However, with current
systems, size and complexity mandate a more advanced parallel approach providing
benefits in the areas of reliability, concurrency, and responsiveness.

12.1.2 Resource Manager Specific Details (Limitations/Special
Features)

l Torque
o Torque Homepage

l Wiki
o Wiki Overview

12.1.3 Synchronizing Conflicting Information
Moab does not trust resource manager information. Node, job, and policy information is
reloaded on each iteration and discrepancies are detected. Synchronization issues and
allocation conflicts are logged and handled where possible. To assist sites in minimizing
stale information and conflicts, a number of policies and parameters are available.

Chapter 12: Resource Managers and Interfaces

l Node State Synchronization Policies

l Stale Data Purging (see JOBPURGETIME)

l Thread Management (preventing resource manager failures from affecting scheduler
operation)

l Resource Manager Poll Interval (see RMPOLLINTERVAL)

12.1.4 Evaluating Resource Manager Availability and Performance
Each resource manager is individually tracked and evaluated by Moab. Using the mdiag -R
command, a site can determine how a resource manager is configured, how heavily it is
loaded, what failures, if any, have occurred in the recent past, and how responsive it is to
requests.

Related Topics

l Resource Manager Configuration

l Resource Manager Extensions

12.2 Resource Manager Configuration

In this topic:

12.2.1 Defining and Configuring Resource Manager Interfaces - page 630
12.2.1.A Resource Manager Attributes - page 631

12.2.2 Resource Manager Configuration Details - page 656
12.2.2.A Resource Manager Types - page 656
12.2.2.B Resource Manager Name - page 657
12.2.2.C Resource Manager Location - page 657
12.2.2.D Resource Manager Flags - page 657

12.2.3 Scheduler/Resource Manager Interactions - page 661

12.2.1 Defining and Configuring Resource Manager Interfaces
Moab resource manager interfaces are defined using the RMCFG parameter. This
parameter allows specification of key aspects of the interface. In most cases, only the TYPE
attribute needs to be specified and Moab determines the needed defaults required to

Chapter 12: Resource Managers and Interfaces

630 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 631

activate and use the selected interface. In the following example, an interface to a
Loadleveler resource manager is defined:

RMCFG[orion] TYPE=LL...

Note that the resource manager is given a label of orion. This label can be any arbitrary
site-selected string and is for local usage only. For sites with multiple active resource
managers, the labels can be used to distinguish between them for resource manager
specific queries and commands.

12.2.1.A Resource Manager Attributes
The following table lists the possible resource manager attributes that can be configured:

Chapter 12: Resource Managers and Interfaces

Resource Manager Attributes

ADMINEXEC
AUTHTYPE
BANDWIDTH
CHECKPOINTSIG
CHECKPOINTTIMEOUT
CLIENT
CLUSTERQUERYURL
CONFIGFILE

DEFAULTCLASS
DEFAULTHIGHSPEEDADAPT
ER
DESCRIPTION
ENV
EPORT
FAILTIME
FBSERVER
FLAGS
FNLIST
HOST
JOBCANCELURL
JOBEXTENDDURATION

JOBMODIFYURL
JOBRSVRECREATE
JOBSTARTURL
JOBSUBMITURL
JOBSUSPENDURL
JOBVALIDATEURL
MAXDSOP
MAXITERATIONFAILURECOU
NT
MAXJOBPERMINUTE
MAXJOBS
MINETIME
NMPORT
NODEFAILURERSVPROFILE
NODESTATEPOLICY
OMAP
PORT
PROVDURATION

RESOURCECREATEURL
RESOURCETYPE
RMSTARTURL

SBINDIR
SERVER
Resource Manager
Configuration
STAGETHRESHOLD
STARTCMD
SUBMITCMD
SUBMITPOLICY
SUSPENDSIG
SYNCJOBID
SYSTEMMODIFYURL
SYSTEMQUERYURL
TARGETUSAGE
TIMEOUT
TRIGGER
TYPE
VARIABLES
VERSION
WORKLOADQUERYU
RL

ADMINEXEC

Format "jobsubmit"

Default NONE

Description Normally, when the JOBSUBMITURL is executed, Moab will drop to the
UID and GID of the user submitting the job. Specifying an ADMINEXEC of
jobsubmit causes Moab to use its own UID and GID instead (usually
root). This is useful for some native resource managers where the
JOBSUBMITURL is not a user command (such as qsub) but a script that
interfaces directly with the resource manager.

Example RMCFG[base] ADMINEXEC=jobsubmit

Moab will not use the user's UID and GID for executing the
JOBSUBMITURL.

Chapter 12: Resource Managers and Interfaces

632 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 633

AUTHTYPE

Format One of CHECKSUM, OTHER, PKI, SECUREPORT, or NONE

Default CHECKSUM

Description The security protocol to be used in scheduler-resource manager
communication.

Only valid with WIKI based interfaces.

Example RMCFG[base] AUTHTYPE=CHECKSUM

Moab requires a secret key-based checksum associated with
each resource manager message.

BANDWIDTH

Format <FLOAT>[{M|G|T}]

Default -1 (unlimited)

Description The maximum deliverable bandwidth between the Moab server and the
resource manager for staging jobs and data. Bandwidth is specified in units
per second and defaults to a unit of MB/s. If a unit modifier is specified, the
value is interpreted accordingly (M - megabytes/sec, G - gigabytes/sec, T -
terabytes/sec).

Example RMCFG[base] BANDWIDTH=340G

Moab will reserve up to 340 GB of network bandwidth when
scheduling job and data staging operations to and from this
resource manager.

CHECKPOINTSIG

Format One of suspend, <INTEGER> or SIG<X>

Description Specifies what signal to send the resource manager when a job is
checkpointed. See Checkpoint Overview.

Chapter 12: Resource Managers and Interfaces

CHECKPOINTSIG

Example RMCFG[base] CHECKPOINTSIG=SIGKILL

Moab routes the signal SIGKILL through the resource
manager to the job when a job is checkpointed.

CHECKPOINTTIMEOUT

Format [[[DD:]HH:]MM:]SS

Default 0 (no timeout)

Description Specifies how long Moab waits for a job to checkpoint before canceling it.
If set to 0, Moab does not cancel the job if it fails to checkpoint. See
Checkpoint Overview.

Example RMCFG[base] CHECKPOINTTIMEOUT=5:00

Moab cancels any job that has not exited 5 minutes after
receiving a checkpoint request.

CLIENT

Format <PEER>

Default Use name of resource manager for peer client lookup

Description If specified, the resource manager will use the peer value to authenticate
remote connections. See configuring peers. If not specified, the resource
manager will search for a CLIENTCFG[<X>] entry of RM:<RMNAME>in the
moab-private.cfg file.

Example RMCFG[clusterBI] CLIENT=clusterB

Moab will look up and use information for peer clusterB when
authenticating the clusterBI resource manager.

Chapter 12: Resource Managers and Interfaces

634 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 635

CLUSTERQUERYURL

Format [file://<path> | https://<address> | <path>]

If file:// is specified, Moab treats the destination as a flat text file. If
https:// is specified, Moab treats the destination as a hypertext transfer
protocol file. If just a path is specified, Moab treats the destination as an
executable.

Description Specifies how Moab queries the resource manager. See Native RM, URL
Notes, and interface details.

Example RMCFG[base] CLUSTERQUERYURL=file:///tmp/cluster.config

Moab reads /tmp/cluster.config when it queries base
resource manager.

CONFIGFILE

Format <STRING>

Description The resource manager specific configuration file that must be used to
enable correct API communication.

Only valid with LL-based interfaces.
This parameter is deprecated and may be removed in a future
release.

Example RMCFG[base] TYPE=LL CONFIGFILE=/home/loadl/loadl_config

The scheduler uses the specified file when establishing the
resource manager/scheduler interface connection.

DEFAULTCLASS

Format <STRING>

Description The class to use if jobs submitted via this resource manager interface do
not have an associated class.

Chapter 12: Resource Managers and Interfaces

DEFAULTCLASS

Example RMCFG[internal] DEFAULTCLASS=batch

Moab assigns the class batch to all jobs from the resource
manager internal that do not have a class assigned.

If you are using PBS as the resource manager, a job will never come
from PBS without a class, and the default will never apply.

DEFAULTHIGHSPEEDADAPTER

Format <STRING>

Default sn0

Description The default high speed switch adapter to use when starting
LoadLeveler jobs (supported in version 4.2.2 and higher of Moab and
3.2 of LoadLeveler).

Example RMCFG[base] DEFAULTHIGHSPEEDADAPTER=sn1

The scheduler will start jobs requesting a high speed
adapter on sn1.

DESCRIPTION

Format <STRING>

Description The human-readable description for the resource manager interface. If
white space is used, the description should be quoted.

Example RMCFG[torque] DESCRIPTION='Torque RM for launching jobs'

Moab annotates the Torque resource manager accordingly.

ENV

Format Semi-colon-delimited (;) list of <KEY>=<VALUE> pairs

Chapter 12: Resource Managers and Interfaces

636 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 637

ENV

Default MOABHOMEDIR=<MOABHOMEDIR>

Description Specifies a list of environment variables that will be passed to URLs of type
exec:// for that resource manager.

Example RMCFG[base] ENV=HOST=node001;RETRYTIME=50
RMCFG[base] CLUSTERQUERYURL=exec:///opt/moab/tools/cluster.query.pl
RMCFG[base] WORKLOADQUERYURL=exec:///opt/moab/tools/workload.query.pl

The environment variables HOST and RETRYTIME (with values
node001 and 50 respectively) are passed to the
/opt/moab/tools/cluster.query.pl and
/opt/moab/tools/workload.query.pl when they are
executed.

EPORT

Format <INTEGER>

Description The event port to use to receive resource manager based scheduling
events.

Example RMCFG[base] EPORT=15017

The scheduler will look for scheduling events from the resource
manager host at port 15017.

FAILTIME

Format [[[DD:]HH:]MM:]SS

Description Specifies how long a resource manager must be down before any failure
triggers associated with the resource manager fire.

Example RMCFG[base] FAILTIME=3:00

If the base resource manager is down for three minutes, any
resource manager failure triggers fire.

Chapter 12: Resource Managers and Interfaces

FBSERVER

Format <RMNAME>

Description The fallback server to use when talking to Moab in an HA configuration.

Example RMCFG[base] TYPE=MOAB SERVER=server1 FBSERVER=server1-ha

FLAGS

Format Comma-delimited list of zero or selected resource manger flags. See
12.2.2.D Resource Manager Flags - page 657 for valid values.

Description Specifies various attributes of the resource manager.

Example RMCFG[base] FLAGS=asyncstart

Moab directs the resource manager to start the job
asynchronously.

FNLIST

Format Comma-delimited list of zero or more of the following: clusterquery,
jobcancel, jobrequeue, jobresume, jobstart, jobsuspend,
queuequery, resourcequery or workloadquery

Description By default, a resource manager utilizes all functions supported to query
and control batch objects. If this parameter is specified, only the listed
functions are used.

Example RMCFG[base] FNLIST=queuequery

Moab only uses this resource manager interface to load queue
configuration information.

HOST

Format <STRING>

Chapter 12: Resource Managers and Interfaces

638 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 639

HOST

Default localhost

Description The host name of the machine on which the resource manager server is
running.

Example RMCFG[base] host=server1

JOBCANCELURL

Format <protocol>://[<host>[:<port>]][<path>]

Default ---

Description Specifies how Moab cancels jobs via the resource manager. See URL Notes.

Example RMCFG[base] JOBCANCELURL=exec:///opt/moab/job.cancel.lsf.pl

Moab executes /opt/moab/job.cancel.lsf.pl to cancel
specific jobs.

JOBEXTENDDURATION

Format [[[DD:]HH:]MM:]SS[,[[[DD:]HH:]MM:]SS][!][<] (or <MIN
TIME>[,<MAX TIME>][!])

Default ---

Description The minimum and maximum amount of time that can be added to a job's
walltime if it is possible for the job to be extended. See MINWCLIMIT. As
the job runs longer than its current specified minimum wallclock limit (-l
minwclimit, for example), Moab attempts to extend the job's limit by the
minimum JOBEXTENDDURATION. This continues until either the
extension can no longer occur (it is blocked by a reservation or job), the
maximum JOBEXTENDDURATION is reached, or the user's specified
wallclock limit (-l walltime) is reached. When a job is extended, it is
marked as PREEMPTIBLE, unless the ! is appended to the end of the
configuration string. If the less than sign (<) is appended to the end of the
expression, the values are taken to be a per-iteration minimum and

Chapter 12: Resource Managers and Interfaces

JOBEXTENDDURATION

maximum extension with the overall maximum extension being the job's
walltime limit.

JOBEXTENDDURATION and JOBEXTENDSTARTWALLTIME TRUE
cannot be configured together. If they are in the same moab.cfg or
are both active, then the JOBEXTENDDURATION will not be
honored.
For example, comment out the JOBEXTENDSTARTWALLTIME.
RMCFG[base] JOBEXTENDDURATION=30,1:00:00
#JOBEXTENDSTARTWALLTIME TRUE

Example RMCFG[base] JOBEXTENDDURATION=30,1:00:00

Moab extends a job's walltime by 30 seconds each time the job
is about to run out of walltime until it is bound by one hour, a
reservation/job, or the job's original 'maximum' wallclock limit.

JOBIDFORMAT

Format INTEGER

Default ---

Description Specifies that Moab should use numbers to create job IDs. This eliminates
multiple job IDs associated with a single job.

Example RMCFG[base] JOBIDFORMAT=INTEGER

Job IDs are generated as numbers.

JOBMODIFYURL

Format <protocol>://[<host>[:<port>]][<path>]

Default ---

Description Specifies how Moab modifies jobs via the resource manager. See URL
Notes, and interface details.

Chapter 12: Resource Managers and Interfaces

640 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 641

JOBMODIFYURL

Example RMCFG[base] JOBMODIFYURL=exec://$TOOLSDIR/job.modify.dyn.pl

Moab executes /opt/moab/job.modify.dyn.pl to modify
specific jobs.

JOBRSVRECREATE

Format Boolean

Default TRUE

Description Specifies whether Moab will re-create a job reservation each time job
information is updated by a resource manager. See Considerations for
Large Clusters for more information.

Example RMCFG[base] JOBRSVRECREATE=FALSE

Moab only creates a job reservation once when the job first
starts.

JOBSTARTURL

Format <protocol>://[<host>[:<port>]][<path>]

Default TRUE

Description Specifies how Moab starts jobs via the resource manager. See URL Notes.

Example RMCFG[base] JOBSTARTURL=https://orion.bsu.edu:1322/moab/jobstart.cgi

Moab triggers the jobstart.cgi script via http to start
specific jobs.

JOBSUBMITURL

Format <protocol>://[<host>[:<port>]][<path>]

Chapter 12: Resource Managers and Interfaces

JOBSUBMITURL

Description Specifies how Moab submits jobs to the resource manager. See URL Notes.

Example RMCFG[base] JOBSUBMITURL=exec://$TOOLSDIR/job.submit.dyn.pl

Moab submits jobs directly to the database located on host
dbserver.flc.com.

JOBSUSPENDURL

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies how Moab suspends jobs via the resource manager. See URL
Notes.

Example RMCFG[base] JOBSUSPENDURL=EXEC://$HOME/scripts/job.suspend

Moab executes the job.suspend script when jobs are
suspended.

JOBVALIDATEURL

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies how Moab validates newly submitted jobs. See URL Notes. If the
script returns with a non-zero exit code, the job is rejected. See User
Proxying/Alternate Credentials.

Example RMCFG[base] JOBVALIDATEURL=exec://$TOOLS/job.validate.pl

Moab executes the 'job.validate.pl' script when jobs are
submitted to verify they are acceptable.

MAXDSOP

Format <INTEGER>

Default -1 (unlimited)

Chapter 12: Resource Managers and Interfaces

642 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 643

MAXDSOP

Description The maximum number of data staging operations that can be
simultaneously active.

Example RMCFG[ds] MAXDSOP=16

MAXITERATIONFAILURECOUNT

Format <INTEGER>

Default 80

Description The number of times the RM must fail within a certain iteration
before Moab considers it down or corrupt. When an RM is down or
corrupt, Moab will not attempt to interact with it.

Example RMCFG[base] MAXITERATIONFAILURECOUNT=25

The RM base must fail 25 times in a single iteration for
Moab to consider it down and cease interacting with it.

MAXJOBPERMINUTE

Format <INTEGER>

Default -1 (unlimited)

Description The maximum number of jobs allowed to start per minute via the resource
manager.

Example RMCFG[base] MAXJOBPERMINUTE=5

The scheduler only allows five jobs per minute to launch via the
resource manager base.

Chapter 12: Resource Managers and Interfaces

MAXJOBS

Format <INTEGER>

Default 0 (limited only by the Moab MAXJOB setting)

Description The maximum number of active jobs that this interface is allowed to load
from the resource manager.

Only works with Moab peer resource managers at this time.

Example RMCFG[cluster1] SERVER=moab://cluster1 MAXJOBS=200

The scheduler loads up to 200 active jobs from the remote
Moab peer cluster1.

MINETIME

Format <INTEGER>

Default 1

Description The minimum time in seconds between processing subsequent scheduling
events.

Example RMCFG[base] MINETIME=5

The scheduler batch-processes scheduling events that occur less
than five seconds apart.

NMPORT

Format <INTEGER>

Default (any valid port number)

Description Allows specification of the resource manager's node manager port and is
only required when this port has been set to a non-default value.

Chapter 12: Resource Managers and Interfaces

644 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 645

NMPORT

Example RMCFG[base] NMPORT=13001

The scheduler contacts the node manager located on each
compute node at port 13001.

NODEFAILURERSVPROFILE

Format <STRING>

Description The rsv template to use when placing a reservation onto failed nodes.
See also NODEFAILURERESERVETIME.

Example # moab.cfg
RMCFG[base] NODEFAILURERSVPROFILE=long
RSVPROFILE[long] DURATION=25:00RSVPROFILE[long]
USERLIST=john

The scheduler will use the long rsv profile when creating
reservations over failed nodes belonging to base.

NODESTATEPOLICY

Format One of OPTIMISTIC or PESSIMISTIC

Default PESSIMISTIC

Description Specifies how Moab should determine the state of a node when multiple
resource managers are reporting state:
OPTIMISTIC specifies that if any resource manager reports a state of up,
that state will be used.
PESSIMISTIC specifies that if any resource manager reports a state of
down, that state will be used.

Example # moab.cfg
RMCFG[native] TYPE=NATIVE NODESTATEPOLICY=OPTIMISTIC

OMAP

Format <protocol>://[<host>[:<port>]][<path>]

Chapter 12: Resource Managers and Interfaces

OMAP

Description Specifies an object map file that is used to map credentials and other
objects when using this resource manager peer. See Grid Credential
Management for full details.

Example moab.cfg
RMCFG[peer1] OMAP=file:///opt/moab/omap.dat

When communicating with the resource manager peer1,
objects are mapped according to the rules defined in the
/opt/moab/omap.dat file.

PORT

Format <INTEGER>

Default 0

Description The port on which the scheduler should contact the associated resource
manager. The value 0 specifies that the resource manager default port
should be used.

Example RMCFG[base] TYPE=PBS HOST=cws PORT=20001

Moab attempts to contact the PBS server daemon on host cws,
port 20001.

PROVDURATION

Format [[[DD:]HH:]MM:]SS

Default 2:30

Description The upper bound (walltime) of a provisioning request. After this duration,
Moab will consider the provisioning attempt failed.

Example RMCFG[base] PROVDURATION=5:00

Chapter 12: Resource Managers and Interfaces

646 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 647

PROVDURATION

When RM base provisions a node for more than 5 minutes,
Moab considers the provisioning as having failed.

RESOURCECREATEURL

Format <STRING>

Default [exec://<path> | https://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file;
if https:// is specified, Moab treats the destination as a hypertext
transfer protocol file.

Description Specifies a script or method that can be used by Moab to create resources
dynamically, such as creating a virtual machine on a hypervisor.

Example RMCFG[base] RESOURCECREATEURL=exec:///opt/script/vm.provision.py

Moab invokes the vm.provision.py script, passing in data
as command line arguments, to request a creation of new
resources.

RESOURCETYPE

Format {COMPUTE|FS|LICENSE|NETWORK|PROV}

Description Specifies which type of resource this resource manager is configured to
control. See Native Resource Managers for more information.

If LICENSE is specified, all generic resources reported by the
resource manager will be marked as a license; causing them to be

tracked by the accounting manager under the Licenses property. See
Licenses - page 428 for more information on the Licenses property.

Example

Chapter 12: Resource Managers and Interfaces

RESOURCETYPE

RMCFG[base] TYPE=NATIVE RESOURCETYPE=FS

Resource manager base will function as a NATIVE resource
manager and control file systems.

RMSTARTURL

Format [exec://<path> | https://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file;
if https:// is specified, Moab treats the destination as a hypertext
transfer protocol file.

Description Specifies how Moab starts the resource manager.

Example RMCFG[base] RMSTARTURL=exec:///tmp/nat.start.pl

Moab executes /tmp/nat.start.pl to start the resource
manager base.

RMSTOPURL

Format [exec://<path> | https://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file;
if https:// is specified, Moab treats the destination as a hypertext
transfer protocol file.

Description Specifies how Moab stops the resource manager.

Example RMCFG[base] RMSTOPURL=exec:///tmp/nat.stop.pl

Moab executes /tmp/nat.stop.pl to stop the resource
manager base.

Chapter 12: Resource Managers and Interfaces

648 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 649

SBINDIR

Format <PATH>

Description For use with Torque; specifies the location of the Torque system binaries
(supported in Torque 1.2.0p4 and higher).

Example RMCFG[base] TYPE=pbs SBINDIR=/usr/local/torque/sbin

Moab tells Torque that its system binaries are located in
/usr/local/torque/sbin.

SERVER

Format <URL>

Description The resource management service to use. If not specified, the scheduler
locates the resource manager via built-in defaults or, if available, with an
information service.

Example RMCFG[base] server=ll://supercluster.org:9705

Moab attempts to use the Loadleveler scheduling API at the
specified location.

STAGETHRESHOLD

Format [[[DD:]HH:]MM:]SS

Description The maximum time a job waits to start locally before considering being
migrated to a remote peer. In other words, if a job's start time on a remote
cluster is less than the start time on the local cluster, but the difference
between the two is less than STAGETHRESHOLD, then the job is scheduled
locally. The aim is to avoid job/data staging overhead if the difference in
start times is minimal.

If this attribute is used, backfill is disabled for the associated
resource manager.

Example RMCFG[remote_cluster] STAGETHRESHOLD=00:05:00

Chapter 12: Resource Managers and Interfaces

STAGETHRESHOLD

Moab only migrates jobs to remote_cluster if the jobs can
start five minutes sooner on the remote cluster than they could
on the local cluster.

STARTCMD

Format <STRING>

Description The full path to the resource manager job start client. If the resource
manager API fails, Moab executes the specified start command in a second
attempt to start the job.

Moab calls the start command with the format <CMD><JOBID> -H
<HOSTLIST> unless the environment variable MOABNOHOSTLIST
is set, in which case Moab will only pass the job ID.

Example RMCFG[base] STARTCMD=/usr/local/bin/qrun

Moab uses the specified start command if API failures occur
when launching jobs.

SUBMITCMD

Format <STRING>

Description The full path to the resource manager job submission client.

Example RMCFG[base] SUBMITCMD=/usr/local/bin/qsub

Moab uses the specified submit command when migrating
jobs.

SUBMITPOLICY

Format One of NODECENTRIC or PROCCENTRIC

Default PROCCENTRIC

Chapter 12: Resource Managers and Interfaces

650 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 651

SUBMITPOLICY

Description If set to NODECENTRIC, each specified node requested by the job is
interpreted as a true compute host, not as a task or processor.

Example RMCFG[base] SUBMITPOLICY=NODECENTRIC

Moab uses the specified submit policy when migrating jobs.

SUSPENDSIG

Format <INTEGER> (valid UNIX signal between 1 and 64)

Default RM-specific default

Description If set, Moab sends the specified signal to a job when a job suspend request
is issued.

Example RMCFG[base] SUSPENDSIG=19

Moab uses the specified suspend signal when suspending jobs
within the base resource manager.

SUSPENDSIG should not be used with Torque or other PBS-based
resource managers.

SYNCJOBID

Format <BOOLEAN>

Description Specifies that Moab should migrate jobs to the local resource manager with
the job's Moab-assigned job ID. In a grid, the grid-head will only pass
dependencies to the underlying Moab if SYNCJOBID is set. This attribute
can be used with the JOBIDFORMAT attribute and PROXYJOBSUBMISSION
flag in order to assign job IDs from Moab to the resource manager. For
more information about all the steps necessary for using one job ID
between Moab and Torque, see Synchronizing Job IDs in Torque and Moab.

Example RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE

Chapter 12: Resource Managers and Interfaces

SYSTEMMODIFYURL

Format [exec://<path> | https://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file;
if https:// is specified, Moab treats the destination as a hypertext
transfer protocol file.

Description Specifies how Moab modifies attributes of the system. This interface is used
in data staging.

Example RMCFG[base] SYSTEMMODIFYURL=exec:///tmp/system.modify.pl

Moab executes /tmp/system.modify.pl when it modifies
system attributes in conjunction with the resource manager
base.

SYSTEMQUERYURL

Format [exec://<path> | https://<address> | <path>]

If file:// is specified, Moab treats the destination as a flat text file; if
https:// is specified, Moab treats the destination as a hypertext transfer
protocol file; if just a path is specified, Moab treats the destination as an
executable.

Description Specifies how Moab queries attributes of the system. This interface is used
in data staging.

Example RMCFG[base] SYSTEMQUERYURL=file:///tmp/system.query

Moab reads /tmp/system.query when it queries the system
in conjunction with base resource manager.

TARGETUSAGE

Format <INTEGER>[%]

Default 90%

Description Amount of resource manager resources to explicitly use. In the case of a

Chapter 12: Resource Managers and Interfaces

652 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 653

TARGETUSAGE

storage resource manager, indicates the target usage of data storage
resources to dedicate to active data migration requests. If the specified
value contains a percent sign (%), the target value is a percent of the
configured value. Otherwise, the target value is considered to be an
absolute value measured in megabytes (MB).

Example RMCFG[storage] TYPE=NATIVE RESOURCETYPE=storage
RMCFG[storage] TARGETUSAGE=80%

Moab schedules data migration requests to never exceed 80%
usage of the storage resource manager's disk cache and
network resources.

TIMEOUT

Format <INTEGER>

Default 30

Description Time (in seconds) the scheduler waits for a response from the resource
manager.

Example RMCFG[base] TIMEOUT=40

Moab waits 40 seconds to receive a response from the resource
manager before timing out and giving up. Moab tries again on
the next iteration.

TRIGGER

Format <TRIG_SPEC>

Description A trigger specification indicating behaviors to enforce in the event of
certain events associated with the resource manager, including resource
manager start, stop, and failure.

Example RMCFG[base] TRIGGER=<X>

Chapter 12: Resource Managers and Interfaces

TYPE

Format <RMTYPE>[:<RMSUBTYPE>] where <RMTYPE> is one of the following:
Torque, NATIVE, PBS, RMS, SSS, or WIKI and the optional <RMSUBTYPE>
value is one of RMS.

Default PBS

Description Specifies type of resource manager to be contacted by the scheduler.

For TYPE WIKI, AUTHTYPE must be set to CHECKSUM. The
<RMSUBTYPE> option is currently only used to support Compaq's
RMS resource manager in conjunction with PBS. In this case, the
value PBS:RMS should be specified.

Example RMCFG[clusterA] TYPE=PBS HOST=clusterA PORT=15003
RMCFG[clusterB] TYPE=PBS HOST=clusterB PORT=15005

Moab interfaces to two different PBS resource managers, one
located on server clusterA at port 15003 and one located on
server clusterB at port 15005.

VARIABLES

Format <VAR>=<VAL>[,<VAR>=<VAL>]

Description Opaque resource manager variables.

Example RMCFG[base] VARIABLES=SCHEDDHOST=head1

Moab associates the variable SCHEDDHOST with the value
head1 on resource manager base.

VERSION
Format <STRING>

Description Resource manager-specific version string.

Example
RMCFG[base] VERSION=10124

Moab assumes that resource manager base has a version number of 1.1.24.

WORKLOADQUERYURL

Format
[file://<path> | https://<address> | <path>]

Chapter 12: Resource Managers and Interfaces

654 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 655

VERSION
If file:// is specified, Moab treats the destination as a flat text file; if
https:// is specified, Moab treats the destination as a hypertext
transfer protocol file; if just a path is specified, Moab treats the
destination as an executable.

Description
Specifies how Moab queries the resource manager for workload
information. See Native RM, URL Notes, and interface details.

Example
RMCFG[Torque] WORKLOADQUERYURL=exec://$TOOLSDIR/job.query.dyn.pl

Moab executes /opt/moab/tools/job.query.dyn.pl to obtain updated workload
information from resource manager Torque.

URL Notes
URL parameters can load files by using the file, exec, and http protocols.

For the protocol file, Moab loads the data directly from the text file pointed to by path.

RMCFG[base] SYSTEMQUERYURL=file:///tmp/system.query

For the protocol exec, Moab executes the file pointed to by path and loads the output
written to STDOUT. If the script requires arguments, you can use a question mark (?)
between the script name and the arguments, and an ampersand (&) for each space.

RMCFG[base] JOBVALIDATEURL=exec://$TOOLS/job.validate.pl
RMCFG[native] CLUSTERQUERYURL=exec://opt/moab/tools/cluster.query.pl?-group=group1&-
arch=x86

Synchronizing Job IDs in Torque and Moab

Unless you use an msub submit filter or you're in a grid, it is recommended that you
use your RM-specific job submission command (for instance, qsub).

In order to synchronize your job IDs between Torque and Moab you must perform the
following steps:

1. Verify that you are using Torque version 2.5.6 or later.

2. Set SYNCJOBID to TRUE in all resource managers.

RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE

3. Set the PROXYJOBSUBMISSION flag. With PROXYJOBSUBMISSION enabled, you must
run Moab as a Torque manager or operator. Verify that other users can submit jobs
using msub. Moab, as a non-root user, should still be able to submit jobs to Torque and
synchronize job IDs.

RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE

Chapter 12: Resource Managers and Interfaces

RMCFG[torque] FLAGS=PROXYJOBSUBMISSION

4. Add JOBIDFORMAT=INTEGER to the internal RM. Adding this parameter forces Moab
to only use numbers as job IDs and those numbers to use across Moab, Torque, and the
entire grid. This enhances the end-user experience as it eliminates multiple job IDs
associated with a single job.

RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE
RMCFG[torque] FLAGS=PROXYJOBSUBMISSION

RMCFG[internal] JOBIDFORMAT=INTEGER

12.2.2 Resource Manager Configuration Details
As with all scheduler parameters, the RMCFG parameter follows the syntax described in
3.6 Configuring the Scheduler - page 54.

12.2.2.A Resource Manager Types
The RMCFG parameter allows the scheduler to interface to multiple types of resource
managers using the TYPE or SERVER attributes. Specifying these attributes, any of the
following listed resource managers can be supported.

Type Resource
Managers

Details

Moab Moab
Workload
Manager

Use the Moab peer-to-peer (grid) capabilities to enable grids and
other configurations. See Grid Configuration.

MWS Moab Web
Services

The MWS resource manager type is a native integration between
Moab and MWS. Resource manager data is passed directly between
Moab and MWS using JSON (rather than Moab's native WIKI
syntax). This simplifies RM configuration for systems where one or
more MWS plugins are acting as resource managers. See the 'Moab
Workload Manager resource manager integration' section of the
MWS plugins chapter in the MWS documentation for more
information.

Native Moab
Native
Interface

Used for connecting directly to scripts, files, and databases. See
Managing Resources Directly with the Native Interface.

PBS Torque (all
versions)

N/A

Chapter 12: Resource Managers and Interfaces

656 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 657

Type Resource
Managers

Details

SSS Scalable
Systems
Software
Project
version 2.0
and higher

N/A

WIKI Wiki
interface
specification
version 1.0
and higher

Used for most non-PBS resource managers.

12.2.2.B Resource Manager Name
Moab can support more than one resource manager simultaneously. Consequently, the
RMCFG parameter takes an index value such as RMCFG[clusterA]. This index value
essentially names the resource manager (as done by the deprecated parameter RMNAME).
The resource manager name is used by the scheduler in diagnostic displays, logging, and in
reporting resource consumption to the accounting manager. For most environments, the
selection of the resource manager name can be arbitrary.

12.2.2.C Resource Manager Location
The HOST, PORT, and SERVER attributes can be used to specify how the resource
manager should be contacted. For many resource managers the interface correctly
establishes contact using default values. These parameters need only to be specified for
resource managers such as the WIKI interface (that do not include defaults) or with
resources managers that can be configured to run at non-standard locations (such as PBS).
In all other cases, the resource manager is automatically located.

12.2.2.D Resource Manager Flags
The FLAGS attribute can be used to modify many aspects of a resources manager's
behavior.

AUTOSYNC, COLLAPSEDVIEW, HOSTINGCENTER, PRIVATE, REPORT, SHARED, and
STATIC are deprecated.

Chapter 12: Resource Managers and Interfaces

Flag Description

ASYNCDELETE Moab directs the resource manager to not wait for
confirmation that the job correctly cancels before the API
call returns. See Large Cluster Tuning for more information.

This flag is only applicable for Torque or Moab
Native resource managers.

ASYNCSTART Jobs started on this resource manager start asynchronously.
In this case, the scheduler does not wait for confirmation
that the job correctly starts before proceeding. See Large
Cluster Tuning for more information.

This flag is only applicable for Torque or Moab
Native resource managers.

AUTOSTART Jobs staged to this resource manager do not need to be
explicitly started by the scheduler. The resource manager
itself handles job launch.

BECOMEMASTER Nodes reported by this resource manager will transfer
ownership to this resource manager if they are currently
owned by another resource manager that does not have
this flag set.

CLIENT A client resource manager object is created for
diagnostic/statistical purposes or to configure Moab's
interaction with this resource manager. It represents an
external entity that consumes server resources or services,
allows a local administrator to track this usage, and
configures specific policies related to that resource
manager. A client resource manager object loads no data
and provides no services.

CLOCKSKEWCHECKING Setting CLOCKSKEWCHECKING allows you to configure
clock skew adjustments. Most of the time it is sufficient to
use an NTP server to keep the clocks in your system
synchronized.

DYNAMICCRED The resource manager creates credentials within the cluster
as needed to support workload.

EnableCondensedQuery Enables the condensed workload query.

Chapter 12: Resource Managers and Interfaces

658 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 659

Flag Description

Only applies if the Torque parameter job_full_
report_time is used (Torque Resource Manager
version 5.1.x or later). See Server Parameters in the
Torque Resource Manager Administrator Guide.

EXECUTIONSERVER The resource manager is capable of launching and
executing batch workload.

FSISREMOTE Add this flag if the working file system doesn't exist on the
server to prevent Moab from validating files and directories
at migration.

FULLCP Always checkpoint full job information (useful with Native
resource managers).

IgnOS Ignore the operating system reported by the resource
manager on each node and use the OS in Moab's
configuration files. See OS for more information.

IGNQUEUESTATE The queue state reported by the resource manager should
be ignored. Can be used if queues must be disabled inside
of a particular resource manager to allow an external
scheduler to properly operate.

IGNWORKLOADSTATE When this flag is applied to a native resource manager, any
jobs that are reported via that resource manager's
'workload query URL' have their reported state ignored.
For example, if an RM has the IgnWorkloadState flag
and it reports that a set of jobs have a state of 'Running,'
this state is ignored and the jobs will either have a default
state set or will inherit the state from another RM
reporting on that same set of jobs.
This flag only changes the behavior of RMs of type
NATIVE.

LOCALWORKLOADEXPORT When set, destination peers share information about local
and remote jobs, allowing job management of different
clusters at a single peer. For more information, see
Workload Submission and Control.

MIGRATEALLJOBATTRIBUTES When set, this flag causes additional job information to be

Chapter 12: Resource Managers and Interfaces

Flag Description

migrated to the resource manager; additional job
information includes things such as node features applied
via CLASSCFG[name] DEFAULT.FEATURES, the
account to which the job was submitted, job walltime limit,
and node exclusivity.

NOAUTORES If the resource manager does not report CPU usage to
Moab because CPU usage is at 0%, Moab assumes full CPU
usage. When set, Moab recognizes the resource manager
report as 0% usage. This is only valid for PBS.

NoCondensedQuery Disables the condensed workload query. This is the default
for Moab 9.0 and later.

Only applies if the Torque parameter job_full_
report_time is used (Torque Resource Manager
version 5.1.x or later). See Server Parameters in the
Torque Resource Manager Administrator Guide.

NOCREATERESOURCE To use resources discovered from this resource manager,
they must be created by another resource manager first.
For example, if you set NOCREATERESOURCE on RM A,
which reports nodes 1 and 2, and RM B only reports node
1, then node 2 will not be created because RM B did not
report it.

PROXYJOBSUBMISSION Enables Admin proxy job submission, which means
administrators can submit jobs in behalf of other users.

PUSHSLAVEJOBUPDATES Enables job changes made on a Moab Grid Member to be
pushed to the Moab Grid Control. Without this flag, jobs
being reported to the Moab Grid Control do not show any
changes made on the remote Moab server (via mjobctl and
so forth).

RECORDGPUMETRICS Enables the recording of GPU metrics for nodes.

RECORDMICMETRICS Enables the recording of MIC metrics for nodes.

SLAVEPEER Information from this resource manager cannot be used to
identify new jobs or nodes. Instead, this information can
only be used to update jobs and nodes discovered and
loaded from other non-slave resource managers.

Chapter 12: Resource Managers and Interfaces

660 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 661

Flag Description

THREADEDQUERIES When this flag is set for an individual RM, the queries that
Moab performs to get information from the RM is done in a
separate thread from the main Moab process. This allows
Moab to remain responsive during the query and ultimately
reduces the time spent in a scheduling cycle. If multiple
RMs are being used the effect can be more significant
because all RMs will be queried in parallel.

USEPHYSICALMEMORY Tells Moab to use a node's physical memory instead of the
swap space.
For example, if a node has 12 GB of RAM and an additional
12 GB of swap space, it has 24 GB of virtual memory. If a 4
GB job is assigned to that node, the reported available
memory shows 12 GB because the job is using the swap
space not the physical memory. The reported available
memory doesn't decrease until the swap space is used up.
When this flag is set, the 4 GB job immediately reduces the
available memory to 8 GB (physical memory - used
memory).

USERSPACEISSEPARATE Tells Moab to ignore validating the user's UID and GID in
the case that information doesn't exist on the Moab server.

Example

resource manager 'torque' should use asynchronous job start
RMCFG[torque] FLAGS=asyncstart

12.2.3 Scheduler/Resource Manager Interactions
In the simplest configuration, Moab interacts with the resource manager using the
following four primary functions:

Function Description

GETJOBINFO Collect detailed state and requirement information about idle, running, and
recently completed jobs.

GETNODEINFO Collect detailed state information about idle, busy, and defined nodes.

STARTJOB Immediately start a specific job on a particular set of nodes.

Chapter 12: Resource Managers and Interfaces

Function Description

CANCELJOB Immediately cancel a specific job regardless of job state.

Using these four simple commands, Moab enables nearly its entire suite of scheduling
functions. More detailed information about resource manager specific requirements and
semantics for each of these commands can be found in the specific resource manager
(such as WIKI) overviews.

In addition to these base commands, other commands are required to support advanced
features such as suspend/resume, gang scheduling, and scheduler initiated checkpoint
restart.

Information on creating a new scheduler resource manager interface can be found in the
Adding New Resource Manager Interfaces section.

12.3 Resource Manager Extensions

In this topic:

12.3.1 Resource Manager Extension Specification - page 662
12.3.2 Resource Manager Extension Values - page 663
12.3.3 Resource Manager Extension Examples - page 690
12.3.4 Configuring dynamic features in Torque and Moab - page 691

All resource managers are not created equal. There is a wide range in what capabilities are
available from system to system. Additionally, there is a large body of functionality that
many, if not all, resource managers have no concept of. A good example of this is job QoS.
Since most resource managers do not have a concept of quality of service, they do not
provide a mechanism for users to specify this information. In many cases, Moab is able to
add capabilities at a global level. However, a number of features require a per job
specification. Resource manager extensions allow this information to be associated with the
job.

12.3.1 Resource Manager Extension Specification
Specifying resource manager extensions varies by resource manager. Torque and Wiki
each allow the specification of an extension field as described in the following table:

Chapter 12: Resource Managers and Interfaces

662 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 663

Resource Manager Specification Method

Torque 2.0+ -l

> qsub -l nodes=3,qos=high sleepy.cmd

Torque 1.x -W x=

> qsub -l nodes=3 -W x=qos:high sleepy.cmd

Wiki comment

comment=qos:high

12.3.2 Resource Manager Extension Values
All of the following job extensions will work with msub -l (or msub -W x=. . .).
However, qsub -l only provides legacy support for a subset of these extensions; see
'Requesting Resources' in the Torque Resource Manager Administrator Guide for the list.

If your configuration primarily uses qsub to submit jobs, Adaptive Computing
recommends you use the qsub -W x= syntax for all submissions with Moab job
extensions to avoid qsub rejection for any unsupported (non-legacy) extensions.

The following job extensions are supported when using the resource manager-specific
method:

Chapter 12: Resource Managers and Interfaces

Resource Manager Extension Values

ADVRES
CPUCLOCK
DDISK
DEADLINE
DEPEND
DMEM
EPILOGUE
EXCLUDENODES
FEATURE
GATTR
GMETRIC
GPUs
GRES and SOFTWARE
HOSTLIST
JGROUP
JOBFLAGS (a.k.a. FLAGS)
JOBREJECTPOLICY
MAXMEM
MAXPROC

MEM
MICs
MINPREEMPTTIME
MINPROCSPEED
MINWCLIMIT
MSTAGEIN
MSTAGEOUT
NACCESSPOLICY
NALLOCPOLICY
NCPUS
NMATCHPOLICY
NODESET
NODESETCOUNT
NODESETDELAY
NODESETISOPTIONAL
OPSYS
PARTITION
PMEM
PREF
PROCS

PROLOGUE
PVMEM
QoS
QUEUEJOB
REQATTR
RESFAILPOLICY
RMTYPE
SIGNAL
GRES and SOFTWARE
SPRIORITY
TEMPLATE
TERMTIME
TPN
TRIG
TRL (Format 1)
TRL (Format 2)
VAR
VC
VMEM

ADVRES

Format [!]<RSVID>

Description Specifies that reserved resources are required to run the job. If <RSVID>
is specified, then only resources within the specified reservation can be
allocated (see Job to Reservation Binding).
You can request to not use a specific reservation by using
advres=!<reservationname>.

Example > qsub -l advres=grid.3

Resources for the job must come from grid.3.

> qsub -l advres=!grid.5

Resources for the job must not come from grid.5

CPUCLOCK

Format <STRING>

Chapter 12: Resource Managers and Interfaces

664 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 665

CPUCLOCK

Description Specify the CPU clock frequency for each node requested for this job. A
cpuclock request applies to every processor on every node in the
request. Specifying varying CPU frequencies for different nodes or different
processors on nodes in a single job request is not supported.
Not all CPUs support all possible frequencies or ACPI states. If the
requested frequency is not supported by the CPU, the nearest frequency is
used.

If a job does not place any load on the node then some OSs will drop
the frequency below the requested frequency.

Using cpuclock sets NODEACCESSPOLICY to SINGLEJOB.
ALPS 1.4 or later is required when using cpuclock on Cray.
The clock frequency can be specified via:

l a number that indicates the clock frequency (with or without the SI
unit suffix).

l a Linux power governor policy name. The governor names are:

o performance: This governor instructs Linux to operate each
logical processor at its maximum clock frequency.
This setting consumes the most power and workload executes at
the fastest possible speed.

o powersave: This governor instructs Linux to operate each
logical processor at its minimum clock frequency.
This setting executes workload at the slowest possible speed. This
setting does not necessarily consume the least amount of power
since applications execute slower, and may actually consume
more energy because of the additional time needed to complete
the workload's execution.

o ondemand: This governor dynamically switches the logical
processor's clock frequency to the maximum value when system
load is high and to the minimum value when the system load is
low.
This setting causes workload to execute at the fastest possible
speed or the slowest possible speed, depending on OS load. The
system switches between consuming the most power and the
least power.

Chapter 12: Resource Managers and Interfaces

CPUCLOCK

The power saving benefits of ondemand might be non-
existent due to frequency switching latency if the system
load causes clock frequency changes too often.
This has been true for older processors since changing the
clock frequency required putting the processor into the C3
'sleep' state, changing its clock frequency, and then waking
it up, all of which required a significant amount of time.
Newer processors, such as the Intel Xeon E5-2600 Sandy
Bridge processors, can change clock frequency dynamically
and much faster.

o conservative: This governor operates similar to the
ondemand governor but is more conservative in switching
between frequencies. It switches more gradually and uses all
possible clock frequencies.
This governor can switch to an intermediate clock frequency if it
seems appropriate to the system load and usage, which the
ondemand governor does not do.

l an ACPI performance state (or P-state) with or without the P prefix. P-
states are a special range of values (0-15) that map to specific
frequencies. Not all processors support all 16 states, however, they all
start at P0. P0 sets the CPU clock frequency to the highest
performance state, which runs at the maximum frequency. P15 sets
the CPU clock frequency to the lowest performance state, which runs
at the lowest frequency.

When reviewing job or node properties when cpuclock was used, be
mindful of unit conversion. The OS reports frequency in Hz, not MHz or
GHz.

If a job does not place any load on the node then some OSs will drop
the frequency below the requested frequency.

Example msub -l cpuclock=1800,nodes=2 script.sh
msub -l cpuclock=1800mhz,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies
should be set to 1800 MHz.

msub -l cpuclock=performance,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies
should be set to the performance power governor policy.

msub -l cpuclock=3,nodes=2 script.sh

Chapter 12: Resource Managers and Interfaces

666 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 667

CPUCLOCK

msub -l cpuclock=p3,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies
should be set to a performance state of 3.

DDISK

Format <INTEGER>

Default 0

Description Dedicated disk per task in MB.

Example > qsub -l ddisk=2000

DEADLINE

Format Relative time: [[[DD:]HH:]MM:]SS
Absolute time: hh:mm:ss_mm/dd/yy

Description Either the relative completion deadline of job (from job submission time)
or an absolute deadline where you specify the date and time the job will
finish.

Example > qsub -l deadline=2:00:00,nodes=4 /tmp/bio3.cmd

The job's deadline is 2 hours after its submission.

DEPEND

Format [<DEPENDTYPE>:][{jobname|jobid}.]<ID>[:
[{jobname|jobid}.]<ID>]...

Description Allows specification of job dependencies for compute or system jobs. If no
ID prefix (jobname or jobid) is specified, the ID value is interpreted as a
job ID. See 10.5 Job Dependencies - page 564 for more information.

Chapter 12: Resource Managers and Interfaces

DEPEND

Example # submit job which will run after job 1301 and 1304 complete
> msub -l depend=orion.1301:orion.1304 test.cmd
orion.1322
submit jobname-based dependency job
> msub -l depend=jobname.data1005 dataetl.cmd
orion.1428

DMEM

Format <INTEGER>

Default 0

Description Dedicated memory per task in bytes.

Example > msub -l dmem=20480

Moab will dedicate 20 MB of memory to the task.

EPILOGUE

Format <STRING>

Description Specifies a user owned epilogue script, which is run before the system
epilogue and epilogue.user scripts at the completion of a job. The
syntax is epilogue=<file>. The file can be designated with an absolute
or relative path.

This parameter works only with Torque.

Example > msub -l epilogue=epilogue_script.sh job.sh

EXCLUDENODES

Format {<nodeid>|<node_range>}[:...]

Description Specifies nodes that should not be considered for the given job.

Chapter 12: Resource Managers and Interfaces

668 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 669

EXCLUDENODES

Moab does not support the combination of msub -l
excludenodes and ENABLEHIGHTHROUGHPUT TRUE.

Example > msub -l excludenodes=k1:k2:k[5-8]

FEATURE

Format <FEATURE>[{:|}<FEATURE>]...

Description Required list of node attribute/node features.

If the pipe (|) character is used as a delimiter, the features are
logically ORed together and the associated job can use resources that
match any of the specified features.

Requesting node names as features will result in the job being
blocked from running.

Example > qsub -l feature='fastos:bigio' testjob.cmd

Submits testjob.cmd with fastos:bigio as a required feature.

> qsub -l feature=\!bigmem testjob.cmd
> qsub -l feature='!bigmem' testjob.cmd

Submits testjob.cmd with a requirement that bigmem is not a
node feature. (The exclamation point must either be escaped
(\!bigmem) or quoted ('!bigmem').

GATTR

Format <STRING>

Description Generic job attribute associated with job. The maximum size for an
attribute is 63 bytes (the core Moab size limit of 64, including a null byte).

Example > qsub -l gattr=bigjob

Chapter 12: Resource Managers and Interfaces

GMETRIC

Format Generic metric requirement for allocated nodes where the requirement is
specified using the format <GMNAME>[:
{lt:,le:,eq:,ge:,gt:,ne:}<VALUE>]

Description Indicates generic constraints that must be found on all allocated nodes. If a
<VALUE> is not specified, the node must simply possess the generic metric
(See Generic Metrics for more information).

Example > qsub -l gmetric=bioversion:ge:133244 testj.txt

GPUs

Format msub -l nodes=<VALUE>:ppn=<VALUE>:gpus=<VALUE>
[:mode][:reseterr]

Where mode is one of:
exclusive - The default setting. The GPU is used exclusively by one process
thread.
exclusive_thread - The GPU is used exclusively by one process thread.
exclusive_process - The GPU is used exclusively by one process regardless
of process thread.
If present, reseterr resets the ECC memory bit error counters. This only
resets the volatile error counts, or errors since the last reboot. The
permanent error counts are not affected.
Moab passes the mode and reseterr portion of the request to Torque
for processing.

Moab does not support requesting GPUs as a GRES. Submitting
msub -l gres=gpus:x does not work.

Description Moab schedules GPUs as a special type of node-locked generic resources.
When Torque reports GPUs to Moab, Moab can schedule jobs and correctly
assign GPUs to ensure that jobs are scheduled efficiently. To have Moab
schedule GPUs, configure them in Torque then submit jobs using the 'GPU'
attribute. Moab automatically parses the 'GPU' attribute and assigns them
in the correct manner. For information about GPU metrics, see
GPGPUMetrics.

Examples > msub -l nodes=2:ppn=2:gpus=1:exclusive_process:reseterr

Chapter 12: Resource Managers and Interfaces

670 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 671

GPUs

Submits a job that requests 2 tasks, 2 processors and 1 GPU per
task (2 GPUs total). Each GPU runs only threads related to the
task and resets the volatile ECC memory big error counts at job
start time.

> msub -l nodes=4:gpus=1,tpn=2

Submits a job that requests 4 tasks, 1 GPU per node (4 GPUs
total), and 2 tasks per node. Each GPU is dedicated exclusively
to one task process and the ECC memory bit error counters are
not reset.

> msub -l nodes=4:gpus=1:reseterr

Submits a job that requests 4 tasks, 1 processor and 1 GPU per
task (4 GPUs total). Each GPU is dedicated exclusively to one
task process and resets the volatile ECC memory bit error counts
at job start time.

> msub -l nodes=4:gpus=2+1:ppn=2,walltime=600

Submits a job that requests two different types of tasks, the first
is 4 tasks, each with 1 processor and 2 gpus, and the second is
1 task with 2 processors. Each GPU is dedicated exclusively to
one task process and the ECC memory bit error counters are not
reset.

GRES and SOFTWARE

Format Percent sign (%) delimited list of generic resources where each resource is
specified using the format <RESTYPE>[{+|:}<COUNT>]

Description Indicates generic resources required by the job. If the generic resource is
node-locked, it is a per-task count. If a <COUNT> is not specified, the
resource count defaults to 1.

Example > qsub -W x=GRES:tape+2%matlab+3 testj.txt

When specifying more than one generic resource with -l, use the
percent (%) character to delimit them.

> qsub -l gres=tape+2%matlab+3 testj.txt
> qsub -l software=matlab:2 testj.txt

Chapter 12: Resource Managers and Interfaces

HOSTLIST

Format Comma (,) or plus (+) delimited list of hostnames. Ranges and regular
expressions are supported in msub only.

Description Indicates an exact set, superset, or subset of nodes on which the job must
run. Use the caret (^) or asterisk (*) characters to specify a host list as
superset or subset respectively.
An exact set is defined without a caret or asterisk. An exact set means all
the hosts in the specified hostlist must be selected for the job.
A subset means the specified hostlist is used first to select hosts for the job.
If the job requires more hosts than are in the subset hostlist, they will be
obtained from elsewhere if possible. If the job does not require all of the
nodes in the subset hostlist, it will use only the ones it needs.
A superset means the hostlist is the only source of hosts that should be
considered for running the job. If the job can't find the necessary resources
in the superset hostlist it should not run. No other hosts should be
considered in allocating the job.

Examples > msub -l hostlist=nodeA+nodeB+nodeE

hostlist=foo[1-5]

This is an exact set of (foo1,foo2,...,foo5). The job must run on all
these nodes.

hostlist=foo1+foo[3-9]

This is an exact set of (foo1,foo3,foo4,...,foo9). The job must run
on all these nodes.

hostlist=foo[1,3-9]

This is an exact set of the same nodes as the previous example.

hostlist=foo[1-3]+bar[72-79]

This is an exact set of (foo1,foo2,foo3,bar72,bar73,...,bar79). The
job must run on all these nodes.

hostlist=^node[1-50]

This is a superset of (node1,node2,...,node50). These are the only

Chapter 12: Resource Managers and Interfaces

672 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 673

HOSTLIST

nodes that can be considered for the job. If the necessary
resources for the job are not in this hostlist, the job is not run. If
the job does not require all the nodes in this hostlist, it will use
only the ones that it needs.

hostlist=*node[15-25]

This is a subset of (node15,node16,...,node25). The nodes in this
hostlist are considered first for the job. If the necessary
resources for the job are not in this hostlist, Moab tries to obtain
the necessary resources from elsewhere. If the job does not
require all the nodes in this hostlist, it will use only the ones
that it needs.

JGROUP

Format <JOBGROUPID>

Description ID of job group to which this job belongs (different from the GID of the
user running the job).

Example > msub -l JGROUP=bluegroup

JOBFLAGS (a.k.a. FLAGS)

Format One or more of the following colon delimited job flags including ADVRES
[:RSVID], NOQUEUE, NORMSTART, PREEMPTEE, PREEMPTOR,
RESTARTABLE, or SUSPENDABLE (see job flag overview for a complete
listing).

Description Associates various flags with the job.

Example > qsub -l nodes=1,walltime=3600,jobflags=advres myjob.py

JOBREJECTPOLICY

Format One or more of CANCEL, HOLD, IGNORE, MAIL, or RETRY

Chapter 12: Resource Managers and Interfaces

JOBREJECTPOLICY

Default HOLD

Details The action to take when the scheduler determines that a job can never run.
CANCEL issues a call to the resource manager to cancel the job. HOLD places
a batch hold on the job preventing the job from being further evaluated
until released by an administrator.

Administrators can dynamically alter job attributes and possibly fix
the job with mjobctl -m.

With IGNORE, the scheduler will allow the job to exist within the resource
manager queue but will neither process it nor report it. MAIL will send
email to both the admin and the user when rejected jobs are detected. If
RETRY is set, then Moab will allow the job to remain idle and will only
attempt to start the job when the policy violation is resolved. Any
combination of attributes can be specified.
This is a per-job policy specified with msub -l. JOBREJECTPOLICY also exists
as a global parameter.

Also see QOSREJECTPOLICY.

Example > msub -l jobrejectpolicy=cancel:mail

MAXMEM

Format <INTEGER> (in megabytes)

Description Maximum amount of memory the job can consume across all tasks before
the JOBMEM action is taken.

Example > qsub -l x=MAXMEM:1000mb bw.cmd

If a RESOURCELIMITPOLICY is set for per-job memory
utilization, its action will be taken when this value is reached.

MAXPROC

Format <INTEGER>

Chapter 12: Resource Managers and Interfaces

674 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 675

MAXPROC

Description Maximum CPU load the job can consume across all tasks before the
JOBPROC action is taken.

Example > qsub -W x=MAXPROC:4 bw.cmd

If a RESOURCELIMITPOLICY is set for per-job processor
utilization, its action will be taken when this value is reached.

MEM

Format <INTEGER>

Description Specify the maximum amount of physical memory used by the job. If you
do not specify MB or GB, Moab uses bytes if your resource manger is
Torque, and MB if your resource manager is Native.

Example > msub -l nodes=4:ppn=2,mem=1024mb

The job must have 4 compute nodes with 2 processors per node.
The job is limited to 1024 MB of memory.

MICs

Format msub -l nodes=<VALUE>:ppn=<VALUE>:mics=<VALUE>
[:mode]

Where mode is one of:
exclusive - The default setting. The MIC is used exclusively by one process
thread.
exclusive_thread - The MIC is used exclusively by one process thread.
exclusive_process - The MIC is used exclusively by one process regardless of
process thread.
Moab passes the mode portion of the request to Torque for processing.

Moab does not support requesting MICs as a GRES. Submitting msub
-l gres=mics:x does not work.

Description Moab schedules MICs as a special type of node-locked generic resources.
When Torque reports MICs to Moab, Moab can schedule jobs and correctly

Chapter 12: Resource Managers and Interfaces

MICs

assign MICs to ensure that jobs are scheduled efficiently. To have Moab
schedule MICs, configure them in Torque then submit jobs using the 'MIC'
attribute. Moab automatically parses the 'MIC' attribute and assigns them
in the correct manner.

Examples > msub -l nodes=2:ppn=2:mics=1:exclusive_process

Submits a job that requests 2 tasks, 2 processors and 1 MIC per
task (2 MICs total). Each MIC runs only threads related to the
task.

> msub -l nodes=4:mics=1,tpn=2

Submits a job that requests 4 tasks, 1 MIC per node (4 MICs
total), and 2 tasks per node. Each MIC is dedicated exclusively
to one task process.

> msub -l nodes=4:mics=1

Submits a job that requests 4 tasks, 1 processor and 1 MIC per
task (4 MICs total). Each MIC is dedicated exclusively to one task
process.

> msub -l nodes=4:mics=2+1:ppn=2,walltime=600

Submits a job that requests two different types of tasks, the first
is 4 tasks, each with 1 processor and 2 MICs , and the second is
1 task with 2 processors. Each MIC is dedicated exclusively to
one task process.

MINPREEMPTTIME

Format [[DD:]HH:]MM:]SS

Description Minimum time job must run before being eligible for preemption.

Can only be specified if associated QoS allows per-job preemption
configuration by setting the preemptconfig flag.

Example > qsub -l minpreempttime=900 bw.cmd

Job cannot be preempted until it has run for 15 minutes.

Chapter 12: Resource Managers and Interfaces

676 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 677

MINPROCSPEED

Format <INTEGER>

Default 0

Description Minimum processor speed (in MHz) for every node that this job will run
on.

Example > qsub -W x=MINPROCSPEED:2000 bw.cmd

Every node that runs this job must have a processor speed of at
least 2000 MHz.

MINWCLIMIT

Format [[DD:]HH:]MM:]SS

Default ---

Description Minimum wallclock limit job must run before being eligible for extension
(see JOBEXTENDDURATION or JOBEXTENDSTARTWALLTIME).

Example > qsub -l minwclimit=300,walltime=16000 bw.cmd

Job will run for at least 300 seconds but up to 16,000 seconds
if possible (without interfering with other jobs).

MSTAGEIN

Format [<SRCURL>[|<SRCRUL>...]%]<DSTURL>

Description Indicates a job has data staging requirements. The source URL(s) listed
will be transferred to the execution system for use by the job. If more than
one source URL is specified, the destination URL must be a directory.

The format of <SRCURL> is: [PROTO://][HOST][:PORT]]
[/PATH]where the path is local.

The format of <DSTURL> is: [PROTO://][HOST][:PORT]]
[/PATH]where the path is remote.

Chapter 12: Resource Managers and Interfaces

MSTAGEIN

Example > msub -Wx='mstagein=file://$HOME/helperscript.sh|file:///home/dev/
datafile.txt%ssh://host/home/dev/' script.sh

Copy helperscript.sh and datafile.txt from the local machine to /home/dev/
on host for use in execution of script.sh. $HOME is a path containing a
preceding / (i.e., /home/adaptive)

MSTAGEOUT

Format [<SRCURL>[|<SRCRUL>...]%]<DSTURL>

Description Indicates whether a job has data staging requirements. The source URLs
listed will be transferred from the execution system after the completion of
the job. If more than one source URL is specified, the destination URL must
be a directory.

The format of <SRCURL> is: [PROTO://][HOST][:PORT]]
[/PATH]where the path is remote.

The format of <DSTURL> is: [PROTO://][HOST][:PORT]]
[/PATH]where the path is local.

PROTO can be any of the following protocols: ssh, file, or gsiftp.
HOST is the name of the host where the file resides.
PATH is the path of the source or destination file. The destination path can
be a directory when sending a single file and must be a directory when
sending multiple files. If a directory is specified, it must end with a forward
slash (/).

Valid variables include:
$JOBID
$HOME - Path the script was run from
$RHOME - Home dir of the user on the remote system
$SUBMITHOST
$DEST - This is the Moab where the job will run
$LOCALDATASTAGEHEAD

If no destination is given, the protocol and file name will be set to
the same as the source.

The $RHOME (remote home directory) variable is for when a user's
home directory on the compute node is different than on the
submission host.

Chapter 12: Resource Managers and Interfaces

678 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 679

MSTAGEOUT

Example > msub -W x='mstageout=ssh://$DEST/$HOME/resultfile1.txt|
ssh://host/home/dev/resultscript.sh%file:///home/dev/' script.sh

Copy resultfile1.txt and resultscript.sh from the
execution system to /home/dev/ after the execution of
script.sh is complete. $HOME is a path containing a preceding /
(i.e., /home/adaptive).

NACCESSPOLICY

Format One of SHARED, SINGLEJOB, SINGLETASK, SINGLEUSER, or UNIQUEUSER

Description Specifies how node resources should be accessed. See Node Access Policies
for more information.

The naccesspolicy option can only be used to make node access
more constraining than is specified by the system, partition, or node
policies. If the effective node access policy is shared,
naccesspolicy can be set to singleuser, if the effective node
access policy is singlejob, naccesspolicy can be set to
singletask.

Example > qsub -l naccesspolicy=singleuser bw.cmd

> bsub -ext naccesspolicy=singleuser lancer.cmd

Job can only allocate free nodes or nodes running jobs by same
user.

> qsub -l naccesspolicy=singlejob jobscript.sh
OR
> qsub -W x=naccesspolicy:singlejob jobscript.sh

Jobs can only run on specific nodes; regardless if the machine
has free cores.

NALLOCPOLICY

Format One of the valid settings for the parameter NODEALLOCATIONPOLICY

Description Specifies how node resources should be selected and allocated to the job.

Chapter 12: Resource Managers and Interfaces

NALLOCPOLICY

See Node Allocation Policies for more information.

Example > qsub -l nallocpolicy=minresource bw.cmd

Job should use the minresource node allocation policy.

NCPUS

Format <INTEGER>

Description The number of processors in one task where a task cannot span nodes. If
NCPUS is used, then the resource manager's SUBMITPOLICY should be set
to NODECENTRIC to get correct behavior. -l ncpus=<#> is equivalent
to -l nodes=1:ppn=<#>when JOBNODEMATCHPOLICY is set to
EXACTNODE. NCPUS is used when submitting jobs to an SMP. When using
GPUs to submit to an SMP, use -1 ncpus=<#>:GPUs=<#>.

You cannot request both ncpus and nodes in the same job.

NMATCHPOLICY

Format One of the valid settings for the parameter JOBNODEMATCHPOLICY

Description Specifies how node resources should be selected and allocated to the job.

Example > qsub -l nodes=2 -W x=nmatchpolicy:exactnode bw.cmd

Job should use the EXACTNODEJOBNODEMATCHPOLICY.

NODESET

Format <SETTYPE>:<SETATTR>[:<SETLIST>]

Description Specifies nodeset constraints for job resource allocation See the NodeSet
Overview for more information.

Example > qsub -l nodeset=ONEOF:FEATURE:fastos:hiprio:bigmem bw.cmd

Chapter 12: Resource Managers and Interfaces

680 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 681

NODESETCOUNT

Format <INTEGER>

Description Specifies how many node sets a job uses.

Example > msub -l nodesetcount=2

NODESETDELAY

Format [[[DD:]HH:]MM:]SS

Description Causes Moab to attempt to span a job evenly across nodesets unless doing
so delays the job beyond the requested NODESETDELAY.

Example > qsub -l nodesetdelay=300,walltime=16000 bw.cmd

NODESETISOPTIONAL

Format <BOOLEAN>

Description Specifies whether the nodeset constraint is optional. See the NodeSet
Overview for more information.

Requires SCHEDCFG[] FLAGS=allowperjobnodesetisoptional.

Example > msub -l nodesetisoptional=true bw.cmd

OPSYS

Format <OperatingSystem>

Description The job's required operating system.

Example > qsub -l nodes=1,opsys=rh73 chem92.cmd

Chapter 12: Resource Managers and Interfaces

PARTITION

Format <STRING>[:<STRING>]...

Description The partition (or partitions) where the job must run.

The job must have access to this partition based on system wide or
credential based partition access lists.

Example > qsub -l nodes=1,partition=math:geology

The job must only run in the math partition or the geology
partition.

PMEM

Format <INTEGER>

Description The maximum amount of physical memory used by any single process of
the job.

Example > msub -l nodes=4:ppn=2,pmem=1024mb

The job must have 4 compute nodes with 2 processors per node,
and each process of the job is limited to 1024 MB of physical
memory.

PREF

Format [{feature|variable}:]<STRING>[:<STRING>]...

If feature or variable are not specified, then feature is assumed.

Description Specifies which node features are preferred by the job and should be
allocated if available. If preferred node criteria are specified, Moab favors
the allocation of matching resources but is not bound to only consider
these resources.

Preferences are not honored unless the node allocation policy is set
to PRIORITY and the PREF priority component is set within the
node's PRIORITYF attribute.

Chapter 12: Resource Managers and Interfaces

682 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 683

PREF

Example > qsub -l nodes=1,pref=bigmem

The job can run on any nodes but prefers to allocate nodes with
the bigmem feature.

PROCS

Format <INTEGER>

Description Requests a specific amount of processors for the job. Instead of users trying
to determine the amount of nodes they need, they can instead decide how
many processors they need and Moab will automatically request the
appropriate amount of nodes from the RM. This also works with feature
requests, such as procs=12[:feature1[:feature2[-]]].

Using this resource request overrides any other processor or node
related request, such as nodes=4.

Example > msub -l procs=32 myjob.pl

Moab will request as many nodes as is necessary to meet the
32-processor requirement for the job.

PROLOGUE

Format <STRING>

Description Specifies a user owned prologue script, which will be run after the system
prologue and prologue.user scripts at the beginning of a job. The
syntax is prologue=<file>. The file can be designated with an absolute
or relative path.

This parameter works only with Torque.

Example > msub -l prologue=prologue_script.sh job.s

Chapter 12: Resource Managers and Interfaces

PVMEM

Format <INTEGER>

Description Specify the maximum amount of virtual memory used by any single process
in the job.

Example > msub -l nodes=4:ppn=2,pvmem=1024mb

The job must have 4 compute nodes with 2 processors per node,
and each process of the job is limited to 1024 MB of virtual
memory.

QoS

Format <STRING>

Description Requests the specified QoS for the job.

Example > qsub -l walltime=1000,qos=highprio biojob.cmd

QUEUEJOB

Format <BOOLEAN>

Default TRUE

Description Indicates whether or not the scheduler should queue the job if resources
are not available to run the job immediately.

Example > msub -l nodes=1,queuejob=false test.cmd

REQATTR

Format Required node attributes with version number support: reqattr=
[<must|must not|should|should not>]:<ATTRIBUTE>
[{>=|>|<=|<|=}<VERSION>]

Chapter 12: Resource Managers and Interfaces

684 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 685

REQATTR

Description Indicates required node attributes. Values can include letters, numbers,
dashes, underscores, periods, and spaces.
You can choose one of four requirement types for each node attribute you
request:

l must – The node on which this job runs must include the attribute at
the value specified. If no node matches this requirement, Moab will
not schedule the job.

l must not – The node on which this job runs must not include the
attribute at the value specified. If no node matches this requirement,
Moab will not schedule the job.

l should – If possible, the node on which this job runs should include
the attribute at the value specified. If no node matches this
requirement, Moab selects a node without it.

l should not – If possible, the node on which this job runs should
not include the attribute at the value specified. If no node matches this
requirement, Moab selects a node without it.

If you do not specify a requirement type, Moab assumes 'must.'
For information about using reqattr to request dynamic features, see
Configuring dynamic features in Torque and Moab.

Example > qsub -l reqattr=matlab=7.1 testj.txt

RESFAILPOLICY

Format One of CANCEL, HOLD, IGNORE, NOTIFY, or REQUEUE

Description The action to take on an executing job if one or more allocated nodes fail.
This setting overrides the global value specified with the
NODEALLOCRESFAILUREPOLICY parameter.

Example > msub -l resfailpolicy=ignore

For this particular job, ignore node failures.

Chapter 12: Resource Managers and Interfaces

RMTYPE

Format <STRING>

Description One of the resource manager types currently available within the cluster or
grid. Typically, this is PBS.

.Example > msub -l rmtype=pbs

Only run job on a PBS destination resource manager.

SIGNAL

Format <INTEGER>[@<OFFSET>]

Description The pre-termination signal to be sent to a job prior to it reaching its
walltime limit or being terminated by Moab. The optional offset value
specifies how long before job termination the signal should be sent. By
default, the pre-termination signal is sent one minute before a job is
terminated.

Setting an offset value on a job-end event is not supported.

Example > msub -l signal=32@120 bio45.cmd

SPRIORITY

Format <INTEGER>

Default 0

Description Allows Moab administrators to set a system priority on a job (similar to
setspri). This only works if the job submitter is an administrator.

Example > qsub -l nodes=16,spriority=100 job.cmd

Chapter 12: Resource Managers and Interfaces

686 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 687

TEMPLATE

Format <STRING>

Description Specifies a job template to be used as a set template. The requested
template must have SELECT=TRUE (see Job Templates).

Example > msub -l walltime=1000,nodes=16,template=biojob job.cmd

TERMTIME

Format <TIMESPEC>

Default 0

Description The time at which Moab should cancel a queued or active job (see Job
Deadline Support).

Example > msub -l nodes=10,walltime=600,termtime=12:00_Jun/14 job.cmd

TPN

Format <INTEGER>[+]

Default 0

Description Tasks per node allowed on allocated hosts. If the plus (+) character is
specified, the tasks per node value is interpreted as a minimum tasks per
node constraint; otherwise it is interpreted as an exact tasks per node
constraint.
Differences between TPN and PPN:
There are two key differences between the following: (A) qsub -l
nodes=12:ppn=3 and (B) qsub -l nodes=12,tpn=3.
The first difference is that ppn is interpreted as the minimum required
tasks per node while tpn defaults to exact tasks per node; case (B)
executes the job with exactly 3 tasks on each allocated node while case (A)
executes the job with at least 3 tasks on each allocated node-
nodeA:4,nodeB:3,nodeC:5

The second major difference is that the line, nodes=X:ppn=Y actually

Chapter 12: Resource Managers and Interfaces

TPN

requests X*Y tasks, whereas nodes=X,tpn=Y requests only X tasks.
TPN with Torque as an RM:
Moab interprets nodes loosely as procs. Torque interprets nodes as the
number of nodes from the actual number of nodes that you have in your
nodes file, not your total number of procs. This means that if Torque is
your resource manager and you specify msub -l nodes=16:tpn=8 but
do not have 16 nodes, Torque will not run the job. Instead, you should
specify msub -l procs=16:tpn=8.
To resolve the problem long term, you can also set server
resources_available.nodect to the total number of procs in your
system and use msub -l nodes=16:tpn=8 as you would in a non-
Torque Moab environment. See 'resources_available' in the Torque
Administrator Guide for more information.

Example > msub -l nodes=10,walltime=600,tpn=4 job.cmd

TRIG

Format <TRIGSPEC>

Description Adds triggers to the job (see Creating a Trigger for specific syntax).

Job triggers can only be specified if allowed by the QoS flag trigger.
See Enabling Job Triggers for more information.

Example > qsub -l trig=etype=start\&atype=exec\&action="/tmp/email.sh job.cmd"

TRL (Format 1)

Format <INTEGER>[@<INTEGER>][:<INTEGER>[@<INTEGER>]]...

Default 0

Description Specifies alternate task requests with their optional walltimes. See
Malleable Jobs.

Example > msub -l trl=2@500:4@250:8@125:16@62 job.cmd

Chapter 12: Resource Managers and Interfaces

688 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 689

TRL (Format 1)

or
> qsub -l trl=2:3:4

TRL (Format 2)

Format <INTEGER>-<INTEGER>

Default 0

Description Specifies a range of task requests that require the same walltime. See
Malleable Jobs.

Example > msub -l trl=32-64 job.cmd

For optimization purposes Moab does not perform an exhaustive
search of all possible values but will at least do the beginning, the
end, and 4 equally distributed choices in between.

VAR

Format <ATTR>[:<VALUE>]

Description Adds a generic variable or variables to the job.

Example > msub -l VAR=testvar1:testvalue1

Single variable

> msub -l
VAR=testvar1:testvalue1+testvar2:testvalue2+testvar3:testvalue3

Multiple variables

VC

Format vc=<NAME>

Chapter 12: Resource Managers and Interfaces

VC

Description Submits the job or workflow to a virtual container (VC).

Example vc=vc13

VMEM

Format <INTEGER>

Description Specify the maximum amount of virtual memory used by all concurrent
processes in the job.

Example > msub -l nodes=4:ppn=2,vmem=1024mb

The job must have 4 compute nodes with 2 processors per node,
and the job is limited to 1024 MB of virtual memory.

12.3.3 Resource Manager Extension Examples
If more than one extension is required in a given job, extensions can be concatenated with
a semicolon separator using the format <ATTR>:<VALUE>[;<ATTR>:<VALUE>]...

Example 12-1:

#@comment="HOSTLIST:node1,node2;QOS:special;SID:silverA"

Job must run on nodes node1 and node2 using the QoS special. The job is also associated with the system ID
silverAallowing the silver daemon to monitor and control the job.

Example 12-2:

PBS -W x=\"NODESET:ONEOF:NETWORK;DMEM:64\"

Job will have resources allocated subject to network based nodeset constraints. Further, each task will dedicate 64
MB of memory.

Example 12-3:

> qsub -l nodes=4,walltime=1:00:00 -W x="FLAGS:ADVRES:john.1"

Job will be forced to run within the john.1 reservation.

Chapter 12: Resource Managers and Interfaces

690 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 691

12.3.4 Configuring dynamic features in Torque and Moab
Used together, the reqattr RM extension and Torque $varattr parameter allow you to
create jobs that request resources that may change or disappear. For example, if you
wanted a job to request a certain version of Octave but different versions are configured
on each node and updated at any time, you can create a script that searches for the feature
and version on the nodes at a specified interval. Your Moab job can then retrieve the
dynamic node attributes from the latest poll and use them for scheduling.

This functionality is available when you use the Torque $varattr parameter to configure
a script that regularly retrieves updates on the nodes' feature(s) and the reqattr RM
extension to require a feature with a certain value.

To set up a dynamic feature in Torque and Moab

1. Create a script that pulls the information you need. For instance, the following script
pulls the version of Octave on each node and prints it:

#!/bin/bash
pull the version string for octave and print it for $varattr
version_str='octave -v | grep version'
[[$version_str =~ ([[:digit:]].[[:digit:]].[[:digit:]])]]
echo "octave=${BASH_REMATCH[1]}"

2. Use the Torque $varattr parameter to configure the script. Specify both the number
of seconds between each time Torque runs the script and the path to the script. If you
set the seconds to -1, the script will run just once. You can include arguments if
desired. In the following example, the varattr parameter specifies that Torque calls
the Octave script every 30 seconds:

$varattr 30 /usr/local/scripts/octave.sh

3. Submit your job in Moab, specifying reqattr as a resource. In this example, the job
requests a node where the octave feature has a value of 3.2.4 (that the node has Octave
version 3.2.4 installed):

> msub -l reqattr=octave=3.2.4 myJob.sh

Your job requests a node with Octave version 3.2.4. Torque passes the most recent (pulled within the last 30
seconds) version of Octave on each node. Moab then schedules the job on a node that currently has Octave 3.2.4.

Related Topics

l Resource Manager Overview

l $varattr in the Torque Administrator Guide

Chapter 12: Resource Managers and Interfaces

12.4 Adding New Resource Manager Interfaces

Moab is designed to interface with multiple resource management systems. Some of these
interact through a resource manager specific interface (Torque), while others interact
through generalized interfaces such as SSS or Wiki (see the Wiki Overview). For most
resource managers, either route is possible depending on where it is easiest to focus
development effort. Use of Wiki generally requires modifications on the resource manager
side while creation of a new resource manager specific Moab interface would require more
changes to Moab modules.

Regardless of the interface approach selected, adding support for a new resource manager
is typically a straightforward process for about 95% of all supported features. The final 5%
of features usually requires a bit more effort as each resource manager has a number of
distinct concepts that must be addressed.

In this topic:

12.4.1 Resource Manager Specific Interfaces - page 692
12.4.2 Wiki Interface - page 692
12.4.3 SSS Interface - page 692

12.4.1 Resource Manager Specific Interfaces
If you require tighter integration and need additional instruction, see Managing Resources
Directly with the Native Interface. If you would like consultation on support for a new
resource manager type, please contact Adaptive Computing.

12.4.2 Wiki Interface
The Wiki interface is already defined as a resource manager type, so no modifications are
required within Moab. Additionally, no resource manager specific library or header file is
required. However, within the resource manager, internal job and node objects and
attributes must be manipulated and placed within Wiki based interface concepts as defined
in the Wiki Overview. Additionally, resource manager parameters must be created to allow
a site to configure this interface appropriately.

12.4.3 SSS Interface
The SSS interface is an XML based generalized resource manager interface. It provides an
extensible, scalable, and secure method of querying and modifying general workload and

Chapter 12: Resource Managers and Interfaces

692 12.4 Adding New Resource Manager Interfaces

https://adaptivecomputing.com/contact-form-request-for-info/

12.5 Managing Resources Directly with the Native Interface 693

resource information.

Related Topics

l Creating New Tools within the Native Resource Manager Interface

12.5 Managing Resources Directly with the Native
Interface

In this topic:

12.5.1 Native Interface Overview - page 693
12.5.2 Configuring the Native Interface - page 694

12.5.2.A Configuring the Resource Manager - page 694
12.5.2.B Reporting Resources - page 694

12.5.3 Generating Cluster Query Data - page 695
12.5.3.A Flat Cluster Query Data - page 695

12.5.4 Interfacing with FlexNet (Formerly FLEXlm) - page 696
12.5.4.A Interfacing to Multiple License Managers Simultaneously - page

697
12.5.5 Interfacing to Nagios - page 697
12.5.6 Configuring Resource Types - page 698
12.5.7 Creating New Tools to Manage the Cluster - page 699

12.5.1 Native Interface Overview
The Native interface allows a site to augment or even fully replace a resource manager for
managing resources. In some situations, the full capabilities of the resource manager are
not needed and a lower cost or lower overhead alternative is preferred. In other cases, the
nature of the environment might make use of a resource manager impossible due to lack of
support. Still, in other situations it is desirable to provide information about additional
resource attributes, constraints, or state from alternate sources.

In any case, Moab provides the ability to directly query and manage resources along side of
or without the use of a resource manager. This interface, called the NATIVE interface can
also be used to launch, cancel, and otherwise manage jobs. This NATIVE interface offers
several advantages including the following:

Chapter 12: Resource Managers and Interfaces

l No cost associated with purchasing a resource manager

l No effort required to install or configure the resource manager

l Ability to support abstract resources

l Ability to support abstract jobs

l Ability to integrate node availability information from multiple sources

l Ability to augment node configuration and utilization information provided by a
resource manager

However, the NATIVE interface might also have some drawbacks:

l No support for standard job submission languages

l Limited default configured and utilized resource tracking (additional resource
tracking available with additional effort)

At a high level, the native interface works by launching threaded calls to perform standard
resource manager activities such as managing resources and jobs. The desired calls are
configured within Moab and used whenever an action or updated information is required.

12.5.2 Configuring the Native Interface
Using the native interface consists of defining the interface type and location. As mentioned
earlier, a single object can be fully defined by multiple interfaces simultaneously with each
interface updating a particular aspect of the object.

12.5.2.A Configuring the Resource Manager
The Native resource manager must be configured using the RMCFG parameter. To specify
the native interface, the TYPE attribute must be set to NATIVE.

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=exec:///tmp/query.sh

12.5.2.B Reporting Resources
To indicate the source of the resource information, the CLUSTERQUERYURL attribute of
the RMCFG parameter should be specified. This attribute is specified as a URL where the
protocols FILE, EXEC and SQL are allowed. If a protocol is not specified, the protocol
EXEC is assumed.

Chapter 12: Resource Managers and Interfaces

694 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 695

Format Description

EXEC Execute the script specified by the URL path. Use the script stdout as data.

FILE Load the file specified by the URL path. Use the file contents as data.

SQL Load data directly from an SQL database using the FULL format described below.

Moab considers a NativeRM script to have failed if it returns with a non-zero exit code or if
the CHILDSTDERRCHECK parameter is set and its appropriate conditions are met. In
addition, the NativeRM script associated with a job submit URL will be considered as
having failed if its standard output stream contains the text ERROR.

This simple example queries a file on the server for information about every node in the
cluster. This differs from Moab remotely querying the status of each node individually.

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=file:///tmp/query.txt

12.5.3 Generating Cluster Query Data

12.5.3.A Flat Cluster Query Data
If the EXEC or FILE protocol is specified in the CLUSTERQUERYURL attribute, the data
should provide flat text strings indicating the state and attributes of the node. The format
follows the Moab Resource Manager Language Data Format where attributes are delimited
by white space rather than ';' (see Query Resources Data Format):

Describes any set of node attributes with format: <NAME><ATTR>=<VAL>
[<ATTR>=<VAL>]...

<NAME> Name of node

<ATTR> Node attribute

<VAL> Value of node attribute

n17 CPROC=4 AMEMORY=100980 STATE=idle

Chapter 12: Resource Managers and Interfaces

12.5.4 Interfacing with FlexNet (Formerly FLEXlm)
Moab can interface with FlexNet to provide scheduling based on License Management
availability. Informing Moab of license dependencies can reduce the number of costly
licenses required by your cluster by allowing Moab to intelligently schedule around license
limitations.

Provided with Moab in the tools directory is a Perl script, license.mon.flexLM.pl.
This script queries a FlexNet license server and gathers data about available licenses. This
script then formats this data for Moab to read through a native interface. This script can
easily be used by any site to help facilitate FlexNet integration—the only modification
necessary to the script is setting the @FLEXlmCmd to specify the local command to query
FlexNet. To make this change, edit license.mon.flexLM.pl and, near the top of the
file, look for the line:

my @FLEXlmCmd = ("SETME");

Set the @FLEXlmCmd to the appropriate value for your system to query a license server
and license file (if applicable). If lmutil is not in the PATH variable, specify its full path.
Using the lmutil -a argument will cause it to report all licenses. The -c option is used to
specify a license file on a remote server.

<path_to_lmstat>/lmstat -c port@host -a
my @FLEXlmCmd = ("<path_to_lmstat>/lmstat -c port@host -a");

The @ specifying the port @ servername must be escaped.

To test this script, run it manually. If working correctly, it will produce output similar to the
following:

> ./license.mon.flexLM.pl
GLOBAL UPDATETIME=1104688300 STATE=idle ARES=autoCAD:130,idl_mpeg:160
CRES=autoCAD:200,idl_mpeg:330

If the output looks incorrect, set the $LOGLEVEL variable inside of
license.mon.flexLM.pl, run it again, and address the reported failure.

Once the license interface script is properly configured, the next step is to add a license
native resource manager to Moab via the moab.cfg file:

RMCFG[FLEXlm] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM.pl
...

Once this change is made, restart Moab. The command mdiag -R can be used to verify that
the resource manager is properly configured and is in the state Active. Detailed
information regarding configured and utilized licenses can be viewed by issuing the mdiag
-n. Floating licenses (non-node-locked) will be reported as belonging to the GLOBAL node.

Chapter 12: Resource Managers and Interfaces

696 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 697

Due to the inherent conflict with the plus sign (+), the provided license manager
script replaces occurrences of the plus sign in license names with the underscore
symbol (_). This replacement requires that licenses with a plus sign in their names be
requested with an underscore in place of any plus signs.

12.5.4.A Interfacing to Multiple License Managers Simultaneously
If multiple license managers are used within a cluster, Moab can interface to each of them
to obtain the needed license information. In the case of FlexNet, this can be done by making
one copy of the license.mon.flexLM.pl script for each license manager and
configuring each copy to point to a different license manager. Then, within Moab, create
one native resource manager interface for each license manager and point it to the
corresponding script as in the following example:

RMCFG[FLEXlm1] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm1] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM1.pl
RMCFG[FLEXlm2] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm2] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM2.pl
RMCFG[FLEXlm3] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm3] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM3.pl
...

For an overview of license management, including job submission syntax, see License
Management.

It may be necessary to increase the default limit, MMAX_GRES. See Adjusting Default
Limits for more implementation details.

12.5.5 Interfacing to Nagios
Moab can interface with Nagios to provide scheduling based on network hosts and services
availability.

Nagios installation and configuration documentation can be found at Nagios.org.

Provided with Moab in the tools directory is a Perl script, node.query.nagios.pl. This script
reads the Nagios status.dat file and gathers data about network hosts and services.
This script then formats data for Moab to read through a native interface. This script can
be used by any site to help facilitate Nagios integration. To customize the data that will be
formatted for Moab, make the changes in this script.

You may need to customize the associated configuration file in the etc directory,
config.nagios.pl. The statusFile line in this script tells Moab where the Nagios

Chapter 12: Resource Managers and Interfaces

http://www.nagios.org/

status.dat file is located. Make sure that the path name specified is correct for your
site. Note that the interval that Nagios updates the Nagios status.dat file is specified in the
Nagios nagios.cfg file. Refer to Nagios documentation for further details.

To make these changes, familiarize yourself with the format of the Nagios status.dat
file and make the appropriate additions to the script to include the desired Moab RM
language (formerly WIKI) Interface attributes in the Moab output.

To test this script, run it manually. If working correctly, it will produce output similar to the
following:

> ./node.query.nagios.pl
gateway STATE=Running
localhost STATE=Running CPULOAD=1.22 ADISK=75332

Once the Nagios interface script is properly configured, the next step is to add a Nagios
native resource manager to Moab via the moab.cfg file:

RMCFG[nagios] TYPE=NATIVE
RMCFG[nagios] CLUSTERQUERYURL=exec://$TOOLSDIR/node.query.nagios.pl
...

Once this change is made, restart Moab. The command mdiag -R can be used to verify that
the resource manager is properly configured and is in the state Active. Detailed
information regarding configured Nagios node information can be viewed by issuing the
mdiag -n.

> mdiag -n -v
compute node summary
Name State Procs Memory Disk Swap
Speed Opsys Arch Par Load Rsv Classes Network

Features
gateway Running 0:0 0:0 0:0 0:0
1.00 - - dav 0.00 0 - -

-
WARNING: node 'gateway' is busy/running but not assigned to an active job
WARNING: node 'gateway' has no configured processors

localhost Running 0:0 0:0 75343:75347 0:0
1.00 - - dav 0.48 0 - -

-
WARNING: node 'localhost' is busy/running but not assigned to an active job
WARNING: node 'localhost' has no configured processors

----- --- 3:8 1956:1956 75345:75349 5309:6273
Total Nodes: 2 (Active: 2 Idle: 0 Down: 0)

12.5.6 Configuring Resource Types
Native Resource managers can also perform special tasks when they are given a specific
resource type. These types are specified using the RESOURCETYPE attribute of the RMCFG
parameter.

Chapter 12: Resource Managers and Interfaces

698 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 699

Type Description

COMPUTE Normal compute resources (no special handling)

FS File system resource manager (see Utilizing Multiple Resource Managers for an
example)

LICENSE Software license manager (see Interfacing with FlexNet (Formerly FLEXlm) and
License Management)

If LICENSE is specified, all generic resources reported by the resource
manager will be marked as a license; causing them to be tracked by the

accounting manager under the Licenses property. See Licenses - page 428
for more information on the Licenses property.

NETWORK Network resource manager

PROV Provisioning resource manager. This is the RM Moab uses to modify the OS of a
node and to power a node on or off.

12.5.7 Creating New Tools to Manage the Cluster
Using the scripts found in the $TOOLSDIR ($INSTDIR/tools) directory as a template,
new tools can be quickly created to monitor or manage most any resource. Each tool should
be associated with a particular resource manager service and specified using one of the
following resource manager URL attributes.

CLUSTERQUERYURL

Description Queries resource state, configuration, and utilization information for compute
nodes, networks, storage systems, software licenses, and other resources. For
more details, see CLUSTERQUERYURL.

Output Node status and configuration for one or more nodes. See Query Resources
Data Format.

Example RMCFG[v-stor] CLUSTERQUERYURL=exec://$HOME/storquery.pl

Moab will execute the storquery.pl script to obtain information
about 'v-stor' resources.

Chapter 12: Resource Managers and Interfaces

JOBCANCELURL

Description Cancels a job.

Input <JOBID>

Example RMCFG[v-stor] JOBCANCELURL=exec://$HOME/cancel.pl

Moab will execute the cancel.pl script to cancel jobs.

JOBMODIFYURL

Description Modifies a job or application. For more details, see JOBMODIFYURL.

Input [-j <JOBEXPR>] [--s[et]|--u[nset]|--c[lear]|--i
[ncrement]|--d[ecrement]] <ATTR>[=<VALUE>] [<ATTR>
[=<VALUE>]]...

Example RMCFG[v-stor] JOBMODIFYURL=exec://$HOME/jobmodify.pl

Moab will execute the jobmodify.pl script to modify the
specified job.

JOBREQUEUEURL

Description Requeues a job.

Input <JOBID>

Example RMCFG[v-stor] JOBREQUEUEURL=exec://$HOME/requeue.pl

Moab will execute the requeue.pl script to requeue jobs.

JOBRESUMEURL

Description Resumes a suspended job or application.

Chapter 12: Resource Managers and Interfaces

700 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 701

JOBRESUMEURL

Input <JOBID>

Example RMCFG[v-stor] JOBRESUMEURL=exec://$HOME/jobresume.pl

Moab will execute the jobresume.pl script to resume suspended
jobs.

JOBSTARTURL

Description Launches a job or application on a specified set of resources.

Input <JOBID><TASKLIST><USERNAME> [ARCH=<ARCH>] [OS=<OPSYS>]
[IDATA=<STAGEINFILEPATH>[,<STAGEINFILEPATH>]...]
[EXEC=<EXECUTABLEPATH>]

Example RMCFG[v-stor] JOBSTARTURL=exec://$HOME/jobstart.pl

Moab will execute the jobstart.pl script to execute jobs.

JOBSUBMITURL

Description Submits a job to the resource manager, but it does not execute the job. The job
executes when the JOBSTARTURL is called.

Input [ACCOUNT=<ACCOUNT>] [ERROR=<ERROR>] [GATTR=<GATTR>]
[GNAME=<GNAME>] [GRES=<GRES>:<Value>[,<GRES>:<Value>]*]
[HOSTLIST=<HOSTLIST>] [INPUT=<INPUT>] [IWD=<IWD>]

[NAME=<NAME>] [OUTPUT=<OUTPUT>] [RCLASS=<RCLASS>]
[REQUEST=<REQUEST>] [RFEATURES=<RFEATURES>]
[RMFLAGS=<RMFLAGS>] [SHELL=<SHELL>]
[TASKLIST=<TASKLIST>] [TASKS=<TASKS>]
[TEMPLATE=<TEMPLATE>] [UNAME=<UNAME>]
[VARIABLE=<VARIABLE>] [WCLIMIT=<WCLIMIT>] [ARGS=<Value>
[<Value>]*]

ARGS must be the last submitted attribute because there can be multiple
space-separated values for ARGS.

Example RMCFG[v-stor] JOBSUBMITURL=exec://$HOME/jobsubmit.pl

Moab submits the job to the jobsubmit.pl script for future job

Chapter 12: Resource Managers and Interfaces

JOBSUBMITURL

execution.

JOBSUSPENDURL

Description Suspends in memory an active job or application.

Input <JOBID>

Example RMCFG[v-stor] JOBSUSPENDURL=exec://$HOME/jobsuspend.pl

Moab will execute the jobsuspend.pl script to suspend active
jobs.

NODEMODIFYURL

Description Provide method to dynamically modify/provision compute resources including
operating system, applications, queues, node features, power states, etc.

Moab blocks scheduling when invoking the script defined by
NODEMODIFYURL , If your NODEMODIFYURL script is a long running
process (i.e., > 30 seconds or, if defined, longer than the RMCFG
TIMEOUT setting), then you must background the process and return
quickly.

Input <NODEID>[,<NODEID>] [--force] {--set <ATTR>=<VAL>|--
clear <ATTR>}
ATTR is one of the node attributes listed in Query Resources Data Format.

Example RMCFG[warewulf] NODEMODIFYURL=exec://$HOME/provision.pl

Moab will reprovision compute nodes using the provision.pl
script.

NODEPOWERURL

Description Allows Moab to issue IPMI power commands.

Chapter 12: Resource Managers and Interfaces

702 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 703

NODEPOWERURL

Input <NODEID>[,<NODEID>] ON | OFF

Example RMCFG[node17rm] NODEPOWERURL=exec://$TOOLSDIR/ipmi.power.pl

Moab will issue a power command contained in the
ipmi.power.pl script.

SYSTEMMODIFYURL

Description Provide method to dynamically modify aspects of the compute environment
that are directly associated with cluster resources. For more details, see
SYSTEMMODIFYURL.

SYSTEMQUERYURL

Description Provide method to dynamically query aspects of the compute environment that
are directly associated with cluster resources. For more details, see
SYSTEMQUERYURL.

Input Default <ATTR>
ATTR is one of images

Output <STRING>

Example RMCFG[warewulf] SYSTEMQUERYURL=exec://$HOME/checkimage.pl

Moab will load the list of images available from warewulf using the
checkimage.pl script.

WORKLOADQUERYURL

Description: Provide method to dynamically query the system workload (jobs, services,
etc.) of the compute environment that are associated with managed resources.

Job/workload information should be reported back from the URL
(script, file, web service, etc.) using the Moab Resource Manager
Language Data Format (formerly WIKI).

For more details, see WORKLOADQUERYURL.

Chapter 12: Resource Managers and Interfaces

WORKLOADQUERYURL

Output: <STRING>

Example RMCFG[xt] WORKLOADQUERYURL=exec://$HOME/job.query.xt3.pl

Moab will load job/workload information by executing the
job.query.xt3.pl script.

Related Topics

l 4.7.14 mdiag -R - page 155 command (evaluate resource managers)

l 12.7 License Management - page 706

l Moab Resource Manager Language Data Format

12.6 Utilizing Multiple Resource Managers

In this topic:

12.6.1 Multi-RM Overview - page 704
12.6.2 Configuring Multiple Independent Resource Manager Partitions - page

705
12.6.3 Migrating Jobs between Resource Managers - page 705
12.6.4 Aggregating Information into a Cohesive Node View - page 705

12.6.4.A Example File System Utilization Tracker (per user) - page 706

12.6.1 Multi-RM Overview
In many instances a site may have certain resources controlled by different resource
managers. For example, a site may use a particular resource manager for licensing
software for jobs, another resource manager for managing file systems, another resource
manager for job control, and another for node monitoring. Moab can be configured to
communicate with each of these resource managers, gathering all their data and
incorporating such into scheduling decisions. With a more distributed approach to
resource handling, failures are more contained and scheduling decisions can be more
intelligent.

Chapter 12: Resource Managers and Interfaces

704 12.6 Utilizing Multiple Resource Managers

12.6 Utilizing Multiple Resource Managers 705

12.6.2 Configuring Multiple Independent Resource Manager
Partitions
Moab must know how to communicate with each resource manager. In most instances, this
is simply done by configuring a query command.

12.6.3 Migrating Jobs between Resource Managers
With multi-resource manager support, a job can be submitted either to a local resource
manager queue or to the Moab global queue. In most cases, submitting a job to a resource
manager queue constrains the job to only run within the resources controlled by that
resource manager. However, if the job is submitted to the Moab global queue, it can use
resources of any active resource manager. This is accomplished through job translation
and staging.

When Moab evaluates resource availability, it determines the cost in terms of both data
and job staging. If staging a job's executable or input data requires a significant amount of
time, Moab integrates data and compute resource availability to determine a job's earliest
potential start time on a per resource manager basis and makes an optimal scheduling
decision accordingly. If the optimal decision requires a data stage operation, Moab reserves
the required compute resources, stages the data, and then starts the job when the
required data and compute resources are available.

12.6.4 Aggregating Information into a Cohesive Node View
Using the native interface, Moab can actually perform most of these functions without the
need for an external resource manager. First, configure the native resource managers:

RMCFG[base] TYPE=PBS
RMCFG[network] TYPE=NATIVE
RMCFG[network] CLUSTERQUERYURL=/tmp/network.sh
RMCFG[fs] TYPE=NATIVE
RMCFG[fs] CLUSTERQUERYURL=/tmp/fs.sh

The network script can be as simple as the following:

> _RX=`/sbin/ifconfig eth0 | grep "RX by" | cut -d: -f2 | cut -d' ' -f1`; \
> _TX=`/sbin/ifconfig eth0 | grep "TX by" | cut -d: -f3 | cut -d' ' -f1`; \
> echo `hostname` GMETRIC[netusage]=`echo "$_RX + $_TX" | bc`;

The preceding script would output something such as the following:

node01 GMETRIC[netusage]=10928374

Moab grabs information from each resource manager and includes its data in the final view
of the node.

Chapter 12: Resource Managers and Interfaces

> checknode node01
node node01
State: Running (in current state for 00:00:20)
Configured Resources: PROCS: 2 MEM: 949M SWAP: 2000M disk: 1000000
Utilized Resources: SWAP: 9M
Dedicated Resources: PROCS: 1 disk: 1000
Opsys: Linux-2.6.5-1.358 Arch: linux
Speed: 1.00 CPULoad: 0.320
Location: Partition: DEFAULT Rack/Slot: NA
Network Load: 464.11 b/s
Network: DEFAULT
Features: fast
Classes: [batch 1:2][serial 2:2]
Total Time: 00:30:39 Up: 00:30:39 (100.00%) Active: 00:09:57 (32.46%)
Reservations:
Job '5452'(x1) -00:00:20 -> 00:09:40 (00:10:00)

JobList: 5452

Notice that the Network Load is now being reported along with disk usage.

12.6.4.A Example File System Utilization Tracker (per user)
The following configuration can be used to track file system usage on a per user basis:

.....
RMCFG[file] TYPE=NATIVE
RMCFG[file] RESOURCETYPE=FS
RMCFG[file] CLUSTERQUERYURL=/tmp/fs.pl
.....

Assuming that /tmp/fs.pl outputs something of the following format:

DEFAULT STATE=idle AFS=<fs id="user1" size="789456"></fs><fs
id="user2" size="123456"></fs>

This will track disk usage for users user1 and user2 every 24 hours.

12.7 License Management

In this topic:

12.7.1 License Management Overview - page 707
12.7.2 Controlling and Monitoring License Availability - page 707

12.7.2.A Local Consumable Resources - page 707
12.7.2.B Resource Manager Based Consumable Resources - page 708
12.7.2.C Interfacing to an External License Manager - page 708

12.7.3 Requesting Licenses within Jobs - page 708

Chapter 12: Resource Managers and Interfaces

706 12.7 License Management

12.7 License Management 707

12.7.1 License Management Overview
Software license management is typically enabled in one of two models: node-locked and
floating. Under a node-locked license, use of a given application is constrained to certain
hosts. For example, node013 can support up to two simultaneous jobs accessing
application matlab. In a floating license model, a limited number of software licenses are
made available cluster wide, and these licenses can be used on any combination of
compute hosts. In each case, these licenses are consumable and application access is
denied once they are gone.

Moab supports both node-locked and floating license models and even allows mixing the
two models simultaneously. Moab monitors license usage and only launches an application
when required software license availability is guaranteed. In addition, Moab also reserves
licenses in conjunction with future jobs to ensure these jobs can run at the appropriate
time.

By default, Moab supports up to 128 independent license types.

Moab license recognition is case insensitive. This means that two licenses with the
same spelling and different capitalization are still recognized as the same license.
When this occurs, Moab considers the license invalid.

12.7.2 Controlling and Monitoring License Availability
Moab can use one of three methods to determine license availability. These methods
include locally specifying consumable generic resources, obtaining consumable generic
resource information from the resource manager, and interfacing directly with a license
manager.

12.7.2.A Local Consumable Resources
Both node-locked and floating licenses can be locally specified within Moab using the
NODECFG parameter. In all cases, this is accomplished by associating the license with a
node using the GRES (or generic resource) attribute. If floating, the total cluster-wide
license count should be associated with the GLOBAL node. If node-locked, the per node
license count should be associated with each compute host (or globally using the DEFAULT
node). For example, if a site has two node-locked licenses for application EvalA and six
floating licenses for application EvalB, the following configuration could be used:

NODECFG[node001] GRES=EvalA:2
NODECFG[node002] GRES=EvalA:2
NODECFG[GLOBAL] GRES=EvalB:6

Chapter 12: Resource Managers and Interfaces

...

If you are using an accounting manager and want to distinguish certain generic resources
as 'Licenses', you can use the GRESCFG[] LICENSE=TRUE parameter in the Moab server
configuration. See GRESCFG[<GRES>] for more information.

12.7.2.B Resource Manager Based Consumable Resources
Some resource managers support the ability to define and track generic resource usage at
a per node level. In such cases, support for node-locked licenses can be enabled by
specifying this information within the resource manager. Moab automatically detects and
schedules these resources. For example, in the case of Torque, this can be accomplished by
adding generic resource specification lines to the MOM configuration file.

12.7.2.C Interfacing to an External License Manager
Moab can also obtain live software license information from a running license manager.
Direct interfaces to supported license managers such as FlexNet (formerly FLEXlm) can be
created using the Native Resource Manager feature. A complete example on interfacing to
an external license manager is provided in the FlexNet section of the native resource
manager overview.

Interfacing to Multiple License Managers
Moab can interface to multiple external license managers simultaneously simply by
defining additional native resource manager interfaces. See the Native Resource Manager
Overview for more information.

12.7.3 Requesting Licenses within Jobs
Requesting use of software licenses within jobs is typically done in one of two ways. In most
cases, the native resource manager job submission language provides a direct method of
license specification; for example, in the case of Torque, the software argument could be
specified using the format <SOFTWARE_NAME>[+<LICENSE_COUNT>] as in the
following example:

> qsub -l nodes=2,software=blast cmdscript.txt

Chapter 12: Resource Managers and Interfaces

708 12.7 License Management

12.8 Resource Provisioning 709

Known issues have been reported using 'software'. The '-l software' syntax is
scheduled to be deprecated. Adaptive Computing recommends using 'gres' instead.
For example:

> qsub -l nodes=2,gres=blast cmdscript.txt

The license count is a job total, not a per task total, and the license count value
defaults to 1.

An alternative to direct specification is the use of the Moab resource manager extensions.
With these extensions, licenses can be requested as generic resources, using the GRES
attribute. The job in the preceding example could also be requested using the following
syntax:

> qsub -l nodes=2 -W x=GRES:blast cmdscript.txt

In each case, Moab automatically determines if the software licenses are node-locked or
floating and applies resource requirements accordingly.

If a job requires multiple software licenses, whether of the same or different types, a user
would use the following syntax:

> qsub -l nodes=2 -W x=GRES:blast+2 cmdscript.txt # two 'blast' licenses required
> qsub -l nodes=2 -W x=GRES:blast+2%bkeep+3 cmdscript.txt # two 'blast' and three
'bkeep' licenses are required

Related Topics

l Native Resource Manager License Configuration

l License Ownership with Advance Reservations

l Multi-Cluster License Sharing with Moab Workload Manager for Grids Interfaces

12.8 Resource Provisioning

In this topic:

12.8.1 Resource Provisioning Overview - page 710
12.8.2 Configuring Provisioning - page 710

Chapter 12: Resource Managers and Interfaces

12.8.1 Resource Provisioning Overview
When processing a resource request, Moab attempts to match the request to an existing
available resource. However, if the scheduler determines that the resource is not available
or will not be available due to load or policy for an appreciable amount of time, it can select
a resource to modify to meet the needs of the current requests. This process of modifying
resources to meet existing needs is called provisioning.

Moab evaluates the costs of making the provisioning change in terms of time and other
resources consumed before making the decision. Only if the benefits outweigh the costs will
the scheduler initiate the change required to support the current workload.

When Moab provisions an environment, it provisions (on a per node basis) the OS and its
associated libraries, applications, etc. as a single environment.

Preemption (requeuing) does not work with dynamic provisioning.

12.8.2 Configuring Provisioning
Enabling provisioning consists of configuring an interface to a provisioning manager,
specifying which nodes can take advantage of this service, and what the estimated cost and
duration of each change will be. This interface can be used to contact provisioning software
such as xCat or HP's Server Automation tool. Additionally, locally developed systems can be
interfaced via a script or web service.

Related Topics

l Native Resource Manager Overview

l Appendix O: Resource Manager Integration

12.9 Managing Networks

In this topic:

12.9.1 Network Management Overview - page 711
12.9.2 Dynamic VLAN Creation - page 711

12.9.2.A Configuring VLANs - page 712
12.9.2.B Requesting a VLAN - page 712

Chapter 12: Resource Managers and Interfaces

710 12.9 Managing Networks

http://www.xcat.org/

12.9 Managing Networks 711

12.9.3 Network Load and Health Monitoring - page 712
12.9.4 Creating a Resource Management Interface for a New Network - page

712
12.9.4.A General Requirements - page 713
12.9.4.B Monitoring Load - page 713
12.9.4.C Monitoring Failures - page 713
12.9.4.D Controlling Router State - page 713
12.9.4.E Creating VLANs - page 713

12.9.5 Per-Job Network Monitoring - page 713

12.9.1 Network Management Overview
Network resources can be tightly integrated with the rest of a compute cluster using the
Moab multi-resource manager management interface. This interface has the following
capabilities:

l Dynamic per job and per partition VLAN creation and management

l Monitoring and reporting of network health and failure events

l Monitoring and reporting of network load

l Creation of subnets with guaranteed performance criteria

l Automated workload-aware configuration and router maintenance

l Intelligent network-aware scheduling algorithms

12.9.2 Dynamic VLAN Creation
Most sites using dynamic VLANs operate under the following assumptions:

l Each compute node has access to two or more networks, one of which is the compute
network, and another which is the administrator network.

l Each compute node can only access other compute nodes via the compute network.

l Each compute node can only communicate with the head node via the administrator
network.

l Logins on the head node cannot be requested from a compute node.

In this environment, organizations may choose to have VLANs automatically configured
that encapsulate individual jobs. These VLANs essentially disconnect the job from either
incoming or outgoing communication with other compute nodes.

Chapter 12: Resource Managers and Interfaces

12.9.2.A Configuring VLANs
Automated VLAN management can be enabled by setting up a network resource manager
that supports dynamic VLAN configuration and a QoS to request this feature. The example
configuration highlights this setup:

...
RMCFG[cisco] TYPE=NATIVE RESOURCETYPE=NETWORK FLAGS=VLAN
RMCFG[cisco] CLUSTERQUERYURL=exec://$TOOLSDIR/node.query.cisco.pl
RMCFG[cisco] SYSTEMMODIFYURL=exec://$TOOLSDIR/system.modify.cisco.pl
QOSCFG[netsecure] SECURITY=VLAN

12.9.2.B Requesting a VLAN
VLANs can be requested on a per job basis directly using the associated resource manager
extension or indirectly by requesting a QoS with a VLAN security requirement.

> qsub -l nodes=256,walltime=24:00:00,qos=netsecure biojob.cmd
143325.umc.com submitted

12.9.3 Network Load and Health Monitoring
Network-level load and health monitoring is enabled by supporting the cluster query action
in the network resource manager and specifying the appropriate CLUSTERQUERYURL
attribute in the associated resource manager interface. Node (virtual node) query
commands (mnodectl,checknode) can be used to view this load and health information that
will also be correlated with associated workload and written to persistent accounting
records. Network load and health based event information can also be fed into generic
events and used to drive appropriate event based triggers.

At present, load and health attributes such as fan speed, temperature, port failures, and
various core switch failures can be monitored and reported. Additional failure events are
monitored and reported as support is added within the network management system.

12.9.4 Creating a Resource Management Interface for a New
Network
Many popular networks are supported using interfaces provided in the Moab tools
directory. If a required network interface is not available, a new one can be created using
the following guidelines.

Chapter 12: Resource Managers and Interfaces

712 12.9 Managing Networks

12.9 Managing Networks 713

12.9.4.A General Requirements
In all cases, a network resource manager should respond to a cluster query request by
reporting a single node with a node name that will not conflict with any existing compute
nodes. This node should report as a minimum the state attribute.

12.9.4.B Monitoring Load
Network load is reported to Moab using the generic resource bandwidth. For greatest
value, both configured and used bandwidth (in megabytes per second) should be reported
as in the following example:

force10 state=idle ares=bandwidth:5466 cres=bandwidth:10000

12.9.4.C Monitoring Failures
Network warning and failure events can be reported to Moab using the gevent metric. If
automated responses are enabled, embedded epochtime information should be included.

force10 state=idle gevent[checksum]='ECC failure detected on port 13'

12.9.4.D Controlling Router State
Router power state can be controlled as a system modify interface is created that supports
the commands on, off, and reset.

12.9.4.E Creating VLANs
VLAN creation, management, and reporting is more advanced requiring persistent VLAN
ID tracking, global pool creation, and other features. Use of existing routing interface tools
as templates is highly advised. VLAN management requires use of both the cluster query
interface and the system modify interface.

12.9.5 Per-Job Network Monitoring
It is possible to gather network usage on a per job basis using the Native Interface. When
the native interface has been configured to report netin and netout Moab automatically
gathers this data through the life of a job and reports total usage statistics upon job
completion.

...
node99 netin=78658 netout=1256

Chapter 12: Resource Managers and Interfaces

...

This information is visible to users and administrators via command-line utilities, the web
portal, and the desktop graphical interfaces.

Related Topics

l Native Resource Manager Overview

l Network Utilization Statistics

12.10 Intelligent Platform Management Interface

In this topic:

12.10.1 IPMI Overview - page 714
12.10.2 Node IPMI Configuration - page 714
12.10.3 Installing IPMItool - page 715
12.10.4 [Optional] Creating the IPMI BMC-Node Map File - page 715
12.10.5 Configuring the Moab IPMI Tools - page 716
12.10.6 Configuring Moab - page 716
12.10.7 Ensuring Proper Setup - page 717

12.10.1 IPMI Overview
The Intelligent Platform Management Interface (IPMI) specification defines a set of
common interfaces system administrators can use to monitor system health and manage
the system. The IPMI interface can monitor temperature and other sensor information,
query platform status and power-on/power-off compute nodes. As IPMI operates
independently of the node's OS interaction with the node can happen even when powered
down. Moab can use IPMI to monitor temperature information, check power status, power-
up, power-down, and reboot compute nodes.

12.10.2 Node IPMI Configuration
IPMI must be enabled on each node in the compute cluster. This is usually done either
through the node's BIOS or by using a boot CD containing IPMI utilities provided by the
manufacturer. With regard to configuring IPMI on the nodes, be sure to enable IPMI-over-
LAN and set a common login and password on all the nodes. Additionally, you must set a

Chapter 12: Resource Managers and Interfaces

714 12.10 Intelligent Platform Management Interface

12.10 Intelligent Platform Management Interface 715

unique IP address for each node's BMC. Take note of these addresses as you will need
them when reviewing the Creating the IPMI BMC-Node Map File section.

12.10.3 Installing IPMItool
IPMItool is an open-source tool used to retrieve sensor information from the IPMI
Baseboard Management Controller (BMC) or to send remote chassis power control
commands. The IPMItool developer provides Fedora Core binary packages, as well as a
source tarball on the IPMItool download page. Download and install IPMItool on the Moab
head node and make sure the ipmitool binary is in the current shell PATH.

Proper IPMI setup and IPMItool configuration can be confirmed by issuing the following
command on the Moab head node:

> ipmitool -I lan -U username -P password -H BMC IP chassis status

The output of this command should be similar to the following:

System Power : off
Power Overload : false
Power Interlock : inactive
Main Power Fault : false
Power Control Fault : false
Power Restore Policy : previous
Last Power Event :
Chassis Intrusion : inactive
Front-Panel Lockout : inactive
Drive Fault : false
Cooling/Fan Fault : false

12.10.4 [Optional] Creating the IPMI BMC-Node Map File
Since the BMC can be controlled via LAN, it is possible for the BMC to have its own unique
IP address. Since this IP address is separate from the IP address of the node, a simple
mapping file is required for Moab to know each node's BMC address. The file is a flat text
file and should be stored in the Moab home directory. If a mapping file is needed, specify
the name in the config.ipmi.pl configuration file in the etc/ directory. The following
is an example of the mapping file:

#<NodeID> <BMC IP>
node01 10.10.10.101
node02 10.10.10.102
node03 10.10.10.103
node04 10.10.10.104
node05 10.10.10.105
NodeID = the name of the nodes returned with "mdiag -n"
BMC IP = the IP address of the IPMI BMC network interface

Chapter 12: Resource Managers and Interfaces

http://ipmitool.sourceforge.net/
https://sourceforge.net/projects/ipmitool/files/

Note that only the nodes specified in this file are queried for IPMI information. Also note
that the mapping file is disabled by default and the nodes that are returned from Moab
with mdiag -n are the ones that are queried for IPMI sensor data.

12.10.5 Configuring the Moab IPMI Tools
The tools/ subdirectory in the install directory already contains the Perl scripts needed
to interface with IPMI. The following is a list of the Perl scripts that should be in the
tools/ directory; confirm these are present and executable:

ipmi.mon.pl # The daemon front-end called by Moab
ipmi.power.pl # The power control script called by Moab
__mon.ipmi.pl # The IPMI monitor daemon that updates and caches IPMI data from nodes

Next, a few configuration settings need to be adjusted in the config.ipmi.pl file found
in the etc subdirectory. The IPMI-over-LAN username and password need to be set to the
values that were set in the Node IPMI Configuration section. Also, the IPMI query daemon's
polling interval can be modified by adjusting $pollInterval. This specifies how often the
IPMI-enabled nodes are queried to retrieve sensor data.

12.10.6 Configuring Moab
To allow Moab to use the IPMI tools, a native resource manager is configured. To do this,
the following lines must be added to moab.cfg:

...
IPMI - Node monitor script
RMCFG[ipminative] TYPE=NATIVE CLUSTERQUERYURL=exec://$TOOLSDIR/ipmi.mon.pl
...

Next, the following lines can be added to allow Moab to issue IPMI power commands:

...
IPMI - Power on/off/reboot script
RMCFG[ipminative] NODEPOWERURL=exec://$TOOLSDIR/ipmi.power.pl
...

Moab can be configured to perform actions based on sensor data. For example, Moab can
shut down a compute node if its CPU temperature exceeds 100 degrees Celsius, or it can
power down idle compute nodes if workload is low. Generic event thresholds are used to
tell Moab to perform certain duties given certain conditions. The following example is of a
way for Moab to recognize it should power off a compute node if its CPU0 temperature
exceeds 100 degrees Celsius:

...
IPMI - Power off compute node if its CPU0 temperature exceeds 100 degrees Celsius.
GEVENTCFG[CPU0_TEMP>100] action=off
...

Chapter 12: Resource Managers and Interfaces

716 12.10 Intelligent Platform Management Interface

12.11 Resource Manager Translation 717

12.10.7 Ensuring Proper Setup
Once the preceding steps have been taken, Moab should be started as normal. The IPMI
monitoring daemon should start automatically, which can be confirmed with the following:

moab@headnode:~/$ ps aux | grep __mon
moab 11444 0.0 0.3 6204 3172 pts/3 S 10:54 0:00 /usr/bin/perl -w
/opt/moab/tools/_mon.ipmi.pl --start

After a few minutes, IPMI data should be retrieved and cached. This can be confirmed with
the following command:

moab@headnode:~/$ cat spool/ipmicache.gm
node01 GMETRIC[CPU0_TEMP]=49
node01 GMETRIC[CPU1_TEMP]=32
node01 GMETRIC[SYS_TEMP]=31
node01 POWER=ON

Finally, issue the following to ensure Moab is grabbing the IPMI data. Temperature data
should be present in the Generic Metrics row.

moab@headnode:~/$ checknode node01
node node01
State: Idle (in current state for 00:03:12)
Configured Resources: PROCS: 1 MEM: 2000M SWAP: 3952M DISK: 1M
Utilized Resources: ---
Dedicated Resources: ---
Generic Metrics: CPU0_TEMP=42.00,CPU1_TEMP=30.00,SYS_TEMP=29.00
...

12.11 Resource Manager Translation

In this topic:

12.11.1 Translation Overview - page 717
12.11.2 Translation Enablement Steps - page 718

12.11.2.A Configure Translation Tools - page 718
12.11.2.B Add Translation Tools - page 718

12.11.1 Translation Overview
Resource manager translation allows end-users to continue to use existing job command
scripts and familiar job management and resource query commands. This is accomplished
by emulating external commands, routing the underlying queries to Moab, and then
formatting the responses in a familiar manner. Using translation, job submission clients, job
query clients, job control clients, and resource query clients can be emulated making

Chapter 12: Resource Managers and Interfaces

switching from one resource manager to another transparent and preserving investment
in legacy scripts, tools, and experience.

12.11.2 Translation Enablement Steps
To enable translation, you must:

l Edit the Moab tools configuration file.

l Copy, rename, and link the emulation scripts to a shorter, easier-to-use name.

12.11.2.A Configure Translation Tools
Located in the $MOABHOMEDIR/etc directory are tools-specific configuration files. For
each resource manager that has installed translation tools, edit the Moab tools
configuration file in the etc directory. For example, do the following:

> vi $MOABHOMEDIR/etc/config.moab.pl
Set the PATH to include directories for moab client commands — mjobctl, etc.
$ENV{PATH} = "/opt/moab/bin:$ENV{PATH}";

12.11.2.B Add Translation Tools
In a directory accessible to users, create links to (or copy) the emulation scripts you want
your users to use. For example, the emulation script tools/bjobs.lsf.pl could be
copied to bin/bjobs, or, a symbolic link could be created in bin/bjobs that points to
tools/bjobs.lsf.pl.

> ln -s tools/bjobs.lsf.pl bin/bjobs
> ln -s tools/bhosts.lsf.pl bin/bhosts

Chapter 12: Resource Managers and Interfaces

718 12.11 Resource Manager Translation

719

Chapter 13: Troubleshooting and System Maintenance

In this chapter:

13.1 Internal Diagnostics/Diagnosing System Behavior and Problems 720
13.1.1 The mdiag Command 720
13.1.2 Other Diagnostic Commands 722
13.1.3 Using Moab Logs for Troubleshooting 722
13.1.4 Automating Recovery Actions after a Failure 722

13.2 Logging Overview 723
13.2.1 Log Facility Configuration 724
13.2.2 Standard Log Format 725
13.2.3 Searching Moab Logs 726
13.2.4 Event Logs 726
13.2.5 Enabling Syslog 729
13.2.6 Managing Verbosity 729

13.3 Object Messages 730
13.3.1 Object Message Overview 730
13.3.2 Viewing Messages 730
13.3.3 Creating Messages 731

13.4 Notifying Administrators of Failures 731
13.4.1 Enabling Administrator Email 732
13.4.2 Handling Events with the Notification Routine 732

13.5 Issues with Client Commands 733
13.5.1 Client Overview 734
13.5.2 Diagnosing Client Problems 734

13.6 Tracking System Failures 735
13.6.1 System Failures 735
13.6.2 Internal Errors 736
13.6.3 Reporting Failures 737

13.7 Problems with Individual Jobs 737
13.8 Diagnostic Scripts 738

13.8.1 support-diag.py 738
13.8.2 support.diag.pl 740

Chapter 13: Troubleshooting and System Maintenance

13.1 Internal Diagnostics/Diagnosing System
Behavior and Problems

Moab provides a number of commands for diagnosing system behavior. These diagnostic
commands present detailed state information about various aspects of the scheduling
problem, summarize performance, and evaluate current operation reporting on any
unexpected or potentially erroneous conditions found. Where possible, Moab's diagnostic
commands even correct detected problems if desired.

At a high level, the diagnostic commands are organized along functionality and object based
delineations. Diagnostic commands exist to help prioritize workload, evaluate fairness, and
determine effectiveness of scheduling optimizations. Commands are also available to
evaluate reservations reporting state information, potential reservation conflicts, and
possible corruption issues. Scheduling is a complicated task. Failures and unexpected
conditions can occur as a result of resource failures, job failures, or conflicting policies.

Moab's diagnostics can intelligently organize information to help isolate these failures and
allow them to be resolved quickly. Another powerful use of the diagnostic commands is to
address the situation where there are no hard failures. In these cases, the jobs, compute
nodes, and scheduler are all functioning properly, but the cluster is not behaving exactly as
desired. Moab diagnostics can help a site determine how the current configuration is
performing and how it can be changed to obtain the desired behavior.

In this topic:

13.1.1 The mdiag Command - page 720
13.1.2 Other Diagnostic Commands - page 722
13.1.3 Using Moab Logs for Troubleshooting - page 722
13.1.4 Automating Recovery Actions after a Failure - page 722

13.1.1 The mdiag Command
The cornerstone of Moab's diagnostics is the mdiag command. This command provides
detailed information about scheduler state and also performs a large number of internal
sanity checks presenting problems it finds as warning messages.

Currently, the mdiag command provides in-depth analysis of the following objects and
subsystems:

Chapter 13: Troubleshooting and System Maintenance

720 13.1 Internal Diagnostics/Diagnosing System Behavior and Problems

13.1 Internal Diagnostics/Diagnosing System Behavior and Problems 721

Object/Subsystem mdiag
Flag

Use

Account -a Shows detailed account configuration information.

Blocked -b Indicates why blocked (ineligible) jobs are not allowed to
run.

Class -c Shows detailed class configuration information.

Config -C Shows configuration lines from moab.cfg and whether or
not they are valid.

FairShare -f Shows detailed fairshare configuration information, as well
as current fairshare usage.

Group -g Shows detailed group information.

Job -j Shows detailed job information. Reports corrupt job
attributes, unexpected states, and excessive job failures.

Frame/Rack -m Shows detailed frame/rack information.

Node -n Shows detailed node information. Reports unexpected node
states and resource allocation conditions.

Priority -p Shows detailed job priority information including priority
factor contributions to all idle jobs.

QoS -q Shows detailed QoS information.

Reservation -r Shows detailed reservation information. Reports reservation
corruption and unexpected reservation conditions.

Resource
Manager

-R Shows detailed resource manager information. Reports
configured and detected state, configuration, performance,
and failures of all configured resource manager interfaces.

Standing
Reservations

-s Shows detailed standing reservation information. Reports
reservation corruption and unexpected reservation
conditions.

Scheduler -S Shows detailed scheduler state information. Indicates if

Chapter 13: Troubleshooting and System Maintenance

Object/Subsystem mdiag
Flag

Use

scheduler is stopped, reports status of grid interface, and
identifies and reports high-level scheduler failures.

Partition -t Shows detailed partition information.

User -u Shows detailed user information.

13.1.2 Other Diagnostic Commands
Beyond mdiag, the checkjob and checknode commands also provide detailed information
and sanity checking on individual jobs and nodes respectively. These commands can
indicate why a job cannot start, which nodes can be available, and information regarding
the recent events impacting current job or nodes state.

13.1.3 Using Moab Logs for Troubleshooting
Moab logging is extremely useful in determining the cause of a problem. Where other
systems may be criticized for not providing adequate logging to diagnose a problem, Moab
may be criticized for the opposite reason. If the logging level is configured too high, huge
volumes of log output might be recorded, potentially obscuring the problems in a flood of
data. Intelligent searching combined with the use of the LOGLEVEL and LOGFACILITY
parameters can mine out the needed information. Key information associated with various
problems is generally marked with the keywords WARNING, ALERT, or ERROR. See the
Logging Overview for further information.

13.1.4 Automating Recovery Actions after a Failure
The RECOVERYACTION parameter of SCHEDCFG can be used to control scheduler action in
the case of a catastrophic internal failure. Valid actions include die, ignore, restart, and
trap.

Recovery
Mode

Description

die Moab will exit and, if core files are externally enabled, create a core file for
analysis (this is the default behavior).

Chapter 13: Troubleshooting and System Maintenance

722 13.1 Internal Diagnostics/Diagnosing System Behavior and Problems

13.2 Logging Overview 723

Recovery
Mode

Description

ignore Moab will ignore the signal and continue processing. This might cause Moab to
continue running with corrupt data, which might be dangerous. Use this setting
with caution.

restart When a SIGSEGV is received, Moab will relaunch using the current checkpoint
file, the original launch environment, and the original command line flags. The
receipt of the signal will be logged but Moab will continue scheduling. Because
the scheduler is restarted with a new memory image, no corrupt scheduler data
should exist. One caution with this mode is that it might mask underlying system
failures by allowing Moab to overcome them. If used, the event log should be
checked occasionally to determine if failures are being detected.

trap When a SIGSEGV is received, Moab stays alive but enters diagnostic mode. In this
mode, Moab stops scheduling but responds to client requests allowing analysis of
the failure to occur using internal diagnostics available via the mdiag command.

Related Topics

l Troubleshooting Individual Jobs

13.2 Logging Overview

The Moab Workload Manager provides the ability to produce detailed logging of all of its
activities. This is accomplished using verbose server logging, event logging, and system
logging facilities.

In this topic:

13.2.1 Log Facility Configuration - page 724
13.2.2 Standard Log Format - page 725
13.2.3 Searching Moab Logs - page 726
13.2.4 Event Logs - page 726

13.2.4.A Event Log Format - page 726
13.2.4.B Exporting Events in Real-Time - page 728

13.2.5 Enabling Syslog - page 729
13.2.6 Managing Verbosity - page 729

Chapter 13: Troubleshooting and System Maintenance

13.2.1 Log Facility Configuration
The LOGFILE and/or LOGDIR parameters within the moab.cfg file specify the
destination of this logging information. Logging information will be written in the file
<MOABHOMEDIR>/<LOGDIR><LOGFILE> unless <LOGDIR> or <LOGFILE> is
specified using an absolute path. If the log file is not specified or points to an invalid file, all
logging information is directed to STDERR. However, because of the sheer volume of
information that can be logged, it is not recommended that this be done while in
production. By default, LOGDIR and LOGFILE are set to log and moab.log
respectively, resulting in scheduler logs being written to
<MOABHOMEDIR>/log/moab.log.

The parameter LOGFILEMAXSIZE determines how large the log file is allowed to become
before it is rolled and is set to 10 MB by default. When the log file reaches this specified
size, the log file is rolled. The parameter LOGFILEROLLDEPTH controls the number of old
logs maintained and defaults to 3. Rolled log files have a numeric suffix appended
indicating their order.

The LOGLEVEL parameter controls the verbosity of the messages recorded in logs.
LOGLEVEL can be set to a value between 0 and 9, with 0 being the least verbose and 9
being the most verbose.

If a problem is detected, you might want to increase the LOGLEVEL value to get more
details. However, doing so will cause the logs to roll faster and will also cause a lot of
possibly unrelated information to clutter up the logs. Also be aware of the fact that high
LOGLEVEL values results in large volumes of possibly unnecessary file I/O to occur on the
scheduling machine. Consequently, it is not recommended that high LOGLEVEL values be
used unless tracking a problem or similar circumstances warrant the I/O cost.

If high log levels are desired for an extended period of time and your Moab home
directory is located on a network file system, performance may be improved by
moving your log directory to a local file system using the LOGDIR parameter.

A final log related parameter is LOGFACILITY. This parameter can be used to focus
logging on a subset of scheduler activities. This parameter is specified as a list of one or
more scheduling facilities as listed in the parameters documentation.

Example 13-1:

moab.cfg
allow up to 30 100MB logfiles
LOGLEVEL 3
LOGDIR /var/tmp/moab
LOGFILEMAXSIZE 100000000
LOGFILEROLLDEPTH 30

Chapter 13: Troubleshooting and System Maintenance

724 13.2 Logging Overview

13.2 Logging Overview 725

13.2.2 Standard Log Format
Each log event line follows a standard, tab-delimited log format:

timestamp <tab> thread ID <tab> visibility <tab> origin <tab> event
code <tab> scope IDs <tab> message

Field Description

timestamp Timestamps are given in local time, in ISO 8601 format, with a 4-digit
timezone offset suffix. For example, 2022-01-27T15:18:30.000-0700.

thread ID The ID of the thread that is producing the log output.

visibility Visibility is either a severity (FATAL, ERROR, WARNING, INFO) or a trace
level (TRACE1, TRACE2, TRACE3).

origin Origin is where the log event came from.

event code The event code provides a way to determine what kind of event happened.
For a full list of event codes, see Event Dictionary. When there is no matching
event, this field will instead show the hex value of the log level required to
display that log statement.

scope IDs The scope ID associates the event with a specific job or service.

message Messages can give details about the event and possibly some action
information to resolve issues.

Example 13-2:

2022-08-15T05:26:18.108-0600 846 TRACE1 MQueue.c:MQueueCheckStatus:3081 0
MQueueCheckStatus()

2022-08-15T05:26:18.108-0600 846 TRACE1 MNode.c:MNodeCheckStatus:949 0
MNodeCheckStatus()
2022-08-15T05:26:18.108-0600 846 TRACE1 MVC.c:MVCHarvestVCs:2911 0
Checking for VCs to harvest
2022-08-15T05:26:18.108-0600 846 TRACE1 MSU.c:MUClearChild:5301 0
MUClearChild(PID)
2022-08-15T05:26:18.108-0600 846 INFO MSysMainLoop.c:MSysMainLoop:1059
0x1002a14 Scheduling complete. Sleeping for 60 seconds.
2022-08-15T05:26:18.108-0600 846 TRACE1 MSchedStats.c:MSchedUpdateStats:36 0
MSchedUpdateStats()
2022-08-15T05:26:18.108-0600 846 INFO MSchedStats.c:MSchedUpdateStats:45
0x100a9da Iteration: 23; scheduling time: 0.00 seconds.
2022-08-15T05:26:18.108-0600 846 TRACE1 MRsv.c:MRsvUpdateStats:605 0
MRsvUpdateStats()
2022-08-15T05:26:18.108-0600 846 TRACE1 MSchedStats.c:MSchedUpdateStats:164 0
current util[23]: 0/1d (0.002f%) PH: 0.072f% active jobs: 0 of 0 (completed: 6217)
2022-08-15T05:26:18.109-0600 846 INFO MSysMainLoop.c:MSysMainLoop:1138

Chapter 13: Troubleshooting and System Maintenance

http://en.wikipedia.org/wiki/ISO_8601

0x1000193 scheduler:Moab A scheduler iteration is ending.

13.2.3 Searching Moab Logs
While major failures are reported via the mdiag -S command, these failures can also be
uncovered by searching the logs using the grep command as in the following:

> grep -E "WARNING|ALERT|ERROR" moab.log

On a production system working normally, this list usually includes some ALERT and
WARNING messages. The messages are usually self-explanatory, but if not, viewing the log
can give context to the message.

If a problem is occurring early when starting the Moab scheduler (before the configuration
file is read) Moab can be started up using the -L <LOGLEVEL>flag. If this is the first flag
on the command line, then the LOGLEVEL is set to the specified level immediately before
any setup processing is done and additional logging is recorded.

If problems are detected in the use of one of the client commands, the client command can
be re-issued with the --loglevel=<LOGLEVEL> command line argument specified.
This argument causes log information to be written to STDERR as the client command is
running. As with the server, <LOGLEVEL> values from 0 to 9 are supported.

The LOGLEVEL can be changed dynamically by use of the mschedctl -m command, or by
modifying the moab.cfg file and restarting the scheduler. Also, if the scheduler appears
to be hung or is not properly responding, the log level can be incremented by one by
sending a SIGUSR1 signal to the scheduler process. Repeated SIGUSR1signals continue
to increase the log level. The SIGUSR2 signal can be used to decrease the log level by one.

If an unexpected problem does occur, save the log file as it is often very helpful in isolating
and correcting the problem.

13.2.4 Event Logs
Major events are reported to both the Moab log file and the Moab event log. By default, the
event log is maintained in the statistics directory and rolls on a daily basis, using the
naming convention events.WWW_MMM_DD_YYYY as in events.Tue_Oct_18_2022.

13.2.4.A Event Log Format
The event log contains information about major job, reservation, node, and scheduler
events and failures and reports this information in the following format:

<EVENTTIME> <EPOCHTIME>:<EID> <OBJECT> <OBJECTID> <EVENT> <DETAILS>

Chapter 13: Troubleshooting and System Maintenance

726 13.2 Logging Overview

13.2 Logging Overview 727

Example 13-3:

VERSION 500
07:03:21 110244322:0 sched clusterA start
07:03:26 110244327:1 rsv system.1 start 1124142432 1324142432 2 2 0.0 2342155.3
node1|node2 NA RSV=%=system.1=
07:03:54 110244355:2 job 1413 end 8 16 llw mcc 432000 Completed [batch:1]
11 08708752 1108703981 ...
07:04:59 110244410:3 rm base failure cannot connect to RM
07:05:20 110244431:4 sched clusterA stop admin
...

The parameter RECORDEVENTLIST can be used to control which events are reported to
the event log. See the sections on job and reservation trace format for more information
regarding the values reported in the details section for those records.

Record Type Specific Details Format
The format for each record type is unique and is described in the following table:

Record
Type

Event Types Description

gevent See Enabling Generic
Events for gevent
information.

Generic events are included within node records.
See node detail format that follows.

job JOBCANCEL,
JOBCHECKPOINT,
JOBEND, JOBHOLD,
JOBMIGRATE,
JOBMODIFY,
JOBPREEMPT,
JOBREJECT,
JOBRESUME,
JOBSTART,
JOBSUBMIT
AM*

See Workload Accounting Records.
See Accounting Events for information about the
AM* event types.

node NODEDOWN,
NODEFAILURE,
NODEUP

The following fields are displayed in the event file in a
space-delimited line as long as Moab has information
pertaining to it: state, partition, disk, memory,
maxprocs, swap, os, rm, nodeaccesspolicy, class, and
message, where state is the node's current state and
message is a human readable message indicating reason
for node state change.

rm RMDOWN, RMPOLLEND,
RMPOLLSTART, RMUP

Human readable message indicating reason for resource
manager state change.

Chapter 13: Troubleshooting and System Maintenance

Record
Type

Event Types Description

For SCHEDCOMMAND, only create/modify
commands are recorded. No record is created for
general list/query commands.
ALLSCHEDCOMMAND does the same thing as
SCHEDCOMMAND, but it also logs info query
commands.

trigger TRIGEND,
TRIGFAILURE,
TRIGSTART

<ATTR>="<VALUE>"[<ATTR>="<VALUE>"]...
where <ATTR> is one of the following: actiondata,
actiontype, description, ebuf, eventtime, eventtype, flags,
name, objectid, objecttype, obuf, offset, period,
requires, sets, threshold, timeout, and so forth.
See Object Triggers for more information.

13.2.4.B Exporting Events in Real-Time
Moab event information can be exported to external systems in real-time using the
ACCOUNTINGINTERFACEURL parameter. When set, Moab activates this URL each time one
of the default events or one of the events specified by the RECORDEVENTLIST occurs.

While various protocols can be used, the most common protocol is exec, which indicates
that Moab should launch the specified tool or script and pass in event information as
command line arguments. This tool can then select those events and fields of interest and
re-direct them as appropriate providing significant flexibility and control to the
organization.

Exec Protocol Format
When a URL with an exec protocol is specified, the target is launched with the event fields
passed in as STDIN. These fields appear exactly as they do in the event logs with the same
values and order.

The tools/sql directory included with the Moab distribution contains
event.create.sql.pl, a sample accounting interface processing script that can
be used as a template.

Chapter 13: Troubleshooting and System Maintenance

728 13.2 Logging Overview

13.2 Logging Overview 729

13.2.5 Enabling Syslog
In addition to the log file, the Moab scheduler can report events it determines to be critical
to the UNIX syslog facility via the daemon facility using priorities ranging from INFO to
ERROR. See USESYSLOG. The verbosity of this logging is not affected by the LOGLEVEL
parameter. In addition to errors and critical events, user commands that affect the state of
the jobs, nodes, or the scheduler may also be logged to syslog. Moab syslog messages are
reported using the INFO, NOTICE, and ERR syslog priorities.

By default, messages are logged to syslog's user facility. However, using the USESYSLOG
parameter, Moab can be configured to use any of the following:

l user

l daemon

l local0

l local1

l local2

l local3

l local4

l local5

l local6

l local7

13.2.6 Managing Verbosity
In very large systems, a highly verbose log may roll too quickly to be of use in tracking
specific targeted behaviors. In these cases, one or more of the following approaches may be
of use:

l Use the LOGFACILITY parameter to log only functions and services of interest.

l Use syslog to maintain a permanent record of critical events and failures.

l Specify higher object loglevels on jobs, nodes, and reservations of interest (such as
NODECFG[orion13] LOGLEVEL=6).

l Increase the range of events reported to the event log using the RECORDEVENTLIST
parameter.

l Review object messages for required details.

l Run Moab in monitor mode using IGNOREUSERS, IGNOREJOBS, IGNORECLASSES, or
IGNORENODES.

Chapter 13: Troubleshooting and System Maintenance

Related Topics

l RECORDEVENTLIST parameter

l USESYSLOG parameter

l Notifying Administrators of Failures

l Workload Event Format

l mschedctl -L command

13.3 Object Messages

In this topic:

13.3.1 Object Message Overview - page 730
13.3.2 Viewing Messages - page 730
13.3.3 Creating Messages - page 731

13.3.1 Object Message Overview
Messages can be associated with the scheduler, jobs, and nodes. Their primary use is a line
of communication between resource managers, the scheduler, and end-users. When a node
goes offline, or when a job fails to run, both the resource manager and the scheduler will
post messages to the object's message buffer, giving the administrators and end-users a
reason for the failure. They can also be used as a way for different administrators and
users to send messages associated with the various objects. For example, an administrator
can set the message Node going down for maintenance Apr/6/08 12pm,"
on node node01, which would then be visible to other administrators.

13.3.2 Viewing Messages
To view messages associated with a job (either from users, the resource manager, or
Moab), run the checkjob command.

To view messages associated with a node (either from users, the resource manager, or
Moab), run the checknode command.

To view system messages, use the mschedctl -l message command.

To view the messages associated with a credential, run the mcredctl -c command.

Chapter 13: Troubleshooting and System Maintenance

730 13.3 Object Messages

13.4 Notifying Administrators of Failures 731

13.3.3 Creating Messages
To create a message use the mschedctl -c message <STRING> [-
o <OBJECTTYPE>:<OBJECTID>] [-w <ATTRIBUTE>=<VALUE>[-w ...]]
command.

The <OBJECTTYPE> can be one of the following:

l node

l job

l rsv

l user

l acct

l qos

l class

l group

The <ATTRIBUTE> can be one of the following:

l owner

l priority

l expiretime

l type

Valid types include:

l annotation

l other

l hold

l pendactionerror

13.4 Notifying Administrators of Failures

In this topic:

Chapter 13: Troubleshooting and System Maintenance

13.4.1 Enabling Administrator Email - page 732
13.4.2 Handling Events with the Notification Routine - page 732

13.4.1 Enabling Administrator Email
In the case of certain events, Moab can automatically send email to administrators. To
enable mail notification, the MAILPROGRAM parameter must be set to DEFAULT or point
to the locally available mail client. With this set, policies such as JOBREJECTPOLICY will
send email to administrators if set to a value of MAIL.

13.4.2 Handling Events with the Notification Routine
Moab possesses a primitive event management system through the use of the notify
program. The program is called each time an event of interest occurs. Currently, most
events are associated with failures of some sort but use of this facility need not be limited
in this way. The NOTIFICATIONPROGRAM parameter allows a site to specify the name of
the program to run. This program is most often locally developed and designed to take
action based on the event that has occurred. The location of the notification program can be
specified as a relative or absolute path. If a relative path is specified, Moab looks for the
notification relative to the $(INSTDIR)/tools directory. In all cases, Moab verifies the
existence of the notification program at start up and disables it if it cannot be found or is
not executable.

The notification program's action can include steps such as reporting the event via email,
adjusting scheduling parameters, rebooting a node, or even recycling the scheduler.

For most events, the notification program is called with command line arguments in a
simple <EVENTTYPE>: <MESSAGE> format. The following event types are currently
enabled:

Event Type Format Description

JOBCORRUPTION <MESSAGE> An active job is in an
unexpected state or has one
or more allocated nodes that
are in unexpected states.

JOBHOLD <MESSAGE> A job hold has been placed
on a job.

JOBWCVIOLATION <MESSAGE> A job has exceeded its
wallclock limit.

Chapter 13: Troubleshooting and System Maintenance

732 13.4 Notifying Administrators of Failures

13.5 Issues with Client Commands 733

Event Type Format Description

RESERVATIONCORRUPTION <MESSAGE> Reservation corruption has
been detected.

RESERVATIONCREATED <RSVNAME> <RSVTYPE>
<NAME> <PRESENTTIME>
<STARTTIME>
<ENDTIME>
<NODECOUNT>

A new reservation has been
created.

RESERVATIONDESTROYED <RSVNAME> <RSVTYPE>
<PRESENTTIME>
<STARTTIME>
<ENDTIME>
<NODECOUNT>

A reservation has been
destroyed.

RMFAILURE <MESSAGE> The interface to the resource
manager has failed.

Perhaps the most valuable use of the notify program stems from the fact that additional
notifications can be easily inserted into Moab to handle site specific issues. To do this, locate
the proper block routine, specify the correct conditional statement, and add a call to the
routine notify(<MESSAGE>);.

Related Topics

l JOBREJECTPOLICY parameter

l MAILPROGRAM parameter

l Event Log Overview

13.5 Issues with Client Commands

In this topic:

13.5.1 Client Overview - page 734
13.5.2 Diagnosing Client Problems - page 734

Chapter 13: Troubleshooting and System Maintenance

13.5.1 Client Overview
Moab client commands are implemented as links to the executable mclient. When a
Moab client command runs, the client executable determines the name under which it runs
and behaves accordingly. At the time Moab was configured, a home directory was specified.
The Moab client attempts to open the configuration file, moab.cfg, in the etc/ folder of
this home directory on the node where the client command executes. This means that the
home directory specified at configure time must be available on all hosts where the Moab
client commands are executed. This also means that a moab.cfg file must be available in
the etc/ folder of this home directory. When the clients open this file, they will try to load
the SCHEDCFG parameter to determine how to contact the Moab server.

The home directory value specified at configure time can be overridden by creating
an /etc/moab.cfg file or by setting the MOABHOMEDIR environment variable.

Once the client has determined where the Moab server is located, it creates a message,
adds an encrypted checksum, and sends the message to the server. The Moab client and
Moab server must use a shared secret key for this to work. When the Moab server receives
the client request and verifies the message, it processes the command and returns a reply.

13.5.2 Diagnosing Client Problems
The easiest way to determine where client failures are occurring is to use built-in Moab
logging. On the client side, use the --loglevel flag. For example:

> showq --loglevel=9

This will display verbose logging information regarding the loading of the configuration file, connecting to the Moab
server, sending the request, and receiving a response.

This information almost always reveals the source of the problem. If it does not, the next
step is to look at the Moab server side logs; this is done using the following steps:

l Stop Moab scheduling so that the only activity is handling Moab client requests.

> mschedctl -s

l Set the logging level to very verbose.

> mschedctl -m loglevel 7

l Watch Moab activity.

> tail -f log/moab.log | more

Now, in a second window, issue any failing client command, such as showq.

The moab.log file will record the client request and any reasons it was rejected.

Chapter 13: Troubleshooting and System Maintenance

734 13.5 Issues with Client Commands

13.6 Tracking System Failures 735

13.6 Tracking System Failures

In this topic:

13.6.1 System Failures - page 735
13.6.1.A Disk Space - page 735
13.6.1.B Network - page 736
13.6.1.C Memory - page 736
13.6.1.D Processor Utilization - page 736

13.6.2 Internal Errors - page 736
13.6.2.A Logs - page 737

13.6.3 Reporting Failures - page 737

13.6.1 System Failures
The scheduler has a number of dependencies that may cause failures if not satisfied. These
dependencies are in the areas of disk space, network access, memory, and processor
utilization.

13.6.1.A Disk Space
The scheduler uses a number of files. If the file system is full or otherwise inaccessible, the
following behaviors might be noted:

Unavailable
File Behavior

moab.pid Scheduler cannot perform single instance check.

moab.ck* Scheduler cannot store persistent record of reservations, jobs, policies,
summary statistics, and so forth.

moab.cfg
/moab.dat

Scheduler cannot load local configuration.

log/* Scheduler cannot log activities.

stats/* Scheduler cannot write job records.

Chapter 13: Troubleshooting and System Maintenance

When possible, configure Moab to use local disk space for configuration files, statistics
files, and logs files. If any of these files are located in a networked file system (such as
NFS, DFS, or AFS) and the network or file server experience heavy loads or failures,
Moab server may appear sluggish or unresponsive and client command might fail.
Use of local disk space eliminates susceptibility to this potential issue.

13.6.1.B Network
The scheduler uses a number of socket connections to perform basic functions. Network
failures may affect the following facilities:

Network
Connection

Behavior

scheduler client Scheduler client commands fail.

resource
manager

Scheduler is unable to load/update information regarding nodes and
jobs.

accounting
manager

Scheduler is unable to validate account access or reserve/debit account
balances.

13.6.1.C Memory
Depending on cluster size and configuration, the scheduler may require up to 120 MB of
memory on the server host. If inadequate memory is available, multiple aspects of
scheduling might be negatively affected. The scheduler log files should indicate if memory
failures are detected and mark any such messages with the ERROR or ALERT keywords.

13.6.1.D Processor Utilization
On a heavily loaded system, the scheduler may appear sluggish and unresponsive.
However, no direct failures should result from this slowdown. Indirect failures may include
timeouts of peer services (such as the resource manager or accounting manager) or
timeouts of client commands. All timeouts should be recorded in the scheduler log files.

13.6.2 Internal Errors
The Moab scheduling system contains features to assist in diagnosing internal failures. If
the scheduler exits unexpectedly, the scheduler logs may provide information regarding

Chapter 13: Troubleshooting and System Maintenance

736 13.6 Tracking System Failures

13.7 Problems with Individual Jobs 737

the cause. If no reason can be determined, use of a debugger might be required.

13.6.2.A Logs
The first step in any exit failure is to check the last few lines of the scheduler log. In many
cases, the scheduler may have exited due to misconfiguration or detected system failures.
The last few lines of the log should indicate why the scheduler exited and what changes
would be required to correct the situation. If the scheduler did not intentionally exit,
increasing the LOGLEVEL parameter to 7, or higher, may help isolate the problem.

13.6.3 Reporting Failures
If an internal failure is detected on your system, the information of greatest value to
developers in isolating the problem will be the output of the gdb where subcommand and a
printout of all variables associated with the failure. In addition, a level 7 log covering the
failure can also help in determining the environment that caused the failure. If you
encounter such and require assistance, please submit a ticket at the following address:

https://support.adaptivecomputing.com/hpc-cloud-support-portal-2/

If you do not already have a support username and password, create a free account
to request a support ticket

13.7 Problems with Individual Jobs

To determine why a particular job will not start, there are several helpful commands:

checkjob -v
checkjob evaluates the ability of a job to start immediately. Tests include resource
access, node state, job constraints (such as startdate, taskspernode, and QoS). Additionally,
command line flags can be specified to provide further information.

Flag Description

-l <POLICYLEVEL> Evaluates impact of throttling policies on job feasibility.

-n <NODENAME> Evaluates resource access on specific node.

-r <RESERVATION_LIST> Evaluates access to specified reservations.

Chapter 13: Troubleshooting and System Maintenance

https://support.adaptivecomputing.com/hpc-cloud-support-portal-2/
https://support.adaptivecomputing.com/register

checknode
Displays detailed status of node.

mdiag -b
Displays various reasons job is considered blocked or non-queued.

mdiag -j
Displays high level summary of job attributes and performs sanity check on job
attributes/state.

showbf -v
Determines general resource availability subject to specified constraints.

