Moab Workload Manager
Administrator Guide 10.0.0

March 2023

&
Adaptive

COMPUTING

© 2018, 2023 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is
strictly prohibited without prior written consent from Adaptive Computing Enterprises, Inc.

This documentation and related software are provided under a license agreement
containing restrictions on use and disclosure and are protected by intellectual property
laws. Except as expressly permitted in your license agreement or allowed by law, you may
not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability,
is prohibited.

This documentation and related software may provide access to or information about
content, products, and services from third-parties. Adaptive Computing is not responsible
for and expressly disclaims all warranties of any kind with respect to third-party content,
products, and services unless otherwise set forth in an applicable agreement between you
and Adaptive Computing. Adaptive Computing will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services,
except as set forth in an applicable agreement between you and Adaptive Computing.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint,
Moab Cluster Manager, Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab
Access Portal, NODUS Cloud OS™, On-Demand Data Center™, and other Adaptive
Computing products are either registered trademarks or trademarks of Adaptive
Computing Enterprises, Inc. The Adaptive Computing logo and the Cluster Resources logo
are trademarks of Adaptive Computing Enterprises, Inc. All other company and product
names may be trademarks of their respective companies.

Adaptive Computing Enterprises, Inc.
1100 5th Avenue South, Suite #201
Naples, FL 34102

+1 (239) 330-6093
www.adaptivecomputing.com

https://www.adaptivecomputing.com/

Chapter 1: Moab Workload Manager OVerview 23
Chapter 2: Philosophy And Goals Of Moab Workload Manager, 24
2.1 Value Of A Batch System . 25
2. Traffic CONIIOl L 25
2.1, 2 MiSSION POlCIES ... 25
2.1, 8 OptimizZatioNs il 26

2.2 Philosophy And GOals 26
2.2 1Management GOalS 26
2.2.2 Administration Goals ...l 27

2. 2. 3 End User Goals . il 27

2.3 WoorKIoad . 27
2.3. 1 Batch Workload 28
2.3.21Interactive Workload 28
2.3.3 Calendar Workloadl 28
2.3.4 Service Workload ..l 29
Chapter 3: Scheduler Basics L 30
3.1 Initial Moab Configuration 31
3.2 Layout Of Scheduler COMPONENES 32
3.2.1 Layout Of Scheduler Components 32
3.2.2 Layout Of Scheduler Components With Integrated Database 34

3.3 Scheduling ENnVironment ... 35
3 3. J0DS L 35
3.3 2 NOUES il 38
3.3.3 Advance Reservations iiiiiiiiiil.. 38
3.3.4 POliCIES . 38
3.3 B RESOUICES 39
3.3.6 Class (Or QUEBU) . il 40
3.3.7 Resource Manager (RM) ..o 41

3.4 Scheduling DiCtioNary o 42
3.5 Scheduling Iterations And Job Flow .. 52
3.5.1 Scheduling terations 52
3.5.2 Detailed Job FIOW 53

3.6 Configuring The Scheduler 54
3.6.1 Adjusting Server Behavior 55

3.7 Credential OvervieW . 58

3.7.1 General Credential AttribUtes ... 59

3.7.2User Credential ... il 65
3.7.3 Group Credential o 66
3.7.4 Account (or Project) Credential 67
3.7.5Class (orQueue) Credential 67
3.7.6 Q0S Credential . il 89

3.8 JOb Flags .. . 90
Chapter 4: Scheduler Commands 98
4.1 Moab Command OVEIVIEW 99
4.1.1 Moab CommMaNds ...l 99
4.1.2 Moab Command OptioNS ... 101
4.1.3 Commands Providing Maui Compatibility 102
4.2 Status ComMMaNAS .l 102
4.3 Job Management Commands 103
4.4 Reservation Management Commands 104
4.5 Policy/Configuration Management Commands 105
4.6 End-User Commands 105
4.7 Moab ComMMaNGs .. il 106
A 7.1 CNECK 0D 106
4.7.2 CheCknNOde 118
A7 3 MCredCtl il 123
AT AMAIAG ... 127
A7 S MAIag 8 il 132
A7 B Mg D . . 133
A7 7 MAIag -C .l 133
A7 B MAIag - il 137
AT O MAIAG T - .o 139
A7 A0 MAIag N . 141