13.8 Diagnostic Scripts

Moab Workload Manager provides diagnostic scripts that can help aid in monitoring the
state of the scheduler, resource managers, and other important components of the cluster
software stack. These scripts can also be used to help diagnose issues that might need to be
resolved with the help of Adaptive Computing support staff. This section introduces
available diagnostic scripts.

In this topic:

13.8.1 support-diag.py - page 738
13.8.1.A Synopsis - page 739
13.8.1.B Arguments - page 739

13.8.2 support.diag.pl - page 740
13.8.2.A Synopsis - page 740
13.8.2.B Arguments - page 740

13.8.1 support-diag.py
The support-diag.py script has a two-fold purpose. First, it can be used by a Moab
trigger or cron job to create a regular snapshot of the state of Moab. The script captures
the output of several Moab diagnostic commands (such as showq, mdiag -n, and mdiag
-S), gathers configuration/log files, and records pertinent operating system information.
This data is then compressed in a time-stamped tarball for easy long-term storage.

Chapter 13: Troubleshooting and System Maintenance

738 13.8 Diagnostic Scripts

13.8 Diagnostic Scripts 739

Second, the script provides Adaptive Computing support personnel with a complete
package of information that can be used to help diagnose configuration issues or system
bugs. After capturing the state of Moab, the resulting tarball can be sent to your Adaptive
Computing support contact for further diagnosis.

The script asks you for the trouble ticket number, -t <TICKET#>, or -n. If you chose to
enter -t <TICKET#> the script uploads your support diagnostic output to Adaptive
Computing Customer Support. The upload and ticket number request can be prevented
using the -n option.

13.8.1.A Synopsis
support-diag.py [<options>]

13.8.1.B Arguments

Argument Description

-h, --help Show this help message and exit.

-q, --diag-torque-off, --
without-torque

Disable Torque diagnostics.

-p TMPDIR, --tmp-dir=TMPDIR Use a different tmp directory to store output.

-n, --no-upload Do not upload to Adaptive Computing.

-t TICKET# Support ticket number.

-f, --full-mode Gather additional logs, stats and, moab.db
files.

-u TIMEOUT, --moab-
timeout=TIMEOUT

Define Moab command timeout (default: 300
seconds).

-d, --debug-mode support-diag print debug variables.

-o, --offline-mode Gather offline logging only.

-r, --ftp Use ftp instead of scp.

-V, --version Print version information.

Chapter 13: Troubleshooting and System Maintenance

13.8.2 support.diag.pl

This script is deprecated with the 8.0 release. Use the support-diag.py script
instead.

The support.diag.pl script has a two-fold purpose. First, it can be used by a Moab
trigger or cron job to create a regular snapshot of the state of Moab. The script captures
the output of several Moab diagnostic commands (such as showq, mdiag -n, and mdiag
-S), gathers configuration/log files, and records pertinent operating system information.
This data is then compressed in a time-stamped tarball for easy long-term storage.

The second purpose of the support.diag.pl script is to provide Adaptive Computing
support personnel with a complete package of information that can be used to help
diagnose configuration issues or system bugs. After capturing the state of Moab, the
resulting tarball could be sent to your Adaptive Computing support contact for further
diagnosis.

The support.diag.pl will ask you for the trouble ticket number then guide you
through the process of uploading the data to Adaptive Computing Customer Support. The
uploading and ticket number request can be prevented using the --no-upload and --
support-ticket=<SUPPORT_TICKET_ID> flags detailed in the Arguments table
that follows.

13.8.2.A Synopsis
support.diag.pl [--include-log-lines=<NUM>] [--diag-torque]

13.8.2.B Arguments

Argument Description

--include-log-
lines=<NUM>

Instead of including the entire moab.log file, only the last
<NUM> lines are captured in the diagnostics.

--diag-torque Diagnostic commands pertinent to the Torque resource
manager are included.

--no-upload Prevents the system from asking the user if they want to upload
the tarball to Adaptive Computing Customer Support.

--support-
ticket=<SUPPORT_

Prevents the system from asking the user for a support ticket
number.

Chapter 13: Troubleshooting and System Maintenance

740 13.8 Diagnostic Scripts

13.8 Diagnostic Scripts 741

Argument Description

TICKET_ID>

Chapter 13: Troubleshooting and System Maintenance

14.1 User Feedback Loops 742

Chapter 14: Improving User Effectiveness

In this chapter:

14.1 User Feedback Loops 742
14.1.1 Improving Job Size/Duration Requests 743
14.1.2 Improving Resource Requirement Specification 743

14.2 User Level Statistics 743
14.3 Enhancing Wallclock Limit Estimates 744
14.4 Job Start Time Estimates 744

14.4.1 Example 744
14.4.2 Estimation Types 745

14.5 Providing Resource Availability Information 746
14.6 Collecting Performance Information on Individual Jobs 746

14.1 User Feedback Loops

Almost invariably, real world systems outperform simulated systems, even when all
policies, reservations, workload, and resource distributions are fully captured and
emulated. What is it about real world usage that is not emulated via a simulation? The
answer is the user feedback loop, the impact of users making decisions to optimize their
level of service based on real time information.

A user feedback loop is created any time information is provided to a user that modifies job
submission or job management behavior. As in a market economy, the cumulative effect of
many users taking steps to improve their individual scheduling performance results in
better job packing, lower queue time, and better overall system utilization. Because this
behavior is beneficial to the system at large, system administrators and management
should encourage this behavior and provide the best possible information to them.

There are two primary types of information that help users make improved decisions:
cluster wide resource availability information and per-job resource utilization information.

In this topic:

Chapter 14: Improving User Effectiveness

14.1.1 Improving Job Size/Duration Requests - page 743
14.1.2 Improving Resource Requirement Specification - page 743

14.1.1 Improving Job Size/Duration Requests
Moab provides a number of informational commands that help users make improved job
management decisions based on real-time cluster wide resource availability information.
These commands include showbf, showstats -f, and showq. Using these commands, a user
can determine what resources are available and what job configurations statistically
receive the best scheduling performance.

14.1.2 Improving Resource Requirement Specification
A job's resource requirement specification tells the scheduler what type of compute nodes
are required to run the job. These requirements may state that a certain amount of
memory is required per node or that a node has a minimum processor speed. At many
sites, users will determine the resource requirements needed to run an initial job. Then, for
the next several years, they will use the same basic batch command file to run all of their
remaining jobs even though the resource requirements of their subsequent jobs may be
very different from their initial run. Users often do not update their batch command files
even though these constraints may be unnecessarily limiting the resources available to
their jobs for two reasons: (1) users do not know how much their performance will
improve if better information were provided and (2) users do not know exactly what
resources their jobs are using and are afraid to lower their job's resource requirements
since doing so might cause their job to fail.

To help with determining accurate per job resource utilization information, Moab provides
the FEEDBACKPROGRAM facility. This tool allows sites to send detailed resource utilization
information back to users via email, to store it in a centralized database for report
preparation, or use it in other ways to help users refine their batch jobs.

14.2 User Level Statistics

Besides displaying job queues, end-users can display a number of their own statistics. The
showstats -u <USER_ID> command displays current and historical statistics for a user as
seen in what follows:

$ showstats -u john
statistics initialized Wed Dec 31 17:00:00

Chapter 14: Improving User Effectiveness

743 14.2 User Level Statistics

14.3 Enhancing Wallclock Limit Estimates 744

|------ Active ------|--------------------------------- Completed -----------
------------------------|
user Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
john 1 1 30.96 9 0.00 300.0 0.00 148.9 0.00 ----- 0.62
0.00 4.33 100.00 48.87

Users can query available system resources with the showbf command. This can aid users
in requesting node configurations that are idle. Also, users can use the checkjob command
to determine what parameter(s) are restricting their job from running. Moab performs
better with more accurate wallclock estimates.

Moab must use an ODBC-compliant database to report statistics with Viewpoint
reports.

14.3 Enhancing Wallclock Limit Estimates

As explained in the previous section, showstats -u <USER_ID> reports statistics for a
given user. The showstats -u command can be accessed by all users. They can use
fields such as PHReq, PHDed, or WCAcc to gauge wallclock estimates. Accurate wallclock
estimates allow a job to be scheduled as soon as possible in a slot that it will fit in. Low or
high estimates can cause a job to be scheduled in a less favorable position.

14.4 Job Start Time Estimates

In this topic:

14.4.1 Example - page 744
14.4.2 Estimation Types - page 745

14.4.2.A Reservation-Based Estimates - page 745
14.4.2.B Backlog/Priority Estimates - page 745
14.4.2.C Historical Estimates - page 745

14.4.1 Example
Each user can use the showstart command to display estimated start and completion times.
The following example illustrates a typical response from issuing this command:

> showstart orion.13762

Chapter 14: Improving User Effectiveness

job orion.13762 requires 2 procs for 0:33:20
Estimated Rsv based start in 1:04:55 on Fri Jul 15 12:53:40
Estimated Rsv based completion in 2:44:55 on Fri Jul 15 14:33:40
Estimated Priority based start in 5:14:55 on Fri Jul 15 17:03:40
Estimated Priority based completion in 6:54:55 on Fri Jul 15 18:43:40
Estimated Historical based start in 00:00:00 on Fri Jul 15 11:48:45
Estimated Historical based completion in 1:40:00 on Fri Jul 15 13:28:45
Best Partition: fast

14.4.2 Estimation Types

14.4.2.A Reservation-Based Estimates
Reservation-based start time estimation incorporates information regarding current
administrative, user, and job reservations to determine the earliest time the specified job
can allocate the needed resources and start running. In essence, this estimate indicates the
earliest time the job will start, assuming this job is the highest priority job in the queue.

For reservation-based estimates, the information provided by this command is more
highly accurate if the job is highest priority, if the job has a reservation, or if the
majority of the jobs that are of higher priority have reservations. Consequently, site
administrators wanting to make decisions based on this information might want to
consider using the RESERVATIONDEPTH parameter to increase the number of
priority-based reservations. This can be set so that most, or even all, idle jobs receive
priority reservations and make the results of this command generally useful. The only
caution of this approach is that increasing the RESERVATIONDEPTH parameter
more tightly constrains the decisions of the scheduler and may result in slightly lower
system utilization (typically less than 8% reduction).

14.4.2.B Backlog/Priority Estimates
Priority-based job start analysis determines when the queried job will fit in the queue and
determines the estimated amount of time required to complete the jobs currently running
or scheduled to run before this job can start.

In all cases, if the job is running, this command returns the time the job starts. If the job
already has a reservation, this command returns the start time of the reservation.

14.4.2.C Historical Estimates
Historical analysis uses historical queue times for jobs that match a similar processor count
and job duration profile. This information is updated on a sliding window that is
configurable within moab.cfg.

Chapter 14: Improving User Effectiveness

745 14.4 Job Start Time Estimates

14.5 Providing Resource Availability Information 746

Related Topics

l showstart command

14.5 Providing Resource Availability Information

Moab provides commands to allow the user to query available resources. The showbf
command displays what resources are available for immediate use. Using different
command line parameters, such as -m, -n, and -q allows the user to query resources
based on memory, nodecount, or QoS respectively.

14.6 Collecting Performance Information on
Individual Jobs

Individual job information can be collected from the statistics file in STATDIR, which
contains start time, end time, end state, QoS requested, QoS delivered, and so forth for
different jobs. Also, Moab optionally provides similar information to a site's feedback
program. See section 21.1 User Feedback Overview for more information about the
feedback program.

Chapter 14: Improving User Effectiveness

15.1 Testing New Releases and Policies 747

Chapter 15: Cluster Analysis and Testing

In this chapter:

15.1 Testing New Releases and Policies 747
15.1.1 Moab Evaluation Modes 748
15.1.2 Testing New Releases 749
15.1.3 Testing New Policies 750
15.1.4 Moab Side-by-Side 751

15.2 Testing New Middleware 752
15.2.1 Analysis Aspects 752
15.2.2 General Analysis 754
15.2.3 Native Mode Analysis 754

15.3 Workload Event Format 755
15.3.1 Workload Event Record Format 755
15.3.2 Reservation Event Records 764
15.3.3 Recording Job Events 765

Moab has a number of unique features that allow site administrators to visualize current
cluster behavior and performance, safely evaluate changes on production systems, and
analyze probable future behaviors within a variety of environments.

These capabilities are enabled through a number of Moab facilities that might not appear
to be closely related at first. However, taken together, these facilities allow organizations
the ability to analyze their cluster without the losses associated with policy conflicts,
unnecessary downtime, and faulty systems middleware.

15.1 Testing New Releases and Policies

In this topic:

15.1.1 Moab Evaluation Modes - page 748
15.1.1.A MONITOR Mode - page 748
15.1.1.B TEST Mode - page 749
15.1.1.C INTERACTIVE Mode - page 749

Chapter 15: Cluster Analysis and Testing

15.1.2 Testing New Releases - page 749
15.1.3 Testing New Policies - page 750

15.1.3.A Verifying Correct Specification of New Policies - page 750
15.1.3.B Verifying Correct Behavior of New Policies - page 751

15.1.4 Moab Side-by-Side - page 751

15.1.1 Moab Evaluation Modes

15.1.1.A MONITOR Mode
Moab supports a scheduling mode called MONITOR. In this mode, the scheduler initializes,
contacts the resource manager and other peer services, and conducts scheduling cycles
exactly as it would if running in NORMAL or production mode. Jobs are prioritized,
reservations created, policies and limits enforced, and administrator and end-user
commands enabled. The key difference is that although live resource management
information is loaded, MONITOR mode disables Moab's ability to start, preempt, cancel, or
otherwise modify jobs or resources. Moab continues to attempt to schedule exactly as it
would in NORMAL mode, but its ability to actually impact the system is disabled. Using this
mode, a site can quickly verify correct resource manager configuration and scheduler
operation. This mode can also be used to validate new policies and constraints. In fact,
Moab can be run in MONITOR mode on a production system while another scheduler or
even another version of Moab is running on the same system. This unique ability can allow
new versions and configurations to be fully tested without any exposure to potential
failures and with no cluster downtime.

To run Moab in MONITOR mode, simply set the MODE attribute of the SCHEDCFG
parameter to MONITOR and start Moab. Normal scheduler commands can be used to
evaluate configuration and performance. Diagnostic commands can be used to look for any
potential issues. Further, the Moab log file can be used to determine which jobs Moab
attempted to start, and which resources Moab attempted to allocate.

If another instance of Moab is running in production and a site administrator wants to
evaluate an alternate configuration or new version, this is easily done but care should be
taken to avoid conflicts with the primary scheduler. Potential conflicts include statistics
files, logs, checkpoint files, and user interface ports. One of the easiest ways to avoid these
conflicts is to create a new test directory with its own log and statistics subdirectories. The
new moab.cfg file can be created from scratch or based on the existing moab.cfg file
already in use. In either case, make certain that the PORT attribute of the SCHEDCFG
parameter differs from that used by the production scheduler by at least two ports. If
testing with the production binary executable, the MOABHOMEDIR environment variable

Chapter 15: Cluster Analysis and Testing

748 15.1 Testing New Releases and Policies

15.1 Testing New Releases and Policies 749

should be set to point to the new test directory to prevent Moab from loading the
production moab.cfg file.

15.1.1.B TEST Mode
TEST mode behaves much like MONITOR mode with the exception that Moab will log the
scheduling actions it would have taken to the stats/<DAY>.events file. Using this file,
sites can determine the actions Moab would have taken if running in NORMAL mode and
verify all actions are in agreement with expected behavior.

15.1.1.C INTERACTIVE Mode
INTERACTIVE mode allows for evaluation of new versions and configurations in a
manner different from MONITOR mode. Instead of disabling all resource and job control
functions, Moab sends the desired change request to the screen and requests permission
to complete it. For example, before starting a job, Moab might post something like the
following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying it
correctly meets desired site policies. Moab will then execute the specified command. This
mode is highly useful in validating scheduler behavior and can be used until configuration
is appropriately tuned and all parties are comfortable with the scheduler's performance. In
most cases, sites will want to set the scheduling mode to NORMAL after verifying correct
behavior.

15.1.2 Testing New Releases
By default, Moab runs in a mode called NORMAL, which indicates that it is responsible for
the cluster. It loads workload and resource information, and is responsible for managing
that workload according to mission objectives and policies. It starts, cancels, preempts, and
modifies jobs according to these policies.

If Moab is configured to use a mode called TEST, it loads all information, performs all
analysis, but, instead of actually starting or modifying a job, it merely logs the fact that it
would have done so. A test instance of Moab can run at the same time as a production
instance of Moab. A test instance of Moab can also run while a production scheduler of
another type (such as PBS) is simultaneously running. This multi-scheduler ability allows
stability and performance tests to be conducted that can help answer the following
questions:

Chapter 15: Cluster Analysis and Testing

l What impact do Moab services have on network, processor, and memory load?

l What impact do Moab services have on the underlying resource manager?

l Is Moab able to correctly import resource, workload, policy, and credential
information from the underlying resource manager?

l Are Moab's logged scheduling decisions in line with mission objectives?

In test mode, all of Moab's commands and services operate normally allowing the use of
client commands to perform analysis. In most cases, the mdiag command is of greatest
value, displaying loaded values, as well as reporting detected failures, inconsistencies, and
object corruption. The following table highlights the most common diagnostics performed:

Command Object

mdiag -n Compute nodes, storage systems, network systems, and generic resources

mdiag -j Applications and static jobs

mdiag -u
mdiag -g
mdiag -a

User, group, and account credentials

mdiag -c Queues and policies

mdiag -R Resource manager interface and performance

mdiag -S Scheduler/system level failures introduced by corrupt information

These commands will not only verify proper scheduling objects but will also analyze the
behavior of each resource manager, recording failures, and delivered performance. If any
misconfiguration, corruption, interface failure, or internal failure is detected, it can be
addressed in the test mode instance of Moab with no urgency or risk to production cluster
activities.

15.1.3 Testing New Policies

15.1.3.A Verifying Correct Specification of New Policies
The first aspect of verifying a new policy is verifying correct syntax and semantics. If
manually editing the moab.cfg file, the following command can be used for validation:

> mdiag -C

Chapter 15: Cluster Analysis and Testing

750 15.1 Testing New Releases and Policies

15.1 Testing New Releases and Policies 751

This command will validate the configuration file and report any misconfiguration.

15.1.3.B Verifying Correct Behavior of New Policies
If concern exists over the impact of a new policy, an administrator can babysit Moab by
putting it into INTERACTIVE mode. In this mode, Moab will schedule according to all
mission objectives and policies, but before taking any action, it will request that the
administrator confirm the action. See the interactive mode overview for more information.

In this mode, only actions approved by the administrator will be carried out. Once proper
behavior is verified, the Moab mode can be set to NORMAL.

15.1.4 Moab Side-by-Side
Moab provides an additional evaluation method that allows a production cluster or other
resource to be logically partitioned along resource and workload boundaries and allows
different instances of Moab to schedule different partitions. The parameters
IGNORENODES, IGNORECLASSES, IGNOREJOBS, and IGNOREUSERS are used to specify how
the system is to be partitioned. In the following example, a small portion of an existing
cluster is partitioned for temporary grid testing so that there is no impact on the
production workload:

SCHEDCFG[prod] MODE=NORMAL SERVER=orion.cxz.com:42020
RMCFG[Torque] TYPE=PBS
IGNORENODES node61,node62,node63,node64
IGNOREUSERS gridtest1,gridtest2
...
SCHEDCFG[prod] MODE=NORMAL SERVER=orion.cxz.com:42030
RMCFG[Torque] TYPE=PBS
IGNORENODES !node61,node62,node63,node64
IGNOREUSERS !gridtest1,gridtest2
...

Two completely independent Moab servers schedule the cluster. The first server handles all jobs and nodes except for
the ones involved in the test. The second server handles only test nodes and test jobs. While both servers actively talk
and interact with a single Torque resource manager, the IGNORE* parameters cause them to not schedule, nor even
see the other partition and its associated workload.

When enabling Moab side-by-side, each Moab server should have an independent
home directory to prevent logging and statistics conflicts. Also, in this environment,
each Moab server should communicate with its client commands using a different
port as shown in the previous example.

When specifying the IGNORENODES parameter, the exact node names, as returned
by the resource manager, should be specified.

Chapter 15: Cluster Analysis and Testing

Related Topics

l Testing New Versions and Configurations

15.2 Testing New Middleware

Moab can be used to drive new middleware stress testing resource management systems,
information services, allocation services, security services, data staging services, and other
aspects. Moab is unique when compared to other stress testing tools as it can perform the
tests in response to actual or recorded workload traces, performing a playback of events
and driving the underlying system as if it were part of the production environment.

This feature can be used to identify scalability issues, pathological use cases, and
accounting irregularities in anything from LDAP, to NIS, and NFS.

Using Moab's time management facilities, Moab can drive the underlying systems in
accordance with the real recorded distribution of time, at a multiplier of real time, or as fast
as possible.

In this topic:

15.2.1 Analysis Aspects - page 752
15.2.2 General Analysis - page 754
15.2.3 Native Mode Analysis - page 754

15.2.1 Analysis Aspects
The following table describes some aspects of cluster analysis that can be driven by Moab:

System Details

Accounting Manager Use test mode to drive scheduling queries, allocation debits, and
reservations to accounting packages. Verify synchronization of
cluster statistics and stress test interfaces and underlying databases.

On-
Demand/Provisioning
Services

Use native resource manager mode to drive triggers and resource
management interfaces to enable dynamic provisioning of
hardware, operating systems, application software, and services.
Test reliability and scalability of data servers, networks, and
provisioning software, as well as the interfaces and business logic
coordinating these changes.

Chapter 15: Cluster Analysis and Testing

752 15.2 Testing New Middleware

15.2 Testing New Middleware 753

System Details

Resource Monitoring Use test or native resource manager mode to actively load
information from compute, network, storage, and software license
managers confirming validity of data, availability during failures,
and scalability.

With each evaluation, the following tests can be enabled:

l functionality

l reliability
o hard failure

o hardware failure - compute, network, and data failures
o software failure - loss of software services (NIS, LDAP, NFS, database)
o soft failure
o network delays, full file system, dropped network packets

o corrupt data

l performance

l determine peak responsiveness in seconds/request

l determine peak throughput in requests/second

l determine responsiveness under heavy load conditions

l determine throughput under external load conditions
o large user base (many users, groups, accounts)
o large workload (many jobs)
o large cluster (many nodes)

l manageability
o full accounting for all actions/events
o actions/failures can be easily and fully diagnosed

If using a native resource manager and you do not want to actually submit real
workload, you can set the environment variable MFORCESUBMIT to allow virtual
workload to be managed without ever launching a real process.

Chapter 15: Cluster Analysis and Testing

15.2.2 General Analysis
For all middleware interfaces, Moab provides built-in performance analysis and failure
reporting. Diagnostics for these interfaces are available via the mdiag command.

15.2.3 Native Mode Analysis
Using native mode analysis, organizations can run Moab in normal mode with all facilities
fully enabled, but with the resource manager fully emulated. With a native resource
manager interface, any arbitrary cluster can be emulated with a simple script or flat text
file. Artificial failures can be introduced, jobs can be virtually running, and artificial
performance information generated and reported.

In the simplest case, emulation can be accomplished using the following configuration:

SCHEDCFG[natcluster] MODE=NORMAL SERVER=test1.bbli.com
ADMINCFG[1] USERS=dev
RMCFG[natcluster] TYPE=NATIVE CLUSTERQUERYURL=file://$HOME/cluster.dat

The preceding configuration will load cluster resource information from the file
cluster.dat. An example resource information file follows:

node01 state=idle cproc=2
node02 state=idle cproc=2
node03 state=idle cproc=2
node04 state=idle cproc=2
node05 state=idle cproc=2
node06 state=idle cproc=2
node07 state=idle cproc=2
node08 state=idle cproc=2

In actual usage, any number of node attributes can be specified to customize these nodes,
but in this example, only the node state and node configured processors attributes are
specified.

The RMCFG flag NORMSTART indicates that Moab should not actually issue a job start
command to an external entity to start the job, but rather start the job logically internally
only.

If it is desirable to take an arbitrary action at the start of a job, end of a job, or anywhere in
between, the JOBCFG parameter can be used to create one or more arbitrary triggers to
initiate internal or external events. The triggers can do anything from executing a script, to
updating a database, to using a Web service.

Using native resource manager mode, jobs can be introduced using the msub command
according to any arbitrary schedule. Moab will load them, schedule them, and start them
according to all site mission objectives and policies and drive all interfaced services as if
running in a full production environment.

Chapter 15: Cluster Analysis and Testing

754 15.2 Testing New Middleware

15.3 Workload Event Format 755

15.3 Workload Event Format

Moab workload accounting records fully describe all scheduling relevant aspects of batch
jobs including resources requested and used, time of all major scheduling events (such as
submission time and start time), the job credentials used, and the job execution
environment. Each job trace is composed of a single line consisting of either attribute=value
pairs or whitespace-delimited fields as shown in the following table. The attribute=value
pairs format can be found at Query Workload Data Format.

Moab can be configured to provide this information in flat text tabular form or in XML
format conforming to the SSS 1.0 job description specification.

In this topic:

15.3.1 Workload Event Record Format - page 755
15.3.2 Reservation Event Records - page 764
15.3.3 Recording Job Events - page 765

15.3.1 Workload Event Record Format
All job events (JOBSUBMIT, JOBSTART, JOBEND, and so forth) provide job data in a
standard format as described in the following table:

Chapter 15: Cluster Analysis and Testing

Workload Event Record Format

Field Name Fi
eld
In
de
x

Data Format Default
Value

Details

Event Time
(Human
Readable)

1 HH:MM:SS - Specifies time event
occurred.

Event Time
(Epoch)

2 <epochtime>:<e
ventID>

- Specifies time event
occurred and the unique
event ID.

Object Type 3 job - Specifies record object type.

Object ID 4 <STRING> - Unique object identifier.

Object Event 5 One of jobcancel,
jobcheckpoint,
jobend,
jobfailure,
jobhold,
jobmigrate,
jobpreempt,
jobreject,
jobresume,
jobstart or
jobsubmit

- Specifies record event type.

Nodes
Requested

6 <INTEGER> 0 Number of nodes requested
(0 = no node request count
specified).

Tasks
Requested

7 <INTEGER> 1 Number of tasks requested.

User Name 8 <STRING> - Name of user submitting job.

Group Name 9 <STRING> - Primary group of user
submitting job.

Wallclock 10 <INTEGER> 1 Maximum allowed job

Chapter 15: Cluster Analysis and Testing

756 15.3 Workload Event Format

15.3 Workload Event Format 757

Field Name Fi
eld
In
de
x

Data Format Default
Value

Details

Limit duration (in seconds).

Job Event
State

11 <STRING> - Job state at time of event.

Required
Class

12 <STRING> [DEFAU
LT:
1]

Class/queue required by job
specified as square bracket
list of <QUEUE>
[:<QUEUEINSTANCE>]
requirements. (For example:
[batch:1]).

Submission
Time

13 <INTEGER> 0 Epoch time when job was
submitted.

Dispatch
Time

14 <INTEGER> 0 Epoch time when scheduler
requested job begin
executing.

Start Time 15 <INTEGER> 0 Epoch time when job began
executing. This is usually
identical to Dispatch Time.

Completion
Time

16 <INTEGER> 0 Epoch time when job
completed execution.

Required
Node
Architecture

17 <STRING> - Required node architecture
if specified.

Required
Node
Operating
System

18 <STRING> - Required node operating
system if specified.

Required
Node
Memory

19 One of >, >=, =, <=,
<

>= Comparison for determining
compliance with required
node memory.

Chapter 15: Cluster Analysis and Testing

Field Name Fi
eld
In
de
x

Data Format Default
Value

Details

Comparison

Required
Node
Memory

20 <INTEGER> 0 Amount of required
configured RAM (in MB) on
each node.

Required
Node Disk
Comparison

21 One of >, >=, =,
<=, <

>= Comparison for determining
compliance with required
node disk.

Required
Node Disk

22 <INTEGER> 0 Amount of required
configured local disk (in
MB) on each node.

Required
Node

Attributes/F
eatures

23 <STRING> - Square bracket enclosed list
of node features required by
job if specified. (For
example: [fast][ethernet])

System
Queue
Time

24 <INTEGER> 0 Epoch time when job met all
fairness policies.

Tasks
Allocated

25 <INTEGER> <TASKS
REQUES
TED>

Number of tasks actually
allocated to job.

In most cases, this
field is identical to
field #7, Tasks
Requested.

Required
Tasks Per
Node

26 <INTEGER> -1 Number of Tasks Per Node
required by job or '-1' if no
requirement specified.

QOS 27 <STRING>
[:<STRING>]

- QoS requested/assigned
using the format <QOS_

Chapter 15: Cluster Analysis and Testing

758 15.3 Workload Event Format

15.3 Workload Event Format 759

Field Name Fi
eld
In
de
x

Data Format Default
Value

Details

REQUESTED>
[:<QOS_DELIVERED>].
(For example:
hipriority:bottomfeeder)

JobFlags 28 <STRING>
[:<STRING>]...

- Square bracket delimited list
of job attributes. (For
example: [BACKFILL]
[PREEMPTEE]).

Account
Name

29 <STRING> - Name of account associated
with job if specified.

Executable 30 <STRING> - Name of job executable if
specified.

Resource
Manager
Extension
String

31 <STRING> - Resource manager specific
list of job attributes if
specified. See the Resource
Manager Extension
Overview for more
information.

Bypass
Count

32 <INTEGER> -1 Number of times job was
bypassed by lower priority
jobs via backfill or '-1' if not
specified.

ProcSeconds
Utilized

33 <DOUBLE> 0 Number of processor
seconds actually used by job.

Partition
Name

34 <STRING> [DEFAU
LT]

Name of partition where job
ran.

Dedicated
Processors
per Task

35 <INTEGER> 1 Number of processors
required per task.

Chapter 15: Cluster Analysis and Testing

Field Name Fi
eld
In
de
x

Data Format Default
Value

Details

Dedicated
Memory per
Task

36 <INTEGER> 0 Amount of RAM (in MB)
required per task.

Dedicated
Disk per
Task

37 <INTEGER> 0 Amount of local disk (in
MB) required per task.

Dedicated
Swap per
Task

38 <INTEGER> 0 Amount of virtual memory
(in MB) required per task.

Start Date 39 <INTEGER> 0 Epoch time indicating
earliest time job can start.

End Date 40 <INTEGER> 0 Epoch time indicating latest
time by which job must
complete.

Allocated
Host List

41 <hostname>
[,
<hostname>]...

- Comma-delimited list of
hosts allocated to job. (For
example:
node001,node004).

Resource
Manager
Name

42 <STRING> - Name of resource manager if
specified.

Required
Host List

43 <hostname>
[,
<hostname>]...

- List of hosts required by job.
(If the job's taskcount is
greater than the specified
number of hosts, the
scheduler must use these
nodes in addition to others;
if the job's taskcount is less
than the specified number of
hosts, the scheduler must
select needed hosts from
this list.)

Chapter 15: Cluster Analysis and Testing

760 15.3 Workload Event Format

15.3 Workload Event Format 761

Field Name Fi
eld
In
de
x

Data Format Default
Value

Details

Reservation 44 <STRING> - Name of reservation
required by job if specified.

Application
Simulator
Data

45 <STRING>
[:<STRING>]

- Name of application
simulator module and
associated configuration
data. (For example:

HSM:IN=infile.txt:14
0000;OUT=
outfile.txt:500000).

Set
Description

46 <STRING>:
<STRING>
[:<STRING>]

- Set constraints required by
node in the form
<SetConstraint>
:<SetType>
[:<SetList>] where
SetConstraint is one of
ONEOF, FIRSTOF, or
ANYOF, SetType is one of
PROCSPEED, FEATURE, or
NETWORK, and SetList is an
optional colon delimited list
of allowed set attributes.
(For example:
ONEOF:PROCSPEED:350:
450:500)

Job Message 47 <STRING> - Job messages including
resource manager,
scheduler, and administrator
messages if specified.

Job Cost 48 <DOUBLE> 0.0 Cost of executing job
incorporating resource
consumption metric,
resource quantity consumed,
and credential, allocated
resource, and delivered QoS
charge rates.

Chapter 15: Cluster Analysis and Testing

Field Name Fi
eld
In
de
x

Data Format Default
Value

Details

History 49 <STRING> - List of job events impacting
resource allocation (XML).

History information is
only reported in Moab
5.1.0 and higher.

Utilization 50 Comma-delimited
list of one or more
of the following:
<ATTR>=
<VALUE> pairs,
where <VALUE> is
a double and
<ATTR> is one of
the following:
network (in MB
transferred),
license (in
license-seconds),
storage (in MB-
seconds stored), or
gmetric:<TYPE>.

- Cumulative resources used
over life of job.

Estimate
Data

51 <STRING> - List of job estimate usage.

Completion
Code

52 <INTEGER> - Job exit status/completion
code.

Extended
Memory
Load
Information

53 <STRING> - Deprecated. Extended
memory usage statistics
(max, mem, avg, and so
forth).

Extended
CPU Load
Information

54 <STRING> - Extended CPU usage
statistics (max, mem, avg,
and so forth).

Chapter 15: Cluster Analysis and Testing

762 15.3 Workload Event Format

15.3 Workload Event Format 763

Field Name Fi
eld
In
de
x

Data Format Default
Value

Details

Generic
Metric
Averages

55 <STRING> -1 Generic metric averages.

Effective
Queue
Duration

56 <INTEGER> -1 The amount of time, in
seconds, that the job was
eligible for scheduling.

Job
Submission
Arguments

57 <STRING> - The job's submit arguments
and script. This field is
enabled by setting
STOREJOBSUBMISSION to
TRUE.

If a field has an empty value, Moab will use a single dash (-) as a placeholder in the
event record.

Fields that contain a description string such as Job Message use a packed string
format. The packed string format replaces white space characters such as spaces and
carriage returns with a hex character representation. For example a blank space is
represented as \20. Since fields in the event record are space delimited, this
preserves the correct order and spacing of fields in the record.

15.3.1.A Sample Workload Event

13:21:05 110244355 job 1413 JOBEND 20 20 josh staff 86400 Removed [batch:1] 887343658
889585185 \
889585185 889585411 ethernet R6000 AIX53 >= 256 >= 0 - 889584538 20 0 0 2 0 test.cmd \
1001 6 678.08 0 1 0 0 0 0 0 - 0 - - - - - - - - 0.0 - - - 0 - -

JOBSUBMISSIONPOLICY Value Critical Time Based Fields

NORMAL WallClock Limit
Submission Time
StartTime
Completion Time

Chapter 15: Cluster Analysis and Testing

JOBSUBMISSIONPOLICY Value Critical Time Based Fields

CONSTANTJOBDEPTH
CONSTANTPSDEPTH

WallClock Limit
StartTime
Completion Time

15.3.2 Reservation Event Records
All reservation events provide reservation data in a standard format as described in the
following table:

Field
Name

Field
Index

Data Format Default
Value

Details

Event
Time
(Human)

0 [HH:MM:SS] - Specifies time event occurred.

Event
Time
(Epoch)

1 <epochtime> - Specifies time event occurred.

Object
Type

2 rsv - Specifies record object type.

Object ID 3 <STRING> - Unique object identifier.

Object
Event

4 One of rsvcreate,
rsvstart,
rsvmodify,
rsvfail or rsvend

- Specifies record event type.

Creation
Time

5 <EPOCHTIME> - Specifies epoch time of
reservation start date.

Start
Time

6 <EPOCHTIME> - Specifies epoch time of
reservation start date.

End Time 7 <EPOCHTIME> - Specifies epoch time of
reservation end date.

Tasks
Allocated

8 <INTEGER> - Specifies number of tasks
allocated to reservation at event

Chapter 15: Cluster Analysis and Testing

764 15.3 Workload Event Format

15.3 Workload Event Format 765

Field
Name

Field
Index

Data Format Default
Value

Details

time.

Nodes
Allocated

9 <INTEGER> - Specifies number of nodes
allocated to reservation at event
time.

Total
Active
Proc-
Seconds

10 <INTEGER> - Specifies proc-seconds reserved
resources were dedicated to one
or more job at event time.

Total
Proc-
Seconds

11 <INTEGER> - Specifies proc-seconds resources
were reserved at event time.

Hostlist 12 <comma-delimited
list of
hostnames>

- Specifies list of hosts reserved at
event time.

Owner 13 <STRING> - Specifies reservation ownership
credentials.

ACL 14 <STRING> - Specifies reservation access
control list.

Comment 15 <STRING> - Specifies general human
readable event message.

Command
Line

16 <STRING> - Displays the command line
arguments used to create the
reservation (only shows on the
rsvcreate event).

15.3.3 Recording Job Events
Job events occur when a job undergoes a definitive change in state. Job events include
submission, starting, cancellation, migration, and completion. Some site administrators do
not want to use an external accounting system and use these logged events to determine
their clusters' accounting statistics. Moab can be configured to record these events in the
appropriate event file found in the Moab stats/ directory. To enable job event recording

Chapter 15: Cluster Analysis and Testing

for both local and remotely staged jobs, use the RECORDEVENTLIST parameter. For
example:

RECORDEVENTLIST JOBCANCEL,JOBCOMPLETE,JOBSTART,JOBSUBMIT
...

This configuration records an event each time both remote and/or local jobs are canceled, run to completion,
started, or submitted. The Event Logs section details the format of these records.

Related Topics

l Event Logging Overview

Chapter 15: Cluster Analysis and Testing

766 15.3 Workload Event Format

767

Chapter 16: Green Computing

SearchDataCenter.com defines green computing as the environmentally responsible use of
computers and related resources. Such practices include the implementation of energy-
efficient central processing units (CPUs), servers, and peripherals, as well as reduced
resource consumption and proper disposal of electronic waste (e-waste).

The Moab HPC Suite contains power management features that give a Moab administrator
the ability to implement policies that can conserve energy and save on operational costs,
often without affecting an HPC system's performance with regard to job execution times.

Effective power management means managing power or energy consumption while a
compute node is actively running jobs, and when a compute node is idle. Both scenarios
require different tools and policies:

l Active compute node power management is mainly performed through control of the
clock frequency of the processor(s) on a compute node while a job is executing.
Decreasing the clock frequency can reduce energy usage.

l Idle compute node power management is mainly performed by placing a compute
node into different low-power states, such as standby and suspend, or no-power
states, such as hibernate and shutdown.

In this chapter:

16.1 Green Computing Methods 768
16.1.1 Moab Edition Green Features 768
16.1.2 Moab Power Management Methods 769
16.1.3 Theory of Operation 771
16.1.4 Active Node Power Management 777
16.1.5 Idle Node Power Management 780
16.1.6 Green Policy Configuration 781

16.2 Deploying Adaptive Computing IPMI Scripts 781
16.2.1 Prerequisites 781
16.2.2 To Deploy the Adaptive Computing IPMI Scripts 782

16.3 Choosing which Nodes Moab Powers On or Off 783
16.4 Enabling Green Computing 784
16.5 Adjusting Green Pool Size 787
16.6 Handling Power-Related Events 788
16.7 Maximizing Scheduling Efficiency 788

Chapter 16: Green Computing

16.8 Putting Idle Nodes in Power-Saving States 789
16.9 Troubleshooting Green Computing 790

16.1 Green Computing Methods

In this topic:

16.1.1 Moab Edition Green Features - page 768
16.1.2 Moab Power Management Methods - page 769

16.1.2.A Moab View of Power Management - page 769
16.1.2.B Moab Power RMs - page 770
16.1.2.C Power Management Scripts - page 770
16.1.2.D Moab System Jobs - page 770
16.1.2.E Green Policies - page 771

16.1.3 Theory of Operation - page 771
16.1.3.A Moab-Only Method - page 772
16.1.3.B Moab+MWS Method - page 773

16.1.4 Active Node Power Management - page 777
16.1.4.A Power/Performance Profiling - page 778

16.1.5 Idle Node Power Management - page 780
16.1.6 Green Policy Configuration - page 781

16.1.1 Moab Edition Green Features
The table below identifies the Moab power management features and/or methods
available in the Moab HPC Suite.

Feature or Method

CPU Clock Frequency Control:

l Moab Job Submission Option
l Torque Job Submission Option
l Moab Job Template Option

Manual Power Management:

Chapter 16: Green Computing

768 16.1 Green Computing Methods

16.1 Green Computing Methods 769

Feature or Method

l Moab-based on and off states
l Torque-based low-power and no-power states

Automated Power Management and Green Policies:

l Moab-only global-level policies and power management for on and off states
l Moab/Moab Web Services-based global, partition, and node-level policies and power

management for low-power and no-power states
l Green Idle Node Pool Management Policies

16.1.2 Moab Power Management Methods
Moab supports two separate and mutually-exclusive methods for managing the power
state of compute nodes, which affects energy consumption. The first method, introduced in
Moab 7.2, allows an administrator to manually power on and power off compute nodes and
to create a global set of green policies that automatically perform these two functions based
on specific conditions involving idle compute nodes. The second method, introduced in
Moab 8.0 and Torque 5.0, give an administrator additional power states besides on and
off and offer finer control of green policies at the global, partition, and node levels. Before
delving into the theory of operation of these two separate methods, an administrator must
understand how Moab views power management regardless of which method is used.

16.1.2.A Moab View of Power Management
Moab is not aware of the actual power state of nodes. From Moab's perspective, nodes are
only on or off. If Moab needs a node that is off, it issues a power-on job prior to scheduling
the incoming job.

In addition, in order to schedule a job to a compute node, Moab requires the compute
node's workload resource manager, which in our example is Torque, to report the compute
node's state is idle. When the compute node's binary power state indicates on and the
RM indicates the compute node's state is idle, Moab will schedule jobs to the compute
node. Any value other than idle for the node's state and Moab will not schedule a job to
the node. If the power state is off, Moab issues a power-on job as a dependency to the
regular job.

Moab performs compute node power management entirely through power management
resource managers, or Power RMs. Each of the two power management methods
mentioned above has its own Power RM implementation. The older Moab-only method uses
Python-based scripts to implement a power RM while the newer Moab+Moab Web Services

Chapter 16: Green Computing

(MWS)-based method uses a Java-based MWS RM power management plug-in that runs
much simpler Python-based scripts.

These Power RMs perform all power-related management and monitoring, meaning power
state control and power state query, respectively, and only report back to Moab whether a
compute node is in a state where it can run jobs (on) or not (off). All actual power state-
aware control and management is performed by the power RMs.

16.1.2.B Moab Power RMs
Adaptive Computing provides two power management methods to handle different site
scenarios; mainly for site-specific security policies. The older method handles sites with a
security policy that does not permit web service-based services, which can be an attack
vector, or sites that do not want to run an MWS service.

The newer method uses the MWS RM plug-in feature, which allows an administrator to
instantiate a separate RM power management plug-in instance for different partitions, or
different compute nodes for situations where different compute node hardware requires
the use of different power management commands run from Python scripts.

16.1.2.C Power Management Scripts
Each power management method, old or new, employs at some point a script that allows
the administrator to customize power management for a site, which may be required
because the working reference scripts provided by Adaptive Computing (based on
OpenIPMI tools) do not use the power management commands specific to the site's vendor-
provided hardware.

16.1.2.D Moab System Jobs
Moab performs power management functions through a mechanism known as system jobs.
A Moab system job is a special, separately scheduled job that performs some Moab system
function (e.g., power management, data-staging) that Moab executes on the Moab head
node and not on a compute node. This allows Moab to apply policies such as a job wallclock
estimate, etc, to system-related functions, which can aid error recovery procedures, etc.

System jobs perform internal Moab-related functions on Moab's behalf, are nearly always
script-based, and usually require some customization by the Moab administrator in order
to perform the needed function for the HPC system site. For example, the administrator
might have to modify power management scripts so they use a site's hardware vendor-
specific power management commands to effect power state changes in compute nodes.

To create a system job, Moab internally submits an administrator-defined script, with a
path typically specified as a Moab *URL parameter, to itself, which it flags as a system job.

Chapter 16: Green Computing

770 16.1 Green Computing Methods

16.1 Green Computing Methods 771

Moab schedules the job and because it is flagged as a system job, executes the script on the
head node. Moab submits a system job whenever it needs to send a power on or off
command to a Power RM. Administrators can easily recognize queued and running power
management system jobs in the showq command output as their job ID has the format
id.poweron and id.poweroff, where id is the internally generated Moab job ID
number and .poweron and .poweroff are suffixes appended to the job ID number
that represent Moab's on and off commands sent to Power RMs.

16.1.2.E Green Policies
Moab provides green policies that automate power management for idle compute nodes,
which an administrator can modify and/or configure to control the power state of compute
nodes not always in use. These policies allow Moab to dynamically control the power state
of compute nodes between the active running state or power-on nodes that may be
needed. It also allows Moab to power-off nodes that are idle and wasting energy. Which
power state such compute nodes enter depends entirely on the commands the
administrator configures and/or modifies in a power RM's scripts and, for the newer
Moab+MWS method, on configuration information specified for each MWS RM power
management plug-in instance.

The green policies maintain a green idle node pool, the size of which the administrator
configures. As jobs start and use idle nodes from the pool, Moab replenishes the pool by
performing an on command on those compute nodes on which it previously had
performed an off command, therefore bringing them into the idle node pool as they enter
into an active running state. When jobs finish and the pool has excess idle nodes, Moab
performs an off command on the excess nodes, which removes them from the idle pool.
Therefore, Moab maintains a pool of available idle nodes for immediate use by submitted
jobs and reduces energy consumption by powering off any idle nodes in excess of the pool
size.

16.1.3 Theory of Operation
Moab itself operates the same regardless of the method of power management, Moab-only
or Moab+MWS, chosen. This is especially true for the green policies as Moab simply uses
the configured power management method to carry out the policies. In order to know how
to configure the different parts and components of each power management method so
they work well together, it is necessary for a site administrator to understand how the
power management methods work; that is, how the components work together to
implement a power management method.

Chapter 16: Green Computing

16.1.3.A Moab-Only Method
The Moab-only method has a Power RM composed entirely of Python-based scripts. The
script must maintain a Power Query daemon that queries the power state of all compute
nodes and saves their state for Moab to query, the actual power state query Moab runs to
find out the current power state of all compute nodes, and a power state control that places
compute nodes into the state of on so Moab can schedule jobs to them or into the state of
off so energy consumption is minimized and operational costs reduced. The administrator
determines what the actual power state Moab's off represents by configuring the off
command in the power management control script with the actual hardware vendor-
supplied command that effects the desired power state (remember, Moab is not aware of
actual power states).

The list below enumerates the advantages and disadvantages of the Moab-only method:

l Advantages
o Do not have to run the MWS service and its MongoDB database.
o Power management command scripts execute as Moab system jobs.
o Ability to customize the node power and cluster query power management
scripts

o For more information on how to specify the node power control script,
see the NODEPOWERURL parameter.

o For more information on how to specify the power cluster query script,
see the CLUSTERQUERYURL parameter.

o Moab power control using mnodectl –mpower=[on|off] <nodelist>.
o For more information on how to diagnose power states, see mdiag -n.

l Disadvantages
o More complex scripts to customize.
o Only global power management control (no partition-based or node-based).
o Heterogeneous compute node hardware from different vendors requires more
modification of the control and query scripts.

o Reference scripts not scalable (did not take advantage of Python multi-
threading).

o Administrator must maintain complex scripts that must maintain the entire
cluster query information.

The following architecture diagram shows the Moab-only architecture and what occurs
between its components:

Chapter 16: Green Computing

772 16.1 Green Computing Methods

16.1 Green Computing Methods 773

The Python-based IPMI Monitor daemon script running in the background periodically
polls the power state of all compute nodes through IPMI using the command customized by
the administrator. As it gathers power state information, it saves the information in a text
file in a specific format understood by Moab (binary power state). In order to prevent race
conditions, it actually writes to a temporary file and then moves the temporary file on top of
the permanent file (not shown).

When Moab starts a scheduling cycle/iteration, it directly executes the power RM's Python-
based Cluster Query script that reads the permanent text file and delivers the compute
node power states to Moab. Moab then performs the scheduling cycle and based on green
policies and the state of the HPC cluster will run the IPMI Node Power script as a Moab
system job to perform an on or off (which may be something different than a power
off) command using the actual commands customized by the administrator in the script.

16.1.3.B Moab+MWS Method
The Moab+MWS method has a Power RM composed of a MWS RM plug-in that
encapsulates all power management logic, which itself uses the Torquepbsnodes
command to effect compute node power state changes into low-power and no-power states
of standby and suspend, and hibernate and shutdown, respectively, as well as the IPMI
Node Power script to effect compute node power on, power off (pull the plug) and awaken
(resume active running state from low-power state). The Power RM Power Management
plug-in also performs the power query daemon function identified in the Moab-only

Chapter 16: Green Computing

method using its built-in power management logic, therefore handling more actual power
states and allowing much better power control than the Moab-only method offers.

The advantages and disadvantages of the Moab+MWS-based method are enumerated
below:

l Advantages
o More power states to choose from.

o Low-power states of standby and suspend.
o No-power states of hibernate and shutdown.
o On and Off (pull the plug) power states still available.

o Torque power control of low-power and no-power states using pbsnodes -m
<state> <nodelist>.

o You can view node power states with the Torque pbsnodes command.
o Power management command scripts execute as Moab system jobs.
o Much simpler moab.cfg customization and maintenance.
o Global, partition-based, and node-based granularity for power management
control.

o Heterogeneous compute node hardware from different vendors handled by
creating multiple instances of MWS RM power management plug-in with
different configurations.

o Reference scripts are scalable (use Python multi-threading).
o The MWS RM architecture is easier to support DRAC, ILO, and other protocols.

l Disadvantages
o Must run the MWS service and its MongoDB database.
o Configuration of the MWS RM Power Management plug-in and possible multiple
instances.

The following architecture diagrams show the Moab+MWS-based method architecture and
what occurs between its components.

Chapter 16: Green Computing

774 16.1 Green Computing Methods

16.1 Green Computing Methods 775

The diagram below illustrates power state query:

The MWS RM power management plug-in runs the multi-threaded Power Query script for
sets of compute nodes that obtain their actual power state through IPMI, or more
specifically, a hardware vendor's IPMI implementation (e.g., Dell DRAC, HP iLO, etc), which
the RM plug-in saves. It also runs the Torque pbsnodes command to obtain the low-
power or no-power states that may have been set via Torque earlier (pbs_server
retains knowledge of any previous command to set a node's power state to one of the low-
power or no-power states).

Note it is quite possible for IPMI to report off and Torque to report hibernate or
shutdown, both of which indicate a compute node has no power, and for IPMI to report on
and Torque to report standby or suspend, both of which indicate a compute node is in a
low-power state from which it can be quickly awakened. It is also possible for IPMI to
report on and Torque to report hibernate or shutdown, which can indicate a booting node
that has not yet started the Torque pbs_mom daemon or a node hibernating or shutting
down that has not yet powered off. The MWS plug-in's power management logic reconciles
the IPMI and Torque reports to produce a single on or off understood by Moab, which it
passes to MWS.

When Moab queries MWS for the current state information of compute nodes at the start
of a scheduling cycle/iteration, MWS passes all node information including the binary
power on/off Moab understands and the Torque node state, at which point Moab has the
information it needs to perform green policy-based automated power management.

Chapter 16: Green Computing

The diagram below illustrates Moab+MWS power state control interactions.

When Moab detects a condition that requires changing the power state of a compute node,
usually as a result of green policies, it performs the appropriate on or off command as a
system job that sends the command to MWS with a list of the host names of compute nodes
that should enter an appropriate power state.

MWS interacts with the appropriate MWS RM power management plug-in for each
compute node and passes it the on or off command. For the off command, the plug-in
examines its configuration of what off means and passes the configured standby,
suspend, hibernate, or shutdown command to the Torque pbsnodes command, or passes
the configured off command to the Node Power script.

If the RM plug-in executes the Torque pbsnodes command for the configured power
state and requested list of compute node host names, it sends the command to the pbs_
server, which passes the command to each compute node's pbs_mom daemon. The
pbs_mom executes software to place the node into the requested state. The pbs_server
daemon keeps the requested state in a file for each compute node, which it passes on to the
MWS RM power management plug-in as part of a node update report.

Chapter 16: Green Computing

776 16.1 Green Computing Methods

16.1 Green Computing Methods 777

In clusters where there is a Torque pbs_server and pbs_mom on the same
machine, the administrator should set the POWERPOLICY to STATIC on this node,
because the pbs_server should not be powered down. If the pbs_server is
powered down, Moab will be unable to get cluster query updates from all pbs_moms
managed by that pbs_server.

On all Torque nodes where pbs_moms are running, the pbs_mom must be
configured to auto-start after being rebooted. If the pbs_mom isn't auto-started, the
pbs_server will not be able to determine when it has been powered up and
entered an idle state, and therefore won't have the ability to inform Moab on a cluster
query the node is idle. Refer to Startup/Shutdown Service Script for /Moab
(OPTIONAL) in the Torque Administrator Guide for details on how to have the pbs_
mom auto-start on boot.

When the RM plug-in executes the Node Power script for the configured off power state
and requested list of compute node host names, the script executes its IPMI on command
(whatever the administrator configured in the script) that tells the node's baseboard
management controller (BMC) to power off the node.

When the RM plug-in receives the on command from Moab via MWS, it checks the internal
power state of each compute node in the requested list of compute node host names. If the
internal power state is standby or suspend, the script executes its IPMI wake command
(whatever the administrator configured in the script) that tells the node's BMC to bump the
node into the active running state; otherwise, the script executes its IPMI off command
(whatever the administrator configured in the script) that tells the node's BMC to power on
the node.

Some operating systems require the Wake-on-LAN bit to be enabled using a tool like
ethtool. Also, Wake-on-LAN packets might be blocked by the router, but not
always.

In this manner, the MWS RM power management plug-in queries the actual power state of
individual compute nodes and returns to Moab the simple binary on/off state it
understands for scheduling jobs to compute nodes. Likewise, Moab controls the actual
power state of individual compute nodes using only its simple binary on/off command. This
method of simple command and simple job-scheduling-ability state enables Moab to remain
scalable and responsive for automatic power management control using green policies.

16.1.4 Active Node Power Management
Moab 8.0 and Torque 5.0 introduced support for active node power management; that is,
the management of energy consumption while a compute node is running a job, which the
new CPU Clock Frequency Control feature provides.

Chapter 16: Green Computing

The amount of energy consumption savings achievable through the CPU Clock Frequency
Control feature is application-dependent. For example, memory, I/O, and/or network-
bound applications, especially memory-bound applications, can often drop the clock
frequency of their compute nodes' processors and still have the same execution time even
though the compute nodes consume less power. Several studies have shown common
power savings of 18-20% and one study showed one application saving 30% on power
consumption, all of which translate directly into operational cost savings.

16.1.4.A Power/Performance Profiling
To determine whether a lower clock frequency will produce energy consumption savings,
applications must be profiled; that is, a job running a particular application with the same
or equivalent data must be run at different clock frequencies while measuring the energy
consumption of the job's compute node. Each pair of frequency/energy consumption data
points are plotted in a chart to show the application's power performance profile. The
charts below are an example of two such profiles for two NAS benchmark HPC applications.

Chapter 16: Green Computing

778 16.1 Green Computing Methods

16.1 Green Computing Methods 779

The intersection of the two lines has no particular meaning, as each line has its own
vertical scale, either on the left or the right as noted.

Note both applications do not consume the least energy (vertical dashed green line) when
running at the lowest clock frequency, which demonstrates the importance of profiling
applications to determine the nominal clock frequency at which energy consumption is the
lowest. The charts amply illustrate why a simplistic policy of using the lowest clock
frequency is not the best policy when a site's objective is the least energy consumption
possible.

If the least energy consumption is not a site's primary objective, but running jobs in a
manner that balances energy consumption and job execution time, a power/performance
profile chart is very useful to determine the clock frequency that meets a balanced
objective. For example, the vertical dashed purple line in the second chart shows that
running the bt.C.64 application at 1800 MHz has an increase in energy consumption of
~1% over the minimal energy consumption possible (vertical dashed green line) but
results in a ~10% drop in execution time; a possibly very good trade-off!

Chapter 16: Green Computing

Obviously, if a site's primary objective is to complete a job as fast as possible but do so
saving energy where possible, profiling memory-bound and other bound applications can
clearly show the lowest clock frequency at which the application takes longer to execute.
The site would then institute a policy that the application should run at the next highest
frequency to fulfill the twin objectives of job performance and energy consumption
minimization.

For more information about the CPU clock frequency job submission option, see CPUCLOCK
resource manager extension of msub -l.

Job Templates
Most users will not care or want to know about clock frequency control, so administrators
can use a job template to specify the CPU clock frequency at which a particular recurring
job should execute. A clock frequency specified on a job template overrides a clock
frequency given on the job submission command line or inside a job script file with Torque
PBS commands. This order of precedence allows an administrator to control clock
frequency for commonly used applications and jobs based on site policies and objectives.

For more information about using a CPU clock frequency job submission option in job
templates, see the CPUCLOCK job template extension attribute.

16.1.5 Idle Node Power Management
Moab has so-called green policies that together configure Moab to manage and maintain a
pool of idle nodes in an active running state so it can immediately schedule jobs to them.
When Moab does so and diminishes the pool's idle compute node quantity, it powers on
compute nodes by performing an on command for nodes in a powered-down state
(actually, in a low-power or no-power state) to bring them on-line in order to replenish the
pool of idle nodes up to its configured size. When jobs end and the idle node exceed the
configured idle node pool size and there are no jobs to run on the now-idle nodes, Moab
will power off excess idle nodes by performing an off command. In this manner, Moab
achieves a site's power management and energy consumption objectives through the
configured green policies.

See the Moab-only Method Architecture diagram above to see the color-coded compute
nodes in the diagram's cluster illustrating Moab's green idle node pool management. The
green nodes represent nodes running jobs, the yellow nodes are idle nodes in a green pool
of size 12, and the gray nodes represent off nodes. Note Moab does not know what actual
power state off means; what it means will be based on command customization inside
Moab-only method scripts or Moab+MWS plug-in configuration information.

In order to perform green policy management of an idle node pool, Moab must first be
configured to use either the Moab-only or the Moab+MWS method of power management.
It is best practice to configure power management first and test its configuration before

Chapter 16: Green Computing

780 16.1 Green Computing Methods

16.2 Deploying Adaptive Computing IPMI Scripts 781

configuring green policies. Therefore, if power management is misconfigured, an
administrator will know it is the power management configuration and/or scripts and not
the green computing policies that are incorrect. If the manual power management
commands for the configured power management method work, green computing will
work using the configured power management method. For information on how to
configure each power management method in Moab, see Enabling Green Computing.

16.1.6 Green Policy Configuration
There are several green policies that affect how Moab performs green idle node pool
management using automated power management operations. The policies are configured
in the same manner regardless of the power management method used, whether Moab-
only or Moab+MWS. The other sections of this chapter describe how to configure green
policies that manage the idle node pool for site energy management objectives.

Related Topics

l 16.4 Enabling Green Computing - page 784

l 16.2 Deploying Adaptive Computing IPMI Scripts - page 781

l pbsnodes in the Torque Administrator Guide

16.2 Deploying Adaptive Computing IPMI Scripts

If you want to enable green computing on your system using the Adaptive Computing
supplied IPMI reference scripts, follow the steps here. The IPMI scripts provided are meant
as a reference for you to configure the solution to your environment, but can also be used
as-is.

In this topic:

16.2.1 Prerequisites - page 781
16.2.2 To Deploy the Adaptive Computing IPMI Scripts - page 782

16.2.1 Prerequisites
l OpenIPMI and ipmitool must be installed and working.

l All nodes must have the same IPMI username and password.

Chapter 16: Green Computing

l You must know the IPMI host names and/or IPMI IP addresses of your nodes.

l Python must be installed. The provided IPMI scripts were developed using Python
2.6.5.

l You must identify your Moab home directory. These instructions assume the default
Moab home directory of /opt/moab.

l You must identify your Moab tools directory. These instructions assume the default
Moab tools directory of /opt/moab/tools.

16.2.2 To Deploy the Adaptive Computing IPMI Scripts
1. Edit the /opt/moab/tools/ipmi/config.py script:

a. Set self.ipmiuser to the IPMI username for your nodes.
b. Set self.ipmipass to the location of the IPMI password file

(/opt/moab/passfile.txt by default).

The permissions for the directory and the password file itself should be set so
that they can be read only by root or the Moab user running the script.

c. Set self.homeDir to your Moab home directory.

d. If desired, change the self.pollInterval value. This is the interval, in seconds,
between polls from the IPMI monitoring script.

e. The self.ipmifile value is the name of a temporary file where the cluster
query information is stored. You can change this or leave it alone.

f. The self.bmcaddrmap value is the filename for the Moab node name/IPMI
mapping. The file must exist in the Moab home directory and will be created in the
next step.

2. Create a node-bmc.txt file in the Moab home directory. The file must contain a
space-delimited list of Moab node names that map to the IPMI host names or IP address.
For Example:

node01 node01_ipmi # For all three of these entries, the first value is the
node02 node02_ipmi # node name as Moab knows it. The second value is either
node03 10.1.1.1 # the node IPMI name or IPMI IP address.

3. Configure the moab.cfg file for green computing as described in Enabling green
computing. Use the ipmi.mon.py script for the CLUSTERQUERYURL and the
ipmi.power.py script for the NODEPOWERURL.

4. Restart Moab and verify green computing is working correctly. If you encounter trouble,
see the Troubleshooting green computing topic for help.

Chapter 16: Green Computing

782 16.2 Deploying Adaptive Computing IPMI Scripts

16.3 Choosing which Nodes Moab Powers On or Off 783

Related Topics

l 16.4 Enabling Green Computing - page 784

l 16.9 Troubleshooting Green Computing - page 790

l 16.5 Adjusting Green Pool Size - page 787

l 16.6 Handling Power-Related Events - page 788

l 16.7 Maximizing Scheduling Efficiency - page 788

16.3 Choosing which Nodes Moab Powers On or Off

Moab can use the GREENPOOLPRIORITYF function to determine which nodes to power on
or off. The PRIORITY node allocation policy is used to determine which nodes to allocate
workload to. When Moab can no longer allocate workload to available nodes, it begins to
power nodes on in the order specified by the GREENPOOLPRIORITYF function.

To Choose which Nodes Moab Powers On or Off
Set a GREENPOOLPRIORITYF function to describe which order nodes should be selected
for power on/off actions. GREENPOOLPRIORITYF uses the PRIORITY node allocation policy
options and syntax.

GREENPOOLPRIORITYF '10*RANDOM'

This tells Moab to randomly choose a node to power on to meet workload demands, and to randomly choose an idle
node to power off to meet theMAXGREENSTANDBYPOOLSIZE goal.

To Choose which Nodes Moab Allocates Jobs to
Set a PRIORITY node allocation policy that uses power as the major factor. This causes
Moab to allocate jobs to nodes that are already powered on. When no nodes are available
to meet this policy, Moab uses the GREENPOOLPRIORITYF function to turn on nodes that
are powered off.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='10000*POWER + 10*RANDOM'

The nodes with the highest priority for workload are the nodes that are powered on. After that, Moab randomly
allocates workload.

Related Topics

l 16.5 Adjusting Green Pool Size - page 787

l 16.7 Maximizing Scheduling Efficiency - page 788

Chapter 16: Green Computing

16.4 Enabling Green Computing

There are two ways to do green computing in Moab. With just Moab, nodes can be turned
on or off. With MWS, however, you can put nodes into several low-power states. The MWS
solution is also more scalable. The supported low-power states are:

l Running

l Standby

l Suspend

l Hibernate

l Shutdown

Nodes cannot be moved from one low-power state to another. The node must go from low-
power to running, and then to the new low-power state.

To Enable Green computing with Moab and MWS
1. Edit moab.cfg to use MWS for green computing:

a. Configure the POWERPOLICY attribute of the NODECFG parameter. The default
value is STATIC. Set it to OnDemand.

b. Set the resource manager type as MWS

c. Set FLAGS=UserSpaceIsSeparate for the MWS resource manager.

d. Point BASEURL to your MWS server.

NODECFG[DEFAULT] POWERPOLICY=OnDemand
RMCFG[mws] TYPE=MWS
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] BASEURL=https://localhost:8080/mws

2. Configure the MWS Power Management Plugin.

To Enable Green Computing with just Moab
1. Edit moab.cfg to enable green computing. There are four things you must configure

for basic functionality of green computing:

a. Configure the POWERPOLICY attribute of the NODECFG parameter. The default
value is STATIC. Set it to OnDemand.

Chapter 16: Green Computing

784 16.4 Enabling Green Computing

16.4 Enabling Green Computing 785

b. Configure a power provisioning resource manager to be TYPE=NATIVE and
RESOURCETYPE=PROV. The resource type of PROV means the RM works only with
node hardware and not workloads.

c. Configure a CLUSTERQUERYURL attribute of the power provisioning RM to point to
the power query script you'd like to use. Moab uses this script to query the current
power state of the nodes. CLUSTERQUERYURL is traditionally used as a workload
query but is also used by green computing for the node power state query. Adaptive
Computing provides a reference IPMI script you can use.

d. Configure a NODEPOWERURL attribute of the power provisioning RM to point to the
power action script you'd like to use. Moab uses this script to turn nodes on or off.
Adaptive Computing provides a reference IPMI script you can use.

NODECFG[DEFAULT] POWERPOLICY=OnDemand
RMCFG[ipmi] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[ipmi] CLUSTERQUERYURL=exec://$TOOLSDIR/ipmi/ipmi.mon.py
RMCFG[ipmi] NODEPOWERURL=exec://$TOOLSDIR/ipmi/ipmi.power.py

Sample moab.cfg for Green Computing
Below is a sample moab.cfg configuration file of a green computing setup using the
Adaptive Computing IPMI scripts:

##
#
Use 'mdiag -C' to validate config file parameters
#
##

SCHEDCFG[Moab] SERVER=myhostname:5150
ADMINCFG[1] USERS=myusername,root
TOOLSDIR /$HOME/tools
LOGLEVEL 1

##
#
Basic Resource Manager configuration
#
For more information on configuring a Resource Manager, see:
docs.adaptivecomputing.com
#
##

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=exec://$HOME/scripts/query.resource
RMCFG[local] WORKLOADQUERYURL=exec://$HOME/scripts/query.workload

RMCFG[local] JOBSUBMITURL=exec://$HOME/scripts/submit.pl
RMCFG[local] JOBSTARTURL=exec://$HOME/scripts/job.start
RMCFG[local] JOBCANCELURL=exec://$HOME/scripts/job.cancel
RMCFG[local] JOBMODIFYURL=exec://$HOME/scripts/job.modify
RMCFG[local] JOBREQUEUEURL=exec://$HOME/scripts/job.requeue
RMCFG[local] JOBSUSPENDURL=exec://$HOME/scripts/job.suspend
RMCFG[local] JOBRESUMEURL=exec://$HOME/scripts/job.resume

Chapter 16: Green Computing

##################################
GREEN configuration:
##################################
Turn on "green" policy. (This is the policy that enables green computing).
Here we are doing it for all nodes, but it can be controlled on a node-by-node basis
Default is STATIC, which means green computing is disabled.
#NODECFG[DEFAULT] POWERPOLICY=STATIC
NODECFG[DEFAULT] POWERPOLICY=OnDemand

Configure the power provisioning and power state query scripts for the power
management system.
Note that this is an entirely different RM (with a name of power in this case
and a type of 'PROV').
The PROV type RM is the only one that uses a NODEPOWERURL. Additionally, the
output of the CLUSTERQUERYURL for this type of RM is different. (See docs)
RMCFG[mws] TYPE=MWS
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] BASEURL=https://localhost:8080/mws

We want green policy to work so it allocates jobs to compute nodes already
powered on and will power on powered-off compute nodes only when there are
no powered-on compute nodes available. This requires using the PRIORITY
node allocation policy with a PRIORITYF function that has the POWER variable
as the greatest contributing factor to the function (1 = powered-on,
0 = powered-off).
If we want all compute nodes to operate under green policy, we can assign
the PRIORITYF function to the default node configuration, which is easier
than assigning it to individual compute nodes. If only some compute nodes
should operate under green policy, then the PRIORITYF function must be
configured for the individual nodes. Note the POWER variable must be the
largest factor in the function below; it is assigned the largest multiplier,
which should be greater than the sum of all other factors! Doing so forces
Moab to use all eligible powered-on nodes for workload placement before
powering on any eligible powered-off nodes.

Enable PRIORITYF functionality
NODEALLOCATIONPOLICY PRIORITY

Use a priority function that uses power as the major factor (plus some other
imaginary factors)
#NODECFG[DEFAULT] PRIORITYF='1000000*POWER + 1000*factor2 + 100*factor3...'
Use a priority function where power is the only factor.
#NODECFG[DEFAULT] PRIORITYF='10000*POWER'
Use a priority function that adds some randomness but uses power as the major
factor.
NODECFG[DEFAULT] PRIORITYF='10000*POWER + 10*RANDOM'

Set a priority function that specifies the order nodes should be chosen to power
up/down. By default, Moab will start at the top of the node list and go down. Some
installations want to rotate power cycles among nodes in a different order.
The configuration below forces Moab to power on/off random nodes, which
eventually guarantees all nodes occasionally go through a power cycle.
#GREENPOOLPRIORITYF '10*RANDOM'

Ensure we are recording power management events
(powering on and off nodes are recorded as "node modification" events).
#RECORDEVENTLIST +NODEMODIFY

Set the size of the standby pool. This is the number of idle nodes that will
be powered on and idle. As the workload changes, Moab turns nodes on
or off to try to meet this goal.
Default value is 0

Chapter 16: Green Computing

786 16.4 Enabling Green Computing

16.5 Adjusting Green Pool Size 787

MAXGREENSTANDBYPOOLSIZE 5

Set the length of time that it takes to power a node on/off. This will be the
walltime of the system job that performs the power operation and should be the
maximum expected time. If Moab detects (via the power RM) that the power
operations have all completed, the system job will finish early.
Default value is 10 minutes (600)
PARCFG[ALL] NODEPOWEROFFDURATION=600
PARCFG[ALL] NODEPOWERONDURATION=600
Set the length of time a node should remain idle before it is powered off.
This prevents Moab from immediately powering off nodes that have just finished
a job. Increasing this number should decrease power on/off thrashing
This should be set higher than NODEPOWEROFFDURATION and/or NODEPOWERONDURATION
NODEIDLEPOWERTHRESHOLD 660

If a node fails to power on, we need to remove it from the available nodes so
Moab won't keep [re-]trying to power it on. Do this by setting a reservation
on the failed node to give time for manual investigation.
#RMCFG[torque] NODEFAILURERSVPROFILE=failure
#RSVPROFILE[failure] DURATION=3600

Related Topics

l 16.2 Deploying Adaptive Computing IPMI Scripts - page 781

l 16.3 Choosing which Nodes Moab Powers On or Off - page 783

l 16.5 Adjusting Green Pool Size - page 787

l 16.6 Handling Power-Related Events - page 788

l 16.7 Maximizing Scheduling Efficiency - page 788

l 16.9 Troubleshooting Green Computing - page 790

l Power Management Plugin in the Moab Web Services Reference Guide

16.5 Adjusting Green Pool Size

The MAXGREENSTANDBYPOOLSIZE parameter allows you to allocate the number of
nodes to keep powered on in the standby pool. This is the number of idle nodes that are
allowed be powered on and idle. As the workload changes, Moab turns nodes on or off to
try to meet this goal. The default value is 0.

To Adjust the Green Pool Size
Modify the MAXGREENSTANDBYPOOLSIZE parameter with the number of nodes you
want Moab to keep powered on for the standby pool:

MAXGREENSTANDBYPOOLSIZE 10

Moab keeps up to 10 idle nodes powered on to be kept on standby.

Chapter 16: Green Computing

Related Topics

l 16.7 Maximizing Scheduling Efficiency - page 788

l 16.3 Choosing which Nodes Moab Powers On or Off - page 783

16.6 Handling Power-Related Events

Power actions are considered NODEMODIFYURL events and are not recorded by default,
but you can configure Moab to include power-related events in the logs. Also, if a node fails
to turn on (or off), it's best to associate a reservation on the failed node so that Moab won't
keep trying to perform the power action over and over.

To Configure Moab to Record Power-Related Events
Modify the RECORDEVENTLIST parameter:

RECORDEVENTLIST +NODEMODIFY

Power-related events are logged to the Moab log file.

To Put a Reservation on a Node that Fails to Perform a Power Action
Configure the NODEFAILURERSVPROFILE attribute of RMCFG and create an RSVPROFILE
with a high duration:

RMCFG[torque] NODEFAILURERSVPROFILE=failure
RSVPROFILE[failure] DURATION=3600

Nodes that fail to power on or off have a 1-hour reservation placed on them.

Related Topics

l RECORDEVENTLIST

l 13.2.4 Event Logs - page 726

16.7 Maximizing Scheduling Efficiency

When considering whether to power a node on or off, Moab can take into account the
amount of time that it takes to power on or power off the node. With this information, Moab
can keep an idle node powered on if it knows that workload in the queue will be ready for
the node in less time that it takes to power off/power on the node.

Chapter 16: Green Computing

788 16.6 Handling Power-Related Events

16.8 Putting Idle Nodes in Power-Saving States 789

Moab can also wait to shut down nodes after they've been idle for a specific amount of
time.

To Specify Node Power On/Power Off Duration
Modify the NODEPOWERONDURATION and NODEPOWEROFFDURATION attributes of
PARCFG with the maximum amount of time it takes for your nodes to power on/power off.
Make sure to use the keyword ALL for the resource manager name to avoid cases where
Moab won't consider the power on/off duration for a node before making a power action
decision.

PARCFG[ALL] NODEPOWERONDURATION=2:00
PARCFG[ALL] NODEPOWEROFFDURATION=2:00

If a node goes idle and has to wait for workload, Moab will not power off the node if the workload will be available
within 4 minutes or less.

To Shut Down on Nodes after they've been Idle for a Specified Time
Modify the NODEIDLEPOWERTHRESHOLD parameter with the duration (in seconds) you
want Moab to wait before shutting down an idle node. The default value is 60 seconds.
Increasing the number should decrease power on/off thrashing. This should be set higher
than NODEPOWERONDURATION and/or NODEPOWEROFFDURATION.

NODEIDLEPOWERTHRESHOLD 300

Moab will wait 5 minutes before shutting down a node that has become idle.

Related Topics

l 16.5 Adjusting Green Pool Size - page 787

l 16.3 Choosing which Nodes Moab Powers On or Off - page 783

16.8 Putting Idle Nodes in Power-Saving States

When nodes exceed their idle threshold limits, the default behavior is to turn the nodes off.
With the NODEIDLEPOWERACTION parameter, you can choose which power-saving state
to put idle nodes into. This parameter is configured at the partition level. Configuring it for
the ALL partition effectively makes it a global parameter.

To specify what to do with idle nodes
Modify the NODEIDLEPOWERACTION parameter.

Chapter 16: Green Computing

NODEIDLEPOWERTHRESHOLD 300
PARCFG[ALL] NODEIDLEPOWERACTION SLEEP

All nodes that are idle for more than 5 minutes are put into a sleep state.

Related Topics

l 16.3 Choosing which Nodes Moab Powers On or Off - page 783

16.9 Troubleshooting Green Computing

If you've enabled green computing and are having trouble, here are some tips that can
help you determine the cause of the issues you encounter. These tips are specifically for
the Adaptive Computing supplied IPMI scripts, but can be generalized for whatever power
management solution you use. Simply substitute your power management system, power
query script (as specified by CLUSTERQUERYURL), and power action script (as specified
by NODEPOWERURL) where appropriate.

Verify your IPMI Access
Use the ipmitool command to verify you have access to the IPMI interface of your nodes.
Try getting the current power state of a node. The syntax is ipmitool -I lan -H
<host> -U <IPMI username> -P <IPMI password> chassis power
status.

$ ipmitool -I lan -H qt06 -U ADMIN -P ADMIN chassis power status

Chassis Power is off

Verify the Power Query (CLUSTERQUERYURL) Script is Working
1. Execute the impi.mon.py script (should be found in

/<MOABHOMEDIR>/tools/ipmi) to start the monitor:

$ cd /opt/moab/tools/ipmi
$./ipmi.mon.py

2. Execute the script again. The following is an example of the expected output:

$./ipmi.mon.py

qt09 GMETRIC[System_Temp]=27 GMETRIC[CPU_Temp]=25 POWER=on State=Unknown
qt08 GMETRIC[System_Temp]=31 GMETRIC[CPU_Temp]=25 POWER=on State=Unknown
qt07 GMETRIC[System_Temp]=30 GMETRIC[CPU_Temp]=29 POWER=on State=Unknown
qt06 GMETRIC[System_Temp]=Disabled GMETRIC[CPU_Temp]=Disabled POWER=off
State=Unknown

If the POWER attribute is not present the script is not working correctly.

Chapter 16: Green Computing

790 16.9 Troubleshooting Green Computing

16.9 Troubleshooting Green Computing 791

Verify the Power Action (NODEPOWERURL) Script is Working
1. Execute the ipmi.power.py script (should be found in

/<MOABHOMEDIR>/tools/ipmi) to see if you can force a node to power on or off.
The syntax is ipmi.power.py <node>,<node>,<node>... [off|on]

$ /opt/moab/tools/ipmi/ipmi.power.py qt06 off

This example is trying to power off a node named qt06.

2. Verify the machine's power state was changed to what you attempted in the previous
step. You can do this remotely via two methods:

a. If the cluster query script is working, you can use that to verify the current power
state of the node.

b. If you have IPMI access, you can use the ipmitool command to verify the current
power state of the node.

Verify the Scripts are Configured Correctly
1. Run the mdiag -R command to verify your IPMI resource manager configuration:

$ mdiag -R -v
RM[ipmi] State: Active Type: NATIVE ResourceType: PROV
Timeout: 30000.00 ms
Cluster Query URL: exec://$TOOLSDIR/ipmi/ipmi.mon.py
Node Power URL: exec://$TOOLSDIR/ipmi/ipmi.power.py
Objects Reported: Nodes=3 (0 procs) Jobs=0
Nodes Reported: 3 (N/A)
Partition: SHARED
Event Management: (event interface disabled)
RM Performance: AvgTime=0.05s MaxTime=0.06s (176 samples)
RM Languages: NATIVE
RM Sub-Languages: NATIVE

2. Run the mdiag -G command to verify that power information is being reported
correctly:

$ mdiag -G

NodeID State Power Watts PWatts
qt09 Idle On 0.00 0.00
qt08 Idle On 0.00 0.00
qt07 Idle Off 0.00 0.00

Verify the Scripts are Running
Once green is configured and Moab is running, Moab should start the power query script
automatically. Use the ps command to verify the script is running:

$ ps -ef | grep <CLUSTERQUERYURL script name>

If this command does not show the power query script running then your settings in moab.cfg aren't working.

Chapter 16: Green Computing

Verify Moab can Power Nodes On or Off
Use the mnodectl command to turn a node on or off. The syntax is mnodectl -m
power=[off|on] <node>.

mnodectl -m power=off qt06

Moab should turn off the node named qt06.

1. Moab generates a system job called poweron-<num> or poweroff-<num> job as
shown in showq. The system job calls the ipmi.power.py (NODEPOWERURL) script
to execute the command.

2. Moab waits until the cluster query reports the correct data. In this case, the
ipmi.power.py script reports that the power attribute has changed.

3. Moab does not change the power status based on the power script return code. Rather,
Moab completes the system power job when it detects the power attribute has changed
as indicated by the cluster query script.

Related Topics

l 16.4 Enabling Green Computing - page 784

l 16.2 Deploying Adaptive Computing IPMI Scripts - page 781

Chapter 16: Green Computing

792 16.9 Troubleshooting Green Computing

793

Chapter 17: Elastic Computing Overview

Elastic Computing is an add-on package for Moab Workload Manager. Contact your
Adaptive Computing account manager for more information.

Elastic Computing is only applicable for Torque Resource Manager and Native RMs
with QoS triggers.

Elastic Computing is not supported on Ubuntu.

During the course of operation, the number of job requests will go up and down. Under
some circumstances the job backlog might increase to the point where additional resource
are required to complete the job backlog in a reasonable time frame. In this scenario, the
job will be held until resources become available. The Elastic Computing feature in Moab
allows the Moab scheduler to take advantage of systems that can temporarily provide
additional nodes (for example, to create new virtual machines or borrow physical nodes
from another system) to fulfill the workload demand in a more timely manner.

Moab's Elastic Computing framework serves as a basis for Moab/ODDC Cloud Bursting,
which can be configured to access multiple cloud providers either on-demand or based on
a job backlog. For more information about Moab/ODDC Cloud Bursting, see the ODDC
Connect User Guide.

This chapter provides examples of the Elastic Computing and node end scripts. Your
scripts will vary based on your system configuration. Contact your Adaptive
Computing account manager for suggestions and options to configure Elastic
Computing.

In this chapter:

17.1 About Elastic Computing 795
17.2 Configuring Elastic Computing 796

17.2.1 To Configure Elastic Computing 796
17.2.2 Sample moab.cfg File Excerpt 799

17.3 Elastic Trigger 799
17.4 Integration with a Private OpenStack Cloud 800

17.4.1Configuring Moab to Talk to OpenStack Integration Scripts 800

Chapter 17: Elastic Computing Overview

17.4.2 Verification 801
17.4.3 Troubleshooting 802

17.5 Dynamic Nodes 802
17.5.1 Dynamic Node Parameters 803
17.5.2 Dynamic Node Events 803
17.5.3 Configuring Dynamic Nodes 804

17.6 Viewing Node and Trigger Information 806
17.6.1 mdiag -n -v --xml 806
17.6.2 mdiag -T 807
17.6.3 checknode -v <node name> 807

17.7 Usage Policies 808
17.7.1 Available Policies 809
17.7.2 Policy Levels 809

Chapter 17: Elastic Computing Overview

794

17.1 About Elastic Computing 795

17.1 About Elastic Computing

The diagram below depicts Moab's Elastic Computing feature:

With the Elastic Computing feature enabled and configured:

1. Moab monitors the job backlog and, when a pre-defined threshold is reached, fires the
elastic trigger. The elastic trigger calls a script to request additional nodes (dynamic
nodes) from an external service.

2. The procured dynamic nodes are then added to the resource manager (RM). For
example, via qmgr in Torque.

3. Moab then begins scheduling jobs for the allocated dynamic nodes.

4. When the job backlog is cleared and the dynamic nodes become idle for a specified
amount of time (for example, defined by the NODEIDLEPURGETIME parameter), Moab
fires an end node trigger to remove the nodes from the RM and deprovision the virtual
machine or physical nodes.

Alternatively, you can utilize the Elastic Computing feature for interaction with a private
OpenStack cloud. See 17.4 Integration with a Private OpenStack Cloud - page 800.

Chapter 17: Elastic Computing Overview

17.2 Configuring Elastic Computing

This topic provides examples of the Elastic Computing and node end scripts. Your
scripts will vary based on your system configuration. Please contact your Adaptive
Computing account manager for suggestions and options to configure Elastic
Computing.

If you are using Elastic Computing with Torque, you cannot have a mom_hierarchy
file in the $PBS_HOME/server_priv directory.

In this topic:

17.2.1 To Configure Elastic Computing - page 796
17.2.2 Sample moab.cfg File Excerpt - page 799

17.2.1 To Configure Elastic Computing
1. If you installed Moab Workload Manager from the tarball (Manual Installation), ensure

you installed acpython-base RPM on the Moab Head Node:

[root]# rpm -qa|grep acpython-base

If it is not, follow the instructions in Install Moab Server in the Moab 10.0.0 Installation
and Configuration Guide.

2. Enable dynamic nodes in the moab.cfg file:

SCHEDCFG[] FLAGS=enabledynamicnodes

A sample excerpt from a moab.cfg file is shown below.

3. If you want to be able to view node and trigger information, use one of these Moab tools:
l mdiag -n -v -xml

l mdiag -T

l checknode -v <node name>

See 17.6 Viewing Node and Trigger Information - page 806 for more information.

Chapter 17: Elastic Computing Overview

796 17.2 Configuring Elastic Computing

17.2 Configuring Elastic Computing 797

4. If you want to record dynamic node activity, enable NODEADD and/or NODEREMOVE
for RECORDEVENTLIST in the moag.cfg file. See 17.5 Dynamic Nodes - page 802 for
more information.

5. In the moab.cfg file, make these changes for QoS triggers:

a. Add the elastic trigger: TType=elastic. See 17.3 Elastic Trigger - page 799 for
more information.

b. Specify how nodes are requested when the trigger fires, using one of these two
options:
l QOSCFG[xyz] REQUESTGEOMETRY=12@4:00:00:00

When the elastic trigger fires, request 12 additional nodes for 4 days, 0 hours, 0
minutes, and 0 seconds.

The REQUESTGEOMETRY values shown are just an example.

l QOSCFG[xyz] REQUESTGEOMETRY=PRIORITYJOBSIZE

When the elastic trigger fires, request enough nodes to run the highest priority
job in the backlog for the amount of walltime specified by the highest priority job.

6. Use BACKLOGCOMPLETIONTIME to specify when the elastic trigger fires (adding
nodes).

The trigger that contains the BACKLOGCOMPLETIONTIME threshold can only be
used when profiling is enabled.

The BACKLOGCOMPLETIONTIME is calculated by Moab as follows: (The maximum
number of processor seconds in the QoS) divided by (The total number of processors in
the system). See BACKLOGCOMPLETIONTIME for more information.

NODECFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[xyz] TRIGGER=EType=threshold,AType=exec,Action="$HOME/tools/elastic.py
$REQUESTGEOMETRY",Threshold=BACKLOGCOMPLETIONTIME>1800,RearmTime=05:00

In the above example, when the BACKLOGCOMPLETIONTIME is more than 1800
seconds, the QOSCFG threshold trigger will fire. When the QOSCFG trigger is fired, the
$HOME/tools/elastic.py script is executed. This is a user-supplied script that
needs to create virtual machines or provision physical hardware and add these
dynamic nodes to the RM.

The following examples show commands that the script will run in order to create a
node on Torque:

Chapter 17: Elastic Computing Overview

qmgr -c "create node node01 np=4,TTL=2022-09-
26T12:00:00Z,acl='user==user1',requestid=1234"

Once the BACKLOGCOMPLETIONTIME threshold is reached, the trigger will
begin firing. The administrator can configure the trigger to fire once only or
periodically until the node is deleted from Torque by the external service.

7. Determine how the dynamic nodes will be removed. See 17.5 Dynamic Nodes - page
802 for more information.
Use one or both of these methods:

l Set the TTL when creating the node via the RM. This parameter tells Moab to
remove the node when the TTL has passed.

l Add the NODEIDLEPURGETIME parameter to moab.cfg. To turn off the purging
of individual dynamic nodes output, specify "noidlepurge" in the varattr output of the
node using Torque. See '$varattr' in the Torque Resource Manager Administrator
Guide. Alternatively, you can use the varattr output from the wiki interface. See
VARATTR.

You can optionally report a requestid on each node in the same group.

Nodes without a requestid that hit the configured idle purge time are immediately
purged. Whereas, nodes with a requestid that hit the configured idle purge time
are only purged when all the nodes that have the same requestid hit the
configured idle purge time.

Configure the node end trigger in moab.cfg.

NODECFG[DEFAULT]
TRIGGER=EType=end,TType=elastic,AType=exec,Action="/$HOME/tools/nodeend.sh $OID"

In this example, the nodeend.sh trigger will be called with the name of each node in
the requestid group.

The node end trigger notifies the external service that this node (along with all the
other nodes with the same requestid) has met the node idle purge time. The
external service may then choose to remove the node from Torque (which in turn
removes it from Moab).

The following is an example of the command that a service would run to remove a node
from Torque.

qmgr -c 'delete node node01'

Chapter 17: Elastic Computing Overview

798 17.2 Configuring Elastic Computing

17.3 Elastic Trigger 799

8. If you want to set limits on whether bursting is available, specify the limits using the
usage policies. You can set these limits at the global partition or QoS level. See 17.7
Usage Policies - page 808.

17.2.2 Sample moab.cfg File Excerpt
NODECFG[DEFAULT] ENABLEPROFILING=TRUE
SCHEDCFG[moab] FLAGS=enabledynamicnodes
QOSCFG[xyz] REQUESTGEOMETRY=12@4:00:00:00
QOSCFG[xyz] TRIGGER=EType=threshold,AType=exec,Action="$HOME/tools/elastic.py
$REQUESTGEOMETRY",Threshold=BACKLOGCOMPLETIONTIME>1800,RearmTime=05:00
NODEIDLEPURGETIME 3600
NODECFG[DEFAULT]
TRIGGER=EType=end,TType=elastic,AType=exec,Action="/$HOME/tools/nodeend.sh $OID"

17.3 Elastic Trigger

When enabled, the elastic trigger allows the Moab scheduler to take advantage of systems
that can temporarily provide additional nodes to fulfill the backlog in a reasonable time
frame.

The elastic trigger is added to moab.cfg when the TType trigger component is set to
'elastic'. See 18.3.7 Trigger Components - page 830 for more information.

When configured and enabled, this trigger:

l Takes the REQUESTGEOMETRY parameter and creates nodes in provider.

l Adds nodes to Torque using the create node qmgr command (or optionally add it to
their RM's cluster query).

l Makes sure that TTL is set correctly on the new nodes.

l Optionally adds a request ID (generated by the script) and/or ACL to the nodes.

Elastic Computing scripts should only service one request at a time, it is recommend
to not return until the node is up and free in the RM.

Example:
NODECFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[xyz]
TRIGGER=EType=threshold,AType=exec,TType=elastic,Action="$HOME/tools/elastic.py
$REQUESTGEOMETRY",Threshold=BACKLOGCOMPLETIONTIME>1800,RearmTime=05:00

Chapter 17: Elastic Computing Overview

The BACKLOGCOMPLETION time trigger threshold can only be used when profiling is
enabled.

17.4 Integration with a Private OpenStack Cloud

Adaptive Computing has provided a services-enabled integration with a private OpenStack
cloud. This consists of the MWS OpenStack plugin, integration scripts, and Moab
configuration.

This topic provides instructions to configure your system to send elastic compute requests
to OpenStack.

In this topic:

17.4.1 Configuring Moab to Talk to OpenStack Integration Scripts - page 800
17.4.2 Verification - page 801
17.4.3 Troubleshooting - page 802

Parameter Description

OpenStack Customization
Script (cloudinit)

This can be used to perform post-creation actions on the
provisioned machines.

OpenStack VLAN Name Use this if the correct IP address is not returned from the
OpenStack plugin after provisioning a machine.

OpenStack Keypair Name Use this parameter to gain access to the machine after
provisioning.

17.4.1 Configuring Moab to Talk to OpenStack Integration Scripts
The following configuration snippet shows how to configure Moab to use the OpenStack
plugin:

NODECFG[DEFAULT] ENABLEPROFILING=TRUE
SCHEDCFG[moab] FLAGS=enabledynamicnodes
QOSCFG[xyz] REQUESTGEOMETRY=12@4:00:00:00

QOSCFG[xyz]

Chapter 17: Elastic Computing Overview

800 17.4 Integration with a Private OpenStack Cloud

17.4 Integration with a Private OpenStack Cloud 801

TRIGGER=EType=threshold,AType=exec,TType=elastic,Action="$HOME/tools/openstack/opensta
ck_elastic.py $REQUESTGEOMETRY",Threshold=BACKLOGCOMPLETIONTIME>1800,RearmTime=05:00
NODEIDLEPURGETIME 3600
NODECFG[DEFAULT]
TRIGGER=EType=end,TType=elastic,AType=exec,Action="/$HOME/tools/openstack/openstack_
delete.py $OID"

See 17.2 Configuring Elastic Computing - page 796 for more information on how to
configure elastic triggers and thresholds.

These options are also available on the OpenStack elastic script to fine-tune the
configuration:

Option Sample
Value

Description

--acl user=bob Set ACLs on the provisioned machines to a specific value.

--ttl-
pad

360 By default, the requested TTL is 'padded' by 3 minutes to allow for
provisioning time. This parameter can be used to increase or decrease
the padding time.

For example, to set an ACL and increase the TTL padding to 4 minutes, use the following
elastic trigger definition:

QOSCFG[xyz]
TRIGGER=EType=threshold,AType=exec,TType=elastic,Action="$HOME/tools/openstack/opensta
ck_elastic.py --acl=user=alice --ttl-pad=240
$REQUESTGEOMETRY",Threshold=BACKLOGCOMPLETIONTIME>1800,RearmTime=05:00

17.4.2 Verification
The following methods can be used to verify that the configuration is correct:

l The triggerElastic and triggerNodeEnd web services can be called directly through a
browser or command line utility to ensure that the plugin can interact with
OpenStack correctly.

l The openstack_elastic.py and openstack_delete.py scripts can be called directly
through the command line. Make sure to match the parameters used in your Moab
configuration file.

l Submit enough workload to cause Moab to fire the elastic trigger and observe that
the process works end-to-end.

Chapter 17: Elastic Computing Overview

17.4.3 Troubleshooting
The following methods can be used to troubleshoot the OpenStack integration:

l Check the output of mdiag -T for information on the configured triggers and to see
whether they are firing and results of their execution.

l Check the trigger script log files located in the Moab log directory. By default, these
are located at /opt/moab/log/openstack_elastic.log and
opt/moab/log/openstack_delete.log.

l Check the MWS log for information on provisioning and deleting OpenStack machines.

l If the triggers are not firing, check the Moab Workload Manager log files for
additional information.

17.5 Dynamic Nodes

Dynamic nodes are nodes that can be added and removed from Torque at any time.
Specifically, any node that has a TTL (time to live) is considered a dynamic node. The
following section explains how to add and delete nodes via qmgr.

As of Moab version 9.1.2, dynamic node procs are no longer counted against the total
procs listed in the Moab license. This allows you to do as many bursts as you desire
without exceeding the total procs used for on-premises nodes. If your version of Moab
is before 9.1.2, please contact your Adaptive Computing sales representative.

In this topic:

17.5.1 Dynamic Node Parameters - page 803
17.5.2 Dynamic Node Events - page 803

17.5.2.A NODEADD - page 803
17.5.2.B NODEREMOVE - page 804

17.5.3 Configuring Dynamic Nodes - page 804
17.5.3.A TTL Parameter (Creating Nodes) - page 804
17.5.3.B requestid Parameter (Adding or Removing Nodes) - page 805
17.5.3.C NODEIDLEPURGETIME Parameter (Removing Nodes) - page

805

Chapter 17: Elastic Computing Overview

802 17.5 Dynamic Nodes

17.5 Dynamic Nodes 803

17.5.1 Dynamic Node Parameters
The table below describes the parameters that are used while adding and removing
dynamic nodes:

Parameter
Name

Required/
Optional

Data Format Description

TTL Optional yyyy-mm-ddThh:mm:ss±hh
OR
yyyy-mm-ddThh:mm:ss±
hhmm
OR
yyyy-mm-ddThh:mm:ssZ

Time, given as a UTC
time, for the node to be
removed. The time is
Greenwich Mean Time
with either an offset or a
Z to indicate zero offset.

requestid Optional Any sequence of non-white-
space characters

Identifier used by Moab
to identify a group of
nodes. See requestid
Parameter (Adding or
Removing Nodes) for
more information.

acl optional user==user1:user2,host==host1 List of credentials that
can run jobs on this
dynamic node.

17.5.2 Dynamic Node Events
You can record dynamic node activity using RECORDEVENTLIST in the moab.cfg using
one or both of these events:

l NODEADD

l NODEREMOVE

17.5.2.A NODEADD
The NODEADD event is generated when the RM first reports a new node to Moab.

The following is an example from the event_xxx file in the $MOAB_HOME/stats
directory:

16:22:32 1412202152:359437 node nuc2 NODEADD nuc2 STATE=Idle
PARTITION=bdaw ADISK=1 AMEMORY=15193 APROC=4 ASWAP=16717 CDISK=1 CMEMORY=15918 CPROC=4

Chapter 17: Elastic Computing Overview

CSWAP=17442 OS=linux RM=bdaw NODEACCESSPOLICY=SHARED CCLASS=[DevQ][batch] MSG='Node
'nuc2' was newly reported in the last cluster query. RequestID = 1234, TTL =
1420070400'

17.5.2.B NODEREMOVE
The NODEREMOVE event is generated when Moab removes a dynamic node after TTL has
expired, or if the node is no longer reported to Moab by the RM.

The following is an example from the event_xxx file in the $MOAB_HOME/stats
directory:

16:21:44 1412202104:359401 node nuc2 NODEREMOVE nuc2 STATE=Idle
PARTITION=bdaw ADISK=1 AMEMORY=15192 APROC=4 ASWAP=16716 CDISK=1 CMEMORY=15918 CPROC=4
CSWAP=17442 OS=linux RM=bdaw NODEACCESSPOLICY=SHARED FEATURE=[DEV] CCLASS=[DevQ]
[batch] MSG='Dynamic node 'nuc2' is being removed. RequestID = 1234, TTL =
1420070400, Reason = node removed because the RM did not report it in the cluster
query'

17.5.3 Configuring Dynamic Nodes
This section contains information on configuration options when adding or removing nodes:

l TTL Parameter (Creating Nodes)

l requestid Parameter (Adding or Removing Nodes)

l NODEIDLEPURGETIME Parameter (Removing Nodes)

During the creation of a dynamic node, the pbs_server will attempt to resolve the
node name to an IP address. If pbs_server is unable to resolve the name, it will not
create the node; nor will it retry the creation later.

Immediately after a dynamic node is created, it is assigned a state of 'down|MOM-list-
not-sent'. Once the new node has received the list of all moms, it will be assigned a
state of 'free' and be available for job scheduling.

17.5.3.A TTL Parameter (Creating Nodes)
The dynamic nodes are added to the RM with a TTL parameter. The TTL parameter is
passed to Moab by the RM. Moab does not schedule workload for a node beyond the TTL
assigned to it. Moab removes a dynamic node when it reaches its expiration date as set by
TTL. A node end trigger will then fire to notify the service that the dynamic node has been
removed in Moab and the service may destroy the virtual machine or deprovision the
physical nodes at its convenience.

Chapter 17: Elastic Computing Overview

804 17.5 Dynamic Nodes

17.5 Dynamic Nodes 805

The following is an example of a node being created with a TTL parameter:

qmgr -c 'create node node003[,node004,node005...] [np=n,][TTL=2022-05-16T05:26:30Z,]
[acl="user==user1:user2:user3",][requestid=n]'

In the above example, node003 is created with TTL=2022-05-16T05:26:30Z as the
TTL parameter. The dynamic node will be removed when the TTL is expired.

17.5.3.B requestid Parameter (Adding or Removing Nodes)
The dynamic nodes are added to the RM with a requestid parameter that is passed to
Moab by the RM. Moab reports the requestid parameter along with the node ID in
Moab logs, events, and node end triggers. This allows the external service to tag the nodes
allocated together in a block. The tagged nodes are then associated as events, and are
reported on a node-by-node basis by Moab.

The requestid can also be used by the external service to de-allocate nodes together in
the same block as they were created by the service. For example, a group of nodes has
their node end trigger fired due to node idle purge time or TTL expiration.

The requestid is useful if nodes are dynamically added, removed, and then re-added at
some later time with the same node ID. Using a requestid when a node is re-added, will
help identify each unique instance of a dynamic node’s lifetime in logs, events, etc.

Moab also uses the requestid with the NODEIDLEPURGETIME parameter. The
requestid parameter groups the nodes and then references the
NODEIDLEPURGETIME information, if specified, to determine when to remove the group
of nodes. When all the nodes associated with the requestid have reached the idle purge
time threshold defined by the NODEIDLEPURGETIME parameter, Moab fires the node
end trigger for all the nodes with the same requestid.

When requestid is configured with NODEIDLEPURGETIME, all of the nodes must be
idle.

17.5.3.C NODEIDLEPURGETIME Parameter (Removing Nodes)
The NODEIDLEPURGETIME parameter instructs Moab to fire a node end trigger when all
the nodes in the requestid group have been idle for the time period specified by
NODEIDLEPURGETIME.

Setting the NODEIDLEPURGETIME to 0 effectively disables the NODEIDLEPURGETIME.
The default value is 0 if NODEIDLEPURGETIME is not configured in the moab.cfg file.
See NODEIDLEPURGETIME for more information.

The following is an example of configuring the node end trigger in moab.cfg:

Chapter 17: Elastic Computing Overview

NODECFG[DEFAULT]
TRIGGER=EType=end,TType=elastic,AType=exec,Action="/$HOME/tools/nodeend.sh $OID"

In this example, the nodeend.sh trigger will be called with the name of each node in the
requestid group.

The node end trigger notifies the external service that the node (along with all the other
nodes with the same requestid) has met the node idle purge time set by the
NODEIDLEPURGETIME parameter. The external service may then choose to remove the
node from Torque (which in turn removes it from Moab).

The following is an example of the command that a service will run to remove a node from
Torque:

qmgr -c 'delete node node003'

If a job is running on a node when it is deleted, the job will be requeued if the job is
requeueable or deleted if it is not. If the node has already been shut down, any jobs
running on the node will be immediately purged.

17.6 Viewing Node and Trigger Information

You can optionally configure Elastic Computing to allow you to view the node and trigger
information using the Moab commands described in this topic.

In this topic:

17.6.1 mdiag -n -v --xml - page 806
17.6.2 mdiag -T - page 807
17.6.3 checknode -v <node name> - page 807

17.6.1 mdiag -n -v --xml
The mdiag -n -v --xml command provides detailed information about the state of
nodes that Moab is currently tracking. See mdiag -n for more information.

In the following example, the mdiag -n - v --xml command shows the current list of
nodes including dynamic node parameters TTL and REQUESTID in the XML format:

$ mdiag -n -v --xml | xmllint --format -
<?xml version="1.0"?>
<Data>
<node ACL="USER=%=bdaw+:%=adaptive+;" AVLCLASS="[DevQ][batch]" CFGCLASS="[DevQ]

Chapter 17: Elastic Computing Overview

806 17.6 Viewing Node and Trigger Information

17.6 Viewing Node and Trigger Information 807

[batch]" FEATURES="DEV" LASTUPDATETIME="1412200545" LOAD="0.330000" MAXJOB="0"
MAXJOBPERUSER="0" MAXLOAD="0.000000" NODEID="bdaw" NODEINDEX="0" NODESTATE="Idle"
OS="linux" OSLIST="linux" PARTITION="bdaw" PRIORITY="0" PROCSPEED="0" RADISK="1"
RAMEM="9746" RAPROC="1" RASWAP="26128" RCDISK="1" RCMEM="16050" RCPROC="1"
RCSWAP="32432" REQUESTID="1234" RESCOUNT="1" RMACCESSLIST="bdaw" RSVLIST="bdaw-TTL-
1234" SPEED="1.000000" STATACTIVETIME="2109" STATMODIFYTIME="1412181806"
STATTOTALTIME="2164684" STATUPTIME="2164668" TTL="1441778400" VARATTR="DEV"/>
<node AVLCLASS="[DevQ][batch]" CFGCLASS="[DevQ][batch]" CPUCLOCK="OnDemand:800mhz"

FEATURES="DEV" LASTUPDATETIME="1412200545" MAXJOB="0" MAXJOBPERUSER="0"
MAXLOAD="0.000000" NODEID="nuc2" NODEINDEX="2" NODESTATE="Idle" OS="linux"
OSLIST="linux" PARTITION="bdaw" PRIORITY="0" PROCSPEED="0" RADISK="1" RAMEM="15193"
RAPROC="4" RASWAP="16717" RCDISK="1" RCMEM="15918" RCPROC="4" RCSWAP="17442"
RMACCESSLIST="bdaw" SPEED="1.000000" STATACTIVETIME="34" STATMODIFYTIME="1412114379"
STATTOTALTIME="86507" STATUPTIME="86475" VARATTR="DEV"/>
</Data>

17.6.2 mdiag -T
The mdiag -T command is used to display information about each trigger. See mdiag -
T for more information.

In the following example, the current list of triggers is displayed using the mdiag -T
command. Notice the node end triggers associated with nodes.

$ mdiag -T
TrigID Object ID Event AType ActionDate
State
--------------------- -------------------- -------- ------ -------------------- ------

83 node:DEFAULT end exec -
Blocked
85* node:nuc2 end exec -1:00:01:10
Successful
84* node:bdaw end exec -5:17:23
Active
* indicates trigger has completed

17.6.3 checknode -v <node name>
The checknode -v <node name> command shows detailed state information and
statistics including the TTL, the access control list (ACL) and the requestid
for nodes that run jobs. See checknode for more information.

In the following example, a reservation is created on the node at the TTL so that the jobs
are not scheduled on the node beyond the TTL. Also, a node end trigger is configured on
this node that will fire when the node is removed.

$ checknode -v bdaw
node bdaw

State: Idle (in current state for 5:18:38)
Configured Resources: PROCS: 1 MEM: 15G SWAP: 31G DISK: 1M
Utilized Resources: MEM: 6230M SWAP: 6230M

Chapter 17: Elastic Computing Overview

Dedicated Resources: ---
Attributes: DEV
ACL: USER==bdaw+:==adaptive+
MTBF(longterm): 1:00:31:02 MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.340
Partition: bdaw Rack/Slot: ---
Features: DEV
IdleTime: 23:38:11
Classes: [DevQ][batch]
RM[bdaw]*: TYPE=PBS
EffNodeAccessPolicy: SHARED
RequestID: 1234
TTL: Wed Sep 9 00:00:00 2022

Total Time: 25:01:24:09 Up: 25:01:23:53 (100.00%) Active: 00:35:09 (0.10%)

Reservations:
bdaw-TTL-1234x1 User 342days -> INFINITY (INFINITY)
Blocked Resources@ 342days Procs: 1/1 (100.00%) Mem: 16050/16050 (100.00%)

Swap: 32432/32432 (100.00%) Disk: 1/1 (100.00%)
TrigID Object ID Event AType ActionDate
State
--------------------- -------------------- -------- ------ -------------------- ------

84* node:bdaw end exec Wed Oct 1 10:43:26
Active
Launch Time: -00:00:14
Flags: globaltrig
Last Execution State: Active (ExitCode: 0)
BlockUntil: 5:18:24 ActiveTime: -1:00:29:57
PID: 7088
Action Data: /home/bdaw/nodeend.sh $OID
StdOut: /opt/moab/spool/nodeend.sh.oMNnWkU
StdErr: /opt/moab/spool/nodeend.sh.ennUbAp

* indicates trigger has completed

17.7 Usage Policies

As part of your Elastic Computing solution, you can keep track of processor seconds on all
dynamic nodes to limit over-bursting. For example, if your configuration allows 1000
processor seconds of use every day, then if a job needs to burst (and the used processor
seconds reaches 1000 before the job can burst), the trigger to burst the job will not fire,
and an error message is generated. You can view the error message using 'mdiag -T -v'.

In this topic:

17.7.1 Available Policies - page 809
17.7.2 Policy Levels - page 809

Chapter 17: Elastic Computing Overview

808 17.7 Usage Policies

17.7 Usage Policies 809

17.7.1 Available Policies
There are four different values you can set: day, month, quarter, or year. The second count
resets at the beginning of each period. For ease of use, you can choose to set the limits
based on processor hours, and the system will automatically convert the hours to seconds.

These are the available policies you can set in the moab.cfg file to limit over-bursting:

l To specify by processor seconds, use:
o MAXDAILYELASTICPROCSECONDS
o MAXMONTHLYELASTICPROCSECONDS
o MAXQUARTERLYELASTICPROCSECONDS
o MAXYEARLYELASTICPROCSECONDS

l To specify by processor hours, use:
o MAXDAILYELASTICPROCHOURS
o MAXMONTHLYELASTICPROCHOURS
o MAXQUARTERLYELASTICPROCHOURS
o MAXYEARLYELASTICPROCHOURS

17.7.2 Policy Levels
You can set the usage policies at the global partition or QoS level:

l Global Partition – Once the elastic node first appears, Moab will begin keeping track
of its processor seconds or hours. If the processor seconds reaches the limit, it will
not fire off the elastic trigger so no new nodes will come in. For example:

PARCFG[ALL] MAXDAILYELASTICPROCSECONDS=1000

You can view the used and remaining limits using 'showstats -v'.

l QoS – Processor seconds or hours start being counted once a job is submitting using
that particular QOS, not from when the node first appears. For example:

QOSCFG[HIGH] MAXDAILYELASTICPROCSECONDS=500

A job is submitted requesting the "HIGH" QOS; the processor seconds begin ticking up for that QOS.

You can view the used and remaining limits using 'mdiag -q -v'.

Chapter 17: Elastic Computing Overview

810

Chapter 18: Object Triggers

In this chapter:

18.1 About Object Triggers 811
18.2 Object Trigger Tasks 812

18.2.1 Creating a Trigger 812
18.2.2 Using a Trigger to Send Email 815
18.2.3 Using a Trigger to Execute a Script 816
18.2.4 Using a Trigger to Perform Internal Moab Actions 817
18.2.5 Requiring an Object Threshold for Trigger Execution 817
18.2.6 Enabling Job Triggers 818
18.2.7 Modifying a Trigger 818
18.2.8 Viewing a Trigger 820
18.2.9 Checkpointing a Trigger 820

18.3 Object Trigger Reference 821
18.3.1 Job Triggers 821
18.3.2 Node Triggers 823
18.3.3 Reservation Triggers 824
18.3.4 Resource Manager Triggers 826
18.3.5 Scheduler Triggers 827
18.3.6 Threshold Triggers 829
18.3.7 Trigger Components 830
18.3.8 Trigger Exit Codes 838
18.3.9 Node Maintenance Example 839
18.3.10 Environment Creation Example 840

18.4 About Trigger Variables 842
18.4.1 Trigger Variable Tasks 842

18.5 Generic System Job Trigger Requirements 846
18.5.1 Trigger Variable Reference 846

Chapter 18: Object Triggers

18.1 About Object Triggers

Moab triggers are configurable actions that respond to an event occurring on a Moab
object. A trigger is attached to an object and consists of both an event that can take place on
the object and the action that the trigger will take.

Image 18-1: Trigger attachment

Triggers are a powerful tool. Extreme caution should be taken when using them. They
are useful in creating automatic responses to well-understood Moab events; however,
by default triggers run as root and do exactly as they are told, meaning they require
great thought and consideration to ensure that they act appropriately in response to
the event.

Use Case

An administrator wants to create the following setup in Moab:

When a node's temperature exceeds 34°C, Moab reserves it. If the temperature
increases to more than 40°C, Moab requeues all jobs on the node. If the node's
temperature exceeds 50°C, Moab shuts it down. Moab removes the node's reservation
and unsets the variables when the node cools to less than 25°C.

The administrator wants to receive an email whenever any of these events occur. All of
this can be configured in Moab using triggers. To see a full example for this use case,
see Node Maintenance Example.

Chapter 18: Object Triggers

811 18.1 About Object Triggers

18.2 Object Trigger Tasks 812

18.2 Object Trigger Tasks

In this section:

Creating a Trigger
Using a Trigger to Send Email
Using a Trigger to Execute a Script
Using a Trigger to Perform Internal Moab Actions
Requiring an Object Threshold for Trigger Execution
Enabling Job Triggers
Modifying a Trigger
Viewing a Trigger
Checkpointing a Trigger

18.2.1 Creating a Trigger
Three methods exist for attaching a trigger to an object:

l Directly to the object via the command line

l Directly to the object via the configuration file

l As part of a template via the configuration file

<attr>=<val> pair delimiters, quotation marks, and other elements of the syntax might
differ slightly from one method/object combination to another, but creating any trigger
follows the same basic format:

<attr>=<val>[[{&,}<attr>=<val>]...]

The beginning of the trigger is set off by the keyword trigger. It is followed by a delimited
list (typically by commas) of <attr>=<val> pairs.

Each method of trigger creation can only be used for certain Moab objects. The following
table displays which objects can receive triggers via each method. The links contain
examples.

Method Objects

Command line job, reservation; a trigger can be attached to any existing
object using mschedctl -c

Chapter 18: Object Triggers

Method Objects

Configuration file node, reservation, RM, scheduler

Template job, reservation

Triggers are composed of attributes. Only three are required for each trigger: an EType
(event type), an AType (action type), and an Action.

Image 18-2: Required trigger attributes

Other attributes exist to further customize triggers. See Trigger Components for more
information.

To Create a Moab Trigger
1. Choose an object to which, and a method by which, you will attach the trigger. Use the

format and examples described in its corresponding documentation:

l Job Triggers

l Node Triggers

l Reservation Triggers

l Resource Manager Triggers

l Scheduler Triggers

Chapter 18: Object Triggers

813 18.2 Object Trigger Tasks

18.2 Object Trigger Tasks 814

If the trigger is to be attached to a job, you must first enable job triggers (see
Enabling Job Triggers for more information). Carefully review the warning before
doing so.

2. Decide whether to attach the trigger via the command line or configuration file. Verify
the correct syntax.

3. Set the EType equal to whichever event will launch the trigger if and when it occurs on
the object.
Each object has a different lifecycle, so not every event type will occur on every object.
For a list of valid ETypes for your selected object, see the corresponding object
reference page linked in step 1.

a. To modify the timing of the trigger in any of the following ways, see Event-Modifying
Trigger Components:

l To set the trigger as rearmable and specify the amount of time the trigger must
wait before firing again.

l To set an amount of time before or after the event that the trigger will fire (see
Offset for restrictions).

l To set a specific threshold and the amount of time that the object must meet that
threshold before the trigger will fire.

4. Configure the action that the trigger will take when the event happens. To do so, you
must set the AType to a valid value for your object and specify the action. For instance,
to execute a script, set the AType to exec and the Action to the location of the script
in quotation marks. Include the name of the object on which the script will run.

NODECFG[node01] TRIGGER=EType=fail,AType=exec,Action="node.fail.sh node01"

a. To modify the action in any of the following ways, see Action-Modifying Trigger
Components:

l To specify environment variables available to the trigger

l To set a flag on the trigger:
o To attach any stderr output generated by the trigger to the parent object
o To destroy the trigger if its object ends or cancels
o To tell Moab to checkpoint the trigger
o To set the trigger as periodic
o To pass the object's XML information to the trigger's stdin

Chapter 18: Object Triggers

o To set the trigger to reset if its object is modified
o To set the trigger to fire under the user ID of the object's owner

l To specify an amount of time that Moab will suspend normal operation to wait for
the trigger to execute

l To allot an amount of time that the trigger will attempt to run before it is marked
as unsuccessful and the process, if any exists, is killed

l Set a maximum number of times that a trigger will attempt to fire before it fails

b. To give the trigger a name or description, see Organizational Trigger Components.

c. To configure the trigger to set or unset a variable when it fires or to require a
variable to fire, see Setting and Receiving Trigger Variables.

18.2.2 Using a Trigger to Send Email
Mail triggers can be attached to nodes, jobs, reservations, and the scheduler. The recipient
of the email depends on the object to which the trigger is attached. To select different
recipient(s) and add flexibility to formatting, send email via a script using an exec trigger.

To Use a Trigger to Send Email

1. For objects that send mail to the primary user, you must configure the Moab
administrator email using the MAILPROGRAM parameter.

2. Create a trigger on one of the four valid objects listed below, setting the AType to
mail and the Action to the body of the message inside of quotation marks.

Object Recipient

Node The primary user (the first user listed in ADMINCFG[1], typically root)

Job The job's owner

Reservation The primary user

Scheduler The primary user

3. When attaching a mail trigger to all objects of a certain type, use internal variables in
the Action to add information that is specific to an object, such as the ID, owner, time
the event occurred, etc. A variable must be preceded by a dollar sign ($).

Chapter 18: Object Triggers

815 18.2 Object Trigger Tasks

18.2 Object Trigger Tasks 816

Variable Description

$OID Name of the object to which the trigger is attached

$OTYPE The type of object to which the trigger is attached

$TIME Time the trigger launched

$HOSTLIST Hostlist of the trigger's object (jobs and reservations)

$OWNER Owner of the trigger's object (jobs and reservations)

$USER User (jobs and reservations)

The variable is replaced with the information described above. For example, the
following trigger is configured on all nodes:

NODECFG[DEFAULT] EType=fail,AType=mail,Action="node $OID failed at $TIME"

When, for example, node node03 fails, an email is sent to the primary user with a message with the subject line
"node node03 started on Sat Aug 18 11:42:00".

18.2.3 Using a Trigger to Execute a Script
Exec triggers launch a program or script when the event occurs. A few examples of what a
script might do in response to an event include:

l Execute an external program

l Send a complex email to any desired recipient(s)

l Collect diagnostics

It is important to note that when a script runs via a trigger, Moab forks and performs
a direct OS exec, meaning there will be no pre-processing of the command by the
shell. In addition, the script runs in a new, reduced environment without the same
settings and variables as the environment from which it stemmed. The script must be
able to run in the reduced environment.

Chapter 18: Object Triggers

To Use a Trigger to Execute a Script

1. Create or locate the script and note its location.

2. Create a trigger on the desired object, setting the AType to exec and the Action to
location of the script or program.

JOBCFG[temp1] TRIGGER=EType=start,AType=exec,Offset=03:00,Action="/tmp/monitor.pl"

Jobs with the temp1 template receive a trigger that executes monitor.pl three minutes after the job starts.

18.2.4 Using a Trigger to Perform Internal Moab Actions

To Perform Internal Actions in Moab with a Trigger
Create a trigger on a job, node, or reservation, setting the AType to internal and the
Action to one of the following:

l node:-:reserve - reserves the node to which the trigger is attached

l job:-:cancel - cancels the job to which the trigger is attached

l reservation:-:cancel - cancels the reservation to which the trigger is
attached

The specified object reserves or cancels itself once the event occurs. See Internal Action for
examples.

18.2.5 Requiring an Object Threshold for Trigger Execution
Threshold triggers allow sites to configure triggers to launch based on internal scheduler
statistics, such as generic metrics. For example, you might configure a trigger to warn the
administrator when the percentage of nodes available is less than 25.

To Configure a Threshold Trigger

1. Create a trigger. Set its EType to threshold. Configure the AType, Action, and
Threshold attributes' values based on the valid thresholds per object listed in the
table found in Threshold Triggers.

NODECFG[node04] TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp.py
$OID",Threshold=gmetric

Chapter 18: Object Triggers

817 18.2 Object Trigger Tasks

18.2 Object Trigger Tasks 818

2. Insert the gmetric name between brackets (such as gmetric[temp]). Provide a
comparison operator. For valid options, see the comparison operators table.

3. Provide a number or string to match against the threshold.

NODECFG[node04] TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp.py
$OID",Threshold=gmetric[TEMP]>70,RearmTime=5:00

Moab launches a script that warns the administrator when node04's gmetric temp exceeds 70. Moab rearms
the trigger five minutes after it fires.

18.2.6 Enabling Job Triggers
By default, common users cannot create most objects, and as a result, common users also
cannot create triggers. The exception, however, is jobs. Because common users can create
jobs and triggers generally run as root, additional security is necessary to ensure that not
all users can create triggers. For this reason, job triggers are disabled by default.

Because triggers generally run as root, any user given the power to attach triggers
has the power to run scripts and commands as root. It is recommended that you only
enable job triggers on closed systems where human users do not have access to
directly submit jobs.

To give specific users permission to create job triggers, you must create a QoS, set the
trigger flag, and add users to it.

To Enable Job Triggers

1. In the moab.cfg file, create a QoS and set the trigger flag.

QOSCFG[triggerok] QFLAGS=trigger

2. Add users to the QoS who should be allowed to add triggers to jobs.

USERCFG[joe] QDEF=triggerok

User joe is added to the triggerok QoS, giving him both the power to create job
triggers and root access to the machine.

18.2.7 Modifying a Trigger
You can modify a trigger at any time by updating its settings in the Moab configuration file
(moab.cfg). This will update most triggers at the beginning of the next Moab iteration;

Chapter 18: Object Triggers

however, modifying template triggers (configured using RSVPROFILE or JOBCFG) will not
update the instances of the trigger that were attached to individual reservations or jobs on
creation. The modification will only affect the triggers that the template attaches to future
objects.

Any trigger with a specified name can be modified using the mschedctl -m command in the
following format:

mschedctl -m trigger: <triggerID><attr1>=<val1><attr2>=<val2>

Modifying triggers on the command line does not change their configuration in
moab.cfg. Except for reservations that are checkpointed, changes made
dynamically are lost when Moab restarts.

For example, the procedure below demonstrates how to modify the following trigger so
that the offset is 10 minutes instead of 5 and so that Moab will attempt to fire the trigger up
to 10 times if it fails. Assume your trigger currently looks like this:

NODECFG[DEFAULT] EType=fail,AType=exec,Action="/scripts/node_
fail.pl",Name=nodeFailTrig,Offset=00:05:00,MultiFire=TRUE,RearmTime=01:00:00

To Modify a Trigger

1. Type mschedctl -m into the command line and set off the trigger modification with
trigger:<id>. Use the trigger's assigned ID or specified name to state which trigger
will receive the modification.

> mschedctl -m trigger:nodeFailTrig

2. Type any changing attributes equal to the new value. Separate multiple modifications
with a space between each <attr>=<val> pair. In this case, set the Offset
and MaxRetry attributes the following way:

> mschedctl -m trigger:nodeFailTrig Offset=00:10:00 MaxRetry=10

The newly-specified attributes replace the original ones. Trigger nodeFailTrig now
has an offset of 10 minutes and will try to fire a maximum of 10 times if it fails. The new
trigger has the following attributes:

EType=fail,AType=exec,Action="/scripts/start_
rsv.pl",Name=nodeFailTrig,Offset=00:10:00,MultiFire=TRUE,RearmTime=01:00:00,MaxRetr
y=10

Chapter 18: Object Triggers

819 18.2 Object Trigger Tasks

18.2 Object Trigger Tasks 820

18.2.8 Viewing a Trigger
Moab provides a list of triggers when you run the mdiag -T command. You can view a
specific trigger by running mdiag -T in the following format:
mdiag -T [<triggerID>|<objectID>|<triggerName>|<objectType>]

To View a Trigger

1. Type mdiag -T in the command line.

2. Specify either the trigger ID, the trigger name, the name of the object to which the
trigger is attached, or the type of object to which the trigger is attached. For example, if
you wanted to view information about a trigger with ID trigger.34 and name
jobFailTrigger, which is attached to job job.493, you could run any of the
following commands:

> mdiag -T trigger.34

> mdiag -T job.493

> mdiag -T jobFailTrigger

> mdiag -T job

The output of the first command would provide basic information about trigger.34; the second command,
information about all triggers attached to job.493 that the user can access; the third command, basic
information about jobFailTrigger; and the fourth command, basic information about all triggers attached
to jobs that the user can access.

3. Optional: to view additional information about the trigger, run the same command with
the -v flag specified after -T.

> mdiag -T -v job.493

This mode outputs information in multiple lines.

4. Optional: to view detailed information about all triggers available to you, use the mdiag
-T -v command. This outputs all triggers available to the user in a single line for each
trigger. It provides additional state information about triggers, including reasons
triggers are currently blocked.

> mdiag -T -v

18.2.9 Checkpointing a Trigger
Checkpointing is the process of saving state information when Moab is shut down. In
general, triggers defined in the moab.cfg file are not checkpointed but are recreated
when Moab starts. The exception is the JOBCFG parameter, which attaches triggers to jobs

Chapter 18: Object Triggers

as they are created. There are two cases where you might want to tell Moab to checkpoint a
trigger:

l If a trigger is defined in the moab.cfg file but was created at the command line

l When creating a trigger using the mschedctl command

To Checkpoint a Trigger

1. Locate the trigger to be checkpointed in the moab.cfg file, create one on the command
line, or modify a trigger dynamically (see Modifying a Trigger for more information).
Attach the checkpoint flag using the FLAGS attribute. For more information about
flags, see Flags.

FLAGS=checkpoint

2. If you are working in the configuration file, save the changes. Moab will now checkpoint
your trigger.

18.3 Object Trigger Reference

In this section:

Job Triggers
Node Triggers
Reservation Triggers
Resource Manager Triggers
Scheduler Triggers
Threshold Triggers
Trigger Components
Trigger Exit Codes
Node Maintenance Example
Environment Creation Example

18.3.1 Job Triggers
For security reasons, job triggers are disabled by default. They must be enabled in order to
successfully attach triggers to jobs (see Enabling Job Triggers for more information).

Triggers attached to jobs follow the same basic rules and formats as attaching them to
other objects; however, not all attribute options are valid for each object. Jobs, like other

Chapter 18: Object Triggers

821 18.3 Object Trigger Reference

18.3 Object Trigger Reference 822

objects, have a unique set of trigger rules. The table below details the methods, options,
and other notable details associated with attaching triggers to jobs.

18.3.1.A Creation Methods

Method Format Example

Command line
on job
creation:
msub -l

msub <jobName> -l
'trig=<trigSpec>'
Attributes are delimited by
backslash ampersand (\&).

> msub my.job -l
'trig=EType=create\&AType=exec\&Action=
"/jobs/my_trigger.pl"\&Offset=10:00'

Command line
on existing
job: mschedctl
- c

mschedctl -c trigger
<trigSpec> -o
job:<jobID>

> mschedctl -c trigger
EType=end,AType=mail,Action=
"Job moab.54 has ended" -o job:moab.54

Job template
in
moab.cfg
: JOBCFG

JOBCFG[<templateName>]
TRIGGER=<trigSpec>

JOBCFG[vmcreate]
TRIGGER=,EType=end,AType=exec,Action=
"/tmp/jobEnd.sh"

Class
event:
CLASSCFG

CLASSCFG[<classID>]
JOBTRIGGER=<trigSpec>

CLASSCFG[batch]
JOBTRIGGER=atype=exec,etype=create,acti
on=
"/opt/moab/tools/job_trigger.pl"

18.3.1.B Valid Event Types

l cancel

l checkpoint

l create

l end

l fail

l hold

l modify

l preempt

l start

Chapter 18: Object Triggers

18.3.1.C Valid Action Types

l changeparam

l exec

l internal

l mail

18.3.1.D Mail Recipient
The job's owner,

See Using a Trigger to Send Email for more information.

18.3.2 Node Triggers
Triggers attached to nodes follow the same basic rules and formats as attaching them to
other objects; however, not all attribute options are valid for each object. Nodes, like the
other objects, have a unique set of trigger rules. The table below details the methods,
options, and other notable details that come with attaching triggers to nodes.

18.3.2.A Creation Methods

Method Format Example

Command
line on
existing
node:
mschedctl - c

mschedctl
-c trigger
<trigSpec>
-o
node:
<nodeID>

> mschedctl -c trigger
EType=fail,AType=exec,Action="/tmp/nodeFailure.sh" -o
node:node01

Node
configuration
in
moab.cfg:
NODECFG

NODECFG
[<name>]
TRIGGER=
<trigSpec>

NODECFG[node04]
TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp
.py $OID",Threshold=gmetric[TEMP]>70

Chapter 18: Object Triggers

823 18.3 Object Trigger Reference

18.3 Object Trigger Reference 824

18.3.2.B Valid Event Types

l create

l discover

l end

l fail

l standing

l threshold

18.3.2.C Valid Action Types

l changeparam

l exec

l internal

l mail

18.3.2.D Thresholds

Node Threshold Settings

Valid ETypes threshold

Valid Threshold Types gmetric

18.3.2.E Mail Recipient
The user listed first in ADMINCFG[1] (usually root).

See Using a Trigger to Send Email for more information.

18.3.3 Reservation Triggers
Triggers attached to reservations follow the same basic rules and formats as attaching
them to other objects; however, not all attribute options are valid for each object.
Reservations, like the other objects, have a unique set of trigger rules. The table below

Chapter 18: Object Triggers

details the methods, options, and other notable details that come with attaching triggers to
reservations.

18.3.3.A Creation Methods

Method Format Example

Command
line on
reservation
creation:
mrsvctl -T

mrsvctl -
c -h
<hostlis
t> -T
<trigSpe
c>

> mrsvctl -c -h node01 -T EType=start,AType=exec,
Action="/scripts/node_start.pl"

Command
line on
existing
reservation:
mschedctl -
c

mschedctl
-c
trigger
<trigSpe
c> -o
rsv:
<rsvID>

> mschedctl -c trigger
EType=modify,AType=mail,Action="Reservation system.4 has
been modified" -o rsv:system.4

Standing
reservation
configuratio
n in
moab.cfg
: SRCFG

SRCFG
[<name>]
TRIGGER=
<trigSpe
c>

SRCFG[Mail2]
TRIGGER=EType=start,Offset=200,AType=exec,Action="/tmp/email
.sh"

Reservation
template in
moab.cfg
:
RSVPROFILE

RSVPROFIL
E[<name>]
TRIGGER=
<trigSpe
c>

RSVPROFILE[rsvtest]
TRIGGER=EType=cancel,AType=exec,Action="$HOME/logdate.pl
TEST CANCEL $VPCHOSTLIST $OID $HOSTLIST $ACTIVE"

18.3.3.B Valid Event Types

l create

l end

l modify

l standing

Chapter 18: Object Triggers

825 18.3 Object Trigger Reference

18.3 Object Trigger Reference 826

l start

l threshold

18.3.3.C Valid Action Types

l cancel

l changeparam

l exec

l internal

l jobpreempt

l mail

18.3.3.D Thresholds

Node Threshold Settings

Valid ETypes threshold

Valid Threshold types usage

18.3.3.E Mail Recipient
The owner of the reservation. If the owner is unknown or not a user, the first user listed
first in ADMINCFG (usually root).

See Using a Trigger to Send Email for more information.

18.3.4 Resource Manager Triggers
Triggers attached to the resource manager follow the same basic rules and formats as
attaching them to other objects; however, not all attribute options are valid for each object.
The resource manager, like other objects, has a unique set of trigger rules. The table below
details the methods, options, and other notable details that come with attaching triggers to
RMs.

Chapter 18: Object Triggers

18.3.4.A Creation Methods

Method Format Example

Command
line on
existing RM:
mschedctl -
c

mschedctl
-c
trigger
<trigSpe
c> -o
rm:<rmID>

> mschedctl -c trigger
EType=start,AType=exec,Action="/tmp/rmStart.sh" -o rm:torque

RM
configuratio
n in
moab.cfg:
RMCFG

RMCFG
[<name>]
TRIGGER=
<trigSpe
c>

RMCFG[base]
TRIGGER=EType=fail,AType=exec,Action="/opt/moab/tools/diagno
se_rm.pl $OID"

18.3.4.B Valid Event Types

l fail

l threshold

18.3.4.C Valid Action Types

l changeparam

l exec

l internal

18.3.5 Scheduler Triggers
Triggers attached to the scheduler follow the same basic rules and formats as attaching
them to other objects; however, not all attribute options are valid for each object. The
scheduler, like the other objects, has a unique set of trigger rules. The table below details
the methods, options, and other notable details associated with attaching triggers to the
scheduler.

Chapter 18: Object Triggers

827 18.3 Object Trigger Reference

18.3 Object Trigger Reference 828

18.3.5.A Creation Methods

Method Format Example

Command line
on existing
scheduler:
mschedctl - c

mschedctl -c
trigger
<trigSpec> -o
sched:<schedID>

> mschedctl -c trigger
EType=end,AType=exec,Action="/tmp/startRsvs.
sh" -o sched:moab

Scheduler
configuration in
moab.cfg
: SCHEDCFG

SCHEDCFG[<name>]
TRIGGER=
<trigSpec>

SCHEDCFG[MyCluster]
TRIGGER=EType=fail,AType=mail,Action="schedu
ler failure detected on
$TIME",RearmTime=15:00

18.3.5.B Valid Event Types

l create

l end

l fail

l modify

l standing

l start

18.3.5.C Valid Action Types

l changeparam

l exec

l internal

l mail

18.3.5.D Mail Recipient
The user listed first in ADMINCFG (usually root).

See Using a Trigger to Send Email for more information.

Chapter 18: Object Triggers

18.3.6 Threshold Triggers
The following table identifies the object event, and usage types with which the threshold
event/action type feature works:

Object Type Event Type Usage Types

Node Threshold gmetric

Reservation Threshold usage

The following table defines each of the usage types:

Usage
Type Description

gmetric Generic performance metrics configured in Moab (see Enabling Generic Metrics
for more information).

usage The percentage of the resource being used (not idle).

The following table defines each of the threshold trigger comparison operators:

Comparison Operator Value

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

18.3.6.A Examples

Example 18-1: Reservation usage threshold

SRCFG[res1] TRIGGER=EType=threshold,AType=mail,Action="More than 75% of reservation
res1 is being used",Threshold=usage>75,FailOffset=1:00

When more than 75% of the reservation has been in use for at least a minute, Moab fires a trigger to notify the

Chapter 18: Object Triggers

829 18.3 Object Trigger Reference

18.3 Object Trigger Reference 830

primary user.

18.3.7 Trigger Components

In this topic:

18.3.7.A Required Trigger Components - page 830
18.3.7.B Event-Modifying Trigger Components - page 835
18.3.7.C Action-Modifying Trigger Components - page 836
18.3.7.D Organizational Trigger Components - page 838

18.3.7.A Required Trigger Components

AType

Action Type Description

cancel Cancels the object.

changeparam Causes Moab to give a parameter to a new value.

exec Launches an external program or script on the command line when the
dependencies are fulfilled. See Using a Trigger to Execute a Script for more
information.

internal Modifies Moab without using the command line. See Using a Trigger to
Perform Internal Moab Actions for more information.

jobpreempt Indicates the preempt policy to apply to all jobs currently allocated
resources assigned to the trigger's parent reservation.

mail Causes Moab to send mail. See Using a Trigger to Send Email for more
information.

Chapter 18: Object Triggers

Action

Cancel Action

Format NONE

Description Indicates that Moab should cancel the reservation when the event occurs. No
action should be specified.

Example Etype=threshold,Threshold=usage<10,FailOffset=1:00,AType=cancel

When less than 10% of the reservation has been in use for a minute,
Moab cancels it.

Changeparam Action

Format Action="<STRING>"

Description The parameter to change and its new value (using the same syntax and
behavior as the changeparam command).

Example Atype=changeparam,Action="JOBCPURGETIME 02:00:00"

Moab maintains detailed job information for two hours after a job
has completed.

Jobpreempt Action

Format Action="cancel|checkpoint|requeue|suspend"

Description Signifies PREEMPTPOLICY to apply to jobs that are running on allocated
resources.

Example RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-
240,AType=jobpreempt,Action="cancel"

40 minutes after the reservation adm1 starts, all jobs using the
reservation's resources adopt a PREEMPTPOLICY of cancel.

Chapter 18: Object Triggers

831 18.3 Object Trigger Reference

18.3 Object Trigger Reference 832

Mail Action

Format Action="<MESSAGE>"

Description When AType=mail, the Action parameter contains the message body of the
email. This can be configured to include certain variables. See Using a Trigger
to Send Email for details.
Mail triggers can be configured to launch for node failures, reservation creation
or release, scheduler failures, and even job events. In this way, site
administrators can keep track of scheduler events through email.
The email comes from moabadmin, has a subject of moab update, and has a
body of whatever you specified in the Action attribute. The recipient list
depends on the type of object the trigger is attached to.

l Node - The primary user (first listed in ADMINCFG[1]), typically root
l Scheduler - The primary user
l Job - The user who owns the job
l Reservation - The primary user

Example NODECFG[DEFAULT] TRIGGER=EType=fail,AType=mail,Action="node $OID will failed
.",Offset=05:00:00

This example sends an email to the primary administrator
informing him/her that the node (including the node ID) has failed.

Exec Action

Format Action="<script>"

Description Exec triggers will launch an external program or script when their
dependencies are fulfilled. The following example will submit job.cmd and
then execute monitor.pl three minutes after the job is started. See Using a
Trigger to Execute a Script for more information.

Example > msub -l trig=EType=start\&AType=exec\&Action="/tmp/monitor.pl"
job.cmd\&Offset=03:00

Internal Action

Format Action="<objectType>:-:<cancel|reserve>"

Description A couple different actions are valid depending on what type of object the
internal trigger is acting upon. The following list shows the available actions:

Chapter 18: Object Triggers

Internal Action

l Reserve a node
l Cancel a job
l Cancel a reservation

See Using a Trigger to Perform Internal Moab Actions for more information.

Example NODECFG[node01] TRIGGER=EType=start,AType=internal,Action="node:-:reserve"

When node01 starts, it becomes a reservation.

> msub moab.3 -l 'trig=EType=fail\&AType=internal\&Action="job:-:cancel"

If moab.3 fails, Moab cancels it.

> mrsvctl -c -a user==joe -h node50 -T EType=start,AType=internal,Action="
reservation:-:cancel",Offset=10:00

User joe's jobs are given a ten-minute window to start, then the
reservation cancels.

EType

Event
Type Description

cancel The event is triggered when the parent object is either canceled or deleted.

checkpoint Triggers fire when the job is checkpointed. checkpoint triggers can only be
attached to jobs.

create Triggers fire when the parent object is created. create triggers can be
attached to nodes, jobs, reservations, classes, and the scheduler (when attached
to the scheduler, triggers fire when Moab starts).

discover Triggers fire when the node is loaded from a resource manager and Moab
cannot recognize it nor find it in the checkpoint file.

end Triggers fire when the parent object ends. end triggers can be attached to
nodes, jobs, reservations, and the scheduler. When attached to the scheduler,
triggers fire when Moab shuts down. When attached to jobs, triggers fire when
jobs return successfully (completion code of 0).

fail fail triggers can be attached to jobs, nodes, resource managers, and the

Chapter 18: Object Triggers

833 18.3 Object Trigger Reference

18.3 Object Trigger Reference 834

Event
Type Description

scheduler. Triggers fire when the resource manager is in a corrupt or down
state for longer than the configured fail time, when Moab detects a corruption
in a node's reservation table, or when the job returns an unsuccessful
completion code.

hold Triggers fire when the job is put on hold. hold triggers can only be attached to
jobs.

modify Triggers fire when the parent object is modified. modify triggers can be
attached to jobs and reservations.

preempt Triggers fire when the job is preempted. preempt triggers can only be
attached to jobs.

standing Triggers fire multiple times based on a certain period. They can be used with
Period and Offset attributes. standing triggers can be attached to nodes and
the scheduler.

start Triggers fire when the parent object or Moab starts. start triggers can be
attached to jobs, reservations, resource managers, and the scheduler (when
Moab starts and at the beginning of Moab's first iteration).

threshold Triggers fire when a threshold, such as usage or a gmetric comparison, is true.
threshold triggers can be attached to nodes and reservations.

Triggers with ETypes set to threshold must include the Threshold
attribute.

TType

Trigger Type Description

elastic Specifies trigger for Elastic Computing. Only applicable for QoS triggers.

generic Default trigger type. Not applicable for Elastic Computing.

Chapter 18: Object Triggers

18.3.7.B Event-Modifying Trigger Components
The following trigger attributes modify the event that causes the trigger to fire.

RearmTime

Possible
Values

[[HH:]MM:]SS

Description The amount of time that must pass before a trigger can fire again. RearmTime
is enforced from the trigger event time.

Usage
Notes

Offset

Possible Values [-][[HH:]MM:]SS

Description The relative time offset from event when trigger can fire.

Usage Notes l Only end triggers can have a negative value for
Offset.

l Offset cannot be used with cancel.

Period

Possible Values Minute, Hour, Day, Week, Month, Infinity

Description The period at which the trigger will regularly fire.

Usage Notes ---

Threshold

Possible
Values

Threshold={<metric>[<metricName>]}{> >= < <= ==}<FLOAT>
Where <metric> is one of:

l gmetric
l usage

Description When the object meets, drops below, or increases past the configured

Chapter 18: Object Triggers

835 18.3 Object Trigger Reference

18.3 Object Trigger Reference 836

Threshold

Threshold, the trigger will fire.

Usage
Notes

Threshold triggers allow sites to configure triggers to launch based on internal
scheduler statistics, such as the usage of a reservation.

FailOffset

Possible Values [[HH:]MM:]SS

Description The time that the threshold condition must exist before the trigger fires.

Usage Notes Use with fail triggers to avoid transient triggers.

18.3.7.C Action-Modifying Trigger Components

Flags

Possible
Values

Flags=<flag>[:<flag>] or Flags=[<flag>][[<flag>]]
attacherror - If the trigger outputs anything to stderr, Moab attaches it as
a message to the trigger object.
cleanup - If the trigger is still running when the parent object completes or
is canceled, Moab kills the trigger.
checkpoint - Moab always checkpoints this trigger. For more information,
see Checkpointing a Trigger.
objectxmlstdin - Trigger passes its parent's object XML information into
the trigger's stdin. This only works for exec triggers with reservation type
parents.
removestdfiles - When the trigger is deleted, Moab will remove the stdin,
stdout, and stderr files used by the trigger.
resetonmodify - The trigger resets if its object is modified, even if
RearmTime is not set.
user - The trigger executes under the user ID of the object's owner. If the
parent object is the scheduler, you can explicitly specify the user using the
format user+<username>. For example: Flags=user+john.

Description Specifies various trigger behaviors and actions.

Usage When specifying multiple flags, each flag can be delimited by colons (:) or with

Chapter 18: Object Triggers

Flags

Notes square brackets; for example:
Flags=[user][cleanup] or Flags=user:cleanup

BlockTime

Possible
Values

[[HH:]MM:]SS

Description The amount of time Moab will suspend normal operation to wait for trigger
execution to finish.

Usage Notes Use caution; Moab will completely stop normal operation until BlockTime
expires.

ExpireTime

Possible
Values

<INTEGER>

Description The time at which trigger should be terminated if it has not already been
activated.

Usage Notes ---

Timeout

Possible
Values

[+|-][[HH:]MM:]SS

Description The time allotted to this trigger before it is marked as unsuccessful and its
process (if any) killed.

Usage Notes ---

MaxRetry

Possible
Values

MaxRetry=<INTEGER>

Chapter 18: Object Triggers

837 18.3 Object Trigger Reference

18.3 Object Trigger Reference 838

MaxRetry

Description The number of times Action will be attempted before the trigger is
designated a failure.

Usage
Notes

If Action fails, the trigger will restart immediately (up to MaxRetry times).
If it fails more than MaxRetry times, the trigger has failed. This restart
ignores FailOffset and RearmTime.

18.3.7.D Organizational Trigger Components

Name

Possible
Values

Name=<STRING>

Description Name of the trigger.

Usage
Notes

Because Moab uses its own internal ID to distinguish triggers, the Name need
not be unique. Only the first 16 characters of Name are stored by Moab.

Description

Possible Values Description=<STRING>

Description Description of the trigger.

Usage Notes ---

18.3.8 Trigger Exit Codes
By default, Moab considers any non-zero exit code as a failure and marks the trigger as
having failed. If a trigger is killed by a signal outside of Moab, Moab treats the signal as the
exit code and (in almost all cases) marks the trigger as having failed. Only exec triggers
that exit with an exit code of 0 are marked as successful.

Chapter 18: Object Triggers

18.3.9 Node Maintenance Example

Example Scenario

An administrator wants to create the following setup in Moab:

When a node's temperature exceeds 34°C, Moab reserves it. If the temperature
increases to more than 40°C, Moab requeues all jobs on the node. If the node's
temperature exceeds 50°C, Moab shuts it down. Moab removes the node's reservation
and unsets the variables when the node cools to less than 25°C. The administrator
wants to receive an email whenever any of these events occur.

The first trigger reserves the node when its reported temperature exceeds 34°C. Note that
the gmetric name in the trigger must match the name of the configured gmetric exactly,
including its case (see Enabling Generic Metrics for more information).

NODECFG[DEFAULT] TRIGGER=Description="ThresholdA",EType=threshold,Threshold=gmetric
[temp]>34,AType=internal,Action="node:-:reserve",RearmTime=30,Offset=2:00,Sets=temp_
rsv

The administrator wants the trigger to fire any time a node overheats, so it must be
rearmable. It also needs to specify that the node must be over 34°C for at least two minutes
for Moab to reserve it. If the trigger succeeds, it will set a variable to be received by the
next trigger in order to make them sequential.

The administrator wants to know when this trigger has fired, so another trigger will send
an email once the first trigger has fired and the temp_rsv variable is set. This one does
so via a script:

NODECFG[DEFAULT] Trigger=Description="Email on
Reservation",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailReserve.pl
$OID",RearmTime=3:00,Requires=temp_rsv

The second threshold trigger requeues the node's jobs if the node exceeds 40°C and the
temp_rsv variable is set. It uses a script to do so. It sets node_evac variable when it
fires, regardless of whether it succeeds or fails.

NODECFG[DEFAULT] Trigger=Description="Threshold B",EType=threshold,Threshold=gmetric
[temp]>40,Atype=exec,Action="$TOOLSDIR/node_evacuate.pl
$OID",RearmTime=3:00,requires=temp_rsv,Sets=node_evac,!node_evac

The administrator wants another email to inform him that the node is still overheating and
has been evacuated. Another email trigger fires once it receives the node_evac variable.

NODECFG[DEFAULT] Trigger=Description="Email on
Evacuation",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailEvac.pl
$OID",RearmTime=3:00,Requires=node_evac

Chapter 18: Object Triggers

839 18.3 Object Trigger Reference

18.3 Object Trigger Reference 840

The third threshold trigger uses a script to shut down the node if the temp gmetric exceeds
50 and the node_evac variable is set. It sets a node_shutdown variable to be received
by the notification email.

NODECFG[DEFAULT TRIGGER=Description="Threshold C",EType=threshold,Threshold=gmetric
[temp]>50,AType=exec,Action="$TOOLSDIR/node_shutdown.pl
$OID",RearmTime=3:00,Requires=node_evac,Sets=node_shutdown

NODECFG[DEFAULT] Trigger=Description="Email on
Shutdown",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailShutdown.pl
$OID",RearmTime=3:00,Requires=node_shutdown

The final trigger removes the reservation and unsets the variables once the node's temp
gmetric is less than 25.

NODECFG[DEFAULT] Trigger=Description="Remove
Reservation",EType=threshold,Threshold=gmetric
[temp]<25,AType=exec,Action="opt/moab/bin/mrsvctl -r
r:$OID",RearmTime=3:00,Requires=temp_rsv,unsets=temp_rsv.node_evac.node_shutdown

18.3.10 Environment Creation Example

Example Scenario

An administrator wants to create the following setup in Moab:

If a user requests an environment, she must have the permission of her two managers
and the administrator. If all three approve, then the environment builds. The user is
sent email messages informing her of the environment's end date in case she would
like an extension. These are sent 7, 3, and 1 days prior to the environment's ending.

The administrator wants to require his and the managers' approval of any
modifications the user makes to her environment so that it cannot be extended without
consent.

The first trigger requests manager and administrator approval in response to the user's
environment request. So in the event of a reservation's creation, a script is used to send
messages to the administrator and manager. The internal variable OWNER is used to
indicate to the recipients (via the script) which user is requesting the environment.

RSVPROFILE[envSetup] TRIGGER=EType=create,AType=exec,Action="envRequest.sh $OWNER"

The managers and administrator use an external program to approve or reject the request.
On approval, a variable is sent back to Moab (to the reservation specifically). Once all three
variables are set, the environment can start. In this example, the variables are called
approval1, approval2, and approval3.

Chapter 18: Object Triggers

RSVPROFILE[envSetup]
TRIGGER=EType=start,AType=exec,Action="buildScript",Requires=approval1.approval2.appro
val3

As it is configured now, the reservation will continue to reserve the requested resources
regardless of whether all three approvals are given. So, in case approval is not given, the
next trigger cancels the reservation 7 days after its creation if the three variables are not
set.

RSVPROFILE[envSetup]
TRIGGER=EType=create,Offset=7:00:00,AType=internal,Action="rsv:-:cancel",Requires=!app
roval1.!approval2.!approval3

Every remaining trigger in this series is meant to fire for an approved environment and
must require the approval variables. Otherwise these notifications would be sent to users
who do not have the environment they requested. The next triggers must be rearmable so
that it can fire again if necessary; however, they should be set to just over the amount of
time left on the reservation so that it doesn't fire again for the same environment. The
notification triggers use the Offset attribute to fire at the administrator's requested
times (7, 3, and 1 day(s) prior to the environment's end).

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
7:00:00,AType=exec,Action="weekNotification.sh",RearmTime=7:00:00:02,Requires=approval
1.approval2.approval3

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
3:00:00,AType=exec,Action="3dayNotification.sh",RearmTime=3:00:00:02,Requires=approval
1.approval2.approval3

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
1:00:00,AType=exec,Action="dayNotification.sh",RearmTime=1:00:00:02,Requires=approval1
.approval2.approval3

The next trigger requests administrator and manager approval when the environment is
modified. The problem is that the trigger must be rearmable in case of multiple
modifications and each time the RearmTime is reached, Moab will fire the trigger based on
the first instance of modification. To resolve this issue, this modification trigger requires a
modify variable. When the reservation is modified, the modify variable is set.

RSVPROFILE[envSetup]
TRIGGER=EType=modify,AType=exec,Action="modify.sh",RearmTime=1:00:00,Requires=approval
1.approval2.approval3.!modify,Sets=modify
RSVPROFILE[envSetup]
TRIGGER=EType=modify,AType=exec,Action="modificationRequest.sh",RearmTime=5:00,Require
s=approval1.approval2.approval3.modify,Unsets=modify

The final triggers notify the user of the end of the environment.