AT A A A P - 147
AT A2MAIAG O oo 150
A7 A3 M A T il 151
A7 A MAIag R . 155

A 7 A MAIag =S . 156
A7 16 MAiag - il 157

A7 AT MAIag 158
A7 A MAIag T il 159
A7 A MAIag U . 161
47,20 MIODC - . 162

4.7, 21 MNOAECH . 179

A7 23 MGl il 186
A7 24 ISV Ol . 190
47,26 MSCREACtl . 216
A7 2T VS NOW il 225
A.7.28 MSNOW -8 - 227
4.7.29 Mshow -a (mshow In A Hosting Environment) 237
A7, 80 MSUD il 239
4.7.31 Mvcctl (Moab Virtual Container Control) e 268
47,32 SNOWDT . 273
A7 83 SNOW il 277
4.7.34 Showhist.moab. Pl .. 287
47,35 SNOWIES il 291
47,36 SNOWS At il 297
4.7, 37 Showstate ...l 301
47,38 SNOWS atS il 302
4.7.39 Showstats —f .. 315
4.7.40 Deprecated Commands L 318
Chapter 5: Prioritizing Jobs And Allocating Resources 334
5.1 Job Prionitization 335
5. A PHOMtY OVEIVIEW . . 335

5.1, 2 J0b Priority Factors .. L 336
5.1.3 Fairshare Job Priority Example 348
5.1.4 Common Priority USAQge 349
5.1.5 Prioritization Strategies 352
5.1.6 Manual Job Priority Adjustment . . 353

5.2 Node Allocation PoliCies 354
5.2.1 Node Allocation OVerview ...l 354
5.2.2 Node Selection Factors 358
5.2.3 Resource-Based Algorithms . L 358
5.2.4 User-Defined Algorithms .. 364
5.2.5 Specifying Per Job Resource Preferences 365

5.3 NOde ACCESS POIICIES ... 366
5.3.1 Node Access Policy DescCriptions 366
5.3.2 Configuring Node ACCess PoOliCIeS 367

5.4 Node Availability PoliCies L 368
5.4.1 Node Resource Availability PoliCies 369
5.4.2Node Categorization 370

5.4.3 Node Failure/Performance Based Notification 372

5.4.4 Node Failure/Performance Based THQQers e 372

5.4.5Handling Transient Node Failures 373
5.4.6 Allocated Resource Failure Policy ForJobs 374
Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management 377
6.1 Fairmness OVerVieW il 378
6.1.1 Fairmess Facilities ... 378
6.1.2 Selecting The Correct Policy Approach 381

6.2 Usage Limits/Throttling PoliCies 382
6.2.1 Faimess Via Throttling Policies 382
6.2.2 Override Limits ... 394
6.2.3 Idle JOb Limits .. 395
6.2.4 Hard And Soft Limits 397
6.2.5 Per-partition Limits .. 398
6.2.6 Usage-based Limits .. 399

6.3 FairsShare il 402
6.3.1 Fairshare Parameters 403
6.3.2 Using Fairshare Information 407
6.3.3 Hierarchical Fairshare/Share Treesl 413

6.4 Sample FairShare Data File 418
6.5 Accounting, Charging, And Allocation Management 419
6.5.1 Accounting Manager OVeIVIEW 419
6.5.2 Accounting MO . .. 420
6.5.3 Accounting Manager Interface Types 421
6.5.4 Charging For JODS ..o 424
6.5.5 Charging For Reservations 425
6.5.6 Accounting Properties Reported To The AccountingManager oo ..i....... 426
B.5.7 ACCOUNTING StagES 431
6.5.8 Accounting EVeNnts . 434
6.5.9 Blocking Versus Non-Blocking Accounting Actions 434
6.5.10 Retrying Failed Charges 435

6.6 AMCFG Parameters And Flags ...l 438
6.6.1 AMCFG Parameters .. il 438
B.6.2 AMCF G Flags 461

Chapter 7: Controlling Resource Access - Reservations, Partitions, And QoS Facilities 462

7.1 Advance Reservations L 463
7. 1.1 Reservation OVervieW .. 463
7.1.2 Administrative Reservations 469
7.1.3 Standing Reservations 471

7.1.4 Reservation PoliCies 471

7.1.5 Configuring And Managing Reservations L 476

7.1.6 Personal/User Reservations - Enabling Reservations ForEndUsers 516

7.2 ParitiONS il 519
7. 2.1 Partition OVerVieW . L 520
7.2.2 Defining Partitions .. 521
7.2.3 Managing Partition ACCESS 521
7.2.4 Requesting Partitions 523
7.2, 5 Per-Partition Settings o 523
7.2.6 Miscellaneous Partition Issues ... 524

7.3 Quality Of Service (QoS) Facilities 525
7.3.1 Q08 OVeIVIEW il 525
7.3.2Q0S Enabled Privileges L 526
7.3.3 Managing QoS ACCESS ... il 534
7.3.4 Requesting QoS Services At Job Submission 535
7.3.5 Restricting Access To Special Attributes . .. 536
Chapter 8: Optimizing Scheduling Behavior — Backfill And Node Sets_...._................._. 537
8.1 Optimization OVerViEeW L 537
8.2 Backiill il 538
8.2.1 Backfill OVeIVIEeW . . 538
8.2.2 Backfill Algorithms ...l 540
8.2.3 Configuring Backfill L 542

8.3 Node Set OVervieW il 545
8.3.1 Node Set Usage OVerview .l 545
8.3.2 Node Set Configuration Examples 546
8.3.3 Requesting Node Sets For Job Submission 552
8.3.4 Configuring Node Sets FOr ClasSes 552
Chapter 9: Evaluating System Performance - Statistics, Profiling And Testing 554
9.1 Moab Performance Evaluation Overview 554
9.2 Accounting: Job And System Statistics 554
9.2.1 Accounting OVerVieW il 555
9.2.2 Real-Time StatistiCs il 556

9.3 Testing New Versions And Configurations L 557
9.3. 1 MONITOR MOGE ... 557
9.3.2INTERACTIVE MOTE e 558
Chapter 10: General Job Administration 559
10,1 JOb HOIAS oo L 560
10.1.1 Holds And Deferred Jobs 560

10.1.3 Sy stem HOlAS ..o L 560

10.1.4 Batch HOIAS .o . 561
10.1.5 J0b Defer il 561
10.2 Job Priority Management 562
10.3 Suspend/Resume Handling ...l 562
10.4 Checkpoint/Restart Facilities 563
10.5 JOb DePenNdenCIes ... 564
10.5.1 Basic Job Dependency SUPPOIt ... o o 564
10.5.2 Job Dependency Syntax ... 565
10.6 Job Defaults And Per Job Limits 567
10.6.1 Job Defaulls . il 567
10.6.2 Per Job Maximum Limits .. L 567
10.6.3 Per Job Minimum Limits 568
10.7 General JOb PoliCies il 568
10.7.1 Multi-NoOde SUPPOM .. 568
10.7.2 MURI-REQ SUPPOI . 568
10.7.3 Malleable Job SUPPOM . o L 569
10.7.4 Enabling Job User ProXyY ... L 569
10.8 Using A Local QUEUE 570
10.9 Job Deadlines il 573
10.9.1 Deadline OvervieW ... 574
10.9.2 Setting Job Deadlines Via QoS L 574
10.9.3Job Termination Date 575
10.9.4 Conflict PoliCies ... 576
10.10 JOD AITaY S L 576
10.10.1 Job Array OVerVieW il 577
10.10. 2 Enabling JOb Armay s ... oL 577
10.10.3 Subjob DefiNitioNS ... L 577
10.10.4 Using Environment Variables To Specify Array Index Values 578
10.10.5Job Array Cancellation PoliCies 580
10.10.6 Minimizing The Impact Of Very Large Job Arrays 581
10.10.7 EXAMPIES il 584
Chapter 11: General Node Administration 586
11.1 Node Attribute TYPES .. L 587
11.1.1 Resource Manager Specified 'Opaque’ Attributes 587
11.1.2 Scheduler Specified Default Node Attributes 588
11.1.3 Scheduler Specified Node Attributes 588
11,2 Node LoCation . il 588

1. 2. PartitiONS o 589

112 2 RACKS .o 589

11, 2. 3 QUEBUES il 589

11, 2.4 Node SeleCtion .. 590
11,3 Node At DULES L 592
11.3.1 Configurable Node Attributes 592
11.3.2 Node Features/Node Properties L 601
11.4 Node SpecCific POlCIES 602
11.4.1 Node Usage/Throttling PoliCies oo 602
11.4.2 Node Access POliCIeS 604
11.5 Managing Shared Cluster Resources (Floating Resources) 605
11.5.1 Shared Cluster Resource OVerview .. il 605
11.5.2 Configuring Generic Consumable Floating Resources 606
11.5.3 Configuring Cluster File Systems ... 606
11.5.4 Configuring Cluster LiCeNSes 607
11.5.5 Configuring Generic Resources As Features 607
11.5.6 Configuring Generic Resources As LICENSES L 609
11.6 Managing Node State L 609
11.6.1 Node State Definitions . .. 610
11.6.2 Specifying Node States Within Native Resource Managers oiiiiiiiiiiiiiiiaai... 611
11.6.3 Moab Based Node State Adjustment 611
11.6.4 Adjusting Scheduling Behavior Based On Reported Node State 611
11.6.5 Adding Or Removing NOQES ... 611
11.7 Managing Consumable Generic Resourcesl 612
11.7.1 Differences Between Node Features And Consumable Resources 613
11.7.2 Configuring Node-locked Consumable Generic Resources iiiiiiiiiiiaaao. 613
11.7.3 Managing Generic Resource Race Conditions 615
11.8 Enabling Generic MetriCso L 616
11.8.1 Configuring Generic MetriCs 616
11.8.2 Example Generic Metric Usage 618
11.9 Enabling Generic EVeNtS . 619
11.9.1 Configuring Generic Events .. 620
11.9.2 Reporting Generic EVENtS ... L 623
11.9.3 Generic Events AttribUtes ... L 624
11.9.4 Manually Creating Generic Events 624
Chapter 12: Resource Managers And Interfaces 625
12.1 Resource Manager OVervieW ... 627
12.1.1 Scheduler/Resource Manager Interactions L 628
12.1.2 Resource Manager Specific Details (Limitations/Special Features) 629