RSVPROFILE[envSetup]
TRIGGER=EType=end,AType=exec,Action="end.sh",Requires=approval1.approval2.approval3

The same trigger is repeated for the cancelEType in case the environment ends
unexpectedly.

Chapter 18: Object Triggers

841 18.3 Object Trigger Reference

18.4 About Trigger Variables 842

RSVPROFILE[envSetup]
TRIGGER=EType=cancel,AType=exec,Action="end.sh",Requires=approval1.approval2.approval3

18.4 About Trigger Variables

Trigger variables are pieces of information that pass from trigger to trigger. They allow
triggers to fire based on another trigger's behavior, state, and/or output. A variable can be
a required condition for a trigger to fire; for instance, a trigger might be set to launch when
a reservation starts, but only if it has received a variable from another trigger indicating
that a specific node has started first. Variables give greater flexibility and power to a site
administrator who wants to automate certain tasks and system behaviors.

Variables can be used to define under what circumstances the trigger will fire. Many Moab
objects have their own variables and each object's variable name space is unique. Triggers
can use their own variables or the variables attached to their parent objects. A trigger's
variable name space is limited to itself and its parent object. Variables do not have to be
unique across all objects.

In this chapter:

18.4.1 Trigger Variable Tasks 842

18.4.1 Trigger Variable Tasks

In this section:

Setting and Receiving Trigger Variables
Externally Injecting Variables Into Job Triggers
Exporting Variables to Parent Objects
Requiring Variables from Generations of Parent Objects
Requesting Name Space Variables

Chapter 18: Object Triggers

18.4.1.A Setting and Receiving Trigger Variables
Following is an example of how comparative dependencies can be expressed when
creating a trigger.

To Set and Require Variables

1. Create a trigger.

EType=start,AType=exec,Action="/tmp/trigger1.sh"

2. Use the Sets attribute to set a variable if the trigger succeeds. You can precede the
variable with "!" to indicate that the variable should be set if the trigger fails. You can
specify more than one variable by separating them with a period.

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=!Var1.Var2

The trigger sets variable Var2 when it succeeds and variable Var1 when it fails.

3. Set up the recipient trigger(s). Use the Requires attribute to receive the variable(s).
Note that preceding the variable with "!" means that the variable must not be set in
order for the trigger to fire.

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=!Var1.Var2
AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2

The second trigger will launch if Var1 has been set (the first trigger failed), and the third trigger will launch if
Var2 is set (the first trigger succeeded).

4. Refine the requirement with comparisons.

a. Use the following format:
<varID>[:<type>[:<varVal>]]

b. Change <varID> to the variable name.

c. Use any of the comparisons found on the Trigger Variable Comparison Types page in
place of <type>:

d. Set the value that the variable will be compared against.

AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1:eq:45
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2:ne:failure1

The first trigger fires if Var1 exists and has a value of 45. The second trigger fires if Var2 does not have a
string value of failure1.

Chapter 18: Object Triggers

843 18.4 About Trigger Variables

18.4 About Trigger Variables 844

18.4.1.B Externally Injecting Variables Into Job Triggers
Job triggers are able to see the variables in the job object to which it is attached. This
means that, for triggers that are attached to job objects, another method for supplying
variables exists. Updating the job object's variables effectively updates the variable for the
trigger.

To Externally Inject Variables into Job Triggers
Use the mjobctl -m command to set a variable to attach to a job.

> mjobctl -m var=Flag1=TRUE 1664

The variable Flag1 is set. This will be available to any trigger attached to job 1664.

18.4.1.C Exporting Variables to Parent Objects

To Export Variables to Parent Objects

1. When setting a variable, indicate that the variable is to be exported to the parent object
by using a caret (^).

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=Var1.!^Var2
Atype=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2

Var2 is exported to the parent object if the trigger fails. It can be used by job and
reservation triggers at the same level or by parent objects.

2. Optional: if running a script, you can set a variable as a string to pass up to the parent
object.

a. Set the variable to pass up to the parent object with the caret (^). Use the exec
AType to run a script.

AType=exec,Action="/tmp/trigger.sh",EType=start,Sets=^Var1

The trigger sets Var1 when it completes successfully. Because the trigger launches
a script, a string value can be set for Var1.

b. Declare the variable's string value on its own line in the trigger stdout.

EXITCODE=15
Var1=linux

Var1 has the value of linux and is passed up to the parent object. This is useful in workflows where a
trigger might depend on the value given by a previous trigger.

Chapter 18: Object Triggers

To return multiple variables, simply print out one per line.

18.4.1.D Requiring Variables from Generations of Parent Objects
By default, triggers look for variables to fulfill dependencies in the object to which they are
directly attached. If they are attached to a job object, they will also look in the job group, if
defined. However, it is not uncommon for objects to have multiple generations of parent
objects. If the desired behavior is to search through all parent objects, do the following task.

To Require Variables from Generations of Parent Objects
Set the Requires attribute in the trigger to the required variable, preceded by a caret
(^).

EType=start,AType=exec,Action="/tmp/trigger2.sh",Requires=^Var1

The trigger searches through the parent objects in which it resides for the variable Var1.

18.4.1.E Requesting Name Space Variables

To Request a Name Space Variable in a Trigger

1. Configure the trigger. If it is attached to a generic system job, verify that it meets all
Generic System Job Trigger Requirements.

2. Create an argument list in the Action attribute (after the script path and before the
closing quotes) and request the desired variable with an asterisk (*) in place of the
name space.

...Action="$HOME/myTrig.py $*.IPAddr"...

Each applicable name space variable is added to the argument list in the format <varName>=<val>.

For instance, the example above would cause the script to run the following way:

> myTrig.py vc1.IPAddr=/tmp/dir1 vc2.IPAddr=/tmp/dir2 vc4.IPAddr=/tmp/dir3

Any other arguments provided here without name spaces will not change.

3. Filter which name spaces are passed down to a job trigger by setting trigns when
you submit the job. Its value is a comma-delimited list of the desired name spaces.

msub -l ... -W x="trigns=vc2,vc4"

Chapter 18: Object Triggers

845 18.4 About Trigger Variables

18.5 Generic System Job Trigger Requirements 846

If the new job is applied to the example in step 2, the script's arguments include
vc2.IPAddr and vc4.Addr and exclude vc1.IPAddr. The script runs as follows:

> myTrig.py vc2.IPAddr=/tmp/dir1 vc4.IPAddr=/tmp/dir2

18.5 Generic System Job Trigger Requirements

A generic system job specifies one trigger that must meet all of the following criteria:

1. The EType is start.

2. The AType is exec.

3. The Timeout attribute is the desired walltime of the job. Moab ignores walltime
requests when you submit a generic system job, using the trigger Timeout instead.

The trigger fires when the system job begins, and, because the trigger's Timeout doubles
as the job's walltime, both complete at the same time. The job and trigger have the same
completion code.

JOBCFG[gen] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/installVM.py
$HOSTLIST",Timeout=1:00:00,Flags=objectxmlstdin

The job template gen creates a job with a walltime of 1 hour.

Sometimes the trigger will set a variable on completion or require a variable to run at all.
For information about setting variables, passing them up to parent objects, and requiring
variables on parent objects, see About Trigger Variables.

You can attach additional triggers using the TRIGGER attribute and delimit them with
semicolons.

JOBCFG[gen] GENERICSYSJOB=<genericSystemJobTriggerSpecs>
JOBCFG[gen] TRIGGER=<triggerSpecs>;TRIGGER=<triggerSpecs>;TRIGGER=<triggerSpecs>

The job template gen creates a job with a walltime of 1 hour.

18.5.1 Trigger Variable Reference

In this section:

Dependency Trigger Components
Trigger Variable Comparison Types

Chapter 18: Object Triggers

Internal Variables

18.5.1.A Dependency Trigger Components

Sets

Possible
values

'.' delimited string

Description Variable values this trigger sets upon success or failure.

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable is set
upon trigger failure. Preceding the string with a caret (^) indicates this variable
is to be exported to the parent object when the trigger completes and satisfies
all its set conditions. Used in conjunction with Requires to create trigger
dependencies.

Unsets

Possible
values

'.' delimited string

Description Variable this trigger destroys upon success or failure.

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable is
unset upon trigger failure. Used in conjunction with Requires to create trigger
dependencies.

Requires

Possible
values

'.' delimited string

Description Variables this trigger requires to be set or not set before it will fire.

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable must
not be set. Preceding the string with a caret (^) indicates that the variable can
come from a parent object (see Requiring Variables from Generations of Parent

Chapter 18: Object Triggers

847 18.5 Generic System Job Trigger Requirements

18.5 Generic System Job Trigger Requirements 848

Requires

Objects for more information). Used in conjunction with Sets to create trigger
dependencies.

18.5.1.B Trigger Variable Comparison Types
The following table describes the valid types of comparisons you can use to express the
relationship of a trigger variable to its value:

Type Comparison Notes

set is set (exists) Default

notset not set (does not exist) Same as specifying '!' before a variable

eq equals

ne not equal

gt greater than Integer values only

lt less than Integer values only

ge greater than or equal to Integer values only

le less than or equal to Integer values only

18.5.1.C Internal Variables

In this topic:

Internal Trigger Variables - page 849
Object-Specific Internal Variables - page 849

Chapter 18: Object Triggers

Internal Trigger Variables
Several internal variables are available for use in trigger scripts. These can be accessed
using $<varName>.

Internal Variables

COMPLETION
CODE

When used in conjunction with the config parameter 'JOBCFG' and a trigger
event type of 'end', it provides the trigger with the return code of the job.

ETYPE The type of event that signals that the trigger can fire. ETYPE values include
cancel, checkpoint, create, end, fail, hold, migrate, preempt, standing, start,
and threshold.

OID The name of the object to which the trigger was attached.

OTYPE The type of object to which the trigger is attached; can be rsv, job, node, or
sched.

OWNERMAIL A variable that is populated only if the trigger's parent object has a user
associated with it and that user has an email address associated with it.

REQUESTGEO
METRY

Passed to the Elastic Computing trigger script as a variable.
Action="$HOME/geometry.pl $REQUESTGEOMETRY
Example:
QOSCFG[sample]
TRIGGER=EType=start,AType=exec,TType=elastic,Action="$HOME/geometry.pl
$REQUESTGEOMETRY",timeout=5:00

TIME The time of the trigger launch in the following format:
Wed Mar 10 12:35:12 2022

USER The user (when applicable).

Object-Specific Internal Variables

Job Variables

HOSTLIST The entire hostlist of the job

JOBID String that identifies the job

Chapter 18: Object Triggers

849 18.5 Generic System Job Trigger Requirements

18.5 Generic System Job Trigger Requirements 850

Job Variables

You must also have REQUESTGEOMETRY=PRIORITYJOBSIZE to
get the JOBID.

MASTERHOST The primary node for the job

Reservation Variables

HOSTLIST The entire hostlist for the reservation

OBJECTXML The XML representation of an object output is the same that is generated by
mdiag -r --xml

OS The operating system on the first node of the reservation

OWNER The owner of the reservation

Example 18-2: Internal variable example

AType=exec,Action="/tmp/trigger.sh $OID $HOSTLIST",EType=start

The object ID ($OID) and hostlist ($HOSTLIST) will be passed to /tmp/trigger.sh as command line
arguments when the trigger executes the script. The script can then process this information as needed.

Chapter 18: Object Triggers

19.1 User Feedback Overview 851

Chapter 19: Miscellaneous

In this chapter:

19.1 User Feedback Overview 851
19.2 Enabling High Availability Features 853

19.2.1 High Availability Overview 853
19.2.2Configuring High Availability on a Networked File System 854
19.2.3Confirming High Availability on a Networked File System 855
19.2.4 Other High Availability Configuration 855

19.3 Malleable Jobs 856
19.4 Identity Managers 856

19.4.1 Identity Manager Overview 857
19.4.2 Basic Configuration 857
19.4.3 Importing Credential Fairness Policies 860
19.4.4 Identity Manager Data Format 860
19.4.5 Identity Manager Conflicts 861
19.4.6 Refreshing Identity Manager Data 861

19.5 Generic System Jobs 862
19.5.1 Creating a Generic System Job 862
19.5.2 Workflows Using Job Template Dependencies 863

19.1 User Feedback Overview

The Feedback facility allows a site administrator to provide job performance information to
users at job completion time. When a job completes, the program pointed to by the
FEEDBACKPROGRAM parameter is called with a number of command line arguments. The
site administrator is responsible for creating a program capable of processing and acting
upon the contents of the command line. The command line arguments passed are as
follows:

1. job id

2. user name

3. user email

4. final job state

Chapter 19: Miscellaneous

5. QoS requested

6. epoch time job was submitted

7. epoch time job started

8. epoch time job completed

9. job XFactor

10. job wallclock limit

11. processors requested

12. memory requested

13. average per task cpu load

14. maximum per task cpu load

15. average per task memory usage

16. maximum per task memory usage

17. messages associated with the job (if none, [NONE])

18. hostlist (comma-delimited)

19. gres requests (<GRES>:<COUNT>[,<GRES>:<COUNT>...])

For many sites, the feedback script is useful as a means of letting users know the accuracy
of their wallclock limit estimate, as well as the CPU efficiency, and memory usage pattern of
their job. The feedback script can be used as a mechanism to do any of the following:

l email users regarding statistics of all completed jobs

l email users only when certain criteria are met (such as "Job 14991 has just
completed, which requested 128 MB of memory per task. During execution, it used
253 MB of memory per task potentially conflicting with other jobs. Please improve
your resource usage estimates in future jobs.")

l update system databases

l take system actions based on job completion statistics

Some of these fields may be set to zero if the underlying OS/resource manager does
not support the necessary data collection.

Example 19-1:

FEEDBACKPROGAM /opt/moab/tools/fb.pl

Chapter 19: Miscellaneous

852 19.1 User Feedback Overview

19.2 Enabling High Availability Features 853

19.2 Enabling High Availability Features

This topic provides information and instructions for Adaptive Computing's HA solution with
failover. If you want to use Linux HA or any other software stack, please contact your
account manager.

In this topic:

19.2.1 High Availability Overview - page 853
19.2.2 Configuring High Availability on a Networked File System - page 854
19.2.3 Confirming High Availability on a Networked File System - page 855
19.2.4 Other High Availability Configuration - page 855

19.2.1 High Availability Overview
High availability allows Moab to run on two different machines: a primary and secondary
server. The configuration method to achieve this behavior takes advantage of a networked
file system to configure two Moab servers with only one operating at a time.

If you use a shared file system for high availability and Moab is configured to use a
database, Moab must be an ODBC build, not SQLite.

It is recommended that you define LOGDIR to be a directory that exists on each
server, but isn't a part of the NFS share.

When configured to run on a networked file system— any networked file system that
supports file locking is supported — the first Moab server that starts locks a particular file.
The second Moab server waits on that lock and only begins scheduling when it gains
control of the lock on the file. This method achieves near instantaneous turnover between
failures and eliminates the need for two Moab servers to synchronize information
periodically as the two Moab servers access the same database/checkpoint file.

As Moab uses timestamping in the lock file to implement high availability, the clocks
on both servers require synchronization; all machines in a cluster must be
synchronized to the same time server.

Moab high availability and Torque high availability operate independently of each other. If
a job is submitted with msub and the primary Moab server is down, msub tries to connect

Chapter 19: Miscellaneous

to the fallback Moab server. Once the job is given to Torque, if Torque can't connect to the
primary pbs_server, it tries to connect to the fallback pbs_server. For example:

A job is submitted with msub, but Moab is down on server01, so msub contacts Moab
running on server02.

A job is submitted with msub and Moab hands it off to Torque, but pbs_server is down on
server01, so qsub contacts pbs_server running on server02.

When you shut down or restart Moab on both servers, you must run the command twice. A
single shutdown (mschedctl -k) or restart (mschedctl -R) command will go to the primary
server and kill it, causing the secondary server to fall back and start operating. To kill the
secondary server, resubmit the command.

Do not use anything but a plain simple NFS fileshare that is not used by anybody or
anything else (i.e., only Moab can use the fileshare).

Do not use any general-purpose NAS, do not use any parallel file system, and do not
use company-wide shared infrastructure to set up Moab high availability using
'native' high availability.

When mounting a remote machine to the NFS server using the /etc/fstab file, do not
use the option 'noatime'. This option disables access time updates on the file system
that Moab relies on to prevent scheduling conflicts between multiple Moab servers.

19.2.2 Configuring High Availability on a Networked File System
Because the two Moab servers access the same files, configuration is only required in the
moab.cfg file. The two hosts that run Moab must be configured with the SERVER and
FBSERVER parameters. File lock is turned on using the FLAGS=filelockha flag. Specify the
lock file with the HALOCKFILE parameter. The following example illustrates a possible
configuration:

SCHEDCFG[Moab] SERVER=host1:42559
SCHEDCFG[Moab] FBSERVER=host2
SCHEDCFG[Moab] FLAGS=filelockha
SCHEDCFG[Moab] HALOCKFILE=/opt/moab/.moab_lock

Use the HALOCKUPDATETIME parameter to specify how frequently the primary server
updates the timestamp on the lock file. Use the HALOCKCHECKTIME parameter to specify
how frequently the secondary server checks the timestamp on the lock file.

HALOCKCHECKTIME 9

Chapter 19: Miscellaneous

854 19.2 Enabling High Availability Features

19.2 Enabling High Availability Features 855

HALOCKUPDATETIME 3

In the preceding example, the secondary server checks the lock file for updates every 9 seconds. The
HALOCKUPDATETIME parameter is set to 3 seconds, permitting the primary server three opportunities to update
the timestamp for each time the secondary server checks the timestamp on the lock file.

FBSERVER does not take a port number. The primary server's port is used for both
the primary server and the fallback server.

19.2.3 Confirming High Availability on a Networked File System
Administrators can run the mdiag -S -v command to view which Moab server is currently
scheduling and responding to client requests.

19.2.4 Other High Availability Configuration
Moab has many features to improve the availability of a cluster beyond the ability to
automatically relocate to another execution server. The following table describes some of
these features:

Feature Description

AMCFG[] BACKUPHOST If using the Moab Accounting Manager, you can enable high
availability with the accounting manager by specifying a backup
server as in the following example:
AMCFG[mam] BACKUPHOST=headnode2

FBSERVER If you are communicating to an HA configuration from the Moab
Grid Control, you can use this parameter to point Moab to the
fallback server.

JOBACTIONONNODEFAI
LURE

If a node allocated to an active job fails, it is possible for the job
to continue running indefinitely even though the output it
produces is of no value. Setting this parameter allows the
scheduler to automatically preempt these jobs when a node
failure is detected, possibly allowing the job to run elsewhere and
also allowing other allocated nodes to be used by other jobs.

SCHEDCFG[]
RECOVERYACTION

If a catastrophic failure event occurs (SIGSEGV or SIGKILL signal
is triggered), Moab can be configured to automatically restart,
trap the failure, ignore the failure, or behave in the default
manner for the specified signal. These actions are specified using
the values RESTART, TRAP, IGNORE, or DIE, as in the following

Chapter 19: Miscellaneous

Feature Description

example:

SCHEDCFG[bas] MODE=NORMAL RECOVERYACTION=RESTART

SCHEDCFG[] <Failover
Trigger Definition>

HA failover trigger.

SCHEDCFG[Moab]
TRIGGER=atype=exec,etype=failure,action="/opt/moab/hafailover.sh"

19.3 Malleable Jobs

Malleable jobs are jobs that can be adjusted in terms of resources and duration required,
and which allow the scheduler to maximize job responsiveness by selecting a job's
resource shape or footprint prior to job execution. Once a job has started, however, its
resource footprint is fixed until job completion.

To enable malleable jobs, the underlying resource manager must support dynamic
modification of resource requirements prior to execution (i.e., Torque) and the jobs must
be submitted using the TRL (task request list) resource manager extension string. With the
TRL attribute specified, Moab will attempt to select a start time and resource footprint to
minimize job completion time and maximize overall effective system utilization (i.e.,
<AverageJobEfficiency> * <AverageSystemUtilization>).

Example 19-2:

With the following job submission, Moab will execute the job in one of the following
configurations: 1 node for 1 hour, 2 nodes for 30 minutes, or 4 nodes for 15 minutes.

> qsub -l nodes=1,trl=1@3600:2@1800:4@900 testjob.cmd
job 72436.orion submitted

19.4 Identity Managers

The Moab identity manager interface can be used to coordinate global and local
information regarding users, groups, accounts, and classes associated with compute
resources. The identity manager interface can also be used to allow Moab to automatically
and dynamically create and modify user accounts and credential attributes according to
current workload needs.

Chapter 19: Miscellaneous

856 19.3 Malleable Jobs

19.4 Identity Managers 857

Only one identity manager can be configured at a time.

In this topic:

19.4.1 Identity Manager Overview - page 857
19.4.2 Basic Configuration - page 857
19.4.3 Importing Credential Fairness Policies - page 860
19.4.4 Identity Manager Data Format - page 860
19.4.5 Identity Manager Conflicts - page 861
19.4.6 Refreshing Identity Manager Data - page 861

19.4.1 Identity Manager Overview
Moab allows sites extensive flexibility when it comes to defining credential access,
attributes, and relationships. In most cases, use of the USERCFG, GROUPCFG, ACCOUNTCFG,
CLASSCFG, and QOSCFG parameters is adequate to specify the needed configuration.
However, in certain cases such as the following, this approach might not be ideal or even
adequate:

l Environments with very large user sets

l Environments with very dynamic credential configurations in terms of fairshare
targets, priorities, service access constraints, and credential relationships

l Grid environments with external credential mapping information services

l Enterprise environments with fairness policies based on multi-cluster usage

Moab addresses these and similar issues through the use of an identity manager. An
identity manager is configured with the IDCFG parameter and allows Moab to exchange
information with an external identity management service. As with Moab resource
manager interfaces, this service can be a full commercial package designed for this
purpose, or something far simpler such as a web service, text file, or database.

19.4.2 Basic Configuration
Configuring an identity manager in basic read-only mode can be accomplished by simply
setting the SERVER attribute. If Moab is to interact with the identity manager in read/write
mode, some additional configuration might be required.

Chapter 19: Miscellaneous

BLOCKCREDLIST

Format One or more comma-delimited object types from the following list: acct,
group, or user

Details If specified, Moab will block all jobs associated with credentials not explicitly
reported in the most recent identity manager update. If the credential appears on
subsequent updates, resource access will be immediately restored.

Jobs will only be blocked if fairshare is enabled. This can be accomplished
by setting the FSPOLICY parameter to any value such as in the following
example:

FSPOLICY DEDICATEDPS

Example IDCFG[test01] BLOCKCREDLIST=acct,user,groups

Moab will block any jobs associated with accounts, users, or groups not
in the most recent identity manager update.

CREATECRED

Format <BOOLEAN> (default is FALSE)

Details Specifies whether Moab should create credentials reported by the identity
manager that have not yet been locally discovered or loaded via the resource
manager. By default, Moab will only load information for credentials that have
been discovered outside of the identity manager.

Example IDCFG[test01] CREATECRED=TRUE

Moab will create credentials from test01 that have not been
previously loaded.

REFRESHPERIOD

Format [[[DD:]HH:]MM:]SS or INFINITY (default is INFINITY)

Note: The former values of MINUTE, HOUR, DAY or NONE are deprecated
and may be removed in a future release.

Details Moab will refresh the identity manager information on the specified period

Chapter 19: Miscellaneous

858 19.4 Identity Managers

19.4 Identity Managers 859

REFRESHPERIOD

relative to the scheduler start time. If INFINITY is specified, the information is
updated only at Moab start up.

Example IDCFG[test01] REFRESHPERIOD=4:00:00

Moab queries the identity manager every four hours.

REQUIREDUSERLIST

Format One or more comma-delimited object types from the user list.

Details Lets you dynamically set the user list with a class for jobs.

Removing a user from the REQUIREDUSERLIST will not affect the user's
running jobs. However, the user's idle jobs will become blocked because
the user no longer has access to the class requested.

Example IDCFG[test01] CLASS:<name> REQUIREDUSERLIST=<user>

RESETCREDLIST

Format One or more comma-delimited object types from the following list: acct, group,
or user.

Details If specified, Moab will reset the account access list and fairshare cap and target for
all credentials of the specified type(s) regardless of whether they are included in
the current info manager report. Moab will then load information for the specified
credentials.

Example IDCFG[test01] RESETCREDLIST=group

Moab will reset the account access list and fairshare target for all
groups.

SERVER

Format <URL>

Chapter 19: Miscellaneous

SERVER

Details Specifies the protocol/interface to use to contact the identity manager.

Example IDCFG[test01] SERVER=exec://$HOME/example.pl

Moab will use example.pl to communicate with the
identity manager.

UPDATEREFRESHONFAILURE

Format <BOOLEAN> (default is FALSE)

Details When an IDCFG script fails, it retries almost immediately and continuously
until it succeeds. When UPDATEREFRESHONFAILURE is set to TRUE, a failed
script does not attempt to rerun immediately, but instead follows the specified
REFRESHPERIOD schedule. When set to TRUE,
UPDATEREFRESHONFAILURE updates the script execution timestamp, even if
the script does not end successfully.

Example IDCFG[info] SERVER=exec:///home/tshaw/test/1447/bad_script.pl REFRESHPERIOD=hour
UPDATEREFRESHONFAILURE=TRUE

19.4.3 Importing Credential Fairness Policies
One common use for an identity manager is to import fairness data from a global external
information service. As an example, assume a site needed to coordinate Moab group level
fairshare targets with an allocation database that constrains total allocations available to
any given group. To enable this, a configuration like the following might be used:

IDCFG[alloc] SERVER=exec://$TOOLSDIR/idquery.pl
...

The tools/idquery.pl script could be set up to query a local database and report its results to Moab. Each
iteration, Moab will then import this information, adjust its internal configuration, and immediately respect the new
fairness policies.

19.4.4 Identity Manager Data Format
When an identity manager outputs credential information either through an exec or
file based interface, the data should be organized in the following format:
<CREDTYPE>:<CREDID> <ATTR>=<VALUE>

Chapter 19: Miscellaneous

860 19.4 Identity Managers

19.4 Identity Managers 861

Where:

l <CREDTYPE> is one of user, group, account, class, or qos.

l <CREDID> is the name of the credential.

l <ATTR> is one of adminlevel, alist, chargerate, comment,
emailaddress, fstarget, globalfstarget, globalfsusage, maxjob,
maxmem, maxnode, maxpe, maxproc, maxps, maxwc, MAX.WCLIMIT, plist,
priority, qlist, or role. Multi-dimensional policies work here as well.

l <VALUE> is the value for the specified attribute.

To clear a comment, set its value to ""; for example: comment="".

Example 19-3:

The following output may be generated by an exec based identity manager:

group:financial fstarget=16.3 alist=project2
group:marketing fstarget=2.5
group:engineering fstarget=36.7
group:dm fstarget=42.5
user:jason adminlevel=3
account:sales maxnode=128 maxjob=8,16

The following example limits user bob to 8 matlab generic resources:

user:bob MAXGRES[matlab]=8

To specify unlimited use of generic resources, set the value to -1.

19.4.5 Identity Manager Conflicts
When local credential configuration (as specified via moab.cfg) conflicts with identity
manager configuration, the identity manager value takes precedence and the local values
are overwritten.

19.4.6 Refreshing Identity Manager Data
By default, Moab only loads identity manager information once when it is first started up. If
the identity manager data is dynamic, then you might want Moab to periodically update its
information. To do this, set the REFRESHPERIOD attribute of the IDCFG parameter. Legal
values are documented in the following table:

Chapter 19: Miscellaneous

Value Description

minute Update identity information once per minute

hour Update identity information once per hour

day Update identity information once per day

infinity Update identity information only at start-up (default)

Example 19-4:

IDCFG[hq] SERVER=exec://$TOOLSDIR/updatepolicy.sh REFRESHPERIOD=hour

Job credential feasibility is evaluated at job submission and start time.

Related Topics

l Credential Overview

l Usage Limits/Throttling Policies

19.5 Generic System Jobs

Generic system jobs are system jobs with a trigger. They are useful for specifying steps in a
workflow.

In this topic:

19.5.1 Creating a Generic System Job - page 862
19.5.1.A The Trigger - page 863

19.5.2 Workflows Using Job Template Dependencies - page 863
19.5.2.A Inheriting Resources in Workflows - page 864

19.5.1 Creating a Generic System Job
Generic system jobs are specified via a job template. The template can be selectable and
you must use the GENERICSYSJOB attribute to let Moab know that this job template
describes a generic system job and to specify a trigger, as shown in the following example:

Chapter 19: Miscellaneous

862 19.5 Generic System Jobs

19.5 Generic System Jobs 863

JOBCFG[gen]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/genericTrig.py",Timeout=5:00

19.5.1.A The Trigger
The generic system job's trigger that meets certain criteria. This trigger must have a
timeout, an Atype=Exec, and the EType must equal 'start'. The timeout of the trigger
will be used as the walltime for the job. The trigger will begin when the system job begins
and the job will be considered completed when the trigger completes. The job will have the
same completion code as the trigger. The walltime on the job template is not applicable in
this case since the timeout of the trigger will be the walltime.

If the trigger fails, an error message will be attached to all of the job's parent VCs. You can
view this in the --xml output of the VC query. The message includes the location of STDIN,
STDOUT, and STDERR files. For example:

mvcctl -q ALL --xml

<Data>
<vc CREATETIME="1320184350" DESCRIPTION="Moab.1"
 FLAGS="DESTROYOBJECTS,DESTROYWHENEMPTY,HASSTARTED,WORKFLOW"
 JOBS="Moab.1" NAME="vc1" OWNER="user:frank">
<ACL aff="positive" cmp="%=" name="frank" type="USER"></ACL>
<MESSAGES>
<message COUNT="1" CTIME="1320184362"
 DATA="Trigger 10 failed on job Moab.1.setup- STDIN:
/tmp/ByLLl2wv/spool/vm.py.ieWPPS5 STDOUT:
/tmp/ByLLl2wv/spool/vm.py.oDMIXAW STDERR /tmp/ByLLl2wv/spool/vm.py.e2jD5iN"
 EXPIRETIME="1322776362" OWNER="frank" PRIORITY="0"
 TYPE="other" index="0"></message>
</MESSAGES>
<Variables>
<Variable name="VMID">vm1</Variable>
<Variable name="HV">TRUE</Variable>
</Variables>
</vc>
</Data>

You can specify other triggers on a generic system job using the TRIGGER attribute and
delimiting them with semicolons. For example:

JOBCFG[gen] GENERICSYSJOB=<genericSystemJobTriggerSpecs>
JOBCFG[gen] TRIGGER=<triggerSpecs>;TRIGGER=<triggerSpecs>

19.5.2 Workflows Using Job Template Dependencies
To create workflows, use the following format:

JOBCFG[gen] TEMPLATEDEPEND=AFTERANY:otherTemplate

Chapter 19: Miscellaneous

This will create a job based on the template otherTemplate. The generic job will run
after the otherTemplate job has finished. Afterany in the example means after all other
jobs have completed, regardless of success.

19.5.2.A Inheriting Resources in Workflows
The INHERITRES flag can be used to cause the same resources in one step of a workflow
to be passed to the next step:

JOBCFG[gen] TEMPLATEDEPEND=AFTERANY:otherTemplate
JOBCFG[otherTemplate] INHERITRES=TRUE

This example forces the job based on otherTemplate to have the same resource requirements as its parent. When
the otherTemplate job is finished, the INHERITRES flag will cause the parent to run on the same resources as
the child.

The job that finishes first will pass its allocation up.

Any variables on the original job will be passed to the other jobs in the workflow. Variables
can be added by other jobs in the workflow via the sets attribute in the generic system
job's trigger. Other triggers must then request that variable name in the command line
options.

You will need to set the carat (^) in order for the variable to be sent up to the job
group.

If you set the variable, you need to set it in the STDOUT of the trigger script. See the
example below:

JOBCFG[W1] GENERICSYSJOB=...,action='$HOME/W1.py $ipaddress' TEMPLATEDEPEND=AFTER:W2
JOBCFG[W2] TRIGGER=...,action='$HOME/W2.py',sets=^ipaddress

If a variable value is not set in STDOUT, it will be set to TRUE.

To set the variable to a specific value, the W2.py script must set the value in its STDOUT:

print "ipaddress=10.10.10.1" #This will be parsed by Moab and set as the value of the
"ipaddress" variable

Example 19-5:

Chapter 19: Miscellaneous

864 19.5 Generic System Jobs

865

Chapter 20: Database Configuration

Moab supports connecting to a database via native SQLite3, and it can also connect to other
databases using the ODBC driver. These optional external databases store some additional
information that the MongoDB database does not and allow you to query them directly
using SQL. These databases are slower, however, and only SQLite3, which does not allow
external queries, is supported.

The SQLite3 connection is for storing statistics. Consider reviewing the SQLite web page
Appropriate Uses for SQLite for information regarding the suitability of using SQLite3 on
your system.

Connecting to an external database makes Moab more searchable, allowing you to run
queries for statistics and events rather than using regular expressions to draw the
information from the Moab flat files.

Moab must use an ODBC-compliant database to report statistics with Viewpoint
reports.

In this chapter:

20.1 SQLite3 866
20.2 Connecting to a MySQL Database with an ODBC Driver 866
20.3 Connecting to a PostgreSQL Database with an ODBC Driver 869
20.4 Connecting to an Oracle Database with an ODBC Driver 872

20.4.1 Installing the Oracle Instant Client 879
20.5 Migrating Your Database to Newer Versions of Moab 882

20.5.1 Migrate from Moab 9.1 to Moab 10.0 882
20.5.2 Migrate from Moab 9.0 to Moab 9.1 883
20.5.3 Migrate from Moab 8.1 to Moab 9.0 883
20.5.4 Migrate from Moab 8.0 to Moab 8.1 883
20.5.5 Migrate from Moab 7.5 to Moab 8.0 884
20.5.6 Migrate from Moab 7.2.6-7.2.10 to Moab 7.5 884
20.5.7 Migrate from Moab 7.2.0-7.2.5 to Moab 7.2.6 885

20.6 Importing Statistics from stats/DAY.* to the Moab Database 885

Chapter 20: Database Configuration

http://www.sqlite.org/whentouse.html

20.1 SQLite3

Moab supports connecting to a database via native SQLite3. Database installation and
configuration occurs automatically during normal Moab installation (configure, make
install). If you did not follow the normal process to install Moab and need to install the
database, do the following to manually install and configure Moab database support:

1. Create the database file moab.db in your moab home directory by running the
following command from the root of your unzipped Moab build directory:
perl buildutils/install.sqlite3.pl ‹moab-home-directory›

l Verify that the command worked by running lib/sqlite3 ‹moab-home-
directory›/moab.db; at the resulting prompt, type .tables and press
ENTER. You should see several tables such as mcheckpoint listed. Exit from this
program with the .quit command.

l The perl buildutils/install.sqlite3.pl ‹moab-home-
directory› command could fail if your operating system cannot find the SQLite3
libraries. Also, Moab fails if unable to identify the libraries. To temporarily force the
libraries to be found, run the following command:
export LD_LIBRARY_PATH=‹location where libraries were
copied›

2. In the moab.cfg file in the etc/ folder of the home directory, add the following line:

USEDATABASE INTERNAL

To verify that Moab is running with SQLite3 support, start Moab and run the mdiag -S -v
command. If there are no database-related error messages displayed, then Moab should be
successfully connected to a database.

> moabd is a safe and recommended method of starting Moab if things are not
installed in their default locations.

20.2 Connecting to a MySQL Database with an ODBC
Driver

This documentation shows how to set up and configure Moab to connect to a MySQL
database using the MySQL ODBC driver. This document assumes the necessary MySQL and
ODBC drivers have already been installed and configured.

Chapter 20: Database Configuration

866 20.1 SQLite3

20.2 Connecting to a MySQL Database with an ODBC Driver 867

To set up and configure Moab to connect to a MySQL database using the MySQL ODBC
driver, do the following.

This solution has been tested and works with these versions:

l libmyodbc - 5.1.5

l MySQL 5.1

1. Download and install Moab. Install and configure Moab as normal but add the following
in the Moab configuration file (moab.cfg):

USEDATABASE ODBC
Turn on stat profiling
USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
NODECFG[DEFAULT] ENABLEPROFILING=TRUE

2. Create the database in MySQL using the MySQL database dump contained in the moab-
db-mysql-create.sql file. This file is located in the contrib/sql directory.

This contrib/sql directory is in the expanded tarball directory.

l Run the following command:

mysql -u root -p < moab-db-mysql-create.sql

3. Configure the MySQL and ODBC driver. The odbcinst.ini file must be contained in
/etc.

Run the following command to find the MySQL ODBC client driver. You could also
query the libmyodbc package that was installed.

[root]# updatedb
[root]# locate libmyodbc

[MySQL]
Description = ODBC for MySQL
Driver = /usr/lib/odbc/libmyodbc.so

4. Configure Moab to use the MySQL ODBC driver. Moab uses an ODBC datastore file to
connect to MySQL using ODBC. This file must be located in the Moab home directory
(/opt/moab by default) and be named dsninfo.dsn, which is used by Moab. You
need to have the following data in both /etc/odbc.ini and
$MOABHOMEDIR/dsninfo.dsn:

Chapter 20: Database Configuration

[ODBC]
Driver = MySQL
USER = <username>
PASSWORD = <password>
Server = localhost
Database = Moab
Port = 3306

The user should have read/write privileges on the Moab database.

The preceding example file tells ODBC to use the MySQL driver, username
<username>, password <password>, and to connect to MySQL running on the
localhost on port 3306. ODBC uses this information to connect to the database called
Moab.

5. Test the ODBC to MySQL connection by running the isql command, which reads the
/etc/odbc.ini file:

$ isql -v ODBC
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL> show tables;
+---+
| Tables_in_Moab |
+---+
| EventType |
| Events |
| GeneralStats |
| GenericMetrics |
| Moab |
| NodeStats |
| NodeStatsGenericResources |
| ObjectType |
| mcheckpoint |
+---+
SQLRowCount returns 10
10 rows fetched
SQL>

If you encounter any errors using the isql command, there was a problem setting up
the ODBC to MySQL connection. Try the following debugging steps to resolve the issue:

a. The odbcinst.ini and odbc.ini files are usually assumed to be located in
/etc, but that is not always true. Use the odbcinst -j command to determine
the assumed location of the files in your configuration.

[root#] odbcinst -j

Chapter 20: Database Configuration

868 20.2 Connecting to a MySQL Database with an ODBC Driver

20.3 Connecting to a PostgreSQL Database with an ODBC Driver 869

unixODBC 2.2.12
DRIVERS............: /etc/unixODBC/odbcinst.ini
SYSTEM DATA SOURCES: /etc/unixODBC/odbc.ini
USER DATA SOURCES..: /home/adaptive/.odbc.ini

b. Because odbcinst.ini and odbc.ini are expected in /etc/unixODBC, not
/etc, move them from /etc to /etc/unixODBC.

c. Use the strace command to determine where isql expects the odbc.ini and
odbcinst.ini files. Note the location where isql expects these files.

$ strace isql -v ODBC

6. With the ODBC driver configured, the database created, and Moab configured to use the
database, start Moab for it to begin storing information in the created database.

> moabd is a safe and recommended method of starting Moab if things are not
installed in their default locations.

Related Topics

l Importing Statistics to the Moab Database

20.3 Connecting to a PostgreSQL Database with an
ODBC Driver

This documentation shows how to set up and configure Moab to connect to a PostgreSQL
database using the ODBC driver. This document assumes the necessary ODBC drivers have
already been installed and configured.

Occasionally vacuuming your PostgreSQL database could improve Moab performance.
See the PostgreSQL documentation for information on how to vacuum your database.

To set up and configure Moab to connect to a PostgreSQL database using the ODBC driver,
do the following:

This solution has been tested and works with the following file version:

l odbc-postgresql - 1:08.03.0200-1.2

Chapter 20: Database Configuration

1. Configure the PostgreSQL and ODBC driver. odbcinst.ini file must be contained in
/etc.

Run the following commands to find the PostgreSQL ODBC client driver and setup
file. You could also query the libodbcpsql package that was installed.

[root]# updatedb
[root]# locate psqlodbc
[root]# locate libodbcpsql

[PostgreSQL]
Description = PostgreSQL ODBC driver
Driver = /usr/lib/odbc/psqlodbca.so
Setup = /usr/lib/odbc/libodbcpsqlS.so
Debug = 0
CommLog = 1
UsageCount = 2

2. Configure Moab to use the PostgreSQL ODBC driver. Moab uses an ODBC datastore file
to connect to PostgreSQL using ODBC. This file must be located in the Moab home
directory (/opt/moab by default) and be named dsninfo.dsn, which is used by
Moab. If the following content, which follows the standard ODBC driver file syntax, is not
already included in the /etc/odbc.ini file, make sure that you include it. Also,
include the same content in the dsninfo.dsn file.

[ODBC]
Driver = PostgreSQL
Description = PostgreSQL Data Source
Servername = localhost
Port = 5432
Protocol = 8.4
UserName = postgres
Password = moab
Database = Moab

The user should have read/write privileges on the Moab database.

The preceding example file tells ODBC to use the PostgreSQL driver, postgres user,
moab password, and to connect to PostgreSQL running on the localhost on port 5432.
ODBC uses this information and connects to the database called Moab.

3. Test the ODBC to PostgreSQL connection by running the isql command, which reads
the /etc/odbc.ini file. If connected, you should be able to run the help command.

If you encounter any errors using the isql command, there was a problem setting up
the ODBC to MySQL connection. Try the following debugging steps to resolve the issue:

a. The odbcinst.ini and odbc.ini files are usually assumed to be located in
/etc, but that is not always true. Use the odbcinst -j command to determine
the assumed location of the files in your configuration.

Chapter 20: Database Configuration

870 20.3 Connecting to a PostgreSQL Database with an ODBC Driver

20.3 Connecting to a PostgreSQL Database with an ODBC Driver 871

[root#] odbcinst -j
unixODBC 2.2.12
DRIVERS............: /etc/unixODBC/odbcinst.ini
SYSTEM DATA SOURCES: /etc/unixODBC/odbc.ini
USER DATA SOURCES..: /home/adaptive/.odbc.ini

b. Because odbcinst.ini and odbc.ini are expected in /etc/unixODBC, not
/etc, move them from /etc to /etc/unixODBC.

c. Use the strace command to determine where isql expects the odbc.ini and
odbcinst.ini files. Note the location where isql expects these files.

$ strace isql -v ODBC

4. Create the database in PostgreSQL using the moab-db-postgresql.sh setup script
contained in the contrib/sql directory.

This contrib/sql directory is in the expanded tarball directory.

l Run the script and provide the DB username that will attach to the Moab database
(you must supply a DB username or the script will exit). The default admin user is
postgres, but you can make a new user at this time:

> ./moab-db-postgresql.sh postgres
Create db user "postgres" in postgreSQL? (y/n)>

l The script asks if you want to create the DB user you specified in postgreSQL. If the
DB user already exists, answer 'n'. Otherwise, the DB user is created and it asks for
the new user's password.

l The script then creates the database "Moab".

l Finally, as the DB user you provided, the script imports the DB schema from moab-
db-postgresql-create.sql into the Moab database.

5. Download and install Moab. Install and configure Moab as normal but add the following
in the Moab configuration file (moab.cfg):

USEDATABASE ODBC
Turn on stat profiling
USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
NODECFG[DEFAULT] ENABLEPROFILING=TRUE

6. With the ODBC driver configured, the database created, and Moab configured to use the
database, start Moab for it to begin storing information in the created database.

Chapter 20: Database Configuration

> moabd is a safe and recommended method of starting Moab if things are not
installed in their default locations.

Related Topics

l Importing Statistics to the Moab Database

20.4 Connecting to an Oracle Database with an ODBC
Driver

This documentation shows how to set up and configure Moab to connect to an Oracle
database using the ODBC driver.

To Connect to an Oracle Database with an ODBC Driver

1. Install and configure the Oracle Instant Client with ODBC supporting libraries. For
instructions, see Installing the Oracle Instant Client.

2. Open your Moab configuration file ($MOABHOMEDIR/moab.cfg) and add the
following lines to the end of the file:

USEDATABASE ODBC

Turn on stat profiling
USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
NODECFG[DEFAULT] ENABLEPROFILING=TRUE

3. Configure the Oracle ODBC Driver. The odbcinst.ini file must be contained in
/etc.

[root]# vim /etc/odbcinst.ini

Run the following command to find the Oracle Instant Client driver. You could also
query the Oracle Instant Client package that was installed.

[root]# updatedb && locate libsqora

Add the following text to the file:

[Oracle 11g ODBC driver]

Chapter 20: Database Configuration

872 20.4 Connecting to an Oracle Database with an ODBC Driver

20.4 Connecting to an Oracle Database with an ODBC Driver 873

Description = Oracle ODBC driver for Oracle 11g
Driver = /usr/lib/oracle/11.2/client64/lib/libsqora.so.11.1
Setup =
FileUsage =
CPTimeout =
CPReuse =
Driver Logging = 7

[ODBC]
Trace = Yes
TraceFile = /tmp/odbc.log
ForceTrace = Yes
Pooling = No
DEBUG = 1

Driver Logging is set high (level 7) so that you can debug during the
installation and configuration process if necessary. You can decrease the setting or
remove the directive once you finish the process.

To configure the location of the ODBC log (/tmp/odbc.log), set the
TraceFile attribute shown in the example above. See unixODBC without the
GUI on the unixODBC website for more information.

4. Because the driver installed in step 1 is a shared library, run ldd to verify that it and
all of its dependencies are installed and working:

[root]# ldd /usr/lib/oracle/11.2/client64/lib/libsqora.so.11.1
linux-vdso.so.1 => (0x00007fff631ff000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f8afbe83000)
libm.so.6 => /lib64/libm.so.6 (0x00007f8afbbff000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f8afb9e1000)
libnsl.so.1 => /lib64/libnsl.so.1 (0x00007f8afb7c8000)
libclntsh.so.11.1 =>

/usr/lib/oracle/11.2/client64/lib/libclntsh.so.11.1 (0x00007f8af8e59000)
libodbcinst.so.1 => not found
libc.so.6 => /lib64/libc.so.6 (0x00007f8af8ac5000)
/lib64/ld-linux-x86-64.so.2 (0x0000003bdb000000)
libnnz11.so => /usr/lib/oracle/11.2/client64/lib/libnnz11.so

(0x00007f8af86f8000)
libaio.so.1 => /lib64/libaio.so.1 (0x00007f8af84f6000)

Chapter 20: Database Configuration

http://www.unixodbc.org/odbcinst.html
http://www.unixodbc.org/odbcinst.html

If the command returns libodbcinst.so.1 => not found, create a
symbolic link from /usr/lib64/libodbcinst.so.1 to
/usr/lib64/libodbcinst.so.2. This is a known Red Hat issue. See Red
Hat Bugzilla for more information.

[root]# locate libodbcinst

/usr/local/lib/libodbcinst.so.2

[root]# cd /usr/lib64
[root]# ln -s libodbcinst.so.2 libodbcinst.so.1

Rerun ldd. It should load libsqora.so.11.1 without error, as shown in the
ldd example above.

If the ldd command returns a warning like this: "ldd: warning: you do not have
execution permission for `/usr/lib/oracle/11.2/client64/lib/libsqora.so.11.1'",
run the following command:

[root]# chmod 755 /usr/lib/oracle/11.2/client64/lib/lib*

Rerun ldd. It should load libsqora.so.11.1 without error, as shown in the
ldd example above.

5. Configure Moab to use the Oracle ODBC driver. This example assumes that a Moab user
exists and has been granted read and write privileges to the MOAB database instance
referred to on the Installing the Oracle Instant Client page.

[root]# vim $MOABHOMEDIR/dsninfo.dsn

Add the following lines the file, but change ServerName, UserName, and Password
to suit your own system. ServerName is the name of the Oracle database instance.
Username and Password are the credentials used to connect to that instance.

[ODBC]
Application Attributes = T
Attributes = W
BatchAutocommitMode = IfAllSuccessful
BindAsFLOAT = F
CloseCursor = F
DisableDPM = F
DisableMTS = T
Driver = Oracle 11g ODBC driver
DSN = ODBC
EXECSchemaOpt =
EXECSyntax = T
Failover = T
FailoverDelay = 10
FailoverRetryCount = 10
FetchBufferSize = 64000
ForceWCHAR = F
Lobs = T

Chapter 20: Database Configuration

874 20.4 Connecting to an Oracle Database with an ODBC Driver

https://bugzilla.redhat.com/show_bug.cgi?id=498311
https://bugzilla.redhat.com/show_bug.cgi?id=498311

20.4 Connecting to an Oracle Database with an ODBC Driver 875

Longs = T
MaxLargeData = 0
MetadataIdDefault = F
QueryTimeout = T
ResultSets = T
ServerName = MOAB
SQLGetData extensions = F
Translation DLL =
Translation Option = 0
DisableRULEHint = T
UserID = moab
Password = moab
StatementCache=F
CacheBufferSize=20
UseOCIDescribeAny=F
MaxTokenSize=8192

6. Add the contents of the dsninfo.dsn file to /etc/odbc.ini. Because the contents
of dsninfo.dsn are required in both files, use the following command to concatenate
the contents of dsninfo.dsn to /etc/odbc.ini. If the odbc.ini file already has
content, verify that there are no conflicts.

[root]# cat $MOABHOMDIR/dsninfo.dsn >> /etc/odbc.ini

7. Create a directory to store the tnsnames.ora file you will create in the next step:

[root]# mkdir /etc/oracle

8. Create the tnsnames.ora file. The ServerName in
$MOABHOMEDIR/dsninfo.dsn tells the Oracle ODBC driver what tnsnames.ora
entry to use (MOAB). The MOAB tnsnames entry tells the Oracle ODBC driver to
connect to server adaptive-oracle on the local domain (ac) on port 1561 using
TCP and to connect to the Oracle instance named MOAB (the SID is the unique name of
the instance).

[root]# cat >/etc/oracle/tnsnames.ora <<EOL
MOAB =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = adaptive-oracle)(PORT = 1561))

)
(CONNECT_DATA =
(SID = MOAB)

)
)

EOL

9. Create a profile script (oracle-instant-client.sh) to be invoked by the
operating system at startup. This script will set the ORACLE_HOME, TWO_TASK, and
TNS_ADMIN environment variables required by Oracle and will amend the LD_
LIBRARY_PATH to include required Oracle client libraries in the library search path.

[root]# cat >/etc/profile.d/oracle-instant-client.sh <<EOL
Set ORACLE_HOME to the directory where the bin and lib directories are located
for the oracle client

Chapter 20: Database Configuration

export ORACLE_HOME=/usr/lib/oracle/11.2/client64

No need to add ORACLE_HOME to the linker search path. oracle-instant-client.conf
in
/etc/ld.so.conf.d should already contain /usr/lib/oracle/11.2/client64.
Alternatively, you can set it here by uncommenting the following line:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

Define the default location where Oracle should look for the server
export TWO_TASK=//adaptive-oracle:1561/listener

Define where to find the tnsnames.ora file
export TNS_ADMIN=/etc/oracle
EOL

10. Source the oracle-instant-client.sh script and verify that each environment
variable is set correctly:

[root]# source /etc/profile.d/oracle-instant-client.sh
[root]# echo $ORACLE_HOME
[root]# echo $LD_LIBRARY_PATH
[root]# echo $TWO_TASK
[root]# echo $TNS_ADMIN

11. Modify either the Moab startup script (/etc/init.d/moab) – recommended – or
the moabd script (/opt/moab/sbin/moabd) to source oracle-instant-
client.sh.

l Moab startup script (recommended): the following example suggests a location to
source the oracle-instant-client.sh script within the Moab startup script.

...

Export all environment variables required by the Oracle Instant Client
. /etc/profile.d/oracle-instant-client.sh

export MOABHOMEDIR=/opt/moab

...

l moabd shell script: the following example will resemble the moabd script in
/opt/moab/sbin. Note that the moabd script is not invoked by the Moab startup
script; The Moab startup script invokes the Moab binary
(/opt/moab/sbin/moab) by default.

#!/bin/sh
#
Copyright (C) 2022 by Adaptive Computing Enterprises, Inc. All Rights
Reserved.
#

Export all environment variables required by the Oracle Instant Client
. /etc/profile.d/oracle-instant-client.sh

MOABHOMEDIR="/opt/moab" LD_LIBRARY_PATH="/opt/moab/lib:$LD_LIBRARY_PATH" moab
"$@"

Chapter 20: Database Configuration

876 20.4 Connecting to an Oracle Database with an ODBC Driver

20.4 Connecting to an Oracle Database with an ODBC Driver 877

12. Verify the Oracle ODBC driver is working:

isql -v ODBC
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+

If you encounter any errors using the isql command, there was a problem setting up
the ODBC to Oracle connection. Try the following debugging steps to resolve the issue:

a. The odbcinst.ini and odbc.ini files are usually assumed to be located in
/etc, but that is not always true. Use the odbcinst -j command to determine
the assumed location of the files in your configuration.

[root#] odbcinst -j
unixODBC 2.2.12
DRIVERS............: /etc/unixODBC/odbcinst.ini
SYSTEM DATA SOURCES: /etc/unixODBC/odbc.ini
USER DATA SOURCES..: /home/adaptive/.odbc.ini

b. Because odbcinst.ini and odbc.ini are expected in /etc/unixODBC, not
/etc, move them from /etc to /etc/unixODBC.

c. Use the strace command to determine where isql expects the odbc.ini and
odbcinst.ini files. Note the location where isql expects these files.

$ strace isql -v ODBC

13. If you have not already done so, create the database tables in Oracle using the moab-
db-oracle-create.sql script located in the contrib/sql directory.

This contrib/sql directory is in the expanded tarball directory.

This example assumes that you are logged into the MOAB database instance (referred
to on the Installing the Oracle Instant Client page) as Moab user with read and write
privileges.

SQL> @./contrib/sql/moab-db-oracle-create.sql

14. Verify that the database schema installed correctly by listing the tables. Your results
should look like this:

SQL> select table_name from all_tables where owner = 'MOAB';
+-------------------------------+
| TABLE_NAME |
+-------------------------------+
| TRIGGERS |
| MOAB |

Chapter 20: Database Configuration

| OBJECTTYPE |
| VCS |
| EVENTTYPE |
| JOBHISTORY |
| MCHECKPOINT |
| NODES |
| EVENTS |
| NODESTATSGENERICRESOURCES |
| JOBS |
| RESERVATIONS |
| GENERICMETRICS |
| REQUESTS |
| GENERALSTATS |
| NODESTATS |
+-------------------------------+
SQLRowCount returns -1
16 rows fetched

15. Restart Moab:

[root]# mschedctl -R

16. Verify Moab is correctly configured to write to the Oracle database by doing each of the
following steps:

a. Tail the moab.log file for ODBC errors.

Check the $MOABHOMEDIR/log/moab.log file for ODBC errors. You should see a few
hits even if there are no errors.
[root]# tail -f $MOABHOMEDIR/log/moab.log | grep -i odbc

b. Log in to the Moab Oracle database.
In the first example below, isql will search /etc/odbc.ini for "[ODBC]".
unixODBC will then use the Oracle 11g ODBC driver defined in
/etc/odbcinst.ini to establish a connection. The ServerName in
/etc/odbc.ini tells the Oracle driver to reference the MOAB tnsnames entry
in /etc/oracle/tnsnames.ora for connection parameters.

The second example uses sqlplus and a connect string to connect.

Try both connection methods.

Log in to Oracle. Try both isql and sqlplus64 clients.
[root]# isql -v ODBC

[root]# sqlplus64 moab/moab@adaptive-oracle:1561/MOAB

c. Select some data from one or more of the tables (Nodes, Events, and the like) to
verify that data is being stored in the Moab Oracle instance:

sqlplus64 moab/moab@adaptive-oracle:1561/MOAB

SQL*Plus: Release 11.2.0.4.0 Production on Fri Oct 4 14:59:02 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Chapter 20: Database Configuration

878 20.4 Connecting to an Oracle Database with an ODBC Driver

20.4 Connecting to an Oracle Database with an ODBC Driver 879

Connected to:
Oracle Database 11g Release 11.2.0.1.0 - 64bit Production

SQL> select table_name from user_tables;

TABLE_NAME

JOBS
REQUESTS
RESERVATIONS
VCS
EVENTTYPE
GENERALSTATS
GENERICMETRICS
NODESTATS
NODESTATSGENERICRESOURCES
EVENTS
JOBHISTORY
MCHECKPOINT
NODES
TRIGGERS
MOAB
OBJECTTYPE

16 rows selected.

Related Topics

l 20.4.1 Installing the Oracle Instant Client - page 879

l 20.2 Connecting to a MySQL Database with an ODBC Driver - page 866

l 20.3 Connecting to a PostgreSQL Database with an ODBC Driver - page 869

l Chapter 20: Database Configuration - page 865

20.4.1 Installing the Oracle Instant Client
The following procedure demonstrates how to install the correct ODBC drivers for your
Oracle database. This guide is a prerequisite for the Connecting to an Oracle Database with
an ODBC Driver task. Each step must be performed as root.

To Install the Oracle Instant Client

1. Go to the Install Client Downloads page on the Oracle website. Choose the link that
matches your system type (for instance, Instant Client for Linux x86-64). Choose
Accept License Agreement at the top of the page and download the following
RPM or zip files for your target version (such as 11.2):

Chapter 20: Database Configuration

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

The process of connecting Oracle to Moab Workload Manager has been tested on
Oracle Instant Client version 11.2. The process might work with other versions,
but they are not supported.

l Basic (oracle-instantclient11.2-basic-11.2.0.4.0-1.x86_
64.rpm)

l SQL Plus (oracle-instantclient11.2-sqlplus-11.2.0.4.0-1.x86_
64.rpm)

l ODBC (oracle-instantclient11.2-odbc-11.2.0.4.0-1.x86_
64.rpm)

2. Install the packages. This example installs the RPMs:

[root]# rpm -i ./oracle-instantclient11.2-basic-11.2.0.4.0-1.x86_64.rpm
[root]# rpm -i ./oracle-instantclient11.2-sqlplus-11.2.0.4.0-1.x86_64.rpm
[root]# rpm -i ./oracle-instantclient11.2-odbc-11.2.0.4.0-1.x86_64.rpm

3. Create a configuration file in /etc/ld.so.conf.d to add the Oracle client libraries
to the LD_LIBRARY_PATH.
To confirm where the RPMs installed the libraries, run rpm -qlp <rpmFileName>.

[root]# cat >/etc/ld.so.conf.d/oracle-instant-client.conf <<EOL
/usr/lib/oracle/11.2/client64/lib
EOL

If you installed Oracle Instant Client from a repository, run repoquery -ql
<rpmName> instead.

Rebuild the LD_LIBRARY_PATH:

[root]# ldconfig

4. Connect to the database using sqlplus. If you used RPMs to install the client, the 32-
bit and 64-bit clients are already in your PATH.

[root]# sqlplus64 moab/moab@adaptive-oracle:1561/MOAB

SQL*Plus: Release 11.2.0.4.0 Production on Mon Sep 30 14:35:10 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Release 11.2.0.1.0 - 64bit Production

The 64-bit sqlplus client was used to connect to a 64-bit 11g instance called MOAB, which is hosted on
adaptive-oracle.ac.

Chapter 20: Database Configuration

880 20.4 Connecting to an Oracle Database with an ODBC Driver

20.4 Connecting to an Oracle Database with an ODBC Driver 881

5. Verify that you are logged in to the correct database:

SQL> select name from v$database
2 ;

NAME

MOAB

6. Create the database in Oracle using the moab-db-oracle-create.sh script
located in the contrib/sql directory.

This contrib/sql directory is in the expanded tarball directory.

Useful comments are at the top of the script. Read the comments before running
the script.

[root]# ./moab-db-oracle-create.sh

7. Display all of user's MOAB tables:

SQL> select table_name from all_tables where owner = 'MOAB';

TABLE_NAME

TRIGGERS
MOAB
OBJECTTYPE
VCS
EVENTTYPE
JOBHISTORY
MCHECKPOINT
NODES
EVENTS
NODESTATSGENERICRESOURCES
JOBS
RESERVATIONS
GENERICMETRICS
REQUESTS
GENERALSTATS
NODESTATS

16 rows selected.
SQL>

8. Generate a script to describe all of user's MOAB tables. Cut and paste the following into
a terminal that is not logged in to SQLPlus:

[root]# cat > /tmp/generateDescribe.sql <<EOL
SET HEADING OFF
SET FEEDBACK OFF
SET ECHO OFF
SET PAGESIZE 0
SPOOL /tmp/describeAllUserTables.sql
select 'desc '||owner||'.'||table_name||';' from all_tables where owner = 'MOAB';
SPOOL OFF
EOL

Chapter 20: Database Configuration

9. Run describeAllUserTables.sql:

[root]# SQL> start /tmp/describeAllUserTables.sql

Related Topics

l 20.4 Connecting to an Oracle Database with an ODBC Driver - page 872

l Chapter 20: Database Configuration - page 865

20.5 Migrating Your Database to Newer Versions of
Moab

Sometimes when upgrading from an older version of Moab to a newer version, you must
update your database schema. If the schema Moab expects to operate against is different
from the actual schema of the database Moab is connected to, Moab might not be able to
use the database properly and data might be lost.

When upgrading the Moab database schema from an old version, you must perform each
version upgrade in order. You cannot skip versions.

If upgrading a Moab version prior to 7.2.0, contact Adaptive Computing.

In this section:

20.5.1 Migrate from Moab 9.1 to Moab 10.0 882
20.5.2 Migrate from Moab 9.0 to Moab 9.1 883
20.5.3 Migrate from Moab 8.1 to Moab 9.0 883
20.5.4 Migrate from Moab 8.0 to Moab 8.1 883
20.5.5 Migrate from Moab 7.5 to Moab 8.0 884
20.5.6 Migrate from Moab 7.2.6-7.2.10 to Moab 7.5 884
20.5.7 Migrate from Moab 7.2.0-7.2.5 to Moab 7.2.6 885

20.5.1 Migrate from Moab 9.1 to Moab 10.0
In Moab Workload Manager 10.0, some obsolete node attributes were removed (e.g.,
ResOvercommitFactor) from the ODBC database schema. To upgrade your database

Chapter 20: Database Configuration

882 20.5 Migrating Your Database to Newer Versions of Moab

20.5 Migrating Your Database to Newer Versions of Moab 883

with these changes, use the moab-db-<database>-upgrade10_0.sql file located
in the contrib/sql directory.

This contrib/sql directory is in the expanded tarball directory.

For example, to migrate your PostgreSQL database from the 9.1 schema to the 10.0
schema, run the following:

[postgres]$ psql Moab < moab-db-postgresql-upgrade10_0.sql

The database name is usually Moab.

Similar migration scripts exist for Oracle and MySQL.

20.5.2 Migrate from Moab 9.0 to Moab 9.1
In Moab Workload Manager 9.1, the former reservation statistics (STATCAPS, STATCIPS,
STATTAPS and STATTIPS) were replaced with (STATCBPS, STATCRPS, STATTBPS and
STATTRPS) in the ODBC database schema. To upgrade your database with these changes,
use the moab-db-<database>-upgrade9_1.sql file located in the contrib/sql
directory.

This contrib/sql directory is in the expanded tarball directory.

For example, to migrate your PostgreSQL database from the 9.0 schema, run the following:

[postgres]$ psql Moab < moab-db-postgresql-upgrade9_1.sql

The database name is usually "Moab".

Similar migration scripts exist for Oracle and MySQL.

20.5.3 Migrate from Moab 8.1 to Moab 9.0
There were no schema changes between Moab 8.1 and Moab 9.0, therefore there is no
migration script that needs to be run to adapt your database from Moab 8.1 to Moab 9.0.

20.5.4 Migrate from Moab 8.0 to Moab 8.1
In Moab Workload Manager 8.1, a new accounting event 'AMCONTINUE was added and the
datatypes of some reservation statistics were changed. To upgrade your database with
these changes, use the moab-db-<database>-upgrade8_1.sql file located in the
contrib/sql directory.

Chapter 20: Database Configuration

This contrib/sql directory is in the expanded tarball directory.

For example, to migrate your MySQL database from the 8.0 (or later) schema, run the
following:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade8_1.sql

The database name is usually 'Moab'.

Similar migration scripts exist for Oracle and PostgreSQL.

20.5.5 Migrate from Moab 7.5 to Moab 8.0
In Moab Workload Manager 8.0, column names that have become reserved words in newer
versions of MySQL, PostgreSQL, and Oracle were renamed to eliminate the need to quote
column names in SQL statements. Also, a few additional columns were added to existing
tables to support Moab's Green feature. To upgrade your database with these changes, use
the moab-db-<database>-upgrade8_0.sql file located in the contrib/sql
directory.

This contrib/sql directory is in the expanded tarball directory.

For example, to migrate your MySQL database from the 7.5 (or later) schema, run the
following:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade8_0.sql

The database name is usually "Moab".

Similar migration scripts exist for Oracle and PostgreSQL.

20.5.6 Migrate from Moab 7.2.6-7.2.10 to Moab 7.5
In Moab Workload Manager 7.5, column names that are reserved words in databases
supported by Adaptive Computing were renamed to eliminate the need to quote column
names in SQL statements. To upgrade your database with these changes, use the moab-
db-<database>-upgrade7_5.sql file located in the contrib/sql directory.

This contrib/sql directory is in the expanded tarball directory.

For example, to migrate your MySQL database from the 7.2.6 (or later) schema, run the
following:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade7_5.sql

Chapter 20: Database Configuration

884 20.5 Migrating Your Database to Newer Versions of Moab

20.6 Importing Statistics from stats/DAY.* to the Moab Database 885

The database name is usually "Moab".

Similar migration scripts exist for Oracle and PostgreSQL.

20.5.7 Migrate from Moab 7.2.0-7.2.5 to Moab 7.2.6
In Moab Workload Manager 7.2.6, several columns were extended and the primary key on
the Triggers table changed. To upgrade your database with these changes, use the moab-
db-<database>-upgrade7_2_6.sql file located in the contrib/sql directory.

This contrib/sql directory is in the expanded tarball directory.

For example, to migrate your MySQL database from the 7.2.x (pre-7.2.6) schema to the
7.2.6 schema, run the following:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade7_2_6.sql

The database name is usually "Moab".

Similar migration scripts exist for Oracle and PostgreSQL.

The 7.2.6 database upgrade is compatible with all earlier versions of 7.2.

20.6 Importing Statistics from stats/DAY.* to the
Moab Database

The contrib/stat_converter folder contains the files to build mstat_
converter, an executable that reads file-based statistics in a Moab stats directory and
dumps them into a database. It also reads the Moab checkpoint file (.moab.ck) and
dumps that to the database as well. It uses the $MOABHOMEDIR/moab.cfg file to
connect to the appropriate database and reads the statistics files from
$MOABHOMEDIR/stats.

To run, execute the program mstat_converter with no arguments.

The statistics converter program does not clear the database before converting. However,
if there are statistics in the database and the statistics files from the same period, the
converter reports duplicate data errors.

Chapter 20: Database Configuration

21.1 Scheduling GPUs 886

Chapter 21: Accelerators

Moab can integrate with the Torque resource manager to discover, report, schedule, and
submit workload to various accelerator architectures (such as NVIDIA GPUs or Intel® Xeon
Phi™ co-processor architecture) for parallel processing. See the topics below for specific
information.

In this chapter:

21.1 Scheduling GPUs 886
21.1.1 Deploying and Configuring GPUs 887
21.1.2 Using GPUs with Minimal Configuration 888

21.2 Using GPUs with NUMA 888
21.3 NVIDIA GPUs 890

21.3.1 Using NVIDIA GPUs 890
21.3.2 Package Installation/Upgrade 891
21.3.3 Torque Configuration 892
21.3.4 GPU Modes for NVIDIA 260.x Driver 893
21.3.5 GPU Modes for NVIDIA 270.x Driver 893
21.3.6 gpu_status 893
21.3.7 Enabling Persistence Mode 894
21.3.8 Requesting GPUs and Setting GPU Mode 894

21.4 GPU Metrics 895
21.5 Intel® Xeon Phi™ Coprocessor Configuration 897

21.5.1Intel Many-Integrated Cores (MIC) Architecture Configuration 898
21.5.2 Validating the Configuration 899
21.5.3 Job Submission 900

21.6 Intel® Xeon Phi™ Co-processor Metrics 902

21.1 Scheduling GPUs

In this topic:

Chapter 21: Accelerators

21.1.1 Deploying and Configuring GPUs - page 887
21.1.2 Using GPUs with Minimal Configuration - page 888

21.1.1 Deploying and Configuring GPUs
There are several ways a site can deploy and configure Moab/Torque systems with GPUs.

Method 1 (recommended): GPUs with NVIDIA/NVML and cgroups
l The only method that guarantees that users do not use more GPUs than they request.

l Ensures that multiple users will not attempt to use the same GPU.

l Torque will attempt to use CPUs and memory that are close to the GPUs to allow the
jobs to execute faster and more consistently.

l Provides all of the information on the GPUs that configuring with NVML does (method
2).

l In addition to configuring NVIDIA GPU support (see 21.3 NVIDIA GPUs - page 890),
enabling cgroups requires installing hwloc libraries. See Torque NUMA-Aware
Configuration in the Torque Administrator Guide for instructions.

Method 2: GPUs with NVIDIA/NVML, but without cgroups (see 21.3
NVIDIA GPUs - page 890)

l Guarantees that you detect an accurate number of GPUs without manual
configuration.

l Provides reporting information on the state of each GPU.

l Allows users to set a mode for each GPU in use by their job, as needed.

When using this method, pbs_server automatically appends
'gpus=<count>' to the end of the line in TORQUE_HOME/server_
priv/nodes for any node with a GPU, overriding any such manual
configuration.

Method 3: Configuring GPUs in the nodes file (see 21.1.2 Using GPUs
with Minimal Configuration - page 888)

l Allows jobs to request GPUs.

l Requires manual configuration.

l Does not guarantee accuracy.

Chapter 21: Accelerators

887 21.1 Scheduling GPUs

21.2 Using GPUs with NUMA 888

21.1.2 Using GPUs with Minimal Configuration
In Torque 2.5.4 and later, users can request GPUs on a node at job submission by
specifying a nodes resource request, using the qsub -l option. The number of GPUs a
node has must be specified in the nodes file. The GPU is then reported in the output of
pbsnodes:

napali
state = free
np = 2
ntype = cluster
status = rectime=1288888871,varattr=,jobs=,state=free,netload=1606207294,gres=tom:!
/home/dbeer/dev/scripts/dynamic_
resc.sh,loadave=0.10,ncpus=2,physmem=3091140kb,availmem=32788032348kb,
totmem=34653576492kb,idletime=4983,nusers=3,nsessions=14,sessions=3136 1805 2380 2428
1161 3174 3184
3191 3209 3228 3272 3333 20560 32371,uname=Linux napali 2.6.32-25-generic #45-Ubuntu
SMP Sat Oct 16 19:52:42
UTC 2021 x86_64,opsys=linux
mom_service_port = 15002
mom_manager_port = 15003
gpus = 1

The $PBS_GPUFILE has been created to include GPU awareness. The GPU appears as a
separate line in $PBS_GPUFILE and follows this syntax:

<hostname>-gpu<index>

If a job were submitted to run on a server called 'napali' (the submit command would look
something like: qsub test.sh -l nodes=1:ppn=2:gpus=1), the $PBS_GPUFILE
would contain:

napali-gpu0

It is left up to the job's owner to make sure that the job executes properly on the GPU. By
default, Torque treats GPUs exactly the same as ppn (which corresponds to CPUs).

Related Topics

l Using GPUs with NUMA

l NVIDIA GPUs

21.2 Using GPUs with NUMA

The pbs_server requires awareness of how the MOM is reporting nodes since there is only
one MOM daemon and multiple MOM nodes. Configure the server_priv/nodes file

Chapter 21: Accelerators

with the num_node_boards and numa_gpu_node_str attributes. The attribute num_
node_boards tells pbs_server how many NUMA nodes are reported by the MOM. If each
NUMA node has the same number of GPUs, add the total number of GPUs to the nodes file.
Following is an example of how to configure the nodes file with num_node_boards:

numahost gpus=12 num_node_boards=6

This line in the nodes file tells pbs_server there is a host named numahost and that it has
12 GPUs and 6 nodes. The pbs_server divides the value of GPUs (12) by the value for num_
node_boards (6) and determines there are 2 GPUs per NUMA node.

In this example, the NUMA system is uniform in its configuration of GPUs per node board,
but a system does not have to be configured with the same number of GPUs per node
board. For systems with non-uniform GPU distributions, use the attribute numa_gpu_
node_str to let pbs_server know where GPUs are located in the cluster.

If there are equal numbers of GPUs on each NUMA node, you can specify them with a
string. For example, if there are 3 NUMA nodes and the first has 0 GPUs, the second has 3,
and the third has 5, you would add this to the nodes file entry:

numa_gpu_node_str=0,3,5

In this configuration, pbs_server knows it has three MOM nodes and the nodes have 0, 3s,
and 5 GPUs respectively. Note that the attribute gpus is not used. The gpus attribute is
ignored because the number of GPUs per node is specifically given.

In Torque 3.0.2 or later, qsub supports the mapping of -l gpus=X to -l
gres=gpus:X. This allows users who are using NUMA systems to make requests such as
-l ncpus=20,gpus=5 (or -l ncpus=20:gpus=5)indicating they are not
concerned with the GPUs in relation to the NUMA nodes they request; they only want a
total of 20 cores and 5 GPUs.

The qsub -l gpus=X option is deprecated. It is recommended that you request
GPUs using the resource request 2.0 syntax (-L, see '-L NUMA Resource Request' in
the Torque Resource Manager Administrator Guide).

Related Topics

l Scheduling GPUs

l NVIDIA GPUs

Chapter 21: Accelerators

889 21.2 Using GPUs with NUMA

21.3 NVIDIA GPUs 890

21.3 NVIDIA GPUs

In this topic:

21.3.1 Using NVIDIA GPUs - page 890
21.3.2 Package Installation/Upgrade - page 891
21.3.3 Torque Configuration - page 892
21.3.4 GPU Modes for NVIDIA 260.x Driver - page 893
21.3.5 GPU Modes for NVIDIA 270.x Driver - page 893
21.3.6 gpu_status - page 893
21.3.7 Enabling Persistence Mode - page 894
21.3.8 Requesting GPUs and Setting GPU Mode - page 894

21.3.1 Using NVIDIA GPUs

This document assumes that you have installed the NVIDIA CUDA ToolKit and the
NVIDIA development drivers on a compute node with an NVIDIA GPU. (Both can be
downloaded from https://developer.nvidia.com/cuda-downloads).

Severe scheduling performance problems have been observed in systems with GPUs
that do not have persistence mode enabled. We strongly recommend doing this on
all GPU nodes. See 21.3.7 Enabling Persistence Mode - page 894 for more information.

CUDA version 6.0 or later is recommended for Torque 6.0 or later. CUDA version 4.1
is the minimum required.

The recommended method for deploying Moab/Torque systems with GPUs is to
include NVIDIA/NVML options and cgroups. See 21.1 Scheduling GPUs - page 886.

As of version 2.5.6, pbs_mom can query for GPU hardware information and report that
status to pbs_server, adding a gpustatus line in the output for pbsnodes.

qsub includes options for setting the GPU mode and for resetting GPU ECC error counts.

To generate MOM binaries with GPU support, you must build on a system that has the
CUDA libraries for that specific GPU hardware and operating system. Because the CUDA
toolkit installer refuses to run on a system without a GPU card (and the server typically
lacks that hardware), the usual method of building for GPUs involves putting the source on

Chapter 21: Accelerators

https://developer.nvidia.com/cuda-downloads

a node with a GPU and compiling there with NVDIA/NVML options. This requires gcc,
libtool, and other build utilities, so first you must follow the 'Install Packages' instructions
for the Torque server in the Moab Installation and Configuration Guide for your version
and OS on that host. Once you've configured and built, you can generate the MOM installer
by running make packages, as described below. pbs_server can communicate with
pbs_mom binaries configured for GPU support regardless the server's build options.

To configure for NVIDIA GPU support, include these options:

l --enable-nvidia-gpus

l --with-nvml-lib=DIR (library path for libnvidia-ml.so)

l --with-nvml-include=DIR (include path for nvml.h)

nvml.h is only found in the NVIDIA CUDA ToolKit.

Example:

./configure --with-debug --enable-nvidia-gpus --with-nvml-lib=/usr/lib64 --with-nvml-
include=/cuda/NVML --with-hwloc-path=/usr/lib64/

21.3.2 Package Installation/Upgrade
The package files are self-extracting packages that can be copied and executed on your
production nodes to do a new installation, or overlay and upgrade existing installations in
the same locations. Example:

> make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-gui-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.
$
$ ls -l torque-package-*
-rwxr-xr-x 1 root root 2180510 May 19 15:05 torque-package-clients-linux-x86_64.sh
-rwxr-xr-x 1 root root 4066774 May 19 15:05 torque-package-devel-linux-x86_64.sh
-rwxr-xr-x 1 root root 163505 May 19 15:05 torque-package-doc-linux-x86_64.sh
-rwxr-xr-x 1 root root 4813027 May 19 15:05 torque-package-mom-linux-x86_64.sh
-rwxr-xr-x 1 root root 8168502 May 19 15:05 torque-package-server-linux-x86_64.sh
$
$./torque-package-clients-linux-x86_64.sh --install

Installing TORQUE archive...

Done.
$

Chapter 21: Accelerators

891 21.3 NVIDIA GPUs

21.3 NVIDIA GPUs 892

When updating, it is good practice to stop the pbs_server and make a backup of
the Torque home directory. You will also want to backup the output of qmgr -c
"print server". The update will only overwrite the binaries. To do a 'rolling
upgrade' and have the MOMs automatically start at a safe point (when pbs_mom is
between jobs), install the new version and then toggle enablemomrestart for the
existing MOM processes. Example:

pdsh -w node[01-99] /usr/local/sbin/momctl -q enablemomrestart=1

or

momctl -q enablemomrestart=1 -h :ALL

Refer to the Rolling Upgrade subsection of Appendix E: Considerations Before
Upgrading in the Torque Administrator Guide for more details and suggestions.

If you move GPU cards to different slots, you must restart pbs_server in order for
Torque to recognize the drivers as the same ones in different locations rather than
two new, additional drivers.

For further details, see these topics:

l Torque Configuration

l GPU Modes for NVIDIA 260.x Driver

l GPU Modes for NVIDIA 270.x Driver

l gpu_status

l Enabling Persistence Mode

l Requesting GPUs and Setting GPU Mode

21.3.3 Torque Configuration

CUDA 6.0 or later is recommended for Torque 6.0 or later. CUDA version 4.1 is the
minimum required. Using nvidia-smi to configure Torque for NVIDIA GPU
support is deprecated.

To use the NVML (NVIDIA Management Library) API instead of nvidia-smi, configure
Torque using --with-nvml-lib=DIR and --with-nvml-include=DIR. These
commands specify the location of the libnvidia-ml library and the location of the
nvml.h include file.

Chapter 21: Accelerators

./configure -with-nvml-lib=/usr/lib --with-nvml-include=/usr/local/cuda/Tools/NVML
server_priv/nodes:
node001 gpus=1
node002 gpus=4
...
pbsnodes -a
node001
 ...
 gpus = 1
...

By default, when Torque is configured with --enable-nvidia-gpus the TORQUE_
HOME/nodes file is automatically updated with the correct GPU count for each MOM node.

21.3.4 GPU Modes for NVIDIA 260.x Driver
l 0 – Default - Shared mode available for multiple processes

l 1 – Exclusive - Only one COMPUTE thread is allowed to run on the GPU

l 2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

Effective with 5.1.3, 6.0.2, and later, prohibited mode is not allowed for user jobs.

21.3.5 GPU Modes for NVIDIA 270.x Driver
l 0 – Default - Shared mode available for multiple processes

l 1 – Exclusive Thread - Only one COMPUTE thread is allowed to run on the GPU (v260
exclusive)

l 2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

Effective with 5.1.3, 6.0.2, and later, prohibited mode is not allowed for user
jobs.

l 3 – Exclusive Process - Only one COMPUTE process is allowed to run on the GPU

21.3.6 gpu_status
root@gpu:~# pbsnodes gpu
gpu
...
 gpus = 2
 gpu_status = gpu[1]=gpu_id=0:6:0;gpu_product_name=Tesla
 C2050;gpu_display=Disabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id=0:6:0;
 gpu_fan_speed=54 %;gpu_memory_total=2687 Mb;gpu_memory_used=74
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10

Chapter 21: Accelerators

893 21.3 NVIDIA GPUs

21.3 NVIDIA GPUs 894

%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;gpu_double_bit_ecc_errors=
0;gpu_temperature=88 C,gpu[0]=gpu_id=0:5:0;gpu_product_name=Tesla
C2050;gpu_display=Enabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id=0:5:0;
gpu_fan_speed=66 %;gpu_memory_total=2687 Mb;gpu_memory_used=136
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;
gpu_double_bit_ecc_errors=0;gpu_temperature=86 C,driver_ver=270.41.06,timestamp=Wed
May 4 13:00:35
2022

21.3.7 Enabling Persistence Mode
When pbs_mom has been built with NVIDIA support and linked to NVML libraries, pbs_
mom regularly calls nvmlInit(). nvmlInit can take a long time to complete when
persistence mode has not been enabled for NVIDIA devices. It is recommended that you
enable persistence mode for NVIDIA GPUs. You can enable persistence mode using
nvidia-smi (as root):

nvidia-smi -i <target gpu> -pm ENABLED

or

nvidia-smi -i <target gpu> --persistence-mode ENABLED

When the -i option is not specified, nvidia-smi enables persistence mode for all
NVIDIA GPUs. The effect of this operation is immediate, however, it does not persist across
reboots. After each reboot, persistence mode will default to DISABLED. To have
persistence mode persist across reboots, run the NVIDIA Persistence Daemon. See NVIDIA
GPU Management and Deployment at https://docs.nvidia.com/deploy/driver-
persistence/index.html for more information on persistence mode and Persistence
Daemon at https://docs.nvidia.com/deploy/driver-persistence/index.html#security for
more information on the Persistence Daemon.

21.3.8 Requesting GPUs and Setting GPU Mode

If you are using CUDA 8 or newer, the default of exclusive_thread is no longer
supported. If the server specifies an exclusive_thread setting, the MOM will
substitute an exclusive_process mode setting. We recommend that you set the
default to exclusive_process.

qsub allows specifying required compute mode when requesting GPUs. If no GPU mode is
requested, it will default to 'exclusive' for NVIDIA driver version 260 or 'exclusive_thread'
for NVIDIA driver version 270 and above.

Chapter 21: Accelerators

http://docs.nvidia.com/deploy/driver-persistence/index.html
http://docs.nvidia.com/deploy/driver-persistence/index.html
http://docs.nvidia.com/deploy/driver-persistence/index.html#persistence-daemon
http://docs.nvidia.com/deploy/driver-persistence/index.html#persistence-daemon

l qsub -l nodes=1:ppn=1:gpus=1

l qsub -l nodes=1:gpus=1

l qsub -l nodes=1:gpus=1:default

l qsub -l nodes=1:gpus=1:shared ('shared' and 'default' are both
recognized and are equivalent.)

l qsub -l nodes=1:gpus=1:exclusive_thread

l qsub -l nodes=1:gpus=1:exclusive_process

l qsub -l nodes=1:gpus=1:reseterr

l qsub -l nodes=1:gpus=1:reseterr:exclusive_thread
(exclusive_thread:reseterr)

l qsub -l nodes=1:gpus=1:reseterr:exclusive_process

Related Topics

l 21.1 Scheduling GPUs - page 886

l 21.2 Using GPUs with NUMA - page 888

21.4 GPU Metrics

GPU metrics can be collected for nodes that:

l Have one or more GPUs.

l Run Torque 2.5.x or later.

l Use NVIDIA drivers v260.x or v270.x.

GPU metric tracking must be enabled in moab.cfg:

RMCFG[torque] flags=RECORDGPUMETRICS

There is one GPU metric for all GPU devices within a node (gpu_timestamp) and nine
GPU metrics for each GPU device within a node. If the maximum GPU devices within a
node is 4, you must increase the MAXGMETRIC value in moab.cfg by
(maxgpudevices x gpumetrics) + 1. In this case, the formula is (4 x 9) + 1 = 37, so
whatever the MAXGMETRIC value is, it must be increased by 37. This way, when
enabling GPU metrics recording, Moab has enough GMETRIC types to accommodate
the GPU metrics.

Chapter 21: Accelerators

895 21.4 GPU Metrics

21.4 GPU Metrics 896

GPU Metrics Map
The GPU metric names map is as follows (where X is the GPU number):

Metric name
as returned
by
pbsnodes

GMETRIC name as stored in Moab Metric output

timestamp gpu_timestamp

The gpu_timestamp metric is global to all
GPUs on the node and indicates the last
time the driver collected information on
the GPUs.

The time data was
collected in epoch time

gpu_fan_
speed

gpuX_fan The current fan speed as
a percentage

gpu_
memory_
total

gpuX_mem The total GPU memory
in megabytes

gpu_
memory_
used

gpuX_usedmem The total used GPU
memory in megabytes

gpu_
utilization

gpuX_util The GPU capability
currently in use as a
percentage

gpu_
memory_
utilization

gpuX_memutil The GPU memory
currently in use as a
percentage

gpu_ecc_
mode

gpuX_ecc Whether ECC is enabled
or disabled

gpu_single_
bit_ecc_
errors

gpuX_ecc1err The total number of EEC
single-bit errors since
the last counter reset

gpu_double_
bit_ecc_
errors

gpuX_ecc2err The total number of EEC
double-bit errors since
the last counter reset

Chapter 21: Accelerators

Metric name
as returned
by
pbsnodes

GMETRIC name as stored in Moab Metric output

gpu_
temperature

gpuX_temp The GPU current
temperature in Celsius

Example 21-1: GPU example

$ mdiag -n -v --xml

<Data>
<node AGRES="GPUS=2;"
AVLCLASS="[test 8][batch 8]"
CFGCLASS="[test 8][batch 8]"
GMETRIC="gpu1_fan:59.00,gpu1_mem:2687.00,gpu1_usedmem:74.00,gpu1_util:94.00,gpu1_
memutil:9.00,gpu1_ecc:0.00,gpu1_ecc1err:0.00,gpu1_ecc2err:0.00,gpu1_temp:89.00,gpu0_
fan:70.00,gpu0_mem:2687.00,gpu0_usedmem:136.00,gpu0_util:94.00,gpu0_memutil:9.00,gpu0_
ecc:0.00,gpu0_ecc1err:0.00,gpu0_ecc2err:0.00,gpu0_temp:89.00,gpu_
timestamp:1304526680.00"
GRES="GPUS=2;"
LASTUPDATETIME="1304526518" LOAD="1.050000"
MAXJOB="0" MAXJOBPERUSER="0" MAXLOAD="0.000000" NODEID="gpu"
NODEINDEX="0" NODESTATE="Idle" OS="linux" OSLIST="linux"
PARTITION="makai" PRIORITY="0" PROCSPEED="0" RADISK="1"
RAMEM="5978" RAPROC="7" RASWAP="22722" RCDISK="1" RCMEM="5978"
RCPROC="8" RCSWAP="23493" RMACCESSLIST="makai" SPEED="1.000000"
STATMODIFYTIME="1304525679" STATTOTALTIME="315649"
STATUPTIME="315649"></node>
</Data>

21.5 Intel® Xeon Phi™ Coprocessor Configuration

In this topic:

21.5.1 Intel Many-Integrated Cores (MIC) Architecture Configuration - page 898
21.5.1.A Prerequisites - page 898
21.5.1.B Setup Options - page 898

21.5.2 Validating the Configuration - page 899
21.5.2.A Torque - page 899
21.5.2.B Moab - page 899

21.5.3 Job Submission - page 900
21.5.3.A Syntax - page 900
21.5.3.B qstat -f - page 900

Chapter 21: Accelerators

897 21.5 Intel® Xeon Phi™ Coprocessor Configuration

21.5 Intel® Xeon Phi™ Coprocessor Configuration 898

21.5.3.C checkjob -v - page 901

21.5.1 Intel Many-Integrated Cores (MIC) Architecture
Configuration
If you use an Intel Many-Integrated Cores (MIC) architecture-based product (e.g., Intel
Xeon Phi™) in your cluster for parallel processing, you must configure Torque to detect
them.

21.5.1.A Prerequisites

l Torque 4.2 or later

l If you set up Torque using auto-detection and intend to get the MIC-based device
status report, you must build pbs_mom on a system that has the lower-level API
libraries for the MIC-based device(s) installed. Additionally, every MOM built with --
enable-mics and running on a compute node must already have the lower-level
API libraries installed on the node. Note that the library is called coi_host. You
must obtain the API libraries from Intel.

21.5.1.B Setup Options
There are two ways to configure MIC-based devices with Torque: (1) manually and (2) by
auto-detection.

Manual Configuration
l Add mics=X to the nodes file for the appropriate nodes. See 'Specifying Compute
Nodes' in the Torque Resource Manager Administrator Guide for more information.

napali np=12 mics=2

Auto-Detect
When you use auto-detection, pbs_mom discovers the MIC-based devices and reports them
to pbs_server.

l At build time, add --enable-mics to the configure line:

./configure --enable-mics <other configure options>

Chapter 21: Accelerators

https://www.intel.com/content/www/us/en/homepage.html

21.5.2 Validating the Configuration

21.5.2.A Torque

pbsnodes

Example 21-2: pbsnodes output

slesmic
state = free
np = 100
ntype = cluster
status =

rectime=1347634381,varattr=,jobs=,state=free,netload=7442004852,gres=,loadave=0.00,ncp
us=32,physmem=65925692kb,availmem=66531344kb,totmem=68028984kb,idletime=59059,nusers=2
,nsessions=8,sessions=4387 4391 4392 4436 4439 4443 4459 100395,uname=Linux slesmic
3.0.13-0.27-default #1 SMP Wed June 15 13:33:49 UTC 2022 (d73692b) x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
mics = 2
mic_status = mic[1]=mic_id=8796;num_cores=61;num_threads=244;physmem=8065748992;

free_physmem=7854972928;swap=0;free_swap=0;max_frequency=1090;isa=COI_ISA_
KNC;load=0.000000;normalized_load=0.000000;,mic[0]=mic_id=8796;num_cores=61;num_
threads=244;physmem=8065748992;free_physmem=7872712704;swap=0;free_swap=0;max_
frequency=1090;isa=COI_ISA_KNC;load=0.540000;normalized_load=0.008852;

rhmic.ac
state = free
np = 100
ntype = cluster
status =

rectime=1347634381,varattr=,jobs=,state=free,netload=3006171583,gres=,loadave=0.00,ncp
us=32,physmem=65918268kb,availmem=66901588kb,totmem=67982644kb,idletime=59477,nusers=2
,nsessions=2,sessions=3401 29320,uname=Linux rhmic.ac 2.6.32-220.el6.x86_64 #1 SMP Tue
Dec 6 19:48:22 GMT 2022 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
mics = 1
mic_status = mic[0]=mic_id=8796;num_cores=61;num_threads=244;physmem=8065748992;

free_physmem=7872032768;swap=0;free_swap=0;max_frequency=1090;isa=COI_ISA_
KNC;load=0.540000;normalized_load=0.008852;<mic_status>;

21.5.2.B Moab

mdiag -n -v

Example 21-3: mdiag -n -v output

$ mdiag -n -v
compute node summary
Name State Procs Memory Disk Swap
Speed Opsys Arch Par Load Classes Features

Chapter 21: Accelerators

899 21.5 Intel® Xeon Phi™ Coprocessor Configuration

21.5 Intel® Xeon Phi™ Coprocessor Configuration 900

hola Idle 4:4 8002:8002 1:1 10236:13723
1.00 linux - hol 0.24 [batch] -
GRES=MICS:2,
----- --- 4:4 8002:8002 1:1 10236:13723

Total Nodes: 1 (Active: 0 Idle: 1 Down: 0)

checknode -v

Example 21-4: checknode output

$ checknode slesmic
node slesmic

State: Idle (in current state for 00:00:16)
Configured Resources: PROCS: 100 MEM: 62G SWAP: 64G DISK: 1M MICS: 2
Utilized Resources: SWAP: 1581M
Dedicated Resources: ---
Generic Metrics: mic1_mic_id=8796.00,mic1_num_cores=61.00,mic1_num_
threads=244.00,mic1_physmem=8065748992.00,mic1_free_physmem=7854972928.00,mic1_
swap=0.00,mic1_free_swap=0.00,mic1_max_frequency=1090.00,mic1_load=0.12,mic1_
normalized_load=0.00,mic0_mic_id=8796.00,mic0_num_cores=61.00,mic0_num_
threads=244.00,mic0_physmem=8065748992.00,mic0_free_physmem=7872679936.00,mic0_
swap=0.00,mic0_free_swap=0.00,mic0_max_frequency=1090.00
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.000
Classes: [batch]
RM[napali]* TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 3:45:43 Up: 3:45:43 (100.00%) Active: 00:00:00 (0.00%)

Reservations:

21.5.3 Job Submission

21.5.3.A Syntax

Example 21-5: Request MIC-based device(s) in qsub

qsub -l nodes=X:mics=Y

21.5.3.B qstat -f

Example 21-6: qstat -f output

Job Id: 5271.napali
Job_Name = STDIN
Job_Owner = dbeer@napali

Chapter 21: Accelerators

job_state = Q
queue = batch
server = napali
Checkpoint = u
ctime = Fri Oct 14 08:56:33 2022
Error_Path = napali:/home/dbeer/dev/private-torque/trunk/STDIN.e5271
Hold_Types = n
Join_Path = oe
Keep_Files = n
Mail_Points = a
mtime = Fri Oct 14 08:56:33 2022
Output_Path = napali:/home/dbeer/dev/private-torque/trunk/STDIN.o5271
Priority = 0
qtime = Fri Oct 14 08:56:33 2022
Rerunable = True
Resource_List.neednodes = 1:mics=1
Resource_List.nodect = 1
Resource_List.nodes = 1:mics=1
substate = 10
Variable_List = PBS_O_QUEUE=batch,PBS_O_HOME=/home/dbeer,

PBS_O_LOGNAME=dbeer,
PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/b
in:/usr/games,PBS_O_MAIL=/var/mail/dbeer,PBS_O_SHELL=/bin/bash,
PBS_O_LANG=en_US.UTF-8,
PBS_O_SUBMIT_FILTER=/usr/local/sbin/torque_submitfilter,
PBS_O_WORKDIR=/home/dbeer/dev/private-torque/trunk,PBS_O_HOST=napali,
PBS_O_SERVER=napali

euser = dbeer
egroup = company
queue_rank = 3
queue_type = E
etime = Fri Oct 14 08:56:33 2022
submit_args = -l nodes=1:mics=1
fault_tolerant = False
job_radix = 0
submit_host = napali

21.5.3.C checkjob -v

Example 21-7: checkjob -v output

dthompson@mahalo:~/dev/moab-test/trunk$ checkjob -v 2
job 2 (RM job '2.mahalo')

AName: STDIN
State: Idle
Creds: user:dthompson group:dthompson class:batch
WallTime: 00:00:00 of 1:00:00
SubmitTime: Thu Sep 13 17:06:06
(Time Queued Total: 00:00:24 Eligible: 00:00:02)

TemplateSets: DEFAULT
Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL
Dedicated Resources Per Task: PROCS: 1 MICS: 1

...

Chapter 21: Accelerators

901 21.5 Intel® Xeon Phi™ Coprocessor Configuration

21.6 Intel® Xeon Phi™ Co-processor Metrics 902

21.6 Intel® Xeon Phi™ Co-processor Metrics

Intel Many-Integrated Cores (MIC) architecture-based device (e.g., Intel Xeon Phi™) metrics
can be collected for nodes that:

l Have one or more MIC-based devices.

l Run Torque 4.2.x or later.

l Run Moab 7.2 or later.

MIC-based device metric tracking must be enabled in moab.cfg:

RMCFG[torque] flags=RECORDMICMETRICS

There are 11 metrics for each MIC-based device within a node. If the maximum MIC-
based devices within a node is 4, you must increase the MAXGMETRIC value in
moab.cfg by (maxmicdevices x micmetrics). In this case, the formula is (4 x
11) = 44, so whatever the MAXGMETRIC value is, it must be increased by 44. This
way, when enabling MIC-based device metrics recording, Moab has enough GMETRIC
types to accommodate the additional metrics.

MIC-Based Metrics Map
The MIC-based metric names map is as follows (where X is the MIC-based device number):

Metric name as
returned by
pbsnodes

GMETRIC
name as
stored in Moab

Metric output

mic_id micX_mic_id The ID of the MIC-based device

num_cores micX_num_cores The number of cores in the MIC-based device

num_threads micX_num_
threads

The number of hardware threads on the MIC-based
device

physmem micX_physmem The total physical memory in the MIC-based device

free_physmem micX_free_
physmem

The available physical memory in the MIC-based
device

swap micX_swap The total swap space on the MIC-based device

Chapter 21: Accelerators

Metric name as
returned by
pbsnodes

GMETRIC
name as
stored in Moab

Metric output

free_swap micX_free_swap The unused swap space on the MIC-based device

max_frequency micX_max_
frequency

The maximum frequency speed of any core in the
MIC-based device

isa micX_isa The hardware interface type of the MIC-based
device

load micX_load The total current load of the MIC-based device

normalized_load micX_
normalized_load

The normalized load of the MIC-based device (total
load divided by number of cores in the MIC-based
device)

Chapter 21: Accelerators

903 21.6 Intel® Xeon Phi™ Co-processor Metrics

904

Chapter 22: Preemption

Sites possess workloads of varying importance, and users might want to run jobs with
higher priorities before jobs with lower priorities. This can be done by using preemption.
Preemption is simply the process by which a higher-priority job can take the place of a
lower-priority job. You can also use preemption for optimistic scheduling and development
job support.

This section explains how to configure and use preemption. Simple Example of Preemption
offers a basic introduction and contains examples to help you get started using preemption.
The other sections offer more explanation and information about what you can do with
preemption and contain some best practices that will help you avoid the need for
troubleshooting in the future.

While this section does not explain every possible preemption configuration, it does
prescribe the best practices for setting up and using preemption with your system. It is
recommended that you follow the established instructions contained in this section.

Preemption does not work with dynamic provisioning.

Neither SPANEVENLY nor DELAY values of the NODESETPLUS parameter will work
with multi-req jobs or preemption.

Do not allow preemption with interactive jobs unless PREEMPTPOLICY is set to
CANCEL. (For more information, see Canceling Jobs with Preemption.)

In this chapter:

22.1 Preemption Tasks 905
22.1.1 Canceling Jobs with Preemption 905
22.1.2 Checkpointing Jobs with Preemption 909
22.1.3 Requeuing Jobs with Preemption 910
22.1.4 Suspending Jobs with Preemption 913
22.1.5 Using Owner Preemption 917
22.1.6 Using QoS Preemption 920

22.2 Preemption Reference 922
22.2.1 Manual Preemption Commands 922
22.2.2 Preemption Flags 923

Chapter 22: Preemption

22.2.3 PREEMPTPOLICY Types 924
22.2.4 Simple Example of Preemption 925
22.2.5 Testing and Troubleshooting Preemption 929

Related Topics

l Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets - page 537

22.1 Preemption Tasks

In this section:

Canceling Jobs with Preemption
Checkpointing Jobs with Preemption
Requeuing Jobs with Preemption
Suspending Jobs with Preemption
Using Owner Preemption
Using QoS Preemption

22.1.1 Canceling Jobs with Preemption
CANCEL is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY
Types). The CANCEL attribute cancels active jobs, regardless of any JOBFLAGS (such as
REQUEUEABLE or SUSPENDABLE).

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption Flags

You should not allow preemption with interactive jobs unless PREEMPTPOLICY is
set to CANCEL.

The following outlines some benefits of using CANCEL and also lists some things you
should be aware of if you choose to use it:

Chapter 22: Preemption

905 22.1 Preemption Tasks

22.1 Preemption Tasks 906

l Advantages - This attribute is the easiest to configure and use.

l Cautions - Canceled jobs are not automatically restarted or requeued. Users must
resubmit canceled jobs.

To Preempt Jobs Using CANCEL

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR
jobs until JOBRETRYTIME expires.)

b. Set PREEMPTIONALGORITHM to specify how Moab handles preemption scheduling
policies.

If you use JOBNODEMATCHPOLICY EXACTNODE, you must also add
PREEMPTIONALGORITHM PREEMPTORCENTRIC in order for preemption to
function reliably.

c. Set PREEMPTPOLICY to CANCEL (for more information, see PREEMPTPOLICY
Types).

d. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job
(for more information, see Preemption Flags).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY CANCEL

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

(Optional) Examine the following output for showq:

Moab.7
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Running 128 00:01:59 Thu Nov 10 12:28:44

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

Chapter 22: Preemption

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test2

(Optional) Examine the following output for showq:

Moab.8
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Canceling 128 00:01:56 Thu Nov 10 12:28:44
Moab.8 john Running 128 00:02:00 Thu Nov 10 12:28:48

2 active jobs 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that test1 is canceled when test2 is submitted.

(Optional) Examine the checkjob outputs for these two jobs:

[john@g06]$ checkjob Moab.9
job Moab.9

State: Removed
Completion Code: -1 Time: Thu Nov 10 12:28:48
Creds: user:john group:john qos:test1
WallTime: 00:00:02 of 00:02:00
SubmitTime: Thu Nov 10 12:28:44
(Time Queued Total: 00:00:07 Eligible: 00:00:00)

Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

Chapter 22: Preemption

907 22.1 Preemption Tasks

22.1 Preemption Tasks 908

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.UFe8sQ

StartCount: 1
Flags: GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100

Note that the preempted job has been removed.

[john@g06]$ checkjob Moab.10
job Moab.10

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:00:00 of 00:02:00
SubmitTime: Thu Nov 10 12:36:31
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Thu Nov 10 12:28:48
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.CZavjU

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.10' (-00:00:07 -> 00:01:53 Duration: 00:02:00)

Related Topics

l 22.1.4 Suspending Jobs with Preemption - page 913

l 22.1.2 Checkpointing Jobs with Preemption - page 909

l 22.1.3 Requeuing Jobs with Preemption - page 910

l 22.2.2 Preemption Flags - page 923

l Chapter 22: Preemption - page 904

l 22.2.3 PREEMPTPOLICY Types - page 924

l 22.2.5 Testing and Troubleshooting Preemption - page 929

Chapter 22: Preemption

22.1.2 Checkpointing Jobs with Preemption
CHECKPOINT is one of the PREEMPTPOLICY types (for more information, see
PREEMPTPOLICY Types). For systems that allow checkpointing, the CHECKPOINT
attribute allows a job to save its current state and either terminate or continue running. A
checkpointed job can restart at any time and resume execution from its most recent
checkpoint.

You can tune checkpointing behavior on a per-resource manager-basis by setting the
CHECKPOINTSIG and CHECKPOINTTIMEOUT attributes of the RMCFG parameter.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption Flags

The following outlines some benefits of using CHECKPOINT and also lists some things you
should be aware of if you choose to use it:

l Advantages - This attribute allows you to restart a job from its last checkpoint.

l Cautions - Jobs tend to take longer to complete when you use CHECKPOINT.

To Preempt Jobs Using CHECKPOINT
Make the following configurations to the moab.cfg file:

1. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs
until JOBRETRYTIME expires. This locks the job on a node and keeps trying to preempt.)

2. Set PREEMPTIONALGORITHM to specify how Moab handles preemption scheduling
policies.

If you use JOBNODEMATCHPOLICY EXACTNODE, you must also add
PREEMPTIONALGORITHM PREEMPTORCENTRIC in order for preemption to
function reliably.

3. Set PREEMPTPOLICY to CHECKPOINT (for more information, see PREEMPTPOLICY
Types).

4. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for
more information, see Preemption Flags).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY CHECKPOINT

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

Chapter 22: Preemption

909 22.1 Preemption Tasks

22.1 Preemption Tasks 910

Related Topics

l 22.1.4 Suspending Jobs with Preemption - page 913

l 22.1.3 Requeuing Jobs with Preemption - page 910

l 22.1.1 Canceling Jobs with Preemption - page 905

l 22.2.2 Preemption Flags - page 923

l Chapter 22: Preemption - page 904

l 22.2.3 PREEMPTPOLICY Types - page 924

l 22.2.5 Testing and Troubleshooting Preemption - page 929

22.1.3 Requeuing Jobs with Preemption
REQUEUE is one of the PREEMPTPOLICY types (for more information, see
PREEMPTPOLICY Types). The REQUEUE value terminates active jobs and returns them to
the job queue in an idle state.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption Flags

The following outlines some benefits of using REQUEUE and also lists some things you
should be aware of if you choose to use it:

l Advantages - Jobs are automatically resubmitted into the job queue.

l Cautions - A job gets resubmitted in the job queue at the same priority it had when
Moab originally started it (i.e., the job does not jump ahead in the queue). Jobs start
over from the beginning.

You must mark a job as RESTARTABLE if you want it to requeue. If you do not, the
job will be canceled when it is preempted.

If supported by the resource manager, you can set the RESTARTABLE job flag when
submitting the job by using the msub -r option. Otherwise, use the JOBFLAGS
attribute of the associated class or QoS credential, as in this example:

CLASSCFG[low] JOBFLAGS=RESTARTABLE

Chapter 22: Preemption

To Preempt Jobs Using REQUEUE

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR
jobs until JOBRETRYTIME expires.)

b. Set PREEMPTIONALGORITHM to specify how Moab handles preemption scheduling
policies.

If you use JOBNODEMATCHPOLICY EXACTNODE, you must also add
PREEMPTIONALGORITHM PREEMPTORCENTRIC in order for preemption to
function reliably.

c. Set PREEMPTPOLICY to REQUEUE (for more information, see PREEMPTPOLICY
Types).

d. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job
(for more information, see Preemption Flags).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY REQUEUE

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

(Optional) Examine the following output for showq:

Moab.1
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 john Running 128 00:09:59 Wed Nov 9 15:56:33

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Chapter 22: Preemption

911 22.1 Preemption Tasks

22.1 Preemption Tasks 912

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test2 -l procs=128

(Optional) Examine the following output for showq and checkjob:

Moab.2
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.2 john Running 128 00:09:59 Wed Nov 9 15:56:47

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.1 john Idle 128 00:10:00 Wed Nov 9 15:56:33

1 eligible job

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

[john@g06]# checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:02:04 of 00:10:00
SubmitTime: Wed Nov 9 15:56:46
(Time Queued Total: 00:00:01 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:47
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.ELoX5Q

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.2' (-00:02:21 -> 00:07:39 Duration: 00:10:00)

Chapter 22: Preemption

Related Topics

l 22.1.4 Suspending Jobs with Preemption - page 913

l 22.1.2 Checkpointing Jobs with Preemption - page 909

l 22.1.1 Canceling Jobs with Preemption - page 905

l 22.2.2 Preemption Flags - page 923

l Chapter 22: Preemption - page 904

l 22.2.3 PREEMPTPOLICY Types - page 924

l 22.2.5 Testing and Troubleshooting Preemption - page 929

22.1.4 Suspending Jobs with Preemption
SUSPEND is one of the PREEMPTPOLICY types (for more information, see
PREEMPTPOLICY Types). The SUSPEND attribute causes active jobs to stop executing, but
to remain in memory on the allocated compute nodes.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption Flags

The following outlines some benefits of using SUSPEND and also lists some things you
should be aware of if you choose to use it:

l Advantages - The job remains in memory on the allocated compute nodes. Using
SUSPEND frees up processor resources. The job can restart where it left off before it
was suspended.

l Cautions - There is a possibility that having multiple suspended jobs on a compute
node will crash the swap. Moab tracks only requestedmemory of active jobs (not used
memory). The swap can crash if the job uses a lot of memory and Moab starts other
jobs. Suspended jobs do not relinquish their licenses.

You must mark a job as SUSPENDABLE if you want it to suspend. If you do not, the
job will be requeued or canceled when it is preempted.

If supported by the resource manager, you can set the job SUSPENDABLE flag when
submitting the job by using the msub -r option. Otherwise, use the JOBFLAGS
attribute of the associated class or QoS credential, as in this example:

CLASSCFG[low] JOBFLAGS=SUSPENDABLE

Chapter 22: Preemption

913 22.1 Preemption Tasks

22.1 Preemption Tasks 914

To Preempt Jobs Using SUSPEND
When you use SUSPEND, you must increase your JOBRETRYTIME. By default,
JOBRETRYTIME is set to 60 seconds, but when you use SUSPEND, it is recommended that
you increase the time to 300 seconds (5 minutes).

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR
jobs until JOBRETRYTIME expires.)

b. Set PREEMPTIONALGORITHM to specify how Moab handles preemption scheduling
policies.

If you use JOBNODEMATCHPOLICY EXACTNODE, you must also add
PREEMPTIONALGORITHM PREEMPTORCENTRIC in order for preemption to
function reliably.

c. Set PREEMPTPOLICY to SUSPEND (for more information, see PREEMPTPOLICY
Types).

d. For the PREEMPTEE job, set JOBFLAGS=RESTARTABLE,SUSPENDABLE.

e. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job
(for more information, see Preemption Flags).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY SUSPEND

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE,SUSPENDABLE MEMBERULIST=john
PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test1

(Optional) Examine the output for showq:

Moab.7
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Running 128 00:01:59 Thu Nov 10 12:28:44

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Chapter 22: Preemption

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test2

(Optional) Examine the output for showq:

Moab.8
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Suspended 128 00:01:56 Thu Nov 10 12:28:44
Moab.8 john Running 128 00:02:00 Thu Nov 10 12:28:48

2 active jobs 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that when a job is suspended, it stays in the output of showq. This is normal behavior for a suspended job.
Moab should only suspend a job once.

4. (Optional) Examine the checkjob outputs for these two jobs:

[john@g06]$ checkjob Moab.9
job Moab.9

State: Suspended
Creds: user:john group:john qos:test1
WallTime: 00:00:02 of 00:02:00
SubmitTime: Thu Nov 10 12:36:29
(Time Queued Total: 00:00:07 Eligible: 00:00:00)

Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:

Chapter 22: Preemption

915 22.1 Preemption Tasks

22.1 Preemption Tasks 916

node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.UFe8sQ

StartCount: 1
Flags: RESTARTABLE,SUSPENDABLE,PREEMPTEE,GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100
job cannot be resumed: preemption required but job is conditional preemptor with no
targets
BLOCK MSG: non-idle state 'Running' (recorded at last scheduling iteration)

[john@g06]$ checkjob Moab.10
job Moab.10

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:00:00 of 00:02:00
SubmitTime: Thu Nov 10 12:36:31
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Thu Nov 10 12:36:31
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.CZavjU

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.10' (-00:00:07 -> 00:01:53 Duration: 00:02:00)

Occasionally, Moab will keep a job from restarting, holding it in a suspended state for
a long period of time, if it thinks the job cannot restart. For example, if a job could
write to I/O before it was suspended, and now it cannot, Moab would realize the job is
unable to start and would leave it in a suspended state.

Related Topics

l 22.1.2 Checkpointing Jobs with Preemption - page 909

l 22.1.3 Requeuing Jobs with Preemption - page 910

l 22.1.1 Canceling Jobs with Preemption - page 905

l 22.2.2 Preemption Flags - page 923

Chapter 22: Preemption

l Chapter 22: Preemption - page 904

l 22.2.3 PREEMPTPOLICY Types - page 924

l 22.2.5 Testing and Troubleshooting Preemption - page 929

22.1.5 Using Owner Preemption
Owner preemption allows jobs submitted by a reservation owner to preempt jobs
submitted by other users (for more information, see Configuring and Managing
Reservations).

Owner preemption is enabled with the OWNERPREEMPT reservation flag.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption Flags

To Enable Owner Preemption

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR
jobs until JOBRETRYTIME expires.)

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not
currently supported for preemption (for more information, see Testing and
Troubleshooting Preemption).

c. Set the PREEMPTPOLICY type (for more information, see PREEMPTPOLICY Types).

d. Set the OWNERPREEMPT flag.

Optionally, if you want the owner preemption to override any
PREEMPTMINTIME settings for PREEMPTEE jobs, you can set the
OWNERPREEMPTIGNOREMINTIME flag as well.

e. Specify an owner.

If the non-owner job does not have a RESTARTABLE or REQUEUEABLE flag
set, the job will cancel.

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY <policy>

SRCFG[myrez] FLAGS=OWNERPREEMPT HOSTLIST=node01

Chapter 22: Preemption

917 22.1 Preemption Tasks

22.1 Preemption Tasks 918

SRCFG[myrez] OWNER=USER:john
SRCFG[myrez] USERLIST=jane,john PERIOD=INFINITY

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=restartable MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to a user who is not the owner (in this example, jane):

[jane@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=64

(Optional) Examine the following output for showq and checkjob for jane's job:

Moab.1
[jane@g06]$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 jane Running 64 00:09:57 Mon Nov 14 12:07:52

1 active job 64 of 64 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

root@g06]# checkjob Moab.1
job Moab.1

State: Running
Creds: user:jane group:jane
WallTime: 00:01:02 of 00:10:00
SubmitTime: Mon Nov 14 12:07:52
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Mon Nov 14 12:07:52
Total Requested Tasks: 64

Req[0] TaskCount: 64 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:64]

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.FoZfIU

StartCount: 1
Flags: GLOBALQUEUE,PROCSPECIFIED

Chapter 22: Preemption

StartPriority: 1
Reservation 'Moab.1' (-00:01:24 -> 00:08:36 Duration: 00:10:00)

3. Now submit a job for the owner (in this example, john):

[john@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=50

[john@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=50

(Optional) Examine the following output for showq and checkjob for john's job:

Moab.2
[john@g06]$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 jane Canceling 64 00:07:43 Mon Nov 14 12:07:52
Moab.2 john Running 50 00:09:59 Mon Nov 14 12:10:08

2 active jobs 64 of 64 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that jane's job is canceled once john's job is submitted.

[john@g06]$ checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john
WallTime: 00:00:31 of 00:10:00
SubmitTime: Mon Nov 14 12:10:08
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Mon Nov 14 12:10:08
Total Requested Tasks: 50

Req[0] TaskCount: 50 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:50]

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.jf1N4a

Chapter 22: Preemption

919 22.1 Preemption Tasks

22.1 Preemption Tasks 920

StartCount: 1
Flags: HASPREEMPTED,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 1
Reservation 'Moab.2' (-00:00:48 -> 00:09:12 Duration: 00:10:00)

Note the new HASPREEMPTED flag.

(Optional) Now look at the showq for jane's job (after):

[root@g06]# checkjob Moab.1
job Moab.1

State: Removed
Completion Code: -1 Time: Mon Nov 14 12:10:08
Creds: user:jane group:jane
WallTime: 00:02:47 of 00:10:00
SubmitTime: Mon Nov 14 12:07:52
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

Total Requested Tasks: 64

Req[0] TaskCount: 64 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:64]

IWD: /opt/native
Executable: /opt/native/spool/moab.job.FoZfIU

Execution Partition: FLEXlm
Flags: GLOBALQUEUE,PROCSPECIFIED
StartPriority: 0

Note that the state is now Removed.

Related Topics

l 22.2.2 Preemption Flags - page 923

l Chapter 22: Preemption - page 904

l 22.2.3 PREEMPTPOLICY Types - page 924

l 22.2.5 Testing and Troubleshooting Preemption - page 929

22.1.6 Using QoS Preemption
This section breaks down how to configure the moab.cfg file to set up preemption with
QoS. Using QoS, you can specify preemption rules and control access to preemption
privileges by using the QFLAGS PREEMPTEE and PREEMPTOR credentials. For
information about the PREEMPTEE and PREEMPTOR flags, see Preemption Flags.

Chapter 22: Preemption

QoS-based preemption only occurs when the following three conditions are satisfied:

l The preemptor job has the PREEMPTOR attribute set.

l The preemptee job has the PREEMPTEE attribute set.

l The preemptor job has a higher priority than the preemptee job.

To Configure moab.cfg for QoS Preemption

1. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs
until JOBRETRYTIME expires.)

2. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not
currently supported for preemption (for more information, see Testing and
Troubleshooting Preemption.

3. If it is not already, set NODEACCESSPOLICY to SHARED.

4. Set the PREEMPTPOLICY policy type (for more information, see PREEMPTPOLICY
Types).

5. Set up QFLAGS to mark jobs as PREEMPTEE (a lower-priority job that can be
preempted by a higher-priority job), or as PREEMPTOR (a higher-priority job that can
preempt a lower-priority job). As in the example:

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

For more information, see Preemption Flags.

6. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job. As
in the example:

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY <policy>

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

Related Topics

l Chapter 22: Preemption - page 904

l 7.3.2.F Preemption Management - page 533

l 22.2.2 Preemption Flags - page 923

Chapter 22: Preemption

921 22.1 Preemption Tasks

22.2 Preemption Reference 922

l 22.2.3 PREEMPTPOLICY Types - page 924

l 22.2.4 Simple Example of Preemption - page 925

l 22.2.5 Testing and Troubleshooting Preemption - page 929

22.2 Preemption Reference

In this section:

Manual Preemption Commands
Preemption Flags
PREEMPTPOLICY Types
Simple Example of Preemption
Testing and Troubleshooting Preemption

22.2.1 Manual Preemption Commands
You can use the mjobctl command to manually preempt jobs. The command can modify a
job's execution state in the following ways:

Action Flag Details

Cancel -c Terminate job; remove from queue

Checkpoint -C Terminate and checkpoint job leaving job in queue

Requeue -R Terminate job; leave in queue

Resume -r Resume suspended job

Start (execute) -x Start idle job

Suspend -s Suspend active job

In general, users are allowed to suspend or terminate jobs they own. Administrators are
allowed to suspend, terminate, resume, and execute any queued jobs.

Chapter 22: Preemption

Related Topics

l Chapter 22: Preemption - page 904

l 22.2.5 Testing and Troubleshooting Preemption - page 929

22.2.2 Preemption Flags
Using QoS, you can specify preemption rules and control access to preemption privileges.
This allows you to increase system throughput, improve job response time for specific
classes of jobs, or enable various political policies. You enable all policies by specifying
some QoS credentials with the QFLAGS PREEMPTEE, and others with PREEMPTOR.

PREEMPTEE

Description Indicates that the job can be preempted by a higher-priority job.

Use Use for lower-priority jobs that can be preempted.

Notes This might delay some node actions. When reprovisioning, the system
job might expire before the provision action occurs; while the action will
still occur, the job will not show it.

Example QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100

PREEMPTOR

Description Indicates that the job should take priority and preempt any PREEMPTEE jobs.

Use Use for jobs that need to take precedence over lower-priority jobs.

Notes PREEMPTOR jobs, either queued or running, must have a higher priority
than PREEMPTEE jobs.
When you configure job as a PREEMPTOR, you should also increase its
priority (for details, see PREEMPTPRIOJOBSELECTWEIGHT and
PREEMPTRTIMEWEIGHT).

Example QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

Chapter 22: Preemption

923 22.2 Preemption Reference

22.2 Preemption Reference 924

Additional Preemptor and Preemptee Information

Preemptor priority plays a big role in preemption. Generally, you should assign the
preemptor job a higher priority value than any other queued jobs so that it will move
to (or near to) the top of the eligible queue.

You can set the RESERVATIONPOLICY parameter to NEVER. With this configuration,
preemptee jobs can start whenever idle resources become available. These jobs will be
allowed to run until a preemptor job arrives, at which point the preemptee jobs are
preempted, freeing the resource. This configuration allows near immediate resource access
for the preemptor jobs. Using this approach, a cluster can maintain near 100% system
utilization while still delivering excellent turnaround time to the most important jobs.

In environments where job checkpointing or job suspension incur significant overhead, you
might want to constrain the rate at which job preemption is allowed. You can use the
JOBPREEMPTMINACTIVETIME parameter to throttle job preemption. In essence, this
parameter prevents a newly started or newly resumed job from being eligible for
preemption until it has executed for a specified amount of time. Conversely, you can
exclude jobs from preemption after they have run for a certain amount of time by using the
JOBPREEMPTMAXACTIVETIME parameter.

Related Topics

l Chapter 22: Preemption - page 904

l 22.1.6 Using QoS Preemption - page 920

l 22.2.1 Manual Preemption Commands - page 922

l 22.2.3 PREEMPTPOLICY Types - page 924

l 22.2.5 Testing and Troubleshooting Preemption - page 929

22.2.3 PREEMPTPOLICY Types
You can use the PREEMPTPOLICY parameter to control how the scheduler preempts a job.
This parameter enforces preemption using one of the following methods:

PREEMPTPOLICY
type

Description

SUSPEND Causes active jobs to stop executing, but to remain in memory on the
allocated compute nodes.

Chapter 22: Preemption

PREEMPTPOLICY
type

Description

CHECKPOINT Saves the current job state and either terminates or continues running
the job. A checkpointed job can restart at any time and resume
execution from its most recent checkpoint.

REQUEUE Terminates active jobs and returns them to the job queue in an idle
state.

CANCEL Cancels active jobs.

Each of these methods varies in the level of disruption to the job, SUSPEND being the least
disruptive and CANCEL being the most disruptive.

Moab uses preemption escalation to free up resources. So for example, if the
PREEMPTPOLICY is set to SUSPEND, Moab uses this method if it is available; however,
Moab will escalate it to something potentially more disruptive if necessary to preempt and
free up resources.

Related Topics

l 22.1.4 Suspending Jobs with Preemption - page 913

l 22.1.2 Checkpointing Jobs with Preemption - page 909

l 22.1.3 Requeuing Jobs with Preemption - page 910

l 22.1.1 Canceling Jobs with Preemption - page 905

l Chapter 22: Preemption - page 904

l 22.2.2 Preemption Flags - page 923

22.2.4 Simple Example of Preemption
This section illustrates the process of setting up preemption on your system from
beginning to end and contains examples of what actions to take and what you should see as
you go.

In this topic:

Chapter 22: Preemption

925 22.2 Preemption Reference

22.2 Preemption Reference 926

22.2.4.A Scenario - page 926
22.2.4.B Configuring moab.cfg - page 926
22.2.4.C Submitting a Job to the Preemptee QoS - page 927
22.2.4.D Submitting a Job to the Preemptor QoS - page 928

22.2.4.A Scenario

Example Scenario

For this basic setup example, we will have a user who can submit to either a 'test1' or
'test2' QoS. This example will use a REQUEUE preemption type.

We will go through three parts to set up this preemption:

l Configuring the moab.cfg file

l Submitting a job to the PREEMPTEE QoS

l Submitting a job to the PREEMPTOR QoS

Okay, let's get started!

22.2.4.B Configuring moab.cfg
First, you will need to make some configurations to the moab.cfg file.

1. Set GUARANTEEDPREEMPTION to TRUE (this causes Moab to lock PREEMPTOR jobs
until JOBRETRYTIME expires).

2. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not
currently supported for preemption (for more information, see Testing and
Troubleshooting Preemption).

3. Set the PREEMPTPOLICY type. In this example, PREEMPTPOLICY is set to REQUEUE.
For more information, see PREEMPTPOLICY Types.

4. Set up QFLAGS to mark jobs as PREEMPTEE (a lower-priority job that can be
preempted by a higher-priority job), or as PREEMPTOR (a higher-priority job that can
preempt a lower-priority job). For more information, see Preemption Flags.

For this example, we also set JOBFLAGS=RESTARTABLE (because this example
uses REQUEUE). For more information, see Requeuing Jobs with Preemption.

5. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job.

Chapter 22: Preemption

Here is an example of how that would all look in a moab.cfg file (text marked bold for
emphasis):

GUARANTEEDPREEMPTION TRUE
#should not be JOBNODEMATCHPOLICY EXACTNODE as it causes problems when starting jobs

PREEMPTPOLICY REQUEUE

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=1000

Now you can submit a job to the preemptee QoS (test1).

22.2.4.C Submitting a Job to the Preemptee QoS
Let's submit a job to the preemptee QoS (test1), requesting all processor cores in the
cluster:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

Take a look at the showq and checkjob output:

Moab.1
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 john Running 128 00:09:59 Wed Nov 9 15:56:33

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

[john@g06]# checkjob Moab.1
job Moab.1

State: Running
Creds: user:john group:john qos:test1
WallTime: 00:00:00 of 00:10:00
SubmitTime: Wed Nov 9 15:56:33
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:33
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Chapter 22: Preemption

927 22.2 Preemption Reference

22.2 Preemption Reference 928

Allocated Nodes:
node[01-02]*64

IWD: /opt/native/
SubmitDir: /opt/native/
Executable: /opt/native/spool/moab.job.zOyf1N

StartCount: 1
Flags: RESTARTABLE,PREEMPTEE,GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100
Reservation 'Moab.1' (-00:00:03 -> 00:09:57 Duration: 00:10:00

22.2.4.D Submitting a Job to the Preemptor QoS
Now we will submit a preemptor QoS job (test2) to preempt the first job (test1):

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test2 -l procs=128

Examine the following output for showq and checkjob:

Moab.2
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.2 john Running 128 00:09:59 Wed Nov 9 15:56:47

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.1 john Idle 128 00:10:00 Wed Nov 9 15:56:33

1 eligible job

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that the preemptor job (Moab.2) moved to Running, while the preemptee job (Moab.1) was requeued.

[john@g06]# checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:02:04 of 00:10:00
SubmitTime: Wed Nov 9 15:56:46
(Time Queued Total: 00:00:01 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:47
Total Requested Tasks: 128

Chapter 22: Preemption

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native/
SubmitDir: /opt/native/
Executable: /opt/native/spool/moab.job.ELoX5Q

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.2' (-00:02:21 -> 00:07:39 Duration: 00:10:00)

Note the flag, HASPREEMPTED. HASPREEMPTED is set when the PREEMPTOR job has preempted the PREEMPTEE
job. Also note that the preemptor job priority plays a very big role in preemption. Generally, you should assign the
preemptor a higher priority than any other queued jobs so that it will move to (or near to) the top of the eligible
queue.

Related Topics

l Chapter 22: Preemption - page 904

l 22.2.2 Preemption Flags - page 923

l 22.2.3 PREEMPTPOLICY Types - page 924

l 22.2.1 Manual Preemption Commands - page 922

l 22.2.5 Testing and Troubleshooting Preemption - page 929

22.2.5 Testing and Troubleshooting Preemption
There are multiple steps associated with setting up a working preemption policy. With
preemption, issues arise because it appears that Moab is not allowing preemptor jobs to
preempt preemptee jobs in the right way. To diagnose this, use the following checklist:

Verify that preemptor jobs are marked with the PREEMPTOR flag. Verify with checkjob
<JOBID> | grep Flags.

Verify that preemptee jobs are marked with the PREEMPTEE flag. Verify with checkjob
<JOBID> | grep Flags.

Verify that the start priority of the preemptor job is higher than the priority of the
preemptee job. Verify with checkjob <JOBID> | grep Priority.

Chapter 22: Preemption

929 22.2 Preemption Reference

22.2 Preemption Reference 930

Verify that the resources allocated to the preemptee job match those requested by the
preemptor job.

Verify that there are no policies preventing preemption from occurring. Verify with
checkjob -v -n <NODEID> <JOBID>.

Verify that the PREEMPTPOLICY parameter is properly set. See PREEMPTPOLICY Types.

Verify that the preemptee job is properly marked as restartable, suspendable, or
checkpointable. Verify with checkjob <JOBID> | grep Flags.

Verify that GUARANTEEDPREEMPTION is set to TRUE.

If JOBNODEMATCHPOLICY is set to EXACTNODE, verify PREEMPTIONALGORITHM is set to
PREEMPTORCENTRIC.

Verify that NODEACCESSPOLICY is not set to SINGLEUSER. SHARED is recommended.

Verify that BACKFILLPOLICY is set to FIRSTFIT.

Verify that the resource manager is properly responding to preemption requests. (Use
mdiag -R.)

If there is a resource manager level race condition, verify that Moab is properly holding
target resources. Verify with mdiag -S and set RESERVATIONRETRYTIME if needed.

Related Topics

l Chapter 22: Preemption - page 904

l 7.3 Quality of Service (QoS) Facilities - page 525

l 7.3.3 Managing QoS Access - page 534

l JOBMAXPREEMPTPERITERATION

l 18.3.7 Trigger Components - page 830

l 10.4 Checkpoint/Restart Facilities - page 563

l ENABLEFSVIOLATIONPREEMPTION

l PREEMPTPRIOJOBSELECTWEIGHT

l PREEMPTSEARCHDEPTH

Chapter 22: Preemption

l USAGEEXECUTIONTIMEWEIGHT (control priority of suspended jobs)

l IGNOREPREEMPTEEPRIORITY (relative job priority is ignored in preemption
decisions)

l DISABLESAMECREDPREEMPTION (jobs cannot preempt other jobs with the same
credential)

l PREEMPTRTIMEWEIGHT (add remaining time of jobs to preemption calculation)

Chapter 22: Preemption

931 22.2 Preemption Reference

932

Chapter 23: About Job Templates

A Moab job template is a set of pre-configured settings, attributes, and resources that Moab
applies to jobs that match certain criteria or to which you manually apply it. They perform
three primary functions:

1. They generically match and categorize jobs.

2. They set arbitrary default or forced attributes for certain jobs.

3. They generate workflows that create and maintain user-requested services in a cloud
environment.

You can use job templates in many aspects of scheduling, including Peer-Based Grid usage
policies. Job templates are defined using the JOBCFG configuration parameter.

Two methods exist for applying job templates to jobs. You can use the JOBMATCHCFG
parameter to mark a template that contains the criteria a job must meet for eligibility and
another template as the one to be applied to the job if it is eligible. This allows you to
automate the use of templates. For example, to force all interactive jobs to run on a certain
set of nodes, you can set one template (the criteria template) to have the interactive
flag, then give the other template the desired host list. You can also apply a template
directly to a job at submission if that ability is enabled for that template.

In this chapter:

23.1 Job Template Tasks 933
23.1.1 Creating Job Templates 933
23.1.2 Viewing Job Templates 934
23.1.3 Applying Templates Based on Job Attributes 934
23.1.4 Requesting Job Templates Directly 935
23.1.5 Creating Workflows with Job Templates 936

23.2 Job Template Reference 937
23.2.1 Job Template Extension Attributes 937
23.2.2 Job Template Matching Attributes 950
23.2.3 Job Template Examples 951
23.2.4 Job Template Workflow Examples 952

Chapter 23: About Job Templates

23.1 Job Template Tasks

In this section:

Creating Job Templates
Viewing Job Templates
Applying Templates Based on Job Attributes
Requesting Job Templates Directly
Creating Workflows with Job Templates

23.1.1 Creating Job Templates
Job templates are created in the Moab configure file using the JOBCFG parameter.

To Create a Job Template

1. Open moab.cfg. Add the JOBCFG parameter and give the new job template a unique
name:

JOBCFG[newtemplate]

2. Configure any desired attributes (see Job Template Extension Attributes). Some of the
important attributes include:

l FLAGS - Lets you specify any job flags that should be applied.

JOBCFG[newtemplate] FLAGS=SUSPENDABLE

When Moab applies newtemplate to a job, the job is marked as suspendable.

l SELECT - Lets you apply the template directly at job submission.

JOBCFG[newtemplate] FLAGS=SUSPENDABLE SELECT=TRUE

When you submit a job via msub, you can specify that your job has newtemplate applied to it. When
Moab applies the template to a job, that job is marked as suspendable.

l TEMPLATEDEPEND - Lets you create dependencies when you create a job template
workflow (see Creating Workflows with Job Templates).

JOBCFG[newtemplate] FLAGS=SUSPENDABLE SELECT=TRUE TEMPLATEDEPEND=AFTER:job1.pre

When Moab applies newtemplate to a job, the job cannot run until job job1.pre has finished running;
the job is also marked as suspendable. You can specify that Moab apply this template to a job as you submit
it.

Chapter 23: About Job Templates

933 23.1 Job Template Tasks

23.1 Job Template Tasks 934

3. If you want to automate job template application, see Applying Templates Based on Job
Attributes for instructions. If you want to apply the template manually on job
submission, see Requesting Job Templates Directly for instructions.

Related Topics

l 23.2.1 Job Template Extension Attributes - page 937

l 23.2.3 Job Template Examples - page 951

23.1.2 Viewing Job Templates

To View a Job Template
Run the mdiag -j command with the policy flag:

> mdiag -j --flags=policy --blocking

Moab returns a list of job templates configured in moab.cfg.

23.1.3 Applying Templates Based on Job Attributes
The JOBMATCHCFG parameter allows you to establish relationships between a number of
job templates. JMAX and JMIN function as filters to determine whether a job is eligible for a
subsequent template to be applied to the job. If a job is eligible, JDEF and JSET templates
apply attributes to the job. See Job Template Extension Attributes for more information
about the JOBMATCHCFG attributes. The table on that page indicates which job template
types are compatible with which job template extension attributes.

JSETs and JDEFs have only been tested using msub as the job submission
command.

To Apply a Job Template Based on Job Attributes

1. In the Moab configuration file, create a job template with a set of criteria that a job must
meet in order for Moab to apply the template. In the following example, Moab will apply
a template to all interactive jobs, so the first template sets the interactive flag.

JOBCFG[inter.min] FLAGS=interactive

Chapter 23: About Job Templates

2. Create the job template that Moab should apply to the job if it meets the requirements
set in the first template. In this example, Moab ignores all configured policies, so the
second template sets the ignpolicies flag.

JOBCFG[inter.set] FLAGS=ignpolicies

3. Use the JOBMATCHCFG parameter and its JMAX or JMIN (specify the template
specifying maximum or minimum requirements) and JDEF or JSET (specify the
template to be applied) attributes to demonstrate the relationship between the two
templates (see Job Template Matching Attributes for more information). In this case, all
interactive jobs ignore policies; in other words, if a submitted job has at least the
inter.min template settings, Moab applies the inter.set template settings to the
job.

JOBMATCHCFG[interactive] JMIN=inter.min JSET=inter.set

Moab applies the inter.set template to all jobs with the interactive flag set, causing them to ignore
Moab's configured policies.

4. To control which job template is applied to a job that matches multiple templates, use
FLAGS=BREAK. Job templates are processed in the order they are listed in the
configuration file and using the BREAK flag causes Moab to stop evaluating
JOBMATCHCFG entries that occur after the current match.

JOBMATCHCFG[small] JMIN=small.min JMAX=small.max JSET.set=small.set FLAGS=BREAK
JOBMATCHCFG[large] JMIN=large.min JMAX=large.max JSET=large.set

In this case, the large template would not be applied when a job matches both the small and large templates.
The small template matches first, and because of FLAGS=BREAK, Moab stops evaluating further JOBMATCHFG
entries for the job.

Related Topics

l 23.1.4 Requesting Job Templates Directly - page 935

l 23.2.3 Job Template Examples - page 951

23.1.4 Requesting Job Templates Directly
When a job template has its SELECT attribute set to TRUE, you can request that template
directly on job submission.

To Directly Request Job Templates

1. Set the SELECT attribute on the template in moab.cfg:

JOBCFG[medium.set] NODESET=ONEOF:FEATURE:fast,slow SELECT=true

Chapter 23: About Job Templates

935 23.1 Job Template Tasks

23.1 Job Template Tasks 936

2. Submit a job with a resource list (msub -l), requesting the template using the format
template=<templateName>:

> msub -l template=medium.set

Moab creates a job with the medium.set job template created in step 1.

Attributes set in the template are evaluated as if they were part of the job
submission. They are still subject to all of the same ACLs and policies.

Related Topics

l 23.1.3 Applying Templates Based on Job Attributes - page 934

23.1.5 Creating Workflows with Job Templates
Moab can create workflows from individual jobs using job templates.

To Build a Workflow with Job Templates

1. Create the jobs in the workflow using the JOBCFG parameter (see Creating Job
Templates for more information). It might be useful to add the
PURGEONSUCCESSONLY flag to your setup or destroy jobs; it will allow you to restart
the jobs easily if they fail. Specify the order in which they should run with the
TEMPLATEDEPEND attribute. See the Job dependency syntax table for a list of valid
dependency options.

JOBCFG[setup.pre] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/setup.pre.sh
JOBCFG[setup.pre2] TEMPLATEDEPEND=AFTER:setup.pre SELECT=TRUE
EXEC=/nfs/tools/setup.pre2.sh
JOBCFG[engineering] TEMPLATEDEPEND=AFTER:setup.pre2

When Moab applies the engineering template to a qualifying job, the job will not run until template job
setup.pre and then setup.pre2 are created from the specified EXEC strings and finish running.

The Moab naming convention for jobs created with job templates is
<moabId>.<templateName>. By default, when Moab submits jobs to only one
resource manager, the job IDs are synchronized with the resource manager's job
IDs. You can use the parameter USEMOABJOBID so that a template-created job is
easily associated with its parent job (such as moab.1, moab.1.setup.pre).

Chapter 23: About Job Templates

2. Create the job template that will act as the criteria a job must meet for Moab to apply
the engineering template. In this situation, the job must be submitted with the
account name engineering:

JOBCFG[engineering.match] ACCOUNT=engineering

3. Create the JOBMATCHCFG configuration to tell Moab that when a job matches the
engineering.match template, it should apply the engineering template:

JOBMATCHCFG[engineering.job] JMIN=engineering.match JSET=engineering

Related Topics

l 23.2.1 Job Template Extension Attributes - page 937

l 23.2.4 Job Template Workflow Examples - page 952

l 23.1.1 Creating Job Templates - page 933

23.2 Job Template Reference

In this section:

Job Template Extension Attributes
Job Template Matching Attributes
Job Template Examples
Job Template Workflow Examples

23.2.1 Job Template Extension Attributes
When creating a job template, you can use any attribute acceptable within the WIKI
workload query data format. In addition, job templates can use any of the extension
attributes in the following table. Note that the Template type (JMIN, JMAX, JDEF, JSET)
row indicates compatibility with the associated attribute (see Applying Templates Based on
Job Attributes for more information).

Attributes set in a template are evaluated as if they were part of the original job
submission. Their jobs are still subject to all the same ACLs and policies.

Chapter 23: About Job Templates

937 23.2 Job Template Reference

23.2 Job Template Reference 938

Attributes

ACCOUNT
CLASS
CPUCLOCK
CPULIMIT
DESCRIPTION
DPROCS
ENV
EXEC
FLAGS

GNAME
GRES
GROUP
MEM
NODEACCESSPOLICY
NODES
NODESET
PARTITION
PREF

PRIORITY
PRIORITYF
QOS
RARCH
RFEATURES
RM
ROPSYS
SELECT
SYSTEMJOBTYPE

TASKS
TASKPERNODE
TEMPLATEDEPEND
UNAME
USER
VARIABLE
WCLIMIT

ACCOUNT

Format <ACCOUNT>[,<ACCOUNT>]...

Template
type

JMIN
JDEF
JSET

Description Account credentials associated with job. This is used for job template
matching.

Example JOBCFG[public] FLAGS=preemptee
JOBCFG[public.min] ACCOUNT=public_acct
JOBMATCHCFG[public] JMIN=public.min JSET=public

CLASS

Format <CLASS>[,<CLASS>]...

Template type JMIN
JDEF
JSET

Description Class credentials associated with job. This is used for job template
matching.

Example JOBCFG[night] FLAGS=preemptor
JOBCFG[night.min] CLASS=night_class
JOBMATCHCFG[night] JMIN=night.min JSET=night

Chapter 23: About Job Templates

CPUCLOCK

Format <STRING>

Template
type

JMIN
JMAX
JSET

Description CPU clock frequency for all CPUs of a job. For more information, see
CPUCLOCK. The job template extension overrides the job script.

Example JOBCFG[slow] SELECT=TRUE cpuclock=1400
JOBCFG[fast] SELECT=TRUE cpuclock=3200

JOBCFG[cpu.min] CPUCLOCK=1000
JOBCFG[cpu.max] CPUCLOCK=2000
JOBCFG[cpu.set] CPUCLOCK=1500

JOBMATCHCFG[cpu] JMIN=cpu.min JMAX=cpu.max JSET=cpu.set

CPULIMIT

Format [[[DD:]HH:]MM:]SS

Template type JMIN
JMAX
JDEF
JSET

Description Maximum amount of CPU time used by all processes in the job.

Example JOBCFG[job.min] CPULIMIT=1:00:00:00
JOBCFG[job.max] CPULIMIT=2:00:00:00

DESCRIPTION

Format <STRING>

Template
type

JMAX
JDEF

Description Description of the job. When you run the checkjob command, the description
appears as Description.

Chapter 23: About Job Templates

939 23.2 Job Template Reference

23.2 Job Template Reference 940

DESCRIPTION

Example JOBCFG[webdb] DESCRIPTION="Template job"

DPROCS

Format <INTEGER>

Template type JMIN
JMAX
JSET

Description Number of processors dedicated per task. The default is 1.

Example JOBCFG[job.min] DPROCS=2
JOBCFG[job.max] DPROCS=4

ENV

Format <STRING>

Template type JSET

Description Adds the specified job environment variables to the job.

Example JOBCFG[container] ENV=PBS_CONTAINERINFO=centos

EXEC

Format <STRING>

Template type JSET

Description Specifies what the job runs, regardless of what the user set.

Example JOBCFG[setup.pre] EXEC=nfs/tools/setup.pre.sh

Chapter 23: About Job Templates

FLAGS

Format <JOBFLAG>[,<JOBFLAG>]...

Template type JADMIN
JDEF

JSET

Description One or more legal job flag values.

Example JOBCFG[webdb] FLAGS=NORMSTART

GNAME

Format <STRING>

Template type JDEF
JSET

Description Group credential associated with job.

Example JOBCFG[webserv] GNAME=service

For matching the group, see the GROUP
attribute.

GRES

Format <genericResource>[:<COUNT>][,<genericResource>[:<COUNT>]]...

Template
type

JMIN
JMAX
JDEF

Description Consumable generic attributes associated with individual nodes or the special
pseudo-node global, which provides shared cluster (floating) consumable
resources. Use the NODECFG parameter to configure such resources.

Example JOBCFG[gres.set] GRES=abaqus:2

Chapter 23: About Job Templates

941 23.2 Job Template Reference

23.2 Job Template Reference 942

GRES

In this example, the gres.set template applies two Abaqus
licenses per task to a matched job.

GROUP

Format <GROUP>[,<GROUP>]...

Template
type

JMIN

Description Group credentials associated with job. This is used for job template
matching.

Example JOBCFG[webserv] GROUP=service

For information about setting the group, see the GNAME attribute.

MEM

Format <INTEGER>

Template
type

JMIN
JMAX
JDEF
JSET

Description Maximum amount of physical memory per task used by the job in megabytes.
You can optionally specify other units with your integer (300kb or 2gb, for
example). See 'Requesting Resources' in the Torque Administrator Guide for
more information.

Example JOBCFG[smalljobs] MEM=25

NODEACCESSPOLICY

Format One of the following: SHARED, SHAREDONLY, SINGLEJOB, SINGLETASK ,
SINGLEUSER, or UNIQUEUSER

Chapter 23: About Job Templates

NODEACCESSPOLICY

Template
type

JDEF
JSET

Description Specifies how node resources will be shared by a job. See the Node Access
Policies for more information.

Example JOBCFG[serverapp] NODEACCESSPOLICY=SINGLEJOB

NODES

Format <INTEGER>

Template
type

JMIN
JMAX
JSET

Description Number of nodes required by the job. The default is 1. See Node Definition for
more information.
When using JSET:

l If the taskcount of the job is less than the NODES value, Moab will modify
the taskcount to match the NODES value.

l If the taskcount of the job is greater than the NODES value, Moab will
attempt to evenly divide the tasks. If the taskcount is not evenly divisible
by the NODES value, the job is rejected.

Example JOBCFG[job.min] NODES=2
JOBCFG[job.max] NODES=4

NODESET

Format <STRING>

Template type JSET

Description See Node Set Overview for more information.

Example JOBCFG[medium.set]
NODESET=ONEOF:FEATURE:fast,slow

Chapter 23: About Job Templates

943 23.2 Job Template Reference

23.2 Job Template Reference 944

PARTITION

Format <PARTITION>[:<PARTITION>]...

Template type JMIN
JDEF
JSET

Description The partition (or partitions) where a job must run.

Example JOBCFG[meis] PARTITION=math:geology

PREF

Format <FEATURE>[,<FEATURE>]...

Template
type

JDEF
JSET

Description Specifies which node features are preferred by the job and should be allocated
if available. See PREF for more information.

Example JOBCFG[meis] PREF=bigmem

PRIORITY

Format <INTEGER>

Template
type

JMAX
JDEF

Description System job priority.

PRIORITY works only as a default setting and not as an override
(JSET) setting.

Example JOBCFG[meis] PRIORITY=25000

Chapter 23: About Job Templates

PRIORITYF

Format PRIORITYF='<VALUE>'

Template
type

JSET

Description Applicable only when using NODEALLOCATIONPOLICY with the PRIORITY
format. Lets you change the priority function used to allocate nodes for the job.
See Node Allocation Policies for available PRIORITY values.

Example JOBCFG[limit.set] PRIORITYF='NODEINDEX'

QOS

Format <QOS>[,<QOS>]...

Template type JMIN
JDEF
JSET

Description QoS credentials associated with job. This is used for job template matching.

Example JOBCFG[admin] RFEATURES=bigmem
JOBCFG[admin.min] QOS=admin_qos
JOBMATCHCFG[admin] JMIN=admin.min JSET=admin

RARCH

Format <STRING>

Template type JSET

Description Architecture required by job.

Example JOBCFG[servapp] RARCH=i386

Chapter 23: About Job Templates

945 23.2 Job Template Reference

23.2 Job Template Reference 946

RFEATURES

Format <FEATURE>[,<FEATURE>]...

Template type JMIN
JDEF
JSET

Description List of features required by job.

Example JOBCFG[servapp]
RFEATURES=fast,bigmem

RM

Format <STRING>

Template type JDEF
JSET

Description Destination resource manager to be associated with job.

Example JOBCFG[webdb] RM=torque

ROPSYS

Format <STRING>

Template type JDEF
JSET

Description Operating system required by job.

Example JOBCFG[test.set] ROPSYS=windows

SELECT

Format <BOOLEAN> : TRUE | FALSE

Chapter 23: About Job Templates

SELECT

Description Job template can be directly requested by job at submission.

Example JOBCFG[servapp] SELECT=TRUE

SYSTEMJOBTYPE

Template type JMIN

Description System job type (example: vmcreate).

Example JOBCFG[vmcreate.min] SYSTEMJOBTYPE=vmcreate
JOBCFG[vmcreate.set]
TRIGGER=atype=reserve,action="00:05:00",etype=end
JOBMATCHCFG[vmcreate] JMIN=vmcreate.min JSET=vmcreate.set

TASKS

Format <INTEGER>

Template
type

JMIN
JMAX
JSET

Description Number of tasks required by job. The default is 1. See Task Definition for
more information.

Example JOBCFG[job.min] TASKS=4
JOBCFG[job.max] TASKS=8

TASKPERNODE

Format <INTEGER>

Template
type

JMIN
JMAX
JDEF

Description Exact number of tasks required per node. The default is 0.

Chapter 23: About Job Templates

947 23.2 Job Template Reference

23.2 Job Template Reference 948

TASKPERNODE

TASKPERNODE works only as a default setting and not as an override
(JSET) setting.

Example JOBCFG[job.min] TASKPERNODE=2
JOBCFG[job.max] TASKPERNODE=4

TEMPLATEDEPEND

Format <TYPE>:<TEMPLATE_NAME>

Description Create another job from the <TEMPLATE_NAME> job template, on which any
jobs using this template will depend. This is used for dynamically creating
workflows. See Job Dependencies for more information.

SYNCWITH only supports one dependency with Torque as the resource
manager.

Example JOBCFG[engineering] TEMPLATEDEPEND=AFTER:setup.pre
JOBCFG[setup.pre] SELECT=TRUE EXEC=/tools/setup.pre.sh

UNAME

Format <STRING>

Default JDEF

JSET

Description User credential associated with job.

Example JOBCFG[webserv] UNAME=service

For matching the user, see the USER attribute.

USER

Format <USER>[,<USER>]...

Chapter 23: About Job Templates

USER

Template
type

JMIN
JMAX

Description User credentials associated with job.

Example JOBCFG[webserv] USER=service

For setting the user, see the UNAME attribute.

VARIABLE

Format <NAME>[:<VAL>]

Template
type

JMIN
JSET

Description Variables attached to the job template.

Example JOBCFG[this] VARIABLE=var1:1 VARIABLE=var2:1

Variables are set upon successful completion of the job.

WCLIMIT

Format [[HH:]MM:]SS

Template type JMIN
JMAX
JDEF
JSET

Description Walltime required by job. The default is 8640000 (100 days).