12.1.3 Synchronizing Conflicting Information 629

10

12.1.4 Evaluating Resource Manager Availability And Performance 630

12.2 Resource Manager Configuration 630
12.2.1 Defining And Configuring Resource Manager Interfaces 630
12.2.2 Resource Manager Configuration Details 656
12.2.3 Scheduler/Resource Manager Interactions 661

12.3 Resource Manager EXteNSIONS 662
12.3.1 Resource Manager Extension Specification 662
12.3.2 Resource Manager Extension Values 663
12.3.3 Resource Manager Extension EXxamples 690
12.3.4 Configuring Dynamic Features In Torque AndMoab 691

12.4 Adding New Resource Manager Interfaces i 692
12.4.1 Resource Manager Specific Interfaces 692
12.4 2 WiKi Interface il 692
12.4.3 SSS Interface 692

12.5 Managing Resources Directly With The Native Interface 693
12.5.1 Native Interface Overview .. il 693
12.5.2 Configuring The Native Interface 694
12.5.3 Generating Cluster Query Data 695
12.5.4 Interfacing With FlexNet (Formerly FLEXIM) ... e 696
12.5. 5 Interfacing To NaGIOS ... 697
12.5.6 Configuring Resource TYPesS ...l 698
12.5.7 Creating New Tools To Manage The Cluster 699

12.6 Utilizing Multiple Resource Managers L 704
12.6.1 MUlti-RM OVerViewW il 704
12.6.2 Configuring Multiple Independent Resource Manager Partitions 705
12.6.3 Migrating Jobs Between Resource Managers 705
12.6.4 Aggregating Information Into A Cohesive Node View 705

12.7 License Management 706
12.7.1 License Management OVerview 707
12.7.2 Controlling And Monitoring License Availability 707
12.7.3 Requesting Licenses Within JObs 708

12.8 ResoUrce ProVisSiONINg ... 709
12.8.1 Resource Provisioning OVerVIeW e 710
12.8.2 Configuring Provisioning 710

12.9 Managing NetwWorks ..o oo L 710
12.9.1 Network Management OVervieW . 711
12.9.2 Dynamic VLAN Creation .. . 711
12.9.3 Network Load And Health Monitoring 712
12.9.4 Creating A Resource Management Interface For ANew Network _______.......................... 712
12.9.5 Per-Job Network Monitoring 713

12.10 Intelligent Platform Management Interface 714

12,101 IPMI OVeIVIEW . 714
12.10.2 Node IPMI Configuration L 714
12.10.3 Installing IPMIt0Ol . 715
12.10.4 [Optional] Creating The IPMI BMC-Node Map File 715
12.10.5 Configuring The Moab IPMI TOOIS 716
12.10.6 Configuring Moab 716
12.10.7 ENsUNg Proper SetUpD ... oo 717
12.11 Resource Manager Translation ... 717
12.11.1 Translation OVerview . 717
12.11.2 Translation Enablement Steps 718
Chapter 13: Troubleshooting And System Maintenance 719
13.1 Internal Diagnostics/Diagnosing System Behavior And Problems 720
13.1.1 The Mdiag Command 720
13.1.2 Other Diagnostic Commands 722
13.1.3 Using Moab Logs For Troubleshooting L 722
13.1.4 Automating Recovery Actions After A Failure 722
13.2 Logaing OVerViEW oo 723
13.2.1 Log Facility Configuration 724
13.2.2 Standard Log Format ... il 725
13.2.3 Searching Moab LOGS L 726
1324 BEVENELOGS . ..o 726
13.2. 5 ENabling Sy sl0g . il 729
13.2.6 Managing VerbOSItY 729
13.3 ObjeCt MeSSagES . . . 730
13.3.1 Object Message OVEIVIEW L 730
13.3.2 VIieWiNg MESSAQESl 730
13.3.3 Creating MesSSages o L 731
13.4 Notifying Administrators Of Failures L 731
13.4.1 Enabling Administrator Email 732
13.4.2 Handling Events With The Notification Routine 732
13.5 Issues With Client Commands ...l 733
13.5.1 Client OVervieW . 734
13.5.2 Diagnosing Client Problems .. 734
13.6 Tracking System Failures 735
13.6.1 System Failures ... 735
13.6. 2 Internal ErrOrS . il 736
13.6.3 Reporting Failures . .. 737
13.7 Problems With Individual JObsl 737

11

12

13.8 DIagnOstiC SCMPLS 738

13.8.1 SUPPO-Aiag. PY - ... 738
13.8. 2 SUPPOIt. Aiag. Pl oL 740
Chapter 14: Improving User Effectiveness 742
14.1 UserFeedback LOOPS 742
14.1.1 Improving Job Size/Duration Requests L 743
14.1.2 Improving Resource Requirement Specification 743
14.2 User Level Statistics ...l 743
14.3 Enhancing Wallclock Limit Estimates 744
14.4 Job Start Time Estimates 744
T4 4. EXaMPIE . 744
14.4. 2 Estimation TYPeS ... 745
14.5 Providing Resource Availability Information 746
14.6 Collecting Performance Information On Individual Jobs 746
Chapter 15: Cluster Analysis And Testing 747
15.1 Testing New Releases And PoliCies 747
15.1.1 Moab Evaluation Modes 748
15.1.2 Testing New Releases 749
15.1.3 Testing New PoliCies L 750
15.1.4 Moab Side-by-Side il 751
15.2 Testing New Middleware .. 752
15.2.1 Analysis ASPeCtS il 752
15.2.2 General ANalYSIS 754
15.2.3 Native Mode Analy SIS . 754
15.3 Workload Event Format 755
15.3.1 Workload Event Record Format 755
15.3.2 Reservation Event Records 764
15.3.3 Recording JOb EVeNts L 765
Chapter 16: Green CompPUtiNg 767
16.1 Green Computing Methods ... L 768
16.1.1 Moab Edition Green Features . .. 768
16.1.2 Moab Power Management Methods 769
16.1.3 Theory Of Operation 771
16.1.4 Active Node Power Management . .. 777
16.1.51dle Node Power Management 780
16.1.6 Green Policy Configuration 781
16.2 Deploying Adaptive Computing IPMI Scripts 781
16. 2.1 PrereqUISIteS .. 781

16.2.2 To Deploy The Adaptive Computing IPMI Scripts ... oo . 782

16.3 Choosing Which Nodes Moab Powers On Or Off __ 783
16.4 Enabling Green CompuUting oo 784
16.5 Adjusting Green Pool Size 787
16.6 Handling Power-Related Events L 788
16.7 Maximizing Scheduling EffiCienCy 788
16.8 Putting Idle Nodes In Power-Saving States 789
16.9 Troubleshooting Green COMPULING 790
Chapter 17: Elastic Computing OVerview 793
17.1 About Elastic CompuUting ... o o 795
17.2 Configuring Elastic CompuUting 796
17.2.1 To Configure Elastic Computing 796
17.2.2 Sample Moab.cfg File EXCerpt L 799
17.3 ElastiC THQQOr . L 799
17.4 Integration With A Private OpenStack Cloud 800
17.4.1 Configuring Moab To Talk To OpenStack Integration Scripts 800
7.4, 2 N erification ... iiiiiiiiiiiiill. 801
17.4. 3 TroubleshOOting 802
17.5 Dynamic NOQES .. 802
17.5.1 Dynamic Node Parameters . il 803
17.5.2 Dynamic Node EVeNnts .. 803
17.5.3 Configuring Dynamic NOGeS L 804
17.6 Viewing Node And Trigger Information 806
17.6.1 Mdiag -N -V XMl 806
17,8, 2 MAIag T il 807
17.6.3 Checknode -v <node Name> .. 807
17.7 Usage PoOlICIES 808
17.7.1 Available PoliCies 809
17,7 2 POlICY VIS L 809
Chapter 18: Object Triggerso 810
18.1 AboUt ObJeCt THQQEIS 811
18.2 Object Trigger Tasks 812
18.2.1 Creating A TrigQer . 812
18.2.2Using A Trigger To Send Email ... 815
18.2.3 Using A Trigger To Execute A Script ... L 816
18.2.4 Using A Trigger To Perform Internal Moab Actions 817
18.2.5 Requiring An Object Threshold For Trigger Execution 817
18.2.6 Enabling JOb Triggers L 818