Example JOBCFG[job.min] WCLIMIT=2:00:00
JOBCFG[job.max] WCLIMIT=12:00:00

Chapter 23: About Job Templates

949 23.2 Job Template Reference

23.2 Job Template Reference 950

Related Topics

l 23.2.3 Job Template Examples - page 951

l 23.1.1 Creating Job Templates - page 933

23.2.2 Job Template Matching Attributes
The JOBMATCHCFG parameter allows you to establish relationships between a number of
job templates. The table in Job Template Extension Attributes indicates which job template
types are compatible with which job template extension attributes. The following types of
templates can be specified with the JOBMATCHCFG parameter:

Attribute Description

JMAX A potential job is rejected if it has matching attributes set or has resource
requests that exceed those specified in this template.

For JMAX, a job template can specify only positive non-zero numbers as
maximum limits for generic resources. If a job requests a generic resource
that is not limited by the template, then the template can still be used.

JMIN A potential job is rejected if it does not have matching attributes set or has
resource requests that do not meet or exceed those specified in this template.

JDEF A matching job has the specified attributes set as defaults but all values can be
overridden by the user if the matching attribute is explicitly set at job submission
time.

JSET A matching job has the specified attributes forced to these values and these values
override any values specified by the submitter at job submission time.

JSTAT A matching job has its usage statistics reported into this template.

Related Topics

l 23.2.1 Job Template Extension Attributes - page 937

l 23.2.3 Job Template Examples - page 951

l 23.1.3 Applying Templates Based on Job Attributes - page 934

Chapter 23: About Job Templates

23.2.3 Job Template Examples
Job templates can be used for a wide range of purposes including enabling automated
learning, setting up custom application environments, imposing special account constraints,
and applying group default settings. The following examples highlight some of these uses:

Example 23-1: Setting up Application-Specific Environments

JOBCFG[xxx] EXEC=*app* JOBPROLOG=/usr/local/appprolog.x

Example 23-2: Applying job preferences and defaults

JOBCFG[xxx] CLASS=appq EXEC=*app* PREF=clearspeed
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=5.0*PREF

Example 23-3: Applying Resource Constraints to Fuzzy Collections

In the following example, a job template match is set up. Using the JOBMATCHCFG
parameter, Moab is configured to apply all attributes of the inter.set job template to all
jobs that match the constraints of the inter.min job template. In this example, all
interactive jobs are assigned the ignpolicies flag that allows them to ignore active, idle,
system, and partition level policies. Interactive jobs are also locked into the test standing
reservation and therefore only allowed to run on the associated nodes.

limit all users to a total of two non-interactive jobs
USERCFG[DEFAULT] MAXJOB=2
SRCFG[test] DESCRIPTION="compute pool for interactive and short duration jobs"
SRCFG[test] JOBATTRLIST=INTERACTIVE
SRCFG[test] MAXTIME=1:00:00
SRCFG[test] HOSTLIST=R:atl[16-63]
JOBCFG[inter.min] FLAGS=interactive
JOBCFG[inter.set] FLAGS=ignpolicies
JOBMATCHCFG[interactive] JMIN=inter.min JSET=inter.set

Example 23-4: Resource Manager Templates

In the following example, interactive jobs are not allowed to enter through this resource
manager and any job that does route in from this resource manager interface has the
preemptee flag set.

JOBCFG[no_inter] FLAGS=interactive
JOBCFG[preempt_job] FLAGS=preemptee
RMCFG[gridA.in] MAX.JOB=no_inter SET.JOB=preempt_job

Related Topics

l 23.2.1 Job Template Extension Attributes - page 937

l 23.2.4 Job Template Workflow Examples - page 952

Chapter 23: About Job Templates

951 23.2 Job Template Reference

23.2 Job Template Reference 952

l 23.1.1 Creating Job Templates - page 933

23.2.4 Job Template Workflow Examples
Example 23-5: A Workflow with Multiple Dependencies

In this example the job will depend on the completion of two other jobs Moab creates. Both
jobs execute at the same time.

Engineering2
JOBCFG[engineering2] TEMPLATEDEPEND=AFTER:engineering2.pre2
TEMPLATEDEPEND=AFTER:engineering2.pre
JOBCFG[engineering2.pre2] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/engineering2.pre2.sh
JOBCFG[engineering2.pre] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/engineering2.pre.sh
JOBCFG[engineering2.match] ACCOUNT=engineering2
JOBMATCHCFG[engineering2.job] JMIN=engineering2.match JSET=engineering2

Example 23-6: Jobs that Run After the Submission Job

Three additional jobs are created that depend on the submitted job:

Workflow 2
JOBCFG[workflow2] TEMPLATEDEPEND=BEFORE:workflow2.post1
TEMPLATEDEPEND=BEFORE:workflow2.post2 TEMPLATEDEPEND=BEFORE:workflow2.post3
JOBCFG[workflow2.post1] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post1.sh
JOBCFG[workflow2.post2] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post2.sh
JOBCFG[workflow2.post3] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post3.sh
JOBCFG[workflow2.match] ACCOUNT=workflow2
JOBMATCHCFG[workflow2.job] JMIN=workflow2.match JSET=workflow2

Example 23-7: A Complex Workflow

A complex workflow that handles failures:

Workflow 4
JOBCFG[workflow4.step1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step1.sh TEMPLATEDEPEND=BEFOREFAIL:workflow4.fail1
JOBCFG[workflow4.fail1] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.fail.1.sh TEMPLATEDEPEND=BEFOREANY:workflow4.fail2
JOBCFG[workflow4.fail2] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.fail.2.sh
Submission job
JOBCFG[workflow4.step2] TEMPLATEDEPEND=AFTEROK:workflow4.step1
TEMPLATEDEPEND=BEFOREOK:workflow4.step3.1 TEMPLATEDEPEND=BEFOREOK:workflow4.step3.2
JOBCFG[workflow4.step3.1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step3.1.sh
JOBCFG[workflow4.step3.2] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step3.2.sh TEMPLATEDEPEND=BEFOREOK:workflow4.step4

Chapter 23: About Job Templates

JOBCFG[workflow4.step4] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step4.sh
JOBCFG[workflow4.step4] TEMPLATEDEPEND=BEFOREOK:workflow4.step5.1
TEMPLATEDEPEND=BEFOREOK:workflow4.step5.2 TEMPLATEDEPEND=BEFORENOTOK:workflow4.step5.3
JOBCFG[workflow4.step5.1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.1.sh
JOBCFG[workflow4.step5.2] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.2.sh
JOBCFG[workflow4.step5.3] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.3.sh
JOBCFG[workflow4.match] ACCOUNT=workflow4

Related Topics

l 23.1.5 Creating Workflows with Job Templates - page 936

l 23.1.3 Applying Templates Based on Job Attributes - page 934

l 23.2.3 Job Template Examples - page 951

l 23.2.1 Job Template Extension Attributes - page 937

Chapter 23: About Job Templates

953 23.2 Job Template Reference

954

Chapter 24: Moab Workload Manager for Grids

Moab Grid Scheduler allows sites to establish relationships among multiple clusters. There
are three types of relationships you can implement within the grid: (1) centralized
management, (2) hierarchical management, and (3) localized management. These
relationships provide access to additional resources, improve load-balancing, provide
single system images, and offer other benefits. The grid interface is flexible allowing sites to
establish the needed relationship.

In this chapter:

24.1 Grid Basics 956
24.1.1 Grid Overview 956
24.1.2 Grid Benefits 956
24.1.3 Management-Scalability 957
24.1.4 Resource Access 957
24.1.5 Load-Balancing 958
24.1.6 Single System Image (SSI) 958
24.1.7 High Availability 959
24.1.8 Grid Relationships 959
24.1.9 Submitting Jobs to the Grid 964
24.1.10 Viewing Jobs and Resources 965

24.2 Grid Configuration Basics 966
24.2.1 Peer Configuration Overview 966
24.2.2 Initial Configuration 966

24.3Centralized Grid Management (Moab Grid Control / Moab Grid Mem-ber) 967
24.3.1 Moab Grid Control Configuration 967
24.3.2 Moab Grid Member Configuration 968

24.4 Hierarchical Grid Management 968
24.4.1 Configuring a Peer Server (Source) 968
24.4.2 Simple Hierarchical Grid 969

24.5 Localized Grid Management 970
24.5.1 Enabling Bi-Directional Job Flow 970
24.5.2 True Peer-to-Peer Grid 971

24.6 Resource Control and Access 971
24.6.1 Controlling Resource Information 972

Chapter 24: Moab Workload Manager for Grids

24.6.2 Managing Resources with Grid Sandboxes 974
24.7 Workload Submission and Control 976
24.8 Reservations in the Grid 976
24.9 Grid Usage Policies 977

24.9.1 Grid Usage Policy Overview 977
24.9.2 Peer Job Resource Limits 978
24.9.3 Usage Limits via Peer Credentials 978
24.9.4 Using General Policies in a Grid Environment 979

24.10 Grid Scheduling Policies 980
24.10.1 Peer-to-Peer Resource Affinity Overview 980
24.10.2 Peer Allocation Policies 981
24.10.3 Per-partition Scheduling 981

24.11 Grid Credential Management 982
24.11.1 Peer Credential Management Overview 982
24.11.2 Peer Credential Mapping 982
24.11.3 Source and Destination Side Credential Mapping 984
24.11.4 Preventing User Space Collisions 984

24.12 Grid Data Management 984
24.12.1 Grid Data Management Overview 985
24.12.2 Configuring Peer Data Staging 985
24.12.3 Peer-to-Peer SCP Key Authentication 987
24.12.4 Diagnostics 988

24.13 Accounting and Allocation Management 990
24.13.1 Peer-to-Peer Accounting Overview 990
24.13.2 Peer-to-Peer Allocation Management 991

24.14 Grid Security 992
24.15 Grid Diagnostics and Validation 992

24.15.1 Peer Management Overview 992
24.15.2 Peer Diagnostic Overview 992

Chapter 24: Moab Workload Manager for Grids

955

24.1 Grid Basics 956

24.1 Grid Basics

In this topic:

24.1.1 Grid Overview - page 956
24.1.2 Grid Benefits - page 956
24.1.3 Management-Scalability - page 957
24.1.4 Resource Access - page 957
24.1.5 Load-Balancing - page 958
24.1.6 Single System Image (SSI) - page 958
24.1.7 High Availability - page 959
24.1.8 Grid Relationships - page 959

24.1.8.A Centralized Management (Moab Grid Control / Moab Grid Member)
- page 959

24.1.8.B Centralized/Localized Management (Hierarchical) - page 961
24.1.8.C Localized Management (Peer-to-Peer) - page 963

24.1.9 Submitting Jobs to the Grid - page 964
24.1.10 Viewing Jobs and Resources - page 965

24.1.1 Grid Overview
A grid enables you to exchange workload and resource status information and to distribute
jobs and data among clusters in an established relationship. In addition, you can use
resource reservations to mask reported resources, coordinate requests for consumable
resources, and quality of service guarantees.

In a grid, some servers running Moab are a source for jobs (that is, where users, portals,
and other systems submit jobs), while other servers running Moab are a destination for
these jobs (that is, where the jobs execute). Thus, jobs originate from a source server and
move to a destination server. For a source server to make an intelligent decision, though,
resource availability information must flow from a destination server to that source server.

Because you can manage workload on both the source and destination side of a grid
relationship, you have a high degree of control over exactly when, how, and where to
execute workload.

24.1.2 Grid Benefits
Moab's peer-to-peer capabilities can be used for multiple purposes, including any of the
following:

Chapter 24: Moab Workload Manager for Grids

l manage access to external shared resources

l enable cluster monitoring information services

l enable massive-scalability clusters

l enable distributed grid computing

Of these, the most common use is the creation of grids to join multiple centrally managed,
partially autonomous, or fully autonomous clusters. The purpose of this section is to
highlight the most common uses of grid technology and provide references to sections that
further detail their configuration and management. Other sections cover the standard
aspects of grid creation including configuring peer relationships, enabling data staging,
credential management, usage policies, and other factors.

Image 24-1: Jobs Submitted to Grid Scheduler, Then Cluster Schedulers

24.1.3 Management-Scalability
Much like a massive-scalability cluster, a massive-scalability grid allows organizations to
overcome scalability limitations in resource managers, networks, message passing libraries,
security middleware, file systems, and other forms of software and hardware
infrastructure. Moab does this by allowing a single large set of resources to be broken into
multiple smaller, more manageable clusters, and then virtually re-assembling them using
Moab. Moab becomes responsible for integrating the seams between the clusters and
presenting a single-system image back to the end-users, administrators, and managers.

Jobs cannot span clusters.

24.1.4 Resource Access
In some cases, the primary motivation for creating a grid is to aggregate resources of
different types into a single system. This aggregation allows for multi-step jobs to run a

Chapter 24: Moab Workload Manager for Grids

957 24.1 Grid Basics

24.1 Grid Basics 958

portion of the job on one architecture, and a portion on another.

A common example of a multi-architecture parameter-sweep job would be a batch
regression test suite that requires a portion of the tests running on Redhat 7.2, a portion on
SUSE 9.1, a portion on Myrinet nodes, and a portion on Infiniband nodes. While it would be
very difficult to create and manage a single cluster that simultaneously provided all of
these configurations, Moab can be used to create and manage a single grid that spans
multiple clusters as needed.

24.1.5 Load-Balancing
While grids often have additional motivations, it is rare to have a grid created where
increased total system utilization is not an objective. By aggregating the total pool of jobs
requesting resources and increasing the pool of resources available to each job, Moab is
able to improve overall system utilization, sometimes significantly. The biggest difficulty in
managing multiple clusters is preventing inter-cluster policies and the cost of migration
from overwhelming the benefits of decreased fragmentation losses. Even though remote
resources may be available for immediate usage, migration costs can occur in the form of
credential, job, or data staging and impose a noticeable loss in responsiveness on grid
workload.

Moab provides tools to allow these costs to be monitored and managed and both cluster
and grid level performance to be reported.

24.1.6 Single System Image (SSI)
Another common benefit of grids is the simplicity associated with a single system image-
based resource pool. This simplicity generally increases productivity for end-users,
administrators, and managers.

An SSI environment tends to increase the efficiency of end-users by minimizing human
errors associated with porting a request from a known system to a less known system.
Additionally, the single point of access grid reduces human overhead associated with
monitoring and managing workload within multiple independent systems.

For system administrators, a single system image can reduce overhead, training time, and
diagnostic time associated with managing a cluster. Furthermore, with Moab's peer-to-peer
technology, no additional software layer is required to enable the grid and no new tools
must be learned. No additional layers means no additional failure points, and that is good
for everyone involved.

Managers benefit from SSI by being able to pursue organization mission objectives globally
in a more coordinated and unified manner. They are also able to monitor progress toward
those objectives and effectiveness of resources in general.

Chapter 24: Moab Workload Manager for Grids

24.1.7 High Availability
A final benefit of grids is their ability to decrease the impact of failures. Grids add another
layer of high availability to the cluster-level high availability. For some organizations, this
benefit is a primary motivation, pulling together additional resources to allow workload to
continue to be processed even in the event that some nodes, or even an entire cluster,
become unavailable. Whether the resource unavailability is based on node failures,
network failures, systems middleware, systems maintenance, or other factors, a properly
configured grid can reroute priority workload throughout the grid to execute on other
compatible resources.

With grids, there are a number of important factors in high availability that should be
considered:

l enabling highly available job submission/job management interfaces

l avoiding network failures with redundant routes to compute resources

l handling partial failures

l dynamically restarting failed jobs

24.1.8 Grid Relationships
There are three types of relationships you can implement within the grid:

l Centralized Management (Moab Grid Control / Moab Grid Member)

l Centralized/Localized Management (Hierarchical)

l Localized Management (Peer-to-Peer)

24.1.8.A Centralized Management (Moab Grid Control / Moab Grid Member)
Note:Moab Grid Control / Moab Grid Member are also known as MGC/MGM.

The centralized management model (MGC/MGM) allows users to submit jobs to a
centralized source server running Moab. The source Moab server obtains full resource
information from all clusters and makes intelligent scheduling decisions across all clusters.
Jobs (and data when configured to do so) are distributed to the remote clusters as needed.
The centralized management model is recommended for intra-organization grid
environments when cluster autonomy is not as necessary.

In the centralized management (Moab Grid Control / Moab Grid Member) configuration,
roles are clear. In other configurations, individual Moab servers may simultaneously act as
sources to some clusters and destinations to others or as both a source and a destination to
another cluster.

Chapter 24: Moab Workload Manager for Grids

959 24.1 Grid Basics

24.1 Grid Basics 960

Example of the Centralized Management (Moab Grid Control / Moab Grid Member)
Model

XYZ Research has three clusters - MOAB1, MOAB2, and MOAB3--running Moab and the
Torque resource manager. They would like to submit jobs at a single location (cluster
MOAB1) and have the jobs run on whichever cluster can provide the best responsiveness.

The desired behavior is essentially a master-slave relationship. MOAB1 is the central, or
MGC cluster. On MOAB1, resource managers point to the local Torque resource manager
and to the Moab servers on cluster MOAB2 and cluster MOAB3. The Moab servers on
MOAB2 and MOAB3 are configured to trust cluster MOAB1 and to execute in SLAVE mode.

Image 24-2: Centralized Management

With this configuration, XYZ Research can submit jobs to the MGC Moab server running on
cluster MOAB1 and can, as stated earlier, submit jobs from the MGM nodes as well.
However, only the MGC Moab server can schedule jobs. For example, cluster MOAB2 and

Chapter 24: Moab Workload Manager for Grids

cluster MOAB3 cannot schedule a job, but they can accept a job and retain it in an idle state
until the MGC directs it to run.

You can turn off job submission on MGM nodes by setting the
DISABLESLAVEJOBSUBMIT parameter to TRUE.

the MGC Moab server obtains full resource information from all three clusters and makes
intelligent scheduling decisions and distributes jobs (and data when configured to do so) to
the remote clusters. The Moab servers running on clusters MOAB2 and MOAB3 are
destinations behaving like a local resource manager. The Moab server running on MOAB1
is a source, loading and using this resource information.

24.1.8.B Centralized/Localized Management (Hierarchical)
As with the centralized management model (Moab Grid Control / Moab Grid Member), the
hierarchical model allows users to submit jobs to a centralized source server running
Moab. However, in the hierarchical model, clusters retain sovereignty, allowing local job
scheduling. Thus, if communication between the source and destination clusters is
interrupted, the destination cluster(s) can still run jobs locally.

Chapter 24: Moab Workload Manager for Grids

961 24.1 Grid Basics

24.1 Grid Basics 962

Image 24-3: Hierarchical Management

In the hierarchical model, the source Moab server obtains full resource information from
all clusters and makes intelligent scheduling decisions across all clusters. As needed, jobs
and data are distributed to the remote clusters. Or, if preferred, a destination cluster can
also serve as its own source; however, a destination cluster cannot serve as a source to
another destination cluster. The centralized management model is recommended for intra-
organization grid environments when cluster autonomy and/or local management is
necessary.

Chapter 24: Moab Workload Manager for Grids

24.1.8.C Localized Management (Peer-to-Peer)
The localized management (peer-to-peer) model allows you to submit jobs on one cluster
and schedule the jobs on the other cluster (it currently works with two clusters). For
example, a job may be submitted on MOAB1 and run on MOAB2. Jobs can also migrate in
the opposite direction (that is, from MOAB2 to MOAB1). The source servers running Moab
obtain full resource information from both clusters and make intelligent scheduling
decisions across both clusters. Jobs (and data when configured to do so) are migrated to
other clusters as needed.

Image 24-4: Localized Management

Jobs will not migrate indefinitely. The localized management model limits them to one
migration.

This model allows clusters to retain their autonomy while still allowing jobs to run on either
cluster. No central location for job submission is needed, and you do not need to submit
jobs from different nodes based on resource needs. You can submit a job from any location

Chapter 24: Moab Workload Manager for Grids

963 24.1 Grid Basics

24.1 Grid Basics 964

and it is either migrated to nodes on the least utilized cluster or the cluster requested in
the job submission. This model is recommended for grids in an inter-organization grid
environment.

24.1.9 Submitting Jobs to the Grid
In any peer-to-peer or grid environment where jobs must be migrated between clusters,
use the Moab msub command. Once a job has been submitted to Moab using msub, Moab
identifies potential destinations and migrates the job to the destination cluster.

Using Moab's msub job submission command, jobs can be submitted using PBS command
file syntax and be run on any cluster using any of the resource managers. For example, a
PBS job script can be submitted using msub and depending on availability, Moab can
translate a subset of the job's directives and execute it on a PBS cluster.

Moab can only stage/migrate jobs between resource managers (in between clusters)
that have been submitted using the msub command. If jobs are submitted directly to
a low-level resource manager, such as PBS, Moab will still be able to schedule them,
but only on resources directly managed by the resource manager to which they were
submitted.

Example

A research lab wants to use spare cycles on its four clusters, each of which is running a
local resource manager. In addition to providing better site-wide load balancing, the goal is
to also provide some of its users with single point access to all compute resources. Various
researchers have made it clear that this new multi-cluster load balancing must not impose
any changes on users who are currently using these clusters by submitting jobs locally to
each cluster.

In this example, the scheduler mode of the destination clusters should be set to NORMAL
rather than SLAVE. In SLAVE mode, Moab makes no local decisions - it simply follows the
directions of remote trusted peers. In NORMAL mode, each Moab is fully autonomous,
scheduling all local workload and coordinating with remote peers when and how to
schedule migrated jobs.

From the perspective of a local cluster user, no new behaviors are seen. Remote jobs are
migrated in from time to time, but to the user each job looks as if it were locally submitted.
The user continues to submit, view, and manage jobs as before, using existing local jobs
scripts.

Chapter 24: Moab Workload Manager for Grids

24.1.10 Viewing Jobs and Resources
By default, each destination Moab server will report all compute nodes it finds back to the
source Moab server. These reported nodes appear within the source Moab as local nodes
each within a partition associated with the resource manager reporting them. If a source
resource manager was named slave1, all nodes reported by it would be associated with
the slave1partition. Users and administrators communicating with the source Moab via
Moab Cluster Manager, or standard Moab command line tools would be able to view and
analyze all reported nodes.

Image 24-5: Viewing Jobs and Resources

Chapter 24: Moab Workload Manager for Grids

965 24.1 Grid Basics

24.2 Grid Configuration Basics 966

The grid view will be displayed if either the source or the destination server is
configured with grid view.

For job information, the default behavior is to only report to the source Moab information
regarding jobs that originated at the source. If information about other jobs is desired, this
can be configured as shown in the Workload Submission and Control section.

Related Topics

l Resource Control and Access

24.2 Grid Configuration Basics

In this topic:

24.2.1 Peer Configuration Overview - page 966
24.2.2 Initial Configuration - page 966

24.2.1 Peer Configuration Overview
In the simplest case, establishing a peer relationship can be accomplished with as few as
two configuration lines: one line to indicate how to contact the peer and one line to indicate
how to authenticate the server. However, data migration issues, credential mapping, and
usage policies must often be addressed in order to make a peer-based grid effective.

To address these issues Moab provides facilities to control how peers inter-operate,
enabling full autonomy over both client and server ends of the peer relationship.

24.2.2 Initial Configuration
At a minimum, only two parameters must be specified to establish a peer relationship:
RMCFG and CLIENTCFG[<X>]. RMCFG allows a site to specify interface information
directing Moab on how to contact and inter-operate with the peer. For peer interfaces, a
few guidelines must be followed with the RMCFG parameter:

l The TYPE attribute of the peer must be set to moab.

l The SERVER attribute must point to the host and user interface port of the remote
Moab server.

l The name of the resource manager should match the name of the remote peer
cluster as specified with the SCHEDCFG parameter in the peer moab.cfg.

Chapter 24: Moab Workload Manager for Grids

moab.cfg on MoabServer01

SCHEDCFG[MoabServer01] MODE=NORMAL SERVER=hpc-01:41111
RMCFG[MoabServer02] TYPE=moab SERVER=hpc-02:40559
...

Configuring the CLIENTCFG parameter is mandatory. When specifying the CLIENTCFG
parameter for peers, the following guidelines must be followed:

l The CLIENTCFG parameter must be specified in the moab-private.cfg file on
both peers.

l An RM: prefix is required before the peer's name.

l If using default secret key based security, the value of the KEY attribute must match
the KEY value set on the corresponding remote peer.

l The AUTH attribute must be set to admin1 in the moab-private.cfg on the
destination Moab.

moab-private.cfg on MoabServer01

CLIENTCFG[RM:MoabServer02] KEY=3esfv0=32re2-tdbne
....

moab-private.cfg on MoabServer02

CLIENTCFG[RM:MoabServer01] KEY=3esfv0=32re2-tdbne AUTH=admin1
...

24.3 Centralized Grid Management (Moab Grid
Control / Moab Grid Member)

In this topic:

24.3.1 Moab Grid Control Configuration - page 967
24.3.2 Moab Grid Member Configuration - page 968

24.3.1 Moab Grid Control Configuration
Note:Moab Grid Control / Moab Grid Member are also known as MGC/MGM.

The process of setting up the Moab Grid Control Configuration is the same as setting up a
source Moab configuration. The Moab Grid Control / Moab Grid Member relationship is
configured in each moab.cfg on the MGM.

Chapter 24: Moab Workload Manager for Grids

967 24.3 Centralized Grid Management (Moab Grid Control / Moab Grid Member)

24.4 Hierarchical Grid Management 968

moab.cfg on Master

SCHEDCFG[master] SERVER=master:42559 MODE=NORMAL
...

moab-private.cfg on Master

CLIENTCFG[RM:slave1] KEY=3esfv0=32re2-tdbne
...

24.3.2 Moab Grid Member Configuration
the MGM's relationship with the MGC is determined by the MODE. Setting MODE to SLAVE
notifies the MGC to take control of starting jobs on the MGM. the MGC starts the jobs on the
MGM. In SLAVE mode, jobs can be submitted locally to the MGM, but are not seen or
started by the MGC. When a job is submitted locally to the MGM, the job is locked into the
cluster and cannot migrate to other clusters.

moab.cfg on Slave

SCHEDCFG[slave1] SERVER=slave1:42559 MODE=SLAVE
...

moab-private.cfg on Slave

CLIENTCFG[RM:master] KEY=3esfv0=32re2-tdbne AUTH=admin1
...

24.4 Hierarchical Grid Management

In this topic:

24.4.1 Configuring a Peer Server (Source) - page 968
24.4.2 Simple Hierarchical Grid - page 969

24.4.1 Configuring a Peer Server (Source)
Peer relationships are enabled by creating and configuring a resource manager interface
using the RMCFG parameter. This interface defines how a given Moab will load resource
and workload information and enforce its scheduling decisions. In non-peer cases, the
RMCFG parameter points to a resource manager such as Torque. However, if the TYPE
attribute is set to moab, the RMCFG parameter can be used to configure and manage a
peer relationship.

Chapter 24: Moab Workload Manager for Grids

24.4.2 Simple Hierarchical Grid
The first step to create a new peer relationship is to configure an interface to a destination
Moab server. In the following example, cluster C1 is configured to be able to see and use
resources from two other clusters.

SCHEDCFG[C1] MODE=NORMAL SERVER=head.C1.xyz.com:41111
RMCFG[C2] TYPE=moab SERVER=head.C2.xyz.com:40559
RMCFG[C3] TYPE=moab SERVER=head.C3.xyz.com:40559
...

C1 allows a global view of the underlying clusters. From C1, jobs can be viewed and modified. C2 and C3 act as
separate scheduling entities that can receive jobs from C1. C1 migrates jobs to C2 and C3 based on available
resources and policies of C1. Jobs migrated to C2 and C3 are scheduled according to the polices on C2 and C3.

In this case, one RMCFG parameter is all that is required to configure each peer
relationship if standard secret key based authentication is being used and a shared default
secret key exists between the source and destination Moabs. However, if peer relationships
with multiple clusters are to be established and a per-peer secret key is to be used (highly
recommended), then a CLIENTCFG parameter must be specified for the authentication
mechanism. Because the secret key must be kept secure, it must be specified in the moab-
private.cfg file. For the current example, a per-peer secret key could be set up by
creating the following moab-private.cfg file on the C1 cluster.

CLIENTCFG[RM:C2] KEY=fastclu3t3r
CLIENTCFG[RM:C3] KEY=14436aaa

The key specified can be any alphanumeric value and can be locally generated or
made up. The only critical aspect is that the keys specified on each end of the peer
relationship match.

Additional information can be found in the Grid Security section, which provides detailed
information on designing, configuring, and troubleshooting peer security.

Continuing with the example, the initial source side configuration is now complete. On the
destination clusters, C2 and C3, the first step is to configure authentication. If a shared
default secret key exists between all three clusters, then configuration is complete and the
clusters are ready to communicate. If per-peer secret keys are used (recommended), then
it will be necessary to create matching moab-private.cfg files on each of the
destination clusters. With this example, the following files would be required on C2 and C3
respectively:

CLIENTCFG[RM:C1] KEY=fastclu3t3r AUTH=admin1

CLIENTCFG[RM:C1] KEY=14436aaa AUTH=admin1

Once peer security is established, a final optional step would be to configure scheduling
behavior on the destination clusters. By default, each destination cluster accepts jobs from

Chapter 24: Moab Workload Manager for Grids

969 24.4 Hierarchical Grid Management

24.5 Localized Grid Management 970

each trusted peer. However, it will also be fully autonomous, accepting and scheduling
locally submitted jobs and enforcing its own local policies and optimizations. If this is the
desired behavior, then configuration is complete.

In the current example, with no destination side scheduling configuration, jobs submitted to
cluster C1 can run locally, on cluster C2 or on cluster C3. However, the established
configuration does not necessarily enforce a strict master-slave relationship because each
destination cluster (C2 and C3) has complete autonomy over how, when, and where it
schedules both local and remote jobs. Each cluster can potentially receive jobs that are
locally submitted and can also receive jobs from other source Moab servers.

Further, each destination cluster will accept any and all jobs migrated to it from a trusted
peer without limitations on who can run, when and where they can run, or how many
resources they can use. If this behavior is either too restrictive or not restrictive enough,
then destination side configuration will be required.

24.5 Localized Grid Management

In this topic:

24.5.1 Enabling Bi-Directional Job Flow - page 970
24.5.2 True Peer-to-Peer Grid - page 971

24.5.1 Enabling Bi-Directional Job Flow

Image 24-6: Bi-directional peer-to-peer setup

Chapter 24: Moab Workload Manager for Grids

For each peer interface, an RMCFG parameter is only required for the server (or source
side of the interface). If two peers are to share jobs in both directions, the relationship is
considered to be bi-directional.

24.5.2 True Peer-to-Peer Grid
Previous examples involved grid masters that coordinated the activities of the grid and
made it so direct contact between peers was not required. However, if preferred, the
master is not required and individual clusters can interface directly with each other in a
true peer manner. This configuration is highlighted in the following example:

Cluster A

SCHEDCFG[clusterA] MODE=NORMAL SERVER=clusterA
RMCFG[clusterA] TYPE=pbs
RMCFG[clusterB] TYPE=moab SERVER=clusterB:40559
CLIENTCFG[RM:clusterB] AUTH=admin1 KEY=banana16

Cluster B

SCHEDCFG[clusterB] MODE=NORMAL SERVER=clusterB
RMCFG[clusterB] TYPE=pbs
RMCFG[clusterA] TYPE=moab SERVER=clusterA:40559
CLIENTCFG[RM:clusterA] AUTH=admin1 KEY=banana16

If you are using Moab Accounting Manager, the Start action is not supported as a
non-blocking accounting action in Peer-to-Peer grids. You will need to include Start
as a blocking action. For example:

AMCFG[mam] BLOCKINGACTIONS=Start

24.6 Resource Control and Access

In this topic:

24.6.1 Controlling Resource Information - page 972
24.6.1.A Direct Node View - page 972
24.6.1.B Mapped Node View - page 972

24.6.2 Managing Resources with Grid Sandboxes - page 974
24.6.2.A Controlling Access on a Per Cluster Basis - page 975
24.6.2.B Access Control Lists/Granting Access to Local Jobs - page 975

Chapter 24: Moab Workload Manager for Grids

971 24.6 Resource Control and Access

24.6 Resource Control and Access 972

24.6.1 Controlling Resource Information
In a Moab peer-to-peer grid, resources can be viewed in one of two models:

l Direct - nodes are reported to remote clusters exactly as they appear in the local
cluster

l Mapped - nodes are reported as individual nodes, but node names are mapped to a
unique name when imported into the remote cluster

24.6.1.A Direct Node View
Direct node import is the default resource information mode. No additional configuration is
required to enable this mode.

24.6.1.B Mapped Node View
In this mode, nodes are reported just as they appear locally by the exporting cluster.
However, on the importing cluster side, Moab maps the specified node names using the
resource manager object map. In an object map, node mapping is specified using the node
keyword as in the following example:

SCHEDCFG[gridmaster] MODE=NORMAL
RMCFG[clusterB] TYPE=moab OMAP=file://$HOME/clusterb.omap.dat
...
node:b_*,*

Image 24-7: Mapped Node View

Chapter 24: Moab Workload Manager for Grids

In this example, all nodes reported by clusterB have the string b_ prepended to
prevent node name space conflicts with nodes from other clusters. For example, if cluster
clusterB reported the nodes node01, node02, and node03, cluster gridmaster
would report them as b_node01, b_node02, and b_node03.

See object mapping for more information on creating an object map file.

Chapter 24: Moab Workload Manager for Grids

973 24.6 Resource Control and Access

24.6 Resource Control and Access 974

24.6.2 Managing Resources with Grid Sandboxes

Image 24-8: Grid Sandbox

A cluster may want to participate in a grid but may desire to dedicate only a set amount of
resources to external grid workload or may only want certain peers to have access to
particular sets of resources. With Moab, this can be achieved by way of a grid sandbox,
which must be configured at the destination cluster. Grid sandboxes can both constrain
external resource access and limit which resources are reported to other peers. This
allows a cluster to only report a defined subset of its total resources to source peers and
restricts peer workload to the sandbox. The sandbox can be set aside for peer use
exclusively, or can allow local workload to also run inside of it. Through the use of multiple,
possibly overlapping grid sandboxes, a site can fully control resource availability on a per
peer basis.

A grid sandbox is created by configuring a standing reservation on a destination peer and
then specifying the ALLOWGRID flag on that reservation. This flag tells the Moab
destination peer to treat the standing reservation as a grid sandbox, and, by default, only
the resources in the sandbox are visible to grid peers. Also, the sandbox only allows
workload from other peers to run on the contained resources.

Example 24-1: Dedicated Grid Sandbox

SRCFG[sandbox1] PERIOD=INFINITY HOSTLIST=node01,node02,node03
SRCFG[sandbox1] CLUSTERLIST=ALL FLAGS=ALLOWGRID
...

The standing reservation sandbox1 creates a grid sandbox, which always exists and contains the nodes node01,
node02, and node03. This sandbox will only allow grid workload to run within it by default. This means that the
scheduler will not consider the boxed resources for local workload.

Chapter 24: Moab Workload Manager for Grids

Grid sandboxes inherit all of the same power and flexibility that standing reservations
have. See Managing Reservations for additional information.

The flag ALLOWGRID marks the reservation as a grid sandbox and as such, it
precludes grid jobs from running anywhere else. However, it does not enable access
to the reserved resources. The CLUSTERLIST attribute in the above example
enables access to all remote jobs.

24.6.2.A Controlling Access on a Per Cluster Basis
Often clusters may want to control which peers are allowed to use certain sandboxes. For
example, Cluster A may have a special contract with Cluster B and will let overflow
workload from Cluster B run on 60% of its resources. A third peer in the grid, Cluster C,
doesn't have the same contractual agreement, and is only allowed 10% of Cluster A at any
given time. Therefore two separate sandboxes must be made to accommodate the different
policies.

SRCFG[sandbox1] PERIOD=INFINITY HOSTLIST=node01,node02,node03,node04,node05
SRCFG[sandbox1] FLAGS=ALLOWGRID CLUSTERLIST=ClusterB
SRCFG[sandbox2] PERIOD=INFINITY HOSTLIST=node06 FLAGS=ALLOWGRID
SRCFG[sandbox2] CLUSTERLIST=ClusterB,ClusterC,ClusterD USERLIST=ALL
...

This example configuration illustrates how cluster A could set up their sandboxes to follow a more complicated
policy. In this policy, sandbox1provides exclusive access to nodes 1 through 5 to jobs coming from peer ClusterB by
including CLUSTERLIST=ClusterB in the definition. Reservation sandbox2provides shared access to node6 to
local jobs and to jobs from clusters B, C, and D through use of the CLUSTERLIST and USERLIST attributes.

With this setup, the following policies are enforced:

l local jobs can see all nodes and run anywhere except nodes 1 through 5

l jobs from cluster B can see and run only on nodes 1 through 6

l jobs from clusters C and D can see and run only on node 6

As shown in the example above, sandboxes can be shared across multiple peers by listing
all sharing peers in the CLUSTERLIST attribute (comma-delimited).

24.6.2.B Access Control Lists/Granting Access to Local Jobs
It is not always desirable to have the grid sandbox reserve resources for grid consumption,
exclusively. Many clusters may want to use the grid sandbox when local workload is high
and demand from the grid is relatively low. Clusters may also want to further restrict what
kind of grid workload can run in a sandbox. This fine-grained control can be achieved by
attaching access control lists (ACLs) to grid sandboxes.

Chapter 24: Moab Workload Manager for Grids

975 24.6 Resource Control and Access

24.7 Workload Submission and Control 976

Since sandboxes are basically special standing reservations, the syntax and rules for
specifying an ACL is identical to those found in Managing Reservations.

Example

SRCFG[sandbox2] PERIOD=INFINITY HOSTLIST=node04,node05,node06
SRCFG[sandbox2] FLAGS=ALLOWGRID QOSLIST=high GROUPLIST=engineer
...

A cluster decides to dedicate resources to a sandbox, but wishes local workload to also run within it. An additional
ACL is then associated with the definition. The reservation sandbox2 takes advantage of this feature by allowing
local jobs running with a QOS of high, or under the group engineer, to also run on the sandboxed nodes
node04, node05, and node06.

24.7 Workload Submission and Control

Controlling Peer Workload Information
By default, a peer is only responsible for workload that is submitted via that particular
peer. This means that when a source peer communicates with destination peers it only
receives information about workload it sent to those destination peers. If desired, the
destination peers can send information about all of its workload: both jobs originating
locally and remotely. This is called local workload exporting. This might help simplify
administration of different clusters by centralizing monitoring and management of jobs at
one peer.

To implement local workload exporting, use the LOCALWORKLOADEXPORT resource
manager flag. For example:

RMCFG[ClusterA.INBOUND] FLAGS=LOCALWORKLOADEXPORT # source peer
...

This example shows the configuration on a destination peer (ClusterB) that exports its local and remote workload to
the source peer (ClusterA).

LOCALWORKLOADEXPORT does not need to be configured in Moab Grid Control /
Moab Grid Member grids.

Related Topics

l Job Start Time Estimates

24.8 Reservations in the Grid

In some environments, globally-shared resources might need to be managed to guarantee
the full environment required by a particular job. Resources such as networks, storage

Chapter 24: Moab Workload Manager for Grids

systems, and license managers can be used only by batch workload but this workload can
be distributed among multiple independent clusters. Consequently, the jobs from one
cluster can utilize resources required by jobs from another. Without a method of
coordinating the needs of the various cluster schedulers, resource reservations will not be
respected by other clusters and will be of only limited value.

Using the centralized model, Moab allows the importing and exporting of reservations from
one peer server to another. With this capability, a source peer can be set up for the shared
resource to act as a clearinghouse for other Moab cluster schedulers. This source peer
Moab server reports configured and available resource state and in essence possesses a
global view of resource reservations for all clusters for the associated resource.

To allow the destination peer to export reservation information to the source Moab, the
RMCFG lines for all client resource managers must include the flag RSVEXPORT. The
source Moab should be configured with a resource manager interface to the destination
peer and include both the RSVEXPORT and RSVIMPORT flags. For the destination peer,
RSVEXPORT indicates that it should push information about newly created reservations to
the source Moab, while the RSVIMPORT flag indicates that the source Moab server should
import and locally enforce reservations detected on the destination peer server.

24.9 Grid Usage Policies

In this topic:

24.9.1 Grid Usage Policy Overview - page 977
24.9.2 Peer Job Resource Limits - page 978
24.9.3 Usage Limits via Peer Credentials - page 978
24.9.4 Using General Policies in a Grid Environment - page 979

24.9.4.A Source Cluster Policies - page 979

24.9.1 Grid Usage Policy Overview
Moab allows extensive control over how peers interact. These controls allow the following:

l Limiting which remote users, group, and accounts can utilize local compute resources

l Limiting the total quantity of local resources made available to remote jobs at any
given time

l Limiting remote resource access to a specific subset of resources

Chapter 24: Moab Workload Manager for Grids

977 24.9 Grid Usage Policies

24.9 Grid Usage Policies 978

l Limiting timeframes during which local resources will be made available to remote
jobs

l Limiting the types of remote jobs that will be allowed to execute

24.9.2 Peer Job Resource Limits
Both source and destination peers can limit the types of jobs they will allow in terms of
resources requested, services provided, job duration, applications used, etc using Moab's
job template feature. Using this method, one or more job profiles can be created on either
the source or destination side, and Moab can be configured to allow or reject jobs based on
whether or not the jobs meet the specified job profiles.

When using the ALLOWJOBLIST and REJECTJOBLIST attributes, the following rules
apply:

l All jobs that meet the job templates listed by ALLOWJOBLIST are allowed.

l All jobs that do not meet ALLOWJOBLIST job templates and which do meet
REJECTJOBLIST job templates are rejected.

l All jobs that meet no job templates in either list are allowed.

24.9.3 Usage Limits via Peer Credentials
With peer interfaces, destination clusters willing to accept remote jobs can map these jobs
onto a select subset of users, accounts, QoSs, and queues. With the ability to lock these jobs
into certain credentials comes the ability to apply any arbitrary credential constraints,
priority adjustments, and resource limitations normally available within cluster
management. Specifically, the following can be accomplished:

l Limit number of active jobs simultaneously allowed

l Limit quantity of allocated compute resources simultaneously allowed

l Adjust job priority

l Control access to specific scheduling features (deadlines, reservations, preemption,
etc.)

l Adjust fairshare targets

l Limit resource access

Chapter 24: Moab Workload Manager for Grids

24.9.4 Using General Policies in a Grid Environment
While Moab does provide a number of unique grid-based policies for use in a grid
environment, the vast majority of available management tools come from the transparent
application of cluster policies. Cluster-level policies such as job prioritization, node
allocation, fairshare, usage limits, reservations, preemption, and allocation management all
just work and can be applied in a grid in exactly the same manner.

The one key concept to understand is that in a centralized based grid, these policies apply
across the entire grid; in a peer-based grid, these policies apply only to local workload and
resources.

24.9.4.A Source Cluster Policies
In many cases, organizations are interested in treating jobs differently based on their point
of origin. This can be accomplished by assigning and/or keying off of a unique credential
associated with the remote workload. For example, a site might want to constrain jobs from
a remote cluster to only a portion of the total available cluster cycles. This could be
accomplished using usage limits, fairshare targets, fairshare caps, reservations, or
allocation management based policies.

The examples below show three different approaches for constraining remote resource
access.

Example 24-2: Constraining Remote Resource Access via Fairshare Caps

define peer relationship and map all incoming jobs to orion account
RMCFG[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] ACCOUNT=orion
configure basic fairshare for 7 one day intervals
FSPOLICY DEDICATEDPS
FSINTERVAL 24:00:00
FSDEPTH 7
FSUSERWEIGHT 100
use fairshare cap to limit jobs from orion to 10% of cycles
ACCOUNTCFG[orion] FSCAP=10%

Example 24-3: Constraining Remote Resource Access via Fairshare Targets and Preemption

define peer relationship and map all incoming jobs to orion account
RMCFG[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] ACCOUNT=orion
local cluster can preempt jobs from orion
USERCFG[DEFAULT] JOBFLAGS=PREEMPTOR
PREEMPTPOLICY CANCEL
configure basic fairshare for 7 one day intervals
FSPOLICY DEDICATEDPS
FSINTERVAL 24:00:00
FSDEPTH 7
FSUSERWEIGHT 100
decrease priority of remote jobs and force jobs exceeding 10% usage to be

Chapter 24: Moab Workload Manager for Grids

979 24.9 Grid Usage Policies

24.10 Grid Scheduling Policies 980

preemptible
ACCOUNTCFG[orion] FSTARGET=10-
ENABLEFSVIOLATIONPREEMPTION TRUE

Example 24-4: Constraining Remote Resource Access via Priority and Usage Limits

define peer relationship and map all incoming jobs to orion account RMCFG
[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] QOS=orion
USERCFG[DEFAULT] QDEF=orion
local cluster can preempt jobs from orion
USERCFG[DEFAULT] JOBFLAGS=PREEMPTOR
PREEMPTPOLICY CANCEL
adjust remote jobs to have reduced priority
QOSCFG[orion] PRIORITY=-1000
allow remote jobs to use up to 64 procs without being preemptible and up to 96 as
preemptees
QOSCFG[orion] MAXPROC=64,96
ENABLESPVIOLATIONPREEMPTION TRUE

Related Topics

l Grid Sandbox - control grid resource access

24.10 Grid Scheduling Policies

In this topic:

24.10.1 Peer-to-Peer Resource Affinity Overview - page 980
24.10.2 Peer Allocation Policies - page 981
24.10.3 Per-partition Scheduling - page 981

24.10.1 Peer-to-Peer Resource Affinity Overview
The concept of resource affinity stems from a number of facts:

l Certain compute architectures are able to execute certain compute jobs more
effectively than others.

l From a given location, staging jobs to various clusters might require more expensive
allocations, more data and network resources, and more use of system services.

l Certain compute resources are owned by external organizations and should be used
sparingly.

Chapter 24: Moab Workload Manager for Grids

Regardless of the reason, Moab servers allow the use of peer resource affinity to guide jobs
to the clusters that make the best fit according to a number of criteria.

At a high level, this is accomplished by creating a number of job templates and associating
the profiles with different peers with varying impacts on estimated execution time and
peer affinity.

24.10.2 Peer Allocation Policies
A direct way to assign a peer allocation algorithm is with the PARALLOCATIONPOLICY
parameter. Legal values are listed in the following table:

Value Description

FirstStart Allocates resources from the eligible peer that can start the job the soonest.

LoadBalance Allocates resources from the eligible peer with the most available resources;
measured in tasks (balances workload distribution across potential peers).

LoadBalanceP Allocates resources from the eligible peer with the most available resources;
measured in percent of configured resources (balances workload
distribution across potential peers).

Random Allocates partitions in a random order each iteration. In general, all the jobs
scheduled within the same iteration receive the same randomized list of
partitions. This means the randomization happens between iterations and
not within the same iteration. One iteration Moab might start with partition
X and the next it might start with partition Y.

RoundRobin Allocates resources from the eligible peer that has been least recently
allocated.

The mdiag -t -v command can be used to view current calculated partition priority
values.

24.10.3 Per-partition Scheduling
Per-partition scheduling can be enabled by adding the following lines to moab.cfg:

PERPARTITIONSCHEDULING TRUE
JOBMIGRATEPOLICY JUSTINTIME

Chapter 24: Moab Workload Manager for Grids

981 24.10 Grid Scheduling Policies

24.11 Grid Credential Management 982

To use per-partition scheduling, you must configure fairshare trees where particular users
have higher priorities on one partition, and other users have higher priorities on a
different partition.

Do not set the USEANYPARTITIONPRIO parameter if you use per-partition scheduling.
Doing so causes Moab to schedule jobs to the first partition listed, even if nodes from
another partition will be available sooner.

24.11 Grid Credential Management

In this topic:

24.11.1 Peer Credential Management Overview - page 982
24.11.2 Peer Credential Mapping - page 982
24.11.3 Source and Destination Side Credential Mapping - page 984
24.11.4 Preventing User Space Collisions - page 984

24.11.1 Peer Credential Management Overview
Moab provides a number of credential management features that allow sites to control
which local users can utilize remote resources and which remote users can utilize local
resources and under what conditions this access is granted.

24.11.2 Peer Credential Mapping
If two peers share a common user space (a given user has the same login on both clusters),
then there is often no need to enable credential mapping. When users, groups, classes,
QoS's, and accounts are not the same from one peer to another, Moab allows a site to
specify an Object Map URL. This URL contains simple one to one or expression based
mapping for credentials and other objects. Using the RMCFG parameter's OMAP attribute, a
site can tell Moab where to find these mappings. The object map uses the following format:
<OBJECTTYPE>:<SOURCE_OBJECTID>,<DESTINATION_OBJECTID>

where <SOURCE_OBJECT> can be a particular username or an asterisk (*) that is a
wildcard matching all credentials of the specified type, which have not already been
matched.

The object map file can be used to translate the following:

Chapter 24: Moab Workload Manager for Grids

Keyword Objects

account accounts/projects

class classes/queues

file files/directories

group groups

node nodes

qos QoS

user users

The following moab.cfg and omap.dat files demonstrate a sample credential mapping.

SCHEDCFG[master1] MODE=normal
RMCFG[slave1] OMAP=file:///opt/moab/omap.dat
...

user:joe,jsmith
user:steve,sjohnson
group:test,staff
class:batch,serial
user:*,grid

In this example, a job that is being migrated from cluster master1 to the peer slave1
will have its credentials mapped according to the contents of the omap.dat file. In this
case, a job submitted by user joe on master1 will be executed under the user account
jsmith on peer slave1. Any credential that is not found in the mapping file will be
passed to the peer as submitted. In the case of the user credential, all users other than joe
and steve will be remapped to the user grid due to the wildcard matching.

Because the OMAP attribute is specified as a URL, multiple methods can be used to obtain
the mapping information. In addition to the file protocol shown in the example above, exec
can be used.

Note that there is no need to use the credential mapping facility to map all credentials. In
some cases, a common user space exists but it is used to map all classes/queues on the
source side to a single queue on the destination side. Likewise, for utilization tracking
purposes, it may be desirable to map all source account credentials to a single cluster-wide
account.

Chapter 24: Moab Workload Manager for Grids

983 24.11 Grid Credential Management

24.12 Grid Data Management 984

24.11.3 Source and Destination Side Credential Mapping
Credential mapping can be implemented on the source cluster, destination cluster, or both.
A source cluster may want to map all user names for all outgoing jobs to the name
generaluser for security purposes, and a destination cluster may want to remap all
incoming jobs from this particular user to the username cluster2 and the QoS grid.

24.11.4 Preventing User Space Collisions
In some cases, a cluster might receive jobs from two independent clusters where grid wide
username distinctiveness is not guaranteed. In this case, credential mapping can be used to
ensure the uniqueness of each name. With credential mapping files, this can be
accomplished using the <DESTINATION_CREDENTIAL> wildcard asterisk (*) character.
If specified, this character will be replaced with the exact <SOURCE_CREDENTIAL> when
generating the destination credential string. For example, consider the following
configuration:

SCHEDCFG[master1] MODE=normal
RMCFG[slave1] OMAP=file:///opt/moab/omap.dat FLAGS=client
...

user:*,c1_*
group:*,*_grid
account:*,temp_*

This configuration will remap the usernames of all jobs coming in from the peer slave1.
The username john will be remapped to c1_john, the group staff will be remapped
to staff_grid and the account demo will be remapped to temp_demo.

24.12 Grid Data Management

This method of data staging has been deprecated in Moab Workload Manager 10.0.0
and will be removed from the product in a future release. See Data Staging Example
for information about the new method of staging data.

In this topic:

Chapter 24: Moab Workload Manager for Grids

24.12.1 Grid Data Management Overview - page 985
24.12.2 Configuring Peer Data Staging - page 985

24.12.2.A Simple Configuration - page 985
24.12.2.B Advanced Configuration - page 986

24.12.3 Peer-to-Peer SCP Key Authentication - page 987
24.12.3.A Generate SSH Key on Source Peer - page 987

24.12.4 Diagnostics - page 988

24.12.1 Grid Data Management Overview
Moab provides a highly generalized data manager interface that can allow both simple and
advanced data management services to be used to migrate data amongst peer clusters.
Using a flexible script interface, services such as scp, NFS, and gridftp can be used to
address data staging needs. This feature enables a Moab peer to push job data to a
destination Moab peer.

24.12.2 Configuring Peer Data Staging
Moab offers a simple, automatic configuration, as well as advanced configuration options. At
a high level, configuring data staging across a peer-to-peer relationship consists of
configuring one or more storage managers, associating them with the appropriate peer
resource managers, and then specifying data requirements at the local level—when the job
is submitted.

To use the data staging features, you must specify the --with-grid option at
./configure time. After properly configuring data staging, you can submit a job to the
peer with any user who has SSH keys set up and Moab will automatically or implicitly stage
back the standard out and standard error files created by the job. Files can be implicitly
staged in or out before a job runs by using the mstagein or mstageout options of msub.

24.12.2.A Simple Configuration
Moab automatically does most of the data staging configuration based on a simplified set of
parameters (most common defaults) in the configuration file (moab.cfg).

Do the following to configure peer data staging:

1. Configure at least two Moab clusters to work in a grid. Refer to information throughout
Moab Workload Manager for Grids for help on configuring Moab clusters to work
together as peers in a grid.

Chapter 24: Moab Workload Manager for Grids

985 24.12 Grid Data Management

24.12 Grid Data Management 986

2. Set up SSH keys so that users on the source grid peer can SSH to destination peers
without the need for a password.

3. Make necessary changes to the moab.cfg file of the source grid peer to activate data
staging, which involves creating a new data resource manager definition within Moab.
The resource manager provides data staging services to existing peers in the grid. By
defining the data resource manager within the moab.cfg, Moab automatically sets up all
of the necessary data staging auxiliary scripts.

Use the following syntax for defining a data resource manager:

RMCFG[<RMName>] TYPE=NATIVE RESOURCETYPE=STORAGE
VARIABLES=DATASPACEUSER=<DataSpaceUser>,DATASPACEDIR=<DataSpaceDir>
SERVER=<DataServer>

l <RMName>: Name of the RM (defined as a storage RM type by
RESOURCETYPE=STORAGE).

l <DataSpaceUser>: User used to SSH into <DataServer> to determine
available space in <DataSpaceDir>. Moab runs a command similar to the
following:
ssh <DataServer> -l <DataSpaceUser> df <DataSpaceDir>

l <DataSpaceDir>: Directory where staged data is stored.

l <DataServer>: Name of the server where <DataSpaceDir> is located.
Define the following URLs:

RMCFG[data] CLUSTERQUERYURL=exec://$TOOLSDIR/grid/cluster.query.dstage.pl
RMCFG[data] SYSTEMMODIFYURL=exec://$TOOLSDIR/grid/system.modify.dstage.pl
RMCFG[data] SYSTEMQUERYURL=exec://$TOOLSDIR/grid/system.query.dstage.pl
RMCFG[data] RMINITIALIZEURL=exec://$TOOLSDIR/grid/setup.config.pl

4. Associate the data resource manager with a peer resource manager:

RMCFG[remote_data] TYPE=NATIVE RESOURCETYPE=STORAGE
VARIABLES=DATASPACEUSER=datauser,DATASPACEDIR=/tmp SERVER=clusterhead
RMCFG[remote_cluster] TYPE=MOAB SERVER=clusterhead:42559 DATARM=remote_data

5. Restart Moab to finalize changes. You can use the mschedctl -R command to cause Moab
to automatically restart and load the changes.
When restarting, Moab recognizes the added configuration and runs a Perl script in the
Moab tool directory that configures the external scripts (also found in the tools
directory) that Moab uses to perform data staging. You can view the data staging
configuration by looking at the config.dstage.pl file in $MOABHOMEDIR/etc.

24.12.2.B Advanced Configuration
If you need a more customized data staging setup, contact your account representative.

Chapter 24: Moab Workload Manager for Grids

24.12.3 Peer-to-Peer SCP Key Authentication
In order to use scp as the data staging protocol, we will need to create SSH keys that allow
users to copy files between the two peers, without the need for passwords. For example, if
UserA is present on the source peer, and his counterpart is UserB on the destination
peer, then UserAwill need to create an SSH key and configure UserB to allow password-
less copying. This will enable UserA to copy files to and from the destination peer using
Moab's data staging capabilities.

Another common scenario is that several users present on the source peer are mapped to
a single user on the destination peer. In this case, each user on the source peer will need to
create keys and set them up with the user at the destination peer. Below are steps that can
be used to setup SSH keys among two (or more) peers:

These instructions were written for OpenSSH version 3.6 and might not work
correctly for older versions.

24.12.3.A Generate SSH Key on Source Peer
As the user who will be submitting jobs on the source peer, run the following command:

ssh-keygen -t rsa

You will be prompted to give an optional key. Just hit return and ignore this or other
settings. When finished, this command will create two files id_rsa and id_rsa.pub
located inside the user's ~/.ssh/ directory.

Copy the Public SSH Key to the Destination Peer

Transfer the newly created public key (id_rsa.pub) to the destination peer:

scp ~/.ssh/id_rsa.pub ${DESTPEERHOST}:~

Disable Strict SSH Checking on Source Peer (Optional)

By appending the following to your ~/.ssh/config file you can disable SSH prompts
that ask to add new hosts to the 'known hosts file.' (These prompts can often cause
problems with data staging functionality.) Note that the ${DESTPEERHOST} should be the
name of the host machine running the destination peer:

Host ${DESTPEERHOST}
CheckHostIP no
StrictHostKeyChecking no
BatchMode yes

Configure Destination Peer User

Chapter 24: Moab Workload Manager for Grids

987 24.12 Grid Data Management

https://www.openssh.com/

24.12 Grid Data Management 988

Now, log in to the destination peer as the destination user and set up the newly created
public key to be trusted:

ssh ${DESTPEERUSER}@${DESTPEERHOST}
mkdir -p .ssh; chmod 700 .ssh
cat id_rsa.pub >> .ssh/authorized_keys
chmod 600 .ssh/authorized_keys
rm id_rsa.pub

If multiple source users map to a single destination user, then repeat the above commands
for each source user's SSH public key.

Configure SSH Daemon on Destination Peer

Some configuration of the SSH daemon may be required on the destination peer. Typically,
this is done by editing the /etc/ssh/sshd_config file. To verify correct configuration,
see that the following attributes are set (not commented):

RSAAuthentication yes
PubkeyAuthentication yes

If configuration changes were required, the SSH daemon will need to be restarted:

/etc/init.d/sshd restart

Validate Correct SSH Configuration

If all is properly configured, if you issue the following command source peer it should
succeed without requiring a password:

scp ${DESTPEERHOST}:/etc/motd /tmp/

24.12.4 Diagnostics
Verify data staging is properly configured by using the following diagnostic commands:

l mdiag -R -v: Displays the status of the storage manager. Verify that you set up the
necessary URLs.

> mdiag -R -v data
diagnosing resource managers
RM[data] State: Active Type: NATIVE ResourceType: STORAGE
Server: keche
Timeout: 30000.00 ms
Cluster Query URL: exec://$TOOLSDIR/grid/cluster.query.dstage.pl
RM Initialize URL: exec://$TOOLSDIR/grid/setup.config.pl
System Modify URL: exec://$TOOLSDIR/grid/system.modify.dstage.pl
System Query URL: exec://$TOOLSDIR/grid/system.query.dstage.pl
Nodes Reported: 1 (scp://keche//tmp/)
Partition: SHARED
Event Management: (event interface disabled)

Chapter 24: Moab Workload Manager for Grids

Variables: DATASPACEUSER=root,DATASPACEDIR=/tmp
RM Languages: NATIVE
RM Sub-Languages: -

l checknode -v: Executing this on the storage node displays the data staging operations
associated with the node and its disk usage.

The number of bytes transferred for each file is currently not used.

> checknode -v scp://keche//tmp/
node scp://keche//tmp/
State: Idle (in current state for 00:00:13)
Configured Resources: DISK: 578G
Utilized Resources: DISK: 316G
Dedicated Resources: ---
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Active Data Staging Operations:
job native.2 complete (1 bytes transferred)

(/home/brian/stage.txt)
job native.3 pending (1 bytes) (/home/brian/stage.txt)

Dedicated Storage Manager Disk Usage: 0 of 592235 MB
Cluster Query URL: exec://$TOOLSDIR/grid/cluster.query.dstage.pl
Partition: SHARED Rack/Slot: ---
Flags: rmdetected
RM[data]: TYPE=NATIVE
EffNodeAccessPolicy: SHARED
Total Time: 00:12:15 Up: 00:12:15 (100.00%) Active: 00:00:00 (0.00%)
Reservations: ---

l mdiag -n: Displays the state of the storage node.

> mdiag -n
compute node summary
Name State Procs Memory Opsys
compute1 Idle 4:4 3006:3006 linux
compute2 Down 0:4 3006:3006 linux
scp://keche//tmp/ Idle 0:0 0:0 -
----- --- 4:8 6012:6012 -----
Total Nodes: 3 (Active: 0 Idle: 2 Down: 1)

l checkjob -v: Displays the status of the staging request.

The remaining time and size of the file information is currently not used. The
information should only be used to see file locations and whether the file has
been staged or not.

> checkjob -v jobid
...
Stage-In Requirements:
localhost:/home/brian/stage.txt => keche:/tmp/staged.txt size:0B

status:[NONE] remaining:00:00:01
Transfer URL: file:///home/brian/stage.txt,ssh://keche/tmp/staged.txt

...

Chapter 24: Moab Workload Manager for Grids

989 24.12 Grid Data Management

24.13 Accounting and Allocation Management 990

To ensure that SCP key authentication is properly configured, the following conditions must
be met:

l Moab is running as root.

l You are able to issue the following command as the root user without being
prompted for a password:

su - <DATASPACEUSER> -c "/usr/bin/ssh <destination host> -l <DATASPACEUSER> 'df
-k //tmp/ 2>&1 || echo FAILED'"

l You can SSH <destination host> without a password.

l The dataSpaceLocalUser and dataSpaceMappedUser variables in your
/opt/moab/etc/config.dstage.pl script are set to the same username you
assigned through <DATASPACEUSER>.

24.13 Accounting and Allocation Management

In this topic:

24.13.1 Peer-to-Peer Accounting Overview - page 990
24.13.2 Peer-to-Peer Allocation Management - page 991

24.13.1 Peer-to-Peer Accounting Overview
When Moab is used to manage resources across multiple clusters, there is a greater need
to track and enforce the resource sharing agreements between the resource principals.

The Moab Accounting Manager is an accounting management system that provides usage
tracking, charge accounting, and allocation enforcement for resource or service usage in
cloud and technical computing environments. It acts like a bank in which credits are
deposited into accounts with constraints designating which entities can access the account.
As resources or services are utilized, accounts are charged and usage recorded. MAM
supports familiar operations such as deposits, withdrawals, transfers, and refunds and
provides balance and usage feedback to users, managers, and system administrators. See
6.5 Accounting, Charging, and Allocation Management - page 419 for more information.

MAM can be used as a real-time debiting system where jobs are charged at the moment of
completion. When used in a multi-site (grid) environment, MAM facilitates trust by allowing
lending organizations to manage what the costing rules are for usage of their resources
and job submitters to determine how much their job will cost them before they start,

Chapter 24: Moab Workload Manager for Grids

ensuring all parties can agree to the transaction and giving each party a first-hand
accounting record.

If the clusters are within a common administrative domain and have a common user space,
then a single Moab Accounting Manager will suffice to manage the project allocation and
accounting. This works best in Moab Grid Control / Moab Grid Member grids.

24.13.2 Peer-to-Peer Allocation Management
The following steps provide an example of setting up the Moab Accounting Manager to
manage the allocation and accounting for a multiple cluster grid within a single
administrative domain.

First you will need to install Moab Accounting Manager and its database on one or more
head nodes. The following is a sample installation. See 'Installing Moab Accounting
Manager' in the Moab Installation and Configuration Guide for more information.

Install Prerequisites (Perl with suidperl, PostgreSQL, libxml2, ...)
[root] yum install perl perl-suidperl postgresql postgresql-libs postgresql-devel
postgresql-server libxml2 libxml2-devel ncurses-devel readline-devel openssl
Unpack the tarball
[root] passwd adaptive
[adaptive] mkdir ~/src
[adaptive] cd ~/src
[adaptive] gzip -cd mam-10.0.0.tar.gz | tar xvf -
[adaptive] cd mam-10.0.0
Install
[adaptive] ./configure
[adaptive] make
[root] make deps
[root] make install
Configure, create and bootstrap the database
[root] service postgresql initdb
[postgres] echo "host all all 192.168.1.1 255.255.255.255
trust" >>var/lib/pgsql/data/pg_hba.conf
[postgres] /usr/local/pgsql/bin/postmaster -i -D /usr/local/pgsql/data >var/log/pgsql
2>&1 &
[postgres] createuser adaptive
[adaptive] createdb mam
[adaptive] psql mam < hpc.sql
Startup the mam server daemon
[root] cp contrib/init.d/mam/redhat /etc/init.d/mam
[root] chmod +x /etc/init.d/mam
[root] service mam start

Related Topics

l Grid Credential Management

Chapter 24: Moab Workload Manager for Grids

991 24.13 Accounting and Allocation Management

24.14 Grid Security 992

24.14 Grid Security

Secret Key Based Server Authentication
Secret key based security is required in order for the grid to work. It is enabled in the
moab-private.cfg file. Configuration of moab-private.cfg is covered throughout
the grid configuration documentation, as well as in Appendix E: Security.

24.15 Grid Diagnostics and Validation

In this topic:

24.15.1 Peer Management Overview - page 992
24.15.2 Peer Diagnostic Overview - page 992

24.15.1 Peer Management Overview
l Use mdiag -R to view interface health and performance/usage statistics.

l Use mrmctl to enable/disable peer interfaces.

l Use mrmctl -m to dynamically modify/configure peer interfaces.

24.15.2 Peer Diagnostic Overview
l Use mdiag -R to diagnose general RM interfaces.

l Use mdiag -S to diagnose general scheduler health.

l Use mdiag -R -V job <RMID> to diagnose peer-to-peer job migration:

> mdiag -R -V job peer1

l Use mdiag -R -V data <RMID> to diagnose peer-to-peer data staging.

l Use mdiag -R -V cred <RMID> to diagnose peer-to-peer credential mapping.

Chapter 24: Moab Workload Manager for Grids

25.1 Data Staging Example 993

Chapter 25: Data Staging

Sometimes you might need a job to process data that resides at another site. With the
proper configuration, you can submit your job with the requirement that it copies data
from the external site to yours and, if needed, copy the job's resulting data out to the
external site for its owner to use. Data staging is an out-of-band method of moving data
without reserving compute nodes or other resources for it.

In this chapter:

25.1 Data Staging Example 993
25.2 Data Staging Tasks 995

25.2.1Configuring the SSH Keys for the Data Staging Transfer Script 995
25.2.2 Configuring Data Staging 998
25.2.3 Staging Data to or from a Shared File System 1000
25.2.4Staging Data to or from a Shared File System in a Grid 1005
25.2.5 Staging Data To or From a Compute Node 1011
25.2.6 Configuring Data Staging with Advanced Options 1016

25.3 Data Staging References 1019
25.3.1 Sample User Job Script 1019

25.1 Data Staging Example

In the example below, which will appear throughout the chapter, a university researcher
needs the results of tests done at a hospital to run his job. User davidharris on the
student server of the university submits a job called Moab.1 that requires several files
stored by user annasmith on the research server of the hospital. davidharris
submitted Moab.1 with certain options in place that instruct Moab to copy the files to the
/student/davidharris/research/patientrecords/ directory on the
student server prior to starting the job.

Chapter 25: Data Staging

Image 25-1: Data Staging Example

Moab currently supports the following data staging use cases: 1) Staging data to or from a
shared file system, 2) Staging data to or from local node storage on a single compute node,
and 3) Staging data to or from a shared file system on an unspecified cluster – resolved at
job migration – in a grid configuration.

Before you can submit data staging jobs, you must configure certain generic metrics in
your partitions, job templates, and the data staging submit filter for data staging
scheduling, throttling, and policies.

Moab uses Linux file transfer utilities to stage the data and includes data staging reference
scripts that support the scp and rsync Linux file transfer utilities. The scripts will work for
standard installations, but you can customize the script to support data staging to and from
an external staging server, the Moab server itself, or a local compute node, depending on
your implementation. You can also customize your own script for other file transfer utilities,
such as Aspera.

Once you configure your system to support data staging, you can begin creating data
staging jobs by attaching the --stagein, --stageinfile, --stageinsize, --
stageout, --stageoutfile, and --stageoutsize options to your msub
commands. See Staging Data for more information.

Related Topics

l 4.7.30 msub - page 239

l 4.7.30.H Applying the msub Submit Filter - page 259

Chapter 25: Data Staging

994 25.1 Data Staging Example

25.2 Data Staging Tasks 995

25.2 Data Staging Tasks

In this section:

Configuring the SSH Keys for the Data Staging Transfer Script
Configuring Data Staging
Staging Data to or from a Shared File System
Staging Data to or from a Shared File System in a Grid
Staging Data To or From a Compute Node
Configuring Data Staging with Advanced Options

25.2.1 Configuring the SSH Keys for the Data Staging Transfer
Script
For data staging to work correctly, you must configure SSH keys to allow the data staging
scripts to run without passphrases. In the sample data staging server configuration shown
in the image below, davidharris on the student server stages data from the source
server student to the destination server labs. The computation occurs on the labs
server before Moab stages the output data from labs back to student.

Chapter 25: Data Staging

The image below demonstrates the SSH connections necessary and how you should
configure your SSH keys:

Image 25-2: Data Staging Server Configuration

For more details on generating keys, see the ssh-keygen man page and SSH login without
password.

To Configure the SSH Keys for the Data Staging Transfer Script

1. Generate a new SSH key on the Moab server (university) if one does not already
exist. To do so, run each of the following steps:
a. Run ssh-keygen to generate a public and private rsa key pair:

davidharris@university]$ ssh-keygen

b. Enter the name of the file where you want to store the key, or you can accept the
default location:

/home/davidharris/.ssh/id_rsa

Chapter 25: Data Staging

996 25.2 Data Staging Tasks

http://www.openbsd.org/cgi-bin/man.cgi?query=ssh-keygen
http://www.linuxproblem.org/art_9.html
http://www.linuxproblem.org/art_9.html

25.2 Data Staging Tasks 997

c. When prompted for a passphrase, leave it blank and press Enter. Repeat when
prompted to retype passphrase.

2. Install the public key on the source and destination hosts. Note that in this example the
source host is student and the destination host is labs:
a. Copy the university public key to student. Answer yes to continue

connecting:

[davidharris@university]$ ssh-copy-id -i ~/.ssh/id_rsa.pub student

b. Copy the university public key to labs. Answer yes to continue connecting:

[davidharris@university]$ ssh-copy-id -i ~/.ssh/id_rsa.pub labs

The next two steps generate a key-pair for each node. It is acceptable to generate
a single key-pair and install it on each node. It does not matter where the key-pair
is generated, so long as it is compatible with the SSH client/server.

3. Generate a key pair on the source host (student) and install the public key generated
to the destination host (labs). When prompted for a passphrase, leave it blank and
press Enter. Repeat when prompted to retype passphrase.

[davidharris@student]$ ssh-keygen
[davidharris@student]$ ssh-copy-id -i ~/.ssh/id_rsa.pub labs

4. Generate a key pair on the destination host (labs) and install the public key generated
to the source host (student). When prompted for a passphrase, leave it blank and
press Enter. Repeat when prompted to retype passphrase.

[davidharris@labs]$ ssh-keygen
[davidharris@labs]$ ssh-copy-id -i ~/.ssh/id_rsa.pub student

5. Ensure that each user who will run data staging jobs has read and write permissions on
each source and destination server.

6. Test the configuration. To do so:
a. Install the modules required to run the data staging scripts. python-paramiko is

required for data staging, but python-mock is only required if you intend to run
the unit test:

> yum install python-paramiko python-mock

b. Transfer a file from the source host to the destination host to verify that the keys
work for the users configured. To do so, run /opt/moab/tools/data-
staging/ds_move_scp --test=<source>%<destination> if you use
scp or /opt/moab/tools/data-staging/ds_move_rsync --
test=<source>%<destination> script if you use rsync.
<source>%<destination> is configured the same way as the --stagein and

Chapter 25: Data Staging

--stageout options for msub; for help configuring your source and destination,
see Staging a File or Directory.

[davidharris@university]$ /opt/moab/tools/data-staging/ds_move_rsync --
test=davidharris@student:/tmp/test%davidharris@labs:/tmp

c. In the same way, transfer a file from the destination host to the source host to verify
that the keys work for the users configured:

[davidharris@university]$ /opt/moab/tools/data-staging/ds_move_rsync --
test=davidharris@labs:/tmp/test%davidharris@student:/test_processed

Related Topics

l 25.1 Data Staging Example - page 993

l 25.2.2 Configuring Data Staging - page 998

25.2.2 Configuring Data Staging
You must modify your Moab configuration to enable data staging. In addition to the
configuration steps described below, you might also consider customizing the configuration
(including the associated scripts) to meet your site's specific needs.

For advanced configuration steps and options, see Configuring Data Staging with Advanced
Options.

To Configure Data Staging
1. Verify that your firewall and network are correctly configured to allow the scripts to

operate as designed.

2. If you have not already done so, install the modules required to run the data staging
scripts. python-paramiko is required for data staging, but python-mock is only
required if you intend to run the unit test.

> yum install python-paramiko python-mock

3. If you have not already, follow the instructions found in Configuring the SSH Keys for
the Data Staging Transfer Script.

4. Ensure that the data staging scripts are installed on your system. To do so, list the
contents of the /opt/moab/tools/data-staging directory. You should see the
data staging README file, reference scripts, and other related files.

Chapter 25: Data Staging

998 25.2 Data Staging Tasks

25.2 Data Staging Tasks 999

> ls -l /opt/moab/tools/data-staging

You can copy and modify the reference scripts and configuration files to meet your
specific needs. See the README file packaged in the data-staging directory for
information about modifying these files.

5. Open your moab.cfg file for editing and do each of the following tasks:

a. Configure the data staging msub filter, located in /opt/moab/tools/data-
staging by default, as a client-side filter. See Applying the msub Submit Filter for
more information.

SUBMITFILTER /opt/moab/tools/data-staging/ds_filter

The data staging filter checks the msub argument syntax to verify that the
arguments make sense and are consistent; attempts a dry run connection via
SSH and the file transfer utility to ensure that keys exist for the user on the
necessary systems; and attempts to determine the size of the data that will be
transferred.

You can customize the script to meet your specific needs; the file contains detailed
comments illustrating its default behavior to facilitate its modification. If you replace
or modify the submit filter, it is your responsibility to ensure that the same
functionality described in the paragraph above is present in your filter.

Note that this filter has the DEFAULT_TEMPLATE name, which should match the
name of the master data staging template in moab.cfg. For more information, see
Configuring Data Staging with Advanced Options.

b. Set the data staging bandwidth gmetric (DATASTAGINGBANDWIDTH_MBITS_
PER_SEC) on each partition associated with an RM to the rate at which its network
to be used for data staging transfers data in megabits per second (see Per-Partition
Settings for more information). Moab will use the specified rate and the data staging
size specified at job submission (see Stage in or out File Size for more information) to
determine how long staging the data will take and to schedule the job as soon after
data staging completes as possible.

Example 25-1: Non-grid

RMCFG[torque] Type=pbs
PARCFG[torque] GMETRIC[DATASTAGINGBANDWIDTH_MBITS_PER_SEC]=58

Partition torque has a transfer rate of 58 megabits per second. Moab uses the rate when it estimates the
time it will take to stage data in and determine when to schedule the job that will use the data.

Example 25-2: Grid

RMCFG[m1] type=Moab
PARCFG[m1] GMETRIC[DATASTAGINGBANDWIDTH_MBITS_PER_SEC]=100

Partition m1 has a transfer rate of 100 megabits per second. Moab uses the rate when it estimates the time

Chapter 25: Data Staging

it will take to stage data in and determine when to schedule the job that will use the data.

c. Set the bandwidth generic resource on all nodes to limit the total number of
concurrent data staging jobs in your system:

NODECFG[GLOBAL] GRES=bandwidth:10

Data staging jobs can use up to 10 units of bandwidth on the system. You can specify the number of units
consumed by each data staging job when you configure the data staging job templates.

d. Configure moab with 'JOBMIGRATEPOLICY JUSTINTIME'.

DataStaging requires 'JOBMIGRATEPOLICY JUSTINTIME' to ensure the
workflow job IDs are not altered upon submission.

6. Install the msub client filter on all client submission hosts.

Related Topics

l 25.1 Data Staging Example - page 993

25.2.3 Staging Data to or from a Shared File System
In the most common data staging use case, the cluster utilizes a shared file system between
all compute nodes. This type of data staging makes data stored outside of the cluster
available to a job that will run on any set of nodes in the cluster. At the time of submission,
you must specify where Moab will obtain the data with a username, host name, and path to
a file or directory and where on the shared file system Moab will store the data. After the
job runs, you can also copy data from the shared file system back to a remote file system.

Chapter 25: Data Staging

1000 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1001

Image 25-3: Data Staging To or From a Shared File System

To Stage Data to or from a Shared File System

1. If you have not already done so, configure your SSH keys and moab.cfg to support
data staging. See Configuring the SSH Keys for the Data Staging Transfer Script and
Configuring Data Staging for more information.

2. Create your job templates for data staging jobs in moab.cfg. The templates in the
example below create a compute job that stages data in before it starts and stages data

Chapter 25: Data Staging

out when it completes. For more information about creating job templates, see About
Job Templates.
a. Create a selectable master template, called ds in the example below, that creates a

stage in and stage out system job. This name should match the DEFAULT_
TEMPLATE value in ds_config.py. See Configuring Data Staging with Advanced
Options for more information.

b. For the data staging in job template, called dsin in the example below, specify that
it will create a data staging job by setting DATASTAGINGJOB to TRUE. Note that the
name of this job template must match the name of the data stage in job template
referenced in the master template.

c. Set the bandwidth GRES to the amount of bandwidth a single stage in job should use.
This indicates how many of the bandwidth units specified with NODECFG[GLOBAL]
in Configuring Data Staging a data staging job with this template should consume.

d. Add FLAGS=GRESONLY to indicate that this data staging job does not require any
compute resources.

e. Create a trigger that executes the ds_move_scp, ds_move_rsync, or ds_
move_multiplex script, depending on which file transfer utility you use. Set the
attacherror, objectxmlstdin, and user FLAGs to attach any trigger stderr
as a message to the job, pass the job XML to the script, and indicate that the script
should run as the job's user, respectively.

If you use the rsync protocol, you can configure your data staging jobs to report
the actual number of bytes transferred and the total data size to be
transferred. To do so, use the Sets attribute to ^BYTES_IN.^DATA_SIZE_
IN for stage in jobs and ^BYTES_OUT.^DATA_SIZE_OUT for stage out jobs.
For example, a stage in trigger would look like the following:

JOBCFG[dsin]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stagein",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
IN.^DATA_SIZE_IN

A stage out trigger would look like the following:

JOBCFG[dsout]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
OUT.^DATA_SIZE_OUT

These variables show up as events if you set your WIKIEVENTS parameter to
TRUE.

f. Create the stage out job, called dsout in the example below, by repeating steps 2b -
2e in a new template. In the example below, this template is called dsout. Note that

Chapter 25: Data Staging

1002 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1003

the name of this job template must match the name of the data stage out job
template referenced in the data staging master template.

JOBCFG[ds] TEMPLATEDEPEND=AFTEROK:dsin TEMPLATEDEPEND=BEFORE:dsout
SELECT=TRUE

JOBCFG[dsin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsin] GRES=bandwidth:2
JOBCFG[dsin] FLAGS=GRESONLY
JOBCFG[dsin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:1
JOBCFG[dsout] FLAGS=GRESONLY
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stageout",Flags=attacherror:objectxmlstdin:user

3. Create the job using msub, adding resources and specifying a script as you normally
would. Then configure Moab to stage the data for it. To do so:

a. At the end of the command, use the --stagein/--stageout option and/or --
stageinfile/--stageoutfile option.

l The --stagein/--stageout option lets you specify a single file or directory
to stage in or out. You must set the option equal to
<source>%<destination>, where <source> and <destination> are
both [<user>@]<host>:/<path>/[<fileName>]. See Staging a File or
Directory for format and details.

If the destination partition is down or does not have configured resources,
the data staging workflow submission will fail.

> msub --stagein=annasmith@labs:/patient-
022678/%davidharris@university:/davidharris/research/patientrecords
<jobScript>

Moab copies the /patient-022678 directory from the hospital's labs server to the university
cluster where the job will run prior to job start.

l The --stageinfile/--stageoutfile option lets you specify a file that
contains the file and/or directory name(s) to stage in or out. You must set the
option equal to <path>/<fileName> of the file. The file must contain at least
one line with this format: <source>%<destination>, where both
<source> and <destination> are [<user>@]<host>:/<path>
[<fileName>]. See Staging Multiple Files or Directories for more information.

If the destination partition is down or does not have configured resources,
the data staging workflow submission will fail.

Chapter 25: Data Staging

> msub --stageinfile=/davidharris/research/recordlist <jobScript>

Moab copies all files specified in the /davidharris/research/recordlist file to the cluster
where the job will run prior to job start.

/davidharris/research/recordlist:

annasmith@labs:/patient-
022678/tests/blood02282014%davidharris@university:/davidharris/research/patie
ntrecords/blood02282014
annasmith@labs:/patient-
022678/visits/stats02032014%davidharris@university:/davidharris/research/pati
entrecords/stats02032014
annasmith@labs:/patient-
022678/visits/stats02142014%davidharris@university:/davidharris/research/pati
entrecords/stats02142014
annasmith@labs:/patient-
022678/visits/stats02282014%davidharris@university:/davidharris/research/pati
entrecords/stats02282014
annasmith@labs:/patient-
022678/visits/stats03032014%davidharris@university:/davidharris/research/pati
entrecords/stats03032014
annasmith@labs:/patient-
022678/visits/stats03142014%davidharris@university:/davidharris/research/pati
entrecords/stats03142014
annasmith@labs:/patient-
022678/visits/stats03282014%davidharris@university:/davidharris/research/pati
entrecords/stats03282014

Moab copies the seven patient record files from the hospital's labs server to the university cluster
where the job will run prior to job start.

b. The --stageinsize/--stageoutsize option lets you specify the estimated
size of the files and/or directories to help Moab more quickly and accurately
calculate the amount of time it will take to stage the data and therefore schedule
your job correctly. If you are staging data out, then setting --stageoutsize is
required. If you provide an integer, Moab will assume the number is in megabytes.
To change the unit, add another suffix. See Stage in or out File Size for more
information.

> msub --stageinfile=/davidharris/research/recordlist --stageinsize=100
<jobScript>

Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes,
from the biology node to the host where the job will run prior to job start.

4. To see the status, errors, and other details associated with your data staging job, run
checkjob -v. See checkjob for details.

Related Topics

l 25.1 Data Staging Example - page 993

l 25.2.2 Configuring Data Staging - page 998

l 25.2.6 Configuring Data Staging with Advanced Options - page 1016

l 25.2.4 Staging Data to or from a Shared File System in a Grid - page 1005

Chapter 25: Data Staging

1004 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1005

l 25.2.5 Staging Data To or From a Compute Node - page 1011

l 25.3.1 Sample User Job Script - page 1019

25.2.4 Staging Data to or from a Shared File System in a Grid
You can stage data in an environment where multiple instances of Moab run in a grid
configuration. For this type of data staging, each cluster utilizes a shared file system with all
compute nodes. This type of data staging will make data available to a job that will run on a
set of nodes in one of the clusters in the grid. You must specify where the remote data can
be obtained with a username, host name, and path to a file or directory and where on the
shared storage Moab will store the data. The remote data source location is known at job
submission time, but you must use the $CLUSTERHOST placeholder for the host name of
the data transfer server on which the job will be scheduled. After the job runs, you can also
copy data from the cluster shared file system to a remote file system.

Note that you cannot stage data to or from a local compute node with its own local storage
in a grid environment.

Chapter 25: Data Staging

Image 25-4: Data Staging in a Grid

To Stage Data to or from a Shared File System in a Grid

1. If you have not already done so, configure your SSH keys and moab.cfg to support
data staging. See Configuring the SSH Keys for the Data Staging Transfer Script and
Configuring Data Staging for more information.

2. Create your job templates for data staging jobs in moab.cfg. The templates in the
example below create a compute job that stages data in before it starts and stages data
out when it completes. For more information about creating job templates, see About
Job Templates.
a. Create a selectable master template, called ds in the example below, that creates a

stage in and stage out system job. This name should match the DEFAULT_
TEMPLATE value in ds_config.py. For more information, see Configuring Data
Staging with Advanced Options.

Chapter 25: Data Staging

1006 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1007

b. For the data staging in job template, called dsin in the example below, specify that
it will create a data staging job by setting DATASTAGINGJOB to TRUE. Note that the
name of this job template must match the name of the data stage in job template
referenced in the master template.

c. Set the staging job template bandwidth GRES to the amount of bandwidth a single
stage in job should use. This indicates how many of the bandwidth units specified
with NODECFG[GLOBAL] in Configuring Data Staging a data staging job with this
template should consume.

d. Set JOBMIGRATEPOLICY to JUSTINTIME.
e. Add FLAGS=GRESONLY to indicate that this data staging job does not require any

compute resources.

f. Create a trigger that executes the ds_move_scp, ds_move_rsync, or ds_
move_multiplex script, depending on which file transfer utility you use. Set the
attacherror, objectxmlstdin, and user FLAGs to attach any trigger stderr
as a message to the job, pass the job XML to the script, and indicate that the script
should run as the job's user, respectively.

If you use the rsync protocol, you can configure your data staging jobs to report
the actual number of bytes transferred and the total data size to be
transferred. To do so, use the Sets attribute to ^BYTES_IN.^DATA_SIZE_
IN for stage in jobs and ^BYTES_OUT.^DATA_SIZE_OUT for stage out jobs.
For example, a stage in trigger would look like the following:

JOBCFG[dsin]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stagein",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
IN.^DATA_SIZE_IN

A stage out trigger would look like the following:

JOBCFG[dsout]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
OUT.^DATA_SIZE_OUT

These variables show up as events if you set your WIKIEVENTS parameter to
TRUE.

g. Create the stage out job, called dsout in the example below, by repeating steps 2b -
2f in a new template. In the example below, this template is called dsout. Note that
the name of this job template must match the name of the data stage out job
template referenced in the master template.

JOBCFG[ds] TEMPLATEDEPEND=AFTEROK:dsin TEMPLATEDEPEND=BEFORE:dsout
SELECT=TRUE

Chapter 25: Data Staging

JOBCFG[dsin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsin] GRES=bandwidth:2
JOBCFG[dsin] FLAGS=GRESONLY
JOBCFG[dsin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:2
JOBCFG[dsout] FLAGS=GRESONLY
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stageout",Flags=attacherror:objectxmlstdin:user

3. Create the job using msub, adding resources and specifying a script as you normally
would. Then configure Moab to stage the data for it. To do so:

a. At the end of the command, use the --stagein/--stageout option and/or --
stageinfile/--stageoutfile option.

l The --stagein/--stageout option lets you specify a single file or directory
to stage in or out. You must set the option equal to
<source>%<destination>, where <source> and <destination> are
both [<user>@]<host>:/<path>/[<fileName>]. See Staging a File or
Directory for format and details.
Note that if you do not know the cluster where the job will run but want the data
staged to the same location, you can use the $CLUSTERHOST variable in place of
a host. If you choose to use the $CLUSTERHOST variable, you must first
customize the ds_config.py file. For more information, see Configuring the
$CLUSTERHOST Variable.

If the destination partition is down or does not have configured resources,
the data staging workflow submission will fail.

> msub ... --stagein=annasmith@labs:/patient-
022678/%\$CLUSTERHOST:/davidharris/research/patientrecords <jobScript>

Moab copies the /patient-022678 directory from the hospital's labs server to the cluster where
the job will run prior to job start.

l The --stageinfile/--stageoutfile option lets you specify a file that
contains the file(s) and directory(-ies) to stage in or out. You must set the option
equal to <path>/<fileName> of the file. The file must contain at least one line
with this format: [<user>@]<host>:/<path>[<fileName>]. See Staging
Multiple Files or Directories for more information.

If the destination partition is down or does not have configured resources,
the data staging workflow submission will fail.

Chapter 25: Data Staging

1008 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1009

> msub ... --stageinfile=/davidharris/research/recordlist <jobScript>

Moab copies all files specified in the /davidharris/research/recordlist file to the cluster
where the job will run prior to job start.

/davidharris/research/recordlist:

annasmith@labs:/patient-
022678/tests/blood02282014%$CLUSTERHOST:/davidharris/research/patientrecords/
blood02282014
annasmith@labs:/patient-
022678/visits/stats02032014%$CLUSTERHOST:/davidharris/research/patientrecords
/stats02032014
annasmith@labs:/patient-
022678/visits/stats02142014%$CLUSTERHOST:/davidharris/research/patientrecords
/stats02142014
annasmith@labs:/patient-
022678/visits/stats02282014%$CLUSTERHOST:/davidharris/research/patientrecords
/stats02282014
annasmith@labs:/patient-
022678/visits/stats03032014%$CLUSTERHOST:/davidharris/research/patientrecords
/stats03032014
annasmith@labs:/patient-
022678/visits/stats03142014%$CLUSTERHOST:/davidharris/research/patientrecords
/stats03142014
annasmith@labs:/patient-
022678/visits/stats03282014%$CLUSTERHOST:/davidharris/research/patientrecords
/stats03282014

Moab copies the seven patient record files from the hospital's labs server to the cluster where the job
will run prior to job start.

b. The --stageinsize/--stageoutsize option lets you specify the estimated
size of the files and/or directories to help Moab more quickly and accurately
calculate the amount of time it will take to stage the data and therefore schedule
your job correctly. If you used the $CLUSTERHOST variable to stage in, then setting
--stageinsize is required. --stageoutsize is always required for staging
data out. If you provide an integer, Moab will assume the number is in megabytes. To
change the unit, add another suffix. See Stage in or out File Size for more
information.

> msub ... --stageinfile=/davidharris/research/recordlist --stageinsize=100
<jobScript>

Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes,
from the biology node to the host where the job will run prior to job start.

4. To see the status, errors, and other details associated with your data staging job, run
checkjob -v. See checkjob for details.

Related Topics

l 25.1 Data Staging Example - page 993

l 25.2.2 Configuring Data Staging - page 998

Chapter 25: Data Staging

l 25.2.6 Configuring Data Staging with Advanced Options - page 1016

l 25.3.1 Sample User Job Script - page 1019

25.2.4.A Configuring the $CLUSTERHOST Variable
When you submit a data staging job in a grid environment, you can use the
$CLUSTERHOST variable instead of specifying a destination if you do not know the cluster
where the job will run but want the data staged to the same location. Before the variable
will work correctly, you must first configure it by customizing the ds_config.py script
to match your unique system.

Use Case

In a grid with three clusters, you have a partition named master where you want all
data staged to a host named gridheadNAS; a partition named csdept where you
want all data staged to a host named fs001.cs.example.edu; and a partition
named lab where you want all data staged to a host named bigfilesystem.

To Configure the $CLUSTERHOST Variable

1. Open the ds_config.py file for modification. It is located in
/opt/moab/tools/data-staging/ by default.

[moab]$ vi /opt/moab/tools/data-staging/ds_config.py

2. Locate the PARTITION_TO_HOST parameter:

...
PARTITION_TO_HOST = {"partition_1_name":"cluster_1_staging_hostname",

"partition_2_name":"cluster_2_staging_hostname",
"partition_3_name":"cluster_3_staging_hostname"}

...

3. Replace the partition names and associated cluster hostnames with those that match
your system. For the use case provided above, you would customize it the following
way:

...
PARTITION_TO_HOST = {"master":"gridheadNAS",

"csdept":"fs001.cs.example.edu",
"lab":"bigfilesystem"}

...

Chapter 25: Data Staging

1010 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1011

Related Topics

l 25.2.4 Staging Data to or from a Shared File System in a Grid - page 1005

25.2.5 Staging Data To or From a Compute Node
You can stage data to or from a local compute node in an environment where each node on
the cluster has local storage. This type of data staging will make data stored outside the
cluster available to a job that will run on a single node in the cluster. You must specify the
username, host name, and path to a file or directory and a location on the compute node
where Moab will store the data. You will supply the remote data source location at job
submission time, but you must use the $JOBHOST placeholder for the name of the
compute node. After the job runs, you can also copy data from the local file system to a
remote file system.

Image 25-5: Data Staging To or From a Local Compute Node

Before staging data to or from a local compute node, follow the procedure in Configuring
Data Staging.

To Stage Data to or from a Local Compute Node

1. If you have not already done so, configure your SSH keys and moab.cfg to support
data staging. See Configuring the SSH Keys for the Data Staging Transfer Script and
Configuring Data Staging for more information.

Chapter 25: Data Staging

2. Create your job templates for data staging jobs in moab.cfg. The templates in the
example below create a compute job that stages data in before it starts and stages data
out when it completes. For more information about creating job templates, see About
Job Templates.

a. Create a selectable master template, called ds in the example below, that creates a
stage in and stage out system job. This name should match the DEFAULT_
TEMPLATE value in ds_config.py. For more information, see Configuring Data
Staging with Advanced Options.

b. For the data staging in job template, called dsin in the example below, specify that
it will create a data staging job by setting DATASTAGINGJOB to TRUE. Note that the
name of this job template must match the name of the data stage in job template
referenced in the master template.

c. Set the staging job template bandwidth GRES to the amount of bandwidth a single
stage in job should use. This indicates how many of the bandwidth units specified
with NODECFG[GLOBAL] in Configuring Data Staging a data staging job with this
template should consume.

d. For local node data staging it is important that the data staging job has the entire
node to itself. To prevent Moab from scheduling another job on the node at the same
time as the data staging job, set the NODEACCESSPOLICY to SINGLEJOB in the
staging job template.

e. Add INHERITRES=TRUE to reserve the compute node for the data staging job to
prevent other compute jobs from using the node at the same time and creating input,
output, and disk conflicts with the data staging job.

f. Create a trigger that executes the ds_move_scp, ds_move_rsync, or ds_
move_multiplex script, depending on which file transfer utility you use. Set the
attacherror, objectxmlstdin, and user FLAGs to attach any trigger stderr
as a message to the job, pass the job XML to the script, and indicate that the script
should run as the job's user, respectively.

Chapter 25: Data Staging

1012 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1013

If you use the rsync protocol, you can configure your data staging jobs to report
the actual number of bytes transferred and the total data size to be
transferred. To do so, use the Sets attribute to ^BYTES_IN.^DATA_SIZE_
IN for stage in jobs and ^BYTES_OUT.^DATA_SIZE_OUT for stage out jobs.
For example, a stage in trigger would look like the following:

JOBCFG[dsin]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stagein",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
IN.^DATA_SIZE_IN

A stage out trigger would look like the following:

JOBCFG[dsout]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
OUT.^DATA_SIZE_OUT

These variables show up as events if you set your WIKIEVENTS parameter to
TRUE.

g. Create the stage out job, called dsout in the example below, by repeating steps 2b -
2f in a new template. In the example below, this template is called dsout. Note that
the name of this job template must match the name of the data stage out job
template referenced in the data staging master template.

JOBCFG[ds] TEMPLATEDEPEND=AFTEROK:dsin TEMPLATEDEPEND=BEFORE:dsout
SELECT=TRUE

JOBCFG[dsin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsin] GRES=bandwidth:2
JOBCFG[dsin] NODEACCESSPOLICY=SINGLEJOB
JOBCFG[dsin] INHERITRES=TRUE
JOBCFG[dsin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:1
JOBCFG[dsout] NODEACCESSPOLICY=SINGLEJOB
JOBCFG[dsout] INHERITRES=TRUE
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stageout",Flags=attacherror:objectxmlstdin:user

3. Create the job using msub, adding resources and specifying a script as you normally
would. Then configure Moab to stage the data for it. To do so:

a. If the compute job does not use all of the node's processors, Moab could schedule
another job on the node at the same time. If you did not set
NODEACCESSPOLICY to SINGLEJOB in your moab.cfg, set the policy for this
job by adding -l naccesspolicy=singlejob to your msub command.

> msub -l naccesspolicy=singlejob... <jobScript>

Chapter 25: Data Staging

b. At the end of the command, use the --stagein/--stageout option and/or --
stageinfile/--stageoutfile option.

l The --stagein/--stageout option lets you specify a single file or directory
to stage in or out. You must set the option equal to
<source>%<destination>, where <source> and <destination> are
both [<user>@]<host>:/<path>/[<fileName>]. See Staging a File or
Directory for format and details.

If the destination partition is down or does not have configured resources,
the data staging workflow submission will fail.

If you do not know the host where the job will run but want the data staged to the
same location, you can use the $JOBHOST variable in place of a host.

> msub --stagein=annasmith@labs:/patient-
022678/%\$JOBHOST:/davidharris/research/patientrecords <jobScript>

Moab copies the /patient-022678 directory from the hospital's labs server to the node where
the job will run prior to job start.

l The --stageinfile/--stageoutfile option lets you specify a file that
contains the file and directory name(s) to stage in or out. You must set the option
equal to <path>/<fileName>% of the file. The file must contain at least one
line with this format: <source>%<destination>, where <source> and
<destination> are both [<user>@]<host>:/<path>[/<fileName>].
See Staging Multiple Files or Directories for more information.

If the destination partition is down or does not have configured resources,
the data staging workflow submission will fail.

> msub --stageinfile=/davidharris/research/recordlist <jobScript>

Moab copies all files specified in the /davidharris/research/recordlist file to the host
where the job will run prior to job start.

/davidharris/research/recordlist:

annasmith@labs:/patient-
022678/tests/blood02282014%$JOBHOST:/davidharris/research/patientrecords/bloo
d02282014
annasmith@labs:/patient-
022678/visits/stats02032014%$JOBHOST:/davidharris/research/patientrecords/sta
ts02032014
annasmith@labs:/patient-
022678/visits/stats02142014%$JOBHOST:/davidharris/research/patientrecords/sta
ts02142014

Chapter 25: Data Staging

1014 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1015

annasmith@labs:/patient-
022678/visits/stats02282014%$JOBHOST:/davidharris/research/patientrecords/sta
ts02282014
annasmith@labs:/patient-
022678/visits/stats03032014%$JOBHOST:/davidharris/research/patientrecords/sta
ts03032014
annasmith@labs:/patient-
022678/visits/stats03142014%$JOBHOST:/davidharris/research/patientrecords/sta
ts03142014
annasmith@labs:/patient-
022678/visits/stats03282014%$JOBHOST:/davidharris/research/patientrecords/sta
ts03282014

Moab copies the seven patient record files from the hospital's labs server to the host where the job
will run prior to job start.

c. The --stageinsize/--stageoutsize option lets you specify the estimated
size of the files and/or directories to help Moab more quickly and accurately
calculate the amount of time it will take to stage the data and therefore schedule
your job correctly. If you used the $JOBHOST variable to stage in, then setting --
stageinsize is required. --stageoutsize is always required for staging data
out. If you provide an integer, Moab will assume the number is in megabytes. To
change the unit, add another suffix. See Stage in or out File Size for more
information.

> msub --stageinfile=/davidharris/research/recordlist --stageinsize=100
<jobScript>

Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes,
from the biology node to the host where the job will run prior to job start.

4. To see the status, errors, and other details associated with your data staging job, run
checkjob -v. See checkjob for details.

Your checkjob output might include a warning that says "req 1 RM (internal) does
not match job destination RM". You can safely ignore this message.

Related Topics

l 25.1 Data Staging Example - page 993

l 25.2.2 Configuring Data Staging - page 998

l 25.2.6 Configuring Data Staging with Advanced Options - page 1016

l 25.2.5 Staging Data To or From a Compute Node - page 1011

l 25.3.1 Sample User Job Script - page 1019

Chapter 25: Data Staging

25.2.6 Configuring Data Staging with Advanced Options

In this topic:

25.2.6.A Using a Different Default Template Name - page 1016
25.2.6.B Supporting Multiple File Transfer Script Utilities in a Grid on a Per-

Partition Basis - page 1017
25.2.6.C Receiving Notification at the Completion of the Data Staging Job -

page 1017
25.2.6.D Adding a Non-Default Template via msub - page 1018
25.2.6.E Using msub to Return all the Job IDs in the Workflow at Submission

Time - page 1019

25.2.6.A Using a Different Default Template Name
When you submit a data staging job, a data staging job template is attached to the job
automatically. In the reference script configuration, the default template name is ds. This is
the template that will be attached to the compute job by the client msub filter.

If you would like to change the name of the default template that is automatically attached,
you should change the value of DEFAULT_TEMPLATE in the ds_config.py file
installed on all client submit hosts. This name must match the master data staging template
name specified in the Moab configuration file.

To Configure the DEFAULT_TEMPLATE Variable

1. Open the ds_config.py file for modification. It is located in
/opt/moab/tools/data-staging/ by default.

[moab]$ vi /opt/moab/tools/data-staging/ds_config.py

2. Locate the DEFAULT_TEMPLATE parameter:

...
DEFAULT_TEMPLATE = "ds"
...

3. Replace the template name with the one specified in the Moab configuration file:

ds_config.py
...
DEFAULT_TEMPLATE = "datastaging"
...

moab.cfg
...

Chapter 25: Data Staging

1016 25.2 Data Staging Tasks

25.2 Data Staging Tasks 1017

JOBCFG[datastaging] TEMPLATEDEPEND=...

4. Make these changes on all client submit hosts.

25.2.6.B Supporting Multiple File Transfer Script Utilities in a Grid on a Per-
Partition Basis
If you want a different transfer script to run based on which partition the job is submitted
to, you can configure a multiplexer script that will switch execution to various other scripts
based on the partition.

To Support Multiple File Transfer Script Utilities in a Grid on a Per-
Partition Basis

1. Configure the trigger in your job templates in moab.cfg to run ds_move_
multiplex instead of ds_move_rsync or ds_move_scp.

2. Configure the PARTITION_TO_SCRIPT variable in ds_config.py to provide a
mapping from each partition to the desired script to run.

a. Open the ds_config.py file for modification. It is located in
/opt/moab/tools/data-staging/ by default.

[moab]$ vi /opt/moab/tools/data-staging/ds_config.py

b. Locate the PARTITION_TO_SCRIPT parameter:

...
PARTITION_TO_SCRIPT =
{"partition_1_name":"/opt/moab/tools/data-staging/ds_move_rsynch",
"partition_2_name":"/opt/moab/tools/data-staging/ds_move_scp",
"partition_3_name":"/opt/moab/tools/data-staging/ds_move_rsync"}
...

c. Replace the partition_*_names with partitions that exist in your configuration.
After each partition, specify the script that you want to execute for that partition.

25.2.6.C Receiving Notification at the Completion of the Data Staging Job
If you want explicit notification in case of failure of the stage out job, add an additional
trigger to the dsout job template, which will send email notification to the job's submitter.
For more information, see Using a Trigger to Send Email.

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:1
JOBCFG[dsout] FLAGS=GRESONLY
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=attacherror:objectxmlstdin:user
JOBCFG[dsout] TRIGGER=EType=fail,AType=mail,Action="Your (stageout) data staging job
$OID failed."

Chapter 25: Data Staging

The first trigger listed in the template configuration should be the exec trigger. Add the
email trigger and any other triggers after the exec trigger. You can modify the email trigger
to run at completion rather than at failure. You can also add this type of trigger to stage in
jobs.

25.2.6.D Adding a Non-Default Template via msub
You can have multiple data staging template workflows defined in the moab.cfg. The
submit filter is configured to add only one of them by default. If you want to use one of the
other available templates, you can do so by using the -l template=TEMPLATENAME
option in the msub command.

Given the following moab.cfg:

#Default data staging template:

JOBCFG[ds] TEMPLATEDEPEND=AFTEROK:dsin TEMPLATEDEPEND=BEFORE:dsout SELECT=TRUE
JOBCFG[dsin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsin] GRES=bandwidth:2
JOBCFG[dsin] FLAGS=GRESONLY
JOBCFG[dsin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:1
JOBCFG[dsout] FLAGS=GRESONLY
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=attacherror:objectxmlstdin:user

#experimental data staging template:

JOBCFG[dscustom] TEMPLATEDEPEND=AFTEROK:dscustomin
TEMPLATEDEPEND=BEFORE:dscustomout SELECT=TRUE
JOBCFG[dscustomin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dscustomin] GRES=bandwidth:2
JOBCFG[dscustomin] FLAGS=GRESONLY
JOBCFG[dscustomin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_custom --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dscustomout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dscustomout] GRES=bandwidth:1
JOBCFG[dscustomout] FLAGS=GRESONLY
JOBCFG[dscustomout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_custom --stageout",Flags=attacherror:objectxmlstdin:user

The user could submit a job using the custom data staging template with the following
command:

[moab]$ msub -l template=dscustom …

Chapter 25: Data Staging

1018 25.2 Data Staging Tasks

25.3 Data Staging References 1019

25.2.6.E Using msub to Return all the Job IDs in the Workflow at Submission
Time
By default, msub will print the job ID to stdout at the time of submission. If you would like
to have msub print all of the jobs that are created as part of the data staging workflow
template, you can use the msub --workflowjobids option to show all the job IDs at
submission time:

$ echo sleep 60 | msub -l walltime=15 --workflowjobids

MoabA.3.dsin MoabA.3 MoabA.3.dsout

This could be useful if you are writing scripts to do your own workflows and you need to
programmatically capture the data stage out job name for use in your workflow.

Related Topics

l 25.2.2 Configuring Data Staging - page 998

25.3 Data Staging References

In this section:

Sample User Job Script

25.3.1 Sample User Job Script
The code below is an example of a job script that a user might use to run a data staging job:

#!/bin/bash
#
Sample data staging job script
#
stage in directives
#MSUB --stageinsize=1MB
#MSUB --stagein=davidharris@source-server:/tmp/filein.tostage%davidharris@destination-
server:/tmp/filein.staged
#
stage out directives
#MSUB --stageoutsize=10GB
#MSUB --stageout=davidharris@destination-
server:/tmp/fileout.tostage%davidharris@source-server:/tmp/fileout.staged

run executable on the destination host using staged data

Chapter 25: Data Staging

$HOME/bin/my_compute_executable < /tmp/filein.staged > /tmp/fileout.tostage

Related Topics

l 25.1 Data Staging Example - page 993

l Staging Data - page 255

Chapter 25: Data Staging

1020 25.3 Data Staging References

26.1 Using NUMA-Aware with Moab 1021

Chapter 26: Using NUMA with Moab

Moab works with Torque to support these two Non-Uniform Memory Architecture (NUMA)
systems:

l NUMA-Aware – Introduced with Torque version 6.0, this configuration supports
multi-req jobs and jobs that span hosts. Moab version 9.0 and later is also required.

l NUMA-Support – Introduced with Torque version 3.0, this configuration supports
only a single instance for pbs_mom that as treated as if there where were multiple
nodes running in the cluster. This configuration is only for large-scale SLES systems
using SGI Altix and UV hardware.

This chapter serves as a central information repository for the various configuration
settings involved when using either NUMA system configuration.

Both systems cannot be configured for use at the same time.

In this chapter:

26.1 Using NUMA-Aware with Moab 1021
26.1.1 NUMA Process 1022
26.1.2 Installation and Configuration 1023
26.1.3 Moab and NUMA Resources 1023
26.1.4 Track Dedicated NUMA Resources 1024

26.2 Using NUMA-Support with Moab 1025

26.1 Using NUMA-Aware with Moab

This chapter introduces NUMA-aware scheduling and identifies Moab-, Torque-, and MAM-
related functions.

NUMA-aware scheduling is available with Moab Workload Manager 9.0 and later and
requires Torque Resource Manager 6.0 and later.

In this topic:

Chapter 26: Using NUMA with Moab

26.1.1 NUMA Process - page 1022
26.1.2 Installation and Configuration - page 1023
26.1.3 Moab and NUMA Resources - page 1023

26.1.3.A Balanced Resources - page 1023
26.1.3.B Job Recommendations - page 1024

26.1.4 Track Dedicated NUMA Resources - page 1024

26.1.1 NUMA Process
The following image provides an example of the NUMA process:

Chapter 26: Using NUMA with Moab

1022 26.1 Using NUMA-Aware with Moab

26.1 Using NUMA-Aware with Moab 1023

26.1.2 Installation and Configuration
Moab does not require any special installation or configuration processes to support
NUMA-aware with Torque.

26.1.3 Moab and NUMA Resources
Moab uses generic resources to natively understand the concept of 'socket', 'numanode',
'core' and 'thread'. The msub/qsub '-L' syntax for job submissions lets you request
placement or allocation of these specific resources.

See '-L NUMA Resource Request' in the Torque Resource Manager Administrator Guide for
more information on using the -L syntax.

For the -L syntax, submit using qsub unless your system requires submissions using
msub.

l A job requesting a placement of a numanode is requesting exclusive access to the
entire numa node and all of its resources including cores, threads, memory, gpus, and
mics.

l A job requesting a placement of a socket is requesting exclusive access to the entire
socket including numanodes, cores, threads, memory, gpus and mics.

Moab does not require a configuration change to support NUMA-aware scheduling
(no new Moab configuration parameters). However, you might need to increase
MAXGRES to accommodate the additional resources. See MAXGRES.

When using NUMA-aware, the following occurs:

1. Moab imports NUMA resources from Torque and treats them as a special case of
generic resources.

2. When a job requests a NUMA resource, such as a socket or numanode, Moab will
schedule exclusive access to those resources for the job. If exclusive access to the NUMA
resource is not available on a particular node, Moab will look for another node or
schedule the job out into the future if no resources are available at the time.

26.1.3.A Balanced Resources
Moab assumes that the NUMA resources on a particular node are balanced. This means
that each socket has the same amount of resources, including numanodes, cores, threads,
memory, and gpus.

Chapter 26: Using NUMA with Moab

Moab supports advanced multi-req resource requests within the same job using the
msub/qsub '-L' syntax.

For Cray KNL systems, the Moab SCHEDCFG flag 'ProvisionFirstReqOnly' lets you specify
that Moab should re-provision the compute nodes allocated only to the first resource
request in a multiple-resource-request or 'multi-req' job instead of all compute nodes.

In addition, any job that requests NUMA resources will receive a per-task default memory
requirement if a memory requirement is not specified by the user. .

26.1.3.B Job Recommendations
Adaptive Computing provides these recommendations for jobs:

l Jobs that request NUMA resources can share nodes with non-NUMA jobs, but it is not
recommended. It is recommended that you enforce the separation using policies
(queues, reservations, partitions, node-sets, etc.).

l GPU jobs that request cores and processors should not share nodes with non-GPU
jobs. For example, a job requesting a numanode can be given a numanode with a GPU
and therefore block other jobs from consuming that GPU. This can be prevented with
proper queue policies and placement.

l A job can run across heterogeneous NUMA resources. For example, a socket on one
node can contain more memory than a socket on another node. Use the
NODEALLOCATIONPOLICY Moab parameter to enable running a job across
homogenous NUMA resources.

26.1.4 Track Dedicated NUMA Resources
If Moab Accounting Manager is part of your configuration, you can configure MAM to track
dedicated NUMA resources (sockets, numanodes, cores, threads).

As the MAM Admin, run the commands for the individual resources you want to track. The
follow example shows the commands for all of the available resources.

[mam]$ mam-shell Attribute Create Object=UsageRecord Name=Sockets DataType=Integer
Description="\"Number of Sockets Dedicated\""
[mam]$ mam-shell Attribute Create Object=UsageRecord Name=NumaNodes DataType=Integer
Description="\"Number of Numa Nodes Dedicated\""
[mam]$ mam-shell Attribute Create Object=UsageRecord Name=Cores DataType=Integer
Description="\"Number of Cores Dedicated\""
[mam]$ mam-shell Attribute Create Object=UsageRecord Name=Threads DataType=Integer
Description="\"Number of Threads Dedicated\""

NUMA resources are only reported to MAM when they are dedicated to the job. As
you can specify the placement rules (the NUMA resources that are dedicated), it is
not recommended to charge for any NUMA resources; use Processors instead.

Chapter 26: Using NUMA with Moab

1024 26.1 Using NUMA-Aware with Moab

26.2 Using NUMA-Support with Moab 1025

26.2 Using NUMA-Support with Moab

This topic serves as a central information repository for NUMA-support systems. This topic
provides basic information and contains links to the various NUMA-aware topics found
throughout the documentation.

Support for NUMA-support systems is available only on large-scale SLES systems
using SGI Altix and UV hardware and requires Torque 3.0 or later.

Installation and Configuration
Additional information is provided on configuring Moab for NUMA-support. See Moab-
NUMA-Support Integration Guide.

Chapter 26: Using NUMA with Moab

1026

Appendix A: Moab Parameters
See Initial Moab Configuration for further information about specifying parameters.

If a parameter does not have a set default, the Default value in the table is shown as '-
--'.

Index: A B C D E F G H I J K L M N O P Q R S T U V W X

ACCOUNTCFG[<ACCOUNTID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following:
General Credential Flags, CHARGERATE, PRIORITY, ENABLEPROFILING,
MEMBERULIST, PLIST, QDEF, QLIST, usage limit, or a fairness usage limit
specification (FSCAP, FSTARGET, and FSWEIGHT).

Default ---

Description Specifies account specific attributes. See the account overview for general
information and the job flag overview for a description of legal flag values.

Example ACCOUNTCFG[projectX] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted under the account ID projectX will be
allowed to execute simultaneously and will be assigned the QOS
highprio by default.

ACCOUNTINGINTERFACEURL

Format <URL> where protocol can be one of exec or file

Default ---

Description The interface to use for real-time export of Moab accounting/auditing
information. See Exporting Events in Real-Time for more information.

Example ACCOUNTINGINTERFACEURL exec:///$TOOLSDIR/dumpacc.pl

Appendix A: Moab Parameters

ACCOUNTWEIGHT

Format <INTEGER>

Default 1

Description The priority weight to be applied to the specified account priority. See
Credential (CRED) Factor.

Example ACCOUNTWEIGHT 100

ADMIN1, ADMIN2, ADMIN3

Description These parameters are deprecated. Use ADMINCFG.

Appendix A: Moab Parameters

1027

1028

ADMINCFG[X]

Format One or more <ATTR>=<VALUE> pairs, where <ATTR> is one of the following:
ENABLEPROXY, USERS, GROUPS, SERVICES, or NAME

Default ---

Description Allows a site to configure which services and users belong to a particular level
of administration. Note: The first user listed in the ADMINCFG[1] users list is
considered to be the primary admin. The option USERS=ALL is allowed. The
groups list adds the groups' users as if they were listed individually as USERS.
To prevent Moab from assigning a primary user from the first group listed, you
must specify a primary user first using the USERS attribute, then list the
desired groups.

Example ADMINCFG[1] USERS=root,john
ADMINCFG[1] GROUPS=admin
ADMINCFG[1] SERVICES=ALL
ADMINCFG[1] NAME=batchadmin
ADMINCFG[3] USERS=bob,carol,smoore
ADMINCFG[3] GROUPS=science,math
ADMINCFG[3] SERVICES=mjobctl,mcredctl,runjob
ADMINCFG[3] NAME=helpdesk

Members of the batchadmin admin role and members of the
admin group are allowed to run all commands. Members of the
helpdesk role and science and math groups are allowed to
run mjobctl. They are also able to view and modify credential
objects (i.e., users, groups, accounts, etc.). See the security overview
for more details.

ADMINCFG[4] USERS=ALL SERVICES=checknode

All users can execute checknode to get information on any node.

Appendix A: Moab Parameters

AGGREGATENODEACTIONS

Format <BOOLEAN>

Default FALSE

Description Consolidates queued node actions into as few actions as possible to reduce
communication burden with resource manager. Node actions are queued
until the AGGREGATENODEACTIONSTIME setting.

This might delay some node actions. When reprovisioning, the
system job might expire before the provision action occurs; while the
action will still occur, the job will not show it.

Example AGGREGATENODEACTIONS TRUE

Queues node actions together when possible.

AGGREGATENODEACTIONSTIME

Format <SECONDS>

Default 60

Description The delay time for the AGGREGATENODEACTIONS parameter to
aggregate requests before sending job batches.

Example AGGREGATENODEACTIONSTIME 120

Sets the AGGREGATENODEACTIONS delay to two minutes.

Appendix A: Moab Parameters

1029

1030

ALLOWMULTIREQNODEUSE

Format <BOOLEAN>

Default FALSE

Description By default, Moab does not allow different requirements on the same job to
occupy the same node. For example, if a job is submitted with
nodes=2:ppn=8+4:fast:ppn=16, it's possible that some of the tasks
requested could overlap onto the same node. This parameter instructs
Moab to allow overlapping the same node, or not. This parameter also
applies to the various -w clauses of an mshow -a command.

Example ALLOWMULTIREQNODEUSE TRUE

ALLOWROOTJOBS

Format <BOOLEAN>

Default FALSE

Description Specifies whether batch jobs from the root user (UID=0) are allowed to be
executed. Note: The resource manager must also support root jobs.

Example ALLOWROOTJOBS TRUE

Jobs from the root user can execute.

Appendix A: Moab Parameters

ALWAYSEVALUATEALLJOBS

Format ALWAYS, FIRSTRSV, or FULLRSVV

Default FIRSTRSV

Description Instructs Moab how to handle the scheduling of eligible jobs during the
first phase of each scheduling iteration:

l FIRSTRSV directs Moab to stop considering eligible jobs once a single
reservation has been created.

l FULLRSV tells Moab to evaluate eligible jobs until reservations have
been created for a number of eligible jobs.

l ALWAYS directs Moab to always evaluate all eligible jobs.

This parameter's functionality changed with 8.1.1. See Differences in
the Moab HPC Suite 8.1.1 Release Notes for more information.

Example ALWAYSEVALUATEALLJOBS FIRSTRSV

AMCFG

Format One or more key-value pairs as described in AMCFG Parameters and Flags.

Default ---

Description The interface and policy configuration for the scheduler-accounting manager
interface.

Example AMCFG[mam] TYPE=MAM STARTFAILUREACTION=HOLD

Appendix A: Moab Parameters

1031

1032

APPLICATIONLIST

Format Space-delimited list of generic resources.

Default ---

Description Specifies which generic resources represent actual applications on the
cluster/grid. See Managing Consumable Generic Resources for more
information.

Example NODECFG[node01] GRES=calclab:1,powerhouse:1 RCSOFTWARE=calclab:1,powerhouse:1
NODECFG[node02] GRES=calclab:1,powerhouse:1 RCSOFTWARE=calclab:1,powerhouse:1
APPLICATIONLIST calclab,powerhouse

The generic resources calclab and powerhouse will now be
recognized and treated as application software.

ARRAYJOBPARLOCK

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, all subjobs of an array are locked to a single partition. The
default behavior when scheduling array subjobs is to span the jobs across
partitions when possible. The ARRAYJOBPARLOCK job flag can be used to
specify partition locking at submit time. The ARRAYJOBPARSPAN job flag
overrides this parameter.

Example ARRAYJOBPARLOCK TRUE

ATTRATTRWEIGHT

Format <INTEGER>

Default 0

Description The priority weight to be applied to jobs with the specified job attribute. See
Attribute (ATTR) Factor.

Example ATTRATTRWEIGHT 100

Appendix A: Moab Parameters

ATTRGRESWEIGHT

Format <INTEGER>

Default 0

Description The priority weight to be applied to jobs requesting the specified generic
resource. See Attribute (ATTR) Factor.

Example ATTRGRESWEIGHT 200

ATTRSTATEWEIGHT

Format <INTEGER>

Default 0

Description The priority weight to be applied to jobs with the specified job state. See
Attribute (ATTR) Factor.

Example ATTRSTATEWEIGHT 200

ATTRWEIGHT

Format <INTEGER>

Default 1

Description The priority component weight to be applied to the ATTR subcomponents. See
Attribute (ATTR) Factor.

Example ATTRWEIGHT 2
ATTRSTATEWEIGHT 200

Appendix A: Moab Parameters

1033

1034

BACKFILLDEPTH

Format <INTEGER>

Default 0 (no limit)

Description The number of idle jobs to evaluate for backfill. The backfill algorithm will
evaluate the top <X> priority jobs for scheduling. By default, all jobs are
evaluated.

Example BACKFILLDEPTH 128

Evaluate only the top 128 highest priority idle jobs for
consideration for backfill.

BACKFILLMETRIC

Format One of the following: PROCS, PROCSECONDS, SECONDS, or NODES

Default PROCS

Description The criteria used by the backfill algorithm to determine the 'best' jobs to
backfill. Only applicable when using the BESTFIT backfill algorithm.

Example BACKFILLMETRIC PROCSECONDS

BACKFILLPOLICY

Format One of FIRSTFIT, BESTFIT, or NONE

Default FIRSTFIT

Description Specifies which backfill algorithm will be used. See Configuring Backfill for
more information.

Example BACKFILLPOLICY NONE

Appendix A: Moab Parameters

BFCHUNKDURATION

Format [[[DD:]HH:]MM:]SS

Default 0 (chunking disabled)

Description The duration during which freed resources will be aggregated for use by larger
jobs. Used in conjunction with BFCHUNKSIZE. See Configuring Backfill for
more information.

Example BFCHUNKDURATION 00:05:00
BFCHUNKSIZE 4

Aggregate backfillable resources for up to 5 minutes, making
resources available only to jobs of size 4 or larger.

BFCHUNKSIZE

Format <INTEGER>

Default 0 (chunking disabled)

Description The minimum job size that can utilize chunked resources. Used in conjunction
with BFCHUNKDURATION. See Configuring Backfill for more information.

Example BFCHUNKDURATION 00:05:00
BFCHUNKSIZE 4

Aggregate backfillable resources for up to 5 minutes, making
resources available only to jobs of size 4 or larger.

Appendix A: Moab Parameters

1035

1036

BFMINVIRTUALWALLTIME

Format [[[DD:]HH:]MM:]SS

Default ---

Description The minimum job wallclock time for virtual scaling (optimistic-like
backfilling). Any job with a wallclock time less than this setting will not be
virtually scaled. The value specified relates to a job's original walltime and
not its virtually-scaled walltime.

Example BFMINVIRTUALWALLTIME 00:01:30

BFPRIORITYPOLICY

Format One of RANDOM, DURATION, or HWDURATION

Default ---

Description Specifies policy to use when prioritizing backfill jobs for preemption.

Example BFPRIORITYPOLICY DURATION

Use length of job in determining which backfill job to preempt.

BFVIRTUALWALLTIMECONFLICTPOLICY

Format One of the following: PREEMPT

Default ---

Description Specifies how to handle scheduling conflicts when a virtually scaled
job 'expands' to its original wallclock time. This occurs when the job
is within one scheduling iteration - RMPOLLINTERVAL - of its
virtually scaled wallclock time expiring.

Example BFVIRTUALWALLTIMECONFLICTPOLICY PREEMPT

Appendix A: Moab Parameters

BFVIRTUALWALLTIMESCALINGFACTOR

Format <DOUBLE>

Default 0 (virtual scaling disabled)

Description The factor by which eligible jobs' wallclock time is virtually scaled
(optimistic-like backfilling).

If you do not want scaling, set
BFVIRTUALWALLTIMESCALINGFACTOR to '0' (default).
Setting to '1' is not recommended as it impacts performance.
When set to '1', Moab will exercise the code paths of scaling
but no actual scaling will occur.

Example BFVIRTUALWALLTIMESCALINGFACTOR .4

BYPASSCAP

Format <INTEGER>

Default 0

Description The max weighted value allowed from the bypass count subfactor when
determining a job's priority (see Priority Factors for more information).

Example BYPASSWEIGHT 5000
BYPASSCAP 30000

BYPASSWEIGHT

Format <INTEGER>

Default 0

Description The weight to be applied to a job's backfill bypass count when determining a
job's priority (see Priority Factors for more information).

Example BYPASSWEIGHT 5000

Appendix A: Moab Parameters

1037

1038

CHECKPOINTDIR

Format <STRING>

Default ---

Description The directory for temporary job checkpoint files (usually of the form
jobid.cp). Note: This is not the directory for Moab's checkpoint file
(.moab.ck).

Example CHECKPOINTDIR /tmp/moabcheckpoint

CHECKPOINTEXPIRATIONTIME

Format [[[DD:]HH:]MM:]SS or UNLIMITED

Default 3,000,000 seconds

Description Specifies how 'stale' checkpoint data can be before it is ignored and
purged.

Example CHECKPOINTEXPIRATIONTIME 1:00:00:00

Expire checkpoint data that has been stale for over 1 day.

CHECKPOINTFILE

Format <STRING>

Default .moab.ck

Description Name (absolute or relative) of the Moab checkpoint file.

Example CHECKPOINTFILE /var/adm/moab/.moab.ck

Maintain the Moab checkpoint file in the file specified.

Appendix A: Moab Parameters

CHECKPOINTINTERVAL

Format [[[DD:]HH:]MM:]SS

Default 00:05:00

Description Time between automatic Moab checkpoints.

If RMPOLLINTERVAL does not specify both a minimum and maximum
poll time, Moab will ignore CHECKPOINTINTERVAL and checkpoint
every iteration.

Example CHECKPOINTINTERVAL 00:15:00

Moab should checkpoint state information every 15 minutes.

CHECKSUSPENDEDJOBPRIORITY

Format <BOOLEAN>

Default FALSE

Description Prevents Moab from starting a job on any node containing a suspended
job of higher priority.

Example CHECKSUSPENDEDJOBPRIORITY FALSE

CHILDSTDERRCHECK

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, child processes Moab executes are considered failed if their
standard error stream contains the text 'ERROR'.

Example CHILDSTDERRCHECK TRUE

Appendix A: Moab Parameters

1039

1040

CLASSCFG[<CLASSID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following:
General Credential Flags, DEFAULT.ATTR, DEFAULT.DISK,
DEFAULT.FEATURES, DEFAULT.GRES, DEFAULT.MEM, DEFAULT.NODE,
DEFAULT.NODESET, DEFAULT.PROC, ENABLEPROFILING, EXCL.FEATURES,
EXCLUDEUSERLIST, HOSTLIST, IGNHOSTLIST, JOBEPILOG, JOBPROLOG,
JOBTRIGGER, MAXPROCPERNODE, MAX.NODE, MAX.PROC, MAX.TPN,
MAX.WCLIMIT, MIN.NODE, MIN.PROC, MIN.TPN, MIN.WCLIMIT, PARTITION,
PRIORITY, PRIORITYF, QDEF, QLIST, REQ.FEATURES,
REQUIREDACCOUNTLIST, REQUIREDUSERLIST, RESFAILPOLICY, SYSPRIO,
WCOVERRUN, usage limit, or fairshare usage limit specification.

Default ---

Description Specifies class specific attributes (see Credential Overview for details).

Example CLASSCFG[batch] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted to the class batch will be allowed to
execute simultaneously and will be assigned the QOS highprio by
default.

CLASSWEIGHT

Format <INTEGER>

Default 1

Description The weight to be applied to the class priority of each job (see Credential
(CRED) Factor and credential priority).

Example CLASSWEIGHT 10

Appendix A: Moab Parameters

CLIENTCFG[<X>]

Format One or more of <ATTR>-<VALUE> pairs, where <X> indicates the specified
peer and <ATTR> is one of the following: AUTH, AUTHCMD, AUTHTYPE, HOST,
KEY, or DEFAULTSUBMITPARTITION.

Default ---

Description The shared secret key and authentication method that Moab will use to
communicate with the named peer daemon. See Security Overview for more
information. Note: The AUTHTYPE and KEY attributes of this parameter can
only be specified in the moab-private.cfg config file.

Example CLIENTCFG[silverB] KEY=apple7 AUTH=admin1

Moab will use the session key apple7 for peer authentication and
for encrypting and decrypting messages sent from silverB. Also,
client connections from this interface will be authorized at an
admin 1 level.

CLIENTCONNECTIONTIMEOUT

Format <SECONDS>

Default 30

Description Specifies how long client commands will wait for the initial connection to
succeed before giving up and failing.

Example CLIENTCONNECTIONTIMEOUT 1

Client commands will wait only 1 second for the initial
connection. If the client command has not connected within 1
second, it will give up and fail.

Appendix A: Moab Parameters

1041

1042

CLIENTMAXCONNECTIONS

Format <INTEGER>

Default 128

Description Changes the maximum number of connections that can simultaneously
connect to Moab. The value can be increased during runtime, but it cannot
be decreased. The value cannot be reduced below the default value of 128.

Example CLIENTMAXCONNECTIONS 256

Doubles the maximum number of connections.

CLIENTMAXPRIMARYRETRY

Format <INTEGER> or INFINITY

Default 1

Description Specifies how many times the client command will attempt to retry its
connection to the primary server if Moab is not available.

Example CLIENTMAXPRIMARYRETRY 5
CLIENTMAXPRIMARYRETRYTIMEOUT 1000

The client command will attempt to retry its connection to the
primary server 5 times with 1 second intervals before giving
up. Note: If INFINITY is specified, Moab will attempt
2,140,000,000 times.

Appendix A: Moab Parameters

CLIENTMAXPRIMARYRETRYTIMEOUT

Format <INTEGER> (milliseconds)

Default 2000

Description Specifies how much time to wait until the client command will
attempt to retry its connection to the primary server if Moab is not
available.

Example CLIENTMAXPRIMARYRETRY 3
CLIENTMAXPRIMARYRETRYTIMEOUT 500

The client command will attempt to retry its connection to
the primary server 3 times with .5 second intervals
before giving up.

CLIENTTIMEOUT

Format [[[DD:]HH:]MM:]SS

Default 00:00:30

Description Time that Moab client commands will wait for a response from the Moab
server. See Client Configuration for more information. Note: Can also be
specified as an environment variable.

Example CLIENTTIMEOUT 00:15:00

Moab clients will wait up to 15 minutes for a response from the
server before timing out.

Appendix A: Moab Parameters

1043

1044

CLIENTUIPORT

Format <INTEGER>

Default N/A

Description Port on which to listen when UIMANAGEMENTPOLICY FORK is specified.
This is typically Moab's configured listen port + 1.

Both CLIENTUIPORT and UIMANAGEMENTPOLICY need to be defined
on clients for them to use the backup port when the primary Moab
process is busy. UIMANAGEMENTPOLICY should be configured on the
server, as well as any client machines.

Example UIMANAGEMENTPOILCY FORK
CLIENTUIPORT 42560

Moab is typically configured to listen on port 42559.

CREDDISCOVERY

Format TRUE

Default FALSE

Description Specifies that Moab should create otherwise unknown credentials when it
discovers them in the statistics files.

Example CREDDISCOVERY TRUE

CREDWEIGHT

Format <INTEGER>

Default 1

Description The credential component weight associated with the credential priority. See
Credential (CRED) Factor for more information.

Example CREDWEIGHT 2

Appendix A: Moab Parameters

DATASTAGEHOLDTYPE

Format Any Job Hold type

Default DEFER

Description Specifies what to do if a job's data staging operations fail.

Example DATASTAGEHOLDTYPE BATCH

DEADLINEPOLICY

Format One of CANCEL, HOLD, IGNORE, or RETRY

Default NONE

Description Specifies what to do when a requested deadline cannot be reached (see Job
Deadlines).

Example DEADLINEPOLICY IGNORE

DEFAULTCLASSLIST

Format Space-delimited list of one or more <STRING>s.

Default ---

Description The default classes supported on each node for RM systems that do not
provide this information.

Example DEFAULTCLASSLIST serial parallel

Appendix A: Moab Parameters

1045

1046

DEFAULTSTARTTIMEQUERY

Format Space-delimited list of one or more <STRING>s.

Default ---

Description Specifies the default classes supported on each node for RM systems that
do not provide this information.

Example DEFAULTSTARTTIMEQUERY RESERVATION
Moab will estimate job start times using reservations.

DEFAULTSUBMITPARTITION

Format See parameter CLIENTCFG[].

Default ---

Description If a user submits a job using msub that does not specify host, feature, or
partition constraints, then the msub client will insert the specified default
submit partition into the newly submitted job as a hard requirement.

Example CLIENTCFG[DEFAULT] DEFAULTSUBMITPARTITION=partition1

DEFERCOUNT

Format <INTEGER>

Default 24

Description The number of times a job can be deferred before it will be placed in batch
hold.

Example DEFERCOUNT 12

Appendix A: Moab Parameters

DEFERSTARTCOUNT

Format <INTEGER>

Default 1

Description The number of times a job will be allowed to fail in its start attempts before
being deferred. JOBRETRYTIME overrides DEFERSTARTCOUNT;
DEFERSTARTCOUNT only begins when the JOBRETRYTIME window elapses.
Note: A job's startcount will increase each time a start request is made to the
resource manager regardless of whether or not this request succeeded. This
means start count increases if job starts fail or if jobs are started and then
rejected by the resource manager. (For related information, see Reservation
Policies, DEFERTIME, RESERVATIONRETRYTIME,
NODEFAILURERESERVETIME, JOBRETRYTIME, and
GUARANTEEDPREEMPTION.)

Example DEFERSTARTCOUNT 3

DEFERTIME

Format [[[DD:]HH:]MM:]SS

Default 1:00:00

Description The amount of time a job will be held in the deferred state before being
released back to the Idle job queue. Note: A job's defer time will be restarted if
Moab is restarted. (For related information, see Reservation Policies,
DEFERSTARTCOUNT, RESERVATIONRETRYTIME,
NODEFAILURERESERVETIME, JOBRETRYTIME, and
GUARANTEEDPREEMPTION.)

Example DEFERTIME 0:05:00

Appendix A: Moab Parameters

1047

1048

DELETESTAGEOUTFILES

Format <BOOLEAN>

Default FALSE

Description Specifies whether the scheduler should delete explicitly specified stageout
files after they are successfully staged. By default, such files are not deleted
but are left on the nodes where the job ran.

Example DELETESTAGEOUTFILES TRUE
Example of an explicit stageout request
msub x=MSTAGEOUT:ssh://source_node/tmp/file,file:///results_folder
job.cmd

With this parameter set to TRUE, /tmp/file on source_node
is deleted after it is copied to the specified destination (
file:///results_folder). If the parameter is not set, or if
it is set to FALSE, /tmp/file remains on source_node after
the job terminates.

DEPENDFAILUREPOLICY

Format HOLD or CANCEL

Default HOLD

Description Specifies what happens to a job if its dependencies cannot be fulfilled; that is,
what happens when a job depends on another job to complete successfully
but the other job fails.

Example DEPENDFAILUREPOLICY CANCEL

If job A is submitted with depend=afterok:B and job B fails, job A
is canceled.

Appendix A: Moab Parameters

DIRECTORYSERVER

Format <HOST>[:<PORT>]

Default ---

Description The interface for the directory server.

Example DIRECTORYSERVER calli3.icluster.org:4702

DISABLEEXCHLIST

Format <BOOLEAN>

Default FALSE

Description If the resource manager rejects a job and the value is set to TRUE, then the
node is not added to the job's exclude host list.

Example DISABLEEXCHLIST TRUE

DISABLEINTERACTIVEJOBS

Format <BOOLEAN>

Default FALSE

Description Disallows interactive jobs submitted with msub -I.
Note: It is possible for users to submit interactive jobs directly to a
resource manager, which can bypass the DISABLEINTERACTIVEJOBS
parameter. However, some resource managers (such as Torque) will check
with Moab before allowing an interactive job.

Example DISABLEINTERACTIVEJOBS TRUE

Appendix A: Moab Parameters

1049

1050

DISABLEREQUIREDGRESNONE

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, this causes Moab to reject msub requests that have a
gres of 'none'. ENFORCEGRESSACCESSS must also be set to TRUE for this
feature to work.

Example ########## moab.cfg ##########
ENFORCEGRESACCESS TRUE
DISABLEREQUIREDGRESNONE TRUE
################################

> msub -A ee -l nodes=1,ttc=5,walltime=600,partition=g02 -l gres=none
ERROR: cannot submit job - cannot locate required resource 'none'

DISABLESAMECREDPREEMPTION

Format Comma-delimited list of one or more credentials: ACCT, CLASS,
GROUP, QOS, or USER

Default ---

Description This parameter prevents specified credentials from preempting its own
jobs.

Example DISABLESAMECREDPREEMPTION QOS,USER

DISABLESCHEDULING

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not the scheduler will schedule jobs. If set to TRUE, Moab
will continue to update node and job state but will not start, preempt, or
otherwise modify jobs. The command mschedctl -r will clear this parameter
and resume normal scheduling.

Example DISABLESCHEDULING FALSE

Appendix A: Moab Parameters

DISABLESLAVEJOBSUBMIT

Format <BOOLEAN>

Default TRUE

Description This parameter can be added to the moab.cfg file on an MGM Moab
server (in a grid configuration) to prevent users from submitting jobs to
the MGC Moab server from the MGM Moab server. Some grid configurations
allow the user to submit jobs on the MGM that are migrated to the MGC
and submitted from the MGC. Other grid configurations do not allow the
jobs to be migrated to the MGC from the MGM, in which case, jobs
submitted from the MGM remain idle on the MGM and never run. This
parameter will reject the job submissions on the MGM to prevent the
submission of jobs that will never run.

Example DISABLESLAVEJOBSUBMIT TRUE
example (node04 is a slave and node06 is the master)
[test@node04 moab-slave]$ echo sleep 100 | msub
ERROR: cannot submit job from slave

DISABLETHRESHOLDTRIGGERS

Format <BOOLEAN>

Default FALSE

Description This makes Moab not fire threshold-based triggers, but will log the
intended action to the event logs.

Example DISABLETHRESHOLDTRIGGERS TRUE

Appendix A: Moab Parameters

1051

1052

DISKWEIGHT

Format <INTEGER>

Default 0

Description The priority weight to be applied to the amount of dedicated disk space
required per task by a job (in MB).

Example RESWEIGHT 10
DISKWEIGHT 100

If a job requires 12 tasks and 512 MB per task of dedicated local
disk space, Moab will increase the job's priority by 10 * 100 * 12 *
512

Appendix A: Moab Parameters

DISPLAYFLAGS

Format One or more of the following values (space delimited):
ACCOUNTCENTRIC, HIDEBLOCKED, HIDECREDS, HIDEDRAINED,
NODECENTRIC, USEBLOCKING, USENOBLOCKMSUB

Default ---

Description By default, no flags (special modifications) are specified.
If flags are specified, this controls how Moab client commands display varied
information:

l ACCOUNTCENTRIC: Displays account information in showq, rather than
group information.

l HIDEBLOCKED: Prevents showq from listing information about blocked
jobs that are not owned by the user if the user is not an admin.

l HIDECREDS: Users without Moab administrative privileges will not be
able to see the credentials of other jobs.

l HIDEDRAINED: Prevents mdiag -n from displaying nodes in the DRAINED
state.

l NODECENTRIC: Displays node allocation information instead of processor
allocation information in showq.

l USEBLOCKING: Disables threading for commands that support it; those
commands include showq, mdiag -n, and mdiag -j.

l USENOBLOCKMSUB: Moab will skip error checking of the msub job
submission and queue it up for later processing. The job ID will be
returned immediately.

Example DISPLAYFLAGS NODECENTRIC

DISPLAYPROXYUSERASUSER

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab shows the proxy users instead of the real user on
some queries of system jobs that have proxy users. Commands affected
include mjobctl -q diag and checkjob.

Example DISPLAYPROXYUSERASUSER TRUE

Appendix A: Moab Parameters

1053

1054

DONTCANCELINTERACTIVEHJOBS

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab does not cancel interactive jobs that are held.

Example DONTCANCELINTERACTIVEHJOBS TRUE

DONTENFORCEPEERJOBLIMITS

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, only the scheduler that is running the job can cancel the
job or enforce other limits.

Example DONTENFORCEPEERJOBLIMITS TRUE

Appendix A: Moab Parameters

ENABLEFAILUREFORPURGEDJOB

Format <BOOLEAN>

Default FALSE

Description By default, when a job is purged or removed by the Torque resource
manager for a walltime violation, the job takes on a state of Completed
and a completion code of 0. If TRUE, the job state is set to Removed
and has a completion code of 98. ENABLEFAILUREFORPURGEDJOB is
for the Torque resource manager only.

For ENABLEFAILUREFORPURGEDJOB to return Removed job
states, you must reset the TORQUE server attribute keep_
completed to 0 in qmgr. See 'Queue Attributes' in the Torque
Resource Manager Administrator Guide for more information.

Example ENABLEFAILUREFORPURGEDJOB TRUE

Jobs that are purged or removed by Torque are given a state
of Removed and a completion code of 98.

ENABLEFSVIOLATIONPREEMPTION

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab will allow jobs within the same class/queue to
preempt when the preemptee is violating a fairshare target and the
preemptor is not.

Example ENABLEFSVIOLATIONPREEMPTION TRUE

Appendix A: Moab Parameters

1055

1056

ENABLEHIGHTHROUGHPUT

Format <BOOLEAN>

Default FALSE

Description Reduces iteration times by eliminating string error checking during
checkpointing, eliminating automatic rack processing, reducing object
caching, using vfork rather than fork, reducing RM timeout parameters, and
scheduling similar jobs as a chunk rather than individually.

If ENABLEHIGHTHROUGHPUT is TRUE, you must set
NODEALLOCATIONPOLICY to FIRSTAVAILABLE.

ENABLEJOBARRAYS

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, job arrays will be enabled.

Example ENABLEJOBARRAYS TRUE

ENABLENEGJOBPRIORITY

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler allows job priority value to range from -
INFINITY to MMAX_PRIO; otherwise, job priority values are given a lower
bound of '1'. For more information, see REJECTNEGPRIOJOBS.

Example ENABLENEGJOBPRIORITY TRUE

Job priority can range from -INFINITY to MMAX_PRIO.

Appendix A: Moab Parameters

ENABLENODEADDRLOOKUP

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler will use the default host name service lookup
mechanism (i.e., /etc/hosts, DNS, NIS, etc.) to determine the IP address
of the nodes reported by the resource manager. This information is used
to correlate information reported by multi-homed hosts.

Example ENABLENODEADDRLOOKUP TRUE

ENABLEPOSUSERPRIORITY

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler will allow users to specify positive job priority
values that will be honored. In other words, users can specify a priority
that falls in the range of -1024 to +1023, inclusive. If set to FALSE (the
default), user priority values are given an upper bound of '0' when users
request a positive priority. See USERPRIOWEIGHT.

Example ENABLEPOSUSERPRIORITY TRUE

Users can now specify positive job priorities and have them take
effect (e.g., msub -p 100 job.cmd).

ENABLESPVIOLATIONPREEMPTION

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab will allow jobs within the same class/queue to
preempt when the preemptee is violating a soft usage policy and the
preemptor is not.

Example ENABLESPVIOLATIONPREEMPTION TRUE

Appendix A: Moab Parameters

1057

1058

ENFORCEACCOUNTACCESS

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not Moab will enforce account access constraints
without an accounting manager.

Example ENFORCEACCOUNTACCESS TRUE

ENFORCEGRESACCESS

Format <BOOLEAN>

Default FALSE

Description If a user submits a job with a non-existent gres (e.g., in the case of a typo)
and ENFORCEGREACCESS is not set in moab.cfg, or is set to FALSE, then
the requested gres will be created (but will not exist on any nodes) and the
job will be deferred (similar to ENFORCEACCOUNTACCESS).

Example ENFORCEGRESACCESS TRUE

EVENTFILEFORMAT

Format One of JSON, WHITESPACE, or WIKI

Default WIKI

Description The format to write the event log.

Example EVENTFILEFORMAT WIKI

Appendix A: Moab Parameters

EVENTSERVER

Format <HOST>[:<PORT>]

Default ---

Description The interface for the event server.

Example EVENTSERVER
calli3.icluster.org:4702

FEATURENODETYPEHEADER

Format <STRING>

Default ---

Description The header used to specify node type via node features (for example, PBS
node attributes).

Example FEATURENODETYPEHEADER xnt

Moab will interpret all node features with the leading string
xnt as a nodetype specification, as used by the accounting
manager and other accounting managers, and assign the
associated value to the node (for example, xntFast).

FEATUREPARTITIONHEADER

Format <STRING>

Default ---

Description The header used to specify node partition via node features (for example,
PBS node attributes).

Example FEATUREPARTITIONHEADER xpt

Moab will interpret all node features with the leading string
xpt as a partition specification and assign the associated value
to the node (for example, xptFast).

Appendix A: Moab Parameters

1059

1060

FEATUREPROCSPEEDHEADER

Format <STRING>

Default ---

Description The header used to extract node processor speed via node features (i.e.,
LL features or PBS node attributes). Note: Adding a trailing '$' character
will specify that only features with a trailing number be interpreted. For
example, the header 'sp$' will match 'sp450' but not 'sport'.

Example FEATUREPROCSPEEDHEADER xps

Moab will interpret all node features with the leading string
xps as a processor speed specification and assign the
associated value to the node (i.e., xps950).

FEATURERACKHEADER

Format <STRING>

Default ---

Description The header used to extract node rack index via node features (i.e., LL features
or PBS node attributes). Note: Adding a trailing '$' character will specify that
only features with a trailing number be interpreted. For example, the header
'rack$' will match 'rack4' but not 'racket'.

Example FEATURERACKHEADER rack

Moab will interpret all node features with the leading string rack
as a rack index specification and assign the associated value to
the node (i.e., rack16).

Appendix A: Moab Parameters

FEATURESLOTHEADER

Format <STRING>

Default ---

Description The header used to extract node slot index via node features (i.e., LL features
or PBS node attributes). Note: Adding a trailing '$' character will specify that
only features with a trailing number be interpreted. For example, the header
'slot$' will match 'slot12' but not 'slotted'.

Example FEATURESLOTHEADER slot

Moab will interpret all node features with the leading string slot
as a slot index specification and assign the associated value to the
node (i.e., slot16).

FEEDBACKPROGRAM

Format <STRING>

Default ---

Description The name of the program to be run at the completion of each job. If not fully
qualified, Moab will attempt to locate this program in the 'tools' subdirectory.
For more details on how this works and what fields are provided, see User
Feedback Overview.

Example FEEDBACKPROGRAM /var/moab/fb.pl

Moab will run the specified program at the completion of each job.

Appendix A: Moab Parameters

1061

1062

FILEREQUESTISJOBCENTRIC

Format <BOOLEAN>

Default FALSE

Description Specifies whether a job's file request is a total request for the job or a per
task request.

Example FILEREQUESTISJOBCENTRIC TRUE

Moab will treat file requests as a total request per job.

FILTERCMDFILE

Format <BOOLEAN>

Default TRUE

Description Running the msub command performs the following operations on the
submission script:

l Replace all comments with spaces (excludes Resource Manager directives)
l Strip empty lines
l Replace \r with \n
l Lock job to a PBS resource manager if $PBS is found in the script

Include the FILTERCMDFILE parameter in the Moab configuration file that
resides on the clients (moab.cfg or moab-client.cfg).

FILTERCMDFILE must be FALSE for REJECTDOSSCRIPTS to work
correctly.

Example FILTERCMDFILE FALSE

Running the msub command does not perform the actions detailed
earlier.

Appendix A: Moab Parameters

FORCENODEREPROVISION

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, this config option causes Moab to reprovision a node,
even if it is to the same operating system (in essence rewriting the OS).

Example FORCENODEREPROVISION TRUE

FORCERSVSUBTYPE

Format <BOOLEAN>

Default FALSE

Description Specifies that admin reservations must have a subtype associated with them.

Example FORCERSVSUBTYPE TRUE

Moab will require all admin reservations to include a subtype.

FREETIMELOOKAHEADDURATION

Format [[[DD:]HH:]MM:]SS

Default 2 Months

Description Specifies how far ahead Moab will look when calculating free time on a
node.

Example FREETIMELOOKAHEADDURATION 7:00:00:00

Moab will look 1 week ahead when it calculates free time
on a node.

Appendix A: Moab Parameters

1063

1064

FSACCOUNTWEIGHT

Format <INTEGER>

Default 1000

Description The weight assigned to the account subcomponent of the fairshare component
of priority.

Example FSACCOUNTWEIGHT 10

FSCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description The maximum allowed absolute value for a job's total pre-weighted fairshare
component.

Example FSCAP 10.0

Moab will bind a job's pre-weighted fairshare component by the
range +/- 10.0.

FSCLASSWEIGHT

Format <INTEGER>

Default 1000

Description The weight assigned to the class subcomponent of the fairshare component of
priority.

Example FSCLASSWEIGHT 10

Appendix A: Moab Parameters

FSDECAY

Format <DOUBLE>

Default 1.0

Description Specifies decay rate applied to past fairshare interval when computing effective
fairshare usage. Values can be in the range of 0.01 to 1.0. A smaller value
causes more rapid decay causing aged usage to contribute less to the overall
effective fairshare usage. A value of 1.0 indicates that no decay will occur and
all fairshare intervals will be weighted equally when determining effective
fairshare usage. See Fairshare Overview.

Example FSPOLICY DEDICATEDPS
FSDECAY 0.8
FSDEPTH 8

Moab will apply a decay rate of 0.8 to all fairshare windows.