18.2.7 Modifying A TriQOET .o 818

14

18.2.8 ViIieWing A THQOET . .o 820

18.2.9 Checkpointing A TrigQer . .. 820
18.3 Object Trigger ReferenCe .. . o L 821
18.3. 1 J0D TGO S 821
18.3. 2 NOde THQQOIS .. 823
18.3.3Reservation THQQEIS 824
18.3.4 Resource Manager TrigQers 826
18.3.5 SchedUler THQOEIS ... 827
18.3.6 Threshold TrigQers .. o e 829
18.3.7 Trigger CompPONENtS ... 830
18.3.8 Trigger EXit COUeS o 838
18.3.9 Node Maintenance ExXample 839
18.3.10 Environment Creation EXamiple 840
18.4 About Trigger Vaniableso L 842
18.4.1 Trigger Variable TasKs 842
18.5 Generic System Job Trigger Requirements L 846
18.5.1 Trigger Variable Reference 846
Chapter 19: Miscellaneous 851
19.1 User Feedback OVerview il 851
19.2 Enabling High Availability Features 853
19.2.1 High Availability Overview ... 853
19.2.2 Configuring High Availability On A Networked File System 854
19.2.3 Confirming High Availability On A Networked File System 855
19.2.4 Other High Availability Configuration 855
19.3 Malleable JObs 856
19.4 Identity Managers 856
19.4.1 Identity Manager OVEIVIEW 857
19.4.2 Basic Configuration 857
19.4.3 Importing Credential Fairness PoliCies 860
19.4.4 Identity Manager Data Format . 860
19.4.5 Identity Manager Conflicts 861
19.4.6 Refreshing Identity Manager Data 861
19.5 Generic System JObS . L 862
19.5.1 Creating A Generic System Job 862
19.5.2 Workflows Using Job Template Dependencies 863
Chapter 20: Database Configuration 865
20,1 SQLIt e .. 866
20.2 Connecting To A MySQL Database With An ODBC Driver 866
20.3 Connecting To A PostgreSQL Database With An ODBC Drivero 869

20.4 Connecting To An Oracle Database With An ODBC Driver 872

20.4.1 Installing The Oracle Instant Client 879
20.5 Migrating Your Database To Newer Versions Of Moab 882
20.5.1 Migrate From Moab 9.1 ToMoab 10.0 L 882
20.5.2 Migrate From Moab 9.0 To Moab 0.1 ... 883
20.5.3 Migrate From Moab 8.1 TOMO0ab 9.0 e 883
20.5.4 Migrate From Moab 8.0 To Moab 8.1 ... 883
20.5.5 Migrate From Moab 7.5 ToMoab 8.0 884
20.5.6 Migrate From Moab 7.2.6-7.2.10 ToMoab 7.5 884
20.5.7 Migrate From Moab 7.2.0-7.2.5 ToMoab 7.2.6 885
20.6 Importing Statistics From Stats/DAY.* To The Moab Database 885
Chapter 21: Accelerators L 886
21,1 Scheduling GPUS 886
21.1.1 Deploying And Configuring GPUS 887
21.1.2 Using GPUs With Minimal Configuration 888
21.2 Using GPUs With NUM A 888
21,3 NVIDIA GPUS il 890
21. 3.1 Using NVIDIA GPUS . 890
21.3.2 Package Installation/Upgrade 891
21.3.3 Torque Configuration 892
21.3.4 GPU Modes For NVIDIA 260.x Driver .. 893
21.3.5 GPU Modes For NVIDIA 270.X Driver e 893
21.3.6 GPU_STatUS ... 893
21.3.7 Enabling Persistence MOde 894
21.3.8 Requesting GPUs And Setting GPU Mode 894
21,4 GPU MetNiCS il 895
21.5 Intel® Xeon Phi™ Coprocessor Configuration 897
21.5.1 Intel Many-Integrated Cores (MIC) Architecture Configuration_........... 898
21.5.2 Validating The Configuration 899
21.5.3 J0b SUBMISSION . 900
21.6 Intel® Xeon Phi™ Co-processor MEetriCS 902
Chapter 22: Preemption . L 904
221 Preemption Tasks ... 905
22.1.1 Canceling Jobs With Preemption L 905
22.1.2 Checkpointing Jobs With Preemption 909
22.1.3 Requeuing Jobs With Preemption 910
22.1.4 Suspending Jobs With Preemption 913
22.1.5Using Owner Preemption 917