FSDEPTH

Format <INTEGER>

Default 8

Description Note: The number of available fairshare windows is bounded by the MAX_
FSDEPTH value (32 in Moab). See Fairshare Overview.

Example FSDEPTH 12

FSDISABLEIFNEGATIVE

Format <BOOLEAN>

Default FALSE

Description Disable the fairshare component of priority if it is negative for a particular
job.

Example FSDISABLEIFNEGATIVE TRUE

Moab will disable any fairshare components that are negative when
determining a job's priority.

Appendix A: Moab Parameters

1065

1066

FSENABLECAPPRIORITY

Format <BOOLEAN>

Default FALSE

Description Fairshare priority will increase to target and stop.

Example FSENABLECAPPRIORITY TRUE

FSGROUPWEIGHT

Format <INTEGER>

Default 1000

Description The weight assigned to the group subcomponent of the fairshare component of
priority.

Example FSGROUPWEIGHT 4

FSINTERVAL

Format [[[DD:]HH:]MM:]SS

Default 12:00:00

Description The length of each fairshare window.

Example FSINTERVAL 12:00:00

Track fairshare usage in 12 hour blocks.

Appendix A: Moab Parameters

FSJPUWEIGHT

Format <INTEGER>

Default 0

Description The fairshare weight assigned to jobs per user.

Example FSJPUWEIGHT 10

FSMOSTSPECIFICLIMIT

Format <BOOLEAN>

Default FALSE

Description When checking policy usage limits in a fairshare tree, if the most specific
policy limit is passed then do not check the same policy again at higher levels
in the tree. For example, if a user has a MaxProc policy limit then do not check
the MaxProc policy limit on the account for this same user.

Example FSMOSTSPECIFICLIMIT TRUE

FSPOLICY

Format <POLICY>[*] See 6.3.1.A FSPOLICY - Specifying the Metric of Consumption -
page 404 for valid values.

Default [NONE]

Description The unit of tracking fairshare usage.

Example FSPOLICY DEDICATEDPES

Moab will track fairshare usage by dedicated processor-equivalent
seconds.

Appendix A: Moab Parameters

1067

1068

FSPPUWEIGHT

Format <INTEGER>

Default 0

Description The fairshare weight assigned to processors per user.

Example FSPPUWEIGHT 10

FSPSPUWEIGHT

Format <INTEGER>

Default 0

Description The fairshare weight assigned to processor-seconds per user.

Example FSPSPUWEIGHT 10

FSQOSWEIGHT

Format <INTEGER>

Default 1000

Description The priority weight assigned to the QOS fairshare subcomponent.

Example FSQOSWEIGHT 16

Appendix A: Moab Parameters

FSTARGETISABSOLUTE

Format <BOOLEAN>

Default FALSE

Description Specifies whether Moab should base fairshare targets off of delivered cycles or
up/available cycles.

Example FSTARGETISABSOLUTE TRUE

FSTREE

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following:
SHARES or MEMBERLIST

Default ---

Description The share tree distribution for job fairshare prioritization (see Hierarchical
Share Tree Overview).

Example FSTREE[geo] SHARES=16 MEMBERLIST=geo103,geo313,geo422

FSTREEACLPOLICY

Format OFF, PARENT, or FULL

Default FULL

Description Specifies how Moab should interpret credential membership when building the
FSTREE (see Hierarchical Share Tree Overview).

Example FSTREEACLPOLICY PARENT

Credentials will be given access to their parent node when
applicable.

Appendix A: Moab Parameters

1069

1070

FSTREEISREQUIRED

Format <BOOLEAN>

Default FALSE

Description Specifies whether a job must have an applicable node in the partition's FSTREE
in order to execute within that partition (see Hierarchical Share Tree
Overview).

Example FSTREEISREQUIRED TRUE

Jobs must have an applicable node in the FSTREE in order to
execute.

FSTREEUSERISREQUIRED

Format <BOOLEAN>

Default FALSE

Description Specifies whether the user must be given explicit access to a branch in the
FSTREE (see Hierarchical Share Tree Overview).

Example FSTREEUSERISREQUIRED TRUE

Users must be given explicit access to FSTREE nodes in order to
gain access to the FSTREE.

FSUSERWEIGHT

Format <INTEGER>

Default 1000

Description The priority weight assigned to the user fairshare subfactor.

Example FSUSERWEIGHT 8

Appendix A: Moab Parameters

FSWEIGHT

Format <INTEGER>

Default 1

Description The priority weight assigned to the summation of the fairshare subfactors (see
Priority Factor and Fairshare overviews).

Example FSWEIGHT 500

GEVENTCFG[<GEVENT>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs. See 11.9.1
Configuring Generic Events - page 620 for details on values you can assign to
each attribute.

Default ---

Description Specifies how the scheduler should behave when various cluster events are
detected. See the 11.9 Enabling Generic Events - page 619 for more
information.

Example GEVENTCFG[hitemp] ACTION=avoid,record,notify REARM=00:10:00
GEVENT[nodeerror] SEVERITY=3

If a hitemp event is detected, Moab adjusts the node allocation
policy to minimize the allocation of the node. Moab also sends
emails to cluster administrators and reports the event in the Moab
event log.

Appendix A: Moab Parameters

1071

1072

GRESCFG[<GRES>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following: FEATUREGRES, LICENSE, INVERTTASKCOUNT,
PRIVATE, TYPE, or STARTDELAY.

Default ---

Description Specifies associations of generic resources into resource groups:

l When LICENSE is set to TRUE, Moab will pass this generic resource to
the accounting manager in the Licenses property rather than the
Resources property.

l When PRIVATE is set to TRUE, Moab puts the requested generic resource
on a separate job request.
By default, a private request is a request with 1 task with X number of
generic resources per task.

l When INVERTTASKCOUNT and PRIVATE are set to TRUE, Moab makes
the generic resource's private request a request with X number of tasks
with 1 generic resource per task.

See 12.6 Managing Consumable Generic Resources for more information.

Example GRESCFG[scsi1] TYPE=fastio
GRESCFG[scsi2] TYPE=fastio
GRESCFG[scsi3] TYPE=fastio

The generic resources scsi1, scsi2, and scsi3 are all
associated with the generic resource type fastio.

GRESTOJOBATTR

Format Comma-delimited list of generic resources

Default ---

Description The list of generic resources will also be interpreted as JOB features. See
Managing Reservations.

Example GRESTOJOBATTR matlab,ccs

Jobs that request the generic resources matlab or ccs will have a
corresponding job attribute assigned to them.

Appendix A: Moab Parameters

GROUPCFG[<GROUPID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following:
General Credential Flags, PRIORITY, ENABLEPROFILING, QLIST, QDEF,
PLIST, FLAGS, usage limits, or a fairshare usage limit specification.

Default ---

Description Specifies group specific attributes. See the flag overview for a description of
legal flag values.

Example GROUPCFG[staff] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted by members of the group staff will be
allowed to execute simultaneously and will be assigned the QOS
highprio by default.

GROUPWEIGHT

Format <INTEGER>

Default 1

Description The priority weight assigned to the specified group priority (see Credential
(CRED) Factor).

Example GROUPWEIGHT 20

Appendix A: Moab Parameters

1073

1074

GUARANTEEDPREEMPTION

Format <BOOLEAN>

Default FALSE

Description Causes Moab to lock PREEMPTOR jobs until JOBRETRYTIME expires
(essentially, waiting for the PREEMPTEE jobs to finish).
It may take some time for the PREEMPTEE jobs to clear out. During that
time, the PREEMPTOR job might want to look elsewhere to run, which
would be disruptive as it might preempt another set of jobs. If you want it
prevent this, it is recommended that you set GUARANTEEDPREEMPTION
to TRUE.
For related information, see About preemption, Reservation Policies,
DEFERSTARTCOUNT, DEFERTIME, RESERVATIONRETRYTIME,
NODEFAILURERESERVETIME, and JOBRETRYTIME.

Example GUARANTEEDPREEMPTION TRUE

HALOCKCHECKTIME

Format [[[DD:]HH:]MM:]SS

Default 9

Description Specifies how frequently the secondary server checks the timestamp on the
lock file. See High Availability Overview for more info.

Example HALOCKCHECKTIME 00:00:15

The Moab fallback server will check the health of the Moab primary
server every 15 seconds.

Appendix A: Moab Parameters

HALOCKUPDATETIME

Format [[[DD:]HH:]MM:]SS

Default 3

Description Specifies how frequently the primary server checks the timestamp on the lock
file. See High Availability Overview for more info.

Example HALOCKUPDATETIME 00:00:03

The Moab primary server will check the timestamp of the lock file
every 3 seconds.

IDCFG

Format One or more of the following attribute/value pairs: BLOCKEDCREDLIST,
CREATECRED, REFRESHPERIOD, REQUIREUSERLIST, RESETCREDLIST,
or SERVER.
See 19.4 Identity Managers - page 856 for additional information.

Default ---

Description This parameter enables the identity manager interface allowing credential,
policy, and usage information to be shared with an external information
service.

Only one identity manager can be configured at a time.

Example IDCFG[info] SERVER=exec:///usr/local/bin/dbquery.pl REFRESHPERIOD=30:00

Moab will refresh credential info every half hour using the STDOUT
of the specified script.

Appendix A: Moab Parameters

1075

1076

IGNOREMDATASTAGING

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, Moab will ignore any resource manager specific data
staging on a job and assume the resource manager is processing the request.
Currently, this only applies to PBS.

Example IGNORERMDATASTAGING TRUE

IGNORECLASSES

Format [!]<CLASS>[,<CLASS>]...

Default ---

Description By default, if using the Torque resource manager, jobs from all listed classes
are ignored and not scheduled, tracked, or otherwise processed by Moab. If the
not (i.e., '!') character is specified, only jobs from listed classes are processed.
See the Moab Side-by-Side for more information.

Example IGNORECLASSES dque,batch

Moab will ignore jobs from classes dque and batch.

IGNOREJOBS

Format [!]<JOBID>[,<JOBID>]...

Default ---

Description By default, listed jobs are ignored and not scheduled, tracked, or otherwise
processed by Moab. If the not (i.e., '!') character is specified, only listed jobs are
processed. See the Moab Side-by-Side Analysis for more information.

Example IGNOREJOBS !14221,14223

Moab will ignore jobs all classes except 14221 and 14223.

Appendix A: Moab Parameters

IGNORENODES

Format [!]<NODE>[,<NODE>]...

Default ---

Description By default, all listed nodes are ignored and not scheduled, tracked, or
otherwise processed by Moab. If the not (i.e., '!') character is specified, only
listed nodes are processed. See the Moab Side-by-Side Analysis for more
information.

Example IGNORENODES !host3,host4

Moab will only process nodes host3 and host4.

IGNOREPREEMPTEEPRIORITY

Format <BOOLEAN>

Default FALSE

Description By default, preemptor jobs can only preempt preemptee jobs if the
preemptor has a higher job priority than the preemptee. When this
parameter is set to true, the priority constraint is removed allowing any
preemptor to preempt any preemptees once it reaches the top of the
eligible job queue.

Example IGNOREPREEMPTEEPRIORITY TRUE

A preemptor job can preempt any preemptee jobs when it is at
the top of the eligible job queue.

Appendix A: Moab Parameters

1077

1078

IGNOREUSERS

Format [!]<USERNAME>[,<USERNAME>]...

Default ---

Description By default, if using the Torque resource manager, jobs from all listed users are
ignored and not scheduled, tracked, or otherwise processed by Moab. If the
not (i.e., '!') character is specified, only jobs from listed users are processed.
See the Moab Side-by-Side Analysis for more information.

Example IGNOREUSERS testuser1,annapolis

Moab will ignore jobs from users testuser1 and annapolis.

#INCLUDE

Format <STRING>

Default ---

Description Specifies another file that contains more configuration parameters. If
<STRING> is not an absolute path, Moab will search its home directory for
the file.

Example #INCLUDE moab.acct

Moab will process the parameters in moab.acct, as well as
moab.cfg

INSIGHTENDPOINT

Format <hostname>[:<port>]

Default ---

Description Enables Moab Workload Manager to connect to Moab Insight. <hostname> is
the server where Insight is located. <hostname> is required, <port> is optional.

Appendix A: Moab Parameters

INSTANTSTAGE

Description This parameter is deprecated and may be removed in a future release.
Use JOBMIGRATEPOLICY.

INVALIDFSTREEMSG

Format "<STRING>"

Default "no valid fstree node found"

Description The error message that should be attached to jobs that cannot run because of a
fairshare tree configuration violation.

Example INVALIDFSTREEMSG "account is invalid for requested partition"

JOBACTIONONNODEFAILURE

Format CANCEL, FAIL, HOLD, IGNORE, NOTIFY, or REQUEUE

Default ---

Description By default, Moab does not report information when a node allocated to an
active job has failed (state is down).
Use this parameter to specify the action to take if Moab detects that a
node allocated to an active job has failed. Moab only reports this
information via diagnostic commands. If this parameter is set, Moab will
cancel or requeue the active job. See 5.4.6 Allocated Resource Failure
Policy for Jobs - page 374 for more information.

Note: The HOLD value is only applicable when using checkpointing.

Example JOBACTIONONNODEFAILURE REQUEUE

Moab will requeue active jobs that have allocated nodes that
have failed during the execution of the job.

Appendix A: Moab Parameters

1079

1080

JOBAGGREGATIONTIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The minimum amount of time the scheduler should wait after receiving a job
event until it should process that event. This parameter allows sites with
bursty job submissions to process job events in groups decreasing total job
scheduling cycles and allowing the scheduler to make more intelligent choices
by aggregating job submissions and choosing between the jobs. See Appendix
I: Considerations for Large Clusters - page 1400 for more information.

Example JOBAGGREGATIONTIME 00:00:04
RMPOLLINTERVAL 30,30

Moab will wait 4 seconds between scheduling cycles when job
events have been received and will wait 30 seconds between
scheduling cycles otherwise.

Appendix A: Moab Parameters

JOBCFG

Format <ATTR>=<VAL> where <ATTR> is one of ACCOUNT, CLASS, CPUCLOCK,
CPULIMIT, DESCRIPTION, DPROCS, ENV, EXEC, FLAGS, GNAME, GRES, GROUP,
MEM, NODEACCESSPOLICY, NODES, NODESET, PARTITION, PREF, PRIORITY,
PRIORITYF, QOS, RARCH, RFEATURES, RM, ROPSYS, SELECT,
SYSTEMJOBTYPE, TASKS, TASKPERNODE, TEMPLATEDEPEND, UNAME, USER,
VARIABLE, WCLIMIT

Default ---

Description Specifies attributes for jobs that satisfy the specified profile. The SELECT
attribute allows users to specify the job template by using msub -l template=.
The JOBCFG parameter supports the following attributes:
ACCOUNT, CLASS, CPUCLOCK, CPULIMIT, DESCRIPTION, DPROCS, ENV,
EXEC, FLAGS, GNAME, GRES, GROUP, MEM, NODEACCESSPOLICY, NODES,
NODESET, PARTITION, PREF, PRIORITY, PRIORITYF, QOS, RARCH,
RFEATURES, RM, ROPSYS, SELECT, SYSTEMJOBTYPE, TASKS,
TASKPERNODE, TEMPLATEDEPEND, UNAME, USER, VARIABLE, WCLIMIT
It also supports the following Wiki attributes:
ARGS, DMEM, DDISK, DWAP, ERROR, EXEC, EXITCODE, GATTR, GEVENT,
IWD, JNAME, NAME, PARTITIONMASK, PRIORITYF, RDISK, RSWAP,
RAGRES, RCGRES, TASKPERNODE, TRIGGER, VARIABLE, NULL
Note: The index to the JOBCFG parameter can either be an admin-chosen job
template name or the exact name of job reported by one or more workload
queries. See Wiki Attributes and Job Template Extensions.

Example JOBCFG[sql] RFEATURES=sqlnode QOS=service

When the sql job is detected, it will have the specified default qos
and node feature attributes set.

Appendix A: Moab Parameters

1081

1082

JOBCPURGETIME

Format [[[DD:]HH:]MM:]SS

Default 00:05:00

Description The amount of time Moab will preserve detailed information about a
completed job (see showq -c and checkjob).

Example JOBCPURGETIME 02:00:00

Moab will maintain detailed job information for 2 hours after a
job has completed.

JOBCTRUNCATENLCP

Format <BOOLEAN>

Default TRUE

Description Specifies whether Moab will store only the first node of the node list for a
completed job in the checkpoint file.

Example JOBCTRUNCATENLCP TRUE

JOBCTRUNCATENLCP reduces the amount of memory Moab uses
to store completed job information.

Appendix A: Moab Parameters

JOBEXTENDSTARTWALLTIME

Format <BOOLEAN>

Default FALSE

Description Extends the job walltime when Moab starts the job up to the lesser of the
maximum or the next reservation (rounded down to the nearest minute).

JOBEXTENDSTARTWALLTIME TRUE and JOBEXTENDDURATION
cannot be configured together. If they are in the same moab.cfg or
are both active, then the JOBEXTENDDURATION will not be
honored.

Example JOBEXTENDSTARTWALLTIME TRUE

Submit job with a minimum wallclock limit and a walltime; for example:

echo sleep 500 | msub -A ee -l
nodes=5,minwclimit=5:00,walltime=30:00,partition=g02

At job start, Moab recognizes the nodes assigned to the
specified job and extends the walltime for the job (one time at
job start) up to the lesser of the maximum walltime requested
or the least amount of time available for any of the nodes until
the next reservation on that node.

Appendix A: Moab Parameters

1083

1084

JOBFAILRETRYCOUNT

Format <INTEGER>

Default 0

Description The number of times a job is requeued and restarted by Moab if the job fails
(if the job itself returns a non-zero exit code). Some types of jobs might
succeed if automatically retried several times in short succession. This
parameter was created with these types of jobs in mind. Note that the job in
question must also be restartable (the job needs to have the 'RESTARTABLE'
flag set on it) and the RM managing the job must support requeuing and
starting completed jobs.
If a job fails too many times, and reaches the number of retries given by
JobFailRetryCount, then a UserHold is placed on the job and a message is
attached to it signifying that the job has a 'restart count violation.'

Example JOBFAILRETRYCOUNT 7

Any job with a RESTARTABLE flag is requeued, if it fails, up to 7
times before a UserHold is placed on it.

JOBIDWEIGHT

Format <INTEGER>

Default ---

Description The weight to be applied to the job's ID. See Attribute (ATTR) Factor.

Example JOBIDWEIGHT -1

Later jobs' priority will be negatively affected.

Appendix A: Moab Parameters

JOBMATCHCFG

Format <ATTR>=<VAL> where <ATTR> is one of JMIN, JMAX, JDEF, JSET, or JSTAT

Default ---

Description The job templates that must be matched and that will be applied in the case of
a match.

Example JOBMATCHCFG[sql] JMIN=interactive JSTAT=istat

JOBMAXHOLDTIME

Format [[[DD:]HH:]MM:]SS

Default 0 (meaning, no max hold time)

Description The amount of time a job can be held before it is canceled automatically.

Example JOBMAXHOLDTIME 02:00:00

Moab will keep jobs in any HOLD state for 2 hours before
canceling them.

JOBMAXNODECOUNT

Format <INTEGER>

Default 1024

Description The maximum number of nodes that can be allocated to a job. After changing
this parameter, Moab must be restarted. Note: This value cannot exceed either
MMAX_NODE or MMAX_TASK_PER_JOB. If larger values are required, these
values must also be increased. Moab must be restarted before changes to this
command will take effect. The command mdiag -S will indicate if any job node
count overflows have occurred. See Consideration for Large Clusters.

Moab only reads in this setting when starting up (or restarting).

Example JOBMAXNODECOUNT 4000

Appendix A: Moab Parameters

1085

1086

JOBMAXOVERRUN

Format [[[[DD:]HH:]MM:]SS,][[[DD:]HH:]MM:]SS

Default (no soft limit), 10 minutes (hard limit)

Description Soft and hard limit of the amount of time Moab will allow a job to exceed its
wallclock limit before it first sends a mail to the primary admin (soft limit) and
then terminates the job (hard limit). See WCVIOLATIONACTION or Usage-
based Limits.

If you run Moab with the Torque resource manager, you must set the
$ignwalltime parameter to true in the
/var/spool/torque/mom_priv/config file; otherwise the pbs_
mom will kill any job that exceeds its walltime. See '$ignwalltime' in the
Torque Resource ManagerAdministrator Guide for more information.

Example JOBMAXOVERRUN 15:00,1:00:00

Jobs may exceed their wallclock limit by up to 1 hour, but Moab
will send an email to the primary administrator when a job exceeds
its walltime by 15 minutes.

JOBMAXPREEMPTCOUNT

Format <INTEGER>

Default 0 (No Limit)

Description Maximum number of times a job can be preempted before it is not longer
preemptible.

Example JOBMAXPREEMPTCOUNT 5

Any job may be preempted up to 5 times, after which it is no
longer preemptible.

Appendix A: Moab Parameters

JOBMAXPREEMPTPERITERATION

Format <INTEGER>

Default 0 (No Limit)

Description Maximum number of jobs allowed to be preempted per iteration.

Example JOBMAXPREEMPTPERITERATION 10

JOBMAXSTARTPERITERATION

Format <INTEGER>

Default 0 (No Limit)

Description Maximum number of jobs allowed to start per iteration.

Example JOBMAXSTARTPERITERATION 10

JOBMAXSTARTTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description length of time a job is allowed to remain in a 'starting' state. If a 'started' job
does not transition to a running state within this amount of time, Moab will
cancel the job, believing a system failure has occurred.

Example JOBMAXSTARTTIME 2:00:00

Jobs may attempt to start for up to 2 hours before being canceled
by the scheduler

Appendix A: Moab Parameters

1087

1088

JOBMAXTASKCOUNT

Format <INTEGER>

Default 32768

Description The total number of tasks allowed per job.

Example JOBMAXTASKCOUNT 226000

JOBMIGRATEPOLICY

Format One of the following: IMMEDIATE, JUSTINTIME, or AUTO

Default AUTO

Description Upon using the msub command to submit a job, you can allocate the job to
immediately (IMMEDIATE) migrate to the resource manager, or you can
instruct Moab to only migrate the job to the resource manager when it is ready
to run (JUSTINTIME). Specifying AUTO allows MOAB to determine on a per-
job basis whether to use IMMEDIATE or JUSTINTIME.

Example JOBMIGRATEPOLICY JUSTINTIME

JOBNAMEWEIGHT

Format <INTEGER>

Default ---

Description The weight to be applied to the job's name if the Name contains an integer. See
Attribute (ATTR) Factor.

Example JOBNAMEWEIGHT 1

Appendix A: Moab Parameters

JOBNODEMATCHPOLICY

Format AUTO, EXACTNODE, or EXACTPROC

Default AUTO

Description Specifies additional constraints on how compute nodes are to be selected:

l AUTO overrides the JOBNODEMATCHPOLICY (packs the jobs on any
node).

l EXACTNODE indicates that Moab should select as many nodes as
requested even if it could pack multiple tasks onto the same node.

l EXACTPROC indicates that Moab should select only nodes with exactly
the number of processors configured as are requested per node even if
nodes with excess processors are available.

Example JOBNODEMATCHPOLICY EXACTNODE

In a PBS/Native job with resource specification
nodes=<x>:ppn=<y>, Moab will allocate exactly <y> task on
each of <x> distinct nodes.

JOBPREEMPTMAXACTIVETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The amount of time when a job can be eligible for preemption. See Job
Preemption.

Example JOBPREEMPTMAXACTIVETIME 00:05:00

A job is preemptable for the first 5 minutes of its run time.

Appendix A: Moab Parameters

1089

1090

JOBPREEMPTMINACTIVETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The minimum amount of time a job must be active before being
considered eligible for preemption. See Job Preemption.

Example JOBPREEMPTMINACTIVETIME 00:05:00

A job must execute for 5 minutes before Moab will consider
it eligible for preemption.

Appendix A: Moab Parameters

JOBPRIOACCRUALPOLICY

Format ACCRUE or RESET

Default ACCRUE

Description Specifies how Moab should track the dynamic aspects of a job's priority.
ACCRUE indicates that the job will accrue queuetime based priority from
the time it is submitted unless it violates any of the policies not specified in
JOBPRIOEXCEPTIONS. RESET indicates that it will accrue priority from the
time it is submitted unless it violates any of the JOBPRIOEXCEPTIONS.
However, with RESET, if the job does violate JOBPRIOEXCEPTIONS then its
queuetime based priority will be reset to 0.

JOBPRIOACCRUALPOLICY is a global parameter, but can be
configured to work only in QOSCFG:

QOSCFG[arrays] JOBPRIOACCRUALPOLICY=ACCRUE

The following old JOBPRIOACCRUALPOLICY values have been
deprecated and should be adjusted to the following values:

l QUEUEPOLICY = ACCRUE and JOBPRIOEXCEPTIONS
SOFTPOLICY, HARDPOLICY

l QUEUEPOLICYRESET = RESET and JOBPRIOEXCEPTIONS
SOFTPOLICY, HARDPOLICY

l ALWAYS = ACCRUE and JOBPRIOEXCEPTIONS ALL
l FULLPOLICY = ACCRUE and JOBPRIOEXCEPTIONS NONE
l FULLPOLICYRESET = RESET and JOBPRIOEXCEPTIONS NONE

Example JOBPRIOACCRUALPOLICY RESET

Moab will adjust the job's dynamic priority subcomponents (i.e.,
QUEUETIME, XFACTOR, and TARGETQUEUETIME, etc. each
iteration that the job does not violate any
JOBPRIOEXCEPTIONS, if it is found in violation, its queuetime
will be reset to 0).

Appendix A: Moab Parameters

1091

1092

JOBPRIOEXCEPTIONS

Format Comma-delimited list of any of the following: DEFER, DEPENDS,
SOFTPOLICY, HARDPOLICY, IDLEPOLICY, USERHOLD, BATCHHOLD, and
SYSTEMHOLD (ALL or NONE can also be specified on their own)

Default NONE

Description Specifies exceptions for calculating a job's dynamic priority (QUEUETIME,
XFACTOR, TARGETQUEUETIME). Normally, when a job violates a policy, is
placed on hold, or has an unsatisfied dependency, it will not accrue priority.
Exceptions can be configured to allow a job to accrue priority in spite of any of
these violations. With DEPENDS a job will increase in priority even if there
exists an unsatisfied dependency. With SOFTPOLICY, HARDPOLICY, or
IDLEPOLICY a job can accrue priority despite violating a specific limit. With
DEFER, USERHOLD, BATCHHOLD, or SYSTEMHOLD a job can accrue priority
despite being on hold.

JOBPRIOEXCEPTIONS is a global parameter, but can be configured to
work only in QOSCFG:

QOSCFG[arrays] JOBPRIOEXCEPTIONS=IDLEPOLICY

Example JOBPRIOEXCEPTIONS BATCHHOLD,SYSTEMHOLD,DEPENDS

Jobs will accrue priority in spite of batchholds, systemholds, or
unsatisfied dependencies.

JOBPRIOF

Format <ATTRIBUTE>[<VALUE>]=<PRIORITY> where <ATTRIBUTE> is one of
ATTR, GRES or STATE

Default ---

Description Specifies attribute priority weights for jobs with specific attributes, generic
resource requests, or states. State values must be one of the standard Moab job
states. See Attribute-Based Job Prioritization.

Example JOBPRIOF STATE[Running]=100 STATE[Suspended]=1000 ATTR[PREEMPTEE]=200
GRES[biocalc]=5
ATTRATTRWEIGHT 1
ATTRSTATEWEIGHT 1

Moab will adjust the job's dynamic priority subcomponents.

Appendix A: Moab Parameters

JOBPURGETIME

Format [[[DD:]HH:]MM:]SS

Default 30

Description The amount of time Moab will keep a job record that is no longer reported by
the resource manager. Useful when using a resource manager that drops
information about a job due to internal failures. See JOBCPURGETIME. Set to 0
to purge immediately if the resource manager does not report the job.

Example JOBPURGETIME 00:05:00

Moab will maintain a job record for 5 minutes after the last
update regarding that object received from the resource manager.

JOBREJECTPOLICY

Format One or more of CANCEL, HOLD, IGNORE, MAIL, or RETRY

Default HOLD

Description The action to take when the scheduler determines that a job can never run.
CANCEL issues a call to the resource manager to cancel the job. HOLD places a
batch hold on the job preventing the job from being further evaluated until
released by an administrator. Note: Administrators can dynamically alter job
attributes and possibly fix the job with mjobctl -m. With IGNORE, the
scheduler will allow the job to exist within the resource manager queue but
will neither process it nor report it. MAIL will send email to both the admin
and the user when rejected jobs are detected. If RETRY is set, then Moab will
allow the job to remain idle and will only attempt to start the job when the
policy violation is resolved. Any combination of attributes can be specified. See
QOSREJECTPOLICY.

Example JOBREJECTPOLICY MAIL,CANCEL

Appendix A: Moab Parameters

1093

1094

JOBREMOVEENVVARLIST

Format Comma-delimited list of strings

Default ---

Description Moab will remove the specified environment variables from the job's
environment before migrating the job to its destination resource manager.
This is useful when jobs submit themselves from one cluster to another with
the full environment.

This parameter is currently only supported with Torque resource
managers.

Example JOBREMOVEENVVARLIST PBS_SERVER,TZ

Moab will remove the environment variables PBS_SERVER and
TZ before submitting jobs.

JOBRETRYTIME

Format [[[DD:]HH:]MM:]SS

Default 00:00:60

Description Period of time Moab will continue to attempt to start a job that has failed to
start due to transient failures or that has successfully started and was then
rejected by the resource manager due to transient failures. (For related
information, see Reservation Policies, DEFERSTARTCOUNT, DEFERTIME,
RESERVATIONRETRYTIME, NODEFAILURERESERVETIME, and
GUARANTEEDPREEMPTION.)

Example JOBRETRYTIME 00:05:00

Moab will try for up to 5 minutes to restart jobs if the job start
has failed due to transient errors.

Appendix A: Moab Parameters

LIMITEDJOBCP

Format <BOOLEAN>

Default TRUE

Description By default, Moab does not update the checkpoint file or the cache for a job
unless it has undergone a qualifying change (such as a change of state). Setting
LIMITEDJOBCP to FALSE will cause Moab to update the checkpoint file and
the cache for all jobs each iteration, even without a qualifying change. For
clusters that routinely run large numbers of jobs (e.g., more than 15,000),
setting this parameter to FALSE might adversely affect iteration times.

Example LIMITEDJOBCP FALSE

Moab will update the checkpoint file and cache for all jobs each
iteration.

LIMITEDNODECP

Format <BOOLEAN>

Default FALSE

Description Specifies whether there should be limited node checkpointing (see
Consideration for Large Clusters).

Example LIMITEDNODECP TRUE

Moab will only maintain scheduler checkpoint information for nodes
with explicitly modified job attributes (some minor node
performance and usage statistics may be lost).

Appendix A: Moab Parameters

1095

1096

LOADALLJOBCP

Format <BOOLEAN>

Default FALSE

Description Specifies whether Moab should load, during startup, all non-completed jobs in
the checkpoint files regardless of whether or not their corresponding resource
managers are active. For example, this allows source peers to continue
showing remote jobs in the queue based on checkpointed info, even though the
destination peer is offline.

Example LOADALLJOBCP TRUE

Moab will load, at startup, all non-completed jobs from all
checkpoint files.

LOCKFILE

Format <STRING>

Default ---

Description The path for the lock (pid) file used by Moab.

Example LOCKFILE /var/spool/moab/lock

LOGDIR

Format <STRING>

Default log

Description The directory where log files will be maintained. If specified as a relative path,
LOGDIR will be relative to $(MOABHOMEDIR). See Logging Overview for
more information.

Example LOGDIR /var/spool/moab

Moab will record its log files directly into the /var/spool/moab
directory

Appendix A: Moab Parameters

LOGFACILITY

Format Colon delimited list of one or more of the following: CORE, SCHED, SOCK, UI,
LL, CONFIG, STAT, SIM, STRUCT, FS, CKPT, BANK, RM, PBS, WIKI, ALL

Default ALL

Description Specifies which types of events to log (see Logging Overview).

Example LOGFACILITY RM:PBS

Moab will log only events involving general resource manager or
PBS interface activities.

LOGFILE

Format <STRING>

Default moab.log

Description Name of the Moab log file. This file is maintained in the directory pointed to by
<LOGDIR> unless <LOGFILE> is an absolute path (see Logging Overview).

Example LOGFILE moab.test.log

Log information will be written to the file moab.test.log
located in the directory pointed to by the LOGDIR parameter.

LOGFILEMAXSIZE

Format <INTEGER>

Default 10000000

Description Maximum allowed size (in bytes) of the log file before it will be rolled (see
Logging Overview).

Example LOGFILEMAXSIZE 50000000

Log files will be rolled when they reach 50 MB in size

Appendix A: Moab Parameters

1097

1098

LOGFILEROLLDEPTH

Format <INTEGER>

Default 3

Description Number of old log files to maintain (i.e., when full, moab.log will be renamed
moab.log.1, moab.log.1 will be renamed moab.log.2, ...). See Logging
Overview.

Example LOGFILEROLLDEPTH 5

Moab will maintain and roll the last 5 log files.

LOGLEVEL

Format <INTEGER> (0-9)

Default 0

Description The verbosity of Moab logging where 9 is the most verbose (Note: each
logging level is approximately an order of magnitude more verbose than the
previous level). See Logging Overview.

Example LOGLEVEL 4

Moab will write all Moab log messages with a threshold of 4 or
lower to the moab.log file.

Appendix A: Moab Parameters

LOGLEVELOVERRIDE

Format <BOOLEAN>

Default FALSE

Description When this parameter is on, if someone runs a command with --
loglevel=<x>, that loglevel, if higher than the current loglevel, is used on
the scheduler side for the duration of the command. All logs produced during
that time are put into a separate log file (this creates a 'gap' in the normal
logs). This can be very useful for debugging, but it is recommend that this be
used only when diagnosing a specific problem so that users can't affect
performance by submitting multiple --loglevel commands.

This parameter does not work with threaded commands (such as
showq, mdiag -n, and mdiag -j).

Example LOGLEVELOVERRIDE TRUE

LOGPERMISSIONS

Format <INTEGER>

Default 644

Description The octal number that represents read, write, and execute permissions.

Example LOGPERMISSIONS 600

Allows the file owner to read and write permissions, but denies
rights to the group and others.

Appendix A: Moab Parameters

1099

1100

LOGROLLACTION

Format <STRING>

Default ---

Description Specifies a script to run when the logs roll. The script is run as a trigger and
can be viewed using mdiag -T. For example, a script can be specified that
always moves the first rolled log file, moab.log.1, to an archive directory for
longer term storage.

Example LOGROLLACTION /usr/local/tools/logroll.pl

MAILFROMADDR

Format <EMAILADDRESS>

Default ---

Description Sets the FROM address for all emails sent from Moab. Used in conjunction with
MAILPROGRAM.

Example MAILFROMADDR it@yourdomain.com

Appendix A: Moab Parameters

MAILPROGRAM

Format [<Full_Path_To_Mail_Command> | DEFAULT | NONE]
[@<DEFAULTMAILDOMAIN>]

Default NONE

Description If set to NONE, no mail is sent. If set to DEFAULT, Moab sends mail via the
system's default mail program (usually /usr/bin/sendmail). If set to the
local path of a mail program, Moab uses the specified mail program to send
mail.
By default, Moab mail notification is disabled. To enable, you must set
MAILPROGRAM to DEFAULT or specify some other locally available mail
program. If the default mail domain is set, emails will be routed to this domain
unless a per-user domain is specified using the EMAILADDRESS attribute of
the USERCFG parameter. If neither of these values is set, Moab uses
'@localhost' as the mail domain. See Notify Admins.
For jobs, the email address used on the msub -M option overrides all other
user email addresses. Additionally, administrators are notified in the case of
job violations.

Example MAILPROGRAM DEFAULT

Moab sends mail via the system's default mail program,
/usr/bin/sendmail.

MAILPROGRAM /usr/local/bin/sendmail@mydomain.com

Moab sends mail via the mail program located at
/usr/local/bin/sendmail with default mail domain
@mydomain.com

Appendix A: Moab Parameters

1101

1102

MAXGRES

Format <INTEGER>

Default 512

Description Specifies how many generic resources Moab should manage.

In Moab 9.0, four new internal generic resources were added to support
NUMA. You might need to increase MAXGRES to accommodate the
additional resources.

Moab only reads in this setting when starting up (or restarting).

Example MAXGRES 1024

MAXGMETRIC

Format <INTEGER>

Default 10

Description Specifies how many generic metrics Moab should manage.

Moab only reads in this setting when starting up (or restarting).

Example MAXGMETRIC 20

Appendix A: Moab Parameters

MAXJOB

Format <INTEGER>

Default 51200

Description The maximum quantity of jobs for which Moab should allocate memory used
for tracking jobs. If Moab is tracking the maximum quantity of jobs specified by
this parameter, it rejects subsequent jobs submitted by any user since it has no
memory left with which to track newly submitted jobs.
If a user submitted a job with the msub command, this rejection behavior
requires the user to resubmit the job at a later time after other jobs have
completed, which frees memory in which Moab can place later-submitted jobs.
If a user submitted a job with the Torque qsub command, Torque will
automatically resubmit the job to Moab until Moab accepts it.
The mdiag -S command indicates if any job overflows have occurred.
If this parameter's value is changed, it does not go into effect until Moab
restarts. Moab reads the parameter only on initial startup and uses its value to
allocate the memory it uses to track jobs.

Moab only reads in this setting when starting up (or restarting).

Example MAXJOB 75000

MAXNODE

Format <INTEGER>

Default 5120

Description The maximum number of compute nodes supported.

Moab only reads in this setting when starting up (or restarting).

Example MAXNODE 10000

Appendix A: Moab Parameters

1103

1104

MAXRSVPERNODE

Format <INTEGER>

Default 64

Description The maximum number of reservations on a node.

For large SMP systems (>512 processors/node), Adaptive Computing advises
adjusting the value to approximately twice the average sum of admin, standing,
and job reservations present.

A second number, led by a comma, can also be specified to set a maximum
number of reservations for nodes that are part of the SHARED partition.
The maximum possible value of MAXRSVPERNODE is 8192 for a global node
and 4096 for any other node.
Moab must be restarted for any changes to this parameter to take effect. The
command mdiag -S indicates whether any node reservation overflows have
occurred. See Considerations for Large Clusters.

Do not lower the MAXRSVPERNODE value while there are active jobs
in the queue. This can lead to queue instability and certain jobs could

become stuck or disconnected from the system.

Moab only reads in this setting when starting up (or restarting).

Example MAXRSVPERNODE 64

64 is the maximum number of reservations on a single node.

MAXRSVPERNODE 100,7000

100 is the maximum number of reservations on a single node, and
7000 is the maximum number of reservations for global nodes.

Appendix A: Moab Parameters

MEMREFRESHINTERVAL

Format [[[DD:]HH:]MM:]:SS | job:<COUNT>

Default ---

Description The time interval or total job query count at which Moab will perform
garbage collection to free memory associated with resource manager APIs
that possess memory leaks (i.e., Loadleveler, etc.).

Example # free memory associated with leaky RM API
MEMREFRESHINTERVAL 24:00:00

Moab will perform garbage collection once every 24 hours.

MEMWEIGHT

Format <INTEGER>

Default 0

Description The coefficient to be multiplied by a job's MEM (dedicated memory in MB)
factor. See Resource Priority Overview.

Example RESWEIGHT 10
MEMWEIGHT 1000

Each job's priority will be increased by 10 * 1000 * <request
memory>.

Appendix A: Moab Parameters

1105

1106

MESSAGEQUEUEADDRESS

Format The IP address of the machine on which Moab is generating events.

Default * (all)

Description When a user subscribes to the events Moab provides and delivers via
zeroMQ, s/he must do so by specifying tcp://<ipAddress>:<port>.
MESSAGEQUEUEADDRESS specifies the <ipAddress>, which must match
the IP address of the machine on which Moab is installed. To specify the
port, see MESSAGEQUEUEPORT.

Example MESSAGEQUEUEADDRESS 10.1.0.10

To subscribe to Moab events, users must use
tcp://10.1.0.10:<port>.

MESSAGEQUEUEPORT

Format The port of the machine on which Moab is generating events.

Default 5563

Description When a user subscribes to the events Moab provides and delivers via zeroMQ,
s/he must do so by specifying tcp://<ipAddress>:<port>.
MESSAGEQUEUEPORT specifies the <port>, which must match the port of
the machine on which Moab is installed. To specify the IP address, see
MESSAGEQUEUEADDRESS.

Example MESSAGEQUEUEPORT 1010

To subscribe to Moab events, users must use
tcp://<ipAddress>:1010.

Appendix A: Moab Parameters

MESSAGEQUEUESECRETKEY

Format <STRING>

Default ---

Description Causes Moab to encrypt the events delivered via zeroMQ using the
Advanced Encryption Standard (AES) algorithm. Must be a Base64-
encoded, 128-bit (16-byte) key. Messages will be encrypted using AES in
CBC mode where inputs are padded with PKCS5 padding. The
initialization vector is calculated by using an MD5 hash of the key
specified in MESSAGEQUEUESECRETKEY.

MESSAGEQUEUESECRETKEY can only be specified in the moab-
private.cfg file.

Example MESSAGEQUEUESECRETKEY 1r6RvfqJa6voezy5wAx0hw==

MINADMINSTIME

Format <INTEGER>

Default 60 seconds

Description The minimum time a job will be suspended if suspended by an administrator
or by a scheduler policy.

Example MINADMINSTIME 00:10:00

Each job suspended by administrators or policies will stay in the
suspended state for at least 10 minutes.

Appendix A: Moab Parameters

1107

http://en.wikipedia.org/wiki/Base64

1108

MINPRIORITYJOBRSVSIZE

Format <INTEGER>

Default 0

Description The minimum total job size, in processors, for a job to receive a priority
reservation. Jobs smaller than this value will still be started during normal
and backfill scheduling, but will not be eligible for priority reservations.

Example MINPRIORITYJOBRSVSIZE 4

Any job requesting less than four processors will not receive a
priority reservation.

MISSINGDEPENDENCYACTION

Format CANCEL, HOLD, or RUN

Default HOLD

Description Controls what Moab does with a dependent job when its dependency job
cannot be found when Moab evaluates the dependent job for scheduling.
This only affects jobs whose dependent job cannot be found.

Example MISSINGDEPENDENCYACTION CANCEL

Any job that has a dependent job that cannot be found is
canceled.

Appendix A: Moab Parameters

MONGOREPLICASETNAME

Format <name>

Default ---

Description If MONGOSERVER is a comma separated list of HostAndPort strings (i.e.,
replicaset), MONGOREPLICASETNAME must be set to the name used when
defining the replica set within MongoDB.

Example rs.initiate(
{

_id: "myReplSet",
version: 1,
members: [

{ _id: 0, host : "mongodb0.example.net:27017" },
{ _id: 1, host : "mongodb1.example.net:27017" },
{ _id: 2, host : "mongodb2.example.net:27017" }

]
}

)

MONGOSERVER
mongodb0.example.net:27017,mongodb1.example.net27017,mongodb2.example.net:27017
MONGOREPLICASETNAME myReplSet
MONGOSSLMODE enabled
MONGOSSLCAFILE /etc/ssl/mongodb-cert.crt

MONGOSERVER

Format <server>[:<port>]

Default ---

Description The MongoDB server DNS or IP and optional port number. The port number
defaults to the MongoDB default (27017) when not given.

Example MONGOSERVER localhost:27017

Appendix A: Moab Parameters

1109

1110

MONGOSSLCAFILE

Format <file>

Default ---

Description <file> is a file containing the public cert located in the net.ssl.PEMKeyFile
defined in the mongod.conf (i.e., /etc/mongod.conf) file on the MongoDB host.
MONGOSSLCAFILE is ignored when MONGOSSLMODE is either undefined or
set to disabled.

Example MONGOSERVER localhost:27017
MONGOSSLMODE enabled
MONGOSSLCAFILE /etc/ssl/mongodb-cert.crt

MONGOSSLMODE

Format enabled or disabled

Default disabled

Description Enables or disables encryption of MongoDB network traffic. MONGOSSLCAFILE
is required when MONGOSSLMODE is set to 'enabled'. 'preferred' can be added
if the Mongo driver supports it as an option.

Example MONGOSERVER localhost:27017
MONGOSSLMODE enabled
MONGOSSLCAFILE /etc/ssl/mongodb-cert.crt

Appendix A: Moab Parameters

MSUBQUERYINTERVAL

Format <INTEGER>

Default 5 seconds

Description The length of the interval (in seconds) between job queries when using msub
-K. Jobs submitted with the -K option query the scheduler every
MSUBQUERYINTERVAL seconds until the job is completed.
MSUBQUERYINTERVAL can exist as an environment variable. Any value in
moab.cfg overrides the environment variable.
Note: If MSUBQUERYINTERVAL is set to 0, the -K option will be disabled.
Jobs will still submit correctly, but the client will not continue to check on the
job.

Example MSUBQUERYINTERVAL 60

If a user uses the msub -K command, the client remains open and
queries the server every 60 seconds until the job completes.

Appendix A: Moab Parameters

1111

1112

NODEACCESSPOLICY

Format One of the following:
SHARED, SHAREDONLY, SINGLEACCOUNT, SINGLECLASS, SINGLEGROUP,
SINGLEJOB, SINGLETASK, SINGLEUSER, or UNIQUEUSER

Default SHARED

Description Specifies how node resources will be shared by various tasks (see the Node
Access Overview for more information).

Example NODEACCESSPOLICY SINGLEUSER

Moab will allow resources on a node to be used by more than one job
provided that the jobs are all owned by the same user.

NODEAFFINITYPOLICY

Format POSITIVE or DEFAULT

Default DEFAULT

Description When multiple reservations are on the same node and a job has access to
some with a positive affinity and to others with a negative affinity, then the
last reservation's affinity wins (by default). When NODEAFFINITYPOLICY is
set to POSITIVE and a job has any positive affinity on the node, then the
positive affinity will have precedent over any negative affinity.

Example NODEAFFINITYPOLICY POSITIVE

If a job has any positive affinity to a node, it will take precedent over any
negative affinity.

Appendix A: Moab Parameters

NODEALLOCATIONPOLICY

Format One of the following:
CONTIGUOUS, CPULOAD, FIRSTAVAILABLE, LASTAVAILABLE,
MAXBALANCE, MINRESOURCE, PRIORITY, or PLUGIN

Default LASTAVAILABLE

Description Specifies how Moab should allocate available resources to jobs. See Node
Allocation Overview for more information.

If ENABLEHIGHTHROUGHPUT is TRUE, you must set
NODEALLOCATIONPOLICY to FIRSTAVAILABLE.

Example NODEALLOCATIONPOLICY MINRESOURCE

Moab will apply the node allocation policy MINRESOURCE to all
jobs by default.

NODEALLOCRESFAILUREPOLICY

Format One of the following:
CANCEL, HOLD, IGNORE, MIGRATE, NOTIFY, or REQUEUE

Default NONE

Description Specifies how Moab should handle active jobs that experience node
failures during execution. See the RESFAILPOLICY resource manager
extension or the Node Availability Overview.

Example NODEALLOCRESFAILUREPOLICY REQUEUE

Moab will requeue jobs that have allocated nodes fail during
execution.

Appendix A: Moab Parameters

1113

1114

NODEAVAILABILITYPOLICY

Format <POLICY>[:<RESOURCETYPE>] ...
where <POLICY> is one of COMBINED, DEDICATED, or UTILIZED
and <RESOURCETYPE> is one of PROC, MEM, SWAP, or DISK

Default COMBINED

Description Specifies how available node resources are reported. Moab uses the fol-
lowing calculations to determine the amount of available resources:

Dedicated (use what Moab has scheduled to be used):
Available = Configured - Dedicated
Utilized (use what the resource manager is reporting is being used):
Available = Configured - Utilized
Combined (use the larger of dedicated and utilized):
Available = Configured - (MAX (Dedicated, Utilized))

Moab marks a node as busy when it has no available processors, so
NODEAVAILABILTYPOLICY, by affecting how many processors are
reported as available, also affects node state. See Node Availability Policies
for more information.

Beginning with the 8.1.2 release, you can also set
NODEAVAILABILITYPOLICY at NODECFG. See
NODEAVAILABILITYPOLICY - page 595 for instructions on setting
this at the local level.

Example NODEAVAILABILITYPOLICY DEDICATED:PROC COMBINED:MEM

Moab will ignore resource utilization information in locating
available processors for jobs but will use both dedicated and
utilized memory information in determining memory
availability.

Appendix A: Moab Parameters

NODEBUSYSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 0:01:00 (one minute)

Description Length of time Moab will assume busy nodes will remain unavailable for
scheduling if a system reservation is not explicitly created for the node.

Example NODEBUSYSTATEDELAYTIME 0:30:00

Moab will assume busy nodes are not available for scheduling
for at least 30 minutes from the current time. Therefore,
these nodes will never be allocated to starting jobs. Also, these
nodes will only be available for reservations starting more
than 30 minutes in the future.

NODECATCREDLIST

Format <LABEL>=<NODECAT>[,<NODECAT>]...[<LABEL>=<NODECAT>
[,<NODECAT>]...]...
where <LABEL> is any string and <NODECAT> is one of the defined node
categories.

Default ---

Description If specified, Moab will generate node category groupings and each iteration will
assign usage of matching resources to pseudo-credentials with a name
matching the specified label. See the Node Categorization section of the Admin
manual for more information.

Example NODECATCREDLIST down=BatchFailure,HardwareFailure,NetworkFailure idle=Idle

Moab will create a down user, group, account, class, and QoS and
will associate BatchFailure, HardwareFailure, and
NetworkFailure resources with these credentials. Additionally,
Moab will assign all Idle resources to matching idle credentials.

Appendix A: Moab Parameters

1115

1116

NODECFG[X]

Format List of space delimited <ATTR>=<VALUE> pairs, where <ATTR> is one of the
following:

ACCESS, ARCH, CHARGERATE, COMMENT, ENABLEPROFILING, FEATURES,
GRES, MAXJOB, MAXJOBPERUSER, MAXLOAD, MAXPE, MAXPEPERJOB,
MAXPROC, NODEAVAILABILITYPOLICY, NODEINDEX, NODETYPE, OS, OSLIST,
PARTITION, POWERPOLICY, PREEMPTMAXCPULOAD,
PREEMPTMINMEMAVAIL, PREEMPTPOLICY, PRIORITY, PRIORITYF,
PROCSPEED, PROVRM, RACK, RADISK, RCDISK, RCMEM, RCPROC, RCSWAP,
SIZE, SLOT, SPEED, TRIGGER, VARIABLE

Default ---

Description Specifies node-specific attributes for the node indicated in the array field. See
the General Node Administration Overview for more information.

Example NODECFG[nodeA] MAXJOB=2 SPEED=1.2

Moab will only allow 2 simultaneous jobs to run on node nodeA
and will assign a relative machine speed of 1.2 to this node.

NODEDOWNSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (never)

Description Length of time Moab will assume down, drained (offline), or corrupt
nodes will remain unavailable for scheduling if a system reservation is not
explicitly created for the node. The default specification of '-1' causes
Moab to never create job reservations on down nodes. See Node
Availability for more information.

Example NODEDOWNSTATEDELAYTIME 0:30:00

Moab will assume down, drained, and corrupt nodes are not
available for scheduling for at least 30 minutes from the
current time. Therefore, these nodes will never be allocated to
starting jobs. Also, these nodes will only be available for
reservations starting more than 30 minutes in the future.

Appendix A: Moab Parameters

NODEDOWNTIME

Format [[[DD:]HH:]MM:]SS

Default ---

Description The maximum time a previously reported node remains unreported by a
resource manager before the node is considered to be in the down state. This
can happen if communication with a resource manager or a peer server is lost
for more than the specified length of time, or if there is communication with
the resource manager but it fails to report the node status.

Example NODEDOWNTIME 10:00

If Moab loses communication with the resource manager for more
than 10 minutes, it sets the state of all nodes belonging to that
resource manager to DOWN.

NODEDRAINSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 3:00:00 (three hours)

Description Length of time Moab will assume drained nodes will remain unavailable
for scheduling if a system reservation is not explicitly created for the
node. Specifying '-1' will cause Moab to never create job reservations on
drained nodes. See Node Availability for more information.

Example NODEDRAINSTATEDELAYTIME 0:30:00

Moab will assume down, drained, and corrupt nodes are not
available for scheduling for at least 30 minutes from the
current time. Therefore, these nodes will never be allocated to
starting jobs. Also, these nodes will only be available for
reservations starting more than 30 minutes in the future.

Appendix A: Moab Parameters

1117

1118

NODEFAILURERESERVETIME

Format [[[DD:]HH:]MM:]SS

Default 0:05:00

Description Duration of reservation Moab will place on any node where it detects a
failure from the resource manager (0 indicates no reservation will be
placed on the node). See Node Availability for more information. See also
RMCFG[] NODEFAILURERSVPROFILE. (For related information, see
Reservation Policies, DEFERSTARTCOUNT, DEFERTIME,
RESERVATIONRETRYTIME, JOBRETRYTIME, and
GUARANTEEDPREEMPTION.)

Example NODEFAILURERESERVETIME 10:00

Moab will reserve failed nodes for 10 minutes.

NODEIDFORMAT

Format <STRING>

Default *$N*

Description Specifies how a node ID can be processed to extract possible node, rack, slot,
and cluster index information. The value of the parameter can include the
markers $C (cluster index), $N (node index), $R (rack index), or $S (slot
index) separated by *(asterisk - representing any number of non-numeric
characters) or other characters to indicate this encoding. See Node Selection
for more information on use of node, rack, and slot indices.

Example NODEIDFORMAT *$R*$S

Moab will extract rack and slot information from the cluster node
IDs (i.e., tg-13s08).

Appendix A: Moab Parameters

NODEIDLEPOWERTHRESHOLD

Format <INTEGER>

Default 60 seconds

Description Specifies how long to allow a node to be idle before performing a power
action. Increasing the idle duration prevents power on/off thrashing.

Example NODEIDLEPOWERTHRESHOLD 300

Moab will wait 5 minutes before performing a power action on
a node that has become idle.

NODEIDLEPURGETIME

Format <SECONDS>

Default 0

Description When dynamic nodes are created in Moab, they are usually created with a
request ID. Dynamic nodes created with a request ID are eligible to be
scheduled for purging using NODEIDLEPURGETIME.
NODEIDLEPURGETIME is the amount of time for all nodes with the same
request ID to be idle before Moab begins firing the node end trigger for each
iteration.
If one or more of the nodes with the same request ID becomes non-idle, Moab
stops firing the node end trigger for all of the nodes with the same request ID
until the NODEIDLEPURGETIME is once again met.

A value of 0 disables this feature.

Example NODEIDLEPURGETIME 300

Moab will begin purging groups of dynamic nodes with the same
request ID when all nodes with the same request ID have been idle
for 300 seconds.
Here is an example of how to create a dynamic node with a request
ID:
qmgr -c "create node elastic_node01 np=16,TTL=2022-6-
16T17:17:8Z,requestid=unique_identifierXYZ"

Appendix A: Moab Parameters

1119

1120

NODEMAXLOAD

Format <DOUBLE>

Default 0.0

Description The maximum CPU load on an idle or running node. If the node's load reaches
or exceeds this value, Moab will mark the node busy.
You can also set the MAXLOAD at NODECFG. However, setting NODECFG
MAXLOAD to -1 unsets this parameter setting. See 11.4.1.D MAXLOAD - page
603 for instructions on setting this at the local level.

Example NODEMAXLOAD 0.75

Moab will adjust the state of all idle and running nodes with a load
>= .75 to the state busy.

NODEMEMOVERCOMMITFACTOR

Format <DOUBLE>

Default ---

Description The parameter overcommits available and configured memory and swap
on a node by the specified factor (for example: mem/swap * factor).
Used to show that the node has more mem and swap than it really does.
Only works for PBS RM types.

Example NODEMEMOVERCOMMITFACTOR .5

Moab will overcommit the memory and swap of the node by a
factor of 0.5.

Appendix A: Moab Parameters

NODESETATTRIBUTE

Format FEATURE or VARATTR

Default ---

Description The type of node attribute by which node set boundaries will be established.
See Node Set Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE

Moab will create node sets containing nodes with common features.

NODESETDELAY

Format [[[DD:]HH:]MM:]SS

Default 0:00:00

Description Causes Moab to attempt to span a job evenly across nodesets unless doing so
delays the job beyond the requested NODESETDELAY.

Must use with NODESETPLUS set to SPANEVENLY; if you do not want
to use SPANEVENLY, use NODESETISOPTIONAL instead of
NODESETDELAY.

Example NODESETPLUS SPANEVENLY
NODESETDELAY 5:00

Moab tries to span the job evenly across nodesets unless doing so
delays the job by 5 minutes.

Appendix A: Moab Parameters

1121

1122

NODESETISOPTIONAL

Format <BOOLEAN>

Default TRUE

Description Specifies whether or not Moab will start a job if a requested node set cannot
be satisfied. See Node Set Overview.

Example NODESETISOPTIONAL TRUE

Moab will not block a job from running if its node set cannot be
satisfied.

NODESETLIST

Format <ATTR>[{ :,|}<ATTR>]...

Default ---

Description The list of node attribute values that will be considered for establishing node
sets. See Node Set Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETLIST switchA,switchB

Moab will allocate nodes to jobs either using only nodes with the
switchA feature or using only nodes with the switchB feature.

Appendix A: Moab Parameters

NODESETPLUS

Format DELAY or SPANEVENLY

Default ---

Description Specifies how Moab distributes jobs among nodesets. See Node Set Overview.

Neither SPANEVENLY nor DELAY values of the NODESETPLUS
parameter will work with multi-req jobs or preemption.

Example NODESETPLUS SPANEVENLY

Moab attempts to fit all jobs on a single nodeset or to span them
evenly across a number of nodesets, unless doing so would delay a
job beyond the requested NODESETDELAY.

NODESETPLUS DELAY

Moab attempts to schedule the job within a nodeset for the
configured NODESETDELAY. If Moab cannot find space for the job to
start within NODESETDELAY (Moab considers future workload to
determine if space will open up in time and might create a future
reservation), then Moab schedules the job and ignores the nodeset
requirement.

NODESETPOLICY

Format ANYOF, FIRSTOF, or ONEOF

Default ---

Description Specifies how nodes will be allocated to the job from the various node set
generated. See Node Set Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE NETWORK

Moab will create node sets containing nodes with common network
interfaces.

Appendix A: Moab Parameters

1123

1124

NODESETPRIORITYTYPE

Format One of AFFINITY, BESTFIT, FIRSTFIT, WORSTFIT, or MINLOSS

Default FIRSTFIT

Description Specifies how resource sets will be selected when more than one feasible
resource can be found. See Node Set Overview.

Example NODESETPRIORITYTYPE BESTFIT
NODESETATTRIBUTE PROCSPEED

Moab will select the resource set that most closely matches the set
of resources requested.

NODETOJOBATTRMAP

Format Comma-delimited list of node features

Default ---

Description Job requesting the listed node features will be assigned a corresponding job
attribute. These job attributes can be used to enable reservation access, adjust
job priority or enable other capabilities.

Feature/attribute matching is case-sensitive. In particular, keep in mind
that PREEMPTEE and INTERACTIVE require uppercase.

Example NODETOJOBATTRMAP fast,big

Jobs requesting node feature fast or big (for instance, with -l
feature=fast or -W x=feature:big) will be assigned a
corresponding job attribute.

Appendix A: Moab Parameters

NODEUNTRACKEDRESDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 0:00:00

Description Length of time Moab will assume untracked generic resources will
remain unavailable for scheduling if a system reservation is not
explicitly created for the node.
If NODEUNTRACKEDRESDELAYTIME is enabled and there is an
untracked resource preventing a job from running, then the job
remains in the idle queue instead of being deferred.

Example NODEUNTRACKEDRESDELAYTIME 0:30:00

Moab will assume untracked generic resources are not
available for scheduling for at least 30 minutes from the
current time. Therefore, these nodes will never be allocated
to starting jobs. Also, these nodes will only be available for
reservations starting more than 30 minutes in the future.

NODEWEIGHT

Format <INTEGER>

Default 0

Description The weight that will be applied to a job's requested node count before this
value is added to the job's cumulative priority. Notes: This weight currently
only applies when a nodecount is specified by the user job; if the job only
specifies tasks or processors, no node factor will be applied to the job's total
priority. In order for NODEWEIGHT to function properly,
JOBNODEMATCHPOLICY should be set to EXACTNODE. These will be rectified
in future versions.

Example NODEWEIGHT 1000

Appendix A: Moab Parameters

1125

1126

NOLOCALUSERENV

Format <BOOLEAN>

Default FALSE

Description If TRUE, specifies that a user's UserID, GroupID, and HomeDirectory are
available on the Moab server host.

Example NOLOCALUSERENV TRUE

NOJOBHOLDNORESOURCES

Format <BOOLEAN>

Default FALSE

Description If TRUE, Moab does not place a hold on jobs that don't have feasible
resources. For example, suppose there are 20 processors available for
ClassA and 50 processors for the entire system. If a job requests 21 or
more processors from ClassA, or 51 or more processors from the entire
system, Moab idles the job (instead of putting a hold on it) until the
resources become available.

Example NOJOBHOLDNORESOURCES TRUE

NOTIFICATIONPROGRAM

Format <STRING>

Default ---

Description The name of the program to handle all notification call-outs.

Example NOTIFICATIONPROGRAM tools/notifyme.pl

Appendix A: Moab Parameters

NOWAITPREEMPTION

Format <BOOLEAN>

Default ---

Description Generally when a job is trying to preempt another, it just waits for the original
jobs that it chose to preempt to end. If this parameter is on, the preemptor will
continue trying to preempt jobs until it can get in.

Example NOWAITPREEMPTION TRUE

OSCREDLOOKUP

Format BESTEFFORT or NEVER

Default BESTEFFORT

Description When set to BESTEFFORT, Moab will create a 'moab user' and try to associate
it what a 'system user' (if possible).
When set to NEVER, this disables all Moab OS credential lookups, including
UID, GID, user to group mappings, and any other OS specific information.
Setting OSCREDLOOKUP by itself does not allow job submission; additional
configuration is required. When submitting jobs from user accounts that do
not exist on the head node (where Moab and Torque are running), you must
also set the PROXYJOBSUBMISSION flag in addition to specifying configuration
settings in the resource manager configuration file. See the example that
follows for information on required resource manager settings.

Example OSCREDLOOKUP NEVER
RMCFG[] FLAGS=PROXYJOBSUBMISSION

To allow job submission, in the Torque configuration file (torque.cfg):

VALIDATEPATH FALSE

Run the following qmgr directive:

set server disable_server_id_check = True

Restart both Moab and pbs_server.

Appendix A: Moab Parameters

1127

1128

PARALLOCATIONPOLICY

Format One of BestFit, BestFitP, FirstStart, LoadBalance,
LoadBalanceP, Random, or RoundRobin

Default FirstStart

Description The approach to use to allocate resources when more than one eligible
partition can be found. See Grid Scheduling Policies for more information.

Example PARALLOCATIONPOLICY LOADBALANCE

New jobs will be started on the most lightly allocated partition.

PARCFG

Format NODEPOWEROFFDURATION, NODEPOWERONDURATION,
NODEALLOCATIONPOLICY or one or more key-value pairs as described in the
Partition Overview

Default ---

Description The attributes, policies, and constraints for the given partition.

Example PARCFG[oldcluster] MAX.WCLIMIT=12:00:00

Moab will not allow jobs to run on the oldcluster partition,
which has a wallclock limit in excess of 12 hours.

Appendix A: Moab Parameters

PBSACCOUNTINGDIR

Format <PATH>

Default ---

Description When specified, Moab will write out job events in standard PBS/ Torque trace-
job format to the specified directory using the standard PBS/TORQUE log file
naming convention. See 'Using tracejob to Locate Job Failures' in the Torque
Administrator Guide for more information.

Example PBSACCOUNTINGDIR /var/spool/torque/sched_logs/

Job events will be written to the specified directory (can be
consumed by PBS's tracejob command).

Appendix A: Moab Parameters

1129

1130

PERPARTITIONSCHEDULING

Format <BOOLEAN>

Default FALSE

Description By default, Moab's scheduling routine schedules each job on each partition
using the following algorithm:
prioritize
foreach (job)
 find the partition on which that job should run
 schedule job
In this model, a job's priority is the same on each partition as it uses a
single global priority. Because a job's priority is the same on every
partition, Moab prioritizes the queue once and then schedules the
prioritized queue across all partitions.
When PERPARTITIONSCHEDULING TRUE is set, the following
algorithm is used:
foreach (partition)
 prioritize
 foreach (job)
 schedule job
In this case, each partition can have a unique priority configuration and
Moab will re-prioritize the jobs for each partition on the system. Each job
is prioritized and scheduled on each partition. See PARCFG for more
information. Also, note that Moab will order the partitions as they are
discovered in the moab.cfg file. Partitions should be explicitly ordered via
PARCFG in the moab.cfg file.

Example PERPARTITIONSCHEDULING TRUE
PARCFG[p1] CONFIGFILE=/opt/moab/etc/p1.cfg
PARCFG[p2] CONFIGFILE=/opt/moab/etc/p2.cfg

Rather than prioritizing the job queue once, Moab prioritizes
the job queue for each partition, p1 and p2 respectively, and
schedules each partition in turn using the policies located in
their respective configuration files. See Per-Partition Settings for
more information.

Appendix A: Moab Parameters

PEWEIGHT

Format <INTEGER>

Default 0

Description The coefficient to be multiplied by a job's PE (processor equivalent) priority
factor.

Example RESWEIGHT 10
PEWEIGHT 100

Each job's priority will be increased by 10 * 100 * its PE factor.

PREEMPTIONALGORITHM

Format PREEMPTORCENTRIC or PREEMPTEECENTRIC

Default PREEMPTEECENTRIC

Description PREEMPTEECENTRIC specifies Moab will use a custom scheduling policy that
ignores many policies such as JOBNODEMATCHPOLICY,
NODEALLOCATIONPOLICY, NODEACCESSPOLICY. This custom scheduling
policy will ensure the fewest and least important (by priority) preemptees
are disturbed by the preemptor. PREEMPTORCENTRIC specifies Moab uses
the normal scheduling policy and obeys all configured policies.

Example PREEMPTIONALGORITHM PREEMPTORCENTRIC

Moab schedules the jobs as if the preemptees were not active and
results in optimal placement for the preemptor.

Appendix A: Moab Parameters

1131

1132

PREEMPTPOLICY

Format One of the following:
CANCEL, REQUEUE, SUSPEND, or CHECKPOINT

Default REQUEUE

Description Specifies how preemptable jobs will be preempted:

l If this policy is set to REQUEUE, preemptible jobs should be marked as
RESTARTABLE.

l If this policy is set to SUSPEND, preemptible jobs should be marked as
SUSPENDABLE.

Moab uses preemption escalation to preempt resources if the specified
preemption facility is not applicable. This means if the policy is set to
SUSPEND and the job is not SUSPENDABLE, Moab might attempt to
requeue or even cancel the job.

Example PREEMPTPOLICY CHECKPOINT

Jobs that are to be preempted will be checkpointed and restarted at
a later time.

PREEMPTPRIOJOBSELECTWEIGHT

Format <DOUBLE>

Default 256.0

Description Determines which jobs to preempt based on size or priority. The
higher the value, the more emphasis is placed on the priority of the job,
causing the lower priority jobs to be preempted first. The lower the
value, the more emphasis is placed on the size of the job, causing the
smaller jobs to be preempted first. If set to 0, job priority will be
ignored, job size will take precedence and the smallest jobs will be
preempted.
The special setting of -1 places the emphasis solely on resource
utilization. This means that jobs will be preempted in a manner that
keeps the resource utilization at the highest level, regardless of job
priority or size.

Example PREEMPTPRIOJOBSELECTWEIGHT 220.5

Appendix A: Moab Parameters

PREEMPTRTIMEWEIGHT

Format <DOUBLE>

Default 0

Description If set to anything other than 0, a job's remaining time is added into the
calculation of which jobs will be preempted. If a positive weight is specified,
jobs with a longer remaining time are favored. If a negative weight is
specified, jobs with a shorter remaining time are favored.

Example PREEMPTRTIMEWEIGHT 1.5

PREEMPTSEARCHDEPTH

Format <INTEGER>

Default unlimited

Description Specifies how many preemptible jobs will be evaluated as potential targets
for serial job preemptors. See Preemption Overview for more information.

Example PREEMPTSEARCHDEPTH 8

Serial job preemptors will only consider the first 8 feasible
preemptee jobs when determining the best action to take.

PRIORITYTARGETDURATION

Format [[[DD:]HH:]MM:]SS

Default ---

Description The ideal job duration that will maximize the value of the
WALLTIMEWEIGHT priority factor. If specified, this factor will be
calculated as the distance from the ideal. Consequently, in most cases, the
associated subcomponent weight should be set to a negative value.

Example WALLTIMEWEIGHT -2500
PRIORITYTARGETDURATION 1:00:00

Appendix A: Moab Parameters

1133

1134

PRIORITYTARGETPROCCOUNT

Format <INTEGER>{+|-|%}

Default ---

Description The ideal job requested proc count that will maximize the value of the
PROCWEIGHT priority factor. If specified, this factor will be calculated as
the distance from the ideal (proc count - ideal = coefficient of
PROCWEIGHT). Consequently, in most cases, the associated
subcomponent weight should be set to a negative value.

Example PROCWEIGHT -1000
PRIORITYTARGETPROCCOUNT 64

PROCWEIGHT

Format <INTEGER>

Default 0

Description The coefficient to be multiplied by a job's requested processor count priority
factor.

Example PROCWEIGHT 2500

Appendix A: Moab Parameters

PROFILECOUNT

Format <INTEGER>

Default 600

Description The number of statistical profiles to maintain.
PROFILECOUNT must be set high enough that at least one day of statistics is
maintained. The statistics time window can be determined by measuring
PROFILEDURATION * PROFILECOUNT. If PROFILEDURATION is one hour
then PROFILECOUNT must be at least 24 so 24 hours worth of statistics are
maintained. If PROFILEDURATION is 30:00 then PROFILECOUNT must be set
to at least 48. If PROFILECOUNT is not high enough for at least one day of
statistics, Moab adjusts it automatically.

Example PROFILECOUNT 300

PROFILEDURATION

Format [[[DD:]HH:]MM:]SS

Default 00:30:00

Description The duration of each statistical profile. The duration cannot be more than 24
hours, and any specified duration must be a factor of 24. For example, factors
of 1/4, 1/2, 1, 2, 3, 4, 6, 8, 12, and 24 are acceptable durations.

Example PROFILEDURATION 24:00:00

Appendix A: Moab Parameters

1135

1136

PURGETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The amount of time Moab will keep a job or node record for an object no
longer reported by the resource manager. Useful when using a resource
manager that 'drops' information about a node or job due to internal failures.
Note: This parameter is superseded by JOBPURGETIME.

Example PURGETIME 00:05:00

Moab will maintain a job or node record for 5 minutes after the
last update regarding that object received from the resource
manager.

PUSHCACHETOWEBSERVICE

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not you want to send cache objects (nodes, jobs,
services, etc.) to Moab Web Services.

Example PUSHCACHETOWEBSERVICE TRUE

Appendix A: Moab Parameters

QOSCFG[<QOSID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following:
General Credential Flags, ACLBLTHRESHOLD, ACLQTTHRESHOLD,
ACLXFTHRESHOLD, ENABLEPROFILING, FSTARGET,
JOBPRIOACCRUALPOLICY, JOBPRIOEXCEPTIONS, MEMBERULIST,
PLIST, PREEMPTEES, PREEMPTMAXTIME, PREEMPTMINTIME,
PREEMPTQTTHRESHOLD, PREEMPTXFTHRESHOLD, PRIORITY, QFLAGS,
QTTARGET, QTWEIGHT, REQRID, RSVQTTHRESHOLD, RSVXFTHRESHOLD,
XFTARGET, XFWEIGHT, usage limit.

Default ---

Description Specifies QOS specific attributes. See the flag overview for a description of legal
flag values. See the QOS Overview section for further details.

Example QOSCFG[commercial] PRIORITY=1000 MAXJOB=4 MAXPROC=80

Moab will increase the priority of jobs using QOS commercial, and
will allow up to 4 simultaneous QOS commercial jobs with up to 80
total allocated processors.

QOSDEFAULTORDER

Format Comma-delimited list of QOS names.

Default ---

Description Sets a global QOS default order for all QOSs, which overrides any specific
default QOS. If the order is defined as b,a,c and a user has access to c,a and
submits a job without requesting a specific QOS, the job is assigned a as the
default QOS.

Example QOSDEFAULTORDER b,a,c

If the job does not have a QOS specified, it is assigned a QOS from
the QOSDEFAULTORDER list (if the user has access to one of them).

Appendix A: Moab Parameters

1137

1138

QOSISOPTIONAL

Format <BOOLEAN>

Default FALSE

Description An entity's default QOS will be the first QOS specified in the QLIST parameter.
When this parameter is set to TRUE the default QOS for the associated
credential (user, account, class, etc.) will not be automatically set to the first
QOS specified in the QLIST.

Example QOSISOPTIONAL TRUE
USERCFG[bob] QLIST=high,low

Moab will set the QOSList for user bob to high and low but will
not set the QDEF. Should bob decide to submit to a particular QOS
he will have to do so manually.

QOSREJECTPOLICY

Format One or more of CANCEL, HOLD, IGNORE, or MAIL

Default HOLD

Description The action to take when Moab determines that a job cannot access a requested
QoS. CANCEL issues a call to the resource manager to cancel the job. HOLD
places a batch hold on the job preventing the job from being further evaluated
until released by an administrator. (Note: Administrators can dynamically alter
job attributes and possibly fix the job with mjobctl -m.) With IGNORE, Moab
will ignore the QoS request and schedule the job using the default QoS for that
job. MAIL will send email to both the admin and the user when QoS request
violations are detected. Most combinations of attributes can be specified;
however, if both MAIL and IGNORE are specified, Moab will not implement
MAIL. Similarly, while CANCEL and HOLD are mutually exclusive, CANCEL will
supersede HOLD if both are specified.
Also see JOBREJECTPOLICY.

Example QOSREJECTPOLICY MAIL,CANCEL

Appendix A: Moab Parameters

QOSWEIGHT

Format <INTEGER>

Default 1

Description The weight to be applied to the qos priority of each job (see Credential (CRED)
Factor).

Example QOSWEIGHT 10

QUEUETIMECAP

Format <DOUBLE>

Default 0 (NO CAP)

Description The maximum allowed absolute pre-weighted queuetime priority factor.

Example QUEUETIMECAP 10000
QUEUETIMEWEIGHT 10

A job that has been queued for 40 minutes will have its queuetime
priority factor calculated as 'Priority = QUEUETIMEWEIGHT * MIN
(10000,40)'.

QUEUETIMEWEIGHT

Format <INTEGER>

Default 1

Description Specifies multiplier applied to a job's queue time (in minutes) to determine the
job's queuetime priority factor.

Example QUEUETIMEWEIGHT 20

A job that has been queued for 4:20:00 will have a queuetime
priority factor of 20 * 260.

Appendix A: Moab Parameters

1139

1140

REALTIMEDBOBJECTS

Format Comma-delimited list of one or more of the following: JOB, NODE, RSV
(reservation), TRIG (trigger), VC (virtual container). You can also specify ALL
or NONE.

Default ALL

Description Specifies which objects Moab will store in the unixodbc database.

Example REALTIMEDBOBJECTS JOB,RSV,TRIG

Moab stores jobs, reservations, and triggers in the uxodbc
database. It will no longer record real time information about
nodes and VCs.

Appendix A: Moab Parameters

RECORDEVENTLIST

Format One or more comma (',') or plus ('+') separated events of GEVENT,
ALLSCHEDCOMMAND, AMCREATE, AMDELETE, AMEND, AMPAUSE, AMQUOTE,
AMRESUME, AMSTART, AMUPDATE, JOBCANCEL, JOBCHECKPOINT,
JOBEND, JOBFAILURE, JOBHOLD, JOBMIGRATE, JOBMODIFY,
JOBPREEMPT, JOBREJECT, JOBRESUME, JOBSTART, JOBSUBMIT,
JOBVARSET, JOBVARUNSET, NODEADD, NODEDELETE, NODEDESTROY,
NODEDOWN, NODEFAILURE, NODEMODIFY, NODEPOWEROFF,
NODEPOWERON, NODEPROVISION, NODEUP, NOTE, QOSVIOLATION,
RMDOWN, RMPOLLEND, RMPOLLSTART, RMUP, RSVCANCEL, RSVCREATE,
RSVEND, RSVMODIFY, RSVSTART, SCHEDCOMMAND, SCHEDCYCLEEND,
SCHEDCYCLESTART, SCHEDFAILURE, SCHEDMODIFY, SCHEDPAUSE,
SCHEDRECYCLE, SCHEDRESUME, SCHEDSTART, SCHEDSTOP, TRIGEND,
TRIGFAILURE, TRIGSTART, TRIGTHRESHOLD, or ALL

Default JOBSTART, JOBCANCEL, JOBEND, JOBFAILURE, SCHEDPAUSE,
SCHEDSTART, SCHEDSTOP, TRIGEND, TRIGFAILURE, TRIGSTART

Description Specifies which events should be recorded in the appropriate event file found
in Moab's stats/ directory. These events are recorded for both local and
remotely staged jobs (see Event Log Overview). Note: If a plus character is
included in the list, the specified events will be added to the default list;
otherwise, the specified list will replace the default list.

Example RECORDEVENTLIST JOBSTART,JOBCANCEL,JOBEND

When a local and/or remote job starts, is canceled, or ends, the
respective event will be recorded.

REJECTDOSSCRIPTS

Format <BOOLEAN>

Default TRUE

Description Moab rejects DOS-formatted scripts submitted with the msub command. This
is useful if you use Slurm as your resource manager, since it does not handle
DOS scripts well. For REJECTDOSSCRIPTS to work correctly,
FILTERCMDFILE must be FALSE. Otherwise, Moab modifies the script instead
of rejecting it, leading to job errors.

This parameter is deprecated and may be removed in a future release.

Appendix A: Moab Parameters

1141

1142

REJECTDOSSCRIPTS

Example REJECTDOSSCRIPTS FALSE

Moab does not reject DOS-formatted scripts submitted with msub.

REJECTINFEASIBLEJOBS

Format <BOOLEAN>

Default FALSE

Description If zero feasible nodes are found for a job among all the nodes on the cluster
and all the resource managers are reporting 'Active', the scheduler rejects
the job. See JOBREJECTPOLICY for more information.

Example REJECTINFEASIBLEJOBS TRUE
JOBREJECTPOLICY MAIL,CANCEL

Any job with zero feasible nodes for execution will be rejected.

REJECTNEGPRIOJOBS

Format <BOOLEAN>

Default TRUE

Description If enabled, the scheduler will refuse to start any job with a negative priority.
See Job Priority Overview and ENABLENEGJOBPRIORITY for more
information.

Example ENABLENEGJOBPRIORITY TRUE
REJECTNEGPRIOJOBS TRUE

Any job with a priority less than zero will be rejected.

Appendix A: Moab Parameters

REMAPCLASS

Format <ClassID>

Default ---

Description Specifies which class/queue will be remapped based on the processors, nodes,
and node features requested and the resource limits of each class. See Remap
Class Overview for more information.

In order to use REMAPCLASS, you must specify a DEFAULTCLASS.

Example RMCFG[internal] DEFAULTCLASS=batch
REMAPCLASS batch
CLASSCFG[small] MAX.PROC=2
CLASSCFG[medium] MAX.PROC=16
CLASSCFG[large] MAX.PROC=1024

Class batch will be remapped based on the number of processors
requested.

REMAPCLASSLIST

Format Comma-delimited list of class names

Default ---

Description The order in which classes will be searched when attempting to remap a class.
Only classes included in the list will be searched and Moab will select the first
class with matches. Note: If no REMAPCLASSLIST is specified, Moab will
search all classes and will search them in the order they are discovered. See
Remap Class Overview for more information.

Example RMCFG[internal] DEFAULTCLASS=batch
REMAPCLASS batch
REMAPCLASSLIST short,medium,long

Class batch will be re-mapped to one of the listed classes.

Appendix A: Moab Parameters

1143

1144

REMOTEFAILTRANSIENT

Format <BOOLEAN>

Default FALSE

Description Only applicable to Moab configurations with multiple resource managers able
to run jobs (such as in a grid environment). When Moab attempts to migrate
a job to one of these resource managers, a remote failure may occur. For
example, a destination peer in a grid that has an error accepting a job results
in a remote error, and the job is rejected. REMOTEFAILTRANSIENT
controls how Moab reacts to remote errors. By default, Moab considers such
an error permanent and does not try to migrate the same job to that
resource manager again. If REMOTEFAILTRANSIENT is set to TRUE, then
Moab considers such an error as transient and will not exclude the erring
resource manager in future migration attempts.

Example REMOTEFAILTRANSIENT TRUE

REMOVETRIGOUTPUTFILES

Format <BOOLEAN>

Default FALSE

Description When Moab launches external trigger actions, the standard output and
error of those trigger actions are redirected to files located in Moab's spool
directory. By default, these files are cleaned every 24 hours. (Files older
than 24 hours are removed.) If, however, you want to have Moab
immediately remove the spool files after they are no longer needed, set
RemoveTrigOutputFiles to TRUE.

Example REMOVETRIGOUTPUTFILES TRUE

Appendix A: Moab Parameters

RESCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description The maximum allowed absolute pre-weighted job resource priority factor.

Example RESCAP 1000

The total resource priority factor component of a job will be bound
by +/- 1000

RESERVATIONDEPTH[X]

Format <INTEGER>

Default 1

Description The number of priority reservations that are allowed in the associated
reservation bucket. Note: The array index, X, is the bucket label and can be any
string up to 64 characters. This label should be synchronized with the
RESERVATIONQOSLIST parameter. See Reservation Policies.

Example RESERVATIONDEPTH[bigmem] 4
RESERVATIONQOSLIST[bigmem] special,fast,joshua

Jobs with QOSs of special, fast, or joshua can have a
cumulative total of up to 4 priority reservations.

Appendix A: Moab Parameters

1145

1146

RESERVATIONPOLICY

Format One of the following: CURRENTHIGHEST, HIGHEST, NEVER

Default CURRENTHIGHEST

Description Specifies how Moab reservations will be handled. See also
RESERVATIONDEPTH. See Reservation Policies.

Example RESERVATIONPOLICY CURRENTHIGHEST
RESERVATIONDEPTH[DEFAULT] 2

Moab will maintain reservations for only the 2 currently highest
priority jobs.

RESERVATIONQOSLIST[X]

Format One or more QOS values or [ALL]

Default [ALL]

Description Specifies which QOS credentials have access to the associated reservation
bucket. Note: The array index, X, is the bucket label and can be any string up
to 64 characters. This label should be synchronized with the
RESERVATIONDEPTH parameter. See Reservation Policies.

Example RESERVATIONDEPTH[big] 4
RESERVATIONQOSLIST[big] hi,low,med

Jobs with QOSs of hi, low, or med can have a cumulative total of
up to 4 priority reservations.

Appendix A: Moab Parameters

RESERVATIONRETRYTIME

Format [[[DD:]HH:]MM:]SS

Default 60 seconds

Description Period of time Moab will continue to attempt to allocate resources to start a
job after the time resources should be made available. This parameter takes
into account resource manager node state race conditions, nodes with
residual high load, network glitches, etc. (For related information, see
Reservation Policies, DEFERSTARTCOUNT, DEFERTIME,
NODEFAILURERESERVETIME, JOBRETRYTIME, and
GUARANTEEDPREEMPTION.)

Example RESERVATIONRETRYTIME 00:05:00

Moab will try for up to 5 minutes to maintain immediate
reservations if the reservations are blocked due to node state,
network, or batch system based race conditions.

RESOURCELIMITMULTIPLIER[<PARID>]

Format <RESOURCE>:<MULTIPLIER>[,...]

Where <RESOURCE> is one of the following:
NODE, PROC, JOBPROC, MEM, JOBMEM, SWAP, DISK, or WALLTIME

Default 1.0

Description If set to less than one, then the hard limit will be the specified limit and
the soft limit will be the specified limit multiplied by the multiplier. If set
to a value greater than one, then the specified limit will be the soft limit
and the hard limit will be the specified limit multiplied by the multiplier.
See Usage-based Limits.

Example RESOURCELIMITMULTIPLER PROC:1.1,MEM:2.0

Sets hard limit for PROC at 1.1 times the PROC soft limit, and
the hard limit of MEM to 2.0 times the MEM soft limit.

Appendix A: Moab Parameters

1147

1148

RESOURCELIMITPOLICY

Format <RESOURCE>:[<SPOLICY>,]<HPOLICY> :
[<SACTION>,]<HACTION> [:
[<SVIOLATIONTIME>,]<HVIOLATIONTIME>]...
Where RESOURCE is one of CPUTIME, DISK, JOBMEM, JOBPROC, MEM,
MINJOBPROC, NETWORK, PROC, SWAP, or WALLTIME
where *POLICY is one of ALWAYS, EXTENDEDVIOLATION, or
BLOCKEDWORKLOADONLY

and where *ACTION is one of CANCEL, CHECKPOINT, NOTIFY, REQUEUE,
SIGNAL, or SUSPEND.

Default No limit enforcement.

Description Specifies how the scheduler should handle jobs that utilize more resources
than they request. See Usage-based Limits.

Example RESOURCELIMITPOLICY MEM:ALWAYS,BLOCKEDWORKLOADONLY:REQUEUE,CANCEL

Moab will cancel all jobs that exceed their requested memory
limits.

RESTARTINTERVAL

Format [[[DD:]HH:]MM:]SS

Default ---

Description Causes Moab daemon to recycle/restart when the given interval of time has
transpired.

Example RESTARTINTERVAL 20:00:00

Moab daemon will automatically restart every 20 hours.

Appendix A: Moab Parameters

RESOURCEQUERYDEPTH

Format <INTEGER>

Default 3

Description Maximum number of options that will be returned in response to an mshow
-a resource query.

Example RESOURCEQUERYDEPTH 1

The mshow -a command will return at most 1 valid collection of
resources.

RESWEIGHT

Format <INTEGER>

Default 1

Description All resource priority components are multiplied by this value before being
added to the total job priority. See Job Prioritization.

Example RESWEIGHT 5
MEMWEIGHT 10
PROCWEIGHT 100
SWAPWEIGHT 0
RESCAP 2000

The job priority resource factor will be calculated as MIN(2000,5 *
(10 * JobMemory + 100 * JobProc)).

Appendix A: Moab Parameters

1149

1150

RMCFG

Format One or more key-value pairs as described in the Resource Manager
Configuration Overview

Default ---

Description The interface and policy configuration for the scheduler-resource manager
interface. Described in detail in the Resource Manager Configuration Overview.

Example RMCFG[Torque3] TYPE=PBS

The PBS server will be used for resource management.

RMMSGIGNORE

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not Moab should adjust node state based on generic
resource manager failure messages. See 'Compute Node Health Check' in the
Torque Resource Manager Administrator Guide for more information.

For green or ONDEMAND computing, RMMSGIGNORE must be set to
TRUE to prevent Moab from powering off a down node.

Example RMMSGIGNORE TRUE

Moab will load and report resource manager failure messages but
will not adjust node state as a result of them.

Appendix A: Moab Parameters

RMPOLLINTERVAL

Format [<MINPOLLTIME>,]<MAXPOLLTIME> where poll time is specified as
[[[DD:]HH:]MM:]SS

Default 0,30

Description The interval between RM polls. The poll interval will be no less than
MINPOLLTIME and no more than MAXPOLLTIME. If you specify a single value,
Moab interprets the value as the MAXPOLLTIME with a MINPOLLTIME of 0.

If you use Torque as your resource manager, prevent communication
errors by giving tcp_timeout at least twice the value of the Moab
RMPOLLINTERVAL.

Example RMPOLLINTERVAL 30,45

Moab will refresh its resource manager information between a
minimum of 30 seconds and a maximum of 45 seconds. Note:
This parameter specifies the default global poll interval for all
resource managers.

RMRETRYTIMECAP

Format [[[DD:]HH:]MM:]SS

Default 1:00:00

Description Moab attempts to contact RMs that are in state 'corrupt' (not down). If the
attempt is unsuccessful, Moab tries again later. If the second attempt is
unsuccessful, Moab increases the gap (the gap grows exponentially) between
communication attempts. RMRETRYTIMECAP puts a cap on the length
between connection attempts.

Example RMRETRYTIMECAP 24:00:00

Moab stops increasing the gap between connection attempts once
the retry gap reaches 24 hours.

Appendix A: Moab Parameters

1151

1152

RSVLIMITPOLICY

Format HARD or SOFT

Default ---

Description Specifies what limits should be enforced when creating reservations.

Example RSVLIMITPOLICY HARD

Moab will limit reservation creation based on the HARD limits
configured.

RSVNODEALLOCATIONPOLICY

Format One of the following:
FIRSTAVAILABLE, LASTAVAILABLE, MINRESOURCE, CPULOAD,
CONTIGUOUS, MAXBALANCE, or PRIORITY

Default LASTAVAILABLE

Description Specifies how Moab should allocate available resources to reservations.

Example RSVNODEALLOCATIONPOLICY MINRESOURCE

Moab will apply the node allocation policy MINRESOURCE to
all reservations by default.

RSVNODEALLOCATIONPRIORITYF

Format User specified algorithm

Default ---

Description When RSVNODEALLOCATIONPOLICY is set to PRIORITY, this
parameter allows you to specify your own priority algorithm. The
priority functions available are the same as the node priority functions.

Example RSVNODEALLOCATIONPOLICY PRIORITY
RSVNODEALLOCATIONPRIORITYF 'SPEED + .01 * AMEM - 10 * JOBCOUNT'

Appendix A: Moab Parameters

RSVPROFILE[X]

Format One or more of the following:
Allowed:
TRIGGERACL (ACCOUNTLIST, CLASSLIST, GROUPLIST, MAXTIME, QOSLIST,
USERLIST)
HostExp (HOSTLIST)
Features (NODEFEATURES)
FLAGS
TASKCOUNT
RSVACCESSLIST
Note: Lists of more than one ACL value cannot be whitespace delimited. Such
lists must be delimited with a comma, pipe, or colon.

Not allowed:
ACCESS
CHARGEACCOUNT
DAYS
DEPTH
ENDTIME
OWNER
PARTITION
PERIOD
PRIORITY

RESOURCES
STARTTIME
TPN

Default ---

Description Specifies attributes of a reservation profile using syntax similar to that for
specifying a standing reservation. See Using Reservation Profiles for details.

Example RSVPROFILE[fast] USERLIST=john,steve
RSVPROFILE[fast] QOSLIST=high,low
RSVPROFILE[fast] TRIGGER=ETYPE=start,OFFSET=5:00,ATYPE=exec,
ACTION="/opt/moab/rp.pl"

Moab will create a reservation profile including trigger and ACL
information.

Appendix A: Moab Parameters

1153

1154

RSVSEARCHALGO

Format LONG or WIDE

Default NONE

Description When Moab is determining when and where a job can run, it either searches
for the most resources (WIDE) or the longest range of resources (LONG). In
almost all cases, searching for the longest range is ideal and returns the
soonest starttime. In some rare cases, however, a particular job may need to
search for the most resources. In those cases sites can configure this parameter
to prevent the starvation of large jobs that fail to hold onto their reservation
starttimes. See the WIDERSVSEARCHALGO job flag.
If this parameter is not set, it will be displayed in mschedctl -l as NONE
but the algorithm that is used will be LONG.

Example RSVSEARCHALGO WIDE

SCHEDCFG

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following:
FBSERVER, FLAGS, MAXJOBID, MINJOBID, HTTPSERVERPORT, MODE,
RECOVERYACTION, SERVER, TRIGGER, or USEDATABASE

MAXRECORDEDCJOBID is deprecated.

Default ---

Description Specifies scheduler policy and interface configuration.

The SERVER attribute can also be set using the environment variable
$MOABSERVER. Using this variable allows you to quickly change the
Moab server that client commands will connect to.
> export MOABSERVER=cluster2:12221

Example SCHEDCFG[zylem3] SERVER=geronimo.scc.com:3422 MODE=NORMAL

Moab will execute in NORMAL mode on the host
geronimo.scc.com.

Appendix A: Moab Parameters

SERVERCSALGO

Format HMAC64|HMACSHA2

Default HMAC64

Description Sets the algorithm used for message digests and message authentication codes:

l HMAC64: the default (SHA-1)
l HMACSHA2: more secure (SHA-512)

If you are using Moab Web Services, then you must set the MWS
configuration parameter moab.messageDigestAlgorithm to match the

value of SERVERCSALGO. See 'moab.messageDigestAlgorithm' in the
Moab Web Services Reference Guide for more details.

Example SERVERCSALGO HMACSHA2

Moab will use SHA-512 for message digests and message
authentication codes.

SERVERHOST

Description This parameter is deprecated and may be removed in a future release.
See SCHEDCFG for replacement parameter.

SERVERMODE

Description This parameter is deprecated and may be removed in a future release.
See SCHEDCFG for replacement parameter.

Appendix A: Moab Parameters

1155

1156

SERVERNAME

Format <STRING>

Default <SERVERHOST>

Description The name the scheduler will use to refer to itself in communication with peer
daemons. See SCHEDCFG for replacement parameter.

Example SERVERNAME moabA

SERVERPORT

Format <INTEGER> (range: 1-64000)

Default 40559

Description Port on which moab will open its user interface socket. See SCHEDCFG for
replacement parameter.

Example SERVERPORT 30003

Moab will listen for client socket connections on port 30003.

SERVERSUBMITFILTER

Format <PATH>

Default ---

Description The location of a global job submit filter script. When you configure a global
job submit filter, Moab executes it on the head node and uses it to filter every
job submission it receives. See Server-Based Submit Filter for more
information about job submit filters.

Example SERVERSUBMITFILTER /opt/moab/scripts/globalfilter.pl

Moab uses /opt/moab/scripts/globalfilter.pl to filter
every job submitted to Moab.

Appendix A: Moab Parameters

SERVICEWEIGHT

Format <INTEGER>

Default 1

Description The service component weight associated with the service factors. See Service
(SERV) Factor for more information.

Example SERVICEWEIGHT 2

SHOWMIGRATEDJOBSASIDLE

Format <BOOLEAN>

Default FALSE

Description By default, migrated jobs in the grid will show as blocked. This is to
prevent jobs from counting against the idle policies of multiple clusters
rather than just the cluster to which the job was migrated.

Example SHOWMIGRATEDJOBSASIDLE TRUE

When set to TRUE, migrated jobs will show as idle and will
count against the idle policies of the cluster showing the job as
migrated.

SPOOLDIR

Format <STRING>

Default ---

Description The directory for temporary spool files created by Moab while submitting a job
to the RM.

Example SPOOLDIR /tmp/moab/spool

Appendix A: Moab Parameters

1157

1158

SPOOLDIRKEEPTIME

Format <INTEGER> (seconds) or [[[DD:]HH:]MM:]SS

Default ---

Description The interval to delete spool files and other temporary files that have been left
in the spool directory. If not set, Moab will remove the spool files after a year.

Example SPOOLDIRKEEPTIME 4:00:00

SPVIOLATIONWEIGHT

Format <INTEGER>

Default 0

Description The weight to be applied to a job that violates soft usage limit policies (see
Service (SERVICE) Component).

Example SPVIOLATIONWEIGHT 5000

Appendix A: Moab Parameters

SRCFG[X]

Format One or more of the following <ATTR>=<VALUE> pairs
ACCESS, ACCOUNTLIST, CHARGE, CHARGEACCOUNT, CHARGEUSER,
CLASSLIST, CLUSTERLIST, COMMENT, DAYS, DEPTH, DISABLE, ENDTIME,
FLAGS, GROUPLIST, HOSTLIST, JOBATTRLIST, MAXTIME, NODEFEATURES,
OWNER, PARTITION, PERIOD, PROFILE, PRIORITY, QOSLIST,
REQUIREDACCTLIST, REQUIREDTPN, REQUIREDUSERLIST, RESOURCES,
ROLLBACKOFFSET, RSVACCESSLIST, RSVGROUP, STARTTIME, TASKCOUNT,
TIMELIMIT, TPN, TRIGGER, or USERLIST
Note: HOSTLIST and ACL list values must be comma-delimited. For example:
HOSTLIST=nodeA,nodeB

Default ---

Description Specifies attributes of a standing reservation. See Managing Reservations for
details.

Example SRCFG[fast] STARTTIME=9:00:00 ENDTIME=15:00:00
SRCFG[fast] HOSTLIST=node0[1-4]$
SRCFG[fast] QOSLIST=high,low

Moab will create a standing reservation running from 9:00 AM to
3:00 PM on nodes 1 through 4 accessible by jobs with QOS high
or low.

STARTCOUNTCAP

Format <INTEGER>

Default 0

Description The max weighted value allowed from the startcount subfactor when
determining a job's priority (see Priority Factors for more information).

Example STARTCOUNTWEIGHT 5000
STARTCOUNTCAP 30000

Appendix A: Moab Parameters

1159

1160

STARTCOUNTWEIGHT

Format <INTEGER>

Default 0

Description The weight to be applied to a job's startcount when determining a job's
priority (see Priority Factors for more information).

Example STARTCOUNTWEIGHT 5000

STATDIR

Format <STRING>

Default stats

Description The directory where Moab statistics will be maintained.

Example STATDIR /var/adm/moab/stats

Appendix A: Moab Parameters

STATPROCMAX

Format <INTEGER>

Default 1

Description The maximum number of processors requested by jobs to be displayed in
matrix outputs (as displayed by the showstats -f command).

Caution: Altering this setting will reset all recorded statistical data
related to it. Do not change this parameter via mschedctl -m (or

changeparam).

Moab only reads in this setting when starting up (or restarting).

Example STATPROCMAX 256
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting
between 4 and 256 processors.

A NONE in services will still allow users to run showq and checkjob on
their own jobs.

Appendix A: Moab Parameters

1161

1162

STATPROCMIN

Format <INTEGER>

Default 1

Description The minimum number of processors requested by jobs to be displayed in
matrix outputs (as displayed by the showstats -f command).

Caution: Altering this setting will reset all recorded statistical data
related to it. Do not change this parameter via mschedctl -m (or

changeparam).

Moab only reads in this setting when starting up (or restarting).

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting
between 4 and 256 processors.

A NONE in services will still allow users to run showq and checkjob on
their own jobs.

Appendix A: Moab Parameters

STATPROCSTEPCOUNT

Format <INTEGER>

Default 5

Description The number of rows of processors requested by jobs to be displayed in
matrix outputs (as displayed by the showstats -f command).

Caution: Altering this setting will reset all recorded statistical data
related to it. Do not change this parameter via mschedctl -m (or

changeparam).

Moab only reads in this setting when starting up (or restarting).

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting
between 4 and 256 processors.

STATPROCSTEPSIZE

Format <INTEGER>

Default 4

Description The processor count multiplier for rows of processors requested by jobs to be
displayed in matrix outputs (as displayed by the showstats -f command).

Caution: Altering this setting will reset all recorded statistical data
related to it. Do not change this parameter via mschedctl -m (or

changeparam).

Moab only reads in this setting when starting up (or restarting).

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting
between 4 and 256 processors.

Appendix A: Moab Parameters

1163

1164

STATTIMEMAX

Format [[DD:]HH:]MM:]SS

Default 00:15:00

Description The maximum amount of time requested by jobs to be displayed in matrix
outputs (as displayed by the showstats -f command).

Caution: Altering this setting will reset all recorded statistical data
related to it. Do not change this parameter via mschedctl -m (or

changeparam).

Moab only reads in this setting when starting up (or restarting).

Example STATTIMEMAX 02:08:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting
between 2 and 128 minutes.

STATTIMEMIN

Format [[DD:]HH:]MM:]SS

Default 00:15:00

Description The minimum amount of time requested by jobs to be displayed in matrix
outputs (as displayed by the showstats -f command).

Caution: Altering this setting will reset all recorded statistical data
related to it. Do not change this parameter via mschedctl -m (or

changeparam).

Moab only reads in this setting when starting up (or restarting).

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting
between 2 and 128 minutes.

Appendix A: Moab Parameters

STATTIMESTEPCOUNT

Format <INTEGER>

Default 6

Description The number of columns of time requested by jobs to be displayed in matrix
outputs (as displayed by the showstats -f command).

Caution: Altering this setting will reset all recorded statistical data
related to it. Do not change this parameter via mschedctl -m (or

changeparam).

Moab only reads in this setting when starting up (or restarting).

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting
between 2 and 128 minutes.

STATTIMESTEPSIZE

Format <INTEGER>

Default 4

Description The time multiplier for columns of time requested by jobs to be displayed in
matrix outputs (as displayed by the showstats -f command).

Caution: Altering this setting will reset all recorded statistical data
related to it. Do not change this parameter via mschedctl -m (or

changeparam).

Moab only reads in this setting when starting up (or restarting).

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting
between 2 and 128 minutes.

Appendix A: Moab Parameters

1165

1166

STOPITERATION

Format <INTEGER>

Default -1 (don't stop)

Description Specifies which scheduling iteration Moab will stop and wait for a command to
resume scheduling.

Example STOPITERATION 10

Moab should stop after iteration 10 of scheduling and wait for
administrator commands.

STOREJOBSUBMISSION

Format <BOOLEAN>

Default ---

Description When set to TRUE, specifies that Moab will save a job's submit arguments and
script to $MOABHOMEDIR/stats/jobarchive/jobNumber.

STOREJOBSUBMISSION currently does not work with jobs submitted
using the Torque qsub command. Instead use Torque job logging. For
more information, see Job Logging in the TorqueAdministrator Guide.

Moab does not manage any of the files it creates in the stats directory.
Therefore, cluster administrators should keep this fact in mind when
enabling STOREJOBSUBMISSION, and implement appropriate archival
and/or pruning tasks to avoid overuse of disk space.

Example STOREJOBSUBMISSION TRUE

Appendix A: Moab Parameters

STRICTPROTOCOLCHECK

Format <BOOLEAN>

Default FALSE

Description Specifies how Moab reacts to differences in XML protocols when
communicating with other Moab peers. If set to TRUE, Moab will reject any
communication that does not strictly conform to the expected protocol. If set
to FALSE (the default), Moab will not reject XML that has extra or unknown
attributes.

Example STRICTPROTOCOLCHECK TRUE

Moab will reject any XML communication that does not strictly
conform to the expected protocol definition.

STRICTSCHEDULING

Format <BOOLEAN>

Default FALSE

Description If Moab fails to get a reservation or an allocation for a priority job, then it will
stop the scheduling cycle for that iteration and not attempt to start any other
jobs, even through backfill.

Example STRICTSCHEDULING TRUE

Moab will stop the scheduling cycle for one iteration if it fails to get
a reservation or allocation for a priority job. It will not attempt to
start any other jobs until the next iteration.

Appendix A: Moab Parameters

1167

1168

SUBMITENVFILELOCATION

Format FILE or PIPE

Default ---

Description If set to FILE, these behaviors are expected:

l The environment file is owned by a user with 600 permissions.
l Moab writes the environment variables ('\0' delimited) to a random

file in Moab's spool directory.
l Moab adds the --export-file=<path_to_file> on the sbatch

command line.
l Moab deletes the file after the job completes.

If set to PIPE, these behaviors are expected:

l Moab creates a pipe and passes the read end of the pipe's file
descriptor to sbatch.

l Moab's parent process writes the environment ('\0' delimited) into the
write end of the pipe.

Adaptive Computing recommends that you configure this parameter for a
more secure environment.

Example SUBMITENVFILELOCATION PIPE

SUBMITFILTER

Format <STRING>

Default ---

Description The directory of a given submit filter script.

Example SUBMITFILTER /home/submitfilter/filter.pl

Appendix A: Moab Parameters

SUBMITHOSTS

Format space delimited list of host names

Default ---

Description If specified, SUBMITHOSTS specifies an explicit list of hosts where jobs can be
submitted.

Example SUBMITHOSTS hostA hostB

SUSPENDRESOURCES[<PARID>]

Format <RESOURCE>[,...]

Where <RESOURCE> is one of the following:
NODE, PROC, MEM, SWAP, DISK

Default ---

Description List of resources to dedicate while a job is suspended (available in Moab
version 4.5.1 and higher).

Example SUSPENDRESOURCES[base] MEM,SWAP,DISK

While a job is suspended in partition base, the memory, swap and
disk for that job will remain dedicated to the job.

Appendix A: Moab Parameters

1169

1170

SYSCFG

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following:
PRIORITY, FSTARGET, QLIST, QDEF, PLIST, FLAGS, or a fairness policy
specification.

Default ---

Description Specifies system-wide default attributes. See the Attribute/Flag Overview for
more information.

Example SYSCFG PLIST=Partition1 QDEF=highprio

By default, all jobs will have access to partition Partition1 and
will use the QOS highprio.

SWAPWEIGHT

Format <INTEGER>

Default 0

Description The priority weight assigned to the virtual memory request of a job.

Example SWAPWEIGHT 10

SYSTEMMAXPROCPERJOB

Format <INTEGER>

Default -1 (NO LIMIT)

Description The maximum number of processors that can be requested by any single
job.

Example SYSTEMMAXPROCPERJOB 256

Moab will reject jobs requesting more than 256 processors.

Appendix A: Moab Parameters

SYSTEMMAXPROCSECONDPERJOB

Format <INTEGER>

Default -1 (NO LIMIT)

Description The maximum number of proc-seconds that can be requested by any
single job.

Example SYSTEMMAXJOBPROCSECOND 86400

Moab will reject jobs requesting more than 86400 procs
seconds (i.e., 64 processors * 30 minutes will be rejected,
while a 2 processor * 12 hour job will be allowed to run).

SYSTEMMAXJOBWALLTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description The maximum amount of wallclock time that can be requested by any
single job.

Example SYSTEMMAXJOBWALLTIME 1:00:00:00

Moab will reject jobs requesting more than 1 day of walltime.

TARGETQUEUETIMEWEIGHT

Format <INTEGER>

Default 0

Description The weight assigned to the time remaining until the queuetime is reached.

Example TARGETQUEUETIMEWEIGHT 10

Appendix A: Moab Parameters

1171

1172

TARGETWEIGHT

Format <INTEGER>

Default 1

Description The weight to be applied to a job's queuetime and expansion factor target
components (see Job Prioritization).

Example TARGETWEIGHT 1000

TARGETXFACTORWEIGHT

Format <INTEGER>

Default 0

Description The weight assigned to the distance to the target expansion factor.

Example TARGETXFACTORWEIGHT 10

TASKDISTRIBUTIONPOLICY

Format This parameter is deprecated and may be removed in a future
release. (Regardless of how TASKDISTRIBUTIONPOLICY is
configured, Moab always packs tasks by filling each node before
moving to the next one in the list, in the order provided by the
resource manager).

Appendix A: Moab Parameters

THREADPOOLSIZE

Format <INTEGER>

Default 2X number of core processors (MAX: 64)

Description Governs the number of threads used when processing job scheduling.
Scalability and performance might improve with multi-threading; to throttle,
limit the number of threads used.

Example THREADPOOLSIZE 10

TOOLSDIR

Format <STRING>

Default tools

Description The directory where Moab tools will be maintained (commonly used in
conjunction with Native Resource Managers, and Triggers).

Example TOOLSDIR /var/adm/moab/tools

TRACKSUSPENDEDJOBUSAGE

Format <BOOLEAN>

Default FALSE

Description Track the memory usage of suspended jobs on the nodes on which they
are suspended and factor the memory usage into the scheduling of idle
jobs.

Example TRACKSUSPENDEDJOBUSAGE TRUE

Moab will track the memory usage of suspended jobs.

Appendix A: Moab Parameters

1173

1174

TRAPFUNCTION

Format <STRING>

Default ---

Description The functions to be trapped.

Example TRAPFUNCTION UpdateNodeUtilization|GetNodeSResTime

TRAPJOB

Format <STRING>

Default ---

Description The jobs to be trapped.

Example TRAPJOB pros23.0023.0

TRAPNODE

Format <STRING>

Default ---

Description The nodes to be trapped.

Example TRAPNODE node001|node004|node005

Appendix A: Moab Parameters

TRAPRES

Format <STRING>

Default ---

Description The reservations to be trapped.

Example TRAPRES interactive.0.1

TRIGCHECKTIME

Format <INTEGER> (milliseconds)

Default 2000

Description Each scheduling iteration, Moab will have a period of time where it handles
commands and other UI requests. This time period is controlled by
RMPOLLINTERVAL. During this time period, known as the UI phase, Moab will
periodically evaluate triggers. Usually this only takes a fraction of a second, but
if the number of triggers are large it could take up substantially more time (up
to several seconds). While Moab is evaluating triggers, it doesn't respond to UI
commands. This makes Moab feel sluggish and unresponsive. To remedy this,
use the parameter TRIGCHECKTIME. This parameter tells Moab to only spend
up to X milliseconds processing triggers during the UI phase. After X
milliseconds has gone by, Moab will pause the evaluating of triggers, handle
any pending UI events, and then restart the trigger evaluations where it last
left off.

Example TRIGCHECKTIME 4000

Appendix A: Moab Parameters

1175

1176

TRIGEVALLIMIT

Format <INTEGER>

Default 1

Description Each scheduling iteration, Moab will have a period of time where it handles
commands and other UI requests. This time period is controlled by
RMPOLLINTERVAL. During this time period, known as the UI phase, Moab will
periodically evaluate triggers. The number of times Moab evaluates all triggers
in the system is controlled by the TRIGEVALLIMIT parameter. By default,
this is set to 1. This means that Moab will evaluate all triggers at most once
during the UI phase. Moab will not leave the UI phase and start other
scheduling tasks until ALL triggers are evaluated at least one time. If
TrigEvalLimit is set to 5, then Moab will wait until all triggers are evaluated
five times.

Example TRIGEVALLIMIT 3

UIMANAGEMENTPOLICY

Format One of FORK or NONE

Default NONE

Description When set with FORK, and with CLIENTUIPORT specified, Moab creates a new
process to handle specific command requests in order to reduce command
processing time. Currently, these commands are supported:

l checkjob
l showbf
l showres
l showstart

See Considerations for Large Clusters for additional information on
reducing command time (also known as low latency).

This parameter should be configured on the server, as well as any
client machines.

Example UIMANAGEMENTPOLICY FORK
CLIENTUIPORT 42560

Appendix A: Moab Parameters

UJOBWEIGHT

Format <INTEGER>

Default 0

Description Weight assigned by jobs per user. -1 will reduce priority by number of active
jobs owned by user.

Example UJOBWEIGHT 10

UMASK

Format <INTEGER>

Default 0022 (octal) (produces 0644 permissions)

Description The file permission mask to use when creating new fairshare, stats, and event
files. See the umask man page for more details.

Example UMASK 0127

Create statistics and event files that are 'read-write' by owner and
'read' by group only.

UNSUPPORTEDDEPENDENCIES

Format Comma-delimited string

Default ---

Description Specifies dependencies that are not supported and should not be
accepted by job submissions. A maximum of 30 dependencies is
supported.

Example # moab.cfg
UNSUPPORTEDDEPENDENCIES before,beforeok,beforenotok,on

> msub -l depend=before:105 cmd.sh
ERROR: cannot submit job - error in extension string

Appendix A: Moab Parameters

1177

1178

UPROCWEIGHT

Format <INTEGER>

Default 0

Description Weight assigned by processors per user. -1 will reduce priority by number of
active procs owned by user.

Example UPROCWEIGHT 10

USAGECONSUMEDWEIGHT

Format <INTEGER>

Default 0

Description The weight assigned to per job processor second consumption.

Example USAGECONSUMEDWEIGHT 10

USAGEEXECUTIONTIMEWEIGHT

Format <INTEGER>

Default 0

Description The priority weight assigned to the total job execution time (measured
in seconds since job start). See Preemption Overview.

Example USAGEEXECUTIONTIMEWEIGHT 10

Appendix A: Moab Parameters

USAGEPERCENTWEIGHT

Format <INTEGER>

Default 0

Description The weight assigned to total requested resources consumed.

Example USAGEPERCENTWEIGHT 5

USAGEREMAININGWEIGHT

Format <INTEGER>

Default 0

Description The weight assigned to remaining usage.

Example USAGEREMAININGWEIGHT 10

USAGEWEIGHT

Format <INTEGER>

Default 1

Description The weight assigned to the percent and total job usage subfactors.

Example USAGEWEIGHT 100

Appendix A: Moab Parameters

1179

1180

USEANYPARTITIONPRIO

Format <BOOLEAN>

Default FALSE

Description The FSTREE data from the first feasible FSTREE will be used when
determining a job's start priority, rather than having no FSTREE data
considered.

Do not set USEANYPARTITIONPRIO if you use per-partition
scheduling. Doing so causes to schedule jobs to the first partition listed,
even if nodes from another partition will be available sooner.

Example USEANYPARTITIONPRIO TRUE

USECPRSVNODELIST

Format <BOOLEAN>

Default TRUE

Description Specifies whether Moab should use the checkpointed reservation node list
when rebuilding reservations on startup. If this is not used then Moab will use
the reservation's specified host expression during rebuilding.

Example USECPRSVNODELIST FALSE

USEDATABASE

Format INTERNAL

Default -

Description Specifies whether Moab should store profile statistics, checkpoint information,
and event information in an integrated database. See Layout of Scheduler
Components with Integrated Database for more information.

Example USEDATABASE INTERNAL

Appendix A: Moab Parameters

USEJOBREGEX

Format BOOLEAN

Default FALSE

Description Specifies whether mjobctl supports regular expressions.

Example USEJOBREGEX TRUE

[user@linux]$ mjobctl -c 8[1-3]

job '81' cancelled
job '82' cancelled
job '83' cancelled

USEMOABCTIME

Format <BOOLEAN>

Default FALSE

Description When Moab finds new jobs on the resource manager, it creates a job inside of
Moab for each job in the resource manager. By default, when Moab creates a
new job, it uses the time the job was submitted to the resource manager to
calculate how long the job has been in the queue (Moab processing time - job
creation in resource manager), which is then used in determining the job's
priority.
In a system where more jobs are submitted to a resource manager than Moab
can handle in one iteration, there is the possibility of jobs running out of order.
For example, two jobs are both submitted at time 5. The first submitted job is
processed first at time 6. So the first job's effective queue duration would be 1
(6-5). On the next iteration, the second job is processed at time 8. So the
second job's effective queue duration would be 3 (8-5), indicating that it has
been in the queue longer than the other job. Since the later job has a higher
effective queue duration it will get a higher priority and could be scheduled to
run before earlier submitted jobs.
Setting USEMOABCTIME to TRUE tells Moab to use the creation time of the
job in Moab rather than the creation time in the resource manager. This
corrects the possible problem of having later submitted jobs having higher
priorities and starting before earlier submitted jobs.

Example USEMOABCTIME TRUE

Appendix A: Moab Parameters

1181

1182

USEMOABJOBID

Format <BOOLEAN>

Default FALSE

Description Specifies whether to return the Moab job ID when running 'msub', or the
resource manager's job ID if it is available.

USEMOABJOBID can also be set at the job level. The job level setting
overrides this (global) setting in moabcfg. See USEMOABJOBID for more
information.

Example USEMOABJOBID TRUE

USERCFG[<USERID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs, where <ATTR>
is one of the following:
General Credential Flags, CDEF, DEFAULT.TPN, DEFAULT.WCLIMIT,
EMAILADDRESS, ENABLEPROFILING, FSCAP, FSTARGET, JOBFLAGS,
MAX.ARRAYSUBJOBS, MAX.WCLIMIT, NOEMAIL, OVERRUN, PLIST,
PRIORITY, PRIVILEGES, QLIST, QDEF, or a usage limit.

Default ---

Description Specifies user specific attributes. For general user attribute information, See
the Credential Overview. For a description of legal flag values, see flag
overview.

Example USERCFG[john] MAXJOB=50 QDEF=highprio
USERCFG[john] EMAILADDRESS=john@company.com

Up to 50 jobs submitted under the user ID john will be allowed to
execute simultaneously and will be assigned the QOS highprio.

Appendix A: Moab Parameters

USERPRIOCAP

Format <INTEGER>

Default ---

Description The priority cap to be applied to the user specified job priority factor. Under
Moab, only negative user priorities can be specified. See Credential (Service)
Factor.

Example USERPRIOWEIGHT 10
USERPRIOCAP -10000

USERPRIOWEIGHT

Format <INTEGER>

Default 1

Description The weight to be applied to the user specified job priority. Under Moab, only
negative user priorities can be specified. If this weight is set, users can reduce
the priority of some of their jobs to allow other jobs to run earlier. See
Credential (Service) Factor and User Selectable Prioritization.

If Viewpoint is part of your configuration, this value must be at least 1.
Otherwise, Moab will not take into consideration any user priority
information specified for a job that was created using Viewpoint.

Example USERPRIOWEIGHT 10

USERWEIGHT

Format <INTEGER>

Default 1

Description The weight to be applied to the user priority of each job. See Credential
(CRED) Factor.

Example USERWEIGHT 10

Appendix A: Moab Parameters

1183

1184

USESYSLOG

Format <BOOLEAN>[<FACILITY>]

Default FALSE:daemon

Description Specifies whether or not the scheduler will report key events to the system
syslog facility. If the <FACILITY> is specified, Moab will report events to this
syslog facility. See Logging Facilities for more information.

Example USESYSLOG TRUE:local3

Moab will report key events, commands, and failures to syslog using
the local3 facility.

USESYSTEMQUEUETIME

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not job prioritization should be based on the time the
job has been eligible to run (i.e., idle and meets all fairness policies [TRUE] or
the time the job has been idle [FALSE]). See Priority Factors for more info.
Note: This parameter has been superseded by the JOBPRIOACCRUALPOLICY
parameter.

Example USESYSTEMQUEUETIME FALSE

The queuetime and expansion factor components of a job's priority
will be calculated based on the length of time the job has been in
the idle state.

Appendix A: Moab Parameters

USEUSERHASH

Format <BOOLEAN>

Default FALSE

Description Enables searching of the user buffer using the user hash key instead of doing
sequential searches of the user buffer.

Example USEUSERHASH TRUE

WALLTIMECAP

Format <DOUBLE>

Default 0 (NO CAP)

Description The maximum total pre-weighted absolute contribution to job priority that can
be contributed by the walltime component. This value is specified as an
absolute priority value, not as a percent.

Example WALLTIMECAP 10000

Moab will bound a job's pre-weighted walltime priority component
within the range +/- 10000.

WALLTIMEWEIGHT

Format <INTEGER>

Default 0

Description The priority weight to be applied to the amount of walltime requested by a job
(in seconds) (see Resource (RES) Factor).

Example RESWEIGHT 10
WALLTIMEWEIGHT 100

Increase the priority of longer duration jobs.

Appendix A: Moab Parameters

1185

1186

WCACCURACYCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description The maximum total pre-weighted absolute contribution to job priority that can
be contributed by the wallclock accuracy component. This value is specified as
an absolute priority value, not as a percent.

Example WCACCURACYCAP 10000

Moab will bound a job's pre-weighted wallclock accuracy priority
component within the range +/- 10000.

WCACCURACYWEIGHT

Format <INTEGER>

Default 0

Description The priority weight to be applied to the job's historical user wallclock
accuracy (range 0.0 to 1.0) (see Fairshare (FS) Factor).

Example FSWEIGHT 10
WCACCURACYWEIGHT 100

Favor jobs with good wallclock accuracies by giving them a priority
increase.

Appendix A: Moab Parameters

WCVIOLATIONACTION

Format One of CANCEL or PREEMPT

Default CANCEL

Description The action to take when a job exceeds its wallclock limit. If set to CANCEL, the
job will be terminated. If set to PREEMPT, the action defined by
PREEMPTPOLICY parameter will be taken. See JOBMAXOVERRUN or Usage-
based limits.

Example WCVIOLATIONACTION PREEMPT
PREEMPTPOLICY REQUEUE

Moab will requeue jobs that exceed their wallclock limit.

WEBSERVICESURL

Format <URL>

Default ---

Description If specified, Moab sends data to Moab Web Services (MWS) to be stored in a
database. This allows Moab to spend more cycles on scheduling instead of
database interaction. The sending occurs via HTTP PUT.

Example WEBSERVICESURL https://mws-staging.ac:8080/mws/rm/moab/dump

Moab sends data that needs to be stored in a database to the
specified URL.

WIKIEVENTS

Format <BOOLEAN>

This parameter is deprecated and may be removed in a future release.

Appendix A: Moab Parameters

1187

1188

XFACTORCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description The maximum total pre-weighted absolute contribution to job priority that can
be contributed by the expansion factor component. This value is specified as an
absolute priority value, not as a percent.

Example XFACTORCAP 10000

Moab will bound a job's pre-weighted XFactor priority component
within the range +/- 10000.

XFACTORWEIGHT

Format <INTEGER>

Default 0

Description The weight to be applied to a job's minimum expansion factor before it is
added to the job's cumulative priority.

Example XFACTORWEIGHT 1000

Moab will multiply a job's XFactor value by 1000 and then add this
value to its total priority.

Appendix A: Moab Parameters

XFMINWCLIMIT

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description The minimum job wallclock limit that will be considered in job expansion
factor priority calculations.

Example XFMINWCLIMIT 0:01:00

Jobs requesting less than 1 minute of wallclock time will be treated
as if their wallclock limit was set to 1 minute when determining
expansion factor for priority calculations.

Appendix A: Moab Parameters

1189

1190

Appendix B: Multi-OS Provisioning

In this section:

B.1 xCAT Plug-in Configuration Parameters 1191
B.2 Configuration Validation 1198
B.3 Deploying Images with Torque 1199
B.4 Installing Moab on the Management Node 1199
B.5 Integrating MSM and xCAT 1200
B.6 Moab Configuration File Example 1201
B.7 MSM Configuration 1202
B.8 MSM Installation 1202
B.9 Troubleshooting 1203
B.10 Verifying the Installation 1203
B.11 xCAT Configuration Requirements 1206

Moab can dynamically provision compute machines to requested operating systems and
power off compute machines when not in use. Moab can intelligently control xCAT and use
its advanced system configuration mechanisms to adapt systems to current workload
requirements. Moab communicates with xCAT using the Moab Service Manager (MSM).
MSM is a translation utility that resides between Moab and xCAT and acts as aggregator
and interpreter. The Moab Workload Manager will query MSM, which in turn queries
xCAT, about system resources, configurations, images, and metrics. After learning about
these resources from MSM, Moab then makes intelligent decisions about the best way to
maximize system utilization.

In this model Moab gathers system information from two resource managers. The first is
Torque, which handles the workload on the system; the second is MSM, which relays
information gathered by xCAT. By leveraging these software packages, Moab intelligently
adapts clusters to deliver on-site goals.

This document assumes that xCAT has been installed and configured. It describes the
process of getting MSM and xCAT communicating, and it offers troubleshooting guidance
for basic integration. This document offers a description for how to get Moab
communicating with MSM and the final steps in verifying a complete software stack.

Appendix B: Multi-OS Provisioning

B.1 xCAT Plug-in Configuration Parameters

Plugin parameters that begin with an underscore character are specific to the xCAT plug-
in; others are common to all plug-ins and can either be set in the RMCFG[msm] for all
plug-ins, or per plug-in in the APPCFG[<plugin_name>].

_CQxCATSessions
_DoNodeStat
_DORVitals
_DoxCATStats
_ESXStore
_FeatureGroups
_HVxCATPasswdKey
_ImagesTabName
_LockDir
_MaskOSWhenOff

_ModifyTorque
_NodeRange
_NoRollbackOnError
_PowerString
_QueueRPower
_ReportNETADDR
_RPowerQueueAge
_RPowerQueueSize
_RPowerTimeOut
_UseOpIDs

_UseStates
_VerifyRPower
_xCATHost
Description
LogLevel
Module
PollInterval
TimeOut

_CQxCATSessions

Format Positive integer > 1

Default 10

Description MSM will divide the node list generated by nodels into this many groups and
simultaneously query xCAT for each group. The value may need tuning for
large installations, higher values will cause the time to complete a single
cluster query to go down, but cause a higher load on the xCAT headnode.

_DoNodeStat

Format 0 or 1

Default 1

Description If set to 0, MSM will not call nodestat to generated a substate. This can be
used to speed up the time it takes to query xCAT, and you do not need the
substate visible to Moab.

_DORVitals

Format 0 or 1

Appendix B: Multi-OS Provisioning

1191 B.1 xCAT Plug-in Configuration Parameters

B.1 xCAT Plug-in Configuration Parameters 1192

_DORVitals

Default 0

Description When set to 1, MSM will poll rvitals power and led status (see the xCAT rvitals
man page). This only works with IBM BMCs currently. In order to use this,
xCAT should respond without error to the rvitals <noderange> watts
and rvitals <noderange> leds commands. Status is reported as
GMETRTIC[watts] and GMETRIC[leds]. See also the _PowerString
configuration parameter.

_DoxCATStats

Format 0 or 1

Default 0

Description If Set to 1, MSM will track performance statistics about calls to xCAT, and the
performance of higher level operations. The information is available via the
script $MSMHOMEDIR/contrib/xcat/xcatstats.pl. This parameter is
useful for tuning the POLLINTERVAL and _CQxCATSessions configuration
parameters.

_ESXStore

Format Mountable NFS Path

Default ---

Description Location of ESX stores.

_FeatureGroups

Format Comma-delimited string of xCAT group names.

Default ---

Description MSM builds the OSLIST for a node as the intersection of _FEATUREGROUPS,
features specified in x_msm for that image, and the nodes group membership.
The value 'torque' is special, and indicates that the image uses Torque, and the
node should be added/removed from Torque during provisioning when used
in conjunction with the _ModifyTorque parameter.

Appendix B: Multi-OS Provisioning

_HVxCATPasswdKey

Format key value in the xCAT passwd table

Default vmware

Description This is where MSM gets the user/password to communicate with ESX
hypervisors.

_ImagesTabName

Format Existing xCAT table that contains your image definitions.

Default x_msm

Description This table specifies the images that can be presented to Moab in a node's
OSLIST. The xCAT schema for this table is defined in
$MSMHOMEDIR/contrib/xcat/MSM.pm, which needs to be copied to the
$XCATROOT/lib/perl/xCAT_schema directory.

_LockDir

Format Existing path on MSM host

Default $MSMHOMEDIR/lck

Description This is a path to where MSM maintains lock files to control concurrency with
some Xen and KVM operations.

_MaskOSWhenOff

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to report OS=None for nodes that
are powered off. This may be useful when mixing stateless and stateful images,
forcing Moab to request provisioning instead of just powering on a node.

Appendix B: Multi-OS Provisioning

1193 B.1 xCAT Plug-in Configuration Parameters

B.1 xCAT Plug-in Configuration Parameters 1194

_ModifyTorque

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to add and removes nodes from
Torque as required by provisioning. See the _FeatureGroups parameter as well.

_NodeRange

Format Any valid noderange (see the xCAT noderange man page).

Default All

Description When MSM queries xCAT this is the noderange it will use. At sites where xCAT
manages other hardware that Moab is not intended to control, it is important
to change this.

_NoRollbackOnError

Format 0 or 1

Default 0

Description When an error occurs and rollback is activated (as it is by default), rollback
causes a reversion to the previous successful request. _
NoRollbackOnError is useful for debugging to determine the xCAT state if
no rollback occurred. If set to 1 and an error occurs between MSM and xCAT
when creating a node, assigning a name (DNS) to a node, or assigning an IP
address (DHCP) to a node, then no rollback occurs.

_PowerString

Format single quote delimited string

Default 'AC Avg Power'

Description Only meaningful when used with _DORVitals=1. Some BMCs return multiple
responses to the rvitals command, or use slightly different text to describe the
power metrics. Use this parameter to control what is reported to Moab. You

Appendix B: Multi-OS Provisioning

_PowerString

can use '$MSMLIBDIR/contrib/xcat/dump.xcat.cmd.plrvitals
<node_name> power' and examine the output to determine what the
appropriate value of this string is.

_QueueRPower

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to aggregate rpower requests to
xCAT into batches. The timing and size of these batches is controlled with the _
RPowerQueueAge and _RPowerQueueSize parameters.
Note: This can significantly reduce load on the xCAT headnode, but will cause
the power commands to take longer, and MSM shutdown to take longer.

_ReportNETADDR

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to report NETADDR=<hosts.ip from
xCAT>.

_RPowerQueueAge

Format Positive integer values

Default 30

Description Only meaningful when used with _QueueRPower. MSM will send any pending
rpower requests when the oldest request in the queue exceeds this value
(seconds).

Appendix B: Multi-OS Provisioning

1195 B.1 xCAT Plug-in Configuration Parameters

B.1 xCAT Plug-in Configuration Parameters 1196

_RPowerQueueSize

Format Positive integer values

Default 200

Description Only meaningful when used with _QueueRPower. MSM will send any pending
rpower requests when the queue depth exceeds this value.

_RPowerTimeOut

Format Positive integer values

Default 60

Description Only meaningful when used with _VerifyRPower. If nodes do not report the
expected power state in this amount of time, a GEVENT will be produced on
the node (or system job).

_UseOpIDs

Format 0 or 1

Default 0

Description When set, this parameter will cause errors to be reported as GEVENTs on the
provided system job, instead of a node (Moab 5.4 only, with appropriate Moab
CFG)

_UseStates

Format Valid xCAT chain.currstate values (see the xCAT chain man page)

Default boot,netboot,install

Description Nodes that do not have one of these values in the xCAT chain.currstate
field will reported with STATE=Updating. Use this configuration parameter
to prevent Moab from scheduling nodes that are updating firmware, etc.

Appendix B: Multi-OS Provisioning

_VerifyRPower

Format 0 or 1

Default 0

Description If set, MSM will attempt to confirm that rpower requests were successful by
polling the power state with rpower stat until the node reports the expected
state, or _RPowerTimeOut is reached.
Note: This can create significant load on the xCAT headnode.

_xCATHost

Format <xcat_headnode>:<xcatd_port>

Default localhost:3001

Description Use to configure MSM to communicate with xCAT on another host.

Description

Format Double quoted string containing brief description of plugin.

Default ---

Description This information is not visible in Moab, but shows up in msmctl -a.

LogLevel

Format 1-9

Default 5

Description Used to control the verbosity of logging, 1 being the lowest (least information
logged) and 9 being the highest (most information logged). For initial setup
and testing, 8 is recommended, then lowering to 3 (only errors logged) for nor-
mal operation. Use 9 for debugging, or when submitting a log file for support.

Appendix B: Multi-OS Provisioning

1197 B.1 xCAT Plug-in Configuration Parameters

B.2 Configuration Validation 1198

Module

Format Moab::MSM::App::xCAT

Default ---

Description Name of the plugin module to load.

PollInterval

Format Integer > 0

Default 60

Description MSM will query xCAT every POLLINTERVAL seconds to update general node
status. This number will likely require tuning for each specific system. In
general, to develop this number, you should pick a fraction of the total nodes
MSM will be managing (1/_CQXCATSESSIONS), and time how long it takes run
nodestat, rpower stat, and optionally rvitals on these nodes, and add ~15%.
Increasing the POLLINTERVAL will lower the overall load on the xCAT
headnode, but decrease the responsiveness to provisioning and power
operations.

TimeOut

Format Integer value > POLLINTERVAL

Default 300

Description This parameter controls how long MSM will wait for child processed to
complete (all xCAT commands are run in child processes). After TIMEOUT
seconds, if a child has not returned it will be killed, and an error reported for
the operation.

B.2 Configuration Validation

Set up environment to manually call MSM commands:

substitute appropriate value(s) for path(s)
export MSMHOMEDIR=/opt/moab/tools/msm
export MSMLIBDIR=/opt/moab/tools/msm
export PATH=$PATH:/$MSMLIBDIR/contrib:$MSMLIBDIR/bin

Appendix B: Multi-OS Provisioning

Verify that MSM starts without errors:

> msmd

Verify that the expected nodes are listed, without errors, using the value of _NODERANGE
from msm.cfg:

> nodels <_NODERANGE>

Verify that the expected nodes, are listed in the cluster query output from MSM:

> cluster.query.pl

Provision all nodes through MSM for the first time (pick and image name from x_msm):

> for i in `nodels <_NODERANGE>; do node.modify.pl $i --set os=<image_name>;done

Verify the nodes correctly provision and that the correct OS is reported (which might take
some time after the provisioning requests are made):

> cluster.query.pl

B.3 Deploying Images with Torque

When using MSM + xCAT to deploy images with Torque, there are some special
configuration considerations. Most of these also apply to other workload resource
managers.

Note that while the MSM xCAT plugin contains support for manipulating Torque directly,
this is not an ideal solution. If you are using a version of xCAT that supports prescripts, it is
more appropriate to write prescripts that manipulate Torque based on the state of the
xCAT tables. This approach is also applicable to other workload resource managers, while
the xCAT plugin only deals with Torque.

Several use cases and configuration choices are discussed in what follows.

Each image should be configured to report its image name through Torque. In the
Torquepbs_mommom_config file the opsys value should mirror the name of the image.
See 'Appendix C: Node Manager (MOM) Configuration' in the Torque Administrator Guide
for more information.

B.4 Installing Moab on the Management Node

Moab is the intelligence engine that coordinates the capabilities of xCAT and Torque to
dynamically provision compute nodes to the requested operating system. Moab also

Appendix B: Multi-OS Provisioning

1199 B.3 Deploying Images with Torque

B.5 Integrating MSM and xCAT 1200

schedules workload on the system and powers off idle nodes. Download and install Moab.

B.5 Integrating MSM and xCAT

Copy the x_msm table schema to the xCAT schema directory:

> cp $MSMHOMEDIR/contrib/xcat/MSM.pm $XCATROOT/lib/perl/xCAT_schema

Restart xcatd and check the x_msm table is correctly created:

> service xcatd restart

> tabdump x_msm

Prepare xCAT images and ensure they provision correctly (see xCAT documentation).

Populate the x_msm table with your image definitions:

> tabedit x_msm

#flavorname,arch,profile,os,nodeset,features,vmoslist,hvtype,hvgroupname,vmgroupname,c
omments,disable
"compute","x86_64","compute","centosX.X","netboot","torque",,,,,,
"science","x86","compute","scientific_linux","netboot","torque",,,,,,

l flavorname - A user specified name for the image and settings; also an xCAT group
name, nodes are added to this group when provisioned

l arch - Architecture as used by xCAT

l profile - Profile as used by xCAT

l os - Operating system as used by xCAT

l nodeset - One of netboot|install|statelite

l features - Names of xCAT groups that identify special hardware features ('torque'
and 'paravirt' are special cases)

l vmoslist - Note: Not used. List of flavorname's this image can host as VMs
(hypervisor images only)

l hvtype - Note: Not used. One of esx|xen|kvm (hypervisor images only)

l hvgroupname - Note: Not used. Name of xCAT group nodes will be added to when
provisioned to this image

l vmgroupname - Note: Not used. Name of xCAT group VMs will be added to when
hosted on a hypervisor of this image

Appendix B: Multi-OS Provisioning

http://xcat-docs.readthedocs.io/en/stable/

l comments - User specified comments

l disable - Flag to temporarily disable use of this image

Ensure all xCAT group names in the x_msm table exist in the xCAT nodegroup table:

> tabedit nodegroup

Edit as necessary to simulate the following example:

#groupname,grouptype,members,wherevals,comments,disable
"compute",,,,,
"esxi4",,,,,
"esxhv",,,,,
"esxvmmgt",,,,,

After making any necessary edits, run the following command:

> nodels compute,esxi4,esxhv,esxvmmgt
should complete without error, ok if doesn't return anything

B.6 Moab Configuration File Example

Moab stores its configuration in the moab.cfg file: /opt/moab/etc/moab.cfg. A
sample configuration file, set up and optimized for Adaptive Computing follows:

SCHEDCFG[Moab] SERVER=gpc-sched:42559
ADMINCFG[1] USERS=root,egan
LOGLEVEL 7

How often (in seconds) to refresh information from Torque and MSM
RMPOLLINTERVAL 60,60
RESERVATIONDEPTH 10
DEFERTIME 0
TOOLSDIR /opt/moab/tools

###
Torque and MSM configuration
###
RMCFG[torque] TYPE=PBS
RMCFG[msm] TYPE=NATIVE:msm FLAGS=autosync,NOCREATERESOURCE RESOURCETYPE=PROV
RMCFG[msm] TIMEOUT=60
RMCFG[msm] PROVDURATION=10:00
AGGREGATENODEACTIONS TRUE

###
ON DEMAND PROVISIONING SETUP
###
QOSCFG[od] QFLAGS=PROVISION
USERCFG[DEFAULT] QLIST=od
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=1000*OS+1000*POWER
NODEAVAILABILITYPOLICY DEDICATED
CLASSCFG[DEFAULT] DEFAULT.OS=scinetcompute

Appendix B: Multi-OS Provisioning

1201 B.6 Moab Configuration File Example

B.7 MSM Configuration 1202

###
GREEN POLICIES
###
NODECFG[DEFAULT] POWERPOLICY=ONDEMAND
PARCFG[ALL] NODEPOWEROFFDURATION=20:00
NODEIDLEPOWERTHRESHOLD 600
END Example moab.cfg

B.7 MSM Configuration

Edit $MSMHOMEDIR/msm.cfg and configure the xCAT plug-in. Below is a generic
example for use with Torque without virtualization. See the section on configuration
parameters for a complete list of parameters and descriptions.

MSM configuration options
RMCFG[msm] PORT=24603
RMCFG[msm] POLLINTERVAL=45
RMCFG[msm] LOGFILE=/opt/moab/log/msm.log
RMCFG[msm] LOGLEVEL=8
RMCFG[msm] DEFAULTNODEAPP=xcat

xCAT plugin specific options
APPCFG[xcat] DESCRIPTION="xCAT plugin"
APPCFG[xcat] MODULE=Moab::MSM::App::xCAT
APPCFG[xcat] LOGLEVEL=3
APPCFG[xcat] POLLINTERVAL=45
APPCFG[xcat] TIMEOUT=3600
APPCFG[xcat] _USEOPIDS=0
APPCFG[xcat] _NODERANGE=moab,esxcompute
APPCFG[xcat] _USESTATES=boot,netboot,install
APPCFG[xcat] _LIMITCLUSTERQUERY=1
APPCFG[xcat] _RPOWERTIMEOUT=120
APPCFG[xcat] _DONODESTAT=1
APPCFG[xcat] _REPORTNETADDR=1
APPCFG[xcat] _CQXCATSESSIONS=4

B.8 MSM Installation

l Determine the installation directory (usually /opt/moab/tools/msm)

l Untar the MSM tarball into the specified directory (making it the MSM home
directory, or $MSMHOMEDIR)

l Verify the required Perl modules and version are available:

> perl -e 'use Storable 2.18'
> perl -MXML::Simple -e 'exit'
> perl -MProc::Daemon -e 'exit'
> perl -MDBD::SQLite -e 'exit'

Appendix B: Multi-OS Provisioning

B.9 Troubleshooting

l msmctl -a does not report the xCAT plugin - Check the log file (path specified in
msm.cfg) for error messages. A common cause is missing Perl modules (Storable,
DBD::SQLite, xCAT::Client).

l cluster.query.pl does not report any nodes - Check that the xCAT command
nodels<noderange>, where <noderange> is the value configured for _
NODERANGE in msm.cfg, outputs the nodes expected.

l cluster.query.pl does not report OS - MSM must provision a node to recognize
what the current operating system is. It is not sufficient to look up the values in the
nodetype table because MSM has no way of recognizing whether nodeset and
rpower were run with the current values in the nodetype table.

l cluster.query.pl does not report OSLIST, or does not report the expected
OSLIST for a node - Check that the node belongs to the appropriate groups,
particularly any listed in the features field of the x_msm table for the missing image
name.

B.10 Verifying the Installation

When Moab starts it immediately communicates with its configured resource managers. In
this case Moab communicates with Torque to get compute node and job queue information.
It then communicates with MSM to determine the state of the nodes according to xCAT. It
aggregates this information and processes the jobs discovered from Torque.

When a job is submitted, Moab determines whether nodes need to be provisioned to a
particular operating system to satisfy the requirements of the job. If any nodes need to be
provisioned Moab performs this action by creating a provisioning system job (a job that is
internal to Moab). This system job communicates with xCAT to provision the nodes and
remain active while the nodes are provisioning. Once the system job has provisioned the
nodes it informs the user's job that the nodes are ready at which time the user's job starts
running on the newly provisioned nodes.

When a node has been idle for a specified amount of time (see
NODEIDLEPOWERTHRESHOLD), Moab creates a power-off system job. This job
communicates with xCAT to power off the nodes and remains active in the job queue until
the nodes have powered off. Then the system job informs Moab that the nodes are
powered off but are still available to run jobs. The power off system job then exits.

To verify correct communication between Moab and MSM run the mdiag -R -v msm
command:

Appendix B: Multi-OS Provisioning

1203 B.9 Troubleshooting

B.10 Verifying the Installation 1204

$ mdiag -R -v msm
diagnosing resource managers
RM[msm] State: Active Type: NATIVE:MSM ResourceType: PROV
Timeout: 30000.00 ms
Cluster Query URL: $HOME/tools/msm/contrib/cluster.query.xcat.pl
Workload Query URL: exec://$TOOLSDIR/msm/contrib/workload.query.pl
Job Start URL: exec://$TOOLSDIR/msm/contrib/job.start.pl
Job Cancel URL: exec://$TOOLSDIR/msm/contrib/job.modify.pl
Job Migrate URL: exec://$TOOLSDIR/msm/contrib/job.migrate.pl
Job Submit URL: exec://$TOOLSDIR/msm/contrib/job.submit.pl
Node Modify URL: exec://$TOOLSDIR/msm/contrib/node.modify.pl
Node Power URL: exec://$TOOLSDIR/msm/contrib/node.power.pl
RM Start URL: exec://$TOOLSDIR/msm/bin/msmd
RM Stop URL: exec://$TOOLSDIR/msm/bin/msmctl?-k
System Modify URL: exec://$TOOLSDIR/msm/contrib/node.modify.pl
Environment:

MSMHOMEDIR=/home/wightman/test/scinet/tools//msm;MSMLIBDIR=/home/wightman/test/scinet/
tools//msm
Objects Reported: Nodes=10 (0 procs) Jobs=0
Flags: autosync
Partition: SHARED
Event Management: (event interface disabled)
RM Performance: AvgTime=0.10s MaxTime=0.25s (38 samples)
RM Languages: NATIVE
RM Sub-Languages: -

To verify nodes are configured to provision use the checknode -v command. Each node
will have a list of available operating systems.

$ checknode n01
node n01
State: Idle (in current state for 00:00:00)
Configured Resources: PROCS: 4 MEM: 1024G SWAP: 4096M DISK: 1024G
Utilized Resources: ---
Dedicated Resources: ---
Generic Metrics: watts=25.00,temp=40.00
Power Policy: Green (global policy) Selected Power State: Off
Power State: Off
Power: Off
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: compute Arch: ---
OS Option: compute
OS Option: computea
OS Option: gpfscompute
OS Option: gpfscomputea

Speed: 1.00 CPULoad: 0.000
Flags: rmdetected
RM[msm]: TYPE=NATIVE:MSM ATTRO=POWER
EffNodeAccessPolicy: SINGLEJOB
Total Time: 00:02:30 Up: 00:02:19 (92.67%) Active: 00:00:11 (7.33%)

To verify nodes are configured for Green power management, run the mdiag -G
command. Each node will show its power state.

$ mdiag -G
NOTE: power management enabled for all nodes
Partition ALL: power management enabled
Partition NodeList:

Partition local: power management enabled
Partition NodeList:

Appendix B: Multi-OS Provisioning

node n01 is in state Idle, power state On (green powerpolicy enabled)
node n02 is in state Idle, power state On (green powerpolicy enabled)
node n03 is in state Idle, power state On (green powerpolicy enabled)
node n04 is in state Idle, power state On (green powerpolicy enabled)
node n05 is in state Idle, power state On (green powerpolicy enabled)
node n06 is in state Idle, power state On (green powerpolicy enabled)
node n07 is in state Idle, power state On (green powerpolicy enabled)
node n08 is in state Idle, power state On (green powerpolicy enabled)
node n09 is in state Idle, power state On (green powerpolicy enabled)
node n10 is in state Idle, power state On (green powerpolicy enabled)

Partition SHARED: power management enabled

To submit a job that dynamically provisions compute nodes, run the msub -l
os=<image> command:

$ msub -l os=computea job.sh
yuby.3
$ showq
active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
provision-4 root Running 8 00:01:00 Fri Jun 19 09:12:56
1 active job 8 of 40 processors in use by local jobs (20.00%)

2 of 10 nodes active (20.00%)
eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
yuby.3 wightman Idle 8 00:10:00 Fri Jun 19 09:12:55
1 eligible job
blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs
Total jobs: 2

Notice that Moab created a provisioning system job named provision-4 to provision the
nodes. When provision-4 detects that the nodes are correctly provisioned to the
requested OS, the submitted job yuby.3 runs:

$ showq
active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
yuby.3 wightman Running 8 00:08:49 Fri Jun 19 09:13:29
1 active job 8 of 40 processors in use by local jobs (20.00%)

2 of 10 nodes active (20.00%)
eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs
blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs
Total job: 1

The checkjob command shows information about the provisioning job, as well as the
submitted job. If any errors occur, run the checkjob -v <jobid> command to
diagnose failures.

Appendix B: Multi-OS Provisioning

1205 B.10 Verifying the Installation

B.11 xCAT Configuration Requirements 1206

B.11 xCAT Configuration Requirements

Observe the following xCAT configuration requirements before installing MSM:

l Configure xCAT normally for your site.
o Test the following commands to verify proper function:

o rpower
o nodeset
o makedhcp
o makedns
o nodestat
o rvitals

o If MSM will run on a different machine than the one on which xCAT runs, install
the xCAT client packages on that machine, and test the previously listed
commands on that machine as well.

o Configure and test all stateful/stateless images you intend to use.

l Configure xCAT to use either PostgreSQL or MySQL. Note that the default of SQLite
might not function properly when MSM drives xCAT.

o PostgreSQL: See Setting_Up_PostgreSQL_as_the_xCAT_DB for more information.
o MySQL: See Setting_Up_MySQL_as_the_xCAT_DB for more information.

You must have a valid Moab license file (moab.lic) with provisioning and green
enabled. For information on acquiring an evaluation license, please contact
info@adaptivecomputing.com.

Appendix B: Multi-OS Provisioning

https://sourceforge.net/p/xcat/wiki/Setting_Up_PostgreSQL_as_the_xCAT_DB/
https://sourceforge.net/p/xcat/wiki/Setting_Up_MySQL_as_the_xCAT_DB/
mailto:info@adaptivecomputing.com

C.1 Moab Event Dictionary 1207

Appendix C: Event Dictionary

See Logging Overview for more information about Moab logging.

In this chapter:

C.1 Moab Event Dictionary 1207

C.1 Moab Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
000
005

US
ER

syste
m.mo
ab

IN
F
O

MWM_
TESTING_
INFO

Testing with argument1:
%s. and argument2: %s and
argument3: %s and
argument4: %s

Internal error
for testing
diagnostics.

0x1
000
065

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
CANCEL

Job %s was canceled. %s The job was
canceled.

0x1
000
066

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
END_
SUCCESSFU
L

Job %s finished successfully
at %s.

The job
finished
successfully.

0x1
000
068

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
USER_HOLD

Job %s had a user hold
applied.

A user hold
was applied to
the job.

0x1
000
069

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
SYSTEM_
HOLD

Job %s had a system hold
applied.

A system hold
was applied to
the job.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
000
06a

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
BATCH_
HOLD

Job %s had a batch hold
applied.

A batch hold
was applied to
the job.

0x1
000
06b

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
DEFER_
HOLD

Job %s had a defer hold
applied.

A defer hold
was applied to
the job.

0x1
000
06c

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
MODIFY

Job %s was modified. %s One of the
attributes of
the job was
modified
either via a
user initiated
action or an
automated
action.

0x1
000
06d

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
REJECT

Job %s was rejected. %s The job was
rejected for
some reason.

0x1
000
06e

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
RELEASE

Job %s was released. Any holds
placed on the
job have been
released, and
the job is not
prevented
from running
due to any
hold action.
The job might
still not be
able to run
due to other
considerations.

0x1
000
06f

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
START

Job %s was started. %s The job was
started on its
designated

Appendix C: Event Dictionary

1208 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1209

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

node[s].

0x1
000
070

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
SUBMIT

Job %s was submitted. %s The job has
been
submitted to
Moab and is
being
evaluated and
processed.

0x1
000
071

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
CREATED

Job %s was created. The job has
been created
and will be
queued for
execution.

0x1
000
072

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
REQUEUE

Job %s was requeued. %s The job has
been requeued
so it can be
executed again.

0x1
000
073

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
CANCEL_
CLEANUP_
STARTED

Job %s is being cleaned up
due to cancel request.