22.1.6 Using QOS Preemption ... L 920

22,2 Preemption ReferenCe ... L 922

22.2.1 Manual Preemption Commands ... L 922
22,2, 2 Preemption Flags oL 923
22.2.3PREEMPTPOLICY TYPES ... e e e e 924
22.2.4 Simple Example Of Preemption 925
22.2.5 Testing And Troubleshooting Preemption 929
Chapter 23: About Job Templates 932
23.1 Job Template TasKs ... 933
23.1.1 Creating Job Templates 933
23.1.2 Viewing Job Templates 934
23.1.3 Applying Templates Based On Job Attributes 934
23.1.4 Requesting Job Templates Directly 935
23.1.5 Creating Workflows With Job Templates o . 936
23.2 Job Template ReferenCe 937
23.2.1 Job Template Extension Attributes 937
23.2.2 Job Template Matching Attributes ...l 950
23.2.3 Job Template EXamples 951
23.2.4 Job Template Workflow EXamples 952
Chapter 24: Moab Workload Manager For Grids 954
241 Grid BasiCs ..l 956
24 1.1 Grid OVEIVIEW . . . oo 956
241, 2 Grid Benefits il 956
24.1.3 Management-Scalability 957
24.1.4 ReSOUICE ACCESS il 957
24.1.5Load-BalancCing 958
24.1.6 Single System Image (SSI) ...l 958

24 1.7 High Availability .. 959
24.1.8 Grid Relationships oo L 959
24.1.9 Submitting Jobs To The Grid 964
24.1.10 Viewing Jobs ANd ReSOUICes L 965
24.2 Grid Configuration BasiCSs 966
24.2.1 Peer Configuration OVervieW ... 966
24.2 .2 Initial Configuration ... 966
24.3 Centralized Grid Management (Moab Grid Control / Moab Grid Member) 967
24.3.1 Moab Grid Control Configuration 967
24.3.2 Moab Grid Member Configuration 968
24.4 Hierarchical Grid Management L 968
24.4.1 Configuring A Peer Server (SOUICE) 968

24.4.2 Simple Hierarchical Grid 969

24.5 Localized Grid Management . . . 970

24.5.1 Enabling Bi-Directional Job Flow 970
24.5.2 True Peer-to-Peer Grid 971
24.6 Resource Control ANd ACCeSS ... il 971
24.6.1 Controlling Resource Information 972
24.6.2 Managing Resources With Grid Sandboxes 974
24.7 Workload Submission And Control 976
24.8 Reservations In The Grid 976
24.9 GridUsage PoliCies ... 977
24.9.1 Grid Usage Policy OVerview ... il 977
24.9.2 Peer Job Resource Limits 978
24.9.3 Usage Limits Via Peer Credentials 978
24.9.4 Using General Policies In A Grid Environment ... 979
24.10 Grid Scheduling PoliCIES 980
24.10.1 Peer-to-Peer Resource Affinity Overview 980
24.10.2 Peer Allocation PoliCies 981
24.10.3 Per-partition Scheduling 981
24.11 Grid Credential Management 982
24.11.1 Peer Credential Management OVerview 982
24.11.2 Peer Credential Mapping L 982
24.11.3 Source And Destination Side Credential Mapping 984
24.11.4 Preventing User Space ColliSioNs o e 984
24.12 Grid Data Management ... L 984
24.12.1 Grid Data Management OVEIVIEW 985
24.12.2 Configuring Peer Data Stagingo o i 985
24.12.3 Peer-to-Peer SCP Key Authentication 987
24.12.4 DiagnOStiCS o 988
24.13 Accounting And Allocation Managementl 990
24.13.1 Peer-to-Peer Accounting Overview .. il 990
24.13.2 Peer-to-Peer Allocation Management _ .. 991
2414 Grid SeCUNMY .. 992
24.15 Grid Diagnostics And Validation L 992
24.15.1 Peer Management OVerVieW ... L 992
24.15.2 Peer Diagnostic OVerview .. 992
Chapter 25: Data Staging o o 993
25.1 Data Staging Example ...l 993
25.2 Data Staging Tasks ... oo 995
25.2.1 Configuring The SSH Keys For The Data Staging Transfer Script 995
25.2.2 Configuring Data Staging 998

17

25.2.3 Staging Data To Or From A Shared File System 1000

25.2.4 Staging Data To Or From A Shared File System InA Grid 1005

25.2.5 Staging Data To Or From A Compute Node 1011

25.2.6 Configuring Data Staging With Advanced Options 1016

25.3 Data Staging References .. il 1019
25.3.1 Sample User Job Seript ... oo 1019
Chapter 26: Using NUMA With Moab 1021
26.1 Using NUMA-Aware With Moab L 1021
26. 1. T NUMA ProCess ... 1022