The job has
been issued a
cancel request
and is being
cleaned up.

0x1
000
074

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
CLEANUP_
STARTED

Job %s is being cleaned up. The job has
ended and is
being cleaned
up.

0x1
000
075

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
DEFERRED

Job %s has been deferred. The job has
been deferred.

0x1
000
076

US
ER

doma
in.life
cycle

IN
F
O

MWM_JOB_
RENAME

Job %s has been renamed
to %s.

The job has
been renamed.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
000
0c9

US
ER

doma
in.life
cycle

IN
F
O

MWM_
NODE_
EVAC_VMS

Evacuating VMs off node
%s.

Evacuating
VMs off the
node.

0x1
000
12c

US
ER

doma
in.life
cycle

IN
F
O

MWM_RSV_
CREATE

Reservation %s was
created. %s

The
reservation
has been
created and is
stored in the
system.

0x1
000
12d

US
ER

doma
in.life
cycle

IN
F
O

MWM_RSV_
START

Reservation %s has started. The
reservation
has started.

0x1
000
12e

US
ER

doma
in.life
cycle

IN
F
O

MWM_RSV_
END

Reservation %s has ended. The
reservation
has ended.

0x1
000
190

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
COMMAND

The following scheduler
command was submitted:
%s

External
commands are
submitted to
Moab in a
variety of
ways. This
event
documents the
command line
and possibly
other
information
associated
with the
command.
These
commands
typically have
the ability to
change
behavior/state

Appendix C: Event Dictionary

1210 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1211

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

within Moab.
Commands
that are
typically
queries are not
included.

0x1
000
192

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
CYCLE_
START

A scheduler iteration is
beginning. %s

Moab
periodically
checks through
submitted jobs
and makes
decisions
regarding
which jobs are
scheduled. One
of these
iterations is
beginning now.

0x1
000
193

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
CYCLE_END

A scheduler iteration is
ending. %s

Moab
periodically
checks through
submitted jobs
and makes
decisions
regarding
which jobs are
scheduled. One
of these
iterations is
ending now.

0x1
000
194

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
PAUSE

The scheduler has been
paused. %s

The Moab
scheduler has
been
administrativel
y paused. New
jobs can be
submitted and

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

existing jobs
will continue
to run, but no
new jobs will
be scheduled
as long as
Moab is
paused.

0x1
000
195

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
RECYCLE

The scheduler has been
recycled. %s

The Moab
scheduler has
been
administrativel
y recycled. The
process will
cleanly exit
and save the
state data. It
will then
restart, read in
the data, and
resume
scheduling.

0x1
000
196

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
RESUME

The scheduler has been
resumed.

The Moab
scheduler has
been
administrativel
y resumed. A
new
scheduling
iteration will
begin
immediately
and continue
regularly.

0x1
000
197

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
START

The scheduler has started. The Moab
scheduler has
started.

Appendix C: Event Dictionary

1212 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1213

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
000
198

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
STOP

The scheduler has stopped.
%s

The Moab
scheduler has
stopped.

0x1
000
1f4

US
ER

doma
in.life
cycle

IN
F
O

MWM_
TRIG_
CREATE

Trigger %s has been
created.

The named
trigger has
been created
and is now
recognized in
the Moab
system.

0x1
000
1f5

US
ER

doma
in.life
cycle

IN
F
O

MWM_
TRIG_
START

Trigger %s has started. The named
trigger has
started its
action.

0x1
000
1f6

US
ER

doma
in.life
cycle

IN
F
O

MWM_
TRIG_END

Trigger %s has ended. %s The named
trigger has
finished its
action.

0x1
000
1f8

US
ER

doma
in.life
cycle

IN
F
O

MWM_
TRIG_
THRESHOL
D

Trigger %s threshold event:
%s

A trigger
threshold has
been
encountered.
Additional
details
regarding the
threshold
might be
included in the
text.

0x1
000
258

US
ER

doma
in.life
cycle

IN
F
O

MWM_VM_
SUBMIT

VM %s has been submitted. The named VM
has been
submitted and
is now
recognized in
the Moab

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

system.

0x1
000
259

US
ER

doma
in.life
cycle

IN
F
O

MWM_VM_
DESTROY

VM %s has been
terminated.

The named VM
has finished its
lifecycle and is
now removed
and added to
the completed
table.

0x1
000
25a

US
ER

doma
in.life
cycle

IN
F
O

MWM_VM_
CANCEL

VM %s has been canceled. The named VM
has been
canceled.

0x1
000
25b

US
ER

doma
in.life
cycle

IN
F
O

MWM_VM_
END

VM %s has been ended. The named VM
has been
canceled
because it has
exceeded its
allocated
walltime.

0x1
000
25c

US
ER

doma
in.life
cycle

IN
F
O

MWM_VM_
MIGRATE_
START

VM %s migration has
started. (%s)

The named VM
has started its
migration.
Additional
information
might be
provided
regarding
source and
destination
nodes.

0x1
000
25d

US
ER

doma
in.life
cycle

IN
F
O

MWM_VM_
MIGRATE_
END

VM %s migration has
finished. (%s)

The named VM
has finished its
migration.
Additional
information
might be

Appendix C: Event Dictionary

1214 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1215

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

provided
regarding
source and
destination
nodes.

0x1
000
25f

US
ER

doma
in.life
cycle

IN
F
O

MWM_VM_
MANUAL_
MIGRATE_
START

VM %s migration started
manually. (%s)

The named VM
migration has
been started
manually.
Additional
information
might be
provided
regarding
source and
destination
nodes.

0x1
000
260

US
ER

doma
in.life
cycle

IN
F
O

MWM_VM_
READY

VM %s is ready. The named VM
is ready. It has
been linked to
an internal
tracking job.

0x1
002
711

US
ER

syste
m.mo
ab

IN
F
O

MWM_
PARAMETE
R_SET_TO_
VALUE_
INFO

Parameter '%s' is set to
'%s'.

A parameter
was set to a
specified value.
This is usually
accomplished
via a
configuration
file.

0x1
002
741

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SOCKET_
EXCEPTION

Exception detected in select
for socket %s.

The select()
system call
indicated an
exception for
this socket.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
002
742

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SOCKET_
EXCEPTION_
REASON

Exception identified as '%s'
in select for socket %s.

The select()
system call
indicated an
exception for
this socket. It
has been
identified with
an error ID by
getsockopt().

0x1
002
748

US
ER

syste
m.mo
ab

IN
F
O

MWM_
MOAB_
STARTED_
ON_
CORRECT_
HOST

Server started on host '%s'
%s.

Moab is
started on
either the
primary or
fallback server.

0x1
002
762

US
ER

syste
m.mo
ab

IN
F
O

MWM_
CONFIG_
LINE_
SUCCESSFU
L

Configuration line '%s'
successfully processed.

The line in the
configuration
file was
processed
without error.

0x1
002
935

US
ER

syste
m.mo
ab

IN
F
O

MWM_
ACTIVE_
JOB_
REMOVED_
FROM_
QUEUE

Active %s job %s has been
removed from the queue,
default to successful
completion.

The job was
removed from
the indicated
resource
manager while
it was still
active. By
default, it is
assumed to
complete
successfully
unless more
information is
available (i.e.,
ENABLEFAILU
REFORPURGE
DJOB).

Appendix C: Event Dictionary

1216 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1217

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
002
936

US
ER

syste
m.mo
ab

IN
F
O

MWM_
INACTIVE_
JOB_
REMOVED_
FROM_
QUEUE

Inactive %s job %s has
been removed from the
queue, default to status
'canceled'.

The job was
removed from
the indicated
resource
manager while
it was still
active. By
default, it is
given status
'canceled'
unless more
information is
available (i.e.,
ENABLEFAILU
REFORPURGE
DJOB).

0x1
002
937

US
ER

syste
m.mo
ab

IN
F
O

MWM_RM_
DOWN_
SKIPPING_
WORK

RM %s state is %s, skipping
%s.

The specified
resource
manager is not
in a good state.
Certain actions
might be
skipped while
it is in this
state.

0x1
002
96a

US
ER

syste
m.mo
ab

IN
F
O

MWM_
CANNOT_
RESUME_
JOB

Cannot resume job '%s'
(%s).

Check the PBS
server log to
see reason for
failure.

0x1
002
96b

US
ER

syste
m.mo
ab

IN
F
O

MWM_
CANNOT_
LOCATE_
RESOURCE

Cannot locate %s '%s'. Unable to find
the resource
specified.

0x1
002
96c

US
ER

syste
m.mo
ab

IN
F
O

MWM_
CANNOT_
SET_JOB_

Cannot set class on job '%s'
to '%s' (%s).

The job could
not be
modified.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

CLASS

0x1
002
96d

US
ER

syste
m.mo
ab

IN
F
O

MWM_
NATIVE_
ACTION_
MISSING

%s action not specified for
native interface. %s.

The native
interface
allows custom
actions to be
specified. No
value was
specified for
this action.

0x1
002
96e

US
ER

syste
m.mo
ab

IN
F
O

MWM_
COMMAND_
SENT

Command sent to server. A command
was sent.

0x1
002
96f

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
MAXPREMP
T

JOBMAXPREEMPTPERITER
ATION reached: %s of %s.

The maximum
value was
reached.

0x1
002
970

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
CHANGED_
STATES

Job '%s' changed states
from '%s' to '%s'.

The state
changed.

0x1
002
971

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
RELEASING_
RESERVATI
ON

Job '%s' was
requeued/rejected.
Releasing reservation.

The job no
longer holds
the
reservation.

0x1
002
972

US
ER

syste
m.mo
ab

IN
F
O

MWM_
NODE_
CHANGED_
STATES

Node '%s' changed states
from '%s' to '%s'.

The node state
changed.

0x1
002
973

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
ACTION_
SUCCESSFU
L

Job '%s' successfully %s. The job action
completed.

0x1 US syste IN MWM_ Cannot allocate temp The system

Appendix C: Event Dictionary

1218 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1219

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

002
974

ER m.mo
ab

F
O

ALLOC_
TEMP_
MEMORY

memory for %s completed
jobs.

might be low
on memory.

0x1
002
975

US
ER

syste
m.mo
ab

IN
F
O

MWM_
ACTION_
LAUNCHED

Action '%s' launched with
message '%s'. PID = '%s'

Scheduler
action is about
to be executed.

0x1
002
976

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
ADJUSTME
NT

Adjusting allocated %s to
%s for job '%s'.

The value is
being changed.

0x1
002
977

US
ER

syste
m.mo
ab

IN
F
O

MWM_ALL_
JOBS_
LOADED

All jobs loaded. The jobs have
been loaded.

0x1
002
978

US
ER

syste
m.mo
ab

IN
F
O

MWM_ALL_
NODES_
LOADED

All located non-native
nodes loaded (%s).

The nodes
have been
loaded.

0x1
002
979

US
ER

syste
m.mo
ab

IN
F
O

MWM_
BACKFILL_
POLICY_
DISABLED

Backfill policy disabled. The policy was
disabled.

0x1
002
97a

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
LOAD

Cannot load job '%s'. The job failed
to load.

0x1
002
97b

US
ER

syste
m.mo
ab

IN
F
O

MWM_
CANNOT_
CREATE_
RSV

Cannot create reservation. The request to
create the
given
reservation
has failed.

0x1
002
97c

US
ER

syste
m.mo
ab

IN
F
O

MWM_
MODIFY_
PARTITION

Cannot modify partition of
running job '%s'.

Must wait until
job completes.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
002
97f

US
ER

syste
m.mo
ab

IN
F
O

MWM_
CANNOT_
CREATE_
RSV_IN_
PARTITION

Cannot create reservation
for job '%s' in partition
'%s'.

Job cannot be
run on
requested
partition.

0x1
002
982

US
ER

syste
m.mo
ab

IN
F
O

MWM_
CLUSTER_
QUERY_
GETDATA

Cluster query getdata failed
for native interface.

The resource
manager might
be down or
unresponsive.

0x1
002
a0b

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SENDING_
CLIENT_
COMMAND

Sending %s command: '%s'. The specified
command is
being sent to
the server.

0x1
002
a0e

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
SHUTDOW
N_REQUEST

The scheduler has received
a user shutdown request.

The Moab
scheduler has
received a
request to shut
down. It will
be processed
as soon as
possible.

0x1
002
a0f

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
RECYCLE_
REQUEST

The scheduler has received
a user recycle request.

The Moab
scheduler has
received a
request to
recycle. It will
be processed
as soon as
possible.

0x1
002
a10

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
PAUSE_
DESCRIPTI
ON

Scheduling will be disabled,
cluster information will
continue to be updated.

This is a
description of
what happens
when the
scheduler is
paused.

Appendix C: Event Dictionary

1220 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1221

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
002
a11

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
STOP_
TIMESTAMP

Scheduling will stop in %s
at iteration %s.

This provides
a log message
of when the
scheduler will
stop.

0x1
002
a12

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
RESUME_
TIMESTAMP

Scheduling will resume in
%s seconds.

This provides
a log message
of when the
scheduler will
resume.

0x1
002
a13

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
RESTART_
TIME_
REACHED

Scheduler restart time
reached (scheduler will
restart).

The configured
restart time
was reached.
(RESTARTINT
ERVAL or
MEMREFRESH
INTERVAL.

0x1
002
a14

US
ER

syste
m.mo
ab

IN
F
O

MWM_
SCHED_
COMPLETE_
SCHEDULIN
G

Scheduling complete.
Sleeping for %s seconds.

The scheduling
portion of the
iteration is
complete.
Additional jobs
will not be
scheduled until
the next
iteration.

0x1
002
a17

US
ER

syste
m.mo
ab

IN
F
O

MWM_
ABOUT_TO_
EXEC

About to exec() '%s'. The process is
about to be
executed.

0x1
002
a18

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
ARRAY_
CANCEL_
POLICY

Sub-job %s exit code %s
canceled job array %s with
policy %s.

A job within
an array job
finished and,
depending on
its exit code
and the policy

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

in place, the
entire array
job might
cancel.

0x1
002
a19

US
ER

syste
m.mo
ab

IN
F
O

MWM_
RESERVATI
ON_
COMPLETIO
N_DELAYED

Reservation completion for
job '%s' delayed from %s to
%s.

The
reservation
end time is
later than
initially
expected for
this job.

0x1
002
a1b

US
ER

syste
m.mo
ab

IN
F
O

MWM_VM_
ORPHANED

VM '%s' successfully
orphaned.

The VM has
been separated
from its
tracking job.

0x1
002
a1c

US
ER

syste
m.mo
ab

IN
F
O

MWM_VM_
REPORTED_
DESTROYED

VM '%s' reported destroyed
via RM - removing VM.

The VM is no
longer
available from
the resource
manager, so it
is being
removed from
the scheduler.

0x1
002
a1d

US
ER

syste
m.mo
ab

IN
F
O

MWM_VM_
STALE_
REPORT

VM '%s' has not been
reported in %s seconds.

The VM is no
longer being
reported from
the resource
manager. No
action is
currently being
taken.

0x1
002
a1e

US
ER

syste
m.mo
ab

IN
F
O

MWM_
WIKI_
KEYWORD_
NOT_

Wiki keyword '%s'(%s) not
handled.

The keyword
was not
recognized, so
it will be

Appendix C: Event Dictionary

1222 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1223

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

HANDLED ignored.

0x1
002
a20

US
ER

syste
m.mo
ab

IN
F
O

MWM_
ROLLING_
LOGFILE

Rolling logfile '%s' to '%s'. The old logfile
will be closed
and logging
will resume in
the new file.

0x1
002
a23

US
ER

syste
m.mo
ab

IN
F
O

MWM_
NODE_
LOCATED

Nodes located for job %s:
%s of %s required (%s
feasible).

List of nodes
located for a
specific job.

0x1
002
a2d

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
PAL_SET

Partition access list set to
value: %s.

The partition
access list
(PAL) is set.

0x1
002
a2e

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
PREEMPTE
D_BY_JOB

Job %s preempted job %s -
added idle resources (T:
%s; N: %s; P:
%s)/remaining (T: %s; N:
%s; P: %s).

Job was
preempted by
another job.

0x1
002
a2f

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
CAN_
START_
WITHOUT_
PREMEPTIO
N

Job %s would start in %s
without preemption (PC:
%s).

Job can start
without
preemption.

0x1
002
a32

US
ER

syste
m.mo
ab

IN
F
O

MWM_
PARTITON_
RESOURCES

Partition %s nodes/procs
available %s/%s (%s jobs
examined).

General
partition
information.

0x1
002
a33

US
ER

syste
m.mo
ab

IN
F
O

MWM_RSV_
OPERATION

Performing '%s' operation
on reservation expression
'%s' (%s matches).

This is
operation is
caused by a
mrsvctl
command.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
002
a34

US
ER

syste
m.mo
ab

IN
F
O

MWM_
PREEMPTIN
G_JOBS

Preempting jobs to allow
job %s to start - required
resources T: %s; N: %s; P:
%s.

Preempting
jobs.

0x1
002
a35

US
ER

syste
m.mo
ab

IN
F
O

MWM_
MOABTRAC
KSUSPEND

Preempt usage tracking
enabled (env).

Environment
variable
MOABTRACKS
USPEND set.

0x1
002
a36

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
MAX_
PREEMPTE
E_LIMIT

Single job max preemptee
limit (%s) reached.

Max
requirements
exceeded on
job.

0x1
002
a37

US
ER

syste
m.mo
ab

IN
F
O

MWM_
QUEUES_
DETECTED

Queues detected: %s. Resource
manager found
queues on
cluster query
update.

0x1
002
a38

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOB_
START_
TIME_
CHANGED

Start time changed from %s
to %s on job %s.

The job's start
time was
changed via
the resource
manager.

0x1
002
a39

US
ER

syste
m.mo
ab

IN
F
O

MWM_
STORING_
CHECKPOIN
T_INFO

Storing object to
checkpoint.

The object's
state is being
checkpointed.

0x1
002
a3a

US
ER

syste
m.mo
ab

IN
F
O

MWM_PBS_
DATA_UP_
TO_DATE

PBS raw data already up to
date.

The resource
manager is
already
updated.

0x1
002

US
ER

syste
m.mo

IN
F

MWM_PBS_
DATA_

PBS data updated for
iteration %s.

The resource
manager is

Appendix C: Event Dictionary

1224 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1225

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a3b ab O UPDATED now updated.

0x1
002
a3c

US
ER

syste
m.mo
ab

IN
F
O

MWM_
STARTED_
MESSAGE_
QUEUE

Started message queue
thread.

The message
queue is now
operational.

0x1
002
a3d

US
ER

syste
m.mo
ab

IN
F
O

MWM_JOBS_
SELECTED_
IN_
PARTITION

Total jobs selected in
partition %s: %s/%s.

Identifies the
selected jobs
in a partition.

0x1
002
a3e

US
ER

syste
m.mo
ab

IN
F
O

MWM_
TASKS_
LOCATED_
FOR_JOB

Tasks located for job %s:
%s of %s required (%s
feasible).

Identifies the
tasks available
for a job.

0x1
002
a3f

US
ER

syste
m.mo
ab

IN
F
O

MWM_
CLIENT_
REQUEST

Client requesting command
'%s'.

Client
requested
command.

0x1
002
a40

US
ER

syste
m.mo
ab

IN
F
O

MWM_
REQUEST_
TO_
CANCEL_JOB

Request to cancel job '%s'
sent, but could not confirm
cancellation (pending
response).

Client did not
get a
confirmation
as expected.

0x1
002
a41

US
ER

syste
m.mo
ab

IN
F
O

MWM_
RESERVATI
ON_NOT_
ALLOWED_
FOR_JOB

Reservation not allowed for
job %s in %s.

Reservation
not allowed in
specified
condition.

0x1
002
a42

US
ER

syste
m.mo
ab

IN
F
O

MWM_
RESERVED_
JOB_
STARTED

Reserved job '%s' started. Reserved job
started.

0x1
002

US
ER

syste
m.mo

IN
F

MWM_ Resources available after
scheduling: N: %s P: %s.

Resources
available after

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a43 ab O RESOURCE
S_
AVAILABLE_
AFTER_
SCHEDULIN
G

scheduling.

0x1
002
a44

US
ER

syste
m.mo
ab

IN
F
O

MWM_
RESTORIN
G_
DEFERRED_
JOB

Restoring job '%s' from
deferred state.

Restoring job
from deferred
state.

0x1
002
a45

US
ER

syste
m.mo
ab

IN
F
O

MWM_RM_
DUPLICAT
E_QUERY

RM %s already has a
pending query - skipping
get data query.

Duplicate
queries cannot
be performed
simultaneousl
y.

0x1
002
a46

US
ER

syste
m.mo
ab

IN
F
O

MWM_RM_
PEER_
COMMAND

Sending peer server
command to %s:%s (Cmd:
%s, Requestor: %s, Key:
%s...).

A command
has been sent
to a peer Moab
grid server.

0x1
002
a47

US
ER

syste
m.mo
ab

IN
F
O

MWM_SET_
ATTRIBUT
E_ON_NODE

Setting %s on node %s to
%s.

A command
has been sent
to a peer Moab
grid server.

0x1
002
a48

US
ER

syste
m.mo
ab

IN
F
O

MWM_SET_
ATTRIBUT
E_ON_JOB

Setting %s on job %s to %s
(%s).

A command
has been sent
to a peer Moab
grid server.

0x1
002
a49

US
ER

syste
m.mo
ab

IN
F
O

MWM_
INVALID_
STORAGE_
DATA

Storage data from MWS RM
(%s) is not a valid object.

Invalid object
from Storage
data.

Appendix C: Event Dictionary

1226 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1227

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
00a
73c

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CANNOT_
STAT_FILE_
INFO

Cannot stat file '%s', errno:
%s (%s).

The stat()
system call
failed. This is
not always
significant as it
is sometimes
used to test
the existence
of a file that
may or may
not be there.
Use the errno
and associated
message to
determine
possible
causes.

0x1
00a
743

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
FAILED_
SELECT

Select for socket %s failed,
errno: %s (%s).

The select()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
00a
744

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
SELECT_
TIMEOUT

Select for socket %s timed
out after %s seconds with
no valid descriptors.

The select()
system call
timed out. This
may or may
not be an
error. Check
MTU.

0x1
00a
75d

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CONFIG_
VALUE_
OUT_OF_
RANGE

Configuration parameter
'%s' has an invalid value
'%s'. Range is limited by
%s.

Check the line
in the
configuration
file for the
attribute.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
00a
767

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NO_
MONGOSER
VER_
SPECIFIED

Moab is built to use Mongo,
but no MONGOSERVER is
specified.

Cannot
connect to the
Mongo server
since the
MONGOSERVE
R parameter
was
unspecified.
Add
MONGOSERVE
R parameter to
moab.cfg.

0x1
00a
76d

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
REMOVING_
OBJECT_
FROM_
MONGO

Removing object '%s' from
Mongo DB '%s'.

The object is
being removed
from the
database.

0x1
00a
789

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
UNABLE_
TO_
ALLOCATE_
NODES_
FOR_RSV

Cannot allocate nodes for
reservation '%s'. (%s)

Cannot
allocate a node
list that
matches the
requirements
for this
reservation.
This might not
be serious
since multiple
passes can
occur.

0x1
00a
8ab

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_VM_
EXCEED_
TTL

VM '%s' has reached TTL
(%s). Must be removed
manually.

The given VM
has reached its
time to live.

0x1
00a
8e1

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
PLUGIN_
LOADED_
SUCCESS

Successfully loaded
NodeAllocation plugin '%s'
for partition '%s'.

A
NodeAllocatio
n plugin was
loaded without

Appendix C: Event Dictionary

1228 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1229

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

error.

0x1
00a
918

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
NO_
QUEUETIM
E

No QueueTime has been
specified for job.

Configure the
job with a
queue time.

0x1
00a
922

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
FIND_PEER

Cannot find client peer for
job %s (Name: %s).

The resource
manager
cannot be
located.

0x1
00a
95b

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_RSV_
FULL

Full reservation '%s'
reserved %s procs in
partition '%s' to start in %s
at (%s).

The full
reservation
has been
reserved.

0x1
00a
97d

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_RSV_
PREREQ_
JOB

Cannot create reservation
for prerequisite job '%s'.

Could not
obtain a
reservation for
this job.

0x1
00a
97e

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
ANNOTATE_
JOB

Cannot annotate job '%s'
with message '%s'.

Unable to
modify the job
with the
annotation.

0x1
00a
980

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
UPDATE_
JOB

Cannot update job '%s'. The update on
the job from
XML failed.

0x1
00a
981

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
REMAP_
CLASS

Cannot remap class for RM
job '%s' (%s).

Unable to
modify the job
with the new
class.

0x1
00a
983

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
COMPLETIN
G_JOB

Completing job '%s'. The job
finished.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
00a
984

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOBS_
DETECTED

There were %s %s jobs
detected on RM '%s'.

The resource
manager
reported these
jobs.

0x1
00a
985

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
SUSPEND_
JOB

Cannot suspend job '%s'
(%s).

Check the PBS
server log to
see reason of
failure.

0x1
00a
986

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
STALE_
PARTITION

Attempting to remove stale
partition for completed job
'%s'.

About to
perform the
stated
operation.

0x1
00a
987

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
STALE_
PARTITION_
SUCCESS

Successfully removed stale
partition for completed job
'%s'.

Successfully
performed the
stated
operation.

0x1
00a
988

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CANCEL_
NOQUEUE_
JOB

Canceling No-queue job
'%s'.

About to
perform the
stated
operation.

0x1
00a
989

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
SIGNAL_JOB

Cannot signal job %s' (%s). The resource
manager did
not respond to
the signal
request.

0x1
00a
98a

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_RSV_
JOB_CREDS

Cannot set up reservation
job credentials.

The user,
account, or
group
credentials
might not be
valid.

0x1 AD syste IN MWM_CP_ Corrupt node line detected The line does

Appendix C: Event Dictionary

1230 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1231

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

00a
98b

MI
N

m.mo
ab

F
O

CORRUPT_
NODE_LINE

(%s). not contain the
correct syntax
for a
checkpoint.

0x1
00a
98c

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
EVALUATIN
G_RSV

Evaluating reservation '%s'. About to
perform the
stated
operation.

0x1
00a
98d

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
EXPIRING_
CHECKPOIN
T_DATA

Expiring checkpoint data
for %s '%s'. Not updated in
%s.

The object's
checkpoint
data has
expired.

0x1
00a
98e

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
PREVIOUSL
Y_REMOVED

Job '%s' was previously
removed.

The job has
already been
removed.

0x1
00a
98f

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
STARTED_
BY_USER

Job '%s' was started by user
'%s'.

The job
started.

0x1
00a
990

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
NOT_
STARTED_
BY_USER

Job '%s' could not be
started by user '%s' (%s).

The job could
not be started.

0x1
00a
991

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_RM_
JOB_NOT_
STARTED

Job '%s' could not be
started with %s RM '%s'
(%s).

The job could
not be started.

0x1
00a
992

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
CANCELED_
EXTERNALL
Y

Job '%s' appears to have
been canceled externally.

The job was
canceled.

0x1
00a

AD
MI

syste
m.mo

IN
F

MWM_JOB_
COMPLETE

Job '%s' appears to have
been started and completed

The job
completed.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

993 N ab O D_SINGLE_
ITERATION

in a single iteration.

0x1
00a
994

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
PROCESSIN
G_
COMPLETE
D

Job processing completed. The jobs have
been
processed.

0x1
00a
995

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
PROCESSIN
G_JOB

Processing job '%s' in state
'%s'.

Processing a
single job.

0x1
00a
996

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
SUSPENDED

Job '%s' suspended through
%s RM.

The resource
manager
suspended the
job.

0x1
00a
997

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
RESUMED

Job '%s' resumed through
%s RM.

The resource
manager
resumed the
job.

0x1
00a
998

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
FEASIBILIT
Y_CHECK_
DISABLED

Job feasibility check
disabled (env).

This feature
has been
disabled.

0x1
00a
999

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
USAGE_
SENT

Job usage sent for job '%s'. The usage sent
as feedback to
user.

0x1
00a
99a

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
LOADING_
JOBS

Loading %s job(s). The jobs are
about to be
loaded.

0x1
00a
99b

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
LOADING_
NODE_

Loading %s node record(s). The node
records are
about to be

Appendix C: Event Dictionary

1232 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1233

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

RECORDS loaded.

0x1
00a
99c

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
LOADED_
WORKLOA
D_BUFFER

Loaded %s workload buffer
(%s bytes), processing jobs.

The workload
buffer was
loaded.

0x1
00a
99d

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
REJECTED_
INFINITE_
WALLTIME

Job '%s' rejected (requested
infinite walltime).

Jobs must have
a walltime
limit.

0x1
00a
99e

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
REJECTED_
PARTITION

Job '%s' rejected in
partition %s (exceeds
maximum task size: %s >
%s).

Adjust
JOBMAXTASKC
OUNT in the
configuration
file.

0x1
00a
99f

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
ALREADY_
EXISTS

Job '%s' already exists but
is not a duplicate.

The ID of the
job matched a
completed job.

0x1
00a
9a0

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
ALREADY_
BATCH_
HOLD

Job '%s' is already on batch
hold.

Trying to place
a job on hold
that is already
in that state.

0x1
00a
9a1

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
REQUESTS_
RSV

Job '%s' requests
reservation '%s' (not
deferring).

The job is
requesting the
reservation.

0x1
00a
9a2

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_RM_
CONNECTIO
N_FAILED

Connection to RM '%s'
failed. Not deferring job
'%s' (Reason: %s).

Refer to the
reason
message.

0x1
00a
9a3

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
DEFER_
DISABLED

Defer disabled. The job cannot
be deferred.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
00a
9a4

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
MWS_
CLUSTER_
QUERY

Cluster query retrieval
failed for MWS RM '%s'.

The resource
manager did
not respond to
the request.

0x1
00a
9a5

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
INVALID_
PARTITION

Job '%s' specifies an invalid
partition.

The job must
reference a
valid partition.

0x1
00a
9a6

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
INVALID_
QOS

Cannot set QoS on job '%s'
to '%s' - invalid QoS.

The job must
use a valid
QoS.

0x1
00a
9a7

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
INVALID_
ACCOUNT

Cannot set account on job
'%s' to '%s' - invalid
account (%s).

The job must
use a valid
account.

0x1
00a
9a8

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CHECKING_
IDLE_JOB

Checking idle job '%s'
(priority: %s) partition %s.

Checking the
job.

0x1
00a
9a9

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CHECKING_
SUSPENDE
D_JOB

Checking suspended job
'%s' (priority: %s).

Checking the
job.

0x1
00a
9aa

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CHECKPOIN
T_TEST_
ENABLED

Checkpoint test enabled
(env).

The feature
has been
enabled with
an
environment
variable.

0x1
00a
9ab

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_ADD_
NODE_
FAILED

Could not add node
because MNodeAdd failed.

The node
could not be
added to the
object.

Appendix C: Event Dictionary

1234 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1235

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
00a
9ac

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
ATTEMPTI
NG_
RESERVATI
ON

Attempting reservation of
%s procs in %s for %s.

The scheduler
will try to
make the
reservation.

0x1
00a
9ad

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
FAIRSHARE_
INTERVAL

Fairshare rolled to interval
%s.

The interval
has changed.

0x1
00a
9ae

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
INVALID_
ARCHITECT
URE

Invalid architecture. The
architecture is
not a valid
value.

0x1
00a
9af

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
INVALID_
PSEUDOJOB

Invalid pseudo-job. The pseudo-
job is not a
valid value.

0x1
00a
9b0

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
HOLD_TYPE

Hold type '%s' selected. The given hold
type was
specified.

0x1
00a
9b1

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
MESSAGE_
SENT

Message sent to server. The message
was sent.

0x1
00a
9b2

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
LOCATED

Located job '%s' in
partition '%s' reserved to
start %s.

The specified
job has been
located.

0x1
00a
9b3

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
TOTAL_
JOBS_
DETECTED

Total jobs detected: %s. Number of
counted jobs
returned from
the workload
query.

0x1
00a

AD
MI

syste
m.mo

IN
F

MWM_NO_
WORKLOA

No workload reported by
any RM.

No jobs were

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

9b4 N ab O D_
DETECTED

reported
across all the
resource
manager
queries.

0x1
00a
9b5

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
LOADING_
JOB

Loading job '%s' in state
'%s' (%s bytes).

The job is
being loaded.

0x1
00a
9b6

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
START_
REJECTED

Local constraints rejected
the starting of job '%s'.

The job cannot
start.

0x1
00a
9b7

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
INVALID_
STAT_TYPE

Invalid stat type '%s'
requested.

Not a valid
value.

0x1
00a
9b8

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
ORPHAN_
PARTITION

Creating temporary job to
process orphan partition
'%s' for job '%s'.

The job was
not found in
active or
completed job
tables.

0x1
00a
9b9

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
DISABLING_
ACTION_
PROGRAM

Disabling action program
'%s'.

An invalid
action
program was
requested.

0x1
00a
9ba

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
DISABLING_
JOB_FB_
PROGRAM

Disabling job feedback
program '%s' (%s).

An invalid job
feedback
program was
requested. See
documentation
for
FEEDBACKPR
OGRAM.

0x1 AD syste IN MWM_CP_ Checkpoint restart state The restart

Appendix C: Event Dictionary

1236 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1237

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

00a
9bb

MI
N

m.mo
ab

F
O

RESTART_
STATE_
IGNORED

'%s' ignored. state specified
is being
ignored.

0x1
00a
9bc

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_CP_
RESTART_
STATE_
SUCCESS

Starting scheduler with
checkpoint restart state
'%s'.

The restart
state specified
is being used.

0x1
00a
9bd

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
DESTROYIN
G_NODE

Destroying node '%s'. The specified
node is being
destroyed.

0x1
00a
9be

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
IGNORING_
NODE

Ignoring node '%s'. The specified
node is being
ignored.

0x1
00a
9c0

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CANNOT_
ADJUST_
JOB_HOLDS

Cannot adjust holds on
remote peer for job '%s'
(%s).

Unable to
modify the job.

0x1
00a
9c1

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
CANNOT_
CREATE_
RESERVATI
ON

Cannot create reservation
for job '%s' (previously
reserved to start in %s)).

Failed to
create
reservation for
job.

0x1
00a
9c2

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
TRIGGER_
LOAD_
OUTPUT

Cannot load output data for
trigger '%s' (File: %s).

The file might
not exist or
might be
inaccessible.

0x1
00a
9c3

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_PBS_
SERVER_
CONNECT

Connected to PBS server
%s:%s on sd %s.

Connection
established.

0x1
00a

AD
MI

syste
m.mo

IN
F

MWM_NO_
JOB_DATA

No job data was sent by %s
RM.

The data sent

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

9c4 N ab O by the
resource
manager did
not contain job
information.

0x1
00a
9c5

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
RESUMED_
WITH_
PROCS

Job '%s' resumed on %s
processors.

The resource
manager
resumed the
job.

0x1
00a
9c6

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
SIGNALED

Job %s' successfully
signaled (action: %s, signal:
%s).

The job
responded to
the signal
request.

0x1
00a
9c7

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
CANCELED_
RM

Job '%s' canceled through
%s RM.

The job was
canceled.

0x1
00a
9c8

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
ASSIGNED_
DEFAULT_
GROUP

Job '%s' assigned default
group '%s'.

The job was
modified.

0x1
00a
9c9

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_FILE_
EXECUTE_
PERMISSIO
N

File '%s' does not have user
execute permission (st_
mode = %s).

The
permissions
must be
modified.

0x1
00a
9ca

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
INSUFFICIE
NT_
PREEMPT_
JOBS

Inadequate preempt jobs
(%s) located for %s job (P:
%s of %s, N: %s of %s).

Not enough
jobs could be
preempted.

0x1
00a
9cb

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
READ_
STAT_

Cannot read stat index for
location %s:%s:%s.

The
checkpoint did
not have the

Appendix C: Event Dictionary

1238 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1239

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

INDEX stat
information.

0x1
00a
9cc

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
BACKFULL_
JOB_
PREEMPT

Backfill job '%s' no longer
preemptible (%s > %s) in
partition '%s'.

The job cannot
be preempted.

0x1
00a
9cd

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
STARTTIM
E_
UNAVAILAB
LE

Cannot obtain desired
starttime (%s != %s).

The job cannot
be adjusted to
the given start
time.

0x1
00a
9ce

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
STARTTIM
E_
ADJUSTED

Timeframe for reservation
%s adjusted forward by %s
seconds.

The
reservation
has been
adjusted to the
given start
time.

0x1
00a
9cf

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
RESERVATI
ON_
ROLLBACK

Time: %s RollbackOffset:
%s RsvStartTime: %s
RsvDuration %s.

The
reservation is
being
considered for
rollback.

0x1
00a
9d0

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
RESERVATI
ON_NOT_
REQUIRED

Reservation '%s' not
required for specified
period.

The
reservation is
not required
for this time
period.

0x1
00a
9d1

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_RM_
INTERFACE_
RECOVERED

The interface for RM '%s'
has been recovered.

A previously
corrupt
interface is
now working.

0x1 AD syste IN MWM_NTR_ Found an NTR (next to The job will

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

00a
9d2

MI
N

m.mo
ab

F
O

JOB_FOUND run) job - stopping idle job
scheduling.

now be run.

0x1
00a
9d3

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
GRES_
KEYWORD_
NO_VALUE

GRes keyword '%s' passed
in with no value.

A value must
be specified.

0x1
00a
9d4

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
EXTENSIO
N_STRING

Job '%s' has invalid
extension string - '%s'.

The system is
unable to
process the
string.

0x1
00a
9d5

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
PROCESS_
FAILURE

Job '%s' is invalid. It cannot
be processed (%s).

There was an
error loading
the job. It will
be rejected.

0x1
00a
9d6

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
MODIFIED_
RM

Job '%s' has been modified
through %s RM.

The job was
modified.

0x1
00a
9d7

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_IDLE_
BACKLOG_
SIZE

Idle backlog: %s seconds
(%s hours).

The idle
backlog status
is given.

0x1
00a
9d8

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_SET_
RESOURCES

Inadequate resources found
in any set (%s < %s).

None of the
node sets have
the resources
needed.

0x1
00a
9d9

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
PREEMPTIN
G_JOB

Job %s preempting job %s
(statemtime: %s)
(preempted this iteration:
%s).

One job
preempted
another.

0x1
00a
9da

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
UPDATE_
SCHEDULE

Iteration: %s; scheduling
time: %s seconds.

Normal
statistics
update.

Appendix C: Event Dictionary

1240 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1241

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R_STATS

0x1
00a
9db

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
STARTED_
RM

Job '%s' started through %s
RM on %s procs.

The job has
started.

0x1
00a
9dc

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
DELAY

Job delay: %s; reservation
retry time: %s
(StateDelayNC: %s;
JobRsvDelayNC: %s).

The job has
been delayed.

0x1
00a
9dd

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
COMPLETE
D

Job '%s' completed. X: %s;
T: %s; PS: %s; A: %s (RM:
%s/%s).

The job
completed.

0x1
00a
9de

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
RESERVED_
TASKS

Job '%s' reserved %s tasks
(partition %s) to start in
%s on %s (WC: %s).

The job has
reserved the
tasks.

0x1
00a
9df

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
EVENT_
INTERFACE_
ENABLED

Event interface enabled for
wiki RM %s on port %s.

The interface
is now
functional.

0x1
00a
9e0

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_RM_
RESOURCE
S_
DETECTED

There were %s %s
resources detected on RM
'%s'.

The given
resources were
found.

0x1
00a
9e3

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
EXTENDIN
G_
RESERVATI
ON

Extending reservation by
%s seconds (trigger still
active).

The
reservation is
being
extended.

0x1
00a
9e4

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
EXTENDIN
G_
RESERVATI

Extending reservation for
overrun job '%s' by %s
seconds.

The
reservation is
being
extended.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

ON_
OVERRUN_
JOB

0x1
00a
9e5

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
LOCATED_
BESTFIT

Located bestfit job '%s'
(size: %s; duration: %s).

Backfill found
a job that best
fits the
available
resources.

0x1
00a
9e6

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
BEST_
PARTITION

The best partition for job
'%s' is '%s'.

Backfill found
a job that best
fits the
available
resources.

0x1
00a
9e7

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_CPA_
PARTITION_
DESTROY

Destroying CPA partition'
%s' for job '%s' with cookie
%s (%s).

The partition
is being
destroyed.

0x1
00a
9e8

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
RESOURCE
S_LOCATED

Located resources for %s
tasks (%s) in best partition
'%s' for job '%s' at time
offset %s.

The listed
resources have
been located.

0x1
00a
9e9

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
MINIMUM_
EFFICIENC
Y_REACHED

Minimum efficiency reached
(%s percent) on iteration
%s.

The threshold
has been
reached.

0x1
00a
9ea

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
START_
PARTITION

Cannot start job '%s' in
partition '%s' (scheduler
mode: %s).

The job could
not be started.

0x1
00a
9eb

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
FEASIBLE_
NODES

Inadequate feasible nodes
found for job '%s':%s in
partition '%s' (%s < %s).

The job could
not be
scheduled.

0x1 AD syste IN MWM_JOB_ Job '%s' loaded: TC=%s The job was

Appendix C: Event Dictionary

1242 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1243

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

00a
9ec

MI
N

m.mo
ab

F
O

LOADED UGC=%s,%s,%s WC=%s
ST=%s %s %s.

loaded.

0x1
00a
9ed

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
RSV_
CREATE

Cannot create new
reservation for job %s
(shape[%s] %s).

Check the
reservation
time, nodes,
and account.

0x1
00a
9ee

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
LOCATE_
NODES

Cannot locate nodes for job
'%s' req[%s] (%s additional
needed).

Not enough
nodes are
available to
run the job.

0x1
00a
9ef

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
START_RM_
DISABLED

Cannot start job '%s' since
RM '%s' is disabled.

Not enough
nodes are
available to
run the job.

0x1
00a
9f0

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
START_
RESERVE_
TIME

Cannot start job '%s'
reserve time in %s.

The time to
schedule has
already
arrived.

0x1
00a
9f1

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
ERROR_IN_
EXE_
STDERR

Error detected in '%s' due
to presence of the word
'ERROR' in stderr (%s).

The executable
failed.

0x1
00a
9f2

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
ERROR_IN_
STDERR

Error detected due to
presence of the word
'ERROR' in stderr.

The child
process failed.

0x1
00a
9f3

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CHECKJOB_
STATE

Job '%s' State: %s Expected
State: %s QueueTime: %s.

The job is in
the listed state.
The expected
state might not
be the same.

0x1 AD syste IN MWM_JOB_ Cannot obtain nodelist for The nodes are

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

00a
9f4

MI
N

m.mo
ab

F
O

NODELIST job '%s':%s in range %s. not available.

0x1
00a
9f5

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
RESUME

Job '%s' cannot be resumed
since allocated nodes are
not available (node '%s'
state '%s').

The resource
manager
resumed the
job.

0x1
00a
9f6

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CLEARING_
EXPIRED_
RESERVATI
ON

Clearing expired %s
reservation '%s' on
iteration %s (start: %s end:
%s).

The
reservation
has expired.

0x1
00a
9f7

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_CPA_
RETRY

CPA retry detected - will re-
attempt partition creation
in 2 seconds.

The partition
may be
created.

0x1
00a
9f9

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOBS_
STARTED

There were %s %s jobs
started in partition '%s' on
iteration %s.

The jobs were
started.

0x1
00a
9fa

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
TASKS_
ALLOCATED

There were %s of %s tasks
allocated for job '%s':%s.

The tasks were
allocated.

0x1
00a
9fb

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
CLASSES_
DETECTED

There were %s %s
classes/queues detected on
RM '%s'.

The classes
were detected.

0x1
00a
9fd

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_JOB_
DELAYED_
RSV

Delayed reservation
detected for reserved job
'%s' (%s seconds)
attempting squeeze.

Attempting to
fit the job into
the
reservation.

0x1
00a
9fe

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
DUMPING_
RESERVATI
ONS

Dumping reservations on
iteration %s.

All the
reservations
will be
dumped to the

Appendix C: Event Dictionary

1244 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1245

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

log.

0x1
00a
9ff

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
ALLOCPART
ITION_
MISSING

ALLOCPARTITION missing
from completed job '%s' -
restoring variable with
value '%s'.

The value is
being
substituted.

0x1
00a
a00

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
RECEIVED_
NODELIST

Received nodelist through
%s RM.

The nodelist
was received.

0x1
00a
a01

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
SERVICE_
REQUEST_
FROM_
HOST

Received service request
from host '%s'.

The request
was received.

0x1
00a
a02

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
RECEIVED_
WORKLOAD

Received workload info
through %s RM '%s' (%s
bytes).

The workload
was received.

0x1
00a
a03

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_RSV_
REMOVED_
FROM_
CACHE

Removing reservation '%s'
from cache.

The cached
reservation is
being
removed.

0x1
00a
a04

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
RECOVER_
READ_
SOCKET

RECOVER: attempting to
read socket connection.

The recovery
function is
attempting to
communicate
via sockets.

0x1
00a
a05

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
GREEDY_
BACKFILL

Improved list found by
greedy backfill in %s
searches (utility: %s;
processors available: %s).

The object is
being removed
from the
database.

0x1
00a

AD
MI

syste
m.mo

IN
F

MWM_
RESERVATI

Name='%s' RsvGroup='%s'. The object is
being removed

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a06 N ab O ON_NAME_
AND_
GROUP

from the
database.

0x1
00a
a15

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
TRIGGERS_
DISABLED

Triggers disabled. %s. Triggers are
disabled. This
message
indicates when
this flag is
being set, and
when an action
is being
skipped
because the
flag is set.

0x1
00a
a16

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
USER_NOT_
AUTHORIZE
D

User %s is not authorized
to %s.

This user does
not have
permissions to
accomplish the
listed task.

0x1
00a
a1f

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
SUCCESSFU
LLY_
OPENED_
SOCKET

Opened service socket on
port %s.

A socket was
successfully
opened
listening on
the remote
port.

0x1
00a
a21

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NO_
CHECKPOIN
T_INFO

No checkpoint information
available for '%s'.

Checkpoint
information
was not
available.

0x1
00a
a22

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_
INDEX_
TABLE_
ENABLED

Node index table enabled. Enabled by
environment
variable:
MOABUSENO
DEINDEX.

Appendix C: Event Dictionary

1246 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1247

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
00a
a24

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
UNKNOWN_
NODE_SLOT

Node slot not yet set on
node '%s'.

Delaying
setting rack
until slot is
known.

0x1
00a
a25

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_
STATUS

Node '%s' status: state='%s'
rsvlist='%s' joblist='%s'.

General node
status.

0x1
00a
a26

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NO_
JOBS_IN_
QUEUE

No jobs in queue. There were no
jobs in the
scheduler
queue
indicating the
scheduler has
nothing to
process.

0x1
00a
a27

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NO_
NODE_
DATA

No node data sent by %s
RM.

The resource
manager did
not receive any
node data in
cluster query.

0x1
00a
a28

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NO_
PREEMPTIB
LE_
RESOURCES

No preemptible resources
found for job %s (tc: %s;
class: '%s'; qos: %s;
priority: %s; partition %s.

Indicates the
scheduler
could not find
any jobs for
preemption.

0x1
00a
a29

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NO_
PRIORITY_
RESERVATI
ON_
CREATED_
FOR_POLICY

No priority reservations
created for policy '%s' for
job %s.

Job reservation
for a specific
policy was
unable to be
created.

0x1
00a
a2a

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NO_
QUEUES_
DETECTED

No queues detected. Resource
manager

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

attempted to
obtain queue
information.
Check resource
manager for
configured
queues.

0x1
00a
a2b

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NOT_
ADDING_RM

Not adding RM '%s'. The partition
is not adding
the specified
resource
manager. This
situation is
most common
in grid
configurations
where
resource
manager
names are
similar.

0x1
00a
a30

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
ORPHAN_
PARTITION_
REPORTED_
FOR_JOB

Orphan partition %s
reported for job %s. %s.

The resource
manager
reported the
partition as
orphaned.

0x1
00a
a31

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
PARAMETE
R_CANNOT_
BE_
CHANGED

Parameter '%s' cannot be
changed while Moab is
running.

Configuration
file must be
changed, and
Moab must be
restarted.

0x1
00a
a4c

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_
REMOVED

Dynamic node '%s' is being
removed. RequestID = '%s',
TTL = %s, Reason = '%s'

A dynamic
node was
removed due
to one of the
following

Appendix C: Event Dictionary

1248 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1249

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

reasons: TTL
expiration,
mnodectl
deletion, node
idle purge
time, not
reported in
most recent
cluster query.

0x1
00a
a4d

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_
ADDED

Node '%s' was newly
reported in the last cluster
query. RequestID = '%s',
TTL = %s

A node was
newly
reported in the
last cluster
query.

0x1
00a
a4e

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_
IGNORED_
TTL

Ignored dynamic node '%s'
reported in cluster query
with expired TTL.
RequestID = '%s', TTL = %s

A dynamic
node was
reported in the
last cluster
query with an
expired TTL -
ignoring.

0x1
00a
a4f

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_IDLE_
PURGE_
TIME_
EXCEEDED

dynamic node '%s'
exceeded node idle purge
time. RequestID = '%s'

dynamic node
exceeded node
idle purge time

0x1
00a
a50

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_
UNREMOVE
D

Dynamic node '%s' is being
re-added

A dynamic
node was re-
added

0x1
00a
a51

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_TTL_
MODIFIED

Node '%s' TTL modified.
RequestID = '%s', Old TTL
= %s, New TTL = %s

The node TTL
has been
modified.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
00a
a52

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_
NODE_
REQUESTI
D_
MODIFIED

Node '%s' RequestID
modified. Old RequestID =
'%s', New RequestID = '%s'

The node
RequestID has
been modified.

0x1
00a
a63

AD
MI
N

syste
m.mo
ab

IN
F
O

MWM_NO_
MONGOREP
LICASET_
SPECIFIED

A set (replicaset) of Mongo
servers (comma separated
list) was given in
MONGOSERVER, but
MONGOREPLICASETNAME
is undefined.

Cannot
connect to the
Mongo server.
A set
(replicaset) of
Mongo servers
(comma
separated list)
was defined by
MONGOSERVE
R, but
MONGOREPLI
CASETNAME is
undefined. Add
MONGOREPLI
CASETNAME
parameter to
moab.cfg.

0x1
00c
3e8

IN
TE
RN
AL

telem
etry.ti
ming

IN
F
O

MWM_
PERFORMA
NCE_TIMER

File:%s,Function:%s,Line:%
s,Pid:%s,Duration:%s

Microsecond
performance
timer.

0x1
00c
3e9

IN
TE
RN
AL

telem
etry.ti
ming

IN
F
O

MWM_
FUNCTION_
START

File:%s,Function:%s,Line:%
s,Pid:%s,TimeIn:%s

Function start
time.

0x1
00c
3ea

IN
TE
RN
AL

telem
etry.ti
ming

IN
F
O

MWM_
FUNCTION_
END

File:%s,Function:%s,Line:%
s,Pid:%s,TimeOut:%s,Durat
ion:%s

Function end
time.

Appendix C: Event Dictionary

1250 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1251

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
00c
3eb

IN
TE
RN
AL

telem
etry.o
utput

IN
F
O

MWM_
FUNCTION_
OUTPUT

File:%s,Function:%s,Line:%
s,Pid:%s

Function
output.

0x1
00c
3f2

IN
TE
RN
AL

telem
etry.c
pu

IN
F
O

MWM_CPU_
MONITOR

Description:%s,Pid:%s,Tick
s:%s,Percent:%s

CPU
Utilization.

0x1
00c
3f3

IN
TE
RN
AL

telem
etry.s
tats

IN
F
O

MWM_JOB_
INFORMATI
ON

Phase:%s,Count:%s Job Process
Information.

0x1
00c
3fc

IN
TE
RN
AL

telem
etry.s
tats

IN
F
O

MWM_
SCHED_
ITERATION

Schedule
Phase:%s,Milliseconds:%s

Last Schedule
Iteration.

0x1
00e
72f

IN
TE
RN
AL

syste
m.mo
ab

IN
F
O

MWM_
SOCKET_
REMOTE_
DISCONNEC
T

Reading from a socket
failed. It appears the client
disconnected, errno: %s
(%s).

The recv()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
00e
7f0

IN
TE
RN
AL

syste
m.mo
ab

IN
F
O

MWM_VM_
LINKED_TO_
NEW_
TRACKING_
JOB

Setting VMTracking job for
VM '%s' to job '%s.

A VM is
associated
with a tracking
job.

0x1
100
01f
7

US
ER

doma
in.life
cycle

W
A
R
N

MWM_
TRIG_
FAILURE

Trigger %s has failed. The named
trigger has
finished its

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

action, but it
returned with
a failure status.

0x1
100
025
e

US
ER

doma
in.life
cycle

W
A
R
N

MWM_VM_
MIGRATE_
END_ERROR

VM %s migration has
finished with an error:
(%s)

The named VM
has finished its
migration.
There was a
problem
during the
migration.
Additional
information
might be
provided
regarding the
error specifics.

0x1
100
026
1

US
ER

doma
in.life
cycle

W
A
R
N

MWM_VM_
MIGRATE_
SUBMIT

Failed to submit VM
migration job for VM %s.
(%s)

Failed to
submit VM
Migration job.

0x1
100
026
2

US
ER

doma
in.life
cycle

W
A
R
N

MWM_VM_
NO_
FEASIBLE_
NODES

Failed to find a feasible
node/hypervisor on which
to run VM %s. Check setup
job %s for details.

The named VM
has been
submitted, but
no
node/hypervis
or meets all
requirements.

0x1
100
038
4

US
ER

syste
m.mo
ab

W
A
R
N

MWM_VM_
LICENSE_
ERROR

There is an error with the
Moab license: (%s)

There was a
licensing error.
Additional
information
might be
provided
regarding the
error specifics.

Appendix C: Event Dictionary

1252 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1253

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
284
a

US
ER

syste
m.mo
ab

W
A
R
N

MWM_BAD_
COMMAND
LINE_FLAG

Unexpected flag detected:
'%s'.

The command
line syntax
that was
received
contains an
invalid flag.
Check the
documentation
and retry.

0x1
100
285
8

US
ER

syste
m.mo
ab

W
A
R
N

MWM_
NODESETM
AXUSAGE_
FAILURE

Ignoring incorrect
NODESETMAXUSAGE value
'%s'.

Valid range is
from 0.0 to 1.0
inclusive.

0x1
100
288
3

US
ER

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
DESTROY_
STATIC_RM

Trigger cannot destroy
static RM.

A trigger
cannot destroy
a static
resource
manager. Refer
to trigger
'destroy'.

0x1
100
296
6

US
ER

syste
m.mo
ab

W
A
R
N

MWM_RM_
JOB_
SUBMIT_
FAILURE

RM %s job submit failed:
%s.

Error while
submitting the
job to the
resource
manager.

0x1
100
2a0
c

US
ER

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
MODIFY_
RM_JOB

Cannot modify %s for RM
job %s - '%s'.

The listed
attribute of the
job could not
be changed.

0x1
100
400
4

PO
WE
R_
US
ER

syste
m.mo
ab

W
A
R
N

MWM_
TESTING_
WARNING

Testing with argument1:
%s. and argument2: %s and
argument3: %s

Internal error
for testing
diagnostics.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
819
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SCHED_SET_
COUNTER

%s cannot be set lower
than it's current value. %s <
%s

A counter
cannot be set
lower than it's
current value.

0x1
100
a71
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
LOAD_FILE

Cannot load %s file %s -
%s.

Failed to load
a file into
Moab. Make
sure it exists
and that
permissions
are correct.

0x1
100
a71
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
FAILED_TO_
WAIT_FOR_
CHILD

Failed to wait for child, pid:
%s, errno: %s (%s).

The wait()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a71
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
CHMOD_
FILE

Failure changing
permissions of file: '%s' to
mode:'%s', errno: %s (%s).

The chmod()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a71
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
OPEN_FILE_
WARNING

Cannot open %s file '%s',
errno: %s (%s).

The fopen()
system call
failed. Use the
errno and
associated
message to
determine

Appendix C: Event Dictionary

1254 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1255

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

possible
causes.

0x1
100
a72
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
WRITE_
FILE_
WARNING

Cannot write to file '%s',
errno: %s (%s).

The fwrite()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a72
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
CLOSE_
FILE_
DESCRIPTO
R

Cannot close file descriptor
%s, errno: %s (%s).

The close()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a72
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
RENAME_
FILE

Failure renaming file '%s'
to '%s', errno: %s (%s).

The rename()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a72
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
BIND_TO_
PORT

Cannot bind to port %s,
errno: %s (%s).

The bind()
system call
failed. Use the
errno and
associated
message to
determine

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

possible
causes.

0x1
100
a72
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
SEND_TO_
SOCKET

Cannot send %s byte
packet, errno: %s (%s).

The send()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a72
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
FAILED_
GETSOCKOP
T_
WARNING

Cannot get socket %s
option, errno: %s (%s).

The
getsockopt()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a72
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
FAILED_
SETSOCKOP
T_
WARNING

Cannot set socket %s
option, errno: %s (%s).

The setsockopt
() system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a73
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
SET_UMASK

Failure setting umask on
file '%s', errno: %s (%s).

The umask()
system call
failed. Use the
errno and
associated
message to

Appendix C: Event Dictionary

1256 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1257

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

determine
possible
causes.

0x1
100
a73
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
FAILED_
FCNTL_
WARNING

Cannot set %s option on
file descriptor, errno: %s
(%s).

The fcntl()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a73
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
STAT_FILE_
WARNING

Cannot get stats on file '%s',
errno: %s (%s).

The stat()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a73
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_GET_
HOSTNAM
E_CLIENT

Cannot get hostname of the
client, errno: %s (%s).

The
getnameinfo()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x1
100
a74
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONFIG_
FILE_NOT_
FOUND_
WARNING

Cannot locate configuration
file '%s' in '%s'.

Check for the
existence of
this file.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a75
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
CONFIG_
INVALID_
VALUE

Invalid %s value '%s'
specified for RM '%s'.

Check the line
in the
configuration
file for the
parameter.

0x1
100
a75
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
CONFIG_
PROCESS_
ATTR

Failed to process attribute
'%s' for resource manager
'%s'.

Check the line
in the
configuration
file for the
parameter.

0x1
100
a75
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
CONFIG_
ATTR

RM attribute '%s' not
handled.

Check the line
in the
configuration
file for the
parameter.

0x1
100
a75
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
CONFIG_
TIMEOUT

Resource manager '%s' has
a timeout of less than 50
ms.

Check the line
in the
configuration
file for the
parameter.

0x1
100
a75
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONFIG_
PARAM_
DEFAULT_
VALUE

Configuration parameter
'%s[%s]' was not assigned a
value. Using default.

Check the line
in the
configuration
file to see if
this behavior
is desired.

0x1
100
a75
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONFIG_
PARAM_
INTEGER_
DEFAULT_
VALUE

Configuration parameter
'%s[%s]' has a value '%s'
that is not an integer. Using
default.

Check the line
in the
configuration
file for the
integer value.

0x1 AD
MI

syste
m.mo

W MWM_ Configuration parameter Check the line

Appendix C: Event Dictionary

1258 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1259

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a75
a

N ab A
R
N

CONFIG_
PARAM_
DOUBLE_
DEFAULT_
VALUE

'%s[%s]' has a value '%s'
that is not a double. Using
default.

in the
configuration
file for the
double value.

0x1
100
a75
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONFIG_
PARAM_
NULL_
VALUE

Configuration parameter
'%s[%s]' has a NULL value.

Check the line
in the
configuration
file.

0x1
100
a75
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONFIG_
PARAM_
INVALID

Configuration parameter
'%s' has an invalid value.

Check the line
in the
configuration
file for the
attribute.

0x1
100
a75
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONFIG_
PARAM_
UNKNOWN

Configuration parameter
'%s[%s]' is not defined.

Check the line
in the
configuration
file for the
undefined
parameter.

0x1
100
a75f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONFIG_
ATTR_
EXTRACTIO
N

Configuration parameter
'%s[%s]' attribute value
'%s' cannot be extracted.

Check the line
in the
configuration
file for the
attribute.

0x1
100
a76
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
CONFIG_
LINE

Cannot process line '%s'. Check the line
syntax against
the
documentatio
n.

0x1
100
a76

AD
MI
N

syste
m.mo
ab

W
A
R

MWM_
UNKNOWN_

Unknown ADMINCFG
parameter '%s'.

Check the
syntax in the
configuration

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

3 N ADMINCFG_
PARAMETE
R

file.

0x1
100
a76
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNKNOWN_
MID_ATTR

Unknown identity attribute
'%s'.

Check the
MIDCFG lines
in the
configuration
file.

0x1
100
a76
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNKNOWN_
AM_ATTR

Unknown account manager
attribute '%s'.

Check the
AMCFG lines in
the
configuration
file.

0x1
100
a76
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNKNOWN_
ATTRIBUT
E_
SPECIFIED

Unknown attribute '%s'
specified for %s %s.

An error
occurred while
parsing the
configuration
for the listed
object. The
specified
attribute is
unknown or
invalid.

0x1
100
a76
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
MONGOSER
VER_
CONNECTIO
N_FAILURE

Unable to connect to
Mongo server '%s' (%s).

The program
will continue
to try and
connect in the
background.

0x1
100
a76
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
EVENT_
QUERY_
ODBC

Event querying is only
supported with ODBC.

Check the
USEDATABASE
option.

0x1 AD
MI

syste
m.mo

W MWM_DB_
CONNECT

Cannot connect to DB-- Verify that the
database is

Appendix C: Event Dictionary

1260 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1261

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a77
0

N ab A
R
N

falling back to file and
memory-based storage
(%s).

running.

0x1
100
a77
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
DATABASE_
STATS

Unable to retrieve statistics
from the database.

Verify that the
database is
running.

0x1
100
a77
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SERVER_
CONNECTIO
N_FAILED_
TRYING_
FALLBACK

The system was unable to
connect to the server
%s:%s - attempting fallback
server %s.

Make sure the
server's
address is
correct and it
is running.

0x1
100
a77
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PRIMARY_
SERVER_
FAILED_
TRYING_
BACKUP

The system was unable to
connect to the server %s
(%s:%s) - trying backup
server (%s:%s).

Make sure the
server's
address is
correct and it
is running.

0x1
100
a77
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
REDUCE_
CLIENTMAX
CONNECTIO
NS

Reducing
CLIENTMAXCONNECTIONS
to %s from %s not allowed
during runtime.

Decreasing the
value of
CLIENTMAXC
ONNECTIONS
cannot be
done during
runtime.

0x1
100
a78
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_START_
JOB

Cannot start job %s. (%s) The job failed
to start.

0x1
100
a78
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_

Cannot allocate nodes for
job %s. (%s)

Cannot
allocate a node
list that

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

ALLOCATE_
NODES_
FOR_JOB

matches the
requirements
for this job.
This might not
be serious
since multiple
passes may
occur.

0x1
100
a7d
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
LOAD_PBS_
JOB

Cannot load PBS job '%s'. Could not load
a job
discovered
from a PBS
resource
manager into
Moab.

0x1
100
a7e
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
TRUNCATI
NG_
ATTRIBUT
E_FOR_
CLASS

Truncating %s for class: %s
(rm reports: %s; Moab
enforces: %s).

The resource
manager
reports a
certain value
for a class, but
Moab has been
instructed to
keep it within
certain limits.
The value will
be truncated
to keep it
within the
limits.

0x1
100
a7e
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNEXPECTE
D_JOB_
STATE

Unexpected job state '%s'
detected for job %s.

The listed job
was found to
be in a state
that was not
expected. This
may or may
not be an
error
condition.

Appendix C: Event Dictionary

1262 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1263

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a82
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CLOCK_
SKEW_
DETECTED

Clock skew detected (%s
time for job %s in %s).

A reported
time
associated
with the job
appears to be
wrong. This
could be
because of a
lack of
synchronizatio
n between
system clocks
on all nodes.

0x1
100
a83
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
WIKI_
ATTRIBUTE

Encountered invalid wiki
attribute while reading
'%s'.

Check the
syntax of the
attribute.

0x1
100
a83f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
DUPLICAT
E_WIKI_
ATTRIBUTE

Wiki attribute '%s' is
already set.

Check for
duplicate
instances of
the attribute.

0x1
100
a84
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_VM_
UNSUPPOR
TED_WIKI_
ATTRIBUTE

Wiki attribute '%s' is
unsupported for VM
creation.

Remove the
attribute.

0x1
100
a84
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_ADD_
NODE_
FAILURE

Cannot add node '%s' to
global node table. Index is
already used.

Cannot have
two nodes
with the same
name.

0x1
100
a84
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_HT_
ADD_NODE_
FAILURE

Cannot add node '%s' to
hash table. Index is already
used.

Cannot have
two nodes
with the same
name.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a84
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_VM_
MIGRATIO
N_FAILURE

Cannot migrate VM '%s'. The VM might
not be eligible
for migration.

0x1
100
a84
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNEXPECTE
D_
SUBCOMMA
ND_
RECEIVED

Unexpected subcommand
'%s' received.

The
communicatio
n from a Moab
client includes
an unknown
subcommand.

0x1
100
a84
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_
REGISTER_
JOB_AM

Unable to register job %s
with accounting manager
for job %s. reason: '%s'
message:'%s'.

The accounting
manager was
unable to
register the
listed job for a
certain action.
An optional
reason and/or
message might
be given to
assist in
diagnosis.

0x1
100
a85
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
IMPROPER_
VM_
MIGRATIO
N_DECISION

The migration decision for
the VM was not properly
set up.

The
information
indicating the
destination
node is
missing.

0x1
100
a85
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
UPDATE_
NULL_
STARTTIME

Start time is NULL for job
update.

Specify a start
time that is
greater than
zero.

0x1
100
a85

AD
MI
N

syste
m.mo
ab

W
A
R

MWM_JOB_
UPDATE_
NULL_

Dispatch time is NULL for
job update.

Specify a
dispatch time
that is greater

Appendix C: Event Dictionary

1264 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1265

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

c N DISPATCHT
IME

than zero.

0x1
100
a86
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_
REGISTER_
RESERVATI
ON_AM

Unable to register
reservation %s with
accounting manager for %s
processors for reservation
%s.

The accounting
manager was
unable to
register the
listed
reservation for
a certain
action.

0x1
100
a86
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
DEPRECATE
D_
PARAMETE
R_VALUE

Deprecated value '%s'
specified for parameter
'%s'. %s

The listed
value is no
longer valid
for this
parameter. A
hint might be
provided with
the message.
Check the
most recent
documentation
for the
software
version.

0x1
100
a86
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
FILE_
ATTRIBUTE
S_WARNING

Invalid value '%s' specified
for %s (%s).

Checking a file
to see whether
it exists, is
executable, etc,
has produced
unexpected
results.

0x1
100
a86
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
SET_JOB_
ATTRIBUT
E_VIA_

Cannot set %s %s via
template %s.

Failed to set
the listed
attribute to
the listed value
for a specified

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

TEMPLATE_
WARNING

job template.

0x1
100
a86
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_KILL_
PROCESS_
FAILURE

Unable to kill process %s. The system
tried to kill the
given process
and failed.

0x1
100
a86
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODELIST_
STRING_
BUFFER

Insufficient buffer space to
convert a node list into a
string.

The buffer
must be larger
to hold all the
nodes.

0x1
100
a86
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_MAX_
NODES_
EXCEEDED

The maximum number of
nodes associated with a
reservation has been
exceeded.

The number of
nodes must be
reduced.

0x1
100
a87
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_VC_
ALREADY_
ADDED

The virtual container '%s' is
already an ancestor of VC
'%s'.

Cannot create
a circular
chain, must
maintain a
hierarchical
structure.

0x1
100
a87
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_VC_
REMOVAL_
FAILURE

The virtual container '%s'
cannot be removed.

This is an
internal error.

0x1
100
a87
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
RESERVATI
ON_JOB_
NOT_
FOUND

Unable to find the job for
reservation '%s'.

The host job
for the
reservation is
NULL.

0x1
100
a87

AD
MI
N

syste
m.mo
ab

W
A
R

MWM_
SINGLE_
USE_

Unable to destroy a single-
use reservation.

This is an
internal error.

Appendix C: Event Dictionary

1266 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1267

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

5 N RESERVATI
ON_
DESTRUCTI
ON

0x1
100
a87
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNEXPECTE
D_JOB_
SUBMISSIO
N_POLICY

The system encountered an
unexpected job submission
policy (%s).

The job
submission
policy did not
match a
defined policy.

0x1
100
a87
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SIMULATIO
N_JOB_
RECORDS

Unable to simulate
workload by creating job
records (1000 attempts).

The system
might be low
on memory.

0x1
100
a88
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
TRANSITIO
N_XML_
MESSAGE

Unable to add messages to
job '%s' transition XML.

The system
might be low
on memory.

0x1
100
a88
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_PBS_
API_STALE

PBS API is stale - re-
initializing.

Re-initializing
the PBS
environment.

0x1
100
a88
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_GET_
PBS_
QUEUE_
INFO

Cannot process PBS queue
info for RM %s (node %s) -
no data available.

Unable to get
any
information on
the PBS
queues. Make
sure that there
was at least a
queue set up
in PBS.

0x1
100
a88
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_SET_
JOB_

Cannot set job '%s'
attribute '%s:%s' to '%s'
(rc: %s; '%s').

There was a
problem while
changing the

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

ATTRIBUTE job attribute
and the error
status was
displayed in rc.

0x1
100
a88
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_
CONNECT_
PBS_
SCHEDULER

Cannot connect to PBS
event/scheduler port %s.

Ensure the PBS
scheduler is
running and
listening on
the specified
port.

0x1
100
a88
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_
UNUSABLE_
NO_DISK

Idle node %s is unusable
(inadequate disk space in
/var).

Ensure that
the node has
sufficient disk
space.

0x1
100
a88
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_
UNUSABLE_
BAD_STATE

Node '%s' is unusable in
state 'NONE'.

The node has
become
unusable
because of its
state being
NONE.

0x1
100
a88
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_FIND_
USERS_GID

Cannot locate OS GID
information for user '%s' -
ignoring user.

Moab was
unable to find
the GID of this
user. Make
sure that this
user has a GID.

0x1
100
a88
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_FIND_
USERS_UID

Cannot locate OS
information for user '%s' -
ignoring user - %s.

Moab was
unable to find
the user on the
system. Make
sure that this
user exists.

0x1 AD
MI

syste
m.mo

W MWM_ Cannot locate OS group list
information for user '%s' -

Moab was

Appendix C: Event Dictionary

1268 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1269

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a88
c

N ab A
R
N

UNABLE_
TO_FIND_
GID_LIST

ignoring user. unable to find
the group list
for this user.

0x1
100
a88
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
TIMEOUT

Command '%s' timed out,
or wait failed after %s
seconds.

Increasing the
TIMEOUT
settings in
moab.cfg might
help.

0x1
100
a88
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INSUFFICIE
NT_
POLICIES

Insufficient policies
specified;
hpolicy=%s,spolicy=%s.

Please revise
your policies
along with
their actions.

0x1
100
a88f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_NO_
STDOUT

Request succeeded with no
stdout but stderr='%s'.

Typically there
will also be
stdout when
there is stderr.
Depending on
the request
this might be
the intended
result.

0x1
100
a89
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
CONNECT_
WIKI

Cannot connect to Wiki
event port %s.

Failure to
connect to the
Wiki event
port.

0x1
100
a89
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
MISSING_
COLON_STR

Colon delimiter not located
in %s wiki string '%s...' in
%s.

Check that the
string contains
the right
format.

0x1
100
a89
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_ADD_
DEPENDEN
CY_FAIL

Failed to add dependencies
to job %s's submission.

There was a
problem in
adding the
dependencies
to the job.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a89
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
PRIORITY_
FUNCTION

Invalid priority function
'%s' on job '%s'.

The priority
function
applied to the
job was
invalid.

0x1
100
a89
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
MISSING_
JOB_REQ

Invalid job '%s'; no
requirements.

The job was
invalid because
it was missing
the
requirements.

0x1
100
a89
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
MISSING_
JOB_REQ_
AT_INDEX

Invalid job %s; no
requirement at index %s.

The job was
invalid because
an index was
missing
requirements.

0x1
100
a89
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
WIKI_STR_
MISSING_
EQUAL

Malformed wiki string '%s'
- no '='.

The wiki string
was missing an
equal sign '='.

0x1
100
a89
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
EMPTY_
WIKI_STR

Malformed wiki string '%s'
- EOF.

The wiki string
was empty.

0x1
100
a89
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INCORREC
T_STAGE_
LOC

stage-data source location
is being incorrectly
reported via wiki '%s' !=
'%s'.

The stage data
source location
was incorrectly
reported in
wiki.

0x1
100
a89
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
VM_OBJECT_
ID

VM '%s' is not a valid
object, ignoring.

The VM does
not have a
valid object ID.

Appendix C: Event Dictionary

1270 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1271

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a89
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
JSON_
CLUSTER

Could not parse JSON
cluster query data from
MWS RM (%s): %s.

The JSON
construct(s)
for the cluster
might contain
some invalid
syntax.

0x1
100
a89
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
JSON_
WORKLOAD

Could not parse JSON
workload query data from
MWS RM (%s): %s.

The JSON
construct(s)
for the
workload
might contain
some invalid
syntax.

0x1
100
a89
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
MISSING_
REQ_
PROPERTIE
S

JSON cluster query data
from MWS RM (%s) does
not contain required
properties (%s, %s, %s).

The JSON
constructs for
the cluster
query data are
missing the
required
properties.

0x1
100
a89
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
JSON_
CLUSTER_
OBJECT

JSON cluster query data
from MWS RM (%s) is not
a valid object.

Review the
JSON construct
for the cluster
query data to
ensure its
syntax is
correct.

0x1
100
a89
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
JSON_
WORKLOA
D_OBJECT

JSON workload query data
from MWS RM (%s) is not
a valid object.

Review the
JSON construct
for the
workload
query data to
ensure its
syntax is
correct.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a89f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
EMPTY_
RESPONSE

Empty %s response from
RM (%s).

The response
from the
resource
manager query
was empty.

0x1
100
a8a
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
NODE_
DATA

Nodes data from MWS RM
(%s) is not a valid object.

The response
from the Moab
Web Services
resource
manager query
was empty.

0x1
100
a8a
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CREATE_
RESERVATI
ON_FAIL

Cannot create requested
reservation (%s).

The request to
create the
given
reservation
has failed.

0x1
100
a8a
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
LOCATE_
RSVPROFIL
E_FAIL

Cannot locate RSVPROFILE
'%s'.

Moab failed to
find the given
RSVPROFILE.
Confirm that
the file exists.

0x1
100
a8a
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
LOCATE_
RSV_
PARENT_
FAIL

Cannot locate parent '%s'
for reservation '%s'.

Moab failed to
locate the
parent of the
given
reservation.

0x1
100
a8a
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
LOCATE_
COMMAND_
FAIL

Cannot locate command
'%s'.

Moab failed to
locate the
given
command.
Confirm that
the command
exists.

Appendix C: Event Dictionary

1272 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1273

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a8a
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNSUPPOR
TED_
SCHED_CMD

Received unexpected sched
command '%s'.

Received an
unexpected
mschedctl
command.
Confirm that
the used
option is
supported.

0x1
100
a8a
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNSUPPOR
TED_EVENT

Unsupported event '%s'
from RM '%s'.

The given
event is not
supported by
the given
resource
manager.

0x1
100
a8a
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_VM_
MIGRATE_
FAIL

VM %s should migrate
from node %s but cannot
locate valid destination -
%s (policy).

Attempt to
migrate the
given VM from
the given node
failed. Check
that the
destination is
valid.

0x1
100
a8a
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
START_FAIL

Start of system job %s
failed; no action specified.

Failed to start
a job because
there was no
action
specified.

0x1
100
a8a
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
VMTRACKI
NG_JOB_
FAIL

VM '%s' reported a system
job failure on VMTracking
job '%s'.

The given VM
reported it
failed on the
given
VMTracking
job.

0x1
100

AD
MI

syste
m.mo

W
A

MWM_
VMTRACKI

VM '%s' exceeded its
allocated walltime.

The given VM
has exceeded

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a8a
a

N ab R
N

NG_EXCEED_
WALTIME

VMTracking job '%s'
(pointing to job '%s').

its allocated
walltime on
the associated
VM tracking
job.

0x1
100
a8a
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNKNOWN_
POWER_
STATE

No RM can report node
'%s' power state for system
job '%s'.

No resource
manager can
report the
power state
for the given
nodes on the
given job.

0x1
100
a8a
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_ADD_
GLOBAL_
NODE_FAIL

Cannot add global node
'%s'.

Failed to add
the given
global node.

0x1
100
a8a
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNKNOWN_
CLIENT

Client ID '%s' is unknown. Moab failed to
recognize the
name/ID of
the given
client.

0x1
100
a8af

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
DEBIT_
ACCOUNT

Unable to charge funds for
job.

The account
manager failed
to debit the
account for the
job.

0x1
100
a8b
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
RESERVE_
ACCOUNT

Unable to reserve funds for
job (Reason: %s).

The account
manager failed
to reserve
funds on the
account for the
job.

0x1 AD
MI

syste
m.mo

W MWM_
CANCEL_

Unable to cancel lien for
instance '%s' (Reason: %s).

The account

Appendix C: Event Dictionary

1274 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1275

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a8b
1

N ab A
R
N

LEIN manager failed
to release the
lien.

0x1
100
a8b
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
RESERVATI
ON_
RESERVE_
ACCOUNT

Unable to reserve funds for
reservation (Reason: %s).

The account
manager failed
to reserve
funds on the
account for the
reservation.

0x1
100
a8b
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
TASK_
DISTRIBUTI
ON

The system cannot
distribute the tasks
allocated for a job.

Check the
tasks specified
in the job.

0x1
100
a8b
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
DEFAULT_
CLASS

Job cannot run with default
class '%s'.

Check the
limits set on
the class.

0x1
100
a8b
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
START_JOB

Cannot start job through a
resource manager.

The resource
manager might
not be set to
run the job.

0x1
100
a8b
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
DEPENDEN
CY_UPDATE

Cannot find job '%s' to
update dependency '%s' for
job '%s'.

The
dependency
job for the
specified job is
missing.

0x1
100
a8b
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
EXPIRED_
CHECKPOIN
T

The checkpoint has expired. Items within
the checkpoint
might no
longer be
valid.

0x1 AD syste W MWM_BAD_ The system encountered an All lines must

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a8b
8

MI
N

m.mo
ab

A
R
N

CHECKPOIN
T_LINE

incorrectly formed
checkpoint line for key '%s'.

end with a
NEWLINE
character.

0x1
100
a8b
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONVERT_
XML_FROM_
STRING

XML data cannot be
obtained from an XML
string ('%s').

There was an
error
converting
from a string
that should
contain XML
into internal
XML data
structures.

0x1
100
a8b
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CONVERT_
XML_TO_
STRING

An XML string cannot be
constructed from XML data.

There was an
error
converting
from internal
XML data
structures into
an XML string
representation.

0x1
100
a8b
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SOCKET_
OPERATION

Cannot %s message on sd
%s within %s second
timeout.

There is a
communicatio
n error with
sockets.

0x1
100
a8b
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
COMPLETE
D_JOB_
RECORD

Could not create job record
for completed job %s - %s.

The system
might be low
on memory.

0x1
100
a8b
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CREATE_
TEMPLATE_
JOB_
DEPENDEN
CY

Could not create template
job dependency %s - %s.

The system
might be low
on memory.

Appendix C: Event Dictionary

1276 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1277

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a8b
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
FIND_SMP_
NODE_BY_
FEATURE

Could not find SMP node by
feature '%s'.

The feature
did not match
any of the SMP
nodes.

0x1
100
a8bf

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CHECKPOIN
T_PROCESS_
COMPLETE
D_JOB

Could not process
completed job from
checkpoint.

Examine the
checkpoint
entry for the
job.

0x1
100
a8c
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
FIND_SMP_
NODE_IN_
PARTITION

Could not find SMP node in
partition '%s'.

The feature
did not match
any of the SMP
nodes in the
partition.

0x1
100
a8c
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
REPORTED_
BY_RM_
NOT_
OWNER

Job '%s' is being reported
by RM '%s' but is owned by
RM '%s'.

The resource
manager
reporting does
not own the
job.

0x1
100
a8c
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PEER_RM_
UNKNOWN_
LANGUAGE

Peer RM '%s' reported
unknown language: '%s'.

The language
does not
match a
known format.

0x1
100
a8c
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PEER_RM_
UNKNOWN_
SUBLANGU
AGE

Peer RM '%s' reported
unknown sub-language:
'%s'.

The language
does not
match a
known format.

0x1
100
a8c
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
ARCH_
VALUE

Job '%s' does not have a
valid arch (architecture)
value '%s'.

Check the
specified value
for the
architecture.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a8c
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
HOST_REQ

Job '%s' does not have a
valid host requirement '%s'.

Check the
specified value
for the
requirement.

0x1
100
a8c
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
OPSYS_
VALUE

Job '%s' does not have a
valid operating system
value '%s'.

Check the
specified value
for the
operating
system.

0x1
100
a8c
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNSUPPOR
TED_REQ

Resource requirement '%s'
not supported.

The
requirement
specified is
unsupported.

0x1
100
a8c
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_NO_
TASKS

Job loaded in active state
with no tasks allocated.

Jobs must have
at least one
task.

0x1
100
a8c
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SINGLE_
ITERATION_
JOB_
COMPLETIO
N

Scheduler cannot handle
job completion in a single
iteration.

The job must
not start and
complete while
the scheduler
is sleeping.

0x1
100
a8c
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_MAX_
TASKS_
EXCEEDED

The number of tasks
associated with a job has
exceeded the maximum
(%s).

The number of
tasks must be
reduced or the
scheduler must
be configured
to accept more
tasks.

0x1
100
a8cc

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_OUT_
OF_RANGE

Job '%s' node index (%s) at
task list index (%s) is out
of range.

This is an
internal limit.

Appendix C: Event Dictionary

1278 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1279

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a8c
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_NULL

Job '%s' node index (%s) at
task list index (%s) is
NULL.

This is an
internal limit.

0x1
100
a8c
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODESET_
CONSTRAIN
TS

Nodeset constraints
prevent use of task for job
'%s':%s at %s.

The specified
nodeset cannot
run the task.

0x1
100
a8cf

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
DEFAULT_
WALLTIME

Job assigned default
walltime limit (%s).

Unlimited or
no walltime
limit specified.

0x1
100
a8d
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PARTITION_
ACCESS

Job cannot access requested
partitions (%s).

The partition
access list
disallows the
job.

0x1
100
a8d
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_
ALLOCATE_
TASKS_FOR_
JOB

Cannot allocate tasks for
job at %s.

The system
might be low
on memory.

0x1
100
a8d
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
IGNORING_
PARTIAL_
RANGE

Ignoring partial time range
since full range previously
located.

The system
will use the
full range
instead.

0x1
100
a8d
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
DESTINATI
ON_RM

Cannot locate a valid
destination resource
manager for job.

The submitted
job could not
be sent to a
resource
manager.

0x1 AD syste W MWM_JOB_ Cannot authenticate the The user for

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a8d
4

MI
N

m.mo
ab

A
R
N

CREDENTIA
LS

submitted job (Reason:
%s).

the job is not a
member of a
group or
account with
access.

0x1
100
a8d
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SMPNODE_
BY_
FEATURE

Could not find SMPNode by
feature %s (%s).

None of the
nodes has the
feature
specified.

0x1
100
a8d
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SMPNODE_
BY_
PARTITION

Could not find SMPNode in
partition %s.

The SMPNode
specified is not
in the given
partition.

0x1
100
a8d
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RSV_
ATTR_TO_
STRING

Reservation '%s' attribute
'%s' could not be converted
to a string.

There is no
string
conversion
routine for
that attribute
type.

0x1
100
a8d
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
STATUS

Account manager sent
failure message - %s.

Check status
message.

0x1
100
a8d
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
FAILURE

Native accounting manager
call '%s' failed using input
XML '%s'.

Check XML
syntax.

0x1
100
a8d
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
INSUFFICIE
NT_FUNDS

Account manager -
Insufficient funds '%s'.

Validate that
the user has
access to
account.

0x1 AD syste W MWM_ Unable to migrate job '%s' Check the

Appendix C: Event Dictionary

1280 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1281

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a8d
b

MI
N

m.mo
ab

A
R
N

MIGRATE_
JOB

to RM '%s' (%s). error message.

0x1
100
a8d
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
RESERVE_
PRIORITY_
JOB

Unable to reserve priority
job.

Check the
error message.

0x1
100
a8d
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SYNC_JOB

Job '%s' not synchronized
to start with job '%s'.

The two jobs
must start at
the same time.

0x1
100
a8d
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
SYNC_JOB_
REQUEUE

Job '%s' could not start.
Requeuing any
synchronized jobs.

The other jobs
should be back
on the queue.

0x1
100
a8df

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNHANDLE
D_PLUGIN_
EXCEPTION

A node allocation plugin
'%s' encountered an
unhandled exception '%s'.

Consult the
documentation
for the plugin.

0x1
100
a8e
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PLUGIN_
LOADED_
FAILURE

Error loading node
allocation plugin '%s' for
partition '%s' %s.

A
NodeAllocatio
n plugin was
not loaded
because of an
error. Default
node
allocation will
be used.

0x1
100
a8e
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNKNOWN_
JOB_
DEPENDEN
CY

Unknown job dependency
'%s' on job.

The job is
trying to use a
dependency
that is
unknown.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a8e
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNSUPPOR
TED_JOB_
DEPENDEN
CY

Unknown job dependency
type '%s' on job.

The job is
trying to use a
dependency
type that is
unsupported.

0x1
100
a8e
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
MISSING_
JOB_
DEPENDEN
CY

Cannot find dependency
job.
MissingDependencyAction
is '%s'.

Check for the
existence of
the job
dependency.

0x1
100
a8e
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PARTITION_
REP_NODE

Corrupt partition
representative node.

Check the
representative
node for the
partition.

0x1
100
a8e
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PARTITION_
ATTRIBUTE

Partition attribute '%s' is
not configurable.

Consult the
documentation
to see which
attributes can
be configured.

0x1
100
a8e
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_
LOCATE_
NODE

Unable to locate specified
nodes for job.

Could not find
a node in the
job's node list.

0x1
100
a8e
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODES_
MISSING_
FROM_
FEASIBLE_
LIST

Specified node(s) not found
in feasible hostlist.

Could not find
a node.

0x1
100
a8e
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
HOSTLIST_
HAS_TOO_
FEW_TASKS

A hostlist has too few tasks
available for job '%s':'%s'
(%s < %s).

More nodes
are needed to
satisfy the task
requirements.

Appendix C: Event Dictionary

1282 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1283

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a8e
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
TASKS_
REMAINING

A hostlist was unable to
handle all tasks (%s
remain).

More nodes
are needed to
satisfy the task
requirements.

0x1
100
a8e
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_
DOWN

Unable to detect node '%s'
for '%s' seconds. Marking it
down or removing it.

Make sure the
node is up and
running.

0x1
100
a8e
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_
RESET_
EMPTY

Unable to reset node. Node
list empty.

Must specify a
valid node to
reset.

0x1
100
a8e
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_
RESET_URL

Unable to reset node.
NODEPOWERURL not
specified.

Must specify a
valid URL for
the node to
reset.

0x1
100
a8e
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
DOWN

The account manager is not
currently running.

Check the
status of the
account
manager.

0x1
100
a8ef

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
KEYBOARD_
ACTIVITY_
PREEMPT_
JOB

Keyboard activity on node
prevented job preemption.

Jobs can be
preempted
only if the
keyboard is
idle.

0x1
100
a8f0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
KEYBOARD_
ACTIVITY_
SET_NODE_
STATE

Keyboard activity on node
prevented setting the node
state to '%s'.

Node states
can be changed
only if the
keyboard is
idle.

0x1
100

AD
MI

syste
m.mo

W
A

MWM_JOB_
MISMATCH

Fixing job '%s' with invalid
'%s' times (%s - %s).

Check the
times for the

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a8f1 N ab R
N

ED_TIMES specified job.

0x1
100
a8f2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
OPSYS

Cannot add operating
system '%s' to job.

Check the type
of operating
system
specified.

0x1
100
a8f3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
ARCH

Cannot add architecture
'%s' to job.

Check the type
of architecture
specified.

0x1
100
a8f4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
LOCATE_AM

Cannot locate the account
manager '%s'.

Check the
account
manager
command
option syntax.

0x1
100
a8f5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
LOCATE_RM

Cannot locate the resource
manager '%s'.

Check the
resource
manager
command
option syntax.

0x1
100
a8f6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
LOCATE_
RMID

Cannot locate the resource
manager ID '%s'.

Check the ID
command
option syntax.

0x1
100
a8f7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
LOCATE_
PARTITION

Cannot locate the partition
'%s'.

Check the
partition
command
option syntax.

0x1
100
a8f8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
QUEUE_
MODIFY

Command to modify RM
queue failed on resource
manager %s - '%s'.

Queue may be
configured to
reject modify
requests.

Appendix C: Event Dictionary

1284 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1285

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a8f9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
QUEUE_
CREATE

Command to create RM
queue failed on resource
manager %s - '%s'.

System may be
configured to
reject queue
creation
requests.

0x1
100
a8fa

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
QUEUE_
CREATE_
MISSING_
ARGS

Command to create RM
queue failed - arguments
missing.

The user must
supply the
needed
arguments to
the command.

0x1
100
a8fb

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
STATIC_RM_
DESTRUCTI
ON

An attempt was made to
destroy a static resource
manager.

Static resource
managers
cannot be
destroyed.

0x1
100
a8fc

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_ADD_
SYSTEM_
USER

Unable to create a new user
'%s' in the system.

The system
might be low
on memory.

0x1
100
a8fd

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_ADD_
PARTITION

The system was unable to
create partition '%s'.

The system
might be low
on memory.

0x1
100
a8fe

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CORE_LIMIT

System core limit set to %s
(complete core files might
not be generated).

Expand the
system core
limit to ensure
the complete
core dump can
be saved.

0x1
100
a8ff

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_KEY_
FILE_
PERMISSIO
NS

The .moab.key file exists,
but the file permissions
prevent access (%s).

Check the
ownership
permissions on
the file.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a90
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
STATS_
PERIOD_
TYPE

The system could not
process stats for period
type %s.

'Day' is the
only period
type currently
supported.

0x1
100
a90
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
STATS_
BUFFER_
SIZE

The system could not
process stats for period
type %s (buffer too small).

The buffer
allocated was
too small to
hold the data.

0x1
100
a90
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
STATS_FILE

The system could not
create the stats file '%s'.

Check the path
and user
permissions on
the directory.

0x1
100
a90
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
NO_
ACCOUNT

No account specified for job
'%s'.

Check the job
for an account
specification.

0x1
100
a90
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_SET_
JOBATTR_
FAIL

Cannot set attribute '%s' to
value '%s' on jobmatch
'%s'.

Failed to set
the given
attribute to
the given value
on the given
job.

0x1
100
a90
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
JOBATTR_
NOT_
SUPPORTED

JobAttr not supported. '%s'. The given
attribute is not
a supported
job attribute.

0x1
100
a90
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
TRIGGER_
DEFINITIO
N

Invalid trigger definition:
%s.

The given
trigger is
invalid. Check
that the given
trigger has
been defined.

Appendix C: Event Dictionary

1286 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1287

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a90
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
ATTRIBUT
E_NOT_
HANDLED

System attribute '%s' not
handled.

Check that the
given attribute
was spelled
correctly.

0x1
100
a90
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_QOS_
IN_PARAM_
NOT_
FOUND

Cannot locate QOS '%s' for
parameter %s.

Make sure that
the given QOS
exists.

0x1
100
a90
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
PROFILEDU
RATION_
VAL

Invalid PROFILEDURATION
specified, modified
internally to %s (see
documentation).

The entered
PROFILEDURA
TION value is
invalid. Moab
uses the given
value instead.

0x1
100
a90
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_NO_
DATA_
STAGING_
PATH

No path in data staging
specification '%s' (bad
format).

Verify the data
staging path is
specified.

0x1
100
a90
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNSUPPOR
TED_RM_
DATA_
STAGING

Cannot stage-out
stdout/stderr (unsupported
RM type '%s').

Failed to
stage-out
stdout/stderr
because the
given resource
manager does
not support
such feature.

0x1
100
a90
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
DATA_ON_
NON_
EXISTING_
JOB

Storage RM '%s' reporting
data operation for non-
existent job '%s'.

The given
resource
manager is
reporting data
operation on
the non-
existing job.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a90
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
RM_DATA_
STAGE

Data stage for RM '%s' not
possible as it has no
nodelist.

Check
CLUSTERQUE
RYURL to
ensure it at
least has a
nodelist.

0x1
100
a90
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
DATA_
STAGE_IN_
FAIL

Data stage in failed for job
'%s' file '%s' (%s).

Failed to
complete the
data staging in
operation for
the job on the
given file due
to error(s).

0x1
100
a90f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNABLE_
TO_
REMOVE_
DATA_
STAGE

Cannot remove data staging
block for job '%s'.

Failed to
remove the
data staging
block for the
given job.

0x1
100
a91
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
DATA_
STAGE_
OUT_FAIL

Data stage out failed for job
'%s' file '%s' (%s).

Failed to
complete the
data staging
out operation
for the job on
the given file
due to error
(s).

0x1
100
a91
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
INVALID_
OPSYS

Job '%s' cannot request OS
'%s').

The requested
operating
system is not
available for
the job.

0x1
100
a91

AD
MI
N

syste
m.mo
ab

W
A
R

MWM_
NODE_
BUFFER_

Node buffer is full (check
license and MAXNODE
parameter).

Try increasing
the node
buffer size

Appendix C: Event Dictionary

1288 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1289

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

2 N OVERFLOW (MAXNODE).

0x1
100
a91
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
REMOVE_
NODE_
WITH_
RESERVATI
ON

Unable to remove node
'%s' because of reservation
references.

Remove the
reservations
from the node.

0x1
100
a91
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
PURGE_RM_
INACTIVE

Unable to purge job '%s'
because the resource
manager '%s' is inactive.

Check the
status of the
resource
manager.

0x1
100
a91
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
PURGE_RM_
NO_
RESOURCES

Unable to purge job '%s'
because the resource
manager '%s' is reporting
no resources.

Check the
status of the
resource
manager.

0x1
100
a91
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
NOT_
DETECTED

Job '%s' in state '%s' no
longer detected (Last
Detected %s > PurgeTime
%s).

The job might
have been
purged in the
meantime.

0x1
100
a91
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
BACKFILL_
DEPTH_
REACHED

The backfill depth
(BFDEPTH) has been
reached so no more jobs
will be backfilled this
iteration.

Wait for the
next iteration
or increase the
depth.

0x1
100
a91
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CHECKPOIN
T_CREATE_
RSV_FROM_
XML

Unable to create a
reservation from
checkpoint XML.

The system
might be low
on memory.

0x1
100
a91

AD
MI
N

syste
m.mo
ab

W
A
R

MWM_JOB_
CACHE_
REMOVAL

Failed to remove job %s
(ID = %s) from the cache.

The job was
missing from
the system

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

d N hash table.

0x1
100
a91
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
CRED_
VALUE

Invalid credential value
'%s'.

Check the
syntax in the
configuration
file.

0x1
100
a91f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
CRED_ATTR

Invalid credential attribute
'%s'.

Check the
syntax in the
configuration
file.

0x1
100
a92
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_MAX_
JOBS_
EXCEEDED

The maximum number of
jobs has been exceeded.

Increase the
value of the
MAXJOB
setting.

0x1
100
a92
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
FAILED_
PROCESSIN
G_PBS

A job failed while
processing PBS resources.

May not have
been able to
locate host or
vnode.

0x1
100
a92
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
INSUFFICIE
NT_
BALANCE

Insufficient balance in
primary account '%s' to run
job '%s' (attempting
fallback credentials).

Validate that
the user has
access to
account.

0x1
100
a92
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
JOB_
SUBMIT_
VALIDATIO
N

Job submission validation
failed for job '%s' -- taking
action '%s'.

Validate that
the job has
access.

0x1
100
a92
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_TOO_
MANY_
NODE_SETS

The maximum number of
node sets has been
exceeded.

This is a
configurable
setting.

0x1 AD syste W MWM_ The specified class set list is Check the

Appendix C: Event Dictionary

1290 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1291

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a92
6

MI
N

m.mo
ab

A
R
N

CLASS_SET_
LIST_
INVALID

invalid '%s'. documentation
for valid
classes.

0x1
100
a92
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
START

Cannot start resource
manager '%s' (Reason: %s).

The resource
manager might
not be
available.

0x1
100
a92
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
STDOUT_
FAIL

Request succeeded with no
stdout. stderr= '%s'.

The standard
out might not
have been
specified.

0x1
100
a92
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNSUPPOR
TED_REQ_
ATTR

Unsupported req attribute
'%s'.

The attribute
is not one that
can be set.

0x1
100
a92
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNSUPPOR
TED_
GENERAL_
ATTR

Unsupported general
attribute '%s'.

The attribute
is not one that
can be set.

0x1
100
a92
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CREATE_
ACCOUNT

Unable to create account
'%s' on the account
manager.

Verify that the
account
manager is
running.

0x1
100
a92f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
QUERY_
ACCOUNT

Unable to query account
'%s' on the account
manager.

Verify that the
account name
is correct.

0x1
100
a93
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
ACCOUNT_
ADD_USER

Unable to add user '%s' to
account '%s' on the account
manager.

Verify that the
account name
is correct.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a93
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
ACCOUNT_
DEPOSIT

Unable to deposit '%s'
credits to account '%s' on
the account manager.

Verify that the
account name
is correct.

0x1
100
a93
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
ALLOCATE_
REQ

Unable to allocate
requirement '%s' using
NAllocPolicy '%s' (%s).

The system
might be low
on memory.

0x1
100
a93
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
VALID_
STAT_DATA

Unable to generate valid
statistic data for external
query.

The system
might be low
on memory.

0x1
100
a93
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
QOS_
REQUEST

Job '%s' cannot request
QOS '%s').

The requested
QOS is not
available for
the job.

0x1
100
a93
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
GRES_
OVERFLOW

GRES overflow. Unable to add
another GRES.

0x1
100
a93
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RM_
NO_
RESOURCES

The resource manager '%s'
is reporting no resources.

Check the
nodes on the
resource
manager.

0x1
100
a93
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
EMPTY_FILE

File '%s' is empty. Check the file
specified.

0x1
100
a93f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PREEMPT_
NONACTIV
E_JOB

Cannot preempt non-active
job '%s' (state: '%s' estate:
'%s').

The job must
currently be
active to
preempt it.

Appendix C: Event Dictionary

1292 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1293

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a94
0

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
REQUEUE_
NONSTART
ABLE_JOB

Cannot requeue non-
startable job '%s' (canceling
instead).

The job could
not be
requeued.

0x1
100
a94
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_
RACK_
VALUE

Invalid rack value '%s'
specified for node %s (must
be digit).

Check the
value of the
rack
parameter.

0x1
100
a94
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
ENCODE_
JOB_
MESSAGE

Cannot encode job message. Check the
value of the
rack
parameter.

0x1
100
a94
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
PROFILECO
UNT_VAL

Invalid PROFILECOUNT
specified, modified
internally to %s (see
documentation).

The
PROFILECOUN
T value is
invalid. Moab
uses the
default value
instead.

0x1
100
a94
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
FAIRSHARE_
FILE

Cannot load fairshare file
'%s' for slot %s.

Check for the
existence of
the fairshare
file in the file
system.

0x1
100
a94
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_REQ_
ATTR_
ALREADY_
SET

Requirement attribute %s
'%s' is already set.

Check the
attribute
setting in the
configuration
file.

0x1
100
a94
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
ZERO_
START_
TIME

StartTime set to zero for
reservation on job '%s'.

Check the start
time for the
specified job.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a94
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
EXISTING_
RESERVATI
ON

Reservation created for
reserved job '%s' (existing
reservation '%s' deleted).

Only one
reservation
can exist at a
time for the
reserved job.

0x1
100
a94
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
PARSE_REQ_
LINE

Cannot parse requirement
line for job '%s'.

The syntax of
the
requirement
line is
incorrect.

0x1
100
a94
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNKNOWN_
RESOURCE_
TYPE

Unknown resource type
'%s' for job '%s'.

Check the
documentation
for valid
resource types.

0x1
100
a94
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
UNKNOWN_
TRANSACTI
ON_ATTR

Unknown transaction
attribute '%s'.

Check the
documentation
for valid
transaction
attributes.

0x1
100
a94
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_ID_
MANAGER_
DOWN

The identity manager is
down.

Check the
status of the
identity
manager.

0x1
100
a94
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
PROCESS_
ID_LINE

Unable to process the ID
line '%s'.

Check the
syntax of the
attribute/value
pairs.

0x1
100
a94
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
ID_MISSING

Unable to locate the job ID
for a job submitted to the
resource manager.

Check the job
being
submitted`.

0x1 AD syste W MWM_ The nodelist is empty for Reservations

Appendix C: Event Dictionary

1294 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1295

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a95
0

MI
N

m.mo
ab

A
R
N

EMPTY_
NODELIST

reservation '%s'. should include
a node list.

0x1
100
a95
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
FAIRSHARE_
PAL

Fairshare does not allow
specified PAL (%s).

The fairshare
algorithm is
reverting to
the original
PAL.

0x1
100
a95
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
START_
TIME

Cannot find earliest start
time for job '%s'.

Resources
needed to run
the job may
never be
available.

0x1
100
a95
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
NODE_
MODIFY

Cannot modify node '%s'
Error(%s).

The node
could not be
modified.

0x1
100
a95
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
TRIGGER_
RSV_
CREATE

Unable to create a trigger
reservation.

Check the
reservation
time, nodes,
and account.

0x1
100
a95
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
MISSING_
TRIGGER

Trigger '%s' with PID '%s'
does not exist--completing!

The process
might have
already
completed.

0x1
100
a95
6

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
EMPTY_
HOSTLIST

The hostlist is empty for
reservation.

Reservations
should include
a hostlist.

0x1
100
a95

AD
MI
N

syste
m.mo
ab

W
A
R

MWM_RSV_
POLICY_
VIOLATION

Unable to create requested
reservation due to a policy
violation (%s).

Reservations
must conform
to existing

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

7 N policies.

0x1
100
a95
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RSV_
CREATE_
FAILURE

Unable to create requested
reservation at time %s
(%s).

Resources are
unavailable at
requested
time.

0x1
100
a95
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RSV_
OWNER

Cannot process owner '%s'
for standing reservation
'%s' (%s).

Consult the
error message.

0x1
100
a95
a

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RSV_
PARTIAL

Partial reservation %s
reserved %s of %s procs in
partition '%s' to start in %s
at (%s) %s.

Entire
reservation
could not be
filled.

0x1
100
a95
c

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_RSV_
NEGATIVE_
JOBCOUNT

Reservation %s jobcount is
%s, should not decrement
less than 0.

JobCount
cannot be
negative.

0x1
100
a95
d

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
EMPTY_
REQ_
NODELIST

Req node list empty for job
%s:%s in state %s (job
nodelist copied to req
nodelist).

Job should
include a req
node list.

0x1
100
a95
e

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
TASK_
ALLOCATIO
N_INFO

Cannot locate task
allocation info for job
%s:%s in state %s.

Job should
include a task
list.

0x1
100
a95f

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
THREADPO
OL_SIZE

Invalid ThreadPoolSize '%s'
(must be a non-negative
integer no larger than %s).

Check the size
for a valid
value.

0x1
100

AD
MI

syste
m.mo

W
A

MWM_
INVALID_

Job '%s' has invalid system
queue time (SQ: %s > ST:

Check the job
queue time

Appendix C: Event Dictionary

1296 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1297

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a96
0

N ab R
N

QUEUE_
TIME

%s). value.

0x1
100
a96
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_NO_
WCLIMIT

Job '%s' has no WCLimit
specified.

Check the job
for the correct
value.

0x1
100
a96
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
INVALID_
PROTOCOL

Invalid protocol '%s'
specified for account
manager '%s'.

Communicatio
n with the
account
manager must
be over a
supported
protocol.

0x1
100
a96
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_NO_
POWER_
INTERFACE

No external power interface
- cannot set power state
'%s' on node '%s%s%s'.

Cannot set the
power state on
the node
without a
power
interface.

0x1
100
a96
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
STARTED_
ON_
ANOTHER_
RM

Job '%s' started externally:
(rc: %s; errmsg: '%s';
Tasklist: '%s').

Two or more
resource
managers are
running side-
by-side and
the job is
already
running on
one of them.

0x1
100
a96
5

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
COMMAND_
FAILED_
CHILD_
PROCESS

Job submit request failed
with child process status
code='%s', stderr='%s',
stdout='%s', EMsg='%s'.

Review the
status code
and error
message for
further
information.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x1
100
a96
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
REGISTER_
JOB

Unable to register job
creation with account
manager for job '%s',
reason: '%s'.

Check the
status of the
account
manager.

0x1
100
a96
8

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
DEPRECATE
D_
PARAMETE
R

Use of the '%s' parameter is
deprecated. %s

Check the
documentation
for the new
parameter
syntax.

0x1
100
a96
9

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_AM_
INVALID_
ACTION

Invalid action '%s' specified
in '%s' for account manager
'%s'.

Check the
documentation
for valid
actions for the
account
manager.

0x1
100
a9bf

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
ERASING_
JOB

Erasing job '%s' by address. The specified
job could not
be found by
name. The
entire job
table was
searched to
find the
matching job.

0x1
100
a9e
1

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
INVALID_
TASK_
LAYOUT

Job '%s' has invalid task
layout (TPN:%s * N:%s !=
T:%s).

The task
layout does
not compute.

0x1
100
a9e
2

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_JOB_
ACCESS_QOS

Job '%s' does not have
access to QOS '%s' (QAL:
%s).

The QoS is not
accessible from
the job.

0x1
100

AD
MI

syste
m.mo

W MWM_ Duplicate SystemJID '%s'
[JState: %s] found from RM

The SystemJID
must be

Appendix C: Event Dictionary

1298 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1299

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a9f8 N ab A
R
N

DUPLICAT
E_
SYSTEMJID

'%s'. unique.

0x1
100
a9fc

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
CANNOT_
PING_RM

Cannot ping RM '%s'
because a file was not
specified.

A file path to a
valid file is
needed.

0x1
100
aa0
7

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_VM_
CONTAINE
R_NODE

Cannot find or add
container node '%s' for VM
'%s'.

The node
could not be
found.

0x1
100
aa4
b

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
DATASTAGI
NG_
DYNAMIC_
WALLTIME_
CALCULATI
ON_
FAILURE

Failed to calculate dynamic
walltime for data staging
system job '%s'.

Unlimited
walltime will
be used.

0x1
100
aa5
3

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_PBS_
JOB_FULL_
REPORT_
TIME_
MISMATCH

PBS server (%s) is
configured with a job_full_
report_time (%s) less than
Moab's RMPollInterval
(%s). This could lead to
incomplete job information.

Moab/TORQU
E configuration
mismatch.

0x1
100
aa5
4

AD
MI
N

syste
m.mo
ab

W
A
R
N

MWM_
BACKLOGC
OMPLETIO
NTIME_
NEEDS_
ENABLEPR
OFILING

BacklogCompletionTime
cannot be calculated;
EnableProfiling must be
enabled on the QOS to
gather stats.

BacklogCompl
etionTime
needs
EnableProfiling
enabled.

0x1 AD
MI

syste
m.mo

W MWM_ RM '%s', of type '%s' is A non-native

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
aa6
2

N ab A
R
N

NATIVE_
RM_
OVERRIDE

overriding default '%s'
operation with configured
'native' call.

RM that is
configured
with native
calls can
override the
default
functions.

0x1
100
e71
0

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
ARG_VALUE

Invalid arguments passed
to this function.

One or more
arguments
passed to this
function were
not valid. This
is an internal
error logged
for
informational
purposes.

0x1
100
e72
b

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
SEND_SENT_
NO_DATA

No data was sent to the
socket when it should have
been.

The send()
system call
reported no
data was sent
when data
should have
been sent.

0x1
100
e72
e

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
SOCKET_
BLOCKED_
UNEXPECTE
DLY

Read operations on the
socket were blocked when
it should have been
available.

A socket
operation
reported that
the operation
was blocked.
Previous
information
indicated that
this operation
should have
been available.

0x1 IN syste W MWM_ Cannot lock mutex This is an

Appendix C: Event Dictionary

1300 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1301

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
e73f

TE
RN
AL

m.mo
ab

A
R
N

MUTEX_
LOCK

semaphore using pthread_
mutex_lock().

operating
system call
problem.

0x1
100
e74
0

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
MUTEX_
UNLOCK

Cannot unlock mutex
semaphore using pthread_
mutex_unlock().

This is an
operating
system call
problem.

0x1
100
e77
1

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
THREAD_
DB_INIT

Thread %s attempting to
re-initialize database info
struct.

Internal error
condition.

0x1
100
e84
b

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
CORRUPT_
COMMAND_
RECEIVED

Corrupt command '%s'
received.

The
communicatio
n packet
received from
a Moab client
command is
malformed.

0x1
100
e91
9

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
CHECKPOIN
T_NO_XML

The checkpoint data does
not contain XML.

Internal error.

0x1
100
e91
a

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
CHECKPOIN
T_INVALID_
XML

The checkpoint data does
not contain valid XML (%s).

Internal error.

0x1
100
e91
b

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
CHECKPOIN
T_UPDATE_
RSV_FROM_
XML

Unable to update a
reservation from
checkpoint XML.

Internal error.

0x1 IN syste W MWM_JOB_ Job attribute '%s' not yet Internal

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
e92
7

TE
RN
AL

m.mo
ab

A
R
N

ATTR_TO_
STRING

translated to string value. warning.

0x1
100
e92
c

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
MISSING_
STATUS_
CODE

The status code was
missing from the S3
response.

This is an
internal error.

0x1
100
e92
d

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
MISSING_
STATUS_
VALUE

The status value was
missing from the S3
response.

This is an
internal error.

0x1
100
e93
a

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
SIMULATIO
N_NO_JOBS

No jobs loaded in
simulation.

Internal
simulation
error.

0x1
100
e93
b

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
SIMULATIO
N_JOB_
DETECTED_
TRACEBUFF
ER

Job '%s' previously detected
in tracefile
(MJobTraceBuffer[%s]/JC:
%s; IT: %s).

Internal
simulation
error.

0x1
100
e93
c

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
SIMULATIO
N_JOB_
DETECTED

Job '%s' previously detected
in tracefile (Job/JC: %s; IT:
%s).

Internal
simulation
error.

0x1
100
e93
e

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
READ_
COMMAND_
OUTPUT

Cannot read output of
command '%s'.

This is an
internal
communicatio
ns error.

0x1
100
e94

IN
TE
RN

syste
m.mo
ab

W
A
R

MWM_
THREAD_
TIMEOUT

Thread %s killed (%s
micro-second time out
reached).

This is an
internal issue.

Appendix C: Event Dictionary

1302 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1303

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

b AL N

0x1
100
e94f

IN
TE
RN
AL

syste
m.mo
ab

W
A
R
N

MWM_
INVALID_
XML_RM

Invalid XML data for
resource manager '%s'.

Check the XML
syntax.

0x2
100
006
7

US
ER

doma
in.life
cycle

E
R
R
O
R

MWM_JOB_
END_
FAILED

Job %s failed at %s. %s The job
finished
unsuccessfully.

0x2
100
00c
a

US
ER

doma
in.life
cycle

E
R
R
O
R

MWM_
NODE_
EVAC_VMS_
ERROR

Error evacuating VMs off
node %s. %s

There was an
error while
attempting to
evacuate the
VMs off the
node.

0x2
100
288
2

US
ER

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_
MODIFY_
FAILURE

Cannot modify node state
of '%s' Error(%s).

The node state
could not be
modified.

0x2
100
2a1
a

US
ER

syste
m.mo
ab

E
R
R
O
R

MWM_
DEPRECATE
D_RM_
FEATURE

RM flag
SUBMITJOBSASROOT not
supported with this
version, %s. Must be >=
2.4.8.

The resource
manager
version should
be updated to
get support for
this feature.

0x2
100
800
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
TESTING_
ERROR

Testing with argument1:
%s. and argument2: %s.

Internal error
for testing
diagnostics.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
826
3

AD
MI
N

doma
in.life
cycle

E
R
R
O
R

MWM_VC_
SCHEDULE_
FAILURE

Failed to schedule virtual
container '%s'.

This is an
internal error.

0x2
100
838
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
LICENSE_
USE_ERROR

Use of %s requires license
with %s enabled

Requested
feature must
be licensed.
Please contact
your sales
representative
at Adaptive
Computing for
assistance.

0x2
100
a71
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
FORK_
ERROR

Cannot fork the process,
errno: %s (%s).

The fork()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a71
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
EXEC_
PROGRAM

Cannot exec action '%s',
errno: %s (%s).

The exec()
system call
failed to
execute the
command. This
might be
because the
command does
not exist or
the
permissions do
not allow it to
be run. Use the
errno and
associated

Appendix C: Event Dictionary

1304 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1305

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

message to
determine
possible
causes.

0x2
100
a71
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CHOWN_
FILE

Failure changing ownership
of file: '%s' to uid:'%s',
gid:'%s', errno: %s (%s).

The chown()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a71f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_PIPE_
READ_
FAILED

Failed to read pipe on
command '%s', errno: %s
(%s).

The fread()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a72
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
READ_FILE

Cannot read file '%s', errno:
%s (%s).

The fread()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a72
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
WRITE_TO_
FILE

Failure writing to file,
errno: %s (%s).

The write()
system call
failed. Use the
errno and
associated

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

message to
determine
possible
causes.

0x2
100
a72
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
GET_
HOSTNAME

Cannot get hostname '%s',
errno: %s (%s).

The
gethostname()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a72
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_
SOCKET

Failure creating a socket,
errno: %s (%s).

The socket()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a72
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CONNECT_
TO_HOST

Failure connecting to server
'%s' on port %s, errno: %s
(%s).

The connect()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a73
0

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_
EPOCH_FAIL

Epoch Fail, time: '%s'
cannot be converted to an
epoch time, errno: %s
(%s).

The mktime()
system call
failed. Use the
errno and

Appendix C: Event Dictionary

1306 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1307

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R associated
message to
determine
possible
causes.

0x2
100
a73
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MEMORY_
ALLOCATIO
N_FAILURE_
MALLOC

Failure allocating memory
(malloc), allocating '%s'
bytes, errno: %s (%s).

The malloc()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a73
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MEMORY_
ALLOCATIO
N_FAILURE_
CALLOC

Failure allocating memory
(calloc), allocating '%s'
elements of size '%s' bytes,
errno: %s (%s) in file
%s:%s.

The calloc()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a73
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MEMORY_
ALLOCATIO
N_FAILURE_
REALLOC

Failure allocating memory
(realloc), allocating '%s'
bytes, errno: %s (%s).

The realloc()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a73
4

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_
CANNOT_
DUPLICAT
E_STRING

Failure duplicating string,
errno: %s (%s).

The strdup()
system call
failed. Use the
errno and

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R associated
message to
determine
possible
causes.

0x2
100
a73
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CHANGE_
PROCESS_
GROUP

Failure changing process
group, errno: %s (%s).

The setpgrp()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a73
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_
THREAD

Failure creating thread:
'%s', errno: %s (%s).

The pthread_
create()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a73
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
TRUNCATE_
FILE

Failure truncating a file
'%s', errno: %s (%s).

The truncate()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a73

AD
MI
N

syste
m.mo
ab

E
R
R

MWM_PIPE_
OPEN_
FAILED

Failed to open pipe on
command '%s', errno: %s
(%s)

The popen()
system call
failed. Use the

Appendix C: Event Dictionary

1308 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1309

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

9 O
R

errno and
associated
message to
determine
possible
causes.

0x2
100
a73
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CHANGE_
DIR_
FAILURE

OS call to change directory
to '%s' failed errno: %s
(%s).

The chdir()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
a74
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
LOCK_
MOAB_PID_
FILE

Cannot lock the PID file
'%s'. Is Moab already
running?

Moab tries to
ensure that
only one
instance of
itself is
running. In the
default
configuration
it will exit if it
cannot obtain
a lock.

0x2
100
a74
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CONFIG_
FILE_NOT_
FOUND_
ERROR

Cannot locate configuration
file in any predetermined
location.

Moab cannot
find the
configuration
file. Verify that
it is present
and installed
in a proper
location.

0x2
100

AD
MI

syste
m.mo

E
R

MWM_
MWS_RM_

The resource manager with
Moab Web Services (%s)

Correctly
configure the

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a75
7

N ab R
O
R

CONFIGURA
TION

does not have a base URL,
username, and password
configured.

Moab Web
Services
resource
manager.

0x2
100
a76
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
STRICT_
INVALID_
CONFIG_
LINE

Error processing line #%s:
%s - (%s).

Check the line
number in the
configuration
file.

0x2
100
a76
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MONGOSER
VER_
INITIALIZA
TION_
FAILED

Failed to initialize
connection to Mongo server
'%s' RelicatSetName: '%s'
SSLMode: '%s' SSL CA File:
'%s'.

Failed to
initialize
connection to
the configured
MONGOSERVE
R. Check the
following: (1)
network
connection to
Mongo server;
and (2) check
MONGOUSER
and
MONGOPASS
WORD
parameters in
moab-
private.cfg.

0x2
100
a76
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MONGOSER
VER_
AUTHENTIC
ATION_
FAILURE

Failed to authenticate to
Mongo server (%s).

Check user
credentials.

0x2
100
a76

AD
MI
N

syste
m.mo
ab

E
R
R

MWM_
MONGOSER
VER_

Unable to write out
transition object '%s'.

The BSON
information is
invalid or

Appendix C: Event Dictionary

1310 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1311

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

b O
R

WRITE_
FAILURE

missing.

0x2
100
a76
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MONGOSER
VER_DOWN

The Mongo server is down. Check the
status of the
server.

0x2
100
a76f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_DB_
CHECKPOIN
T_OBJECT

Unable to checkpoint object
to the database (%s).

Make sure the
database is
running.

0x2
100
a77
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
BACKUP_
SERVER_
CONNECTIO
N_FAILED

The system was unable to
connect to the backup
server %s (%s:%s).

Make sure the
backup
server's
address is
correct.

0x2
100
a77
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CONNECTIO
N_REFUSED

Connection to the server
was refused (%s).

Primary server
refused and no
fallback server
available.

0x2
100
a77
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_
CONNECT

Cannot send request to
%s:%s (%s may not be
running).

Unable to
connect to the
scheduler
program.

0x2
100
a77
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CLIENT_
MAX_
CONNECTIO
NS_
REACHED

Cannot accept connection
number %s (transaction
number %s) from '%s'
(limit reached).

May need to
increase the
CLIENTMAXC
ONNECTIONS
configuration
setting.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a77
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
SERVER_
CONNECTIO
N_FAILED

The system was unable to
connect to the server
%s:%s - %s.

Make sure the
server's
address is
correct and it
is running.

0x2
100
a77
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
COMMUNIC
ATION_
ERROR

Communication error
%s:%s (%s).

General error
trying to
communicate
with the host.

0x2
100
a77
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
PARSE_
SERVER_
RESPONSE_
STATUS

Cannot parse server
response (status).

The response
sent from the
server is
malformed.

0x2
100
a77
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
PARSE_
SERVER_
RESPONSE_
DATA

Cannot parse server
response (data).

The response
sent from the
server is
malformed.

0x2
100
a77f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
FS_TARGET

Invalid type specified for
FSTarget.

Fairshare
target type is
invalid.

0x2
100
a78
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
COULD_
NOT_ADD_
FS_TREE_
NODE

Could not add fstree node
%s.

Unable to add
a node to the
fairshare
configuration
tree.

0x2 AD
MI

syste
m.mo

E MWM_ Could not add manager %s
to fstree.

Unable to add

Appendix C: Event Dictionary

1312 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1313

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a78
1

N ab R
R
O
R

CANNOT_
ADD_
MANAGER_
TO_FS_TREE

a manager to
the fairshare
tree.

0x2
100
a78
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CRED_
MANAGER_
OVERFLOW

CredManager overflow,
manager %s not added.

Credential
Manager could
not add
another
manager.

0x2
100
a78
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CRED_
MANAGER_
OVERFLO
W_CHILD

CredManager overflow
while adding managers to
child in fstree.

Fairshare tree
configuration
problem.

0x2
100
a78
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_SELECT_
TASKS_FOR_
JOB

Cannot select tasks for job
%s. (%s)

Cannot select a
node list that
matches the
requirements
for this job.
This might not
be serious
since multiple
passes may
occur.

0x2
100
a78
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
GET_TASK_
ON_
RESERVATI
ON

Cannot get tasks on (ERR:
%s/no
reservation/iteration %s).

Cannot select
tasks that
meet the
requirements.

0x2
100
a78
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
BEST_VAL_
ACHIEVED_
BUT_
SCHEDULE_

BestVal %s achieved but
schedule is empty.

Best value has
been set, but
the schedule is
empty.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

EMPTY

0x2
100
a78
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
SCHEDULIN
G_FAILURE_
NO_
RESERVATI
ON

Scheduling failure %s
(policy violation/no
reservation) iteration: %s.
(%s)

The job was
not scheduled
because no
reservations
are available.

0x2
100
a78
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNSUPPOR
TED_
SERVICE

Service '%s' (%s) not
supported.

A request for
an
unsupported
service was
sent.

0x2
100
a78
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
CLASS_
HOST_
EXPRESSIO
N

Invalid class host
expression received (%s) :
%s.

Failed to
expand the
class's host
pattern to a
list.

0x2
100
a78
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_TOO_
MANY_
COALLOCA
TION_
REQUESTS

Too many co-allocation
requests (%s > %s).

Too many co-
allocation
requests were
received.

0x2
100
a78f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
JOBID_
COUNTER

Min Job ID '%s' must be
less than Max Job ID '%s'.

Invalid job ID
was
encountered.

0x2
100
a79
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PARAMETE
R_NOT_
HANDLED

Parameter[%s] '%s' not
handled.

The specified
parameter was
not handled
due to an
unknown
format.

Appendix C: Event Dictionary

1314 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1315

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a79
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CIRCULAR_
JOB_
DEPENDEN
CY

Job cannot be dependent on
itself.

The job is
trying to use
itself as a
dependency,
which creates
a circular
dependency
and is invalid.

0x2
100
a79
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_AM

Cannot create AM %s. Could not
create account
manager
object.

0x2
100
a79
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
FLUSH_
INTERVAL

%s for AM %s. An invalid
flush interval
has been
entered.

0x2
100
a79
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FAILED_
SERVER_
AUTH

Unable to authenticate
server.

The server
could not be
authenticated.

0x2
100
a79
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_NO_
QUOTE

No quote output provided
in response.

No quote
output
provided in
response.

0x2
100
a79
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_PARSE_
XML

Unable to parse XML (%s):
%s.

Unable to
parse XML
data.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a79
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
QUOTE

Invalid quote amount (%s). Quote is
invalid.

0x2
100
a79
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
RECURRIN
G_COST

Unable to determine
recurring cost.

Unable to
determine
recurring cost.

0x2
100
a79
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
AVAILABLE_
PORT_NOT_
FOUND

Cannot locate an available
port for listening.

After trying to
bind to a large
number of
ports, none
were found to
be available.
Check network
socket status
for saturation.

0x2
100
a79
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
RESOLVE_
IP_FROM_
HOSTNAME

Cannot resolve IP address
from hostname '%s',
getaddrinfo() rc: %s (%s).

There is a
failure
matching an IP
address to a
hostname.
Check DNS,
/etc/hosts or
applicable
nameservice.

0x2
100
a79
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNKNOWN_
CHECKPOIN
T_TYPE

Unexpected checkpoint
type, %s.

Unknown
checkpoint
type while
reading from
the file.

0x2
100

AD
MI

syste
m.mo

E
R

MWM_
CHECKPOIN

Line '%s' not handled in
checkPoint file '%s'.

Please contact
Adaptive

Appendix C: Event Dictionary

1316 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1317

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a79
c

N ab R
O
R

T_FILE_
LINE_NOT_
HANDLED

Computing for
assistance.

0x2
100
a79
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
ADD_
DEFAULT_
GROUP

Cannot add default group. Default group
cannot be
added.

0x2
100
a79
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
ADD_
GROUP

Cannot add group %s. Group cannot
be added.

0x2
100
a79f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
ACCOUNT_
NOT_
ACCESSIBL
E_BY_JOB

Account '%s' is not
accessible by job '%s'.

The job is not
authorized to
run under the
listed account.

0x2
100
a7a
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
DETERMIN
E_
DEFAULT_
ACCOUNT

Unable to determine
default account for job '%s',
user '%s'.

There is not a
default account
type for this
job.

0x2
100
a7a
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_
RESERVATI
ON

Cannot create reservation
for job '%s'.

Failed to
create
reservation for
job.

0x2
100
a7a
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
NODELIST_
BAD_
TASKCOUN

Invalid nodelist for job
%s:%s (inadequate
taskcount, %s < %s).

Invalid node
list due to
indequate task
count.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

T

0x2
100
a7a
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
NODELIST_
BAD_
NODECOUN
T

Invalid nodelist for job
%s:%s (inadequate
nodecount, %s < %s).

Invalid node
list due to
indequate
node count.

0x2
100
a7a
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
ALLOCATIO
N_POLICY

Invalid allocation policy
(%s).

Invalid
allocation
policy.

0x2
100
a7a
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_NO_
MEMORY_
FOR_
ALLOCPART
ITION_
VARIABLE

Cannot set
ALLOCPARTITION variable
for job %s (no memory).

No memory
remaining to
create job
variable.

0x2
100
a7a
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
BASIL_
RSVID_NOT_
FOUND

Cannot locate BASIL RSVID
(job 'ALLOCPARTITION'
variable) that was just
created.

Cannot locate
BASIL
reservation ID
stored in the
ALLOCPARTIT
ION variable.

0x2
100
a7a
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
ADD_CLASS_
ATTR

Cannot add class for job %s
(Class: %s).

Unable to add
a class
requirement
attribute to a
job.

0x2
100
a7a
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
ADD_DRM_
ATTR

Cannot set destination RM
for job %s (RM: %s).

Unable to add
a destination
resource
manager
attribute to a

Appendix C: Event Dictionary

1318 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1319

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

job.

0x2
100
a7a
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
FLAGS_
INVALID_
SOURCE

Attempting to set job flags
from invalid format.

Job flags must
be created
using
documented
formats.

0x2
100
a7a
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_SET_
SIZE_ON_
NONEXISTE
NT_REQ

Requirement must be
created before size is set.

Unable to set
the size of an
unallocated
requirement.

0x2
100
a7a
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_ADD_
GROUP_TO_
JOB_
FAILURE

Cannot add group for job
%s (Group: %s).

Unable to set a
group
attribute on a
job.

0x2
100
a7a
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NULL_JOB_
NAME

Cannot add an empty name
as an alternate name
attribute for job %s.

No value
specified. Make
sure the
alternate job
name has a
value.

0x2
100
a7a
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
SPACES_IN_
JOB_NAME

Attempted to set a job
name (%s) with space(s)
for job %s.

A job name
with space(s)
was specified.
Job names
cannot contain
embedded
spaces.

0x2
100
a7a
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_ADD_
QOS_TO_
JOB_
FAILURE

Cannot add QOS for job %s
(QOS: %s).

Unable to set a
QOS attribute
on a job.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a7af

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_ADD_
SRM_TO_
JOB_
FAILURE

Cannot add Submit RM for
job %s (RM: %s).

Unable to find
the entered
name as an
available
resource
manager.

0x2
100
a7b
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_ADD_
VARIABLE_
TO_JOB_
FAILURE

Cannot set variable for job
%s (no variable name
specified).

Only variables
with names
can be added
as a job
attribute.

0x2
100
a7b
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_ADD_
USER_TO_
JOB_
FAILURE

Cannot add user for job %s
(User: %s).

Unable to set a
user attribute
on a job.

0x2
100
a7b
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_ADD_
NODE_TO_
JOB_
FAILURE

Cannot add node for job %s
(Node: %s).

Unable to set a
node attribute
on a job.

0x2
100
a7b
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_ADD_
ACCOUNT_
TO_JOB_
FAILURE

Cannot add account for job
%s (Name: %s).

Failed to add
account to the
job.

0x2
100
a7b
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
TIME_
STRING

Invalid format for time
specification: '%s'.

A string that
describes a
time cannot be
parsed because
the format is
wrong, or the
values are out
of range.

Appendix C: Event Dictionary

1320 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1321

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a7b
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
FIND_
ARRAY_JOB

Cannot find array job at
index %s for job '%s'.

Array job is
missing.

0x2
100
a7b
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
BUFFER_
FULL

Job buffer is full (ignoring
job '%s').

Ignoring job
since job
buffer is full.
Try increasing
the value
specified for
the MAXJOB
parameter.

0x2
100
a7b
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
FIND_
MASTER_
JOB

Cannot find master job
(%s) for job '%s'; job array
slot limits may not be
enforced.

Cannot find
the master job
that is
associated
with a job
array.

0x2
100
a7b
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
ACTION_
STRING

The action string (%s) is
invalid.

The format of
the action
string is
'<operation
type>:<operati
on
ID>:<operatio
n action>'
Example:
job:145+146+
147:cancel
where 145,146
and 147 are
job IDs.

0x2
100
a7b

AD
MI
N

syste
m.mo
ab

E
R
R

MWM_
INVALID_
OBJECT_

The object type %s is
invalid.

The format of
the action
string is

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

a O
R

TYPE '<operation
type>:<operati
on
ID>:<operatio
n action>'
Example:
job:145+146+
147:cancel
where 145,146
and 147 are
job IDs.

0x2
100
a7b
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
NOT_
FOUND

Unable to locate job %s. The named job
was not
located in the
system.

0x2
100
a7b
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
IN_BAD_
STATE_FOR_
COMPLETE

Completed trigger action is
specified for job %s but it is
in an invalid state.

The job is not
a system job
and is not
allowed to be
started by the
resource
manager.

0x2
100
a7b
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
CANNOT_
BE_HELD

Job %s cannot be put into
hold state.

The resource
manager
cannot hold
the job, usually
because the
job is not in a
state that can
be held.

0x2
100
a7b
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
SET_
TRIGVAR

Cannot set trigger variable
on job %s.

The trigger
variables on a
job cannot be
set.

Appendix C: Event Dictionary

1322 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1323

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a7bf

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
SET_
REQATTR

Cannot set request
attribute variable on job
%s.

The request
attribute
variables on a
job cannot be
set.

0x2
100
a7c
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
ADJUST_
GRES

Cannot adjust generic
resources for job %s.

The generic
resources of
the job could
not be
modified.

0x2
100
a7c
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
GRES_
VALUE

Invalid value '%s' for GRes
'%s' %s.

The value
being set on
the generic
resource is not
valid.

0x2
100
a7c
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
MODIFY_
ATTRIBUTE

Attribute %s cannot be
modified for job %s.

The job's
attribute could
not be
modified.

0x2
100
a7c
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
COULD_
NOT_SEND_
SIGNAL

Signal %s could not be sent
to job %s.

The resource
manager was
unable to send
the signal to
the job.

0x2
100
a7c
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
COULD_
NOT_
START_JOB

Could not start job %s in
%s.

The resource
manager was
unable to start
the job.

0x2
100
a7c
5

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_
UNABLE_
TO_
REQUEUE_

Cannot requeue job %s. The job could
not be
requeued.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R JOB

0x2
100
a7c
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNHANDLE
D_ACTION

The action %s was not
handled.

The action was
undefined in
this function.

0x2
100
a7c
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNRECOGN
IZED_
ATTRIBUTE

The attribute %s is not
recognized.

The attribute
is not in the
lookup table.

0x2
100
a7c
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNRECOGN
IZED_JOB_
ACTION

The job action %s is not
recognized.

The job action
is not in the
lookup table.

0x2
100
a7c
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_
CANCEL_JOB

Job %s could not be
canceled.

The job could
not be
canceled.

0x2
100
a7c
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_HOLD_
JOB

Job %s could not be held in. The job was
unable to be
put into a hold
state.

0x2
100
a7c
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
PBS_
SBINDIR

Invalid SBINDIR specified
(%s).

Check paths
for the
directory
containing
pbs_iff.

0x2 AD syste E MWM_ Cannot connect to PBS Make sure the

Appendix C: Event Dictionary

1324 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1325

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a7cc

MI
N

m.mo
ab

R
R
O
R

UNABLE_
TO_
CONNECT_
PBS_SRVR

server '%s'; rc: %s (pbs_
errno=%s, '%s').

pbs_server
process is
running.

0x2
100
a7c
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
GET_SRVR_
INFO

Cannot get server info: %s. Make sure that
the pbs_server
process is
running.

0x2
100
a7c
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
LOAD_
SRVR_INFO

Cannot load PBS server
info: %s.

Make sure that
the pbs_server
process is
running.

0x2
100
a7cf

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
LOAD_PBS_
CLUSTER

Cannot load PBS cluster
info: %s.

Make sure that
the pbs_server
process is
running.

0x2
100
a7d
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
LOAD_PBS_
WORKLOAD

Cannot load PBS workload
info: %s.

Make sure that
the pbs_server
process is
running.

0x2
100
a7d
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
LOAD_PBS_
QUEUE

Cannot load PBS queue
info: %s.

Make sure the
path to the
queue
configuration
is accessible by
Moab.

0x2
100
a7d
3

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_
UNABLE_
PROCESS_
NODE_INFO

Cannot process node info. Make sure the
resource
manager is
running.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R

0x2
100
a7d
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_
BUFFER_
FULL

Node buffer is full (ignoring
node '%s').

Try increasing
the node
buffer.

0x2
100
a7d
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
CANNOT_
START

Job '%s' cannot be started:
(cannot generate Tasklist).

Check the PBS
server log to
see reason of
failure.

0x2
100
a7d
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
CANNOT_
START_
TASK_
EMPTY

Job '%s' cannot be started:
(empty Tasklist).

Check the PBS
server log to
see reason of
failure.

0x2
100
a7d
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
SET_NODE_
COUNT

Cannot set nodecount for
job '%s' - %s.

Check the PBS
server log to
see reason of
failure.

0x2
100
a7d
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
SET_
WALLTIME

Cannot set walltime for job
'%s' - %s.

Check the PBS
server log to
see reason of
failure.

0x2
100
a7d
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
SET_
TASKLIST

Cannot set Tasklist for job
'%s' - %s.

Check the PBS
server log to
see reason of
failure.

0x2 AD syste E MWM_ Job '%s' cannot be started: Check the PBS

Appendix C: Event Dictionary

1326 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1327

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a7d
a

MI
N

m.mo
ab

R
R
O
R

UNABLE_
TO_START_
JOB_RC

(rc: %s; errmsg: '%s';
Tasklist: '%s').

server log to
see reason of
failure.

0x2
100
a7d
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_SIGNAL_
JOB

%s' cannot be signaled: %s. Check the PBS
server log to
see reason of
failure.

0x2
100
a7d
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_
SUSPEND_
JOB

Job '%s' cannot be
suspended: %s.

Check the PBS
server log to
see reason of
failure.

0x2
100
a7d
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_
RESUME_
JOB

Job '%s' cannot be
resumed: %s.

Check the PBS
server log to
see reason of
failure.

0x2
100
a7d
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_FIND_
RESOURCE

Failed to find/add %s
generic resource.

Failure to
find/add
GPUs/MICs to
the global
GRES/MIC
slots.

0x2
100
a7df

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_SET_
CREDENTIA
LS

Cannot authenticate job
'%s' (U: %s; G: %s; A: '%s').

Could not set
the credentials
on the job.

0x2
100
a7e
0

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_
UNABLE_
TO_
REQUEUE

PBS job '%s' cannot be
requeued (rc: %s; '%s').

Check the PBS
server log to
see reason of
failure.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R

0x2
100
a7e
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_
CHECKPOIN
T

PBS job '%s' cannot be
checkpointed (rc: %s; '%s').

Check the PBS
server log to
see reason of
failure.

0x2
100
a7e
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_
RELEASE

PBS job '%s' cannot be
released from hold (rc: %s;
'%s').

Check the PBS
server log to
see reason of
failure.

0x2
100
a7e
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_FIND_
ACCOUNT

Cannot find account for job
%s (Name: %s).

Make sure the
account exists.

0x2
100
a7e
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
ARGUMENT

Command '%s' args not
handled.

An
unsupported
argument was
used.

0x2
100
a7e
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
LOGDIR

LogDir '%s' is invalid. Make sure that
the path to the
logs directory
exists.

0x2
100
a7e
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
SPOOLDIR

SpoolDir '%s' is invalid. Make sure that
the path to the
spool directory
exists.

0x2 AD syste E MWM_ StatDir '%s' is invalid. Make sure that

Appendix C: Event Dictionary

1328 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1329

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a7e
9

MI
N

m.mo
ab

R
R
O
R

INVALID_
STATDIR

the path to the
stat directory
exists.

0x2
100
a7e
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
TOOLSDIR

ToolsDir '%s' is invalid. Make sure that
the path to the
tools directory
exists.

0x2
100
a7e
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_
DAT_FILE

Cannot create/modify dat
file: '%s'.

Moab
encountered
an error
creating the
dat file.

0x2
100
a7e
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FEATURE_
NOT_
AVAILABLE_
IN_BUILD

The '%s' feature is not
available in the build of
Moab.

Moab can be
configured
with various
features. The
listed feature
is not available
in the binary
being run.

0x2
100
a7e
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FEATURE_
NOT_
AVAILABLE_
WITH_
LICENSE

The '%s' feature is not
enabled with the current
Moab license.

Moab can be
licensed with
various
features. The
listed feature
is not available
with the
current license.
Contact
Adaptive
Computing for
more
information.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a7e
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
RESOURCE_
LIMIT_
EXCEEDED

The maximum number of
'%s' (%s) has been reached.

Moab has
certain
resources that
are limited.
This error
occurs when
you have
reached or
exceeded those
limits. Contact
Adaptive
Computing for
more
information.

0x2
100
a7f1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_
VM_
MIGRATIO
N_JOB

Failed to create migration
job for VM %s.

The migration
job was not
created. Check
MIGRATETEM
PLATE on
workflow and
its trigger.

0x2
100
a7f2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
OPEN_
EXTENSIO
N_
INTERFACE

Cannot open extension
interface socket on port %s.

There was a
failure opening
the HTTP
extension
service. This
feature will
not work until
the problem is
corrected.

0x2
100
a7f3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
USER_
AUTHENTIC
ATION

The system was unable to
connect the given user to
job %s (User: %s, Group:
%s).

Check the
credentials of
the given user
and/or group.

0x2 AD syste E MWM_JOB_ The system was unable to Check the

Appendix C: Event Dictionary

1330 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1331

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a7f4

MI
N

m.mo
ab

R
R
O
R

AUTHENTIC
ATION

authenticate the user
connected with job %s
(User: %s, Group: %s,
Account %s) - %s.

credentials of
the given user
and/or group.

0x2
100
a7f5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
SEND_
DATA_
FAILED

The system was unable to
send data to the server %s
(%s:%s).

Make sure the
server's
address is
correct and
that the server
is running.

0x2
100
a7f6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
RECEIVE_
DATA_
FAILED

The system was unable to
receive data from the
server %s (%s:%s).

Make sure the
server's
address is
correct and
that the server
is running.

0x2
100
a7f7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
OVERLAP

Job '%s' overlaps an
existing job.

Check the job
being created
for overlap.

0x2
100
a7f8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
CREATION

The system was unable to
create job '%s'

Verify that the
job being
created is
correctly
specified.

0x2
100
a7f9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MISSING_
STATUS_
ELEMENT

The status element was
missing from the S3
response.

This is an
internal error.

0x2
100
a7fa

AD
MI
N

syste
m.mo
ab

E
R

MWM_VC_
WORKFLO
W_JOB

Virtual container '%s' was
marked as workflow, but
could not find job that

This is an
internal error.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R
O
R

created it.

0x2
100
a7fb

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
COMBINE_
JOBS

Failed to combine jobs in
virtual container '%s'.

This is an
internal error.

0x2
100
a7fc

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
SCHEDULE_
TIME_
FAILURE

Failed to schedule virtual
container '%s' for
requested time.

This is an
internal error.

0x2
100
a7fd

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
RESERVATI
ON_
FAILURE

Failed to find a reservation
for virtual container '%s'.

This is an
internal error.

0x2
100
a7fe

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
RESERVATI
ON_
CREATE_
FAILURE

Failed to create a
reservation for jobs in
virtual container '%s'.

This is an
internal error.

0x2
100
a7ff

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
RESOURCE_
FAILURE

Requested resources are
not available at any time
for virtual container '%s'.

This is an
internal error.

0x2
100
a80
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NONEXISTI
NG_JOB_
USER

Job template %s requests
non-existent user %s.

Make sure the
user exists.

Appendix C: Event Dictionary

1332 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1333

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a80
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NONEXISTI
NG_JOB_
GROUP

Job template %s requests
non-existent group %s.

Make sure the
group exists.

0x2
100
a80
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NONEXISTI
NG_JOB_QOS

Job template %s requests
non-existent QoS %s.

Make sure the
QoS exists.

0x2
100
a80
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
CREATE_
CLASS

Unable to create class %s
for job template %s.

Make sure the
class exists.

0x2
100
a80
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NONEXISTI
NG_JOB_
ACCOUNT

Job template %s requests
non-existent account %s.

Make sure the
account exists.

0x2
100
a80
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INVALID_
WALLTIME_
SPECIFIED

Invalid walltime
specification '%s.

Make sure the
format for
walltime is
correct.

0x2
100
a80
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
PARSE_
WIKI_STR

Cannot parse wiki string for
job '%s'.

Make sure the
format for wiki
string is
correct.

0x2
100
a80
7

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_
MISSING_
STATS_XML_
ELEMENT

%s is not a valid template
job stat child element.

Make sure
there is a stats
element in the
XML.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R

0x2
100
a80
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NULL_
NODE_
POINTER

Node pointer is NULL and
cannot be used to find SMP
node.

Node pointer
is NULL and
cannot be used
to find SMP
node by node.

0x2
100
a80
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PINDEX_
OUT_OF_
RANGE

PIndex is less than -1 which
is out of range.

PIndex must
be greater
than or equal
to -1 to find a
node by
partition.

0x2
100
a80
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FEATURE_
OUT_OF_
RANGE

Feature is less than -1
which is out of range.

Feature must
be greater
than or equal
to -1 to find a
node by
feature.

0x2
100
a80
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INCORREC
T_ARG

Incorrect argument in %s:
%s, %s,%s.

Name must
point to a valid
string, Feature
must be
greater than or
equal to -1,
and N must
point to a valid
node.

0x2
100
a80
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_
ALLOCATIO
N_ERROR

Failed to allocate a node
named %s.

Call to
MUMalloc
failed, system
is probably
low on
memory.

Appendix C: Event Dictionary

1334 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1335

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a80
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FAILED_TO_
APPEND_
MSMPNODE

Failed to append smpnode
%s to MSMPNodes.

The call to
append the
node to the
array list
failed,
probably due
to a low
memory
condition.

0x2
100
a80
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NULL_
SMPNODE_
POINTER

Cannot initialize node
because pointer is NULL.

Call to
MSMPNodeInit
ialize must
have a valid
pointer to a
valid node.

0x2
100
a80f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NULL_
SMPNODE_
POINTER_
IN_RESET

Cannot reset node because
pointer is NULL.

Call to
MSMPNodeRes
etStats must
have a valid
pointer to a
valid node.

0x2
100
a81
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
RESET_
NODE_
FAILED

Call to
MSMPNodeResetStats
failed.

Call to
MSMPNodeRes
etStats failed.
The most
likely cause is
passing a
NULL pointer
to SMPNode.

0x2
100
a81
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FREE_
NODE_
FAILED

Call to free MSMPNodes
failed.

Call to free
MSMPNodes
failed, most
likely due to
corrupted
memory.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a81
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NULL_
NODE_IN_
UPDATE

Node pointer in %s cannot
be NULL.

Node pointer
cannot be
NULL when
trying to
update node.

0x2
100
a81
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
FIND_NODE

Unable to find SMP node
with node %s.

Unable to find
SMP node by
node.

0x2
100
a81
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
EMPTY_
NODE_LIST

Updating node from list
with empty node list.

Updating node
from node list
must not be
called with an
empty node
list.

0x2
100
a81
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_BAD_
ARG_IN_
FEASIBLE_
JOB

Incorrect argument to
function %s: %s, %s.

A parameter in
the function
was incorrect.

0x2
100
a81
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
FIND_
INDEX_IN_
LIST_FOR_
FEATURE

Could not find index into
NodeSetList for node
feature %s.

Could not find
index into
NodeSetList
for node
feature.

0x2
100
a81
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_SR

Could not create standing
reservation: %s.

Failed to
create the
named
standing
reservation.

0x2 AD
MI

syste
m.mo

E MWM_ Unexpected statistics type:
%s.

Number is not

Appendix C: Event Dictionary

1336 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1337

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a81
8

N ab R
R
O
R

UNEXPECTE
D_
STATISTIC
S_TYPE

a member of
MMStatTypeE
num
enumeration.

0x2
100
a81
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
PROCESS_
VM_
ATTRIBUTE

Cannot process VM
attribute %s for VM %s.

Either
AttrName or
NodeName is
not found in
string.

0x2
100
a81
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
FIND_
NODE_FOR_
VM

Cannot find node %s for
VM %s.

The node does
not exist or
cannot be
found.

0x2
100
a81
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
LOAD_JOB

Cannot load job %s (state:
%s).

There was an
error creating
a job in Moab
that was
reported by
the resource
manager.

0x2
100
a81
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_
CHECKPOIN
T_FILE_
ENTRY

Cannot create checkpoint
file entry.

There was an
error writing a
checkpoint file
entry for the
associated
objects.

0x2
100
a81
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_
OBJECT_
FROM_
CHECKPOIN
T_FILE

Cannot create object from
checkpoint file entry.

There was an
error reading a
checkpoint file
entry for the
associated
objects.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a81
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
TASKLIST_
TOO_LARGE

The tasklist for job '%s' is
too large (size = %s,
growth = %s).

The system
has a fixed
maximum size
for the task
map for each
job.

0x2
100
a81f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
TASKLIST_
MISSING

The tasklist for job '%s' is
missing.

The system
requires that
each job has at
least one task
assigned.

0x2
100
a82
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
TASK_
DISTRIBUTI
ON_
UNKNOWN

The system encountered an
unknown type of task
distribution (%s).

This is an
internal error.

0x2
100
a82
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INCOMPATI
BLE_
CHARGE_
POLICY

Periodic charging disabled
due to incompatible job
charge policy (%s).

The job charge
policy is
undefined.

0x2
100
a82
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INCOMPLET
E_JOB_
TEMPLATE_
ACTION

The job template '%s' has
an incomplete action
specification.

Job templates
must fully
specify the
action to be
performed.

0x2
100
a82
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INCOMPLET
E_JOB_
TEMPLATE_
GENERIC

The job template '%s' has
an incomplete generic
system job specification.

Job templates
must fully
specify the
generic system
job.

0x2
100
a82

AD
MI
N

syste
m.mo
ab

E
R

MWM_
DUPLICAT

The job template '%s' has a
job '%s' that requests an
existing VMID.

Virtual
machine IDs

Appendix C: Event Dictionary

1338 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1339

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

5 R
O
R

E_JOB_
TEMPLATE_
VMID

cannot be
shared across
job templates.

0x2
100
a82
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNKNOWN_
JOB_
TEMPLATE_
VMID

The requested VMID '%s'
could not be found or
already has a tracking job.

Virtual
machine IDs
can only be
assigned to a
single job.

0x2
100
a82
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNABLE_
TO_
MODIFY_
JOB

The job '%s' on account
'%s' cannot be modified in
the resource manager.

The job
previously
submitted to
the resource
manager
cannot be
modified.

0x2
100
a82
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
WORKFLO
W_VC_
FAILURE

The system failed to
generate a workflow virtual
container for job '%s'.

This is an
internal error.

0x2
100
a82
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CREATE_
JOB_
TEMPLATE_
FAILURE

The system failed to create
job template '%s'.

The job could
not be created
or one of its
attributes
could not be
set.

0x2
100
a82
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
NOT_
FOUND

The system could not find
the virtual container for job
'%s'.

This is an
internal error.

0x2
100
a82

AD
MI
N

syste
m.mo
ab

E
R

MWM_JOB_
MIGRATIO
N_FAILED

The system failed to
migrate a remote job (%s).

Make sure the
resource

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

b R
O
R

manager has
not been
disabled.

0x2
100
a82
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
START_
XML_
FAILURE

The system could not
generate the command line
needed to start job: '%s'.

The proper
command line
could not be
derived from
the XML
structure.

0x2
100
a82
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
START_
FAILURE_
RESPONSE

The system could not start
job - Reason: '%s'.

The system
was unable to
start the job
for the
specified
reason.

0x2
100
a82
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
CANCEL_
FAILURE_
RESPONSE

The system could not
cancel job - Reason: '%s'.

The system
was unable to
cancel the job
for the
specified
reason.

0x2
100
a82f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
SIGNAL_
FAILURE_
RESPONSE

The system could not signal
job - Reason: '%s'.

The system
was unable to
signal the job
for the
specified
reason.

0x2
100
a83
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
MODIFY_
FAILURE_
RESPONSE

The system could not
modify job - Reason: '%s'.

The system
was unable to
modify the job
for the
specified
reason.

Appendix C: Event Dictionary

1340 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1341

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a83
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
REQUEUE_
FAILURE_
RESPONSE

The system could not
requeue job - Reason: '%s'.

The system
was unable to
requeue the
job for the
specified
reason.

0x2
100
a83
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
SEND_
EVENT_
FAILURE

The system could send
event '%s' to resource
manager '%s' (%s).

The system
was unable to
send the event.

0x2
100
a83
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNEXPECTE
D_
BACKFILL_
POLICY

The system encountered an
unexpected backfill policy
'%s' (using '%s' instead).

The backfill
policy did not
match a
defined policy.

0x2
100
a83
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_LIST_
ALLOCATIO
N

The system was unable to
allocate a node list for job
'%s' in partition '%s'.

The system
might be low
on memory.

0x2
100
a83
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_BAD_
NODE_IN_
NODELIST

The reservation nodelist for
job' %s' has an invalid node
at index %s.

Check the
nodes specified
for the
reservation.

0x2
100
a83
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
RESERVATI
ON_SPANS_
PARTITION
S

The reservation request for
job '%s' spans partitions
(node %s partition %s).

Reservations
that span
partitions
must have the
COALLOC flag
set.

0x2 AD
MI

syste
m.mo

E MWM_ The system failed to adjust
job '%s' reservation on

This is an
internal error.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a83
7

N ab R
R
O
R

ADJUST_
JOB_
RESERVATI
ON_
FAILURE

node %s.

0x2
100
a83
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
OBJECT_
TYPE_
INVALID

The object type specified
(%s) is not valid.

A valid object
type must be
specified.

0x2
100
a83
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MISSING_
OBJECT_ID

The object ID is missing. A valid object
ID must be
specified.

0x2
100
a83
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MISSING_
ACTION

The action is missing. A valid action
must be
specified.

0x2
100
a83
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_PIPE_
BUFFER_
FAILED

The system could not open
a bi-directional pipe.

A valid action
must be
specified.

0x2
100
a83
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_STD_
OUT_
FAILED

Failed to load stdout file
'%s'.

Check the file
name and
path.

0x2
100
a83
d

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_STD_
ERR_FAILED

Failed to load stderr file
'%s'.

Check the file
name and
path.

Appendix C: Event Dictionary

1342 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1343

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R

0x2
100
a84
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CREATE_
NODE_
FAILURE

Unable to create node '%s'
(check license and
MAXNODE parameter).

check license
and MAXNODE
parameter.

0x2
100
a84
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PARTITION_
CREATE_
FAILURE

The system was unable to
create a shared partition
for the global node.

The system
might be low
on memory.

0x2
100
a84
5

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_HT_
FIND_
NODE_
FAILURE

Cannot find node '%s' in
hash table.

A node by the
given name
might not have
been created.

0x2
100
a84
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_HT_
FIND_VM_
FAILURE

Cannot find VM '%s' in hash
table.

A VM with the
given name
might not have
been created.

0x2
100
a84
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
COMMAND_
FAILED

Command '%s' failed.
StatusCode: %s; Response:
'%s'.

Check the
command
syntax and
parameters.

0x2
100
a84
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
HASH_
TABLE_
INITIALIZA
TION

There was an unexpected
hash table initialization
error.

The hash table
for jobs to
delete never
initialized
correctly.

0x2 AD syste E MWM_ Unable to authenticate job Either the UID

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a84
e

MI
N

m.mo
ab

R
R
O
R

UNABLE_
TO_
AUTHENTIC
ATE_JOB

%s when UID or GID is
empty (UID=%s, GID=%s).

or the GID
field is empty.

0x2
100
a84f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MISSING_
JOB_
TASKCOUN
T

Job does not have a
taskcount specified.

Each job must
have an
associated
taskcount.

0x2
100
a85
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FAILED_
EXCLUDE_
NODELIST

The system failed to add an
exclude nodelist to a
submission.

The job
exclude
hostlist could
not be
converted into
a string.

0x2
100
a85
2

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
SUBMIT_
VM_
MIGRATIO
N_JOB

Failed to submit migration
job for VM %s.

Check
MIGRATETEM
PLATE on
workflow and
its trigger.

0x2
100
a85
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_WEB_
SERVICES_
WRITE_
FAILURE

Error %s encountered
while trying to write to
web services.

Encountered
problem trying
to put HTTP
data to web
server.

0x2
100
a85
4

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_WEB_
SERVICES_
URL_
MISSING

Missing URL in call to web
services.

Web services
must have a
valid
destination
URL.

0x2
100
a85

AD
MI
N

syste
m.mo
ab

E
R

MWM_RM_
PARTITION_
CREATE_

The system was unable to
create a partition for RM
'%s'.

The system
might be low
on memory.

Appendix C: Event Dictionary

1344 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1345

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

5 R
O
R

FAILURE

0x2
100
a85
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PARSE_MPP_
NODES_
FAILURE

The system failed to parse
the MPP nodes value '%s'.

Check the MPP
names.

0x2
100
a85
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FIND_MPP_
NODES_
FAILURE

The system failed to find
node '%s' in the MPP nodes
value '%s'.

Check the MPP
names.

0x2
100
a85
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_SET_
TYPE_
INVALID

The node set type specified
(%s) is not valid.

Check the
NODESETLIST
option.

0x2
100
a85
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
GRES_ADD_
FAILURE

Unable to add the
GRESTOJOBATTRMAP '%s'.

The limit has
been reached.

0x2
100
a85
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_NOT_
MWS_RM

The resource manager is
not Moab Web Services.

Make sure the
resource
manager has
Moab Web
Services.

0x2
100
a85
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MWS_RM_
CURL_
CONNECTIO
N

The system could not
initialize a cURL connection
to the MWS RM.

The cURL
command to
connect to the
resource
manager has
failed.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a85f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MWS_RM_
CURL_
CONNECTIO
N_
EXPANDED

Could not connect to MWS
RM (%s) at '%s%s' as '%s',
response code: %s; cURL
error: %s (%s); MWS
response: '%s'.

The
connection has
failed.

0x2
100
a86
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MWS_RM_
JSON_
CLUSTER_
QUERY_
EMPTY

JSON cluster query data
from MWS RM (%s) is null
or empty.

The query
must contain
valid JSON
data.

0x2
100
a86
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MWS_RM_
JSON_
WORKLOA
D_QUERY_
EMPTY

JSON workload query data
from MWS RM (%s) is null
or empty.

The query
must contain
valid JSON
data.

0x2
100
a86
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
TRANSITIO
N_FAILURE

Unable to transition a job. The job was
missing
requirements.

0x2
100
a86
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_SET_
JOB_
VARIABLE

Unable to set a job pref
variable.

The system is
probably low
on memory.

0x2
100
a86
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
ARRAY_
EXPANSION

Unable to expand the size
of an array.

The system is
probably low
on memory.

Appendix C: Event Dictionary

1346 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1347

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0x2
100
a86
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
FIND_
FAILURE

The system could not find
the virtual container '%s'.

Check the
name of the
VC.

0x2
100
a86
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
USER_
CREDENTIA
LS

User '%s' does not have
access to virtual container
'%s'.

Check the
rights granted
to the VC.

0x2
100
a86
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VC_
BEING_
DELETED

Virtual container '%s' is
being deleted; cannot add
jobs to it.

Only add jobs
to VCs that are
not being
deleted.

0x2
100
a86f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PARTITION_
STATUS

Unable to query the status
of a partition - %s.

Check to make
sure the
resource
manager is
running.

0x2
100
a87
0

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
FIND_JOB_
TEMPLATE

The system failed to find
job template '%s'.

Check the
template name
for the given
job.

0x2
100
a87
3

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PROCESS_
EVENT

Unable to process the
generic event.

During
processing,
unable to get a
description of
the event.

0x2
100
a87
6

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_JOB_
CAN_
NEVER_RUN

Unable to allocate tasks for
job at any time.

Job tasks must
match
available
resources.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R

0x2
100
a87
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_NOT_
IN_
PARTITION

Node is not associated with
any partition.

Node must be
in a partition.

0x2
100
a87
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_
COUNT_
EXCEEDS_
LICENSE

The number of nodes '%s'
exceeds the current license
limit '%s'.

A different
license is
needed to use
more nodes.

0x2
100
a87
b

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_KILL_
FAILURE

OS call to kill process (PID:
%s) %s failed).

This is an
operating
system error.

0x2
100
a87
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
MISSING_
JOB_
REQUIREM
ENTS

Job does not have any
requirements specified.

Each job must
have
requirements
attached.

0x2
100
a87
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
MISSING_
DISPATCH_
TIME

Job loaded in alloc state
'%s' with no dispatch time.

The job must
have a
dispatch time.

0x2
100
a87
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
UNEXPECTE
D_OBJECT_
TYPE

The object type '%s' was
not expected in this
operation.

Verify that a
valid object
type is given.

0x2 AD syste E MWM_JOB_ Unable to create XML The system

Appendix C: Event Dictionary

1348 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1349

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
a87f

MI
N

m.mo
ab

R
R
O
R

TRANSITIO
N_XML

element from job transition
object.

might be low
on memory.

0x2
100
a88
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VM_
CREATE_
RESERVATI
ON

Cannot create reservation
for VM '%s'.

Failed to
create
reservation for
the given VM.

0x2
100
aa0
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_VM_
FIELD_
VALUE

VM '%s' has an invalid
'%s%s%s' field value.

The field value
for the VM is
invalid.

0x2
100
aa0
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_
FIELD_
VALUE

Node '%s' has an invalid
'%s%s%s' field value.

The field value
for the node is
invalid.

0x2
100
aa0
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_JOB_
FIELD_
VALUE

Job '%s' has an invalid
'%s%s%s' field value.

The field value
for the job is
invalid.

0x2
100
aa4
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
INCOMPLET
E_JOB_
TEMPLATE_
DATASTAGI
NG

The job template '%s' has
an incomplete data staging
system job specification.

Job templates
must fully
specify the
data staging
system job.

0x2
100
aa5
5

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_
CANNOT_
ADD_
DEFAULT_

Cannot add default user. Default user
cannot be
added.

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R USER

0x2
100
aa5
6

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
ADD_
DEFAULT_
ACCOUNT

Cannot add default account. Default
account cannot
be added.

0x2
100
aa5
7

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
ADD_
DEFAULT_
CLASS

Cannot add default class. Default class
cannot be
added.

0x2
100
aa5
8

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
CREATE_CP_
FILE

Cannot create checkpoint
file. Cannot open %s file
'%s', errno: %s (%s).

The fopen()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x2
100
aa5
9

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PAST_PROC_
SEC_LIMIT_
DAILY

Maximum daily processor
seconds reached - Elastic
Computing disabled. Total:
%s, Max: %s

The daily
threshold has
been reached -
Elastic
Computing
disabled.

0x2
100
aa5
a

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PAST_PROC_
SEC_LIMIT_
MONTHLY

Maximum monthly
processor seconds reached
- Elastic Computing
disabled. Total: %s, Max:
%s

The monthly
threshold has
been reached -
Elastic
Computing
disabled.

0x2 AD
MI

syste
m.mo

E MWM_ Maximum quarterly The quarterly

Appendix C: Event Dictionary

1350 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1351

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
aa5
b

N ab R
R
O
R

PAST_PROC_
SEC_LIMIT_
QUARTERL
Y

processor seconds reached
- Elastic Computing
disabled. Total: %s, Max:
%s

threshold has
been reached -
Elastic
Computing
disabled.

0x2
100
aa5
c

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PAST_PROC_
SEC_LIMIT_
YEARLY

Maximum yearly processor
seconds reached - Elastic
Computing disabled. Total:
%s, Max: %s

The yearly
threshold has
been reached -
Elastic
Computing
disabled.

0x2
100
aa5
d

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PAST_QOS_
PROC_SEC_
LIMIT_
DAILY

Maximum daily processor
seconds reached for QOS
%s - Elastic Computing
disabled. Total: %s, Max:
%s

The daily QOS
threshold has
been reached -
Elastic
Computing
disabled.

0x2
100
aa5
e

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PAST_QOS_
PROC_SEC_
LIMIT_
MONTHLY

Maximum monthly
processor seconds reached
for QOS %s - Elastic
Computing disabled. Total:
%s, Max: %s

The monthly
QOS threshold
has been
reached -
Elastic
Computing
disabled.

0x2
100
aa5f

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
PAST_QOS_
PROC_SEC_
LIMIT_
QUARTERL
Y

Maximum quarterly
processor seconds reached
for QOS %s - Elastic
Computing disabled. Total:
%s, Max: %s

The quarterly
QOS threshold
has been
reached -
Elastic
Computing
disabled.

0x2
100
aa6
0

AD
MI
N

syste
m.mo
ab

E
R
R
O

MWM_
PAST_QOS_
PROC_SEC_
LIMIT_

Maximum yearly processor
seconds reached for QOS
%s - Elastic Computing
disabled. Total: %s, Max:

The yearly
QOS threshold
has been
reached -

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R YEARLY %s Elastic
Computing
disabled.

0x2
100
aa6
1

AD
MI
N

syste
m.mo
ab

E
R
R
O
R

MWM_
NODE_
CANNOT_
LICENSE

Node '%s' does not report
socket/gpu/mic
information. It cannot be
licensed.

An RM that
reports
socket/gpu/mi
c information
for each node
must be used
with this
license type.

0x2
100
c00
1

IN
TE
RN
AL

syste
m.mo
ab

E
R
R
O
R

MWM_NOT_
IMPLEMEN
TED

Function %s has not been
implemented yet.

This error is
used when
we've stubbed
out code but
do not expect
it to be called
in production
environments.
It's not helpful
except for
internal
diagnostics.

0x2
100
e72
9

IN
TE
RN
AL

syste
m.mo
ab

E
R
R
O
R

MWM_
CANNOT_
SEND_TO_
SOCKET_
DETAILED

Cannot send %s of %s
bytes to socket descriptor
%s - errno: %s (%s).

The send()
system call
failed. Socket
is blocked
(select()
indicated
socket was
available--
check MTU).

0x2
100
e77
b

IN
TE
RN
AL

syste
m.mo
ab

E
R
R
O

MWM_
CLIENT_
COUNT_
NEGATIVE

Client count fell below zero
on socket %s.

This is an
internal error.
The number of
client

Appendix C: Event Dictionary

1352 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1353

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

R connections
should always
be zero or
greater.

0x2
100
e78
4

IN
TE
RN
AL

syste
m.mo
ab

E
R
R
O
R

MWM_
HOSTLIST_
MISSING

A hostlist was specified but
now it is NULL/EMPTY.

The job claims
to have a
specified
hostlist, but at
the current
point in
processing no
list can be
found. This is
most likely an
internal
problem.

0x2
100
e7b
4

IN
TE
RN
AL

syste
m.mo
ab

E
R
R
O
R

MWM_
REQATTR_
UNSUPPOR
TED_
OPERATION

Operation (%s) not
supported on required
attributes (reqattrs).

See
documentation
for supported
operators
allows on
required
attributes
(reqattrs).

0x2
100
e7ef

IN
TE
RN
AL

syste
m.mo
ab

E
R
R
O
R

MWM_VM_
NOT_
LINKED_TO_
TRACKING_
JOB

VM '%s' not linked to
VMTracking job '%s'
(linked to job '%s').

A VM must be
associated
with a tracking
job.

0x3
100
2a2
c

US
ER

syste
m.mo
ab

A
L
E
R
T

MWM_NO_
TASKS_
FOUND_ON_
JOB

No tasks found for job '%s'. Check job
submission
arguments for
desired
requirements.

0x3 AD syste F MWM_ %s License has expired. A license file

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

100
838
5

MI
N

m.mo
ab

A
T
A
L

EXPIRED_
LICENSE

was found but
it has expired.
Please contact
your sales
representative
at Adaptive
Computing for
assistance.

0x3
100
838
6

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
EVALUATIO
N_EXPIRED

%s evaluation period has
expired.

The evaluation
period has
expired. Please
contact your
sales
representative
at Adaptive
Computing for
assistance.

0x3
100
838
7

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
UNEXPECTE
D_LICENSE_
ERROR

Moab will now exit.
Unexpected error while
reading license: %s

Moab was
unable to
verify that the
license file was
valid. Please
contact your
sales
representative
at Adaptive
Computing for
assistance.

0x3
100
a71
2

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
UNABLE_
TO_
ALLOCATE_
MEMORY

Unable to allocate memory. One or more
calls to
allocate
memory failed.

0x3
100
a71

AD
MI
N

syste
m.mo
ab

F
A
T

MWM_
CANNOT_
RESTORE_

Cannot restore EUID to
'%s' for server, errno: %s
(%s).

The setuid()
system call
failed. There

Appendix C: Event Dictionary

1354 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1355

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

4 A
L

UID was a failure
resetting the
UID of the
process. This
might be
because the
process is
running as a
different user.
Use the errno
and associated
message to
determine
possible
causes.

0x3
100
a71
5

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
CANNOT_
CHANGE_
UID

Cannot change UID to user
'%s' (UID: %s) errno: %s
(%s).

The setuid()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x3
100
a71
6

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
CANNOT_
RESTORE_
GID

Cannot restore GID to '%s'
for server, errno: %s (%s).

The setgid()
system call
failed. There
was a failure
resetting the
GID of the
process. This
might be
because the
process is
running in a
different
group. Use the
errno and
associated

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

message to
determine
possible
causes.

0x3
100
a71
7

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
CANNOT_
FORK_
INTO_
BACKGROU
ND

Cannot fork the process
into the background, errno:
%s (%s).

The fork()
system call
failed. Moab
must do this to
daemonize
unless run
with the '-d'
flag. This is
usually due to
low system
resources.

0x3
100
a71
c

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
CANNOT_
CHANGE_
OWNERSHI
P_FILE_
FATAL

Cannot change ownership
of %s file to uid:%s gid:%s
errno: %s (%s).

The fchown()
system call
failed. Use the
errno and
associated
message to
determine
possible
causes.

0x3
100
a74
5

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
CANNOT_
GET_
SERVER_
HOSTNAME

Cannot determine
hostname and attribute
'%s' of parameter %s is not
specified.

Moab failed to
obtain system
host name or
ip address
information
from the
operating
system.

0x3
100
a74
6

AD
MI
N

syste
m.mo
ab

F
A
T
A

MWM_HA_
MOAB_NOT_
STARTED_
ON_

The server must be started
on host '%s' or on alternate
'%s' (currently on '%s').

Moab must be
started on
either the
primary or

Appendix C: Event Dictionary

1356 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1357

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

L CORRECT_
HOSTS

alternate host
for high
availability.

0x3
100
a74
7

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
MOAB_NOT_
STARTED_
ON_
CORRECT_
HOST

The server must be started
on host '%s' (currently on
'%s').

Moab must be
started on
specified host
as identified by
the SCHEDCFG
parameter.

0x3
100
a74
9

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
MOAB_
ALREADY_
RUNNING

Moab is already running.
Cannot open user interface
socket on port %s.

Cannot open
user interface
socket, which
is most likely
caused by
Moab already
running.

0x3
100
a74
b

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
CANNOT_
LOCATE_
FULL_PATH

Cannot locate the full path
for '%s'.

Check the path
to make sure
the Moab
executable is
in it. Restart
manually to
work around
this problem
temporarily.

0x3
100
a74
c

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
CANNOT_
RESTART_
SCHEDULER

Exec failed when
attempting to restart the
scheduler '%s' rc: %s.

Check
permissions on
this executable
to correct and
restart
manually to
work around.

0x3
100
a75

AD
MI
N

syste
m.mo
ab

F
A
T

MWM_
CANNOT_
CONNECT_

StrictConfigCheck ON and
cannot connect to DB--
please check DB engine and

Moab was
unable to
connect to the

Appendix C: Event Dictionary

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

0 A
L

TO_DB_
WITH_
STRICT_
CONFIG_
CHECK_ON

configuration (%s). database and
with strict
configuration
on Moab must
exit.

0x3
100
a75
1

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
USER_NOT_
AUTHORIZE
D_TO_RUN_
THIS_
PROGRAM

The user '%s' (UID: %s) is
not authorized to run this
program.

The user has
insufficient
privileges to
run the
program.

0x3
100
a75
2

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
PROBLEMS_
WITH_KEY_
FILE

Problems with key file. Key file does
not exist or
ownership of
key file is
invalid.

0x3
100
aa0
d

AD
MI
N

syste
m.mo
ab

F
A
T
A
L

MWM_
STRICT_
CHECK_EXIT

Exiting because of strict
configuration check.

Moab is
configured to
exit if there
are any errors
in
configuration
files or
file/directory
layout. One of
these errors
has occurred.

0x3
100
c00
2

IN
TE
RN
AL

syste
m.mo
ab

F
A
T
A
L

MWM_
TESTING_
FATAL

Testing with single
argument: %s.

Internal error
for testing
diagnostics.

0x3
100
e74f

IN
TE
RN

syste
m.mo
ab

F
A
T

MWM_
CORRUPT_
CHECKPOIN

Unable to read the
checkpoint file.

Please contact
Adaptive
Computing for

Appendix C: Event Dictionary

1358 C.1 Moab Event Dictionary

C.1 Moab Event Dictionary 1359

Cod
e

Es
cal
ati
on
Le
vel

Topi
c

S
e
v
er
it
y

Event
Name

Message
Template

Comment

AL A
L

T_FILE assistance.

Appendix C: Event Dictionary

1360

Appendix D: Adjusting Default Limits
Moab is distributed in a configuration capable of supporting multiple architectures and
systems ranging from a few processors to several thousand processors. However, in spite
of its flexibility, for performance reasons, it still contains a number of default object limits
parameters and static structures defined in header files. These limits constrain such things
as the maximum number of jobs, reservations, and nodes that Moab can handle and are set
to values that provide a reasonable compromise between capability and memory
consumption for most sites. However, many site administrators want to increase some of
these settings to extend functionality, or decrease them to save consumed memory. The
most common parameters are listed in the table below. Parameters listed in the Moab
configuration file (moab.cfg) can be modified by restarting Moab. To change parameters
listed in moab.h, please contact technical support.

Moab currently possesses hooks to allow sites to create local algorithms for handling site
specific needs in several areas. The contrib directory contains a number of sample local
algorithms for various purposes. The MLocal.c module incorporates the algorithm of
interest into the main code. The following scheduling areas are currently handled via the
MLocal.c hooks:

l Local Job Attributes

l Local Node Allocation Policies

l Local Job Priorities

l Local Fairness Policies

CLIENTMAXCONNECTIONS

Location moab.cfg (dynamic parameter)

Default 128

Max tested ---

Description Maximum number of connections that can simultaneously connect to Moab.
See CLIENTMAXCONNECTIONS for additional information on this
parameter.

JOBMAXNODECOUNT

Location moab.cfg (dynamic parameter)

Appendix D: Adjusting Default Limits

JOBMAXNODECOUNT

Default 1024

Max tested 8192

Description Maximum number of compute nodes that can be allocated to a job. After
changing this parameter, Moab must be restarted for changes to take effect.
The value cannot exceed that of the MAXNODE parameter (specified in
moab.cfg). If you specify a value higher than the limit set for the MAXNODE
parameter, the value will match MAXNODE. JOBMAXNODECOUNT can also be
specified within configure using --with-maxjobsize=<NODECOUNT>. See
JOBMAXNODECOUNT for additional information on this parameter.

JOBMAXTASKCOUNT

Location moab.cfg (dynamic parameter)

Default 32768

Max tested 250000

Description Total number of tasks allowed per job. See JOBMAXTASKCOUNT for additional
information on this parameter.

MAXGRES

Location moab.cfg (dynamic parameter)

Default 512

Max tested ---

Description Total number of distinct generic resources that can be managed. See MAXGRES
for additional information on this parameter.

MAXJOB

Location moab.cfg (dynamic parameter)

Appendix D: Adjusting Default Limits

1361

1362

MAXJOB

Default 51200

Max tested 500,000

Description Maximum number of jobs that can be evaluated simultaneously. (Can also be
specified within configure using --with-maxjobs=<JOBCOUNT>.) See
MAXJOB for additional information on this parameter.

MAXNODE

Location moab.cfg (dynamic parameter)

Default 5120

Max tested 160000

Description Maximum number of compute nodes supported. See MAXNODE for additional
information on this parameter.

MAXRSVPERNODE

Location moab.cfg (dynamic parameter)

Default 64

Max tested 1024

Description Maximum number of reservations a node can simultaneously support. See
MAXRSVPERNODE for additional information on this parameter.

MMAX_ATTR

Location moab.h

Default 128

Max tested 512

Appendix D: Adjusting Default Limits

MMAX_ATTR

Description Total number of distinct node attributes (PBS node attributes/LL node
features) that can be tracked.

MMAX_CLASS

Location moab.h

Default 24

Max tested 64

Description Total number of distinct job classes/queues available.

MMAX_FSDEPTH

Location moab.h

Default 24

Max tested 32

Description Number of active fairshare windows.

MMAX_PAR

Location moab.h

Default 32

Max tested 32

Description Maximum number of partitions supported.

MMAX_QOS

Location moab.h

Appendix D: Adjusting Default Limits

1363

1364

MMAX_QOS

Default 128

Max tested 128

Description Total number of distinct QoS objects available to jobs.

MMAX_RACK

Location moab.h

Default 200

Max tested 200

Description Total number of distinct rack objects available within cluster.

MMAX_RANGE

Location moab.h

Default 2048

Max tested 2048

Description Total number of distinct timeframes evaluated.

This is proportional to the size of the cluster and the number of
simultaneously active jobs in the cluster. (Can be specified within
./configure using --with-maxrange=<RANGECOUNT>.)
Increasing this value will not increase the size of total memory consumed
by Moab but may result in minor slowdowns in the evaluation and
optimization of reservations.

MMAX_REQ_PER_JOB

Location moab.h

Default 5

Appendix D: Adjusting Default Limits

MMAX_REQ_PER_JOB

Max tested 64

Description Total number of unique requirement structures a job can have. Limits the
number of -w clauses in the mshow -a command. It also limits the number of
-l nodes=X+Y+Z a normal HPC job can have.

Related Topics

l Appendix I: Considerations for Large Clusters

Appendix D: Adjusting Default Limits

1365

E.1 Authentication (Interface Security) 1366

Appendix E: Security
Moab provides role and host based authorization, encryption, and DES, HMAC, and MD5
based authentication. The following sections describe these features in more detail and tell
how to control access to sensitive configuration information.

In this chapter:

E.1 Authentication (Interface Security) 1366
E.1.1 Mauth Authentication 1367
E.1.2 Munge Authentication 1370
E.1.3 Server Response Control 1371
E.1.4 Checksum Algorithm for Client Authentication 1371
E.1.5 Interface Development Notes 1371

E.2 Authorization 1371
E.2.1 Role Based Authorization Security Configuration 1372

E.3 Host Security for Compute Resources 1375
E.3.1 Minimal Host Security Enforcement 1375
E.3.2 Medium Host Security Enforcement 1375
E.3.3 Strict Host Security Enforcement 1376

E.4 Securing Sensitive Configuration Information 1376

E.1 Authentication (Interface Security)

Moab supports password-challenge, DES, HMAC, and MD5 based authentication.
Authentication protocols can be specified on a per interface basis allowing independent
realms of trust with per realm secret keys and even per realm authentication protocols.

In this topic:

E.1.1 Mauth Authentication - page 1367
E.1.1.A Configuring Peer-Specific Secret Keys - page 1368

E.1.2 Munge Authentication - page 1370
E.1.2.A Configuring Munge Command Options - page 1370

E.1.3 Server Response Control - page 1371

Appendix E: Security

E.1.4 Checksum Algorithm for Client Authentication - page 1371
E.1.5 Interface Development Notes - page 1371

E.1.1 Mauth Authentication
Mauth is a tool provided with Moab that provides client authentication services. With
mauth enabled, each client request is packaged with the client ID, a timestamp, and an
encrypted key of the entire request generated using the shared secret key.

This tool is enabled by providing a secret key. A random key is selected when the Moab
./configure script is run and can be regenerated at any time by rerunning
./configure and rebuilding Moab. If desired, this random key can be overridden by
specifying a new key in the protected .moab.key file as in the example below:

Moab must be shut down before setting a new secret key. Use the service moab
stop or mschedctl -k commands to shut down Moab.

> vi /opt/moab/etc/.moab.key
(insert key)
> cat /opt/moab/etc/.moab.key
XXXXXXXX
secure file by setting owner read-only permissions
> chmod 400 /opt/moab/etc/.moab.key
verify file is owned by root and permissions allow only root to read file
> ls -l /opt/moab/etc/.moab.key
-r-------- 1 root root 15 2007-04-05 03:47 /opt/moab/etc/.moab.key

Appendix E: Security

1367 E.1 Authentication (Interface Security)

E.1 Authentication (Interface Security) 1368

Be aware of the following:

l All directories in the path containing .moab.key must be owned by the root or
primary Moab user It must not be writable by 'other' in its permissions.

l The .moab.key file will need to be on each host that is authorized to run Moab
client commands.

l The .moab.key file must reside in the same directory as the moab.cfg file.

l By default:
o The .moab.key file will be owned by the user root and its contents will be
read by the mauth tool, which provides client authorization services. If desired,
the ownership of this file can be changed so long as this file is readable by the
Moab server and the mauth tool. This can be accomplished if the Moab primary
administrator, the owner of mauth, and the owner of .moab.key are the
same.

o It is up to the individual cluster administrators to determine whether to use the
.moab.key file. For sites with source code, the use of .moab.key can be
mandated by using ./configure --with-keyfile.

o mauth is located in the install bin directory. If an alternate name or alternate
file location is desired, this can be specified by setting the AUTHCMD attribute
of the CLIENTCFG parameter within the moab.cfg file as in the following
example.

CLIENTCFG AUTHCMD=/opt/sbin/mauth

E.1.1.A Configuring Peer-Specific Secret Keys
Peer-specific secret keys can be specified using the CLIENTCFG parameter. This key
information must be kept secret and consequently can only be specified in the moab-
private.cfg file. With regard to security, there are two key attributes that can be set.
(Other resource managers or clients such as Moab Accounting Manager or a Wiki interface
can also use the attributes to configure their authentication algorithms. The default, unless
otherwise stated, is always DES. These attributes are listed in the table below:

AUTH

Format One of ADMIN1, ADMIN2, or ADMIN3

Default ---

Appendix E: Security

AUTH

Description The level of control/information available to requests coming from this
source/peer.

Example CLIENTCFG[RM:clusterB] AUTH=admin1 KEY=14335443

AUTHTYPE

Format One of DES, HMAC, HMAC64, HMACSHA2, or MD5.

Default DES

Description The encryption algorithm to use when generating the message checksum.

Example CLIENTCFG[AM:mam] AUTHTYPE=HMAC64

HOST

Format <STRING>

Default ---

Description The hostname of the remote peer. Peer requests coming from this host will be
authenticated using the specified mechanism. This parameter is optional.

Example CLIENTCFG[RM:clusterA] HOST=orx.pb13.com KEY=banana6

KEY

Format <STRING>

Default ---

Description The shared secret key to be used to generate the message checksum.

Example CLIENTCFG[RM:clusterA] KEY=banana6

Appendix E: Security

1369 E.1 Authentication (Interface Security)

E.1 Authentication (Interface Security) 1370

The CLIENTCFG parameter takes a string index indicating which peer service will use the
specified attributes. In most cases, this string is simply the defined name of the peer
service. However, for the special cases of resource and accounting managers, the peer
name should be prepended with the prefix RM: or AM: respectively, as in CLIENTCFG
[AM:mam] or CLIENTCFG[RM:devcluster].

The first character of any secret key can be viewed by trusted administrators using
specific diagnostic commands to analyze Moab interfaces. If needed, increase the
length of the secret keys to maintain the desired security level.

E.1.2 Munge Authentication
Moab also integrates with MUNGE, an open source authentication service created by
Lawrence Livermore National Laboratory (https://dun.github.io/munge/). MUNGE works
with Moab to authenticate user credentials being passed between the Moab client and the
Moab server or from Moab server to Moab server.

To set up MUNGE in a cluster or grid, download and install MUNGE on every node in the
cluster or grid by following the installation steps found at https://dun.github.io/munge/.
The MUNGE secret key must reside on each node in the cluster or grid. Before starting the
Moab daemon, the MUNGE daemon must be running on all nodes.

To enable Moab to use MUNGE for authentication purposes, specify the MUNGE executable
path in the moab.cfg file using CLIENTCFG and AUTHCMD as in the following example. The
MUNGE executable path must reside in each client's moab.cfg file as well.

CLIENTCFG AUTHCMD=/usr/bin/munge

Moab requires that the MUNGE and UNMUNGE executable names be 'munge' and
'unmunge' respectively. It also assumes that the UNMUNGE executable resides in the
same directory as the MUNGE executable.

E.1.2.A Configuring Munge Command Options
Moab also integrates with MUNGE command line options. For example, to set up Moab to
use a specific socket that was created when the MUNGE daemon was started, use
CLIENTCFG and AUTHCMDOPTIONS to specify the newly created socket. The
AUTHCMDOPTIONS attribute, like AUTHCMD, must also reside in the client's moab.cfg
file.

CLIENTCFG AUTHCMD=/usr/bin/munge
CLIENTCFG AUTHCMDOPTIONS="-S /var/run/munge/munge.socket.2"

Appendix E: Security

https://dun.github.io/munge/
https://dun.github.io/munge/

E.1.3 Server Response Control
If a request is received that is corrupt or cannot be authenticated, Moab will report some
limited information to the client indicating the source of the failure, such as 'bad key,'
'malformed header,' and so forth. In the case of highly secure environments, or to minimize
the impact of sniffing or denial of service attacks, Moab can be configured to simply drop
invalid requests. This is accomplished by adding the DROPBADREQUEST attribute to the
CLIENTCFG parameter in the moab-private.cfg file as in the following example:

CLIENTCFG[DEFAULT] DROPBADREQUEST=TRUE

E.1.4 Checksum Algorithm for Client Authentication
The SERVERCSALGO parameter lets you choose the algorithm used for message digests
and message authentication codes:

l HMAC64: the default (SHA-1)

l HMACSHA2: more secure (SHA-512)

If you are using Moab Web Services, then you must set the MWS configuration
parameter moab.messageDigestAlgorithm to match the value of SERVERCSALGO.
See 'moab.messageDigestAlgorithm' in the Moab Web Services Reference Guide for
more information.

E.1.5 Interface Development Notes
Sample checksum generation algorithm code can be found in the Socket Protocol
Description document.

E.2 Authorization

In this topic:

E.2.1 Role Based Authorization Security Configuration - page 1372
E.2.1.A Configuring Role Based Access - page 1372
E.2.1.B Account and Class/Queue Admins - page 1374

Appendix E: Security

1371 E.2 Authorization

E.2 Authorization 1372

E.2.1 Role Based Authorization Security Configuration
Moab provides access control mechanisms to limit how the scheduling environment is
managed. The primary means of accomplishing this is through limiting the users and hosts
that are trusted and have access to privileged commands and data.

With regard to users, Moab breaks access into three distinct levels.

Level 1 Moab Admin (Administrator Access)
Level 1 Moab administrators have global access to information and unlimited control over
scheduling operations. By default, they are allowed to control scheduler configuration,
policies, jobs, reservations, and all scheduling functions. They are also granted access to all
available statistics and state information. Level 1 administrators are specified using the
ADMINCFG[1] parameter.

Level 2 Moab Admin (Operator Access)
Level 2 Moab administrators are specified using the ADMINCFG[2] parameter. By default,
the users listed under this parameter are allowed to change all job attributes and are
granted access to all informational Moab commands.

Level 3 Moab Admin (Help Desk Access)
Level 3 administrators are specified via the ADMINCFG[3] parameter. By default, they are
allowed access to all informational Moab commands. They cannot change scheduler or job
attributes.

E.2.1.A Configuring Role Based Access
Moab allows site specific tuning of exactly which functions are available to each
administrator level. Moab also provides two additional administrator levels (ADMINCFG[4]
and ADMINCFG[5]) that can be used for site specific needs.

ADMINCFG[5] is different from other administrator levels because, when set, all
commands are authorized at that level by default. Furthermore, if a service is set at
level 5, all other services are disallowed.

To configure Moab role based access, use the ADMINCFG parameter:

ADMINCFG[1] USERS=root,john SERVICES=ALL NAME=admin
ADMINCFG[3] USERS=joe,mary SERVICES=mdiag,mrsvctl,mcredctl NAME=power
ADMINCFG[5] USERS=joy,blake SERVICES=NONE NAME=users
...

Appendix E: Security

A NONE in services will still allow users to run showq and checkjob on their own jobs.

To determine the role of system users and what commands they can run, use the mcredctl
-q role user:<USERID> command.

Using the SERVICES attribute of the ADMINCFG parameter, access to an arbitrary
selection of services can be enabled on a per administrator-level basis. Possible services
include the following:

Service Description

changeparam Change any scheduling policy or parameter. (This command is deprecated.
Use mschedctl -m instead).

checkjob View detailed information for any job.

checknode View detailed information for any node.

mbal Perform real-time load-balancing of interactive commands.

mcredctl View and modify credential attributes.

mdiag Provide diagnostic reports for resources, workload, and scheduling.

mjobctl Modify, control, and view jobs.

mnodectl Modify, control, and view nodes.

mrmctl Modify, control, and view resource managers.

mrsvctl Modify, control, and view reservations.

mschedctl Modify, control, and view scheduler behavior.

mshow View existing configuration and predicted resource availability.

showstats View all scheduler and credential statistics.

releaseres Release all reservations. (This command is deprecated. Use mrsvctl -r
instead).

runjob Immediately execute any job (see mjobctl -x).

Appendix E: Security

1373 E.2 Authorization

E.2 Authorization 1374

Service Description

setqos Set QoS on any job. (This command is deprecated. Use mjobctl -m instead).

setres Create any reservation. (This command is deprecated. Use mrsvctl -c
instead).

setspri Set system priority on any job. (This command is deprecated. Use mjobctl -p
instead).

showconfig Show all scheduler configuration parameters. (This command is deprecated.
Use mschedctl -l instead).

showres Show detailed information for any reservation.

showstate Show detailed information for all jobs, including their locations, and display
job error messages, if any.

E.2.1.B Account and Class/Queue Admins
While the ADMINCFG parameter allows organizations to provide controlled access to
scheduling objects, it does not allow for distribution along organizational boundaries. For
example, a site may set up a level 3 administrator to be able to view statistics, diagnose
jobs, and modify job priorities; it does not provide a way to differentiate one type of job
from another. If a site administrator wanted to allow control based on the queue or account
associated with a job, they would best accomplish this using the credential MANAGERS
attribute.

A credential manager allows a user to be trusted to administer workload and policies for
an associated subgroup of jobs. For example, in the configuration below, a number of
queue and account managers are configured:

CLASSCFG[orion] MANAGERS=johns
CLASSCFG[xray] MANAGERS=steve2
CLASSCFG[gamma] MANAGERS=steve2,jpw
ACCOUNTCFG[bio] MANAGERS=charles

By default, the specified managers can do anything to a job that the actual job owner could
do. By default, this would include the ability to view cumulative and per job statistics, see
job details, modify job priorities and holds, cancel and preempt jobs, and otherwise adjust
policies and constraints within the associated credential.

Appendix E: Security

E.3 Host Security for Compute Resources

Host level security can vary widely from one site to another with everything from pure on-
your-honor based clusters to complete encrypted VLAN based network security and
government approved per job scrubbing procedures being used. The following
documentation describes some best practices in use throughout the industry.

In this topic:

E.3.1 Minimal Host Security Enforcement - page 1375
E.3.2 Medium Host Security Enforcement - page 1375
E.3.3 Strict Host Security Enforcement - page 1376

E.3.1 Minimal Host Security Enforcement
For minimal host security, no additional configuration is required.

E.3.2 Medium Host Security Enforcement
l Login Access

o PAM— Enable/disable access by modifying
/etc/security/access.conf.

l Processes
o Kill all processes associated with job user (dedicated).
o Kill all processes associated with job session (dedicated/shared). Use ps -ju
<USER> or ps -js <SESSID>.

l IPC (Inter-Process Communication)
o Remove shared memory, semaphores, and message queues (use ipcs/ipcrm).
o Remove named pipes.

l Network/Global File System Access
o Explicitly unmount user home and global file systems.

l Local Temporary File Systems
o Where possible, mount local file systems read-only.
o Clear /tmp, /scratch and other publicly available local file systems.

Appendix E: Security

1375 E.3 Host Security for Compute Resources

E.4 Securing Sensitive Configuration Information 1376

o Remove user files with shred; shred is a Linux command that first
overwrites files completely before removing them, preventing remnant data
from surviving on the hard drive.

E.3.3 Strict Host Security Enforcement
l VLAN creation

l Host rebuild
o U.S Dept. of Energy Disk/File Sanitization (Clearing, Sanitizing, and Destroying
Disks)

o U.S Dept. of Defense Scrubbing Software (DOD-5520)

E.4 Securing Sensitive Configuration Information

The moab.cfg file may include sensitive configuration information, such as user or group
fairshare targets that determine job priority and scheduling for individual users or groups.
Sensitive configuration information can be moved to a separate file in an access-controlled
directory and included in moab.cfg using an #INCLUDE directive. For example, the
following commands create a directory that requires root permissions to read or execute,
and a .cfg file that can be used for sensitive configuration information:

mkdir -m 500 /opt/moab/etc/secure
echo "ARRAYJOBPARLOCK TRUE" > /opt/moab/etc/secure/moab.secure.cfg

Adding the following line to moab.cfg will cause Moab to use the contents of the
protected .cfg file:

#INCLUDE secure/moab.secure.cfg

Appendix E: Security

http://ftp.st.ryukoku.ac.jp/pub/security/ciac/ciacdocs/ciac2325.pdf
http://ftp.st.ryukoku.ac.jp/pub/security/ciac/ciacdocs/ciac2325.pdf
http://www.dss.mil/isp/fac_clear/download_nispom.html

F.1 Scheduler Modes 1377

Appendix F: Initial Moab Testing
Moab has been designed with a number of key features that allow testing to occur in a no
risk environment. These features allow you to safely run Moab in test mode even with
another scheduler running whether it be an earlier version of Moab or another scheduler
altogether. In test mode, Moab collects real-time job and node information from your
resource managers and acts as if it were scheduling live. However, its ability to actually
affect jobs (that is, start, modify, cancel, charge, and so forth) is disabled.

In this chapter:

F.1 Scheduler Modes 1377
F.1.1 Normal Mode 1377
F.1.2 Monitor Mode (or Test Mode) 1377
F.1.3 Interactive Mode 1379

F.1 Scheduler Modes

This topic describes the test modes Moab offers to provide a minimal configuration for
verifying such things as proper configuration and operation.

Central to Moab testing is the MODE attribute of the SCHEDCFG parameter. This parameter
attribute allows administrators to determine how Moab will run. The possible values for
MODE are NORMAL, MONITOR, INTERACTIVE, TEST, SINGLESTEP, and SLAVE. For
example, to request monitor mode operation, include the following in the moab.cfg file:

SCHEDCFG MODE=MONITOR

F.1.1 Normal Mode
If initial evaluation is complete or not required, you can place the scheduler directly into
production by setting the MODE attribute of the SCHEDCFG parameter to NORMAL and
(re)starting the scheduler.

F.1.2 Monitor Mode (or Test Mode)
Monitor mode allows evaluation of new Moab releases, configurations, and policies in a
risk-free manner. In monitor mode, the scheduler connects to the resource manager(s) and

Appendix F: Initial Moab Testing

obtains live resource and workload information. Using the policies specified in the
moab.cfg file, the monitor-mode Moab behaves identical to a live or normal-mode Moab
except the ability to start, cancel, or modify jobs is disabled. In addition, allocation
management does not occur in monitor mode. This allows safe diagnosis of the scheduling
state and behavior using the various diagnostic client commands. Further, the log output
can also be evaluated to see if any unexpected situations have arisen. At any point, the
scheduler can be dynamically changed from monitor to normal mode to begin live
scheduling.

To set up Moab in monitor mode, do the following:

> vi moab.cfg
(change the MODE attribute of the SCHEDCFG parameter from NORMAL to MONITOR)

> moab

Remember that Moab running in monitor mode will not interfere with your production
scheduler.

F.1.2.A Running Multiple Moab Instances Simultaneously
If running multiple instances of Moab, whether in simulation, normal, or monitor mode,
make certain that each instance resides in a different home directory to prevent conflicts
with configuration, log, and statistics files. Before starting each additional Moab, set the
MOABHOMEDIR environment variable in the execution environment to point to the local
home directory. Also, each instance of Moab should run using a different port to avoid
conflicts.

If running multiple versions of Moab, not just different Moab modes or configurations,
set the $PATH variable to point to the appropriate Moab binaries.

To point Moab client commands (such as showq) to the proper Moab server, use the
appropriate command line arguments or set the environment variable MOABHOMEDIR in
the client execution environment as in the following example:

point moab clients/server to new configuration
> export MOABHOMEDIR=/opt/moab-monitor
set path to new binaries (optional)
> export PATH=/opt/moab-monitor/bin:/opt/moab-monitor/sbin:$PATH
start Moab server
> moab
query Moab server
> showq

moabd is a safe and recommended method of starting Moab if things are not installed
in their default locations.

Appendix F: Initial Moab Testing

1378 F.1 Scheduler Modes

F.1 Scheduler Modes 1379

F.1.3 Interactive Mode
Interactive mode allows for evaluation of new versions and configurations in a manner
different from monitor mode. Instead of disabling all resource and job control functions,
Moab sends the desired change request to the screen and asks for permission to complete
it. For example, before starting a job, Moab might post something like the following to the
screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying that it
correctly meets desired site policies. Moab will then execute the specified command. This
mode is useful in validating scheduler behavior and can be used until configuration is
appropriately tuned and all parties are comfortable with the scheduler's performance. In
most cases, sites will want to set the scheduling mode to normal after verifying correct
behavior.

Appendix F: Initial Moab Testing

G.1 Compute Resource Managers 1380

Appendix G: Integrating Other Resources with
Moab

Moab can interface with most popular resource managers, many cluster services, and
numerous general protocols. The following links provide additional information.

In this chapter:

G.1 Compute Resource Managers 1380
G.1.1 Moab-Torque Integration Guide 1380

G.2 Hardware Integration 1384
G.2.1 Moab-NUMA-Support Integration Guide 1384

G.3 Torque/PBS Integration Guide - RM Access Control 1389
G.3.1 Server Configuration 1389
G.3.2 (Optional) MOM Configuration 1389

G.4 Torque/PBS Config - Default Queue Settings 1390
G.4.1 Default Queue 1390
G.4.2 Queue Default Node and Walltime Attributes 1390
G.4.3 System-Wide Default Node and Walltime Attributes 1390

G.5 Provisioning Resource Managers 1391
G.5.1 Validating an xCAT Installation for Use with Moab 1391

G.1 Compute Resource Managers

G.1.1 Moab-Torque Integration Guide

In this topic:

G.1.1.A Integration Steps - page 1381
Install Torque - page 1381
Install Moab - page 1381
Configure Torque - page 1382
Configure Moab - page 1383

Appendix G: Integrating Other Resources with Moab

G.1.1.B Torque/Moab Considerations - page 1383
PBS Features Not Supported by Moab - page 1384
Moab Features Not Supported by PBS - page 1384

G.1.1.C Troubleshooting - page 1384

G.1.1.A Integration Steps

Install Torque
l Installing Torque Resource Manager

Keep track of the PBS target directory, $PBSTARGDIR

Install Moab
l Untar the Moab distribution file.

l Change the directory to the moab-10.0.0 directory.

l Run ./configure.

l Specify the PBS target directory ($PBSTARGDIR from step 2.1) when queried by
./configure.

Moab interfaces to PBS by utilizing a few PBS libraries and include files. If you have a non-
standard PBS installation, you may need to modify Makefile and change PBSIP and
PBSLP values and references as necessary for your local site configuration.

The ./configure script automatically sets up Moab so that the user running configure
will become the default Primary Moab Administrator ($MOABADMIN). This can be changed
by modifying the ADMINCFG[1] USERS=<USERNAME> line in the Moab configuration
file (moab.cfg). The primary administrator is the first user listed in the USERS attribute
and is the ID under which the Moab daemon runs.

Some Tru64 and IRIX systems have a local libnet library that conflicts with PBS's
libnet library. To resolve this, try setting PBSLIB to '${PBSLIBDIR}/libnet.a -
lpbs' in the Moab Makefile.

Moab is 64-bit compatible. If PBS/Torque is running in 64-bit mode, Moab likewise needs
to be built in this manner to use the PBS scheduling API (i.e., for IRIX compilers, add -64 to
OSCCFLAGS and OSLDFLAGS variables in the Makefile).

When starting both Torque and Moab it is best to have a small delay between starting the
servers. In general (and especially for very fast or very large systems) this is
recommended startup procedure:

Appendix G: Integrating Other Resources with Moab

1381 G.1 Compute Resource Managers

G.1 Compute Resource Managers 1382

l Start Torque.

l Start Moab with scheduling paused (moab -P) to give it a chance to load everything in
the checkpoint file and to sync with Torque.

l Unpause Moab with mschedctl -r.

Configure Torque
General Configuration for All Versions of Torque

l Make $MOABADMIN a PBS admin.
o By default, Moab only communicates with the pbs_server daemons and the
$MOABADMIN should be authorized to talk to this daemon (see suggestions for
more information).

l (OPTIONAL) Set default PBS queue, nodecount, and walltime attributes. (See
suggestions for more information.)

l (OPTIONAL - Torque Only) Configure Torque to report completed job information by
setting the qmgrkeep_completed parameter:>

> qmgr -c 'set server keep_completed = 300'

PBS nodes can be configured as time shared or space shared according to local needs.
In almost all cases, space shared nodes provide the desired behavior.

PBS/Torque supports the concept of virtual nodes. Using this feature, Moab can
individually schedule processors on SMP nodes. The online Torque documentation
describes how to set up the $PBS_HOME/server_priv/nodes file to enable this
capability. (For example, <NODENAME> np=<VIRTUAL NODE COUNT>)

Version-Specific Configuration for Torque

Do not start the pbs_sched daemon. This is the default scheduler for Torque; Moab
provides this service.

Moab uses PBS's scheduling port to obtain real-time event information from PBS
regarding job and node transitions. Leaving the default qmgr setting of set
server scheduling=True allows Moab to receive and process this real-time
information.

Appendix G: Integrating Other Resources with Moab

Configure Moab
By default, Moab automatically interfaces with Torque/PBS when it is installed.
Consequently, in most cases, the following steps are not required:

l Specify PBS as the primary resource manager by setting RMCFG[base]
TYPE=PBS in the Moab configuration file (moab.cfg).

If a non-standard PBS installation/configuration is being used, additional Moab parameters
may be required to enable the Moab/PBS interface as in the line RMCFG[base]
HOST=$PBSSERVERHOST PORT=$PBSSERVERPORT. See the Resource Manager
Overview for more information.

Moab's user interface port is set using the SCHEDCFG parameter and is used for
user-scheduler communication. This port must be different from the PBS scheduler
port used for resource manager-scheduler communication.

G.1.1.B Torque/Moab Considerations
The default meaning of a node for Torque and Moab are not the same. By default, a node is
a host in Torque. The node can have one or more execution slots (procs) allocated to it in
the TORQUE_HOME/server_priv/nodes file. However, the number of nodes recognized by
Torque is equivalent to the number of node entries in the TORQUE_HOME/server_
priv/nodes file. A node specification from qsub such as -1 nodes=2:ppn=2 will
direct Torque to allocate to execution slots on two separate nodes.

Moab is more liberal in its interpretations of a node. To Moab, the qsub request above
would be interpreted to mean allocate four tasks with at least two tasks on a node. Where
Torque would require two nodes for the request, Moab will place all four tasks on the
name node (host) if four execution slots are available.

If a cluster has four nodes with eight processors each, Torque still sees only four nodes.
Moab sees 32 nodes. However, if a user made a qsub request with -1 nodes=10,
Torque would reject the request because there are only four nodes available. To enable
Torque to accommodate Moab's more liberal node interpretation, the server parameter
available_resources.nodect can be set as a server parameter in Torque. The value of
available_resources.nodect should equal at least the number of execution slots
in the cluster.

For our example, cluster available_resources.nodect should be 32. With this
parameter set, the user can now make a request such as -1 nodes=8:ppn=2. In this
example, the user is still limited to a maximum node request of 32.

With available_resources.nodect set in Torque, Moab can be directed to honor
the default Torque behavior by setting JOBNODEMATCHPOLICY to EXACTNODE.

Appendix G: Integrating Other Resources with Moab

1383 G.1 Compute Resource Managers

G.2 Hardware Integration 1384

PBS Features Not Supported by Moab
Moab supports basic scheduling of all PBS node specifications.

Moab Features Not Supported by PBS
PBS does not support the concept of a job QoS or other extended scheduling features by
default.

G.1.1.C Troubleshooting
On TRU64 systems, the PBS libpbs library does not properly export a number of
symbols required by Moab. This can be worked around by modifying the Moab Makefile
to link the PBS rm.o object file directly into Moab.

G.2 Hardware Integration

G.2.1 Moab-NUMA-Support Integration Guide

This topic is for NUMA-support systems on large-scale SLES systems using SGI Altix
and UV hardware only and requires Torque 3.0 or later.

Scheduling a shared-memory NUMA type system (not the same as a modern SMP-based
individual compute node, which cannot share memory between compute nodes) requires
some special configuration. Additionally, Moab can use NODESETs to guarantee feasibility
of large memory jobs and to enforce node allocation based on the system's interconnect
network topology.

In this topic:

G.2.1.A Configuration - page 1385
G.2.1.B Job Submission - page 1388

Appendix G: Integrating Other Resources with Moab

G.2.1.A Configuration

To Integrate Moab and NUMA

1. Configure Moab to schedule large memory jobs. Because Moab creates a partition for
each resource manager by default, you must configure the cluster controlled by the
resource manager to be a shared-memory system to support jobs spanning multiple
nodes/blades. To do so, use the PARCFG parameter:

RMCFG[sys-uv] TYPE=Torque
PARCFG[sys-uv] FLAGS=SharedMem

Cluster sys-uv is now configured as a shared-memory system to Moab.

2. Configure NODESETs as shown below:

NODESETISOPTIONAL FALSE
NODESETATTRIBUTE FEATURE
NODESETPOLICY ONEOF
NODESETPRIORITYTYPE FIRSTFIT

The NODESET parameters tell Moab that performing node allocation using node sets is required, that the node
set name is a feature name assigned to compute nodes, that a job must fit within the available nodes of one node
set, and that Moab should use the first node set that contains sufficient available nodes to satisfy the job's
request.

3. To configure Moab to perform topology-aware node allocation using node sets, you must
create a node set definition for each set of nodes that has the same number of
maximum network 'hops' from any node to every other node within the node set. For an
example, see the following sample scenario:

Use Case

The SGI UV 1000 has a two-socket blade with a physical organization of 16 blades
within a blade chassis (SGI term is Intra-Rack Unit or IRU), two blade chassis (IRUs)
within a rack, and up to four racks within a single UV system. The UV 1000
interconnect network has a topology that requires zero hops between the two
sockets on the same physical blade, one hop between an even-odd blade pair (e.g.,
blades 0 and 1, 2 and 3, etc.), two hops between all even-numbered or all odd-
numbered blades within an IRU, three hops maximum between all blades within an
IRU, four hops maximum between all even-numbered blades or all odd-numbered
blades within a UV system, and five hops maximum between all blades within a UV
system.

a. Define topology-aware node definitions to parallel the compute nodes reachable
within a specific hop count. For the UV 1000, this means the sockets of each blade
will belong to six separate node set definitions (i.e., one each for 0, 1, 2, 3, 4, and 5
hops).

Appendix G: Integrating Other Resources with Moab

1385 G.2 Hardware Integration

G.2 Hardware Integration 1386

b. Define multiple node sets for different nodes reachable in a specific hop count based
on the context of where they are in the network topology; that is, you must create a
separate and distinct node set definition for each pair of blades reachable with one
hop, for each IRU for its nodes reachable in three hops, etc.

c. Moab node sets are usually defined as compute node features; that is, each node set
defined to Moab should appear as a 'feature' name on one or more compute nodes.
Which node set/feature names appear on each compute node depends on where the
compute node is in the interconnect network topology.
Since the SGI UV operating system identifies each blade socket as a separate NUMA
node, each NUMA node within a UV system is traditionally an individual compute
node to Moab (although Torque has the ability to redefine a compute node definition
by grouping OS NUMA nodes, which some UV installations do to define a blade as a
compute node).

For the sake of illustration, this example assumes each OS NUMA node, which is a UV
blade socket, is also a compute node in Moab. This means each compute node (blade
socket) will have six feature names assigned, where each feature name must reflect
both the compute node's location in the network topology and the hop count the
name represents. A feature name is constructed by using the same root name for a
hop count and a number for the topology location at the hop-count level.

For example, the root feature name 'blade' represents the zero-hop count and the
numbers '0', '1', etc, represent the consecutively numbered blades throughout the
entire UV system, which yields feature names of 'blade0' for the first blade in the
system, 'blade1' for the second blade, etc, to 'blade127' for the last blade in a fully
populated 4-rack UV system. To illustrate further, the root feature name 'iru'
represents the 3-hops count and the numbers '0' through '7' represent the eight
IRUs within a full 4-rack UV system.

d. For each compute node, configure the correct feature name for each of the hop
counts possible and its location within the topology at the hop-count level (e.g., blade
(0 hops), blade pair (1 hop), odd- or even-numbered nodes within an IRU (2 hops),
IRU (3 hops), odd- or even-numbered nodes within the UV (4 hops), and UV system
(5 hops)). The following example illustrates the feature names assigned to the
compute nodes for an SGI UV 1000 system using the following root feature names:

l blade (0 hops)

l pair (1 hop)

l eiru (2 hops for even-numbered blades within an IRU)

l oiru (2 hops for odd-numbered blades within an IRU)

l iru (3 hops)

l esys (4 hops for even-numbered blades within a UV system)

Appendix G: Integrating Other Resources with Moab

l osys (4 hops for odd-numbered blades within a UV system)

l sys (5 hops)
Note that nodes 0 and 1 are not given any feature names. This is because the
operating system instance for the UV system runs on the first blade and in order to
not adversely affect OS performance, no jobs should run on the same compute
resources as the operating system; therefore, these nodes have no node set feature
names and therefore will never be chosen to run jobs. In addition, some of the first
feature names at a specific hop count-level are omitted (such as pair0) since it
makes no sense to define them when the first blade is a substantial part of the nodes
making up a node set.

The node name of a UV system has the same name as the UV system's host name
plus the NUMA node's relative socket number.

/var/spool/torque/server_priv/nodes:
sys-uv0
sys-uv1
sys-uv2 blade1 oiru0 iru0 osys sys
sys-uv3 blade1 oiru0 iru0 osys sys
sys-uv4 blade2 pair1 eiru0 iru0 esys sys
sys-uv5 blade2 pair1 eiru0 iru0 esys sys
sys-uv6 blade3 pair1 oiru0 iru0 osys sys
sys-uv7 blade3 pair1 oiru0 iru0 osys sys
sys-uv8 blade4 pair2 eiru0 iru0 esys sys
sys-uv9 blade4 pair2 eiru0 iru0 esys sys
sys-uv10 blade5 pair2 oiru0 iru0 osys sys
sys-uv11 blade5 pair2 oiru0 iru0 osys sys
sys-uv12 blade6 pair3 eiru0 iru0 esys sys
sys-uv13 blade6 pair3 eiru0 iru0 esys sys
sys-uv14 blade7 pair3 oiru0 iru0 osys sys
sys-uv15 blade7 pair3 oiru0 iru0 osys sys
sys-uv16 blade8 pair4 eiru0 iru0 esys sys
sys-uv17 blade8 pair4 eiru0 iru0 esys sys
sys-uv18 blade9 pair4 oiru0 iru0 osys sys
sys-uv19 blade9 pair4 oiru0 iru0 osys sys
sys-uv20 blade10 pair5 eiru0 iru0 esys sys
sys-uv21 blade10 pair5 eiru0 iru0 esys sys
sys-uv22 blade11 pair5 oiru0 iru0 osys sys
sys-uv23 blade11 pair5 oiru0 iru0 osys sys
sys-uv24 blade12 pair6 eiru0 iru0 esys sys
sys-uv25 blade12 pair6 eiru0 iru0 esys sys
sys-uv26 blade13 pair6 oiru0 iru0 osys sys
sys-uv27 blade13 pair6 oiru0 iru0 osys sys
sys-uv28 blade14 pair7 eiru0 iru0 esys sys
sys-uv29 blade14 pair7 eiru0 iru0 esys sys
sys-uv30 blade15 pair7 oiru0 iru0 osys sys
sys-uv31 blade15 pair7 oiru0 iru0 osys sys
sys-uv32 blade16 pair8 eiru1 iru1 esys sys
sys-uv33 blade16 pair8 eiru1 iru1 esys sys
sys-uv34 blade17 pair9 oiru1 iru1 osys sys
sys-uv35 blade17 pair9 oiru1 iru1 osys sys
...
sys-uv62 blade31 pair15 oiru1 iru1 osys sys
sys-uv63 blade31 pair15 oiru1 iru1 osys sys
sys-uv64 blade32 pair16 eiru2 iru2 esys sys
sys-uv65 blade32 pair16 eiru2 iru2 esys sys
...
sys-uv126 blade63 pair31 oiru3 iru3 osys sys

Appendix G: Integrating Other Resources with Moab

1387 G.2 Hardware Integration

G.2 Hardware Integration 1388

sys-uv127 blade63 pair31 oiru3 iru3 osys sys
sys-uv128 blade64 pair32 eiru4 iru4 esys sys
sys-uv129 blade64 pair32 eiru4 iru4 esys sys
...
sys-uv190 blade95 pair47 oiru5 iru5 osys sys
sys-uv191 blade95 pair47 oiru5 iru5 osys sys
sys-uv192 blade96 pair48 eiru6 iru6 esys sys
sys-uv193 blade96 pair48 eiru6 iru6 esys sys
...
sys-uv252 blade126 pair63 eiru7 iru7 esys sys
sys-uv253 blade126 pair63 eiru7 iru7 esys sys
sys-uv254 blade127 pair63 oiru7 iru7 osys sys
sys-uv255 blade127 pair63 oiru7 iru7 osys sys

4. Define the order that Moab should check node sets for available nodes. Since the
NODESETPRIORITYTYPE has a value of FIRSTFIT, the node sets must be ordered
from smallest to largest so Moab will always choose the node set with the fewest nodes
required to satisfy the job's request. This means listing all blades, blade pairs, even and
odd IRUs, IRUs, even and odd system, and system, respectively.

moab.cfg:
NODESETLIST
blade1,blade2,blade3,…,blade127,pair1,pair2,pair3,…,pair63,eiru0,oiru0,eiru1,oiru1,
…,eiru7,oiru7,iru0,iru1,…,iru7,esys,osys,sys

5. Configure Moab to use the PRIORITY NODEALLOCATIONPOLICY. This allocation
policy causes Moab to allocate enough nodes to fulfill a job's processor and memory
requirement.

NODEALLOCATIONPOLICY PRIORITY

6. Set NODEACCESSPOLICY to SINGLEJOB to ensure that Moab will schedule large
memory requests correctly and efficiently. This is necessary even when a job uses only
the memory of a NUMA node.

NODEACCESSPOLICY SINGLEJOB

The policy SINGLEJOB tells Moab not to allow jobs to share NUMA resources (cores
and memory), which for a shared-memory system is very important for fast job
execution. For example, if Moab scheduled a job to use the cores of a NUMA node where
memory is used by another job, both jobs would execute slowly (up to 10 times more
slowly).

G.2.1.B Job Submission
Jobs can request processors and memory using the -l nodes=<number of cpus>
and -l mem=<amount of memory> syntaxes. You should not have
JOBNODEMATCHPOLICY EXACTNODE configured on a NUMA system. You must use the
sharedmem job flag on submission to force the job to run only on a sharedmem partition
or cluster and to indicate that the job can span multiple nodes. For example:

Appendix G: Integrating Other Resources with Moab

qsub -l nodes=3,mem=640sgb,flags=sharedmem

G.3 Torque/PBS Integration Guide - RM Access
Control

In this topic:

G.3.1 Server Configuration - page 1389
G.3.2 (Optional) MOM Configuration - page 1389

G.3.1 Server Configuration
Using the PBS qmgr command, add the Moab administrator as both a manager and
operator:

> qmgr
Qmgr: set server managers += <MOABADMIN>@*.<YOURDOMAIN>
Qmgr: set server operators += <MOABADMIN>@*.<YOURDOMAIN>
Qmgr: quit

For example:

> qmgr
Qmgr: set server managers += staff@*.ucsd.edu
Qmgr: set operators += staff@*.ucsd.edu
Qmgr: quit

If desired, the Moab administrator can be enabled as a manager and operator only on
the host on which Moab is running by replacing "*.<YOURDOMAIN>" with
"<MOABSERVERHOSTNAME>".

G.3.2 (Optional) MOM Configuration
If direct Moab to pbs_mom communication is required, the mom_priv/config file on
each compute node where pbs_mom runs should be set as in the following example:

$restricted *.<YOURDOMAIN>
$clienthost <MOABSERVERHOSTNAME>

Appendix G: Integrating Other Resources with Moab

1389 G.3 Torque/PBS Integration Guide - RM Access Control

G.4 Torque/PBS Config - Default Queue Settings 1390

For security purposes, sites may want to run Moab under a non-root user ID. If so,
and Moab-pbs_mom communication is required, the mom_priv/config files must
be world-readable and contain the line '$restricted *.<YOURDOMAIN>'. (i.e.,
'$restricted *.uconn.edu').

G.4 Torque/PBS Config - Default Queue Settings

In this topic:

G.4.1 Default Queue - page 1390
G.4.2 Queue Default Node and Walltime Attributes - page 1390
G.4.3 System-Wide Default Node and Walltime Attributes - page 1390

G.4.1 Default Queue
To set the default queue (the queue used by jobs if a queue is not explicitly specified by the
user), issue the following:

>> qmgr
Qmgr: set system default_queue = <QUEUENAME>
Qmgr: quit

G.4.2 Queue Default Node and Walltime Attributes
To set a default of one node and 15 minutes of walltime for a particular queue, issue the
following:

> qmgr
Qmgr: set queue <QUEUENAME> resources_default.nodect = 1
Qmgr: set queue <QUEUENAME> resources_default.walltime = 00:15:00
Qmgr: quit

G.4.3 System-Wide Default Node and Walltime Attributes
To set system wide defaults, set the following:

> qmgr
Qmgr: set server resources_default.nodect = 1
Qmgr: set server resources_default.walltime = 00:15:00
Qmgr: quit

Appendix G: Integrating Other Resources with Moab

G.5 Provisioning Resource Managers

G.5.1 Validating an xCAT Installation for Use with Moab

In this topic:

G.5.1.A Introduction to Validating xCAT Configuration - page 1391
G.5.1.B Verifying Node List - page 1391
G.5.1.C Reporting Node Status - page 1392
G.5.1.D Verifying Hardware Management Configuration - page 1392
G.5.1.E Verifying Provisioning Images - page 1392

G.5.1.A Introduction to Validating xCAT Configuration
This document describes a series of steps to validate xCAT configuration prior to
configuring Moab to manage hardware via xCAT. It is assumed the reader is familiar with
xCAT and the xCAT configuration on the target site. This document does not provide xCAT
configuration documentation or troubleshooting information; refer to the xCAT
documentation for such information.

G.5.1.B Verifying Node List
Verify that all nodes that Moab will manage are known to xCAT with the xCAT nodels
command. Ensure that all expected (and no unexpected) nodes are listed. You may find it
useful to create new group names to identify Moab-managed nodes.

[root@h0 moab]# nodels hyper,compute
h1
h2
h3
h4
h5
h7
kvmm1
kvmm10
kvmm2
kvmm3
kvmm4
kvmm5
kvmm6
kvmm7
kvmm8
[root@h0 moab]#

Appendix G: Integrating Other Resources with Moab

1391 G.5 Provisioning Resource Managers

http://xcat-docs.readthedocs.io/en/stable/
http://xcat-docs.readthedocs.io/en/stable/

G.5 Provisioning Resource Managers 1392

G.5.1.C Reporting Node Status
Verify that all nodes report their status correctly using the xCAT nodestat command.
Ensure that all nodes show the correct status (sshd, installing, noping, and so
forth); there should not be any timeouts or error messages.

[root@h0 moab]# nodestat hyper,compute |sort
h1: pbs,sshd
h2: pbs,sshd
h3: pbs,sshd
h4: pbs,sshd
h5: pbs,sshd
h7: noping
kvmm10: noping
kvmm1: pbs,sshd
kvmm2: pbs,sshd
kvmm3: pbs,sshd
kvmm4: pbs,sshd
kvmm5: pbs,sshd
kvmm6: pbs,sshd
kvmm7: pbs,sshd
kvmm8: noping
kvmm9: noping
[root@h0 moab]#

G.5.1.D Verifying Hardware Management Configuration
Verify that all nodes that Moab will manage have hardware management interfaces
correctly configured using the xCAT nodels and rpower commands. After each of the
rpower commands, verify the requested state was achieved with rpower stat.

[root@h0 moab]# nodels h1,kvmm1 nodehm.mgt nodehm.power
h1: nodehm.power: ilo
h1: nodehm.mgt: ilo
kvmm1: nodehm.power: kvm
kvmm1: nodehm.mgt: kvm
[root@h0 moab]# rpower h1,kvmm1 off
h1: off
kvmm1: off
[root@h0 moab]# rpower h1,kvmm1 stat
h1: off
kvmm1: off
[root@h0 moab]# rpower h1,kvmm1 boot
h1: on reset
kvmm1: on reset
[root@h0 moab]# rpower h1,kvmm1 stat
h1: on
kvmm1: on
[root@h0 moab]#

G.5.1.E Verifying Provisioning Images
Verify that all operating system images that Moab uses are configured correctly in xCAT.
For stateful images, test that all combinations of operating system, architecture, and profile

Appendix G: Integrating Other Resources with Moab

install correctly.

[root@h0 moab]# rinstall -o centosX.X -a x86_64 -p hyper h1
h1: install centosX.X-x86_64-hyper
h1: on reset
[root@n100 ~]# sleep 15 && nodestat n05
n05: ping install centosX.X-x86_64-hyper
[root@h0 moab]#

For stateless images, test that nodes are able to network boot the images:

[root@h0 moab]# nodech h5 nodetype.os=centosX.X nodetype.arch=x86_64
nodetype.profile=hyper
[root@h0 moab]# nodeset h5 netboot
h5: netboot centosX.X-x86_64-hyper
[root@h0 moab]# rpower h5 boot
h5: on reset
[root@h0 moab]# sleep 60 && nodestat h5
h5: pbs, sshd
[root@h0 moab]#

Related Topics

l Native Resource Manager Overview

l Resource Provisioning

Appendix G: Integrating Other Resources with Moab

1393 G.5 Provisioning Resource Managers

H.1 Accounting Interfaces 1394

Appendix H: Interfacing with Moab (APIs)
Moab provides numerous interfaces allowing it to monitor and manage most services and
resources. It also possesses flexible interfaces to allow it to interact with peer services and
applications as both a broker and an information service. This appendix is designed to
provide a general overview and links to more detailed interface documentation.

Moab interfaces to systems providing various services and using various protocols. This
appendix is designed to assist users who want to enable Moab in new environments using
one of the existing interfaces. It does not cover the steps required to create a new interface.

In this chapter:

H.1 Accounting Interfaces 1394
H.2 Grid Interfaces 1394

H.2.1 Services Utilized 1395
H.2.2 Services Provided 1395

H.3 Identity and Credential Management Interfaces 1395
H.4 Job Submission and Management Interface 1396
H.5 Query and Control APIs 1397

H.5.1 CLI (Command Line Interface) XML API 1397
H.6 Resource Management Interfaces 1398

H.1 Accounting Interfaces

Moab accounting interfaces allow Moab to export local utilization statistics, events, and
accounting information to site specific scripts.

H.2 Grid Interfaces

Moab provides interfaces to allow interaction with various grid brokers and services. These
interfaces allow Moab to provide services, as well as utilize services.

In this topic:

Appendix H: Interfacing with Moab (APIs)

H.2.1 Services Utilized - page 1395
H.2.2 Services Provided - page 1395

H.2.1 Services Utilized
l Information Services (import and utilize information service data in making
scheduling decisions)

l Job Migration

l Data Migration

l Credential Mapping

l Security and Delegation

See Chapter 24: Moab Workload Manager for Grids - page 954 for more information on
utilized services.

H.2.2 Services Provided
l Information Services (provide resource, workload, and credential information)

l Job Migration

l Data Migration

l Credential Mapping

See 24.1 Grid Basics - page 956 for more information on provided services.

H.3 Identity and Credential Management Interfaces

Moab's identity and credential management interfaces allow Moab to exchange credential
and user configuration, access, policy, and usage information.

l Identity Manager

l Accounting Manager

l Moab Workload Manager for Grids

Appendix H: Interfacing with Moab (APIs)

1395 H.3 Identity and Credential Management Interfaces

H.4 Job Submission and Management Interface 1396

H.4 Job Submission and Management Interface

Moab's Job Submission and Management Interface provides interfaces to query resource
availability, submit, modify, and manage jobs, and query the status of active and completed
jobs.

l Resource Availability Query
o Determine quantity, state, and configuration of configured resources (idle,
busy, and down nodes)

o Determine quantity and configuration of all available resources (idle nodes)
o Determine resources available subject now and in the future for potential job
o Determine best target cluster destination for potential job
o Determine largest/longest job that could start immediately
o Determine estimated start time for potential job
o Determine earliest guaranteed start time for potential job

l Reserve Resources
o Reserve specific resources for desired time frame

l Submit Job (XML format)
o Submit job to specific cluster
o Submit job to global job queue

l Manage Job
o Hold job
o Adjust job priority
o Modify job executable, args, data requirements, job dependencies, duration,
hostcount, or other attributes

o Suspend/resume job
o Checkpoint/requeue job
o Cancel job
o Migrate job
o Adjust job quality of service (QoS)

Appendix H: Interfacing with Moab (APIs)

l Query Job
o Determine job state, utilization, or output results for idle, active, or completed
job

o Determine estimated start time
o Determine guaranteed start time

H.5 Query and Control APIs

The Moab Cluster and Grid Suites provides a (Moab) workload manager server that
supports a broad array of client services. These services can be directly accessed via Moab
client commands. The Query and Control APIs allow external portals and services to obtain
information about compute resources, workload, and usage statistics.

In this topic:

H.5.1 CLI (Command Line Interface) XML API - page 1397
H.5.1.A Common Query/Control Services - page 1398

H.5.1 CLI (Command Line Interface) XML API
All Moab client commands can report results in XML format to allow the information to be
easily integrated into peer services, portals, databases, and other applications. To request
that a client command report its output in XML, specify the --format=xml flag as in the
following example:

> showq --format=xml
<Data>
<Object>queue</Object>
<cluster LocalActiveNodes="1" LocalAllocProcs="1" LocalIdleNodes="0"
LocalIdleProcs="3" LocalUpNodes="1"
LocalUpProcs="4" RemoteActiveNodes="0" RemoteAllocProcs="0" RemoteIdleNodes="0"

RemoteIdleProcs="0"
RemoteUpNodes="0" RemoteUpProcs="0" time="1128451812"></cluster>

<queue count="1" option="active">
<job AWDuration="11672" EEDuration="1128451812" Group="[DEFAULT]" JobID="Moab.2"
MasterHost="cw2" PAL="2"
QOS="bug3" ReqAWDuration="54000" ReqNodes="1" ReqProcs="1" RsvStartTime="1128451812"

RunPriority="0"
StartPriority="1" StartTime="1128451812" StatPSDed="11886.580000"

StatPSUtl="11886.580000" State="Running"
SubmissionTime="1128451812" SuspendDuration="0" User="smith"></job>

</queue>
<queue count="1" option="eligible">
<job EEDuration="1128451812" Group="jacksond" JobID="customer.35" QOS="bug"
ReqAWDuration="3600"

Appendix H: Interfacing with Moab (APIs)

1397 H.5 Query and Control APIs

H.6 Resource Management Interfaces 1398

ReqProcs="1" StartPriority="1" StartTime="0" State="Idle"
SubmissionTime="1128451812" SuspendDuration="0"
User="johnson"></job>

<queue><queue count="0" option="blocked"></queue>
</Data>

H.5.1.A Common Query/Control Services

l jobs
o query status - mdiag -j (XML details)
o submit - msub (XML format)
o cancel - mjobctl -c

l nodes
o query status - mdiag -n (XML details)
o create resource reservation - mrsvctl -c
o destroy resource reservation - mrsvctl -r

H.6 Resource Management Interfaces

Moab can monitor, schedule, and control services and resources using multiple protocols.
These protocols include the following:

l LDAP

l script/flat file

l Resource Manager Specific Interfaces - Torque

Using the resource manager interfaces, Moab can do the following:

l monitor resources (compute host, network, storage, and software license based
resources)

o load configuration, architecture, and feature information
o load state, utilization, and workload information
o load policy and ownership information

l manage resources
o dynamically reconfigure and reprovision resource hardware (processors,
memory, etc.)

Appendix H: Interfacing with Moab (APIs)

o dynamically reconfigure and reprovision resource software (operating system,
application software, filesystem mounts, etc.)

o dynamically reconfigure and reprovision resource security (VPNs, VLANs, host
security, etc.)

l monitor workload (batch jobs, interactive jobs, persistent services, dynamic services,
distributed services)

o load state, resource requirement, and required environment information
o load user, group, and credential information
o load utilization, resource allocation, and policy information

l manage workload
o migrate jobs from one resource to another (intra-cluster and inter-cluster)
o modify jobs for translation and optimization purposes
o suspend, resume, checkpoint, restart, and cancel jobs

l query cluster policies and configuration

Appendix H: Interfacing with Moab (APIs)

1399 H.6 Resource Management Interfaces

I.1 Handling Large Jobs 1400

Appendix I: Considerations for Large Clusters
There are several key considerations in getting a batch system to scale.

In this chapter:

I.1 Handling Large Jobs 1400
I.2 Handling Large Numbers of Jobs 1401

I.2.1 Set a Minimum RMPOLLINTERVAL 1401
I.2.2 Reduce Command Processing Time 1402
I.2.3 Minimize Job Processing Time 1403
I.2.4 Load All Non-Completed Jobs at Startup 1403
I.2.5 Reducing Job Start Time 1403
I.2.6 Reducing Job Reservation Creation Time 1404
I.2.7 Optimizing Backfill Time 1404
I.2.8 Constraining Moab Logging - LOGLEVEL 1404
I.2.9 Preemption 1404
I.2.10 Handling Transient Resource Manager Failures 1404
I.2.11 Constrain the Number of Jobs Preempted Per Iteration 1405
I.2.12 Scheduler Settings 1405
I.2.13 Configure Torque for Large Job Numbers 1405

I.3 Handling Large Numbers of Nodes 1405
I.4 Handling Large SMP Systems 1406
I.5 Resource Manager Scaling 1407
I.6 Server Sizing 1407

Related Topics

l Appendix D: Adjusting Default Limits

I.1 Handling Large Jobs

For large jobs, additional parameters beyond those specified for large node systems might
be required. These include settings for the maximum number of tasks per job, and the
maximum number of nodes per job.

Appendix I: Considerations for Large Clusters

I.2 Handling Large Numbers of Jobs

In this topic:

I.2.1 Set a Minimum RMPOLLINTERVAL - page 1401
I.2.2 Reduce Command Processing Time - page 1402
I.2.3 Minimize Job Processing Time - page 1403
I.2.4 Load All Non-Completed Jobs at Startup - page 1403
I.2.5 Reducing Job Start Time - page 1403
I.2.6 Reducing Job Reservation Creation Time - page 1404
I.2.7 Optimizing Backfill Time - page 1404
I.2.8 Constraining Moab Logging - LOGLEVEL - page 1404
I.2.9 Preemption - page 1404
I.2.10 Handling Transient Resource Manager Failures - page 1404
I.2.11 Constrain the Number of Jobs Preempted Per Iteration - page 1405
I.2.12 Scheduler Settings - page 1405
I.2.13 Configure Torque for Large Job Numbers - page 1405

I.2.1 Set a Minimum RMPOLLINTERVAL
With event driven resource managers like Torque, each time a job is submitted the
resource manager notifies the scheduler. In an attempt to minimize response time, the
scheduler starts a new scheduling cycle to determine if the newly submitted job can run. In
systems with large numbers of jobs submitted at once, this might not result in the desired
behavior for two reasons. First, by scheduling at every job submission Moab schedules
newly submitted jobs onto available resources in a first come, first served basis rather than
evaluating the entire group of new jobs at once and optimizing the placement accordingly.
Second, by launching a scheduling iteration for every job submitted, Moab places a heavy
load on the resource manager. For example, if a user were to submit 1000 new jobs
simultaneously, for each job submitted, the resource manager contacts the scheduler, the
scheduler starts a new iteration, and in this iteration, the scheduler contacts the resource
manager requesting updated information on all jobs and resources available.

Setting a minimum RMPOLLINTERVAL causes the scheduler to not process jobs as quickly
as they are submitted, but rather to wait a minimum amount of time to allow more jobs be
submitted and to process these new jobs in groups.

RMPOLLINTERVAL 30,60

If the system is busy, schedule every 30 seconds. If it is not busy, schedule every 60 seconds.

Appendix I: Considerations for Large Clusters

1401 I.2 Handling Large Numbers of Jobs

I.2 Handling Large Numbers of Jobs 1402

I.2.2 Reduce Command Processing Time
If your system's scheduling cycle regularly takes longer than the CLIENTTIMEOUT value,
you can configure Moab to fork a copy of itself that will respond to certain information-only
client commands (checkjob, showbf, showres, and showstart). This enables you to run
intense diagnostic commands while Moab is in the middle of its scheduling process.

When you set UIMANAGEMENTPOLICYFORKCLIENTUIPORT<port number> on the
server side, Moab forks a copy of itself that will listen for client commands on a separate
port. For example, systems that run client commands, such as submit hosts, can set
CLIENTUIPORT41560. This will allow the clients to run commands such as checkjob,
showbf, showres and showstart and have cached information returned from the
previous scheduling iteration. Moab prints a disclaimer at the top of each command that
was populated by the forked process stating that the information may be an iteration
behind.

See CLIENTTIMEOUT, CLIENTUIPORT, and UIMANAGEMENTPOLICY for parameter
information.

Example I-1: Sample configuration:

UIMANAGEMENTPOLICY FORK
CLIENTUIPORT 41560

Moab forks a copy of itself on port 41560, where it will watch for checkjob, showbf, showres, and showstart
commands until the main scheduling process completes.

Example I-2: Sample command output:

$ checkjob 34

--
NOTE: The following information has been cached by the remote server
and may be slightly out of date.
--

job 34

State: Idle
Creds: user:wightman group:company class:batch
WallTime: 00:00:00 of 00:01:00
SubmitTime: Thu May 22 14:17:06
(Time Queued Total: 00:00:18 Eligible: 00:00:18)

TemplateSets: DEFAULT
Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

SystemID: scale
SystemJID: 34

Appendix I: Considerations for Large Clusters

IWD: $HOME/test/scale
SubmitDir: $HOME/test/scale
Executable: sleep 60

I.2.3 Minimize Job Processing Time
Use the ENABLEHIGHTHROUGHPUT parameter. By default, Moab processes all job
attributes, filters, remap classes, job arrays, and other information when a job is submitted.
This requires full access to the Moab configuration and significantly increases the
processing time Moab needs when jobs are submitted. By setting
ENABLEHIGHTHROUGHPUT to TRUE, Moab stores the job information in an internal
queue and returns the job ID immediately. The internal queue is processed when Moab
begins its next scheduling iteration. This enables Moab to process hundreds of jobs per
second rather than 20-30 per second. Because the jobs are processed in a separate queue
after the job has been returned, it is recommended that MAILPROGRAM be configured.
Moab will send an email to the user if a job is rejected.

Because the job is not fully processed, some attributes might change after the job has been
submitted. For example, when a job class is remapped, the new class is not reflected until
Moab begins its next scheduling iteration. Additionally, job arrays are not instantiated until
Moab begins its next scheduling cycle.

If ENABLEHIGHTHROUGHPUT is TRUE, you must set NODEALLOCATIONPOLICY to
FIRSTAVAILABLE.

I.2.4 Load All Non-Completed Jobs at Startup
Use the LOADALLJOBCP parameter. By default, Moab loads non-complete jobs for active
resource managers only. By setting LOADALLJOBCP to TRUE, Moab will load all non-
complete jobs from all checkpoint files at startup, regardless of whether their
corresponding resource manager is active.

I.2.5 Reducing Job Start Time
Use the ASYNCSTART parameter. By default, Moab will launch one job at a time and verify
that each job successfully started before launching a subsequent job. For organizations
with large numbers of very short jobs (less than 2 minutes in duration), the delay
associated with confirming successful job start can lead to productivity losses. If tens or
hundreds of jobs must be started per minute, and especially if the workload is composed
primarily of serial jobs, then the resource manager ASYNCSTART flag can be set. When
set, Moab will launch jobs optimistically and confirm success or failure of the job start on

Appendix I: Considerations for Large Clusters

1403 I.2 Handling Large Numbers of Jobs

I.2 Handling Large Numbers of Jobs 1404

the subsequent scheduling iteration. Also consider adding the ASYNCDELETE flag if users
frequently cancel jobs.

I.2.6 Reducing Job Reservation Creation Time
Use the RMCFGJOBRSVRECREATE attribute. By default, Moab destroys and re-creates job
reservations each time a resource manager updates any aspect of a job. Historically, this
stems from the fact that certain resource managers would inadvertently or intentionally
migrate job tasks from originally requested nodes to other nodes. To maintain
synchronization, Moab would re-create reservations each iteration therefore incorporating
these changes. On most modern resource managers, these changes never occur, but the
effort required to handle this case grows with the size of the cluster and the size of the
queue. Consequently, on very large systems with thousands of nodes and thousands of
jobs, a noticeable delay is present. By setting JOBRSVRECREATE to FALSE on resource
managers that do not exhibit this behavior, significant time savings per iteration can be
obtained.

I.2.7 Optimizing Backfill Time
Use the OPTIMIZEDBACKFILL flag. Speeds up backfill when a system reservation is in use.

I.2.8 Constraining Moab Logging - LOGLEVEL
Use the LOGLEVEL parameter. When running on large systems, setting LOGLEVEL to 0 or
1 is normal and recommended. Only increase LOGLEVEL above 0 or 1 if you have been
instructed to do so by Moab support.

I.2.9 Preemption
When preemption is enabled Moab can take considerably more time scheduling jobs for
every scheduling iteration. Preemption increases the number of options available to Moab
and therefore takes more time for Moab to optimally place jobs. If you are running a large
cluster or have more than the usual amount of jobs (>10000), consider disabling
preemption. If disabling preemption is not possible, consider limiting its scope to only a
small subset of jobs (as both preemptors and preemptees).

I.2.10 Handling Transient Resource Manager Failures
Use the RMCFGMAXITERATIONFAILURECOUNT attribute.

Appendix I: Considerations for Large Clusters

I.2.11 Constrain the Number of Jobs Preempted Per Iteration
Use the JOBMAXPREEMPTPERITERATION parameter.

For very large job count systems, configuration options controlling the maximum
supported limits might need to be adjusted, including the maximum number of
reservations and the maximum number of supported evaluation ranges.

I.2.12 Scheduler Settings
If using Moab, there are a number of parameters that can be set on the scheduler, which
may improve Torque performance. In an environment containing a large number of short-
running jobs, the JOBAGGREGATIONTIME parameter can be set to reduce the number of
workload and resource queries performed by the scheduler when an event based
interface is enabled. Setting JOBAGGREGATIONTIME instructs the scheduler to ignore
events coming from the resource manager and perform scheduling at regular intervals,
rather than around resource manager events. If the pbs_server daemon is heavily
loaded and PBS API timeout errors (i.e., 'Premature end of message') are reported within
the scheduler, the TIMEOUT attribute of the RMCFG parameter can be set with a value of
between 30 and 90 seconds.

I.2.13 Configure Torque for Large Job Numbers
Torque's use_job_subdirs server parameter enables Torque to handle large numbers
of jobs more efficiently. For more information, see 'use_jobs_subdirs' in the Torque
Resource Manager Administrator Guide.

I.3 Handling Large Numbers of Nodes

For very large clusters (>= 10,000 processors) default scheduling behavior might not scale
as desired. To address this, the following parameters should be considered:

Parameter Recommended Settings

RMPOLLINTERVAL In large node environments with large and long jobs, scheduling
overhead can be minimized by increasing RMPOLLINTERVAL above its
default setting. If an event-driven resource management interface is
available, values of two minutes or higher can be used. Scheduling
overhead can be determined by looking at the scheduling load reported

Appendix I: Considerations for Large Clusters

1405 I.3 Handling Large Numbers of Nodes

I.4 Handling Large SMP Systems 1406

Parameter Recommended Settings

by mdiag -S.

LIMITEDNODECP Startup/shutdown time can be minimized by disabling full node state
checkpointing that includes some statistics covering node availability.

SCHEDCFG
FLAGS="
FASTRSVSTARTUP

When you have reservations on a large number of nodes, it can take
Moab a long time to recreate them on startup. Setting the
FASTRSVSTARTUP scheduler flag greatly reduces startup time.

* For clusters where the number of nodes or processors exceeds 50,000, the maximum
stack size for the shell in which Moab is started might need to be increased (as Moab might
crash if the stack size is too small). On most UNIX/Linux based systems, the command
ulimit -s unlimited can be used to increase the stack size limit before starting
Moab. This can be placed in your Moab startup script.

See Appendix D for further information on default and supported object limits.

Avoid adding large numbers of NODECFG lines in the moab.cfg or moab.d/*.cfg files
to keep the Moab boot time low.

For example, adding a configuration line to define features for each node in a large cluster
(such as NODECFG[x] Features+=green,purple) can greatly increase the Moab
boot time. If Moab processes 15 node configuration lines per second for a 50,000-node
system, it could add approximately 55 minutes of node configuration processing to the
Moab boot time.

In this case, it is better to define the node features in the resource manager configuration.

I.4 Handling Large SMP Systems

For large-way SMP systems (> 512 processors/node) Moab defaults might need
adjustment.

Parameter Recommended Settings

MAXRSVPERNODE By default, Moab does not expect more than 64 jobs per node to be
running or have future reservations. Increasing this parameter to a
value larger than the expected maximum number of jobs per node is
advised.

Appendix I: Considerations for Large Clusters

I.5 Resource Manager Scaling

Proper Resource Manager Configuration
l Torque

o See Large Cluster Considerations in the Torque Resource Manager
Administrator Guide.

I.6 Server Sizing

See 'Hardware Requirements' in the Moab HPC Suite Installation and Configuration Guide
for recommendations.

Appendix I: Considerations for Large Clusters

1407 I.5 Resource Manager Scaling

J.1 Moab Grid Scheduler Service Script 1408

Appendix J: Configuring Moab as a Service
Scripts that follow can be used to start up Moab services automatically upon a reboot. To
enable a service script, copy the script to /etc/rc.d/init.d/S97moab, edit the file to
make needed localization changes (adjust binary paths, execution user, etc.), and add links
to the rc3.dand rc5.d directories as in the example that follows:

> cp mwm.service /etc/rc.d/init.d/S97moab
> vi /etc/rc.d/init.d/S97moab

(make needed localizations)
> ln -s /etc/rc.d/init.d/S97moab /etc/rc.d/rc3.d
> ln -s /etc/rc.d/init.d/S97moab /etc/rc.d/rc5.d

In this chapter:

J.1 Moab Grid Scheduler Service Script 1408
J.2 Moab Workload Manager Service Scripts 1409

J.1 Moab Grid Scheduler Service Script

Sample Script

#!/bin/sh
#
moab This shell script takes care of starting and stopping
the Moab Workload Manager.
#

Source function library.
if [-f /etc/init.d/functions] ; then
. /etc/init.d/functions

elif [-f /etc/rc.d/init.d/functions] ; then
. /etc/rc.d/init.d/functions

else
exit 0

fi

Read in the command arguments
case "$1" in
start)

Next start Moab Workload Manager...
echo -n $"Starting Moab Workload Manager: "
daemon su -l -s /bin/sh root -c "/opt/moab/sbin/moab"
echo
;;

stop)
Stop Moab
echo -n $"Shutting down Moab Workload Manager: "

Appendix J: Configuring Moab as a Service

killproc moab
echo
;;

restart)
$0 stop
$0 start
;;

*)
echo $"Usage: moab {start|stop|restart}"
exit 1

esac

exit 0

J.2 Moab Workload Manager Service Scripts

l Moab Workload Manager Script

l Moab Workload Manager + Torque Script

Moab Workload Manager Script

#!/bin/sh
#
moab This shell script takes care of starting and stopping
the Moab Workload Manager.
#

Source function library.
if [-f /etc/init.d/functions] ; then
. /etc/init.d/functions

elif [-f /etc/rc.d/init.d/functions] ; then
. /etc/rc.d/init.d/functions

else
exit 0

fi

Read in the command arguments
case "$1" in
start)

Next start Moab Workload Manager...
echo -n $"Starting Moab Workload Manager: "
daemon su -l -s /bin/sh root -c "/opt/moab/sbin/moab"
echo
;;

stop)
Stop Moab
echo -n $"Shutting down Moab Workload Manager: "
killproc moab
echo
;;

restart)
$0 stop

Appendix J: Configuring Moab as a Service

1409 J.2 Moab Workload Manager Service Scripts

J.2 Moab Workload Manager Service Scripts 1410

$0 start
;;

*)
echo $"Usage: moab {start|stop|restart}"
exit 1

esac

exit 0

Moab Workload Manager + Torque Script

#!/bin/sh
#
moab This shell script takes care of starting and stopping
the TORQUE resource manager and Moab Workload Manager.
#
description: TORQUE is a scalable resource manager which manages jobs in
cluster environments. Moab is a cluster scheduler which uses
TORQUE to schedule jobs on that cluster.
#

Source function library.
if [-f /etc/init.d/functions] ; then
. /etc/init.d/functions

elif [-f /etc/rc.d/init.d/functions] ; then
. /etc/rc.d/init.d/functions

else
exit 0

fi

Read in the command arguments
case "$1" in
start)

Start TORQUE services first...

echo -n $"Starting TORQUE services: "
daemon /usr/local/torque/sbin/pbs_mom
daemon /usr/local/torque/sbin/pbs_server
echo

Next start Moab Workload Manager...
echo -n $"Starting Moab Workload Manager: "
daemon su -l -s /bin/sh root -c "/opt/moab/sbin/moab"
echo
;;

stop)
Stop Moab first...

echo -n $"Shutting down Moab Workload Manager: "
killproc moab
echo

echo -n $"Shutting down TORQUE services: "
killproc pbs_server
echo
killproc pbs_mom
echo
;;

restart)

Appendix J: Configuring Moab as a Service

$0 stop
$0 start
;;

*)
echo $"Usage: moab {start|stop|restart}"
exit 1

esac

exit 0

Appendix J: Configuring Moab as a Service

1411 J.2 Moab Workload Manager Service Scripts

1412

Appendix K: Migrating from Maui 3.2
This guide is intended to help facilitate migrating from Maui to Moab. If you do not have
Moab yet, you can download a free evaluation version. At a high level, migrating from Maui
3.2 to Moab involves minimal effort. In fact, Moab fully supports all Maui parameters and
commands. Migration can consist of nothing more than renaming maui.cfg to
moab.cfg and launching Moab using the moab command. With this migration, the biggest
single issue is becoming aware of all the new facilities and capabilities available within
Moab. Beyond this, migration consists of a few minor issues that might require attention
such as some statistics and priorities.

Another approach of migrating from Maui to Moab is to configure Moab in Monitor mode
and run it beside Maui. Maui will continue to perform the scheduling and control workload.
Moab will simply monitor the cluster environment using the policies configured in
moab.cfg. Moab will not have the ability to affect workload, providing a safe and risk-free
environment to evaluate Moab without affecting your production environment. You can
also have Moab capture resource and workload trace files and allow Moab to simulate what
it would have done if it controlled workload. When you feel comfortable with and want to
run Moab live on your cluster, all you need to do is change the mode to NORMAL, stop
Maui, and restart Moab. Current jobs will remain running and Moab will take over control
of scheduling.

As with any migration, we suggest that you back up important files such as the following:
maui.cfg, maui.log and maui.ck.

In this chapter:

K.1 Migrating from Maui to Moab 1413
K.2 Other Notes 1413

K.2.1 File Naming 1413
K.2.2 Statistics and Checkpointing 1414
K.2.3 Verify Configuration File Compatibility 1414
K.2.4 Environment Variables 1414

K.3 Running Maui and Moab Side-By-Side 1415

Appendix K: Migrating from Maui 3.2

http://www.adaptivecomputing.com/request-free-demoevaluation/

K.1 Migrating from Maui to Moab

1. Install Moab Workload Manager.

2. Copy your maui.cfg file to the MOABHOMEDIR/etc (/opt/moab/etc) and
rename it moab.cfg.

3. Stop Maui.

4. Start Moab.

5. If applicable, re-apply those configurations found in the Statistics and Checkpointing
section that need adjustment after migration, as well as any parameters in moab.cfg
that point to a Maui file like maui.log.

K.2 Other Notes

This section provides more information on the minor differences between Maui and Moab,
and the changes you might need to make.

In this topic:

K.2.1 File Naming - page 1413
K.2.2 Statistics and Checkpointing - page 1414
K.2.3 Verify Configuration File Compatibility - page 1414
K.2.4 Environment Variables - page 1414

K.2.1 File Naming
Moab uses slightly different naming than Maui. The following table displays these changes:

File Maui Moab

executable maui moab

logs maui.log moab.log

configuration file maui.cfg moab.cfg

Appendix K: Migrating from Maui 3.2

1413 K.1 Migrating from Maui to Moab

K.2 Other Notes 1414

K.2.2 Statistics and Checkpointing
Moab supports Maui version 3.2 or higher workload statistics, allowing it to process
historical statistics based on these statistics files. No changes are required to use these
statistics.

Moab does not support the Maui 3.2 checkpointing format. Because of this, state
information checkpointed under Maui will not be available at the time of the migration. The
loss of this information will have the following impact:

l Admin reservations, if any, will need to be re-created.

l Processed credential and scheduler statistics (displayed by showstats) will be lost.

l Admin job system priority configured by the setspri command and QoS
assignments configured by the setqos command, if any, will be lost.

K.2.3 Verify Configuration File Compatibility
The command mdiag -C will perform diagnostics on your new configuration file and might
prove helpful in identifying any issues.

K.2.4 Environment Variables
Scheduler environment variables are supported under Moab with obvious naming
changes. Sample environment variables follow:

Maui Moab

MAUIHOMEDIR MOABHOMEDIR

MAUIDEBUG MOABDEBUG

MAUICRASHVARIBALE MOABCRASHVARIABLE

MAUIENABLELOGBUFFERING MOABENABLELOGBUFFERING

MAUIRECOVERYACTION MOABRECOVERYACTION

MAUI-COMMANDS-PATH MOAB-COMMANDS-PATH

MAUIENABLELOGBUFFERING MOABENABLELOGBUFFERING

Appendix K: Migrating from Maui 3.2

K.3 Running Maui and Moab Side-By-Side

1. Install Moab Workload Manager on your cluster. (Installation steps will differ slightly
from a typical Moab installation.)

a. Run ./configure.

b. Run make.

c. You will need to set your MOABHOMEDIR environment variable to the location
where you built Moab by typing export MOABHOMDIR=[make directory].

2. To have Moab use all the same policies as Maui, copy maui.cfg to the
MOABHOMEDIR/etc and rename it moab.cfg.

l You can also start your moab.cfg file from scratch. Just use the moab.cfg
already in the MOABHOMEDIR/etc.

3. Make sure that the port in moab.cfg is different than the port used in maui.cfg.

4. In the moab.cfg file, add the parameter, SERVERMODE=MONITOR.

l If you used the moab.cfg from scratch, on the SCHEDCFG line add
MODE=MONITOR.

5. You will need to either put the Moab commands in your environment path (located in
MOABHOMEDIR/bin) or run the commands from their location if you still want to use
the Maui commands in your environment path.

6. Run Moab Workload Manager using the moab command located in
MOABHOMEDIR/bin.

Appendix K: Migrating from Maui 3.2

1415 K.3 Running Maui and Moab Side-By-Side

L.1 Moab Configuration 1416

Appendix L: Node Allocation Plug-in Developer
Kit

Each time Moab schedules a job, it must choose the nodes on which the job will run. Moab
uses the Node Allocation policy to select the available nodes to be used. Because there are
so many different systems and cluster topologies, you now have the ability to create and
use a node allocation plugin for allocating nodes based on your cluster's interconnect
topology.

The plugin policy allows you to write your own algorithm to choose which nodes will be
used. This algorithm is contained in a shared library that Moab loads at run time.

To obtain the Plug-in Developer Kit (PDK) with the header file and example code, contact
your sales representative.

In this chapter:

L.1 Moab Configuration 1416
L.1.1 Moab.cfg 1417
L.1.2 Syntax Rules 1417
L.1.3 Troubleshooting 1418

L.2 Writing the Plug-In 1418
L.2.1 Node Allocation Plug-in 1419
L.2.2 API and Data Structures 1419

L.1 Moab Configuration

The actual loading of a plug-in is accomplished by specifying the plug-in in the Moab
configuration file, moab.cfg.

In this topic:

L.1.1 Moab.cfg - page 1417
L.1.2 Syntax Rules - page 1417
L.1.3 Troubleshooting - page 1418

Appendix L: Node Allocation Plug-in Developer Kit

L.1.1 Moab.cfg
We recommend that you store all Moab plug-ins in the $MOABHOMEDIR/lib directory
(e.g., /opt/moab/lib) as shared libraries (*.so). The name of the actual plug-in
shared library file is up to the plug-in developer, which means you must give the correct
name in the moab.cfg file to form the absolute plug-in filename.

If a plug-in's specified shared library filename starts with a forward slash (/), it is an
absolute file path name and Moab simply uses it without alteration. For example, if a plug-
in's specified shared library filename is /opt/moab/plugins/plugin.so, Moab will
use it as the absolute plug-in file path name.

If a plug-in's specified shared library filename does not start with a forward slash (/), it is
a plug-in name and Moab forms the plug-in's absolute path name by concatenating the
Moab home directory, '/lib/lib', the specified plug-in name, and '.so' to obtain the absolute
path name. For example, if the $MOABHOMEDIR environment variable contains
/opt/moab and the plug-in name is plugin, Moab will create
/opt/moab/lib/libplugin.so and use it as the absolute plug-in file path name.

L.1.2 Syntax Rules
In order for Moab to use a plug-in for the Node Allocation policy, instead of a built-in Moab
policy, you must configure the policy in the moab.cfg file with the value 'PLUGIN:' followed
by the plug-in's shared library file name. The examples below assume the environment
variable $MOABHOMEDIR has a value of /opt/moab. Note the use of relative and
absolute plug-in shared library file path names in the parameter value and how they affect
Moab's construction of the full path name.

Partition Plug-in
Name

moab.cfg Parameter Moab-derived
Full Path Name

global plugin.so NODEALLOCATIONPOLICY
PLUGIN:plugin.so

/opt/moab/lib
/libplugin.so

global /usr/local
/plugins
/plugin.so

NODEALLOCATIONPOLICY
PLUGIN:/usr/local
/plugins/plugin.so

/usr/local/plugins
/plugin.so

abc plugin.so PARCFG[abc]
NODEALLOCATIONPOLICY
=PLUGIN:plugin.so

/opt/moab/lib
/libplugin.so

xyz /usr/local
/plugins

PARCFG[xyz]
NODEALLOCATIONPOLICY

/usr/local/plugins
/plugin.so

Appendix L: Node Allocation Plug-in Developer Kit

1417 L.1 Moab Configuration

L.2 Writing the Plug-In 1418

Partition Plug-in
Name

moab.cfg Parameter Moab-derived
Full Path Name

/plugin.so =PLUGIN:/usr/local
/plugins/plugin.so

L.1.3 Troubleshooting
There are several commands that can be used to confirm that the plug-in Node Allocation
Policy was loaded properly.

mschedctl -l
mschedctl -l is used to print out Moab's in memory configurations. If the plug-in
policy, with its full path, doesn't show for the configured partition then Moab failed to load
the partition. Note that when the NODEALLOCATIONPOLICY is configured globally, it is
configured on the 'ALL' partition.

$ mschedctl -l -v|grep ^NODEALLOCATIONPOLICY
NODEALLOCATIONPOLICY[ALL] PLUGIN:/opt/moab/lib/libfirstavailable.so
NODEALLOCATIONPOLICY[a] PLUGIN:/opt/moab/lib/liblastavailable.so
NODEALLOCATIONPOLICY[b] CONTIGUOUS
NODEALLOCATIONPOLICY[c] PLUGIN:/opt/moab/lib/libfirstavailable.so
NODEALLOCATIONPOLICY[d] [NONE]

mdiag -C
mdiag -C is used to validate the moab.cfg configuration. With a plug-in node allocation
policy, Moab will validate that it can successfully load the plug-in and that all of the
required symbols are present.

$ mdiag -C
...
INFO: line #35 is valid: 'NODEALLOCATIONPOLICY PLUGIN:firstavailable'
INFO: line #36 is valid: 'PARCFG[a]NODEALLOCATIONPOLICY=PLUGIN:lastavailable'
INFO: line #37 is valid: 'PARCFG[b]NODEALLOCATIONPOLICY=CONTIGUOUS'
INFO: line #38 is valid: 'PARCFG[d]NODEALLOCATIONPOLICY=PLUGIN:firstavailable'

L.2 Writing the Plug-In

In this topic:

Appendix L: Node Allocation Plug-in Developer Kit

L.2.1 Node Allocation Plug-in - page 1419
L.2.2 API and Data Structures - page 1419

L.2.1 Node Allocation Plug-in
A plug-in is a shared library that has specific functions and variables that will be called
directly from Moab. The plug-in conforms to a C language API. The API is specified through
an include file: moab-plugin.h. This file must be included in the plug-in code. The
include file provides function definitions, structures and variables that will be used when
communicating with Moab.

When you write the plug-in, you need to ensure that the plug-in code is robust. If the plug-
in crashes, Moab will crash. You will need to handle your own memory appropriately. If the
plug-in has memory leaks, Moab will have similar issues. If you want to maintain logs, the
plug-in will need to be responsible for its own logging.

L.2.2 API and Data Structures
The Application Programmer Interface (API) for the Moab Node Allocation plug-in consists
of three data items and three entry points that must be supplied to Moab by the plug-in.

Plug-in Supplied
Data Description

const char
*PLUGIN_NAME =
"Node Allocation
plugin 1.1";

This character pointer is used by Moab when logging information
regarding the operation of the plug-in.

const char
*PLUGIN_TYPE =
PLUGIN_TYPE_
NAME_
NODEALLOCATION;

This character pointer is used by Moab to verify the type of plug-in.
The value of this data is supplied by the moab-plugin.h source file.
The plug-in must set this as shown so that Moab does not attempt to
use a plug-in incorrectly. Moab uses this to determine whether the
plug-in API type is correct and to allow Moab to correctly
communicate with the plug-in.

const char
*PLUGIN_VERSION
= PLUGIN_API_
VERSION;

This character pointer is used by Moab to verify the API version
number. The value of this data is supplied by the moab-plugin.h
source file. The plug-in must set this as shown so that the correct
version of the moab-plugin.h is supplied to Moab. Moab uses this
to determine whether the API version is correct and to allow Moab to
correctly communicate with the plug-in.

Appendix L: Node Allocation Plug-in Developer Kit

1419 L.2 Writing the Plug-In

L.2 Writing the Plug-In 1420

Load Time API Description

initialize() int initialize(const char *name, void **data_handle)
The plug-in must supply an initialize() entry point. This entry point is
called for each use instance of the plug-in. For example, if the plug-in is
used on two different partitions, the initialize() entry point will be called
once for each partition.

l Name — The name is the unique identifier that is used to distinguish
multiple instances of the plug-in and for logging. When configured
globally, the name “ALL” will be given.

l Data handle — The data_handle points to a location where the plug-in
should store a pointer to any internal data needed by the plug-in
between calls to the API. The actual format and structure of the data is
up to the plug-in. Moab will supply this pointer back to the plug-in
each time a plug-in entry point is called. This data can provide context
for the plug-in usage instance.

Return codes The initialize() entry point should return one of two return statuses as
defined in moab-plugin.h:

#define PLUGIN_RC_SUCCESS 0
#define PLUGIN_RC_FAILURE 1

Gathering
node info

The initialize() entry point must gather any information about system
nodes, their topology, interconnection, and configuration that it needs to
make correct node allocations. Since Moab does not know what
information the plug-in might need, the plug-in must gather this
information itself.

Memory
considerations

The plug-in may allocate memory for temporary or persistent data as
needed, but must de-allocate or return the memory when finished. Not
returning memory can result in memory leaks and unstable operation on
the part of Moab.

Multiple
access

A given loaded plug-in can be used by more than one partition. This means
that the plug-in must maintain its internal data in such a way that calls to
the plug-in for the separate partitions do not conflict. It is recommended
that internal data be allocated and a pointer to the data be kept in the
data_handle described above as opposed to using global or static variables.
Any global or static data will be shared between possible multiple instances
of the plug-in.

Appendix L: Node Allocation Plug-in Developer Kit

Runtim
e API Description

node_
allocate
()

int node_allocate (
 void *data_handle,
 const char *job_name,
 int container_count,
 nalloc_container_t container[])

The plug-in must provide a node_allocate() entry point. This entry point is called
each time Moab needs to determine where (on what nodes) a job will eventually
run. Note that this entry point can be called many times before the job is actually
scheduled to run.

l Data structures — Moab uses C data structures to pass information and lists
of nodes to the plug-in and receive them back from the plug-in. See moab-
plugin.h for the definitions of these structures and for information on how
they relate to one another.

Operati
ons

A node allocation request consists of one or more requirements. Each of these
requirements is provided within a “container” structure. The container has
information regarding the requirement to be met, the count and list of all nodes
that are available to meet the requirement and a place to return the list of nodes
that the plug-in has chosen to use for the job.

Command Mo
ab
Job
Tas
k
Co
unt

Job
No
de
Co
unt

Job
Tas
ks
Per
No
de

No
de
CF
G
Pro
cs

No
de
AV
L
Pro
cs

Plug-
in
Node
Map
ped
TC

require
ment -
>taskco
unt

retur
n_
nod
e_
cou
nt

Non-ExactNode

-l nodes=12 12 0 0 8 8 8 12 2

-l
nodes=12:p
pn=2

24 0 2 8 8 8 24 3

ExactNode

-l nodes=4 4 4 0 8 8 1 4 4

-l 8 4 2 8 8 2 8 4

Appendix L: Node Allocation Plug-in Developer Kit

1421 L.2 Writing the Plug-In

L.2 Writing the Plug-In 1422

Runtim
e API Description

Command Mo
ab
Job
Tas
k
Co
unt

Job
No
de
Co
unt

Job
Tas
ks
Per
No
de

No
de
CF
G
Pro
cs

No
de
AV
L
Pro
cs

Plug-
in
Node
Map
ped
TC

require
ment -
>taskco
unt

retur
n_
nod
e_
cou
nt

nodes=4:pp
n=2

-l nodes=12 12 0 0 8 6 6 12 2

The duty of the plug-in is to use the information that it has previously gathered
(during the initialization) to select from the available nodes those that will best
fulfill the requirements.

The basic algorithm is to consume all the taskcount and memory on each node
until the consumed task count is greater than or equal to the container's task_
count and memory requirements.

A job's taskcount is calculated differently based on the JOBNODEMATCHPOLICY
parameter. By default, it isn't defined and -l nodes=# actually requests the
number of tasks without respect to the number of nodes. In this case, the plug-in
should consume all the tasks of each chosen node until the taskcount is greater
and/or equal to the container's taskcount requirement. The plug-in is for node
allocation and not task placement.

When the JOBNODEMATCHPOLICY EXACTNODE is configured, then -l nodes=#
means the job wants # of nodes with 1 task per node. In this case, the nodes
passed to the plug-in will have a taskcount that is mapped down to what the job
can only use on that node. Each node's taskcount should be consumed on each
node until the summed amount is equal to the container's requirement taskcount
requirement.

Errors
and
return
codes

The plug-in may internally log any errors encountered and must return a success
or error status as defined in moab-plugin.h:

#define PLUGIN_RC_SUCCESS 0
#define PLUGIN_RC_FAILURE 1

Multipl
e

The node_allocate() entry point must support multiple access as described above.

Appendix L: Node Allocation Plug-in Developer Kit

Runtim
e API Description

access
safe

Unload Time API Description

finish() void finish(void *data_handle)
The plug-in must supply a finish() entry point. This entry point is called
when Moab is preparing to disable and/or unload an instance of the
plug-in.

Memory/resource
cleanup

The plug-in must de-allocate and free up any resources acquired either
during the initialize() entry point or during any calls to the node_
allocate() entry point. When the last entry point returns, there should
be no allocated memory or other resources still in use by the plug-in
instance.

Multiple access
safe

The finish() entry point must support multiple access as described
above.

Appendix L: Node Allocation Plug-in Developer Kit

1423 L.2 Writing the Plug-In

1424

Appendix M: Scalable Systems Software
Specification

In this chapter:

M.1 Scalable Systems Software Job Object Specification 1425
Status of this Memo 1425
Abstract 1426
Table of Contents 1426
1.0 Introduction 1428
2.0 Conventions Used in this Document 1431
3.0 The Job Model 1433
4.0 JobGroup Element 1434
5.0 Job and JobDefaults Element 1436
6.0 TaskGroup and TaskGroupDefaults Element 1453
7.0 Task and TaskDefaults Element 1455
8.0 Property Categories 1456
9.0 AwarenessPolicy Attribute 1459
10.0 References 1460
11.0 Units of Measure Abbreviations 1460

M.2 Scalable Systems Software Resource Management and Accounting
Protocol (SSSRMAP) Message Format 1461

Status of this Memo 1461
Abstract 1461
Table of Contents 1462
1.0 Introduction 1463
2.0 Conventions Used in this Document 1463
3.0 Encoding 1464
4.0 Error Reporting 1477
5.0 References 1486

M.3 Scalable Systems Software Node Object Specification 1487
Status of this Memo 1487
Abstract 1487
Table of Contents 1487
1.0 Introduction 1488

Appendix M: Scalable Systems Software Specification

2.0 Conventions Used in this Document 1489
3.0 The Node Model 1491
4.0 Node Element 1491
5.0 Units of Measure Abbreviations 1496

M.4 Scalable Systems Software Resource Management and Accounting
Protocol (SSSRMAP) Wire Protocol 1497

Status of this Memo 1497
Abstract 1498
Table of Contents 1498
1.0 Introduction 1499
2.0 Conventions Used in this Document 1500
3.0 Encoding 1501
4.0 Transport Layer 1502
5.0 Framing 1502
6.0 Asynchrony 1504
7.0 Security 1505
8.0 References 1514

M.1 Scalable Systems Software Job Object
Specification

SSS Job Object Specification
Draft Release Version 3.1.0
26 April 2011

Scott Jackson, PNNL
David Jackson, Ames Lab

Brett Bode, Ames Lab

Status of this Memo
This document describes the job object to be used by Scalable Systems Software compliant
components. It is envisioned for this specification to be used in conjunction with the
SSSRMAP protocol with the job object passed in the Data field of Requests and Responses.
Queries can be issued to a job-cognizant component in the form of modified XPATH

Appendix M: Scalable Systems Software Specification

1425 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1426

expressions to the Get field to extract specific information from the job object as described
in the SSSRMAP protocol.

Abstract
This document describes the syntax and structure of the SSS job object. A job model is
described that is flexible enough to support the specification of very simple jobs, as well as
jobs with elaborate and complex specification requirements in a way that avoids complex
structures and syntax when it is not needed. The basic assumption is that a solitary job
specification should be usable for all phases of the job lifecycle and can be used at
submission, queuing, staging, reservations, quotations, execution, charging, accounting, etc.
This job specification provides support for multi-step jobs, as well as jobs with disparate
task descriptions. It accounts for operational requirements in a grid or meta-scheduled
environment where the job is executed by multiple hosts in different administrative
domains that support different resource management systems.

Table of Contents
l 1.0 Introduction

o 1.1 Goals
o 1.2 Non-Goals
o 1.3 Examples

o 1.3.1 Very Simple Example
o 1.3.2 Moderate Example
o 1.3.3 Elaborate Example

l 2.0 Conventions used in this document

o 2.1 Keywords
o 2.2 Table Column Interpretations
o 2.3 Element Syntax Cardinality

l 3.0 The Job Model
l 4.0 JobGroup Element

Appendix M: Scalable Systems Software Specification

o 4.1 JobGroup Properties

o 4.1.1 Simple JobGroup Properties
o 4.1.2 Job
o 4.1.3 JobDefaults

o 4.2 JobGroup Reference
l 5.0 Job and JobDefaults Element

o 5.1 Job Properties

o 5.1.1 Simple Job Properties
o 5.1.2 Feature Element
o 5.1.3 OutputFile Element
o 5.1.4 ErrorFile Element
o 5.1.5 InputFile Element
o 5.1.6 NotificationList Element
o 5.1.7 ResourceLimit Element
o 5.1.8 Credentials
o 5.1.9 Environment Element

o 5.1.9.1 Variable Element
o 5.1.10 Node Element
o 5.1.11 TaskDistribution Element
o 5.1.12 Dependency Element
o 5.1.13 Consumable Resources
o 5.1.14 Resource Element
o 5.1.15 Extension Element
o 5.1.16 TaskGroup
o 5.1.17 TaskGroupDefaults

o 5.2 Job Reference
l 6.0 TaskGroup and TaskGroupDefaults Element

Appendix M: Scalable Systems Software Specification

1427 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1428

o 6.1 TaskGroup Properties

o 6.1.1 Simple TaskGroup Properties
o 6.1.2 Task
o 6.1.3 TaskDefaults

o 6.2 TaskGroup Reference
l 7.0 Task and TaskDefaults Element

o 7.1 Task Properties

o 7.1.1 Simple Task Properties
o 7.2 Task Reference

l 8.0 Property Categories

o 8.1 Requested Element
o 8.2 Delivered Element

l 9.0 AwarenessPolicy Attribute

l 10.0 References

l 11.0 Units of Measure Abbreviations

1.0 Introduction
This specification proposes a standard XML representation for a job object for use by the
various components in the SSS Resource Management System. This object will be used in
multiple contexts and by multiple components. It is anticipated that this object will be
passed via the Data Element of SSSRMAP Requests and Responses.

1.1 Goals
There are several goals motivating the design of this representation.

The representation needs to be inherently flexible. We recognize we will not be able to
exhaustively include the ever-changing job properties and capabilities that constantly arise.

The representation should use the same job object at all stages of that job’s lifecycle. This
object will be used at job submission, queuing, scheduling, charging and accounting,
therefore it might need to distinguish between requested and delivered properties.

The design must account for the properties and structure required to function in a meta or
grid environment. It needs to include the capability to support local mapping of properties,
global namespaces, etc.

Appendix M: Scalable Systems Software Specification

The equivalent of multi-step jobs must be supported. Each step (job) can have multiple
logical task descriptions.

Many potential users of the specification will not be prepared to implement the complex
portions or fine-granularity that others need. There needs to be a way to allow the more
complicated structure to be added as needed while leaving more straightforward cases
simple.

There needs to be guidance for how to understand a given job object when higher order
features are not supported by an implementation, and which parts are required,
recommended and optional for implementers to implement.

It needs to support composite resources.

It should include the ability to specify preferences or fuzzy requirements.

1.2 Non-Goals
Namespace considerations and naming conventions for most property values are outside of
the scope of this document.

1.3 Examples
ExampleM-1: Very Simple Example

This example shows a simple job object that captures the requirements of a simple job:

<Job>
<Id>PBS.1234.0</Id>
<State>Idle</State>
<User>scottmo</User>
<Executable>/bin/hostname</Executable>
<Processors>16</Processors>
<Duration>3600</Duration>

</Job>

ExampleM-2: Moderate Example

This example shows a moderately complex job object that uses features such as required
versus delivered properties:

<Job>
<Id>PBS.1234.0</Id>
<Name>Heavy Water</Name>
<Project>nwchemdev</Project>
<User>peterk</User>
<Application>NWChem</Application>
<Executable>/usr/local/nwchem/bin/nwchem</Executable>
<Arguments>-input basis.in</Arguments>
<InitialWorkingDirectory>/home/peterk</InitialWorkingDirectory>
<Machine>Colony</Machine>

Appendix M: Scalable Systems Software Specification

1429 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1430

<QualityOfService>BottomFeeder</QualityOfService>
<Queue>batch_normal</Queue>
<State>Completed</State>
<StartTime>1051557713</StartTime>
<EndTime>1051558868</EndTime>
<Charge>25410</Charge>
<Requested>
<Processors op=”GE”>12</Processors>
<Memory op=”GE” units=”GB”>2</Memory>
<Duration>3600</Duration>

</Requested>
<Delivered>
<Processors>16</Processors>
<Memory metric=”Average” units=”GB”>1.89</Memory>
<Duration>1155</Duration>

</Delivered>
<Environment>
<Variable name=”PATH”>/usr/bin:/home/peterk</Variable>

</Environment>
</Job>

ExampleM-3: Elaborate Example

This example uses a job group to encapsulate a multi-step job. It shows this protocol’s
ability to characterize complex job processing capabilities. A component that processes this
message is free to retain only that part of the information that it requires. Superfluous
information can be ignored by the component or filtered out (by XSLT for example).

<JobGroup>
<Id>workflow1</Id>
<State>Active</State>
<Name>ShuttleTakeoff</Name>
<JobDefaults>
<StagedTime>1051557859</StagedTime>
<SubmitHost>asteroid.lbl.gov</SubmitHost>
<SubmitTime>1051556734</SubmitTime>
<Project>GrandChallenge18</Project>
<GlobalUser>C=US,O=LBNL,CN=Keith Jackson</GlobalUser>
<User>keith</User>
<Environment>
<Variable name=”LD_LIBRARY_PATH”>/usr/lib</Variable>
<Variable name=”PATH”>/usr/bin:~/bin:</Variable>

<Environment>
</JobDefaults>
<Job>
<Id>fr15n05.1234.0</Id>
<Name>Launch Vector Initialization</Name>
<Executable>/usr/local/gridphys/bin/lvcalc</Executable>
<Queue>batch</Queue>
<State>Completed</State>
<Machine>SMP2.emsl.pnl.gov</Machine>
<StartTime>1051557713</StartTime>
<EndTime>1051558868</EndTime>
<Quote>https://www.pnl.gov/SMP2#654321</Quote>
<Charge units=”USD”>12.75</Charge>
<Requested>
<Duration>3600</Duration>
<Processors>2</Processors>
<Memory>1024</Memory>

</Requested>

Appendix M: Scalable Systems Software Specification

<Delivered>
<Duration>1155</Duration>
<Processors consumptionRate=”0.78”>2</Processors>
<Memory metric=”Max”>975</Memory>

</Delivered>
<TaskGroup>
<TaskCount>2</TaskCount>
<TaskDistribution type=”TasksPerNode”>1</TaskDistribution>
<Task>
<Node>node1</Node>
<Process>99353</Process>

</Task>
<Task>
<Node>node12</Node>
<Process>80209</Process>

</Task>
</TaskGroup>

</Job>
<Job>
<Id>fr15n05.1234.1</Id>
<Name>3-Phase Ascension</Name>
<Queue>batch_normal</Queue>
<State>Idle</State>
<Machine>Colony.emsl.pnl.gov</Machine>
<Priority>1032847</Priority>
<Hold>System</Hold>
<StatusMessage>Insufficient funds to start job</StatusMessage>
<Requested>
<Duration>43200</Duration>

</Requested>
<TaskGroup>
<TaskCount>1</TaskCount>
<Name>Master</Name>
<Executable>/usr/local/bin/stage-coordinator</Executable>
<Memory>2048<Memory>
<Resource name=”License” type=”ESSL2”>1</Resource>
<Feature>Jumbo-Frame</Feature>

</TaskGroup>
<TaskGroup>
<Name>Slave</Name>
<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>
<Executable>/usr/local/bin/stage-slave</Executable>
<NodeCount>4</NodeCount>
<Requested>
<Processors group=”-1”>12</Processors>
<Processors conj=”Or” group=”1”>16</Processors>
<Memory>512</Memory>
<Node aggregation=”Pattern”>fr15n.*</Node>

</Requested>
</TaskGroup>

</Job>
</JobGroup>

2.0 Conventions Used in this Document

2.1 Keywords
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described

Appendix M: Scalable Systems Software Specification

1431 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1432

in RFC2119.

2.2 Table Column Interpretations
The columns of the property tables in this document have the following meanings:

Element
Name

Name of the XML element (xsd;element) see [DATATYPES]

Type Data type defined by xsd (XML Schema Definition) as:

l String — xsd:string (a finite length sequence of printable characters)
l Integer — xsd:integer (a signed finite length sequence of decimal digits)
l Float — xsd:float (single-precision 32-bit floating point)
l Boolean — xsd:boolean (consists of the literals 'true' or 'false')
l DateTime — xsd:int (a 32-bit unsigned long in GMT seconds since the

EPOCH)
l Duration — xsd:int (a 32-bit unsigned long measured in seconds)

Description Brief description of the meaning of the property

Appearance An indication of whether the given property must appear in the parent
element. It assumes the following meanings:

l MUST — This property is REQUIRED when the parent is specified
l SHOULD — This property is RECOMMENDED when the parent is

specified.
l MAY — This property is OPTIONAL when the parent is specified.

Compliance An indication of the relative importance of supporting the given property:

l MUST — A compliant implementation MUST support this property.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Categories Some properties can be categorized into one of several categories. Letters in
this column indicate that the given property can be classified in the following
property categories.

l R — This property can be encompassed in a Requested element.
l D — This property can be encompassed in a Delivered element.

2.3 Element Syntax Cardinality
Selected elements in the element syntax sections use regular expression wildcards with the
following meanings:

Appendix M: Scalable Systems Software Specification

http://www.ietf.org/rfc/rfc2119.txt

Wildcard Description

* Zero or more occurrences

+ One or more occurrences

? Zero or one occurrences

The absence of one of these symbols implies exactly one occurrence.

3.0 The Job Model
The primary object within the job model is a job. A job can be thought of as a single
schedulable entity and will be the object normally seen in job queues.

Image M-1: JobGroup contains Job and JobDefaults, which contain TaskGroup and TaskGroupDefaults

Appendix M: Scalable Systems Software Specification

1433 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1434

Jobs with dependencies on other jobs can be submitted in a job group. Jobs within a job
group form a DAG (directed acyclic graph) where the nodes are jobs and the edges
represent dependencies on the status of previous jobs. A job group will consist of at least
one job. A job group can optionally specify job defaults, which are a set of job properties to
be assumed by all jobs within the job group unless overridden within the job.

A job can consist of multiple tasks, which are the finest grained work unit and represent an
endpoint for executing a given process instance. For example, a job that requests 3 nodes
and 4 processors will have 4 tasks, two on one node and one on each of two nodes. Tasks
can be grouped into task groups, which are logical aggregations of tasks and their common
properties. Submit filters, prologs, epilogs, notification scripts, etc. run once only for each
job. Whereas task groups function as logical descriptions of tasks and their properties, they
also describe the number of such tasks and the nodes that they run on. As an example, a
master task group (consisting of a single task) might ask for a node with a MATLAB license,
2GB of memory and an Internet connected network adapter while a slave task group
(consisting of 12 tasks) could be targeted for nodes with more CPU bandwidth -- all within
the same job and utilizing a common MPI ring. Tasks (and therefore taskgroups) can have
different executables or environments, specify different consumable resources or node
properties. A job, therefore, can specify one or more task group. A job that does not specify
an explicit task group is considered as having a single implicit task group. A job can
optionally specify task group defaults, which are a set of task group properties to be
assumed by all task groups within the job unless overridden within a task group.

A task group can specify one or more tasks. A task group that does not specify an explicit
task is considered as having a single implicit task. A task group can optionally specify task
defaults, which are a set of task properties to be assumed by all tasks within the task group
unless overridden within a task.

4.0 JobGroup Element
A JobGroup is an optional element that aggregates one or more interdependent jobs. Some
resource managers support the submission of job groups (multi-step jobs) and queries on
the status of an entire job group.

l A compliant implementation MAY support this element.

l A JobGroup MUST specify one or more JobGroup Properties.

l A JobGroup MUST contain one or more Jobs.

l A JobGroup MAY contain zero or more JobsDefaults.

The following illustrates this element’s syntax:

<JobGroup>
<!-- JobGroup Properties -->+
<Job/>+

Appendix M: Scalable Systems Software Specification

<JobDefaults/>?
</JobGroup>

4.1 JobGroup Properties
JobGroup Properties are properties that apply to the job group as a whole. These include
the job group ID, jobs and job defaults, and other simple optional job properties.

Simple JobGroup Properties
Simple (unstructured) job group properties are enumerated in the table below:

Table M-1: Simple JobGroup Properties

Element
Name

Type Description Appearance Compliance

CreationTime DateTime Date and time that the job
group was instantiated

MAY MAY

Description String Description of the job group MAY MAY

Id String Job group identifier MUST MUST

Name String Name of the job group MAY SHOULD

State String State of the job group as a
whole. Valid states can
include NotQueued,
Unstarted, Active, and
Completed.

MAY SHOULD

Job
A job group MUST contain one or more jobs.

See the next section for element details.

JobDefaults
A job group MAY contain zero or one job defaults.

See the next section for element details.

Appendix M: Scalable Systems Software Specification

1435 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1436

4.2 JobGroup Reference
When a simple reference to a predefined job group is needed in an encapsulating element,
a JobGroup element is used with the text content being the job group ID:

<JobGroup> workflow1</JobGroup>

5.0 Job and JobDefaults Element
The Job and JobDefaults elements are of the same structure. A Job element encapsulates a
job and can be expressed as a standalone object. A JobDefaults element can only appear
within a JobGroup and represents the defaults to be taken by all jobs within the job group.
Job properties in Job elements override any properties found in a sibling JobDefaults
element.

l A compliant implementation MUST support the Job element.

l A compliant implementation MAY support the JobDefaults element only if it supports
the JobGroup element.

l A job MUST specify one or more Job Properties.

l One or more TaskGroup elements MAY appear at this level.

l Zero or one TaskGroupDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<Job>
<!-- Job Properties -->+
<TaskGroup/>*
<TaskGroupDefaults/>?

</Job>

5.1 Job Properties
Job Properties apply to a particular job or as default properties to all jobs. They include the
job ID, job credentials, task groups, task group defaults, and other simple optional
properties.

Simple Job Properties
Simple (unstructured) job properties are enumerated in the table below:

Appendix M: Scalable Systems Software Specification

Table M-2: Simple Job Properties

Element
Name

Type Description Appearanc
e

Complianc
e

Categorie
s

Application String Type of
application
such as
Gaussian or
Nwchem

MAY MAY

Architecture String Type
architecture
for the nodes
on which
this job must
run

MAY MAY RD

Arguments String The
arguments
for the
executable

MAY SHOULD

Charge Float The amount
charged for
the job

MAY SHOULD

Checkpointable Boolean Can this job
be
checkpointe
d?

MAY MAY

CpuDuration Duration Number of
cpu seconds
used by the
job

MAY SHOULD

DeadlineTime DateTim
e

Date and
time that a
job must end
by

MAY MAY

EligibleTime DateTim
e

Date and
time that a
job must
start after

MAY MAY

Appendix M: Scalable Systems Software Specification

1437 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1438

Element
Name

Type Description Appearanc
e

Complianc
e

Categorie
s

EndTime DateTim
e

Date and
time that a
job ended
(independen
t of success
or failure)

MAY MUST

Executable String Executable.
This can be
an absolute
or relative
path or a
URI.*

MAY MUST

ExitCode Integer Exit code for
the job

MAY SHOULD

GlobalJob String Globally
unique job
identifier
(possibly in
the form of a
URI)

MAY SHOULD

Hold String Hold(s) on
the job.
There may
be multiple
instances of
this element
if there is
more than
one ld on the
job

MAY SHOULD

InitialWorking-
Directory

String Initial
working
directory

MAY SHOULD

Interactive Boolean Is this an
interactive
job?

MAY SHOULD

Appendix M: Scalable Systems Software Specification

Element
Name

Type Description Appearanc
e

Complianc
e

Categorie
s

Id String A local job
identifier
assigned to
the job by
the local
resource
manager

MUST MUST

Name String Name of the
job

MAY SHOULD

State String State of the
job. Valid
states can
include Idle,
Hold,
Running,
Suspended,
or
Completed

MAY MUST

Type String Type of job.
Meaning of
this
extension
property is
context
specific.

MAY MAY

Machine String Name of the
system or
cluster that
runs the job

MAY MUST RD

Network String Type of
network
adapter
required by
the job

MAY MAY RD

NodeCount Integer Number of
nodes used
by the job

MAY MUST RD

Appendix M: Scalable Systems Software Specification

1439 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1440

Element
Name

Type Description Appearanc
e

Complianc
e

Categorie
s

OperatingSyste
m

String Operating
System
required by
the job

MAY MAY RD

Partition String Name of the
partition
where the
job should
run

MAY MAY RD

Priority Integer Current
queue
priority (or
rank)for the
job

MAY SHOULD

QualityOfServic
e

String Name of the
Quality of
Service
(QoS)

MAY SHOULD RD

Queue String Name of the
Queue (or
class)that
the job runs
in

MAY SHOULD RD

Quote String Identifier for
a guaranteed
charge rate
quote
obtained by
the job

MAY MAY

Reservation String Identifier for
a reservation
used by the
job

MAY MAY RD

ReservationTim
e

DateTim
e

Date and
time that a
reservation

MAY MAY

Appendix M: Scalable Systems Software Specification

Element
Name

Type Description Appearanc
e

Complianc
e

Categorie
s

was placed
for the job

ResourceMana
ger Type

String Type of
resource
manager
required to
run this job

MAY MAY RD

Restartable Boolean Can this job
be restarted?

MAY MAY

Shell String Specified the
shell
necessary to
interpret the
job script

MAY MAY

StagedTime DateTim
e

Date and
time that a
job was
staged to the
local
resource
management
system

MAY MAY

StartCount Integer Number of
times the
scheduler
tried to start
the job

MAY MAY

StartTime DateTim
e

Date and
time that the
job started

MAY MUST

StatusMessage String Natural
language
message that
can be used
to provide
detail on

MAY SHOULD

Appendix M: Scalable Systems Software Specification

1441 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1442

Element
Name

Type Description Appearanc
e

Complianc
e

Categorie
s

why a job
failed, isn't
running, etc.

SubmitTIme DateTim
e

Date and
time that a
job was
submitted

MAY SHOULD

SubmitHost String FQDN of
host where
the job was
submitted
from

MAY SHOULD

Suspendable Boolean Can this job
be
suspended?

MAY MAY

SuspendDuratio
n

Integer Number of
seconds the
job was in
the
Suspended
state

MAY MAY

TimeCategory String This allows
the
specification
of shifts like
PrimeTime
for charging
purposes

MAY MAY

Duration Duration Number of
seconds in
the Running
state

SHOULD MUST RD

* The Executable can be a script or a binary executable. If it is already on the target system
it can be referenced by an absolute or relative pathname (relative to
InitialWorkingDirectory). If it is passed with the job in a File object (see SSSRMAP), it can
be referenced by an absolute or relative URI. An absolute URI would specify a URL where

Appendix M: Scalable Systems Software Specification

the file can be downloaded (like with wget). A relative URI is specified by preceding an
identifier by a pound sign, as in:

<Executable>#Script</Executable>

It will be found in a File object included along with the Job object with the Script as an
identifier, as in:

<File id=”Script”>echo hello world</File>

Feature Element
The Feature element connotes an arbitrary named feature of a node:

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times within a given set of Job Properties.

l This element is of type String.

l This element MAY have an aggregation attribute of type String that provides a
way to indicate multiple values with a single expression. A compliant implementation
MAY support the aggregation attribute if the Feature element is supported.
Possible values for this attribute include:

o List — a comma-separated list of features
o Pattern — a regular expression (perl5) matching desired features

l If an aggregation attribute is specified with the value of List, this element MAY
also have a delimiter attribute of type String that indicates what delimiter is used
to separate list elements. The default list delimiter is a comma.

l This element MAY be categorized as a requested or delivered property by being
encompassed by the appropriate element.

The following is an example of a feature element:

<Feature aggregation=”List”>feature1,feature2</Feature>

OutputFile Element
The OutputFile element specifies the name of the file to which the output stream
(stdout) from the job will be written:

l This element’s character content is the name of the file. If this element is omitted or it
is empty, then an appropriate output file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute, which is a comma-separated
list of output redirection attributes of type String. A compliant implementation
SHOULD support this attribute if OutputFile is supported. Possible values for this

Appendix M: Scalable Systems Software Specification

1443 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1444

attribute include:
o Append — opens the output file for append
o Close — closes and discards the output stream
o Flush — output is written to output file as it is generated
o Keep — leave the output file on the execution host
o Merge — merges the output stream into the error stream

Note that when using the redirectList attributes, the cumulative effect of the
ErrorFile and OutputFile directives may be order dependent.

The following is an example of an OutputFile element:

<OutputFile redirectList=”Append”>~/myjob.out</OutputFile>

ErrorFile Element
The ErrorFile element specifies the name of the file to which the error stream (stderr)
from the job will be written:

l This element’s character content is the name of the file. If this element is omitted or it
is empty, then an appropriate error file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute, which is a comma-separated
list of error redirection attributes of type String. A compliant implementation
SHOULD support this attribute if ErrorFile is supported. Possible values for this
attribute include:

o Close — closes and discards the error stream
o Append — opens the error file for append
o Flush — output is written to output file as it is generated
o Keep — leave the output file on the execution host
o Merge — merges the error stream into the output stream

Note that when using the redirectList attributes, the cumulative effect of the
ErrorFile and OutputFile directives may be order dependent.

The following is an example of an ErrorFile element:

<ErrorFile redirectList=”Merge”></ErrorFile>

InputFile Element
The InputFile element specifies the name of the file from which the input stream
(stdin) for the job will be read:

Appendix M: Scalable Systems Software Specification

l This element’s character content is the name of the file. If this element is omitted or it
is empty, then an appropriate input file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute, which is a comma-separated
list of input attributes of type String. A compliant implementation SHOULD support
this attribute if InputFile is supported. Possible values for this attribute include:

o Close — closes and discards the input stream

The following is an example of an InputFile element:

<InputFile redirectList=”Close”></InputFile>

NotificationList Element
The NotificationList element specifies the job-related events or conditions for
which a notification will be sent.

l This element’s character content is a comma-separated list of events or conditions for
which a notification should be sent. Possible values for the elements of this list
include:

o JobStart — send a notification when the job starts
o JobEnd — send a notification when the job ends
o All — send notifications for all notifiable events
o None — do not send notifications for any events

l This element MAY have a uri attribute of type String, which indicates where the
notification is to be sent. A compliant implementation MAY support this attribute if
NotificationList is supported. The uri is in the format:
[scheme://]authority with the scheme being smtp and the authority being an
email address by default.

The following is an example of a NotificationList element:

<NotificationList uri=”smith@business.com”>JobStart,JobEnd</NotificationList>

ResourceLimitElement
The ResourceLimit element represents a resource limit with its name and value:

l This element MUST have a name attribute of type String. A compliant implementation
MUST support the name attribute if ResourceLimit is supported.

l This element MAY have a type attribute of type String that can have the values
Hard or Soft. If the limit is enforced by the operating system, a hard limit is one
that cannot be increased once it is set while a soft limit can be increased up to the

Appendix M: Scalable Systems Software Specification

1445 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1446

value of the hard limit. If the type attribute is omitted, both the soft and hard limits
are set.

l This element’s character content is the resource limit’s value.

Some typical names include:

Name Description

CoreFileSize Maximum core file size

CpuTime CPU time in seconds

DataSegSize Maximum data size

FileSize Maximum file size

MaxMemorySize Maximum resident set size

MaxProcesses Maximum number of processes

MaxSwap Virtual memory limit

MaxMemLock Maximum locked-in-memory address space

MaxProcessors Maximum processors

MaxMemory Maximum memory

MaxDisk Maximum disk space

MaxNetwork Maximum network bandwidth

MaxFileIO Maximum file i/o

OpenFiles Maximum number of open files

Stacksize Maximum stack size

The following is an example of a ResourceLimit element:

<ResourceLimit name=”CPUTime”>1000000</ResourceLimit>

Appendix M: Scalable Systems Software Specification

Credentials
Credentials are a special group of job properties that characterize an authenticated token
or ID. They can be categorized in both requested and delivered forms.

Credential job properties are enumerated in the table below:

Table M-3: Credential Job Properties

Element
Name

Type Description Appearance Compliance Categories

Project String Name of the Project
or Charge Account

MAY SHOULD RD

GlobalUser String Globally unique
user identifier. This
could be an X.509
DN for example

MAY SHOULD RD

Group String Name of the local
group ID

MAY MAY RD

User String Name of the local
user ID for the job

MAY MUST RD

Environment Element
The Environment element encapsulates environment variables:

l This element MAY have an export attribute of type Boolean, which if set to True,
indicates that all environment variables in the context of the job submission process
should be exported in the job’s execution environment.

l A compliant implementation SHOULD support this element.

l An Environment element MAY appear zero or one times within a given set of Job (or
TaskGroup) Properties.

l An Environment element MAY contain one or more Variable elements.

The following illustrates this element’s syntax:

<Environment>
<Variable/>+

</Environment>

Variable Element

The Variable element represents an environment variable with its name and value.

Appendix M: Scalable Systems Software Specification

1447 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1448

This element MUST have a name attribute of type String. A compliant implementation
MUST support the name attribute if Variable is supported. This element’s character content
is the environment variable’s value.

The following is an example of a Variable element:

<Variable name=”PATH”>/usr/bin:/home/sssdemo</Variable>

Node Element
The Node element represents a node:

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times within a given set of Job Properties.

l This element is of type String.

l This element MAY have an aggregation attribute of type String that provides a
way to indicate multiple values with a single expression. A compliant implementation
MAY support the aggregation attribute if the Feature element is supported.
Possible values for this attribute include:

o List - a comma-separated list of features
o Pattern - a regular expression (perl5) matching desired features
o Range - a range of nodes of the form: <prefix>[5-23,77]

l If an aggregation attribute is specified with the value of List, this element MAY
also have a delimiter attribute of type String that indicates what delimiter is used
to separate list elements. The default list delimiter is a comma.

l This element MAY have a count attribute of type Integer that indicates the instance
count of the specified node(s).

l This element MAY be categorized as a requested or delivered property by being
encompassed by the appropriate element.

The following is an example of a Node element:

<Node aggregation=”Pattern”>node[1-5]</Node>

TaskDistribution Element
The TaskDistribution element describes how tasks are to be mapped to nodes. This
mapping can be expressed as a rule name, a task per node ratio or an arbitrary geometry.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times in a given set of Job (or TaskGroup)
Properties.

Appendix M: Scalable Systems Software Specification

l This element is of type String.

l This element MAY have a type attribute of type String that provides a hint as to the
type of mapping guidance provided. It can have values including Rule,
TasksPerNode, ProcessorsPerTask or Geometry. A compliant
implementation MAY support the type attribute if the TaskDistribution
element is supported.

l It is possible to use Processors, NodeCount and TaskCount elements to
specify a set of mutually contradictory task parameters. When this occurs,
components are responsible for resolving conflicting requirements.

The following are three examples of a TaskDistribution element:

<TaskDistribution type=”TasksPerNode”>2</TaskDistribution>
<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>
<TaskDistribution type=”Geometry”>{1,4}{2}{3,5}</TaskDistribution>

Dependency Element
The Dependency element allows a job’s execution to depend on the status of other jobs. In
a job group (multi-step job), some jobs may delay execution until the failure or success of
other jobs creating in general a Directed Acyclic Graph relationship between the jobs. This
element’s content is of type String and represents the job that the current job is dependent
upon. Since a job can have two or more dependencies, this element can appear more than
once in a given job scope. A compliant implementation SHOULD support this element if job
groups are supported:

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times in a given set of Job (or TaskGroup)
Properties.

l This element is of type String and contains the JobId that the current job is
dependent upon.

l This element MAY have a condition attribute of type String that indicates the
basis for determining when the current job executes in relation to the specified job. A
compliant implementation MUST support this attribute if this element is supported.
Possible values for this attribute include:

o OnSuccess this job should run after the referenced job only if it completes
successfully (this is the default if the type attribute is omitted)

o OnFailure this job should run after the referenced job only if it fails
o OnExit this job should run after the referenced job exits

l If the condition attribute is equal to OnExit, this element MAY have a code
attribute of type Integer that indicates the exit code that will trigger this job to run. If

Appendix M: Scalable Systems Software Specification

1449 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1450

the code attribute is omitted, then the current job should run after the referenced job
for any exit status.

l This element MAY have a designator attribute of type String that indicates that
indicates the property of the job that identifies it as the dependent job. A compliant
implementation MAY support this attribute if this element is supported.
Possible values for this attribute include:

o JobId the job this job is dependent upon is specified by JobId (this is the default
if the designator attribute is omitted)

o JobName the job(s) this job is dependent upon are specified by JobName

The following is an example of a Dependency element:

<Dependency condition=”OnSuccess” designator=”JobId”>PBS.1234.0</Dependency>

Consumable Resources
Consumable Resources are a special group of properties that can have additional attributes
and can be used in multiple contexts. In general a consumable resource is a resource that
can be consumed in a measurable quantity.

l A consumable resource MAY have a context attribute of type String that indicates
the sense in which the resource is used. A compliant implementation MAY support
this attribute. Possible values for this attribute include:

o Configured — run this task only on nodes having the specified configured
resources

o Available — run this task only on nodes having the specified available
resources. (this is the default if the context attribute is omitted)

o Used — the task used the indicated resources (this is analogous to being
including in a Delivered block)

o Dedicated — the indicated amount of the resource should be dedicated to the
task

l A consumable resource MAY have a units attribute that is of type String that
specifies the units by which it is being measured. If this attribute is omitted, a default
unit is implied. A compliant implementation MAY support this attribute if the element
is supported.

l A consumable resource MAY have a metric attribute that is of type String that
specifies the type of measurement being described. For example, the measurement
can be a Total, an Average, a Min or a Max. A compliant implementation MAY support
this attribute if the element is supported.

Appendix M: Scalable Systems Software Specification

l A consumable resource MAY have a duration attribute of type Duration that
indicates the amount of time for which that resource was used. This need only be
specified if the resource was used for a different amount of time than the duration
for the job. A compliant implementation MAY support this attribute if the element is
supported.

l A consumable resource MAY have a consumptionRate attribute of type Float that
indicates the average percentage that a resource was used over its duration. For
example, an overbooked SMP running 100 jobs across 32 processors might want to
scale the usage and charge by the average fraction of processor usage actually
delivered. A compliant implementation MAY support this attribute if the element is
supported.

l A consumable resource MAY have a dynamic attribute of type Boolean that
indicates whether the resource allocated for this job should be allowed to grow or
shrink dynamically. For example, if processors is specified with dynamic equal to
True, the job can be dynamically allocated more processors as they become available.
The growth bounds can be indicated via the op attribute, which is inherited when a
consumable resource element is encapsulated within a Requested element. A
compliant implementation MAY support this attribute if the element is supported.

Simple consumable resources are listed in the table below:

Table M-4: Simple Consumable Resources

Element
Name

Type Description Appearance Compliance Categories

Disk Float Amount of disk MAY SHOULD RD

Memory Float Amount of
memory

MAY SHOULD RD

Network Float Amount of
network

MAY MAY RD

Processors Integer Number of
processors

MAY MUST RD

Swap Float Amount of virtual
memory

MAY MAY RD

The following are two examples for specifying a consumable resource:

<Memory metric=”Max” units=”GB”>483</Memory>
<Processors duration=”1234” consumptionRate=”0.63”>4</Processors>

Appendix M: Scalable Systems Software Specification

1451 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1452

Resource Element
In addition to the consumable resources enumerated in the above table, an extensible
consumable resource is defined by the Resource element:

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times within a given set of job (or task group)
properties.

l Like the other consumable resources, this property MAY be categorized as a
requested or delivered property by being encompassed in the appropriate element.

l This element is of type Float.

l This element shares the same properties and attributes as the other consumable
resources but it requires an additional name (and optional type) attribute to describe
it.

l It MUST have a name attribute of type String that indicates the type of consumable
resource being measured. A compliant implementation MUST support this attribute if
the element is supported.

l It MAY have a type attribute of type String that distinguishes it within a general
resource class. A compliant implementation SHOULD support this attribute if the
element is supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>
<Resource name=”Telescope” type=”Zoom2000” duration=”750” metric=”KX”>10</Resource>

Extension Element
The Extension element provides a means to pass extensible properties with the job object.

Some applications might find it easier to use a named extension property than discover and
handle elements they do not understand or anticipate by name:

l A compliant implementation MAY support this element.

l This element MUST have a name attribute of type String that gives the extension
property’s name. A compliant implementation MUST support this attribute if this
element is supported.

l This element MAY have a type attribute of type String that characterizes the context
within which the property should be understood. A compliant implementation
SHOULD support this attribute if this element is supported.

l This element’s character content, which is of type String, is the extension property’s
value.

The following is an example of an Extension element:

Appendix M: Scalable Systems Software Specification

<Extension type=”Scheduler” name=”Restartable”>true</Extension>

TaskGroup
A job MAY specify one or more task groups.

See the next section for element details.

TaskGroupDefaults
A job MAY specify zero or more task group defaults.

See the next section for element details.

5.2 Job Reference
When a simple reference to a predefined job is needed in an encapsulating element, a Job
element is used with the text content being the job ID:

<Job> job123</Job>

6.0 TaskGroup and TaskGroupDefaults Element
The TaskGroup and TaskGroupDefaults elements have the same structure. A
TaskGroup element aggregates tasks. A TaskGroupDefaults element can only appear
within a Job (or JobDefaults) and represents the defaults to be taken by all task groups
within the job. Task group properties in TaskGroup elements override any properties
found in a sibling TaskGroupDefaults element.

l A compliant implementation MAY support the TaskGroup element.

l A compliant implementation MAY support the TaskGroupDefaults element.

l A task group MUST specify one or more TaskGroup Properties.

l One or more Task elements MAY appear at this level.

l Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<TaskGroup>
<!-- TaskGroup Properties -->+
<!-- Job Properties -->*
<Task>+
<TaskDefaults>?

</TaskGroup>

Appendix M: Scalable Systems Software Specification

1453 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1454

6.1 TaskGroup Properties
TaskGroup Properties apply to a particular task group or as default properties to
encompassed task groups. These properties include the task group ID, its tasks, task
defaults, and other simple task group properties.

Simple TaskGroup Properties
Simple (unstructured) task group properties are enumerated in the table below:

Table M-5: Simple TaskGroup Properties

Element
Name

Type Description Appearance Compliance

TaskCount Integer Number of tasks in this
taskgroup

MAY MUST

Id String A task group identifier unique
within the job

MAY MAY

Name String A task group name (such as
Master)

MAY SHOULD

Task
A task group MAY specify zero or more tasks.

See the next section for element details.

TaskDefaults
A task group MAY specify zero or more task defaults.

See the next section for element details.

6.2 TaskGroup Reference
When a simple reference to a predefined task group is needed in an encapsulating
element, a TaskGroup element is used with the text content being the task group ID:

<TaskGroup> tg1</TaskGroup>

Appendix M: Scalable Systems Software Specification

7.0 Task and TaskDefaults Element
The Task and TaskDefaults elements have the same structure. A Task element
contains information specific to a task (like the process ID or the host it ran on). A
TaskDefaults element can only appear within a TaskGroup (or
TaskGroupDefaults) element and represents the defaults for all tasks within the task
group. Task properties in Task elements override any properties found in a sibling
TaskDefaults element.

l A compliant implementation MAY support the TaskGroup element.

l A compliant implementation MAY support the TaskGroupDefaults element.

l A task group MUST specify one or more TaskGroup Properties.

l One or more Task elements MAY appear at this level.

l Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<Task>
<!-- Task Properties -->+
<!-- Job Properties -->*

</Task>

7.1 Task Properties
Task Properties are properties that apply to a particular task or as default properties to
encompassed tasks. These properties include the task ID and other task properties.

Simple Task Properties
Simple (unstructured) task properties are enumerated in the table below:

Table M-6: Simple Task Properties

Element
Name

Type Description Appearance Compliance

Node String Name of the node this task ran
on

MAY MUST

Session Integer Session ID for the task group or
job

MAY MAY

Id String A task identifier unique within
the taskgroup

MAY MAY

Appendix M: Scalable Systems Software Specification

1455 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1456

7.2 Task Reference
When a simple reference to a predefined task is needed in an encapsulating element, a
Task element is used with the text content being the task ID:

<Task>1</Task>

8.0 Property Categories
Certain properties need to be classified as being in a particular category. This is done when
it is necessary to distinguish between a property that is requested and a property that was
delivered. When no such distinction is necessary, it is recommended that the property not
be enveloped in one of these elements. In general, a property should be enveloped in a
category element only if it is expected that the property will need to be attributed to more
than one property category, or if it needs to make use of some of the special attributes
inherited from the category.

8.1 Requested Element
A requested property reflects properties as they were requested. A disparity might occur
between the requested value and the value delivered if a preference was expressed, if
multiple options were specified, or if ranges or pattern matching was specified.

l A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Requested>
<!-- Requested Properties -->+

</Requested>

The following describes the attributes and elements for the example above:
/Requested

This element is used to encapsulate requested properties:
/Requested/<Requested Property>

Requested properties appear at this level.

Requested Properties inherit some additional attributes:

l A requested property MAY have an op attribute of type String that indicates a
conditional operation on the value. A compliant implementation SHOULD support this
attribute. Valid values for the op attribute include EQ meaning equals (which is the
default), NE meaning not equal, LT meaning less than, GT meaning greater than, LE

Appendix M: Scalable Systems Software Specification

meaning less than or equal to, GE meaning greater than or equal to, Match that
implies the value is a pattern to be matched.

l A requested property MAY have a conj attribute of type String that indicates a
conjunctive relationship with the previous element. A compliant implementation MAY
support this attribute. Valid values for the conj attribute include And (which is the
default), Or, Nand meaning and not, and Nor meaning or not.

l A requested property MAY have a group attribute of type Integer that indicates
expression grouping and operator precedence much like parenthetical groupings. A
compliant implementation MAY support this attribute. A positive grouping indicates
the number of nested expressions being opened with the property while a negative
grouping indicates the number of nested expressions being closed with the property.

l A requested property MAY have a preference attribute of type Integer that
indicates a preference for the property along with a weight (the weights are taken as
a ratio to the sum of all weights in the same group). A compliant implementation MAY
support this attribute. If a group of positive valued preference alternatives are
specified, at least one of the preferences must be satisfied for the job to run. If a
group of negative valued preferences are specified, the preferences will try to be met
according to their weights but the job will still run even if it can’t satisfy any of the
preferred properties. (Weight ranking can be removed by making all weights the
same value (1 or -1 for example).

l A requested property MAY have a performanceFactor attribute of type Float
that provides a hint to the scheduler of what performance tradeoffs to make in terms
of resources and start time. A compliant implementation MAY support this attribute.

The following are four examples of using Requested Properties:

<Requested>
<Processors op=”GE”>8</Processors>
<Processors op=”LE”>16</Processors>
<Duration>3600</Duration>

</Requested>
<Requested>
<NodeCount>1</NodeCount>
<Node aggregation=”Pattern”>fr15.*</Node>

<Requested>
<Requested>
<User group=”1”>scottmo</User>
<Account group=”-1”>mscfops</Account>
<User conj=”Or” group=”1”>amy</User>
<Account group=”-1”>chemistry</Account>

</Requested>
<Requested>
<Memory preference=”2”>1024</Memory>
<Memory preference=”1”>512</Memory>

</Requested>

Appendix M: Scalable Systems Software Specification

1457 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1458

8.2 Delivered Element
A delivered property reflects properties as they were actually utilized, realized or
consumed. It reflects the actual amounts or values that are used, as opposed to a limit,
choice or pattern as may be the case with a requested property.

l A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Delivered>
<!-- Delivered Properties -->+

</Delivered>

The following describes the attributes and elements for the example above:
/Delivered

This element is used to encapsulate delivered properties:
/Delivered/<Delivered Property>

Delivered properties appear at this level.

Delivered Properties inherit some additional attributes:

l A delivered property MAY have a group attribute of type Integer that indicates
expression grouping and operator precedence much like parenthetical groupings. A
compliant implementation MAY support this attribute. A positive grouping indicates
the number of nested expressions being opened with the property while a negative
grouping indicates the number of nested expressions being closed with the property.
The purpose of this attribute would be to logically group delivered properties if they
were used in certain aggregations (like a job that spanned machines).

The following are the same four examples distinguishing the delivered amounts and
values:

<Delivered>
<Processors>12</Processors>
<Duration>1234</Duration>

</Delivered>
<Delivered>
<Node>fr15n03</Node>

</Delivered>
<Delivered>
<User>scottmo</User>
<Account>mscfops</Account>

</Delivered>
<Delivered>
<Memory>1024</Memory>

</Delivered>

Appendix M: Scalable Systems Software Specification

9.0 AwarenessPolicy Attribute
A word or two should be said about compatibility mechanisms. With all the leeway in the
specification with regard to implementing various portions of the specification, problems
might arise if an implementation simply ignores a portion of a job specification that is
critical to the job function in certain contexts. Given this situation, it might be desirable in
some circumstances for jobs to be rejected by sites that fail to fully support that job’s
element or attributes. At other times, it might be desirable for a job to run, using a best-
effort approach to supporting unimplemented features. Consequently, we define an
awarenessPolicy attribute that can be added as an optional attribute to the Job
element or any other containment or property element to indicate how the property (or the
default action for the elements that the containment element encloses) must react when
the implementation does not understand an element or attribute.

An awareness policy of Reject will cause the server to return a failure if it receives a
client request where it does not support an associated element name or attribute name or
value. It is reasonable for an implementation to ignore (not even look for) an element or
attribute that would not be critical to its function as long as ignoring this attribute or
element would not cause an incorrect result. However, any element or attribute that was
present that would be expected to be handled in a manner that the implementation does
not support must result in a failure.

An awareness policy of Warn will accept the misunderstood element or attribute and
continue to process the job object on a best effort basis. However a warning MUST be sent
(if possible) to the requestor enumerating the elements and attributes that are not
understood.

An awareness policy of Ignore will accept the unsupported element or attribute and
continue to process the job object on a best effort basis. The action could be to simply
ignore the attribute.

l This name of this attribute is awarenessPolicy.

l This attribute is of type String.

l This attribute can have values of Reject, Warn or Ignore.

l A compliant implementation MAY support this attribute.

l An implementation that does not support an attribute MUST reject any job object that
contains elements or attributes that it does not support. Furthermore, it SHOULD
return a message to the requestor with an indication of the element or attribute
name it did not understand.

l This attribute MAY be present in a property or containment element.

l If an implementation does support the attribute, but it is absent, the default value of
Reject is implied.

Appendix M: Scalable Systems Software Specification

1459 M.1 Scalable Systems Software Job Object Specification

M.1 Scalable Systems Software Job Object Specification 1460

l Individual elements in the job object may override the containing object’s awareness
policy default by including this attribute. For example, a job might specify an
awarenessPolicy of Reject at its root (the Job element) but may want to allow a
particular subset of elements or attributes to be ignored if not understood.
Conversely, a job with a default awarenessPolicy of Ignore might want to classify a
subset of its optional elements as Reject if they are indispensable to its correct
interpretation. An implementation can opt to check or not check for this attribute at
any level it wants but must assume a Reject policy for any elements it does not check.

10.0 References

ISO 8601
ISO (International Organization for Standardization). Representations of dates
and times, 1988-06-15. https://www.iso.ch/markete/8601.pdf

DATATYPES
XML Schema Part 2: Datatypes. Recommendation, 02 MAY 2001.
https://www.w3.org/TR/xmlschema-2/

11.0 Units of Measure Abbreviations

Abbreviation Definition Quantity

B byte 1 byte

KB Kilobyte 2^10 bytes

MB Megabyte 2^20 bytes

GB Gigabyte 2^30 bytes

TB Terabyte 2^40 bytes

PB Petabyte 2^50 bytes

EB Exabyte 2^60 bytes

Appendix M: Scalable Systems Software Specification

http://www.iso.org/iso/home.html
http://www.w3.org/TR/xmlschema-2/

Abbreviation Definition Quantity

ZB Zettabyte 2^70 bytes

YB Yottabyte 2^80 bytes

NB Nonabyte 2^90 bytes

DB Doggabyte 2^100 bytes

M.2 Scalable Systems Software Resource Management
and Accounting Protocol (SSSRMAP) Message Format

Resource Management Interface Specs
Release v. 3.0.4
18 JUL 2005

Scott Jackson
Brett Bode

David Jackson
Kevin Walker

Status of this Memo
This is a specification defining an XML message format used between Scalable Systems
Software components. It is intended that this specification will continue to evolve as these
interfaces are implemented and thoroughly tested by time and experience.

Abstract
This document is a specification describing a message format for the interaction of
resource management and accounting software components developed as part of the
Scalable Systems Software Center. The SSSRMAP Message Format defines a request-
response syntax supporting both functional and object-oriented messages. The protocol is
specified in XML Schema Definition. The message elements defined in this specification are
intended to be framed within the Envelope and Body elements defined in the SSSRMAP
Wire Protocol specification document.

Appendix M: Scalable Systems Software Specification

1461 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1462

Table of Contents
l 1.0 Introduction
l 2.0 Conventions Used in this Document

o 2.1 Keywords
o 2.2 XML Case Conventions
o 2.3 Schema Definitions

l 3.0 Encoding

o 3.1 Schema Header and Namespaces
o 3.2 Element Descriptions

o 3.2.1 The Request Element
o 3.2.2 The Object Element
o 3.2.3 The Get Element
o 3.2.4 The Set Element
o 3.2.5 The Where Element
o 3.2.6 The Option Element
o 3.2.7 The Data Element
o 3.2.8 The File Element
o 3.2.9 The Count Element
o 3.2.10 The Response Element
o 3.2.11 The Status Element
o 3.2.12 The Value Element
o 3.2.13 The Code Element
o 3.2.14 The Message Element

o 3.3 Modified XPATH Expressions

o 3.3.1 Sample Modified XPATH expressions
o 3.4 Examples

o 3.4.1 Sample Requests
o 3.4.2 Sample Responses

Appendix M: Scalable Systems Software Specification

l 4.0 Error Reporting

l 5.0 References

1.0 Introduction
A major objective of the Scalable Systems Software [SSS] Center is to create a scalable and
modular infrastructure for resource management and accounting on terascale clusters
including resource scheduling, grid-scheduling, node daemon support, comprehensive
usage accounting and user interfaces emphasizing portability to terascale vendor operating
systems. Existing resource management and accounting components feature disparate
APIs (Application Programming Interfaces) requiring various forms of application coding to
interact with other components.

This document proposes a common message format expressed in an XML request-
response syntax to be considered as the foundation of a standard for communications
between and among resource management and accounting software components. In this
document this standard is expressed in two levels of generality. The features of the core
SSSRMAP protocol common to all resource management and accounting components in
general are described in the main body of this document. The aspects of the syntax specific
to individual components are described in component-specific binding documents.

2.0 Conventions Used in this Document

2.1 Keywords
The keywords 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD',
'RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as
described in RFC2119 [RFC2119].

2.2 XML Case Conventions
In order to enforce a consistent capitalization and naming convention across all SSSRMAP
specifications 'Upper Camel Case' (UCC) and 'Lower Camel Case' (LCC) Capitalization styles
shall be used. UCC style capitalizes the first character of each word and compounds the
name. LCC style capitalizes the first character of each word except the first word. [XML_
CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the following
conventions:

l Element names SHALL be in UCC convention (example:
<UpperCamelCaseElement/>).

Appendix M: Scalable Systems Software Specification

1463 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1464

l Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement
lowerCamelCaseAttribute=”Whatever”/>).

2. General rules for all names are:

l Acronyms SHOULD be avoided, but in cases where they are used, the capitalization
SHALL remain (example: XMLSignature).

l Underscores (_), periods (.) and dashes (-) MUST NOT be used (example: use JobId
instead of JOB.ID, Job_ID or job-id).

2.3 Schema Definitions
SSSRMAP Schema Definitions appear like this

In case of disagreement between the schema file and this specification, the schema file
takes precedence.

3.0 Encoding
Encoding tells how a message is represented when exchanged. SSSRMAP data exchange
messages SHALL be defined in terms of XML schema [XML_SCHEMA].

3.1 Schema Header and Namespaces
The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema
xmlns="https://www.w3.org/2001/XMLSchema"
xmlns:sssrmap="https://scidac.org/ScalableSystems/SSSRMAP"
targetNamespace="https://www.scidac.org/ScalableSystems/SSSRMAP"
elementFormDefault="qualified">

3.2 Element Descriptions
The following subsections describe the elements that make up SSSRMAP messages.
SSSRMAP messages are transmitted in the Body and Envelope elements as described in the
SSSRMAP Wire Protocol specification [WIRE_PROTOCOL].

The Request Element
The Request element specifies an individual request. An object-oriented request will
have at least one Object element while a functional request will not have one. Depending
on context, the Request element MAY contain one or more Get elements or one or more
Set elements and any number of Where elements. Option, Data, File or Count

Appendix M: Scalable Systems Software Specification

elements may also be included. If a component supports it, chunking may be requested
where large response data is possible. Setting the chunking attribute to 'True' requests
that the server break a large response into multiple chunks (each with their own envelope)
so they can be processed in separate pieces.

Only an action attribute is required. All other attributes are optional.

Attribute Description

action Specifies the action or function to be performed

actor The authenticated user sending the request

id Uniquely maps the request to the appropriate response

chunking Requests that segmentation be used for large response data if set to 'True'

chunkSize Requests that the segmentation size be no larger than the specified amount

<complexType name="RequestType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="sssrmap:Object" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Option" minOccurs="0" maxOccurs="unbounded"/>
<choice minOccurs="0" maxOccurs="1">
<element ref="sssrmap:Get" minOccurs="1" maxOccurs="unbounded"/>
<element ref="sssrmap:Set" minOccurs="1" maxOccurs="unbounded"/>

</choice>
<element ref="sssrmap:Where" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Count" minOccurs="0" maxOccurs="1"/>
<any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</choice>
<attribute name="action" type="string" use="required"/>
<attribute name="actor" type="string" use="required"/>
<attribute name="id" type="string" use="optional"/>
<attribute name="chunking" type="sssrmap:BoolType" use="optional"/>
<attribute name="chunkSize" type="positiveInteger" use="optional"/>

</complexType>

<element name="Request" type="sssrmap:RequestType"/>

The Object Element
The Object element is used in an object-oriented request to specify the object receiving
the action. It is possible to have multiple Object elements in a request if an
implementation supports multi-object queries.

The object class name is specified as text content. All attributes are optional.

Appendix M: Scalable Systems Software Specification

1465 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1466

l join – the type of join to be performed with the preceding object
o A join attribute of 'Inner' specifies an inner join. This is the default.
o A join attribute of 'FullOuter' specifies a full outer join.
o A join attribute of 'LeftOuter' specifies a left outer join.
o A join attribute of 'RightOuter' specifies a right outer join.
o A join attribute of 'Cross' specifies a cross join.
o A join attribute of 'Union' specifies a union join.

<complexType name="ObjectType">
<simpleContent>
<extension base="string">
<attribute name="join" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Object" type="sssrmap:ObjectType"/>

The Get Element
The Get element is used to indicate the data fields to be returned in a query. Get is
typically used within requests with action=”query”. Multiple Get elements cause the
fields to be returned in the order specified. If no Get elements are specified, the query will
return a default set of fields.

Only a name attribute is required. All other attributes are optional.

Attribute Description

name The name of the data field to be returned. This MUST be of the form of a
'Modified XPATH expression' as described in a later section.

op The operator to be used to aggregate or perform an operation on the returned
values:

l An op attribute of 'Sort' specifies an ascending sort operation
l An op attribute of 'Tros' specifies a descending sort operation
l An op attribute of 'Sum' returns the sum (only valid for numeric values)
l An op attribute of 'Max' returns the maximum value
l An op attribute of 'Min' returns the minimum value
l An op attribute of 'Count' returns the number of values
l An op attribute of 'Average' returns the average of the values
l An op attribute of 'GroupBy' signifies that aggregates are grouped by this

field

Appendix M: Scalable Systems Software Specification

Attribute Description

object Specifies the object for which you want the named attribute in a multi-object
query.

units The units in which to return the value (if applicable)

<complexType name="GetType">
<attribute name="name" type="string" use="required"/>
<attribute name="object" type="string" use="optional"/>
<attribute name="op" type="sssrmap:GetOperatorType" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</complexType>

<element name="Get" type="sssrmap:GetType"/>

<simpleType name="GetOperatorType">
<restriction base="string">
<enumeration value="Sort"/>
<enumeration value="Tros"/>
<enumeration value="Count"/>
<enumeration value="Sum"/>
<enumeration value="Max"/>
<enumeration value="Min"/>
<enumeration value="Average"/>
<enumeration value="GroupBy"/>

</restriction>
</simpleType>

The Set Element
The Set element is used to specify the object data fields to be assigned values. Set is
typically used within requests with action=”Create” or action=”Modify”. The
use of Get or Set elements within a request is mutually exclusive.

The assignment value (to which the field is being changed) is specified as the text content.
A Set element without a value can be used as an assertion flag. Only the name attribute is
required. All other attributes are optional.

Attribute Description

name The name of the field being assigned a value. This MUST be of the form of a
'Modified XPATH expression' as described in a later section.

op The operator to be used in assigning a new value to the name. If an op attribute
is not specified and a value is specified, the specified value will be assigned to the
named field ('assign').

l An op attribute of 'Assign' assigns value to the named field
l An op attribute of 'Inc' increments the named field by the value
l An op attribute of 'Dec' decrements the named field by the value

Appendix M: Scalable Systems Software Specification

1467 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1468

Attribute Description

units The units corresponding to the value being set

<complexType name="SetType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:SetOperatorType" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Set" type="sssrmap:SetType"/>

<simpleType name="SetOperatorType">
<restriction base="string">
<enumeration value="Assign"/>
<enumeration value="Inc"/>
<enumeration value="Dec"/>

</restriction>
</simpleType>

The Where Element
A Request element can contain one or more Where elements that specify the search
conditions for which objects the action is to be performed on.

The condition value (against which the field is tested) is specified as the text content. A
Where element without a value can be used as a truth test. Only the name attribute is
required. All other attributes are optional.

Attribute Description

name The name of the data field to be tested. This MUST be of the form of a 'Modified
XPATH expression' as described in a later section.

op The operator to be used to test the name against the value. If an op attribute is
not specified and a value is specified, the field will be tested whether it is equal to
the value ('EQ'):

l An op attribute of 'EQ' specifies an equality comparison
l An op attribute of 'LT' specifies a 'less than' comparison
l An op attribute of 'GT' specifies a 'greater than' comparison
l An op attribute of 'LE' specifies a 'less than or equal to' test
l An op attribute of 'GE' specifies a 'greater than or equal to' test
l An op attribute of 'NE' specifies a 'not equal to' test
l An op attribute of 'Match' specifies a regular expression matching

comparison

Appendix M: Scalable Systems Software Specification

Attribute Description

conj Indicates whether this test is to be ANDed or ORed with the immediately
preceding where condition:

l A conj attribute of 'And' specifies an 'and' conjunction
l A conj attribute of 'Or' specifies an 'or' condition
l A conj attribute of 'AndNot' specifies an 'and not' conjunction
l A conj attribute of 'OrNot' specifies an 'or not' condition

group Indicates an increase or decrease of parentheses grouping depth:

l A positive number indicates the number of left parentheses to precede the
condition [i.e., group=”2” represents “((condition”].

l A negative number indicates the number of right parentheses to follow the
condition [i.e., group=”-2” represents “condition))”].

object Specifies the object for the first operand in a multi-object query.

subject Specifies the object for the second operand in a multi-object query.

units Indicates the units to be used in the value comparison

<complexType name="WhereType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:OperatorType" use="optional"/>
<attribute name="conj" type="sssrmap:ConjunctionType" use="optional"/>
<attribute name="group" type="integer" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Where" type="sssrmap:WhereType"/>

<simpleType name="WhereOperatorType">
<restriction base="string">
<enumeration value="EQ"/>
<enumeration value="GT"/>
<enumeration value="LT"/>
<enumeration value="GE"/>
<enumeration value="LE"/>
<enumeration value="NE"/>
<enumeration value="Match"/>

</restriction>
</simpleType>

The Option Element
The Option element is used to indicate processing options for the command. An option
might be used to indicate that command usage or special formatting is desired, or that the

Appendix M: Scalable Systems Software Specification

1469 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1470

command is to be invoked with particular options.

The option value is specified as the text content. An Option element without a value can
be used as an assertion flag. Only the name attribute is required. All other attributes are
optional.

Attribute Description

name The name of the field being assigned a value.

op The operator to be used to disassert the option:

l An op attribute of 'Not' specifies that the option is not asserted

conj Indicates whether this test is to be ANDed or ORed with the immediately
preceding where condition:

l A conj attribute of 'And' specifies an 'and' conjunction
l A conj attribute of 'Or' specifies an 'or' condition
l A conj attribute of 'AndNot' specifies an 'and not' conjunction
l A conj attribute of 'OrNot' specifies an 'or not' condition

<complexType name="OptionType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:OptionOperatorType" use="optional"/>
<attribute name="conj" type="sssrmap:ConjunctionType" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Option" type="sssrmap:OptionType"/>

<simpleType name="OptionOperatorType">
<restriction base="string">
<enumeration value="Not"/>

</restriction>
</simpleType>

The Data Element
A Request or Response element can have one or more Data elements that allow the
supplying of context-specific data. A request might pass in a structured object via a Data
element to be acted upon. Typically a query will result in a response with the data
encapsulated within a Data element.

The following attributes are optional:

Appendix M: Scalable Systems Software Specification

Attribute Description

name Object name describing the contents of the data.

type Describing the form in which the data is represented:

l A type attribute of 'XML' indicates the data has internal xml structure and
can be recursively parsed by an XML parser

l A type attribute of 'Binary' indicates the data is an opaque dataset
consisting of binary data

l A type attribute of 'String' indicates the data is an ASCII string
l A type attribute of 'Int' indicates the data is an integer
l A type attribute of 'Text' indicates the data is in formatted human-readable

text
l A type attribute of 'HTML' indicates the data is represented in HTML

<complexType name="DataType">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="name" type="string" use="optional"/>
<attribute ref="sssrmap:Type" use="optional"/>

</complexType>

<element name="data" type="sssrmap:DataType"/>

The File Element
A Request or Response element can have one or more File elements of type String
that allow the inclusion of files. The files can be either text or binary and can be referenced
by objects inside the Data element. A file can be compressed using the gzip algorithm [ZIP].
A binary file or a compressed file must be base64 encoded as defined in XML Digital
Signatures (https://www.w3.org/2000/09/xmldsig#base64). Metadata
describing the modes and properties of the resulting file are passed as parameters. The
text or base64 encoded file data forms the string content of the File element.

The following attributes are optional:

Attribute Description

id Specifies an identifier that allows the file to be referenced from within another
object. If more than one File elements are specified, this attribute is
REQUIRED in each of them.

name Specifies the name to give the file upon creation on the target system. This can
be an absolute or relative pathname (relative to the InitialWorkingDirectory).

Appendix M: Scalable Systems Software Specification

1471 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1472

Attribute Description

owner Indicates what owner the file should be changed to. By default, it will be
changed to the UserId that the authenticated actor maps to on the target
system. Note that this function should succeed only if the requestor has the
privileges to do so (i.e., authenticated as root).

group Indicates what group the file should be changed to. By default, it will be set to
the primary groupid of the UserId that the authenticated actor maps to on the
target system. Note that this function should succeed only if the requestor has
the proper privileges.

mode Indicates the permissions the file should possess. By default, it will be set
according to the default umask for the UserId that the authenticated actor
maps to on the target system. Note that this function should not set
permissions for the file that exceed the privileges for the actor. These
permissions can be specified using either an octal number or symbolic
operations (as accepted by the GNU chmod(1) command).

compressed Indicates whether the file has been compressed:

l A compressed attribute of 'True' indicates the file has been compressed.
l A compressed attribute of 'False' indicates the file has not been

compressed. This is the default.

encoded Indicates whether the file has been base64 encoded:

l An encoded attribute of 'True' indicates the file has been encoded.
l An encoded attribute of 'False' indicates the file has not been encoded.

This is the default.

<complexType name="FileType">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="name" type="string" use="optional"/>
<attribute name="owner" type=="string" use="optional"/>
<attribute name="group" type="string" use="optional"/>
<attribute name="mode" type="string" use="optional"/>
<attribute name="compressed" type="boolean" use="optional"/>
<attribute name="encoded" type="boolean" use="optional"/>

</complexType>

<element name="file type="sssrmap:FileType"/>

The Count Element
A single Count element can be included within a Request or Response and is context-
specific. This can be used to represent the number of objects acted upon or returned.

<element name="Count" type="positiveInteger"/>

Appendix M: Scalable Systems Software Specification

The Response Element
The Response element specifies an individual response. It MUST contain a Status
element. It MAY also contain Count and any number of Data or File elements. If
chunking has been requested and is supported by the server, a large response can be
broken up into multiple chunks (each with their own envelope). The chunkNum attribute
can be used to indicate which chunk the current one is. The chunkMax attribute can be
used to determine when all the chunks have been received (all chunks have been received
if chunkNum=chunkMax or chunkMax=0).

It MAY have any of the following attributes:

Attribute Description

id Uniquely maps the response to the corresponding request

chunkNum Integer indicating the current chunk number [1 is implied when this attribute is
missing or blank]

chunkMax Integer indicating the number of chunks expected [-1 means unknown but more
chunks to follow; 0 means unknown but this is the last chunk; 0 is implied if
this attribute is missing or blank]

<complexType name="ResponseType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="sssrmap:Status" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Count" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:File" minOccurs="0" maxOccurs="unbounded"/>
<any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

</choice>
<attribute name="object" type="string" use="optional"/>
<attribute name="action" type="string" use="optional"/>
<attribute name="id" type="string" use="optional"/>
<attribute name="chunkNum" type="integer" use="optional"/>
<attribute name="chunkMax" type="integer" use="optional"/>

</complexType>

<element name="Response" type="sssrmap:ResponseType"/>

The Status Element
A Response element MUST contain a single Status element that indicates whether the
reply represents a success, warning or failure. This element is composed of the child
elements Value, Code and Message. Of these, Value and Code are required, and
Message is optional.

<complexType name="StatusType">
<choice minOccurs="1" maxOccurs="unbounded">
<element ref="sssrmap:Value" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Code" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Message" minOccurs="0" maxOccurs="1"/>
<any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

</choice>

Appendix M: Scalable Systems Software Specification

1473 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1474

</complexType>

<element name="Status" type="sssrmap:StatusType"/>

The Value Element
The Value element is of type String and MUST have a value of 'Success', 'Warning' or
'Failure':

<simpleType name="StatusValueType">
<restriction base="string">
<enumeration value="Success"/>
<enumeration value="Warning"/>
<enumeration value="Failure"/>

</restriction>
</simpleType>

<element name="Value" type="sssrmap:StatusValueType"/>

The Code Element
A Response element must contain a single Code element that specifies the 3-digit status
code for the response. Refer to the next section on Error Reporting for a description and
listing of supported status codes.

<simpleType name="CodeType">
<restriction base="string">
<pattern value="[0-9]{3}"/>

</restriction>
</simpleType>

<element name="Code" type="sssrmap:CodeType"/>

The Message Element
A Response element can contain a single Message element that is context specific to the
success or failure response. The message should be an error message if status is false. If
present for a successful response, it can be used as a human readable message for a user
interface.

<element name="Message" type="string"/>

3.3 Modified XPATH Expressions
The name attribute used within the Get, Set and Where Elements MUST have the form
of a modified XPATH expression as defined in this section. Usually this will just be the
simple name of the object property. Some complex objects, such as the SSS Job Object and
the SSS Node Object, however, are represented in a structured way with nested elements.
In order to define a consistent and flexible way to access and manipulate these objects, as
well as keeping the flat XML objects simple and straightforward, SSSRMAP specifies that a
'Modified XPATH' syntax be used.

Appendix M: Scalable Systems Software Specification

In essence, 'Modified XPATH' is defined to be an XPATH [XPATH] expression with the
exception that the '//' can be omitted from the beginning of the expression when a
document search is desired. Therefore, on the server side, a standard XPATH routine can
be used by prepending '//' to any expression that does not begin with a '/'.

The response data should always include all of the structure of the queried object
necessary to place the requested data in its proper context.

See the XPATH specification for a full description of XPATH. The XPath 1.0
Recommendation is https://www.w3.org/TR/1999/REC-xpath-19991116. The
latest version of XPath 1.0 is available at https://www.w3.org/TR/xpath.

Sample Modified XPATH Expressions
Consider the following hypothetical object(s) (which might be returned within a Data
element):

<Job>
<JobId>PBS.1234.0</JobId>
<Requested>
<Memory op=”GE”>512</Memory>
<Processors>2</Processors>
<WallDuration>P3600S</WallDuration>

</Requested>
<Utilized>
<Memory metric=”Average”>488</Memory>
<WallDuration>P1441S</WallDuration>

</Utilized>
</Job>

To get everything above for this job you would not need a Get element:

<Request action=”Query”>
<Object>Job</Object>
<Where name=”JobId”>PBS.1234.0</Where>

</Request>

If you used <Get name=”JobId”/> you would get back:

<Job>
<JobId>PBS.1234.0</JobId>

</Job>

If you used <Get name=”Memory”/> (or name=”/Job/*/Memory”) you would get:

<Job>
<Requested>
<Memory op=”GE”>512</Memory>

</Requested>
<Utilized>
<Memory metric=”Average”>488</Memory>

</Utilized>
</Job>

If you used <Get name=”Requested/Memory”/> (or
name=”/Job/Requested/Memory”) you would get:

Appendix M: Scalable Systems Software Specification

1475 M.2 Scalable Systems Software Resource Management and Accounting Protocol

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1476

<Job>
<Requested>
<Memory op=”GE”>512</Memory>

</Requested>
</Job>

If you used <Get name=”Memory[@metric=’Average’]”/> (or name=”Memory
[@metric]”) you would get:

<Job>
<Utilized>
<Memory metric=”Average”>488</Memory>

</Utilized>
</Job>

3.4 Examples

Sample Requests
Requesting a list of nodes with a certain configured memory threshold (batch format):

<Request action=”Query” id=”1”>
<Object>Node</Object>
<Get name=”Name” />
<Get name=”Configured/Memory” />
<Where name=”Configured/Memory” op=”GE” units=”MB”>512</Where>

</Request>

Activating a couple of users:

<Request action=”Modify”>
<Object>User</Object>
<Set name=”Active”>True</Set>
<Where name=”Name”>scott</Where>
<Where name=”Name” conj=”Or”/>brett</Where>

</Request>

Submitting a simple job:

<Request action=”Submit”>
<Object>Job</Object>
<Data>
<Job>
<User>xdp</User>
<Account>youraccount</Account>
<Command>myprogram</Command>
<InitialWorkingDirectory>/usr/home/scl/xdp</InitialWorkingDirectory>
<RequestedNodes>4</RequestedNodes>
<RequestedWCTime>100</RequestedWCTime>

</Job>
</Data>

</Request>

Sample Responses
A response to the available memory nodes query (batch format):

Appendix M: Scalable Systems Software Specification

<Response id=”1”>
<Status>
<Value>Success</Value>
<Code>000</Code>

</Status>
<Count>2</Count>
<Data>
<Node>
<Name>fr01n01</Name>
<Configured>
<Memory>512</Memory>

</Configured>
</Node>
<Node>
<Name>fr12n04</Name>
<Configured>
<Memory>1024</Memory>

</Configured>
</Node>

</Data>
</Response>

Two users successfully activated:

<Response>
<Status>
<Code>000</Code>
<Message>Two users were successfully modified</Message>

</Status>
<Count>2</Count>

</Response>

A failed job submission:

<Response>
<Status>
<Value>Failure</Value>
<Code>711</Code>
<Message>Invalid account specified. The job was not submitted.</Message>

</Status>
</Response>

4.0 Error Reporting
SSSRMAP requests will return a status and a 3-digit response code to signify success or
failure conditions. When a request is successful, a corresponding response is returned
with the status element set to Success and the code element set to '000'. When a
request results in an error detected by the server, a response is returned with the
status element set to Failure and a 3-digit error code in the code element. An optional
human-readable message can also be include in a failure response providing context-
specific detail about the failure. The default message language is US English. (The status
flag makes it easy to signal success or failure and allows the receiving peer some freedom
in the amount of parsing it wants to do on failure [BXXP]).

Appendix M: Scalable Systems Software Specification

1477 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1478

Success Codes

Code Response Text in US English

0xx Request was successful

000 General Success

010 Help/usage reply

020 Status reply

030 Subscription successful

035 Notification successful (Ack)

040 Registration successful

050-079 Component-defined

080-099 Application-defined

Warning Codes

Code Response Text in US English

1xx Request was successful but includes a warning

100 General warning (examine message for details)

102 Check result (Did what you asked but may not have been what you intended -- or
information is suspect)

110 Wire Protocol or Network warning

112 Redirect

114 Protocol warning (something was wrong with the protocol, but best effort guesses
were applied to fulfill the request)

Appendix M: Scalable Systems Software Specification

Code Response Text in US English

120 Message Format warning

122 Incomplete specification (request missing some essential information -- best effort
guess applied)

124 Format warning (something was wrong with the format but best effort guesses were
applied to fulfill the request)

130 Security warning

132 Insecure request

134 Insufficient privileges (Response was sanitized or reduced in scope due to lack of
privileges)

140 Content or action warning

142 No content (The server has processed the request but there is no data to be
returned)

144 No action taken (nothing acted upon -- i.e., deletion request did not match any
objects)

146 Partial content

148 Partial action taken

150-
179

Component-defined

180-
199

Application-defined

Wire Protocol Codes

Code Response Text in US English

2xx A problem occurred in the wire protocol or network

Appendix M: Scalable Systems Software Specification

1479 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1480

Code Response Text in US English

200 General wire protocol or network error

210 Network failure

212 Cannot resolve host name

214 Cannot resolve service port

216 Cannot create socket

218 Cannot bind socket

220 Connection failure

222 Cannot connect

224 Cannot send data

226 Cannot receive data

230 Connection rejected

232 Timed out

234 Too busy

236 Message too large

240 Framing failure

242 Malformed framing protocol

244 Invalid payload size

246 Unexpected end of file

250-279 Component-defined

280-299 Application-defined

Appendix M: Scalable Systems Software Specification

Message Format Codes

Code Response Text in US English

3xx A problem occurred in the message format

300 General message format error

302 Malformed XML document

304 Validation error (XML Schema)

306 Namespace error

308 Invalid message type (Something other than Request or Response in Body)

310 General syntax error in request

311 Object incorrectly (or not) specified

312 Action incorrectly (or not) specified

313 Invalid Action

314 Missing required element or attribute

315 Invalid Object (or Object-Action combination)

316 Invalid element or attribute name

317 Illegal value for element or attribute

318 Illegal combination

319 Malformed Data

320 General syntax error in response

321 Status incorrectly (or not) specified

322 Code incorrectly (or not) specified

Appendix M: Scalable Systems Software Specification

1481 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1482

Code Response Text in US English

324 Missing required element or attribute

326 Invalid element or attribute name

327 Illegal value for element or attribute

328 Illegal combination

329 Malformed Data

340 Pipelining failure

342 Request identifier is not unique

344 Multiple messages not supported

346 Mixed messages not supported (both requests and responses in same batch)

348 Request/response count mismatch

350-379 Component-defined

380-399 Application-defined

Security Codes

Code Response Text in US English

4xx A security requirement was not fulfilled

400 General security error

410 Negotiation failure

412 Not understood

414 Not supported

Appendix M: Scalable Systems Software Specification

Code Response Text in US English

416 Not accepted

420 Authentication failure

422 Signature failed at client

424 Authentication failed at server

426 Signature failed at server

428 Authentication failed at client

430 Encryption failure

432 Encryption failed at client

434 Decryption failed at server

436 Encryption failed at server

438 Decryption failed at client

440 Authorization failure

442 Authorization failed at client

444 Authorization failed at server

450-479 Component-defined

480-499 Application-defined

Event Management Codes

Code Response Text in US English

5xx Failure conditions in event messaging

Appendix M: Scalable Systems Software Specification

1483 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1484

Code Response Text in US English

500 General Event Management failure

510 Subscription failed

520 Notification failed

550-579 Component-defined

580-599 Application-defined

Reserved Codes

Code Response Text in US English

6xx Reserved for future use

Server Application Codes

Code Response Text in US English

7xx A server-side application-specific error occurred

700 General failure

710 Not supported

712 Not understood

720 Internal error

730 Resource unavailable (insufficient resources -- software, hardware or a service I rely
upon is down)

740 Business logic

750- Component-defined

Appendix M: Scalable Systems Software Specification

Code Response Text in US English

779

780-
799

Application-defined

Client Application Codes

Code Response Text in US English

8xx A client-side application-specific error occurred

800 General failure

810 Not supported

812 Not understood

820 Internal error

830 Resource unavailable

840 Business logic

850-879 Component-defined

880-899 Application-defined

Miscellaneous Codes

Code Response Text in US English

9xx Miscellaneous failures

999 Unknown failure

Appendix M: Scalable Systems Software Specification

1485 M.2 Scalable Systems Software Resource Management and Accounting Protocol

M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
1486

5.0 References
[BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.

[FED_XML] “U.S. Federal XML Guidelines”.

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message
Authentication”, RFC 2104, February 1997.

[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[RFC2119] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”, RFC
2119, March 1997.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC 3117,
November 2001.

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology,
“Secure Hash Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, https://www.scidac.org/ScalableSystems

[WIRE_PROTOCOL] S. Jackson, B. Bode, D. Jackson, K. Walker, “Systems Software Resource
Management and Accounting Protocol (SSSRMAP) Wire Protocol“, SSS Resource
Management and Accounting Documents, January 2004.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6 October
2000.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and Processing”, W3C
Recommendation, 12 February 2002.

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and Processing”,
W3C Candidate Recommendation, 4 March 2002.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1: Structures
Working Draft”, April 2000.

[XPath 1.0] J. Clark, S. DeRose, “XML Path Language (XPath) Version 1.0”, 16 November
1999.

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol (XRP)”,
Internet Draft, expired August 2001.

[ZIP] J. Gailly, M. Adler, “The gzip home page”, https://www.gzip.org/

Appendix M: Scalable Systems Software Specification

http://www.ietf.org/rfc/rfc3080.txt
http://www.xml.com/pub/a/2002/02/06/fedguidelines.html
http://www.ietf.org/rfc/rfc2104.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.faqs.org/rfcs/rfc3117.html
http://csrc.nist.gov/publications/fips
https://www.scidac.org/
https://www.ameslab.gov/
https://www.ameslab.gov/
https://www.w3.org/TR/xml/
https://www.aiai.ed.ac.uk/project/ix/inca/xml-conventions.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.icann.org/en/tlds/agreements/biz/draft-brunner-xrp-00.txt
http://www.gzip.org/

M.3 Scalable Systems Software Node Object
Specification

SSS Node Object Specification
Release Version 3.1.0
26 April 2011

Scott Jackson, PNNL
David Jackson, Ames Lab

Brett Bode, Ames Lab

Status of this Memo
This is a specification of the node object to be used by Scalable Systems Software compliant
components. It is envisioned for this specification to be used in conjunction with the
SSSRMAP protocol with the node object passed in the Data field of Requests and
Responses. Queries can be issued to a node-cognizant component in the form of modified
XPATH expressions to the Get field to extract specific information from the node object as
described in the SSSRMAP protocol.

Abstract
This document describes the syntax and structure of the SSS node object. This node model
takes into account various node property categories such as whether it represents a
configured, available or utilized property.

Table of Contents
l 1.0 Introduction

o 1.1 Goals
o 1.2 Examples

o 1.2.1 Simple Example
o 1.2.2 Elaborate Example

l 2.0 Conventions Used in this Document

o 2.1 Keywords
o 2.2 Table Column Interpretations

Appendix M: Scalable Systems Software Specification

1487 M.3 Scalable Systems Software Node Object Specification

M.3 Scalable Systems Software Node Object Specification 1488

o 2.3 Element Syntax Cardinality

l 3.0 The Node Model
l 4.0 Node Element

o 4.1 Uncategorized Node Properties

o 4.1.1 Simple Node Properties
o 4.1.2 Extension Element

o 4.2 Property Categories

o 4.2.1 Configured Element
o 4.2.2 Available Element
o 4.2.3 Utilized Element

o 4.3 Categorized Node Properties

o 4.3.1 Consumable Resources
o 4.3.2 Resource Element

l 5.0 Units of Measure Abbreviations

1.0 Introduction
This specification proposes a standard XML representation for a node object for use by the
various components in the SSS Resource Management System. This object will be used in
multiple contexts and by multiple components. It is anticipated that this object will be
passed via the Data Element of SSSRMAP Requests and Responses.

1.1 Goals
There are several goals motivating the design of this representation.

It needs to be inherently flexible. We recognize we will not be able to exhaustively include
the ever-changing node properties and capabilities that constantly arise.

The same node object should be used at all stages of its lifecycle. This object needs to
distinguish between configured, available and utilized properties of a node.

Its design takes into account the properties and structure required to function in a meta or
grid environment. It should eventually include the capability of resolving namespace and
locality issues, though the earliest versions will ignore this requirement.

One should not have to make multiple queries to obtain a single piece of information (i.e.,
there should not be two mutually exclusive ways to represent a node resource).

Appendix M: Scalable Systems Software Specification

It needs to support resource metric, as well as unit specifications.

1.2 Examples

Simple Example
This example shows a simple expression of the Node object:

<Node>
<Id>Node64</Id>
<Configured>
<Processors>2</Processors>
<Memory>512</Memory>

</Configured>
</Node>

Elaborate Example
This example shows a more elaborate Node object:

<Node>
<Id>64</Id>
<Name>Netpipe2</Name>
<Feature>BigMem</Feature>
<Feature>NetOC12</Feature>
<Opsys>AIX</Opsys>
<Arch>Power4</Arch>
<Configured>
<Processors>16</Processors>
<Memory units=”MB”>512</Memory>
<Swap>512</Swap>

</Configured>
<Available>
<Processors>7</Processors>
<Memory metric=”Instantaneous”>143</Memory>

</Available>
<Utilized>
<Processors wallDuration=”3576”>8</Processors>
<Memory metric=”Average” wallDuration=”3576”>400</Memory>

</Utilized>
</Node>

2.0 Conventions Used in this Document

2.1 Keywords
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described
in RFC2119.

Appendix M: Scalable Systems Software Specification

1489 M.3 Scalable Systems Software Node Object Specification

http://www.ietf.org/rfc/rfc2119.txt

M.3 Scalable Systems Software Node Object Specification 1490

2.2 Table Column Interpretations
In the property tables, the columns are interpreted to have the following meanings:

Property Description

Element
Name

Name of the XML element (xsd:element)

Type Data type defined by xsd (XML Schema Definition) as:

l String — xsd:string(a finite length sequence of printable characters)
l Integer — xsd:integer(a signed finite length sequence of decimal digits)
l Float — xsd:float (single-precision 32-bit floating point)
l Boolean — xsd:boolean (consists of the literals “true” or “false”)
l DateTime — xsd:dateTime (discreet time values are represented in ISO

8601 extended format CCYY-MM-DDThh:mm:ss where CC represents
the century, YY the year, MM the month and DD the day. The letter T is the
date/time separator and hh, mm, ss represent hour, minute and second
respectively. This representation may be immediately followed by a Z to
indicate Coordinated Universal Time (UTC) or, to indicate the time zone
(i.e., the difference between the local time and Coordinated Universal
Time), immediately followed by a sign, + or -, followed by the difference
from UTC.

l Duration — xsd:duration (a duration of time is represented in ISO 8601
extended format PnYnMnDTnHnMnS, where nY represents the number of
years, nM the number of months, nD the number of days, T is the
date/time separator, nH the number of hours, nM the number of minutes
and nS the number of seconds. The number of seconds can include
decimal digits to arbitrary precision.)

Description Brief description of the meaning of the property

Appearance Indicates whether the given property has to appear within the parent element.
It assumes the following meanings:

l MUST — This property is REQUIRED when the parent is specified.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Compliance Indicates whether a compliant implementation has to support the given prop-
erty:

l MUST — A compliant implementation MUST support this property.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Appendix M: Scalable Systems Software Specification

Property Description

Categories Some properties can be categorized into one of several categories. Letters in
this column indicate that the given property can be classified in the following
property categories:

l C — This property can be encompassed in a Configured element.
l A — This property can be encompassed in an Available element.
l U — This property can be encompassed in a Utilized element.

2.3 Element Syntax Cardinality
The cardinality of elements in the element syntax sections can make use of regular
expression wildcards with the following meanings:

Wildcard Description

* Zero or more occurrences

+ One or more occurrences

? Zero or one occurrences

The absence of one of these symbols implies one and only one occurrence.

3.0 The Node Model
The primary element within the node model is a node. One can speak of some node
properties as being a configured, available or utilized property of the node.

4.0 Node Element
The Node element is the root element of a node object and is used to encapsulate a node:

l A node object MUST have exactly one Node element.

l A compliant implementation MUST support this element.

l A node MUST specify one or more Node Properties.

Appendix M: Scalable Systems Software Specification

1491 M.3 Scalable Systems Software Node Object Specification

M.3 Scalable Systems Software Node Object Specification 1492

4.1 Uncategorized Node Properties
Uncategorized Node Properties are properties that apply to the node as a whole and do not
need to be distinguished between being configured, available or utilized. These include the
node ID and other optional node properties.

Simple Node Properties
Simple (unstructured) node properties are enumerated in the table below:

Table M-7: Simple Node Properties

Element
Name

Type Description Appearance Compliance

Id String Node identifier MUST MUST

Name String Node name or pattern MAY MAY

OpSys String Operating System MAY SHOULD

Arch String Architecture MAY SHOULD

Description String Description of the node MAY MAY

State String State of the node. Valid states can
include Offline, Configured,
Unknown, Idle, and Busy.

SHOULD MUST

Features String Arbitrary named features of the
node (comma-delimited string)

MAY SHOULD

Extension Element
The Extension element provides a means to pass extensible properties with the node
object. Some applications might find it easier to deal with a named extension property than
discover and handle elements for which they do not understand or anticipate by name.

l A compliant implementation MAY support this element.

l This element MUST have a name attribute that is of type String and represents the
name of the extension property. A compliant implementation MUST support this
attribute if this element is supported.

Appendix M: Scalable Systems Software Specification

l This element MAY have a type attribute that is of type String and provides a hint
about the context within which the property should be understood. A compliant
implementation SHOULD support this attribute if this element is supported.

l The character content of this element is of type String and is the value of the
extension property.

The following is an example of an Extension element:

<Extension type=”Chemistry” name=”Software”>NWChem</Extension>

4.2 Property Categories
Certain node properties (particularly consumable resources) need to be classified as being
in a particular category. This is done when it is necessary to distinguish between a
property that is configured versus a property that is available or utilized. For example, a
node might be configured with 16 processors. At a particular time, 8 might be utilized, 7
might be available and 1 disabled. When a node property must be categorized to be
understood properly, the property MUST be enveloped within the appropriate Property
Category Element.

Configured Element
A configured node property reflects resources pertaining to the node that could in
principle be used though they might not be available at this time. This information could be
used to determine if a job could ever conceivably run on a given node.

l A compliant implementation MUST support this element.

The following is an example of using Configured Properties:

<Configured>
<Processors>16</Processors>
<Memory units=”MB”>512</Memory>

</Configured>

Available Element
An available node property refers to a resource that is currently available for use.

l A compliant implementation SHOULD support this element.

The following is an example of specifying available properties:

<Available>
<Processors>7</Processors>
<Memory units=”MB”>256</Memory>

</Available>

Appendix M: Scalable Systems Software Specification

1493 M.3 Scalable Systems Software Node Object Specification

M.3 Scalable Systems Software Node Object Specification 1494

Utilized Element
A utilized node property reflects resources that are currently utilized.

l A compliant implementation SHOULD support this element.

The following is an example of specifying utilized properties:

<Utilized>
<Processors>8</Processors>
<Memory metric=”Average”>207</Memory>

</Utilized>

4.3 Categorized Node Properties

Consumable Resources
Consumable Resources are a special group of node properties that can have additional
attributes and can be used in multiple categories. In general a consumable resource is a
resource that can be consumed in a measurable quantity.

l A consumable resource MUST be categorized as being a configured, available or
utilized node property by being a child element of a Configured, Available or Utilized
element respectively.

l A consumable resource MAY have a units attribute that is of type String that specifies
the units by which it is being measured. If this attribute is omitted, a default unit is
implied. A compliant implementation MAY support this attribute if the element is
supported.

l A consumable resource MAY have a metric attribute that is of type String that
specifies the type of measurement being described. For example, the measurement
can be a Total, an Average, a Min or a Max. A compliant implementation MAY support
this attribute if the element is supported.

l A consumable resource MAY have a wallDuration attribute of type Duration that
indicates the amount of time for which that resource was used. This need only be
specified if the resource was used for a different amount of time than the
wallDuration for the step. A compliant implementation MAY support this attribute if
the element is supported.

l A consumable resource MAY have a consumptionRate attribute of type Float that
indicates the average percentage that a resource was used over its wallDuration. For
example, an overbooked SMP running 100 jobs across 32 processors might want to
scale the usage and charge by the average fraction of processor usage actually
delivered. A compliant implementation MAY support this attribute if the element is
supported.

Simple consumable resources are listed in the table below:

Appendix M: Scalable Systems Software Specification

Table M-8: Consumable Resource Node Properties

Element
Name

Type Description Appearance Compliance Categories

Processors Integer Number of
processors

MAY MUST CAU

Memory Float Amount of
memory

MAY SHOULD CAU

Disk Float Amount of disk MAY SHOULD CAU

Swap Float Amount of virtual
memory

MAY MAY CAU

Network Float Amount of
network

MAY MAY CAU

The following are two examples for specifying a consumable resource:

<Memory metric=”Max” units=”GB”>483</Memory>
<Processors wallDuration=”1234” consumptionRate=”0.63”>4</Processors>

Resource Element
In addition to the consumable resources enumerated in the above table, an extensible
consumable resource is defined by the Resource element:

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times within a given set of node properties.

l Like the other consumable resources, this property MUST be categorized as a
configured, available or utilized property by being encompassed in the appropriate
elements.

l This element is of type Float.

l It shares the other same properties and attributes as the other consumable
resources but it requires an additional name (and optional type) attribute to describe
it.

l This element MUST have a name attribute of type String that indicates the type of
consumable resource being measured. A compliant implementation MUST support
this attribute if the element is supported.

Appendix M: Scalable Systems Software Specification

1495 M.3 Scalable Systems Software Node Object Specification

M.3 Scalable Systems Software Node Object Specification 1496

l This element MAY have a type attribute of type String that distinguishes it within a
general resource class. A compliant implementation SHOULD support this attribute if
the element is supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>
<Resource name=”Telescope” type=”Zoom2000” wallDuration=”750”
metric=”KX”>10</Resource>

4.4 Node Reference
When a simple reference to a predefined node is needed in an encapsulating element, a
Node element is used with the text content being the node ID:

<Node>node1</Node>

l This element MAY have an aggregation attribute of type String that provides a way to
indicate multiple values with a single expression. A compliant implementation MAY
support the aggregation attribute if the Feature element is supported. Possible values
for this attribute include:

o List a comma-separated list of features
o Pattern a regular expression (perl5) matching desired features
o Range a range of nodes of the form: <prefix>[5-23,77]

l If an aggregation attribute is specified with the value of List, this element MAY also
have a delimiter attribute of type String that indicates what delimiter is used to
separate list elements. The default list delimiter is a comma.

l This element MAY have a count attribute of type Integer that indicates the instance
count of the specified node(s).

The following is another example of a Node element:

<Node aggregation=”Pattern”>node[1-5]</Node>

5.0 Units of Measure Abbreviations

Abbreviation Definition Quantity

B byte 1 byte

KB Kilobyte 2^10 bytes

Appendix M: Scalable Systems Software Specification

Abbreviation Definition Quantity

MB Megabyte 2^20 bytes

GB Gigabyte 2^30 bytes

TB Terabyte 2^40 bytes

PB Petabyte 2^50 bytes

EB Exabyte 2^60 bytes

ZB Aettabyte 2^70 bytes

YB Yottabyte 2^80 bytes

NB Nonabyte 2^90 bytes

DB Doggabyte 2^100 bytes

M.4 Scalable Systems Software Resource Management
and Accounting Protocol (SSSRMAP) Wire Protocol

Resource Management Interface Specs
Release v. 3.0.3
13 May 2004

Scott Jackson
Brett Bode

David Jackson
Kevin Walker

Status of this Memo
This is a specification defining a wire level protocol used between Scalable Systems
Software components. It is intended that this specification will continue to evolve as these
interfaces are implemented and thoroughly tested by time and experience.

Appendix M: Scalable Systems Software Specification

1497 M.4 Scalable Systems Software Resource Management and Accounting Protocol

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1498

Abstract
This document is a specification describing a connection-oriented XML-based application
layer client-server protocol for the interaction of resource management and accounting
software components developed as part of the Scalable Systems Software Center. The
SSSRMAP Wire Protocol defines a framing protocol that includes provisions for security.
The protocol is specified in XML Schema Definition and rides on the HTTP protocol.

Table of Contents
l 1.0 Introduction
l 2.0 Conventions Used in this Document

o 2.1 Keywords
o 2.2 XML Case Conventions
o 2.3 Schema Definitions

l 3.0 Encoding
o 3.1 Schema Header and Namespaces
o 3.2 The Envelope Element
o 3.3 The Body Element

l 4.0 Transport Layer

l 5.0 Framing
o 5.1 Message Header Requirements
o 5.2 Message Chunk Format
o 5.3 Reply Header Requirements
o 5.4 Reply Chunk Format
o 5.5 Message and Reply Tail Requirements and Multiple Chunks
o 5.6 Examples

o 5.6.1 Sample SSSRMAP Message Embedded in HTTP Request
o 5.6.2 Sample SSSRMAP Reply Embedded in HTTP Response

l 6.0 Asynchrony

l 7.0 Security

Appendix M: Scalable Systems Software Specification

o 7.1 Security Token
o 7.1.1 The SecurityToken Element
o 7.1.2 Security Token Types

o 7.1.2.1 Symmetric Key
o 7.1.2.2 Asymmetric Key
o 7.1.2.3 Password
o 7.1.2.4 Cleartext
o 7.1.2.5 Kerberos
o 7.1.2.6 GSI (X.509)

o 7.1.3 Example
o 7.2 Authentication

o 7.2.1 The Signature Element
o 7.2.2 The DigestValue Element
o 7.2.3 The SignatureValue Element
o 7.2.4 Signature Example

o 7.3 Confidentiality
o 7.3.1 The EncryptedData Element
o 7.3.2 The EncryptedKey Element
o 7.3.3 The CipherValue Element
o 7.3.4 Encryption Example

l 8.0 References

1.0 Introduction
A major objective of the Scalable Systems Software [SSS] Center is to create a scalable and
modular infrastructure for resource management and accounting on terascale clusters
including resource scheduling, grid-scheduling, node daemon support, comprehensive
usage accounting and user interfaces emphasizing portability to terascale vendor operating
systems. Existing resource management and accounting components feature disparate
APIs (Application Programming Interfaces) requiring various forms of application coding to
interact with other components.

This document proposes a wire level protocol expressed in an XML envelope to be
considered as the foundation of a standard for communications between and among

Appendix M: Scalable Systems Software Specification

1499 M.4 Scalable Systems Software Resource Management and Accounting Protocol

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1500

resource management and accounting software components. Individual components
additionally need to define the particular XML binding necessary to represent the message
format for communicating with the component.

2.0 Conventions Used in this Document

2.1 Keywords
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described
in RFC2119.

2.2 XML Case Conventions
In order to enforce a consistent capitalization and naming convention across all SSSRMAP
specifications 'Upper Camel Case' (UCC) and 'Lower Camel Case' (LCC) Capitalization styles
shall be used. UCC style capitalizes the first character of each word and compounds the
name. LCC style capitalizes the first character of each word except the first word. [XML_
CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the following
conventions:

l Element names SHALL be in UCC convention (example:
<UpperCamelCaseElement/>.

l Attribute names SHALL be in LCC convention (example:
<UpperCamelCaseElement
lowerCamelCaseAttribute=”Whatever”/>.

2. General rules for all names are:

l Acronyms SHOULD be avoided, but in cases where they are used, the capitalization
SHALL remain (example: XMLSignature).

l Underscores (_), periods (.) and dashes (-) MUST NOT be used (example: use JobId
instead of JOB.ID, Job_ID or job-id).

2.3 Schema Definitions
SSSRMAP Schema Definitions appear like this

In case of disagreement between the schema file and this specification, the schema file
takes precedence.

Appendix M: Scalable Systems Software Specification

http://www.ietf.org/rfc/rfc2119.txt

3.0 Encoding
Encoding tells how a message is represented when exchanged. SSSRMAP data exchange
messages SHALL be defined in terms of XML schema [XML_SCHEMA].

3.1 Schema Header and Namespaces
The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema
xmlns="https://www.w3.org/201/XMLSchema"
xmlns:sssrmap="https://www.scidac.org/ScalableSystems/SSSRMAP"
targetNamespace="https://www.scidac.org/ScalableSystems/SSSRMAP"
elementFormDefault="qualified">

3.2 The Envelope Element
SSSRMAP messages and replies are encapsulated in the Envelope element. There are
two possibilities for the contents of this element. If the contents are unencrypted, this
element MUST contain a Body element and MAY contain a Signature element (refer to
the section on Security). If the contents are encrypted, this element MUST contain exactly
one EncryptedData element (refer to the section on Security). The Envelope element
MAY contain namespace and other xsd-specific information necessary to validate the
document against the schema. In addition, it MAY have any of the following attributes,
which might serve as processing clues to the parser:

Attribute Description

type A message type providing a hint as to the body contents such as 'Request' or
'Notification'

component A component type such as 'QueueManager' or 'LocalScheduler'

name A component name such as 'OpenPBS' or 'Maui'

version A component version such as '2.2p12' or '3.2.2'

<complexType name=EnvelopeType">
<choice minOccurs="1" maxOccurs="1">
<choice minOccurs="1" maxOccurs="2">
<element ref="sssrmap:Signature" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Body" minOccurs="1" maxOccurs="1"/>

</choice>
<element ref="sssrmap:EncryptedData" minOccurs="1" maxOccurs="1"/>

</choice>
<attribute name="type" type="string" use="optional"/>

Appendix M: Scalable Systems Software Specification

1501 M.4 Scalable Systems Software Resource Management and Accounting Protocol

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1502

<attribute name="component" type="string" use="optional"/>
<attribute name="name" type="string" use="optional"/>
<attribute name="version" type="string" use="optional"/>

</complexType>

<element name="Envelope" type="sssrmap:EnvelopeType"/>

3.3 The Body Element
l SSSRMAP messages and replies are encapsulated in the Body element. This element
MUST contain exactly one Request or Response element.

<complexType name="BodyType">
<choice minOccurs="1" maxOccurs="1">
<element ref="sssrmap:Request" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Response" minOccurs="0" maxOccurs="1"/>
<any minOccurs="0" maxOccurs="1" namespace="##other"/>

</choice>
</complexType>

<element name="Body" type="sssrmap:BodyType"/>

4.0 Transport Layer
This protocol will be built over the connection-oriented reliable transport layer TCP/IP.
Support for other transport layers could also be considered, but native support for TCP/IP
can be found on most terascale clusters and automatically handles issues such as reliability
and connection fullness for the application developer implementing the SSSRMAP protocol.

5.0 Framing
Framing specifies how the beginning and ending of each message is delimited. Given that
the encoding will be expressed as one or more XML documents, clients and servers need to
know when an XML document has been fully read in order to be parsed and acted upon.

SSSRMAP uses the HTTP 1.1 [HTTP] protocol for framing. HTTP uses a byte-counting
mechanism to delimit the message segments. HTTP chunked encoding is used. This allows
for optional support for batched messages, large message segmentation and persistent
connections.

5.1 Message Header Requirements
The HTTP request line (first line of the HTTP request header) begins with POST and is
followed by a URI and the version of the HTTP protocol that the client understands. It is
suggested for this protocol that the URI consist of a single slash, followed by the protocol
name in uppercase (i.e., /SSSRMAP), though this field is not checked and could be empty, a
single slash or any URI.

Appendix M: Scalable Systems Software Specification

The Content-Type must be specified as test/xml. Charset can be optionally specified and
defaults to US-ASCII. It is recommended that charset be specified as 'utf-8' for maximum
interoperability.

The Transfer-Encoding must be specified as chunked. The Content-Length must NOT be
specified as the chunk size is specified in the message chunk.

Other properties such as User-Agent, Host and Date are strictly optional.

5.2 Message Chunk Format
A message chunk consists of a chunk size in hexadecimal format (whose value is the
number of bytes in the XML message not including the chunk size and delimiter) delimited
by a CR/LF “\r\n” and followed by the message payload in XML that consists of a single
XML document having a root element of Envelope.

5.3 Reply Header Requirements
The HTTP response line (first line of the HTTP response header) begins with HTTP and a
version number, followed by a numeric code and a message indicating what sort of
response is made. These response codes and messages indicate the status of the entire
response and are as defined by the HTTP standard. The most common response is 200 OK,
indicating that the message was received and an appropriate response is being returned.

The Content-Type must be specified as text/xml. Charset can be optionally specified and
defaults to US-ASCII. It is recommended that charset be specified as 'utf-8' for maximum
interoperability.

The Transfer-Encoding MUST be specified as chunked. The Content-Length must NOT be
specified.

Other properties such as Server, Host and Date are strictly optional.

5.4 Reply Chunk Format
A reply chunk consists of a chunk size in hexadecimal format (whose value is the number
of bytes in the XML reply not including the chunk size and delimiter) delimited by a CR/LF
“\r\n” and followed by the reply payload in XML that consists of a single XML document
having a root element of Envelope.

5.5 Message and Reply Tail Requirements and Multiple Chunks
This specification only requires that single chunks be supported. A server can optionally be
configured to handle requests with persistent connections (multiple chunks). It will be the

Appendix M: Scalable Systems Software Specification

1503 M.4 Scalable Systems Software Resource Management and Accounting Protocol

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1504

responsibility of clients to know whether a particular server supports this additional
functionality. After all chunks have been sent, a connection is terminated by sending a zero
followed by a carriage return-linefeed combination (0\r\n) and closing the connection.

5.6 Examples

Sample SSSRMAP Message Embedded in HTTP Request
POST /SSSRMAP HTTP/1.1\r\n
Content-Type: text/xml; charset=”utf-8”\r\n
Transfer-Encoding: chunked\r\n
\r\n
9A\r\n
<Envelope …/>
0\r\n

Sample SSSRMAP Reply Embedded in HTTP Response
HTTP/1.1 200 OK\r\n
Content-Type: text/xml; charset=”utf-8”\r\n
Transfer-Encoding: chunked\r\n
\r\n
2B4\r\n
<Envelope …/>
0\r\n

6.0 Asynchrony
Asynchrony (or multiplexing) allows for the handling of independent exchanges over the
same connection. A widely-implemented approach is to allow pipelining (or boxcarring) by
aggregating requests or responses within the body of the message or via persistent
connections and chunking in HTTP 1.1. Pipelining helps reduce network latency by allowing
a client to make multiple requests of a server, but requires the requests to be processed
serially [RFC3117]. Parallelism could be employed to further reduce server latency by
allowing multiple requests to be processed in parallel by multi-threaded applications.

Segmentation can become necessary if the messages are larger than the available window.
With support for segmentation, the octet-counting requirement that you need to know the
length of the whole message before sending it can be relegated to the segment level – and
you can start sending segments before the whole message is available. Segmentation is
facilitated via 'chunking' in HTTP 1.1.

The current SSSRMAP strategy supports only a single request or response within the Body
element. A server can optionally support persistent connections from a client via HTTP
chunking. Segmentation of large responses is also optionally supported via HTTP chunking.

Appendix M: Scalable Systems Software Specification

Later versions of the protocol could allow pipelined requests and responses in a single
Body element.

7.0 Security
SSSRMAP security features include capabilities for integrity, authentication, confidentiality,
and non-repudiation. The absence or presence of the various security features depend
upon the type of security token used and the protection methods you choose to specify in
the request.

For compatibility reasons, SSSRMAP specifies six supported security token types.
Extensibility features are included allowing an implementation to use alternate security
algorithms and security tokens. It is also possible for an implementation to ignore security
features if it is deemed nonessential for the component. However, it is highly
RECOMMENDED that an implementation support at least the default security token type in
both authentication and encryption.

7.1 Security Token
A security token can be included in either the Signature block, and/or in the
EncryptedData block (both described later) as an implicit or explicit cryptographic key. If
this element is omitted, the security token is assumed to be a secret key shared between
the client and the server.

The SecurityToken Element
This element is of type String. If the security token conveys an explicit key, this element’s
content is the value of the key. If the key is natively expressed in a binary form, it must be
converted to base64 encoding as defined in XML Digital Signatures
(https://www.w3.org/2000/09/xmldsig#base64). If the type is not specified, it is assumed
to be of type 'Symmetric'.

It can have any of the following optional attributes:

Attribute Description

type The type of security token (described subsequently):

l A type attribute of 'Symmetric' specifies a shared secret key between the
client and server. This is the default.

l A type attribute of 'Asymmetric' specifies the use of public private key pairs
between the client and server.

l A type attribute of 'Password' encrypts and authenticates with a user
password known to both the client and server.

Appendix M: Scalable Systems Software Specification

1505 M.4 Scalable Systems Software Resource Management and Accounting Protocol

http://www.w3.org/2000/09/xmldsig#base64

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1506

Attribute Description

l A type attribute of 'Cleartext' allows the passing of a cleartext username and
password and depends on the use of a secure transport (such as SSL or
IPSec).

l A type attribute of 'Kerberos5' specifies a kerberos token.
l A type attribute of 'X509v3' specifies an X.509 certificate.

name The name of the security token that serves as an identifier for the actor making
the request (useful when the key is a password, or when the key value is implicit
as when a public key is named but not included).

<complexType name="SecurityTokenType" mixed="true">
<simpleContent>
<extension base="string">
<attribute name="type" type="string" use="optional">
<attribute name="name" type="string" use="optional">

</extension>
</simpleContent>

</complexType>

<element name="SecurityToken" type="sssrmap:SecurityTokenType"/>

Security Token Types
SSSRMAP defines six standard security token types:

Symmetric Key

The default security token specifies the use of a shared secret key. The secret key is up to
128-bits long and known by both client and server. When using a symmetric key as a
security token, it is not necessary to specify the type attribute with value 'Symmetric'
because this is assumed when the attribute is absent. The name attribute should be
specified indicating the actor issuing the request. If the user provides a password to be
sent to the server for authentication, then the password is encrypted with the secret key
using a default method=”kw-tripledes” (XML ENCRYPTION
https://www.w3.org/2001/04/xmlenc#kw-tripledes), base64 encoded and included as
the string content of the SecurityToken element. If the client authenticated the user,
then the SecurityToken element is empty. The same symmetric key is used in both
authentication and encryption.

Asymmetric Key

Public and private key pairs can be used to provide non-repudiation of the client (or
server). The client and the server must each have their own asymmetric key pairs. This
mode is indicated by specifying the type attribute as 'Asymmetric'. The name attribute
should be specified indicating the actor issuing the request. If the user provides a
password to be sent to the server for authentication, then the password is encrypted with
the server’s public key using a default method=”rsa-1_5” (XML ENCRYPTION
https://www.w3.org/2001/04/xmlenc#rsa-1_5), base64 encoded and included as the

Appendix M: Scalable Systems Software Specification

http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#rsa-1_5

string content of the SecurityToken element. If the client authenticated the user, then the
SecurityToken element is empty .The sender’s private key is used in authentication
(signing) while the recipient’s public key is used for encryption.

Password

This mode allows for a username password combination to be used under the assumption
that the server also knows the password for the user. This security token type is indicated
by specifying a value of 'Password' for the type attribute. The password itself is used as the
cryptographic key for authentication and encryption. The name attribute contains the user
name of the actor making the request. The SecurityToken element itself is empty.

Cleartext

This security mode is equivalent to passing the username and password in the clear and
depends upon the use of a secure transport (such as SSL or IPSec). The purpose of
including this security token type is to enable authentication to occur from web browsers
over SSL or over internal LANs who use IPSec to encrypt all traffic. The password (or a
hash of the password like in /etc/passwd) would have to be known by the server for
authentication to occur. In this mode, neither encryption nor signing of the hash is
performed at the application layer. This mode is indicated by specifying a value of
'Cleartext' for the type attribute. The name attribute contains the user name of the actor
making the request and the string content of the SecurityToken element is the
unencrypted plaintext password.

Kerberos

The use of a Kerberos version 5 token is indicated by specifying 'Kerberos5' in the type
attribute. The name attribute is used to contain the kerberos user ID of the actor making
the request. The SecurityToken element contains two sub elements. The Authenticator
element contains the authenticator encoded in base64. A Ticket element contains the
service-granting ticket, also base64 encoded.

GSI (X.509)

The Grid Security Infrastructure (GSI), which is based on public key encryption, X.509
certificates, and the Secure Sockets Layer (SSL) communication protocol can be indicated
by specifying a type attribute of 'X509v3'. The name attribute contains the userid used
that the actor was mapped to in the local system. The string content of the
SecurityToken element is the GSI authentication message including the X.509 identity
of the sender encoded in base64.

Example
<SecurityToken type=”Asymmetric” name=”scottmo”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...
</SecurityToken>

Appendix M: Scalable Systems Software Specification

1507 M.4 Scalable Systems Software Resource Management and Accounting Protocol

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1508

7.2 Authentication
Authentication entails how the peers at each end of the connection are identified and
verified. Authentication is optional in an SSSRMAP message or reply. SSSRMAP uses a
digital signature scheme for authentication that borrows from concepts in XML Digital
Signatures [XML_DSIG]. In addition to authentication, the use of digital signatures also
ensures integrity of the message, protecting exchanges from third-party modification.

When authentication is used, a Signature element is prepended as the first element
within the Envelope element. All of the security modes will create a digest of the data for
integrity checking and store this in base64 encoding in a DigestValue element as a
child of the Signature element. The digital signature is created by encrypting the hash
with the appropriate security token and storing this value in a SignatureValue
element as a child of the Signature element. The security token itself is included as a
child of the Security element within a SecurityToken element.

There are a number of procedural practices that must be followed in order to standardize
this approach. The digest (or hash) is created over the contents of the Envelope element
(not including the Element tag or its attributes). This might be over one or more Request
or Notify elements (or Response or Ack elements) and necessarily excludes the
Signature Element itself. (Note that any data encryption is performed after the creation
of the digital signature and any decryption is performed before authenticating so the
EncryptedData element will not interfere with this process. Therefore, the signature is
always based on the (hashed but) unencrypted data). For the purposes of generating the
digest over the same value, it is assumed that the data is first canonicalized to remove
extraneous whitespace, comments, etc according to the XML Digital Signature algorithm
(https://www.w3.org/TR/2001/REC-xml-c14n-20010315) and a transform is applied to
remove namespace information. As a rule, any binary values are always transformed into
their base64 encoded values when represented in XML.

The Signature Element
The Signature element MUST contain a DigestValue element that is used for
integrity checking. It MUST also contain a SecurityToken element that is used to
indicate the security mode and token type, and to verify the signature. It MUST contain a
SignatureValue element that contains the base64 encrypted value of the signature wrought
on the hash UNLESS the security token type indicates Cleartext mode where a signature
would be of no value with the encryption key being sent in the clear -- in this case we use
the password itself for authentication).

<complexType name="SignatureType">
<choice minOccurs="2" maxOccurs="3">
<element ref="sssrmap:DigestValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:SignatureValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:SecurityToken" minOccurs="0" maxOccurs="1"/>

</choice>
</complexType>

<element name="Signature" type="sssrmap:SignatureType"/>

Appendix M: Scalable Systems Software Specification

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

The DigestValue Element
The DigestValue element contains the cryptographic digest of the message data. As
described above, the hash is generated over the Body element. The data to be hashed
must first be canonicalized and appropriately transformed before generating the digest
since typically an application will read in the XML document into an internal binary form,
then marshal (or serialize) the data into a string, which is passed as input to the hash
algorithm. Different implementations marshal the data differently so it is necessary to
convert this to a well-defined format before generating the digest or the clients will
generate different digest values for the same XML. The SHA-1 [SHA-1] message digest
algorithm (https://www.w3.org/2000/09/xmldsig#sha1) SHALL be used as the default
method for generating the digest. A method attribute is defined as an extensibility option in
case an implementation wants to be able to specify alternate message digest algorithms.

It MAY have a method attribute:

Attribute Description

method The message digest algorithm.

l A method attribute of 'sha1' specifies the SHA-1 message digest algorithm.
This is the default and is implied if this attribute is omitted.

<complexType name="DigestValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="DigestValue" type="sssrmap:DigestValueType"/>

The SignatureValue Element
The SignatureValue element contains the digital signature that serves the authentication
(and potentially non-repudiation) function. The string content of the SignatureValue
element is a base64 encoding of the encrypted digest value. The HMAC algorithm [HMAC]
based on the SHA1 message digest (https://www.w3.org/2000/09/xmldsig#hmac-sha1)
SHALL be used as the default message authentication code algorithm for user identification
and message integrity. A method attribute is defined as an extensibility option in case an
implementation wants to be able to specify alternate digital signature algorithms.

It MAY have a method attribute:

Attribute Description

method The digest signature algorithm.

Appendix M: Scalable Systems Software Specification

1509 M.4 Scalable Systems Software Resource Management and Accounting Protocol

http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1510

Attribute Description

l A method attribute of 'hmac-sha1' specifies the HMAC SHA-1 digital
signature algorithm. This is the default and is implied if this attribute is
omitted.

<complexType name="SignatureValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="SignatureValue" type="sssrmap:SignatureValueType"/>

Signature Example
Pre-authentication:

<Envelope>
<Body>
<Request action=”Query” actor=”kenneth”>
<Object>User</Object>
<Get name=”EmailAddress”></Get>
<Where name=”Name”>scott</Where>

</Request>
</Body>

</Envelope>

Post-authentication:

<Envelope>
<Signature>
<DigestValue>
LyLsF0Pi4wPU...

</DigestValue>
<SignatureValue>
DJbchm5gK...

</SignatureValue>
<SecurityToken type=”Asymmetric” name=”kenneth”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>
</Signature>
<Body>
<Request action=”Query” actor=”kenneth”>
<Object>User</Object>
<Get name=”EmailAddress”></Get>
<Where name=”Name”>scottmo</Where>

</Request>
</Body>

</Envelope>

Appendix M: Scalable Systems Software Specification

7.3 Confidentiality
Confidentiality involves encrypting the sensitive data in the message, protecting exchanges
against third-party interception and modification. Confidentiality is optional in an SSSRMAP
message or reply. When confidentiality is required, SSSRMAP sessions use block cipher
encryption with concepts borrowed from the emerging XML Encryption [XML_ENC]
standard.

When confidentiality is used, encryption is performed over all child elements of the
Envelope element (i.e., on the message data, as well as any signature). The encrypted
data is not signed -- rather the signature is encrypted. This data is replaced in-place within
the envelope with an EncryptedData element. The data is first compressed using the
gzip algorithm [ZIP]. Instead of encrypting this compressed data with the security token
directly, a 192-bit random session key is generated by the sender and used to perform
symmetric encryption on the compressed data. This key is itself encrypted with the
security token and included with the encrypted data as the value of the EncryptedKey
element as a child of the EncryptedData element. The ciphertext resulting from the
data being encrypted with the session key is passed as the value of a CipherValue
element (also a child of the EncryptedData element). As in the case with authentication,
the security token itself is included as a child of the Security element within a
SecurityToken element.

The EncryptedData Element
When SSSRMAP confidentiality is required, the EncryptedData element MUST appear
as the only child element in the Envelope element. It directly replaces the contents of these
elements including the data and any digital signature. It MUST contain an EncryptedKey
element that is used to encrypt the data. It MUST contain a CipherValue element that
holds the base64 encoded ciphertext. It MAY also contain a SecurityToken element
that is used to indicate the security mode and token type. If the SecurityToken element
is omitted, a Symmetric key token type is assumed. Confidentiality is not used when a
security token type of 'Cleartext' is specified since it would be pointless to encrypt the data
with the encryption key in the clear.

<complexType name="EncryptionDataType">
<choice minOccurs="0" maxOccurs="1">
<element ref="sssrmap:EncryptedKey" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:CipherValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssmap:SecurityToken" minOccurs="1" maxOccurs="1"/>

</choice>
</complexType>

<element name="EncryptedData" type="sssrmap:EncryptedDataType"/>

The EncryptedKey Element
The EncryptedKey element is a random session key encrypted with the security token.
This approach is used for a couple of reasons. In the case where public key encryption is

Appendix M: Scalable Systems Software Specification

1511 M.4 Scalable Systems Software Resource Management and Accounting Protocol

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1512

used, asymmetric encryption is much slower than symmetric encryption and it makes
sense to use a symmetric key for encryption and pass along it along by encrypting it with
the recipient’s public key. It is also useful in that the security token, which does not change
very often (compared to the session key, which changes for every connection) is used on a
very small sampling of data (the session key), whereas if it was used to encrypt the whole
message an attacker could more effectively exploit an attack against the ciphertext. The
CMS Triple DES Key Wrap algorithm 'kw-tripledes' SHALL be used as the default method
for key encryption. The session key is encrypted using the security token, base64 encoded
and specified as the string content of the EncryptedKey element. A method attribute is
defined as an extensibility option in case an implementation wants to be able to specify
alternate key encryption algorithms.

It is REQUIRED that an implementation use a cryptographically secure Pseudo-Random
number generator. It is RECOMMENDED that the session key be cryptographically
generated (such as cyclic encryption, DES OFB, ANSI X9.17 PRNG, SHA1PRNG, or ANSI
X12.17 (used by PGP)).

It MAY have a method attribute:

Attribute Description

method The key encryption algorithm.

l A method attribute of 'kw-tripledes' specifies the CMS Triple DES Key Wrap
algorithm. This algorithm is specified by the XML Encryption [XML_ENC] URI
“https://www.w3.org/2001/04/xmlenc#kw-tripledes”. It
involves two Triple DES encryptions, a random and known Initialization
Vector (IV) and a CMS key checksum. A 192-bit key encryption key is
generated from the security token, lengthened as necessary by zero-padding.
No additional padding is performed in the encryptions. This is the default
and is implied if this attribute is omitted.

<complexType name="EncryptedKeyType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="EncryptedKey" type="sssrmap:EncryptedKeyType"/>

The CipherValue Element
The CipherValue element contains the message (and possibly signature) data encrypted
with the random session key. The ciphertext is compressed using the gzip algorithm [ZIP],
encrypted by the designated method, base64 encoded and included as the string content of
the CipherValue element. The Triple DES algorithm with Cipher Block Chaining (CBC)
feedback mode SHALL be used as the default method for encryption. A method attribute is

Appendix M: Scalable Systems Software Specification

defined as an extensibility option in case an implementation wants to be able to specify
alternate data encryption algorithms.

It MAY have a method attribute:

Attribute Description

method The data encryption algorithm.

l A method attribute of 'tripledes-cbc' specifies the Triple DES algorithm with
Cipher Block Chaining (CBC) feedback mode. This algorithm is specified by
the XML Encryption [XML_ENC] URI identifier
https://www.w3.org/2001/04/xmlenc#tripledes-cbc. It specifies the use of a
192-bit encryption key and a 64-bit Initialization Vector (IV). Of the key bits,
the first 64 are used in the first DES operation, the second 64 bits in the
middle DES operation, and the third 64 bits in the last DES operation. The
plaintext is first padded to a multiple of the block size (8 octets) using the
padding scheme described in [XMLENC] for Block Encryption Algorithms
(Padding per PKCS #5 will suffice for this). The resulting cipher text is
prefixed by the IV. This is the default and is implied if this attribute is
omitted.

<complexType name="CipherValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="CipherValue" type="sssrmap:CipherValueType"/>

Encryption Example
In this example, a simple request is demonstrated without a digital signature for the sake of
emphasizing the encryption plaintext replacement.

Pre-encryption:

<Envelope>
<Body>
<Response>
<Status>true</Status>
<Code>000</Code>
<Count>1</Count>
<Data>
<User>
<EmailAddress>Scott.Jackson@pnl.gov</EmailAddress>

</User>
</Data>

</Response>
</Body>

</Envelope>

Post-encryption:

Appendix M: Scalable Systems Software Specification

1513 M.4 Scalable Systems Software Resource Management and Accounting Protocol

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol 1514

<Envelope>
<EncryptedData>
<EncryptedKey>
NAkE9iQofYhyOfiHZ29kkEFVJ30CAwEAAaMSM...

</EncryptedKey>
<CipherValue>
mPCadVfOMx1NzDaKMHNgFkR9upTW4kgBxyPW...

</CipherValue>
<SecurityToken type=”Asymmetric” name=”kenneth”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>
</EncryptedData>

</Envelope>

8.0 References
[RFC2119] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”, RFC
2119, March 1997.

[BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message
Authentication”, RFC 2104, February 1997.

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology,
“Secure Hash Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, https://www.scidac.org/ScalableSystems

[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[FED_XML] “U.S. Federal XML Guidelines”.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC 3117,
November 2001.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and Processing”, W3C
Recommendation, 12 February 2002.

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and Processing”,
W3C Candidate Recommendation, 4 March 2002.

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol (XRP)”,
Internet Draft, expired August 2001.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6 October
2000.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1: Structures
Working Draft”, April 2000.

[ZIP] J. Gailly, M. Adler, “The gzip home page”, https://www.gzip.org/

Appendix M: Scalable Systems Software Specification

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3080.txt
http://www.ietf.org/rfc/rfc2104.txt
https://csrc.nist.gov/pubs/fips/180-1/final
https://www.scidac.org/
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
https://www.aiai.ed.ac.uk/project/ix/inca/xml-conventions.html
http://www.xml.com/pub/a/2002/02/06/fedguidelines.html
http://www.faqs.org/rfcs/rfc3117.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://www.icann.org/en/tlds/agreements/biz/draft-brunner-xrp-00.txt
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
http://www.gzip.org/

Appendix M: Scalable Systems Software Specification

1515 M.4 Scalable Systems Software Resource Management and Accounting Protocol

N.1 Moab RM Language Socket Protocol Description 1516

Appendix N: Moab Resource Manager Language
Interface Overview

The Moab RM Language (formerly called WIKI) is the language that some resource
managers use to communicate with Moab, specifically a native RM. Generally each line
represents a single resource or workload in Moab. The line contains the name of the
resource or workload followed by a set of <attr>=<val> pairs. Although the Moab RM
language follows the same data format for all RMs, each RM type receives and returns it
differently. For instructions and examples on using Moab RM language with a native RM,
see and Managing Resources Directly with the Native Interface respectively.

In this chapter:

N.1 Moab RM Language Socket Protocol Description 1516
N.1.1 RM Language Overview 1516
N.1.2 Checksum Algorithm ('C' Version) 1517
N.1.3 Header Creation (PERL Code) 1519
N.1.4 Header Processing (PERL Code) 1519

N.2 Moab Resource Manager Language Data Format 1520
N.2.1 Query Resources Data Format 1520
N.2.2 Query Workload Data Format 1525

N.1 Moab RM Language Socket Protocol Description

In this topic:

N.1.1 RM Language Overview - page 1516
N.1.2 Checksum Algorithm ('C' Version) - page 1517
N.1.3 Header Creation (PERL Code) - page 1519
N.1.4 Header Processing (PERL Code) - page 1519

N.1.1 RM Language Overview
Moab RM language is formerly known as WIKI. The Moab scheduler uses a simple protocol
for socket connections to the user client and the resource manager as described below:

Appendix N: Moab Resource Manager Language Interface Overview

<SIZE><CHAR>
CK=<CKSUM><WS>TS=<TIMESTAMP><WS>AUTH=<AUTH><WS>DT=<DATA>

Attribute Description

<SIZE> 8 character decimal ASCII representation of the size of the packet following
'<SIZE><CHAR>' Leading zeroes must be used to pad this value to 8
characters if necessary.

<CHAR> A single ASCII character

<CKSUM> A 16 character hexadecimal ASCII DES-based checksum calculated using the
algorithm below* and <SEED> selected and kept secret by the site admins.
The checksum is performed on the line from TS= to the end of the message
including <DATA>.

<WS> a series of white space characters consisting of either tabs and/or space
characters.

<TIMESTAMP> ASCII representation of epoch time

<AUTH> Identifier of user requesting service (i.e., USERNAME)

<DT> Data to be sent

An example header follows:
00001057 CK=cdf6d7a7ad45026f TS=922401962 AUTH=sched DT=<DATA>

where <DATA> is replaced by actual message data.

N.1.2 Checksum Algorithm ('C' Version)
Checksum Algorithm ('C' Version)

#define MAX_CKSUM_ITERATION 4

int GetChecksum(
char *Buf,
int BufSize,
char *Checksum,
char *CSKey) /* Note: pass in secret key */
{
unsigned int crc;
unsigned int lword;
unsigned int irword;
int index;
unsigned int Seed;

Appendix N: Moab Resource Manager Language Interface Overview

1517 N.1 Moab RM Language Socket Protocol Description

N.1 Moab RM Language Socket Protocol Description 1518

Seed = (unsigned int)strtoul(CSKey,NULL,0);
crc = 0;
for (index = 0;index < BufSize;index++)
{
crc = (unsigned int)DoCRC((unsigned short)crc,Buf[index]);
}
lword = crc;
irword = Seed;
PSDES(&lword,&irword);
sprintf(Checksum,"%08x%08x",
lword,
irword);
return(SUCCESS);
}

unsigned short DoCRC(
unsigned short crc,
unsigned char onech)
{
int index;
unsigned int ans;
ans = (crc ^ onech << 8);
for (index = 0;index < 8;index++)
{
if (ans & 0x8000)
ans = (ans <<= 1) ^ 4129;
else
ans <<= 1;
}
return((unsigned short)ans);
}

int PSDES(
unsigned int *lword,
unsigned int *irword)
{
int index;
unsigned int ia;
unsigned int ib;
unsigned int iswap;
unsigned int itmph;
unsigned int itmpl;
static unsigned int c1[MAX_CKSUM_ITERATION] = {
0xcba4e531, 0x537158eb, 0x145cdc3c, 0x0d3fdeb2 };
static unsigned int c2[MAX_CKSUM_ITERATION] = {
0x12be4590, 0xab54ce58, 0x6954c7a6, 0x15a2ca46 };
itmph = 0;
itmpl = 0;
for (index = 0;index < MAX_CKSUM_ITERATION;index++)
{
iswap = *irword;
ia = iswap ^ c1[index];
itmpl = ia & 0xffff;
itmph = ia >> 16;
ib = (itmpl * itmpl) + ~(itmph*itmph);
ia = (ib >> 16) | ((ib & 0xffff) << 16);
*irword = (*lword) ^ ((ia ^ c2[index]) + (itmpl * itmph));
*lword = iswap;
}
return(SUCCESS);

Appendix N: Moab Resource Manager Language Interface Overview

}

N.1.3 Header Creation (PERL Code)
(taken from PNNL's QBank client code)

Header Creation (PERL Code)

##
#
subroutine wiki($COMMAND)
#
Sends command to Moab server and returns the parsed result and status
#
##
sub wiki
{
my($COMMAND,$REQUEST,$result);
my($sockaddr,$hostname);
my($name,$aliases,$proto,$port,$type,$len,$thisaddr);
my($thisport,$thatport,$response,$result);
$COMMAND = shift;
#
Establish socket connection
#
$sockaddr = 'S n a4 x8';
chop ($hostname = `hostname`);
($name,$aliases,$proto)=getprotobyname('tcp');
($name,$aliases,$type,$len,$thisaddr)=gethostbyname($hostname);
($name,$aliases,$type,$len,$thataddr)=gethostbyname($BANKHOST);
$thisport=pack($sockaddr, &AF_INET,0,$thisaddr);
$thatport=pack($sockaddr, &AF_INET,$BANKPORT,$thataddr);
socket(S, &PF_INET,&SOCK_STREAM,$proto) || die "cannot create socket\n";
bind(S,$thisport) || die "cannot bind socket\n";
connect(S,$thatport) || die "cannot connect socket\n";
select(S); $| = 1; # Turn on autoflushing
select(stdout); $| = 1; # Select STDOUT as default output
#
Build and send command
#
$REQUEST="COMMAND=$COMMAND AUTH=$AUTH";
chomp($CHECKSUM = `$QSUM "$REQUEST"`);
$REQUEST .= " CHECKSUM=$CHECKSUM";
my $command=pack "a8 a1 A*",sprintf("%08d",length($REQUEST))," ",$REQUEST;
print S "$command"; # Send Command to server
@REPLY=();
while () { push(@REPLY,$_); } # Listen for Reply
$STATUS=grep(/STATUSCODE=(\d*)/&&$1,@REPLY); # STATUSCODE stored in $STATUS
grep(s/.*RESULT=//,@REPLY); # Parse out the RESULT
return @REPLY;
}

N.1.4 Header Processing (PERL Code)
Header Processing (PERL Code)

Appendix N: Moab Resource Manager Language Interface Overview

1519 N.1 Moab RM Language Socket Protocol Description

N.2 Moab Resource Manager Language Data Format 1520

sysread(NS,$length,8); # Read length string
sysread(NS,$delimiter,1); # Read delimiter byte
$DEBUG && print STDERR "length=[$length]\tdelimiter=[$delimiter]\n";
while($length) {
$DEBUG && print STDERR "Awaiting $length bytes -- ".`date`;
$length-=sysread(NS,$request,$length); # Read request
sleep 1;
}
%REQUEST=();
chomp($request);
foreach (@REQUEST=&shellwords($request)) # Parse arguments into array
{
($key,$value)=split(/=/,$_);
$REQUEST{$key}=$value unless defined $REQUEST{$key};
}
$request =~ s/\s+CHECKSUM=.*//; # Strip off the checksum
print STDERR "REQUEST=$request\n";
chomp($checksum=`$QSUM "$request"`);
$me=$REQUEST{AUTH};
$command=$REQUEST{COMMAND};
if (!grep($command eq $_,@VALIDCMDS))
{ $REPLY = "STATUSCODE=0 RESULT=$command is not a valid command\n";}
elsif ($checksum ne $REQUEST{CHECKSUM})
{ $REPLY = "STATUSCODE=0 RESULT=Invalid Checksum\n";}
else
{ $REPLY = do $command(@REQUEST); }
$len=sprintf("%08d",length($REPLY)-1);
$delim=' ';
$DEBUG && print STDERR "REPLY=${len}${delim}$REPLY\n";
$buf="$len"."$delim"."$REPLY";
syswrite(NS,$buf,length($buf));
close NS;

N.2 Moab Resource Manager Language Data Format

In this topic:

l N.2.1 Query Resources Data Format - page 1520

l N.2.2 Query Workload Data Format - page 1525

N.2.1 Query Resources Data Format
Query Resources Data Format

Name Format Default Description

ADISK <INTEGER> 0 Available local disk on
node (in MB)

Appendix N: Moab Resource Manager Language Interface Overview

Name Format Default Description

AFS <fs id="X" size="X"
io="Y" rcount="X"
wcount="X"
ocount="X"></fs>[...]

0 Available filesystem
state

AMEMORY <INTEGER> 0 Available/free RAM on
node (in MB)

APROC <INTEGER> 1 Available processors on
node

ARCH <STRING> --- Compute architecture of
node

ARES One or more comma-delimited
<NAME>:<VALUE> pairs (i.e.,

MATLAB:6,COMPILER:100
)

--- Arbitrary consumable
resources currently
available on the node

ASWAP <INTEGER> 0 Available swap on node
(in MB)

CCLASS One or more bracket enclosed
<NAME>:<COUNT> pairs (i.e.,
[batch:5][sge:3])

--- Run classes supported
by node. Typically, one
class is 'consumed' per
task. Therefore, an 8
processor node may
have 8 instances of each
class it supports
present, ie [batch:8]
[interactive:8]

CDISK <INTEGER> 0 Configured local disk on
node (in MB)

CFS <STRING> 0 Configured filesystem
state

CMEMORY <INTEGER> 0 Configured RAM on
node (in MB)

CONTAINERNODE <STRING> --- The physical machine

Appendix N: Moab Resource Manager Language Interface Overview

1521 N.2 Moab Resource Manager Language Data Format

N.2 Moab Resource Manager Language Data Format 1522

Name Format Default Description

that is hosting the
virtual machine. Only
valid on VMs.

CPROC <INTEGER> 1 Configured processors
on node

CPULOAD <DOUBLE> 0.0 One minute BSD load
average

CPUSPEED <INTEGER> --- The node's processor
speed in MHz

CRES One or more comma-delimited
<NAME>:<VALUE> pairs (i.e.,

MATLAB:6,COMPILER:100
)

--- Arbitrary consumable
resources supported
and tracked on the
node, ie software
licenses or tape drives

CSWAP <INTEGER> 0 Configured swap on
node (in MB)

FEATURE One or more colon delimited
<STRING>'s (i.e., WIDE:HSM)

Punctuation and escapes
are not allowed
(.,:;\t\n\, etc.).

--- Generic attributes, often
describing hardware or
software features,
associated with the
node

GEVENT GEVENT
[
<EVENTNAME>]=<STRING>

--- Generic event
occurrence and context
data

GMETRIC GMETRIC
[
<METRICNAME>
]=<DOUBLE>

--- Current value of generic
metric (i.e., 'GMETRIC
[temp]=103.5').

IDLETIME <INTEGER> --- Number of seconds
since last detected
keyboard or mouse
activity (often used with
desktop harvesting)

Appendix N: Moab Resource Manager Language Interface Overview

Name Format Default Description

MAXTASK <INTEGER> <CPROC> Maximum number of
tasks allowed on the
node at any given time

NETADDR <STRING> --- The IP address of the
machine

NODEINDEX <INTEGER> --- The node's index

OS <STRING> --- Operating system
running on node

OSLIST One or more comma-delimited
<STRING>'s with quotes if
the string has spaces (i.e.,
"SAS7 AS3 Core
Baseline Build
v0.1.0","RedHat AS3-
U5Development Build
v0.2").

--- Operating systems
accepted by node

OTHER <ATTR>=<VALUE>
[,<ATTR>=<VALUE>]...

--- Opaque node attributes
assigned to node

PARTITION <STRING> DEFAULT Partition to which node
belongs

POWER <BOOLEAN> Whether the machine is
on or off

PRIORITY <INTEGER> --- Node allocation priority

RACK <INTEGER> 0 Rack location of the
node

SLOT <INTEGER> 0 Slot location of the node

STATE* One of the following: Idle,
Running, Busy, Unknown,
Drained, Draining, or
Down

Down State of the node

Appendix N: Moab Resource Manager Language Interface Overview

1523 N.2 Moab Resource Manager Language Data Format

N.2 Moab Resource Manager Language Data Format 1524

Name Format Default Description

UPDATETIME* <EPOCHTIME> 0 Time node information
was last updated

VARATTR <ATTR1>=<VAL1>
[=<displayName1>]
[+<ATTR2>=<VAL2>
[=<displayName2>]]...

--- Plus-delimited (+) list
of <ATTR>=<VAL>
[=<displayName>]
pairs that jobs can
request. You can replace
any of the equals signs
with colons if desired.
Specifying a display
name allows you to
choose a name that will
be displayed in the
Mongo database instead
of the unique ID (the
<VALUE>).

If you give two
different
attributes the
same value and
one of them also
has a display
name specified,
both attributes
will appear with
the same display
name.

VARIABLE <ATTR>=<VAL> --- Generic variables to be
associated with node

VMOSLIST <STRING> --- Comma-delimited list
(,) of supported virtual
machine operating
systems for this node

XRES One or more comma-delimited
<NAME>:<VALUE> pairs (i.e.,

MATLAB:6,COMPILER:100
)

--- Amount of external
usage of a particular
generic resource

* indicates required field

Appendix N: Moab Resource Manager Language Interface Overview

Node states have the following definitions:

State Description

Busy Node is running some jobs and will not accept additional jobs.

Down Resource Manager problems have been detected. Node is incapable of running
jobs.

Draining Node is responding but will not accept new jobs.

Idle Node is ready to run jobs but currently is not running any.

Running Node is running some jobs and will accept additional jobs.

Unknown Node is capable of running jobs but the scheduler will need to determine if the
node state is actually Idle, Running, or Busy.

N.2.2 Query Workload Data Format
Query Workload Data Format

Name Format Default Description

ACCOUNT <STRING> --- AccountID associated with job

ARGS <STRING> --- Job command-line arguments

COMMENT <STRING> 0 Job resource manager extension
arguments including qos,
dependencies, reservation constraints,
etc.

COMPLETETIME* <EPOCHTIME> 0 Time job completed execution

DDISK <INTEGER> 0 Quantity of local disk space (in MB)
that must be dedicated to each task of
the job

DGRES name:value
[,name:value]

--- Dedicated generic resources per task

Appendix N: Moab Resource Manager Language Interface Overview

1525 N.2 Moab Resource Manager Language Data Format

N.2 Moab Resource Manager Language Data Format 1526

Name Format Default Description

DPROCS <INTEGER> 1 Number of processors dedicated to
the job

DSWAP <INTEGER> 0 Quantity of virtual memory (swap, in
MB) that must be dedicated to each
task of the job

ENDDATE <EPOCHTIME> [ANY] Time by which job must complete

ENV <STRING> --- Job environment variables

ERROR <STRING> --- File to contain STDERR

EVENT <EVENT> --- Event or exception experienced by job

EXEC <STRING> --- Job executable command

EXITCODE <INTEGER> --- Job exit code

FLAGS <STRING> --- Job flags

GEOMETRY <STRING> --- String describing task geometry
required by job

GNAME* <STRING> --- GroupID under which job will run

HOSTLIST Comma or colon
delimited list of
hostnames -
suffix the hostlist
with a carat (^) to
mean superset; suf-
fix with an asterisk
(*) to mean sub-
set; otherwise, the
hostlist is inter-
preted as an exact
set

[ANY] List of required hosts on which job
must run. (see TASKLIST)
A subset means the specified hostlist
is used first to select hosts for the job.
If the job requires more hosts than
are in the hostlist, they will be
obtained from elsewhere if possible. If
the job does not require all of the jobs
in the hostlist, it will use only the ones
it needs.
A superset means the hostlist is the
only source of hosts that should be
considered for running the job. If the
job can't find the necessary resources
in the hosts in this list it should not
run. No other hosts should be

Appendix N: Moab Resource Manager Language Interface Overview

Name Format Default Description

considered in allocating the job.

INPUT <STRING> --- File containing STDIN

IWD <STRING> --- Job's initial working directory

NAME <STRING> --- User specified name of job

NODES <INTEGER> 1 Number of nodes required by job (see
Node Definition for more info)

OUTPUT <STRING> --- File to contain STDOUT

PARTITIONMASK One or more colon
delimited
<STRING>s

[ANY] List of partitions where job can run

PREF Colon delimited
list of <STRING>s

--- List of preferred node features or
variables. See PREF for more
information.

PRIORITY <INTEGER> --- System priority (absolute or relative -
use '+' and '-' to specify relative)

QOS <INTEGER> 0 Quality of service requested

QUEUETIME* <EPOCHTIME> 0 Time job was submitted to resource
manager

RARCH <STRING> --- Architecture required by job

RCLASS List of bracket
enclosed
<STRING>
:<INTEGER>
pairs

--- List of <CLASSNAME>:<COUNT>
pairs indicating type and number of
class instances required per task. (i.e.,
[batch:1] or [batch:2]
[tape:1])

RDISK <INTEGER> 0 Local disk space (in MB) required to
be configured on nodes allocated to
the job

Appendix N: Moab Resource Manager Language Interface Overview

1527 N.2 Moab Resource Manager Language Data Format

N.2 Moab Resource Manager Language Data Format 1528

Name Format Default Description

RDISKCMP One of >=, >, ==,
<, or <=

>= Local disk comparison (i.e., node must
have > 2048 MB local disk)

REJCODE <INTEGER> 0 Reason job was rejected

REJCOUNT <INTEGER> 0 Number of times job was rejected

REJMESSAGE <STRING> --- Text description of reason job was
rejected

REQRSV <STRING> --- Name of reservation where job must
run

RESACCESS <STRING> --- List of reservations where job can run

RFEATURES Colon delimited
list <STRING>'s

--- List of features required on nodes

RMEM <INTEGER> 0 Real memory (RAM, in MB) required
to be configured on nodes allocated to
the job

RMEMCMP One of '>=', '>',
'==', '<', or '<='

>= Real memory comparison (i.e., node
must have >= 512MB RAM)

ROPSYS <STRING> --- Operating system required by job

RSOFTWARE <RESTYPE>
[{+|:}<COUNT>]
[@<TIMEFRAME>]

--- Software required by job

RSWAP <INTEGER> 0 Virtual memory (swap, in MB)
required to be configured on nodes
allocated to the job

RSWAPCMP One of '>=', '>',
'==', '<', or '<='

>= Virtual memory comparison (i.e., node
must have ==4096 MB virtual
memory)

SID <STRING> --- System ID (global job system owner)

Appendix N: Moab Resource Manager Language Interface Overview

Name Format Default Description

STARTDATE <EPOCHTIME> 0 Earliest time job should be allowed to
start

STARTTIME* <EPOCHTIME> 0 Time job was started by the resource
manager

STATE* One of the
following: Idle,
Running, Hold,
Suspended,
Completed, or
Removed

Idle State of job

SUSPENDTIME <INTEGER> 0 Number of seconds job has been sus-
pended

TASKLIST One or more
comma-delimited
<STRING>'s

--- List of allocated tasks, or in other
words, comma-delimited list of node
ID's associated with each active task of
job (i.e., cl01, cl02, cl01, cl02, cl03)
The tasklist is initially selected by the
scheduler at the time the StartJob
command is issued. The resource
manager is then responsible for
starting the job on these nodes and
maintaining this task distribution
information throughout the life of the
job. (see HOSTLIST)

TASKS* <INTEGER> 1 Number of tasks required by job (see
Task Definition for more info)

TASKPERNODE <INTEGER> 0 Exact number of tasks required per
node

UNAME* <STRING> --- UserID under which job will run

UPDATETIME* <EPOCHTIME> 0 Time job was last updated

WCLIMIT* [[HH:]MM:]SS 864000 Walltime required by job

* indicates required field

Job states have the following definitions:

Appendix N: Moab Resource Manager Language Interface Overview

1529 N.2 Moab Resource Manager Language Data Format

N.2 Moab Resource Manager Language Data Format 1530

State Definition

Completed Job has completed

Hold Job is in the queue but is not allowed to run

Idle Job is ready to run

Removed Job has been canceled or otherwise terminated externally

Running Job is currently executing

Suspended job has started but execution has temporarily been suspended

Completed and canceled jobs should be maintained by the resource manager for a
brief time, perhaps 1 to 5 minutes, before being purged. This provides the scheduler
time to obtain all final job state information for scheduler statistics.

Related Topics

l Managing Resources Directly with the Native Interface

Appendix N: Moab Resource Manager Language Interface Overview

1531

Appendix O: SCHEDCFG Flags

Flag Description

AGGREGATENODEFEATURES AGGREGATENODEFEATURES causes Moab to
aggregate features reported by the different RMs.
For example, if you have two RMs reporting
different features for the same node, Moab will
add both features together (instead of one being
overwritten by the other).
In order to set features manually, you can use
mnodectl -m features (for details, see
mnodectl).

ALLOWCREDENTIALSWITHSPACES ALLOWCREDENTIALSWITHSPACES lets Moab
ignore POSIX standards and allows groups, users,
and accounts with spaces in their names.

ALLOWINFINITEJOBS ALLOWINFINITEJOBS allows infinite wallclock
times to be accepted. Previously, jobs with infinite
job times were allowed by default.

ALLOWMULTICOMPUTE ALLOWMULTICOMPUTE tells Moab how to
resolve conflicting information from different
resource managers. If ALLOWMULTICOMPUTE is
specified, Moab will use the STATE and OS
information from the resource manager that
reports the node as online.

ALLOWPERJOBNODESETISOPTIONAL ALLOWPERJOBNODESETISOPTIONAL specifies
whether Moab will read the
NODESETISOPTIONAL resource manager
extension on an individual job or use the global
setting.

CANCELFAILEDDEPENDENCYJOBS Automatically cancels dependency jobs that will
never run because of an unmet requirement. For
example, if you ran a job with both an afterok
and afternotok job attached to it and that job was
successful, the afterok job would run, leaving the
afternotok job idle in the queue. If you set
CANCELFAILEDDEPENDENCYJOBS, Moab will
cancel the job with the failed dependency and
remove it from the queue. For more information
about job dependencies, see Job Dependencies.

Appendix O: SCHEDCFG Flags

Flag Description

If you want to cancel all jobs that a
specified <job_id> depends on, use
mjobctl -c flags=follow-
dependency <job_id> instead.

CHECKCIRCULARDEPENDENCIES If you regularly submit job dependencies based
on job names (and not job IDs) it is possible to
accidentally create a circular dependency where
jobs end up blocked. Moab can recursively check
for circular dependencies when jobs are
submitted by enabling this flag. Note that this
check can be extensive depending on the
workload submitted.

DISABLEPERJOBNODESETS Disables a job's ability to override the system
specified node set. See 13.3 Resource Manager
Extensions for more information.

DISABLEPARTIALNODERESERVATIONS Blocks partial node reservations.

ENABLEDYNAMICNODES Enables the ability to automatically remove nodes
from Moab that are no longer reported by the
resource manager.

ENABLEJOBTRIGGERSONRSV Enable job start triggers based on the job's
reservation and not the actual start of the job
(allows for negative offset job start triggers).

ENABLEMOABJOBENV Puts the Moab job variables on every job.

ENFORCERESERVEDNODES Without this flag Moab tries to optimize the
reservation for a job before it starts, meaning a
job can start on nodes that weren't part of its
reservation. With this flag Moab tries to start jobs
only on the nodes that were reserved.

ENFORCESAMENODESET The same nodeset is not enforced across job
requirements by default, rather each requirement
is scheduled separately and the nodesets are
determined on a per-req basis. To have Moab
enforce the same nodeset across all job require-
ments set this flag.

Appendix O: SCHEDCFG Flags

1532

1533

Flag Description

EXTENDEDGROUPSUPPORT Allows Moab to consider a user's secondary Linux
groups when dealing with reservation ACLs.

FASTGROUPLOOKUP Moab will use the system call getgrouplist to
gather group information. This can significantly
improve performance on some LDAP systems.

FASTRSVSTARTUP Speeds up start time if there are existing
reservations.

When you set the FASTRVSSTARTUP flag,
Moab will also set the
DISABLEPARTIALNODERESERVATIONS
flag.

FASTRSVSTARTUP is incompatible with
partial node reservations.

FASTRSVSTARTUP maintains the resource
manager-reported node order at all times.

On very large systems, if there is a reservation in
the checkpoint file on all the nodes, it would take
a really long time for Moab to start up. For every
node in the reservation, Moab checks every other
node. With this flag, Moab just uses the nodelist
that was checkpointed to create the reservation.
It speeds up the startup process because it
doesn't have to check every node. Where Moab
would take 8 - 10 minutes to start up with an
18,000 node reservation without the flag, Moab
can start up in 2-3 minutes with the flag.
With the flag you will see one difference in
checknode. A reservation that uses all the procs
on a node initially shows that all the procs are
blocked. Without the flag, and as jobs fill on the
node, the blocked resources will be configured -
dedicated (ex. 5/6). With the flag, the blocked
resources will always be what the reservation is
blocking and won't change when jobs fill on the
node.
Without flag:
Reservations:
brian.1x1 User -00:12:52 -> INFINITY (
INFINITY)

Appendix O: SCHEDCFG Flags

Flag Description

Blocked Resources@-00:00:02 Procs: 5/6
(83.33%) Mem: 0/5000 (0.00%)
Blocked Resources@00:04:58 Procs: 6/6
(100.00%) Mem: 0/5000 (0.00%)
m.2x1 Job:Running -00:00:02 -> 00:04:58
(00:05:00)
Jobs: m.2

With flag:
Reservations:
brian.1x1 User -00:00:15 -> INFINITY (
INFINITY)
Blocked Resources@-00:00:02 Procs: 6/6
(100.00%) Mem: 0/5000 (0.00%)
Blocked Resources@00:04:58 Procs: 6/6
(100.00%) Mem: 0/5000 (0.00%)
m.1x1 Job:Running -00:00:02 -> 00:04:58
(00:05:00)
Jobs: m.1

FILELOCKHA This is a High Availability feature. FILELOCKHA
prevents scheduling conflicts between multiple
Moab servers.

FREECOMPLETEDJOBSUBMITSTRING Moab frees the job submit string for completed
jobs, decreasing the amount of memory needed
during operation. This is useful in environments
with large job scripts that can create a large
memory footprint.

IGNOREPIDFILELOCK Moab frees the job submit string and
environment for completed jobs, decreasing the
amount of memory needed during operation. This
is useful in environments with large job scripts
and environments that can create a large memory
footprint.

INTERACTIVEWCACCURACY Moab will assume all interactive jobs are 100%
accurate with respect to walltime. This is useful
for sites that don't enforce walltimes for
interactive jobs but don't want users punished for
inaccurate interactive job walltimes.

JOBSUSERSVWALLTIME Allows jobs submitted without a walltime request

Appendix O: SCHEDCFG Flags

1534

1535

Flag Description

or default walltime received from a class or queue
but with an ADVRES:reservation to inherit
their walltime limit from the reservation instead
of the Moab default. The job walltime limit is
then the remaining time of the reservation to
which the job was submitted.

NOCLASSUPDATE While running against Torque, Moab will not
update classes when it refreshes each iteration.
Moab loads the classes at startup, but does not
refresh them until the next time it is restarted.

NORMALIZETASKDEFINITIONS Instructs Moab to normalize all tasks that it
receives via an mshow -a command. Moab
normalizes the task definition to one processor
and then changes the tasks requested to the
number of processors requested. For example,
when the following is received by Moab:

mshow -a -w mintasks=1@procs:4+mem:4096

It is changed to this:

mshow -a -w mintasks=4@procs:1+,mem:1024,tpn=4

OPTIMIZEDBACKFILL Turns on an optimization within the FIRSTFIT
backfill algorithm that checks whether there is a
system-wide reservation blocking most jobs from
running. This flag speeds up backfill scheduling
(in the case where there is a system-wide
reservation blocking most users) by checking
access to the reservation sooner rather than later.
This flag will be the default in future versions of
Moab.

PRIORITYPOLICYBLOCKING By default, a job that violates a policy is placed
into the blocked queue. Jobs with a lower
priority, but that do not violate the policy, will
run. This can lead to situations where small jobs
starve out larger, higher priority jobs.
When you set the PRIORITYPOLICYBLOCKING
flag, Moab allows the job that violates the policy
to continue consuming the policy slots while it
remains blocked. With the policy slots consumed,
the smaller, lower priority jobs will not run. The

Appendix O: SCHEDCFG Flags

Flag Description

higher priority job will continue to consume the
policy slots until it has consumed enough to
actually run.
Note that because the blocked job consumes
policy slots, this will inevitably lead to lower
system utilization.

ProvisionFirstReqOnly This flag is only available for Cray KNL
systems and is only used when submitting

jobs using the qsub -L or msub -L NUMA-
aware resource request syntax.

Informs Moab that it should re-provision the
compute nodes allocated only to the first
resource request in a multiple-resource-request
or 'multi-req' job instead of all compute nodes.

SETDEFAULTHOSTLISTEXACTSET By default, all Hostlist requests will be
interpreted as an exactset request. See HOSTLIST
for more information.

SHOWCOMPLETEDDEPENDENCIES Continues showing dependencies on a job even
after the dependencies have been satisfied.

SHOWREQUESTEDPROCS Shows requested processors regardless of
NodeAccessPolicy in showq. When SINGLEJOB
NODEACCESSPOLICY is used and the job
requests one processor, showq displays the job
with one processor.

SHOWUSERJOBSONLY Causes Moab, when a non-admin user runs
showq, to return only that user's jobs. If an
administrator runs showq when this flag is set,
Moab returns the jobs of all users; no restrictions
are placed on administrators.

STRICTSPOOLDIRPERMISSIONS Enforces at least a 511 permission on the Moab
spool directory.

SUSPENDEDJOBNODEBFINELIGIBLE Turns off back fill on nodes where a job was
suspended due to preemption.

Appendix O: SCHEDCFG Flags

1536

1537

Flag Description

When enabled,
CHECKSUSPENDEDJOBPRIORITY must be

set to True. See
CHECKSUSPENDEDJOBPRIORITY.

UNMIGRATEONDEFER Forces Moab to unmigrate a job in a grid if it
enters a deferred state.

USERMCOMPLETEDJOBSTATS Calculate job statistics using the RM reported
metrics rather than Moab's internal metrics.

Appendix O: SCHEDCFG Flags

	Chapter 1: Moab Workload Manager Overview
	Chapter 2: Philosophy and Goals of Moab Workload Manager
	2.1 Value of a Batch System
	2.1.1 Traffic Control
	2.1.2 Mission Policies
	2.1.3 Optimizations

	2.2 Philosophy and Goals
	2.2.1 Management Goals
	2.2.2 Administration Goals
	2.2.3 End User Goals

	2.3 Workload
	2.3.1 Batch Workload
	2.3.2 Interactive Workload
	2.3.3 Calendar Workload
	2.3.4 Service Workload

	Chapter 3: Scheduler Basics
	3.1 Initial Moab Configuration
	3.2 Layout of Scheduler Components
	3.2.1 Layout of Scheduler Components
	3.2.2 Layout of Scheduler Components with Integrated Database

	3.3 Scheduling Environment
	3.3.1 Jobs
	3.3.2 Nodes
	3.3.3 Advance Reservations
	3.3.4 Policies
	3.3.5 Resources
	3.3.6 Class (or Queue)
	3.3.7 Resource Manager (RM)

	3.4 Scheduling Dictionary
	3.5 Scheduling Iterations and Job Flow
	3.5.1 Scheduling Iterations
	3.5.2 Detailed Job Flow

	3.6 Configuring the Scheduler
	3.6.1 Adjusting Server Behavior

	3.7 Credential Overview
	3.7.1 General Credential Attributes
	3.7.2 User Credential
	3.7.3 Group Credential
	3.7.4 Account (or Project) Credential
	3.7.5 Class (or Queue) Credential
	3.7.6 QoS Credential

	3.8 Job Flags

	Chapter 4: Scheduler Commands
	4.1 Moab Command Overview
	4.1.1 Moab Commands
	4.1.2 Moab Command Options
	4.1.3 Commands Providing Maui Compatibility

	4.2 Status Commands
	4.3 Job Management Commands
	4.4 Reservation Management Commands
	4.5 Policy/Configuration Management Commands
	4.6 End-User Commands
	4.7 Moab Commands
	4.7.1 checkjob
	4.7.2 checknode
	4.7.3 mcredctl
	4.7.4 mdiag
	4.7.5 mdiag -a
	4.7.6 mdiag -b
	4.7.7 mdiag -c
	4.7.8 mdiag -f
	4.7.9 mdiag -j
	4.7.10 mdiag -n
	4.7.11 mdiag -p
	4.7.12 mdiag -q
	4.7.13 mdiag -r
	4.7.14 mdiag -R
	4.7.15 mdiag -s
	4.7.16 mdiag -S
	4.7.17 mdiag -t
	4.7.18 mdiag -T
	4.7.19 mdiag -u
	4.7.20 mjobctl
	4.7.21 mnodectl
	4.7.22 moab
	4.7.23 mrmctl
	4.7.24 mrsvctl
	4.7.26 mschedctl
	4.7.27 mshow
	4.7.28 mshow -a
	4.7.29 mshow -a (mshow in a Hosting Environment)
	4.7.30 msub
	4.7.31 mvcctl (Moab Virtual Container Control)
	4.7.32 showbf
	4.7.33 showq
	4.7.34 showhist.moab.pl
	4.7.35 showres
	4.7.36 showstart
	4.7.37 showstate
	4.7.38 showstats
	4.7.39 showstats -f
	4.7.40 Deprecated Commands

	Chapter 5: Prioritizing Jobs and Allocating Resources
	5.1 Job Prioritization
	5.1.1 Priority Overview
	5.1.2 Job Priority Factors
	5.1.3 Fairshare Job Priority Example
	5.1.4 Common Priority Usage
	5.1.5 Prioritization Strategies
	5.1.6 Manual Job Priority Adjustment

	5.2 Node Allocation Policies
	5.2.1 Node Allocation Overview
	5.2.2 Node Selection Factors
	5.2.3 Resource-Based Algorithms
	5.2.4 User-Defined Algorithms
	5.2.5 Specifying Per Job Resource Preferences

	5.3 Node Access Policies
	5.3.1 Node Access Policy Descriptions
	5.3.2 Configuring Node Access Policies

	5.4 Node Availability Policies
	5.4.1 Node Resource Availability Policies
	5.4.2 Node Categorization
	5.4.3 Node Failure/Performance Based Notification
	5.4.4 Node Failure/Performance Based Triggers
	5.4.5 Handling Transient Node Failures
	5.4.6 Allocated Resource Failure Policy for Jobs

	Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management
	6.1 Fairness Overview
	6.1.1 Fairness Facilities
	6.1.2 Selecting the Correct Policy Approach

	6.2 Usage Limits/Throttling Policies
	6.2.1 Fairness via Throttling Policies
	6.2.2 Override Limits
	6.2.3 Idle Job Limits
	6.2.4 Hard and Soft Limits
	6.2.5 Per-partition Limits
	6.2.6 Usage-based limits

	6.3 Fairshare
	6.3.1 Fairshare Parameters
	6.3.2 Using Fairshare Information
	6.3.3 Hierarchical Fairshare/Share Trees

	6.4 Sample FairShare Data File
	6.5 Accounting, Charging, and Allocation Management
	6.5.1 Accounting Manager Overview
	6.5.2 Accounting Mode
	6.5.3 Accounting Manager Interface Types
	6.5.4 Charging for Jobs
	6.5.5 Charging for Reservations
	6.5.6 Accounting Properties Reported to the Accounting Manager
	6.5.7 Accounting Stages
	6.5.8 Accounting Events
	6.5.9 Blocking Versus Non-Blocking Accounting Actions
	6.5.10 Retrying Failed Charges

	6.6 AMCFG Parameters and Flags
	6.6.1 AMCFG Parameters
	6.6.2 AMCFG Flags

	Chapter 7: Controlling Resource Access - Reservations, Partitions, and QoS Facilities
	7.1 Advance Reservations
	7.1.1 Reservation Overview
	7.1.2 Administrative Reservations
	7.1.3 Standing Reservations
	7.1.4 Reservation Policies
	7.1.5 Configuring and Managing Reservations
	7.1.6 Personal/User Reservations - Enabling Reservations for End Users

	7.2 Partitions
	7.2.1 Partition Overview
	7.2.2 Defining Partitions
	7.2.3 Managing Partition Access
	7.2.4 Requesting Partitions
	7.2.5 Per-Partition Settings
	7.2.6 Miscellaneous Partition Issues

	7.3 Quality of Service (QoS) Facilities
	7.3.1 QoS Overview
	7.3.2 QoS Enabled Privileges
	7.3.3 Managing QoS Access
	7.3.4 Requesting QoS Services at Job Submission
	7.3.5 Restricting Access to Special Attributes

	Chapter 8: Optimizing Scheduling Behavior – Backfill and Node Sets
	8.1 Optimization Overview
	8.2 Backfill
	8.2.1 Backfill Overview
	8.2.2 Backfill Algorithms
	8.2.3 Configuring Backfill

	8.3 Node Set Overview
	8.3.1 Node Set Usage Overview
	8.3.2 Node Set Configuration Examples
	8.3.3 Requesting Node Sets for Job Submission
	8.3.4 Configuring Node Sets for Classes

	Chapter 9: Evaluating System Performance - Statistics, Profiling and Testing
	9.1 Moab Performance Evaluation Overview
	9.2 Accounting: Job and System Statistics
	9.2.1 Accounting Overview
	9.2.2 Real-Time Statistics

	9.3 Testing New Versions and Configurations
	9.3.1 MONITOR Mode
	9.3.2 INTERACTIVE Mode

	Chapter 10: General Job Administration
	10.1 Job Holds
	10.1.1 Holds and Deferred Jobs
	10.1.2 User Holds
	10.1.3 System Holds
	10.1.4 Batch Holds
	10.1.5 Job Defer

	10.2 Job Priority Management
	10.3 Suspend/Resume Handling
	10.4 Checkpoint/Restart Facilities
	10.5 Job Dependencies
	10.5.1 Basic Job Dependency Support
	10.5.2 Job Dependency Syntax

	10.6 Job Defaults and Per Job Limits
	10.6.1 Job Defaults
	10.6.2 Per Job Maximum Limits
	10.6.3 Per Job Minimum Limits

	10.7 General Job Policies
	10.7.1 Multi-Node Support
	10.7.2 Multi-Req Support
	10.7.3 Malleable Job Support
	10.7.4 Enabling Job User Proxy

	10.8 Using a Local Queue
	10.9 Job Deadlines
	10.9.1 Deadline Overview
	10.9.2 Setting Job Deadlines via QoS
	10.9.3 Job Termination Date
	10.9.4 Conflict Policies

	10.10 Job Arrays
	10.10.1 Job Array Overview
	10.10.2 Enabling Job Arrays
	10.10.3 Subjob Definitions
	10.10.4 Using Environment Variables to Specify Array Index Values
	10.10.5 Job Array Cancellation Policies
	10.10.6 Minimizing the Impact of Very Large Job Arrays
	10.10.7 Examples

	Chapter 11: General Node Administration
	11.1 Node Attribute Types
	11.1.1 Resource Manager Specified 'Opaque' Attributes
	11.1.2 Scheduler Specified Default Node Attributes
	11.1.3 Scheduler Specified Node Attributes

	11.2 Node Location
	11.2.1 Partitions
	11.2.2 Racks
	11.2.3 Queues
	11.2.4 Node Selection

	11.3 Node Attributes
	11.3.1 Configurable Node Attributes
	11.3.2 Node Features/Node Properties

	11.4 Node Specific Policies
	11.4.1 Node Usage/Throttling Policies
	11.4.2 Node Access Policies

	11.5 Managing Shared Cluster Resources (Floating Resources)
	11.5.1 Shared Cluster Resource Overview
	11.5.2 Configuring Generic Consumable Floating Resources
	11.5.3 Configuring Cluster File Systems
	11.5.4 Configuring Cluster Licenses
	11.5.5 Configuring Generic Resources as Features
	11.5.6 Configuring Generic Resources as Licenses

	11.6 Managing Node State
	11.6.1 Node State Definitions
	11.6.2 Specifying Node States within Native Resource Managers
	11.6.3 Moab Based Node State Adjustment
	11.6.4 Adjusting Scheduling Behavior Based on Reported Node State
	11.6.5 Adding or Removing Nodes

	11.7 Managing Consumable Generic Resources
	11.7.1 Differences Between Node Features and Consumable Resources
	11.7.2 Configuring Node-locked Consumable Generic Resources
	11.7.3 Managing Generic Resource Race Conditions

	11.8 Enabling Generic Metrics
	11.8.1 Configuring Generic Metrics
	11.8.2 Example Generic Metric Usage

	11.9 Enabling Generic Events
	11.9.1 Configuring Generic Events
	11.9.2 Reporting Generic Events
	11.9.3 Generic Events Attributes
	11.9.4 Manually Creating Generic Events

	Chapter 12: Resource Managers and Interfaces
	12.1 Resource Manager Overview
	12.1.1 Scheduler/Resource Manager Interactions
	12.1.2 Resource Manager Specific Details (Limitations/Special Features)
	12.1.3 Synchronizing Conflicting Information
	12.1.4 Evaluating Resource Manager Availability and Performance

	12.2 Resource Manager Configuration
	12.2.1 Defining and Configuring Resource Manager Interfaces
	12.2.2 Resource Manager Configuration Details
	12.2.3 Scheduler/Resource Manager Interactions

	12.3 Resource Manager Extensions
	12.3.1 Resource Manager Extension Specification
	12.3.2 Resource Manager Extension Values
	12.3.3 Resource Manager Extension Examples
	12.3.4 Configuring dynamic features in Torque and Moab

	12.4 Adding New Resource Manager Interfaces
	12.4.1 Resource Manager Specific Interfaces
	12.4.2 Wiki Interface
	12.4.3 SSS Interface

	12.5 Managing Resources Directly with the Native Interface
	12.5.1 Native Interface Overview
	12.5.2 Configuring the Native Interface
	12.5.3 Generating Cluster Query Data
	12.5.4 Interfacing with FlexNet (Formerly FLEXlm)
	12.5.5 Interfacing to Nagios
	12.5.6 Configuring Resource Types
	12.5.7 Creating New Tools to Manage the Cluster

	12.6 Utilizing Multiple Resource Managers
	12.6.1 Multi-RM Overview
	12.6.2 Configuring Multiple Independent Resource Manager Partitions
	12.6.3 Migrating Jobs between Resource Managers
	12.6.4 Aggregating Information into a Cohesive Node View

	12.7 License Management
	12.7.1 License Management Overview
	12.7.2 Controlling and Monitoring License Availability
	12.7.3 Requesting Licenses within Jobs

	12.8 Resource Provisioning
	12.8.1 Resource Provisioning Overview
	12.8.2 Configuring Provisioning

	12.9 Managing Networks
	12.9.1 Network Management Overview
	12.9.2 Dynamic VLAN Creation
	12.9.3 Network Load and Health Monitoring
	12.9.4 Creating a Resource Management Interface for a New Network
	12.9.5 Per-Job Network Monitoring

	12.10 Intelligent Platform Management Interface
	12.10.1 IPMI Overview
	12.10.2 Node IPMI Configuration
	12.10.3 Installing IPMItool
	12.10.4 [Optional] Creating the IPMI BMC-Node Map File
	12.10.5 Configuring the Moab IPMI Tools
	12.10.6 Configuring Moab
	12.10.7 Ensuring Proper Setup

	12.11 Resource Manager Translation
	12.11.1 Translation Overview
	12.11.2 Translation Enablement Steps

	Chapter 13: Troubleshooting and System Maintenance
	13.1 Internal Diagnostics/Diagnosing System Behavior and Problems
	13.1.1 The mdiag Command
	13.1.2 Other Diagnostic Commands
	13.1.3 Using Moab Logs for Troubleshooting
	13.1.4 Automating Recovery Actions after a Failure

	13.2 Logging Overview
	13.2.1 Log Facility Configuration
	13.2.2 Standard Log Format
	13.2.3 Searching Moab Logs
	13.2.4 Event Logs
	13.2.5 Enabling Syslog
	13.2.6 Managing Verbosity

	13.3 Object Messages
	13.3.1 Object Message Overview
	13.3.2 Viewing Messages
	13.3.3 Creating Messages

	13.4 Notifying Administrators of Failures
	13.4.1 Enabling Administrator Email
	13.4.2 Handling Events with the Notification Routine

	13.5 Issues with Client Commands
	13.5.1 Client Overview
	13.5.2 Diagnosing Client Problems

	13.6 Tracking System Failures
	13.6.1 System Failures
	13.6.2 Internal Errors
	13.6.3 Reporting Failures

	13.7 Problems with Individual Jobs
	13.8 Diagnostic Scripts
	13.8.1 support-diag.py
	13.8.2 support.diag.pl

	Chapter 14: Improving User Effectiveness
	14.1 User Feedback Loops
	14.1.1 Improving Job Size/Duration Requests
	14.1.2 Improving Resource Requirement Specification

	14.2 User Level Statistics
	14.3 Enhancing Wallclock Limit Estimates
	14.4 Job Start Time Estimates
	14.4.1 Example
	14.4.2 Estimation Types

	14.5 Providing Resource Availability Information
	14.6 Collecting Performance Information on Individual Jobs

	Chapter 15: Cluster Analysis and Testing
	15.1 Testing New Releases and Policies
	15.1.1 Moab Evaluation Modes
	15.1.2 Testing New Releases
	15.1.3 Testing New Policies
	15.1.4 Moab Side-by-Side

	15.2 Testing New Middleware
	15.2.1 Analysis Aspects
	15.2.2 General Analysis
	15.2.3 Native Mode Analysis

	15.3 Workload Event Format
	15.3.1 Workload Event Record Format
	15.3.2 Reservation Event Records
	15.3.3 Recording Job Events

	Chapter 16: Green Computing
	16.1 Green Computing Methods
	16.1.1 Moab Edition Green Features
	16.1.2 Moab Power Management Methods
	16.1.3 Theory of Operation
	16.1.4 Active Node Power Management
	16.1.5 Idle Node Power Management
	16.1.6 Green Policy Configuration

	16.2 Deploying Adaptive Computing IPMI Scripts
	16.2.1 Prerequisites
	16.2.2 To Deploy the Adaptive Computing IPMI Scripts

	16.3 Choosing which Nodes Moab Powers On or Off
	16.4 Enabling Green Computing
	16.5 Adjusting Green Pool Size
	16.6 Handling Power-Related Events
	16.7 Maximizing Scheduling Efficiency
	16.8 Putting Idle Nodes in Power-Saving States
	16.9 Troubleshooting Green Computing

	Chapter 17: Elastic Computing Overview
	17.1 About Elastic Computing
	17.2 Configuring Elastic Computing
	17.2.1 To Configure Elastic Computing
	17.2.2 Sample moab.cfg File Excerpt

	17.3 Elastic Trigger
	17.4 Integration with a Private OpenStack Cloud
	17.4.1 Configuring Moab to Talk to OpenStack Integration Scripts
	17.4.2 Verification
	17.4.3 Troubleshooting

	17.5 Dynamic Nodes
	17.5.1 Dynamic Node Parameters
	17.5.2 Dynamic Node Events
	17.5.3 Configuring Dynamic Nodes

	17.6 Viewing Node and Trigger Information
	17.6.1 mdiag -n -v --xml
	17.6.2 mdiag -T
	17.6.3 checknode -v <node name>

	17.7 Usage Policies
	17.7.1 Available Policies
	17.7.2 Policy Levels

	Chapter 18: Object Triggers
	18.1 About Object Triggers
	18.2 Object Trigger Tasks
	18.2.1 Creating a Trigger
	18.2.2 Using a Trigger to Send Email
	18.2.3 Using a Trigger to Execute a Script
	18.2.4 Using a Trigger to Perform Internal Moab Actions
	18.2.5 Requiring an Object Threshold for Trigger Execution
	18.2.6 Enabling Job Triggers
	18.2.7 Modifying a Trigger
	18.2.8 Viewing a Trigger
	18.2.9 Checkpointing a Trigger

	18.3 Object Trigger Reference
	18.3.1 Job Triggers
	18.3.2 Node Triggers
	18.3.3 Reservation Triggers
	18.3.4 Resource Manager Triggers
	18.3.5 Scheduler Triggers
	18.3.6 Threshold Triggers
	18.3.7 Trigger Components
	18.3.8 Trigger Exit Codes
	18.3.9 Node Maintenance Example
	18.3.10 Environment Creation Example

	18.4 About Trigger Variables
	18.4.1 Trigger Variable Tasks

	18.5 Generic System Job Trigger Requirements
	18.5.1 Trigger Variable Reference

	Chapter 19: Miscellaneous
	19.1 User Feedback Overview
	19.2 Enabling High Availability Features
	19.2.1 High Availability Overview
	19.2.2 Configuring High Availability on a Networked File System
	19.2.3 Confirming High Availability on a Networked File System
	19.2.4 Other High Availability Configuration

	19.3 Malleable Jobs
	19.4 Identity Managers
	19.4.1 Identity Manager Overview
	19.4.2 Basic Configuration
	19.4.3 Importing Credential Fairness Policies
	19.4.4 Identity Manager Data Format
	19.4.5 Identity Manager Conflicts
	19.4.6 Refreshing Identity Manager Data

	19.5 Generic System Jobs
	19.5.1 Creating a Generic System Job
	19.5.2 Workflows Using Job Template Dependencies

	Chapter 20: Database Configuration
	20.1 SQLite3
	20.2 Connecting to a MySQL Database with an ODBC Driver
	20.3 Connecting to a PostgreSQL Database with an ODBC Driver
	20.4 Connecting to an Oracle Database with an ODBC Driver
	20.4.1 Installing the Oracle Instant Client

	20.5 Migrating Your Database to Newer Versions of Moab
	20.5.1 Migrate from Moab 9.1 to Moab 10.0
	20.5.2 Migrate from Moab 9.0 to Moab 9.1
	20.5.3 Migrate from Moab 8.1 to Moab 9.0
	20.5.4 Migrate from Moab 8.0 to Moab 8.1
	20.5.5 Migrate from Moab 7.5 to Moab 8.0
	20.5.6 Migrate from Moab 7.2.6-7.2.10 to Moab 7.5
	20.5.7 Migrate from Moab 7.2.0-7.2.5 to Moab 7.2.6

	20.6 Importing Statistics from stats/DAY.* to the Moab Database

	Chapter 21: Accelerators
	21.1 Scheduling GPUs
	21.1.1 Deploying and Configuring GPUs
	21.1.2 Using GPUs with Minimal Configuration

	21.2 Using GPUs with NUMA
	21.3 NVIDIA GPUs
	21.3.1 Using NVIDIA GPUs
	21.3.2 Package Installation/Upgrade
	21.3.3 Torque Configuration
	21.3.4 GPU Modes for NVIDIA 260.x Driver
	21.3.5 GPU Modes for NVIDIA 270.x Driver
	21.3.6 gpu_status
	21.3.7 Enabling Persistence Mode
	21.3.8 Requesting GPUs and Setting GPU Mode

	21.4 GPU Metrics
	21.5 Intel® Xeon Phi™ Coprocessor Configuration
	21.5.1 Intel Many-Integrated Cores (MIC) Architecture Configuration
	21.5.2 Validating the Configuration
	21.5.3 Job Submission

	21.6 Intel® Xeon Phi™ Co-processor Metrics

	Chapter 22: Preemption
	22.1 Preemption Tasks
	22.1.1 Canceling Jobs with Preemption
	22.1.2 Checkpointing Jobs with Preemption
	22.1.3 Requeuing Jobs with Preemption
	22.1.4 Suspending Jobs with Preemption
	22.1.5 Using Owner Preemption
	22.1.6 Using QoS Preemption

	22.2 Preemption Reference
	22.2.1 Manual Preemption Commands
	22.2.2 Preemption Flags
	22.2.3 PREEMPTPOLICY Types
	22.2.4 Simple Example of Preemption
	22.2.5 Testing and Troubleshooting Preemption

	Chapter 23: About Job Templates
	23.1 Job Template Tasks
	23.1.1 Creating Job Templates
	23.1.2 Viewing Job Templates
	23.1.3 Applying Templates Based on Job Attributes
	23.1.4 Requesting Job Templates Directly
	23.1.5 Creating Workflows with Job Templates

	23.2 Job Template Reference
	23.2.1 Job Template Extension Attributes
	23.2.2 Job Template Matching Attributes
	23.2.3 Job Template Examples
	23.2.4 Job Template Workflow Examples

	Chapter 24: Moab Workload Manager for Grids
	24.1 Grid Basics
	24.1.1 Grid Overview
	24.1.2 Grid Benefits
	24.1.3 Management-Scalability
	24.1.4 Resource Access
	24.1.5 Load-Balancing
	24.1.6 Single System Image (SSI)
	24.1.7 High Availability
	24.1.8 Grid Relationships
	24.1.9 Submitting Jobs to the Grid
	24.1.10 Viewing Jobs and Resources

	24.2 Grid Configuration Basics
	24.2.1 Peer Configuration Overview
	24.2.2 Initial Configuration

	24.3 Centralized Grid Management (Moab Grid Control / Moab Grid Member)
	24.3.1 Moab Grid Control Configuration
	24.3.2 Moab Grid Member Configuration

	24.4 Hierarchical Grid Management
	24.4.1 Configuring a Peer Server (Source)
	24.4.2 Simple Hierarchical Grid

	24.5 Localized Grid Management
	24.5.1 Enabling Bi-Directional Job Flow
	24.5.2 True Peer-to-Peer Grid

	24.6 Resource Control and Access
	24.6.1 Controlling Resource Information
	24.6.2 Managing Resources with Grid Sandboxes

	24.7 Workload Submission and Control
	24.8 Reservations in the Grid
	24.9 Grid Usage Policies
	24.9.1 Grid Usage Policy Overview
	24.9.2 Peer Job Resource Limits
	24.9.3 Usage Limits via Peer Credentials
	24.9.4 Using General Policies in a Grid Environment

	24.10 Grid Scheduling Policies
	24.10.1 Peer-to-Peer Resource Affinity Overview
	24.10.2 Peer Allocation Policies
	24.10.3 Per-partition Scheduling

	24.11 Grid Credential Management
	24.11.1 Peer Credential Management Overview
	24.11.2 Peer Credential Mapping
	24.11.3 Source and Destination Side Credential Mapping
	24.11.4 Preventing User Space Collisions

	24.12 Grid Data Management
	24.12.1 Grid Data Management Overview
	24.12.2 Configuring Peer Data Staging
	24.12.3 Peer-to-Peer SCP Key Authentication
	24.12.4 Diagnostics

	24.13 Accounting and Allocation Management
	24.13.1 Peer-to-Peer Accounting Overview
	24.13.2 Peer-to-Peer Allocation Management

	24.14 Grid Security
	24.15 Grid Diagnostics and Validation
	24.15.1 Peer Management Overview
	24.15.2 Peer Diagnostic Overview

	Chapter 25: Data Staging
	25.1 Data Staging Example
	25.2 Data Staging Tasks
	25.2.1 Configuring the SSH Keys for the Data Staging Transfer Script
	25.2.2 Configuring Data Staging
	25.2.3 Staging Data to or from a Shared File System
	25.2.4 Staging Data to or from a Shared File System in a Grid
	25.2.5 Staging Data To or From a Compute Node
	25.2.6 Configuring Data Staging with Advanced Options

	25.3 Data Staging References
	25.3.1 Sample User Job Script

	Chapter 26: Using NUMA with Moab
	26.1 Using NUMA-Aware with Moab
	26.1.1 NUMA Process
	26.1.2 Installation and Configuration
	26.1.3 Moab and NUMA Resources
	26.1.4 Track Dedicated NUMA Resources

	26.2 Using NUMA-Support with Moab

	Appendix A: Moab Parameters
	Appendix B: Multi-OS Provisioning
	B.1 xCAT Plug-in Configuration Parameters
	B.2 Configuration Validation
	B.3 Deploying Images with Torque
	B.4 Installing Moab on the Management Node
	B.5 Integrating MSM and xCAT
	B.6 Moab Configuration File Example
	B.7 MSM Configuration
	B.8 MSM Installation
	B.9 Troubleshooting
	B.10 Verifying the Installation
	B.11 xCAT Configuration Requirements

	Appendix C: Event Dictionary
	C.1 Moab Event Dictionary

	Appendix D: Adjusting Default Limits
	Appendix E: Security
	E.1 Authentication (Interface Security)
	E.1.1 Mauth Authentication
	E.1.2 Munge Authentication
	E.1.3 Server Response Control
	E.1.4 Checksum Algorithm for Client Authentication
	E.1.5 Interface Development Notes

	E.2 Authorization
	E.2.1 Role Based Authorization Security Configuration

	E.3 Host Security for Compute Resources
	E.3.1 Minimal Host Security Enforcement
	E.3.2 Medium Host Security Enforcement
	E.3.3 Strict Host Security Enforcement

	E.4 Securing Sensitive Configuration Information

	Appendix F: Initial Moab Testing
	F.1 Scheduler Modes
	F.1.1 Normal Mode
	F.1.2 Monitor Mode (or Test Mode)
	F.1.3 Interactive Mode

	Appendix G: Integrating Other Resources with Moab
	G.1 Compute Resource Managers
	G.1.1 Moab-Torque Integration Guide

	G.2 Hardware Integration
	G.2.1 Moab-NUMA-Support Integration Guide

	G.3 Torque/PBS Integration Guide - RM Access Control
	G.3.1 Server Configuration
	G.3.2 (Optional) MOM Configuration

	G.4 Torque/PBS Config - Default Queue Settings
	G.4.1 Default Queue
	G.4.2 Queue Default Node and Walltime Attributes
	G.4.3 System-Wide Default Node and Walltime Attributes

	G.5 Provisioning Resource Managers
	G.5.1 Validating an xCAT Installation for Use with Moab

	Appendix H: Interfacing with Moab (APIs)
	H.1 Accounting Interfaces
	H.2 Grid Interfaces
	H.2.1 Services Utilized
	H.2.2 Services Provided

	H.3 Identity and Credential Management Interfaces
	H.4 Job Submission and Management Interface
	H.5 Query and Control APIs
	H.5.1 CLI (Command Line Interface) XML API

	H.6 Resource Management Interfaces

	Appendix I: Considerations for Large Clusters
	I.1 Handling Large Jobs
	I.2 Handling Large Numbers of Jobs
	I.2.1 Set a Minimum RMPOLLINTERVAL
	I.2.2 Reduce Command Processing Time
	I.2.3 Minimize Job Processing Time
	I.2.4 Load All Non-Completed Jobs at Startup
	I.2.5 Reducing Job Start Time
	I.2.6 Reducing Job Reservation Creation Time
	I.2.7 Optimizing Backfill Time
	I.2.8 Constraining Moab Logging - LOGLEVEL
	I.2.9 Preemption
	I.2.10 Handling Transient Resource Manager Failures
	I.2.11 Constrain the Number of Jobs Preempted Per Iteration
	I.2.12 Scheduler Settings
	I.2.13 Configure Torque for Large Job Numbers

	I.3 Handling Large Numbers of Nodes
	I.4 Handling Large SMP Systems
	I.5 Resource Manager Scaling
	I.6 Server Sizing

	Appendix J: Configuring Moab as a Service
	J.1 Moab Grid Scheduler Service Script
	J.2 Moab Workload Manager Service Scripts

	Appendix K: Migrating from Maui 3.2
	K.1 Migrating from Maui to Moab
	K.2 Other Notes
	K.2.1 File Naming
	K.2.2 Statistics and Checkpointing
	K.2.3 Verify Configuration File Compatibility
	K.2.4 Environment Variables

	K.3 Running Maui and Moab Side-By-Side

	Appendix L: Node Allocation Plug-in Developer Kit
	L.1 Moab Configuration
	L.1.1 Moab.cfg
	L.1.2 Syntax Rules
	L.1.3 Troubleshooting

	L.2 Writing the Plug-In
	L.2.1 Node Allocation Plug-in
	L.2.2 API and Data Structures

	Appendix M: Scalable Systems Software Specification
	M.1 Scalable Systems Software Job Object Specification
	 Status of this Memo
	 Abstract
	 Table of Contents
	 1.0 Introduction
	 2.0 Conventions Used in this Document
	 3.0 The Job Model
	 4.0 JobGroup Element
	 5.0 Job and JobDefaults Element
	 6.0 TaskGroup and TaskGroupDefaults Element
	 7.0 Task and TaskDefaults Element
	 8.0 Property Categories
	 9.0 AwarenessPolicy Attribute
	 10.0 References
	 11.0 Units of Measure Abbreviations

	M.2 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
	 Status of this Memo
	 Abstract
	 Table of Contents
	 1.0 Introduction
	 2.0 Conventions Used in this Document
	 3.0 Encoding
	 4.0 Error Reporting
	 5.0 References

	M.3 Scalable Systems Software Node Object Specification
	 Status of this Memo
	 Abstract
	 Table of Contents
	 1.0 Introduction
	 2.0 Conventions Used in this Document
	 3.0 The Node Model
	 4.0 Node Element
	 5.0 Units of Measure Abbreviations

	M.4 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol
	 Status of this Memo
	 Abstract
	 Table of Contents
	 1.0 Introduction
	 2.0 Conventions Used in this Document
	 3.0 Encoding
	 4.0 Transport Layer
	 5.0 Framing
	 6.0 Asynchrony
	 7.0 Security
	 8.0 References

	Appendix N: Moab Resource Manager Language Interface Overview
	N.1 Moab RM Language Socket Protocol Description
	N.1.1 RM Language Overview
	N.1.2 Checksum Algorithm ('C' Version)
	N.1.3 Header Creation (PERL Code)
	N.1.4 Header Processing (PERL Code)

	N.2 Moab Resource Manager Language Data Format
	N.2.1 Query Resources Data Format
	N.2.2 Query Workload Data Format

	Appendix O: SCHEDCFG Flags