26.1.2 Installation And Configuration 1023

26.1.3 Moab And NUMA ReSOUICES 1023

26.1.4 Track Dedicated NUMA ReSOUIrCeS 1024

26.2 Using NUMA-Support With Moab ... e 1025
Appendix A: Moab Parameters 1026
Appendix B: Multi-OS Provisioning 1190
B.1 XCAT Plug-in Configuration Parameters 1191

B.2 Configuration Validation L 1198

B.3 Deploying Images With Torque L 1199

B.4 Installing Moab On The Management NOde 1199

B.5 Integrating MSM And XC AT . 1200

B.6 Moab Configuration File Example 1201

B.7 MSM ConfigUration ... 1202

B.8 MSOM INStallation ... L 1202

B.O Troubleshooting L 1203

B.10 Verifying The Installation 1203

B.11 XCAT Configuration Requirements 1206
Appendix C: Event Dictionary 1207
C.1 Moab Event Dictionary 1207
Appendix D: Adjusting Default Limits 1360
AppendixX E: SeCUNI Y ... L 1366
E.1 Authentication (Interface SeCUNtY) ... 1366

E.1.1 Mauth Authentication .. il 1367

E.1.2 Munge AuthentiCation 1370

E.1.3 Server Response Control ... 1371

E.1.4 Checksum Algorithm For Client Authentication 1371

E.1.5 Interface Development Notes 1371

E.2 AULNON Zation ... 1371

E.2.1 Role Based Authorization Security Configuration 1372
E.3 Host Security For Compute RESOUICES 1375
E.3.1 Minimal Host Security Enforcement .. 1375
E.3.2 Medium Host Security Enforcement 1375
E.3.3 Strict Host Security Enforcement 1376
E.4 Securing Sensitive Configuration Information 1376
Appendix F: Initial Moab Testing 1377
F.1 Scheduler Modes .. il 1377
F A ANOMal MOAE 1377
F.1.2 Monitor Mode (0or Test Mode) 1377

F. 1.3 Interactive Mode ... 1379
Appendix G: Integrating Other Resources WithMoab 1380
G.1 Compute Resource Managers L 1380
G.1.1 Moab-Torque Integration GUIde 1380
G.2 Hardware Integration 1384
G.2.1 Moab-NUMA-Support Integration Guidel 1384
G.3 Torque/PBS Integration Guide - RM Access Control 1389
G.3.1 Server Configuration ... 1389
G.3.2 (Optional) MOM Configuration 1389
G.4 Torque/PBS Config - Default Queue Settings 1390
G4 1 Default QUEUE 1390
G.4.2 Queue Default Node And Walltime Attributes 1390
G.4.3 System-Wide Default Node And Walltime Attributes 1390
G.5 Provisioning Resource Managers 1391
G.5.1 Validating An XCAT Installation For Use WithMoab 1391
Appendix H: Interfacing With Moab (APIS) 1394
H.1 Accounting INteraCes ... L 1394
H. 2 Grid Interfaces ... 1394
H. 2.1 Services UtIlized ... o 1395
H.2.2 Services Provided ... 1395
H.3 Identity And Credential Management Interfaces 1395
H.4 Job Submission And Management Interface L 1396
H.5 Query And Control APIS . 1397
H.5.1 CLI (Command Line Interface) XML APl .. 1397
H.6 Resource Management Interfaces L 1398

19

20

Appendix I: Considerations For Large Clusters 1400

1.1 Handling Large JObs . .. 1400
1.2 Handling Large Numbers Of JObs 1401
[.2.1 Set AMinimum RMPOLLINTERV AL ... 1401
[.2.2 Reduce Command Processing Time ... L 1402
1.2.3 Minimize Job Processing Time ... 1403
[.2.4 Load All Non-Completed Jobs At Startup 1403
[.2.5 Reducing Job Start Time 1403
1.2.6 Reducing Job Reservation Creation Time e 1404
1.2.7 Optimizing Backfill Time . 1404
[.2.8 Constraining Moab Logging - LOGLEVEL 1404
L2 O Pree M ON 1404
[.2.10 Handling Transient Resource Manager Failures 1404
[.2.11 Constrain The Number Of Jobs Preempted Per lteration 1405
12,12 Scheduler Settings ... 1405
1.2.13 Configure Torque For Large Job Numbers 1405

1.3 Handling Large Numbers Of NOGES o el 1405
I.4 Handling Large SMP Sy StemMsS . . 1406
1.5 Resource Manager Scaling 1407
LB S IV SIZING . 1407
Appendix J: Configuring Moab As A Service L 1408
J.1 Moab Grid Scheduler Service SCript ... 1408
J.2 Moab Workload Manager Service Scripts 1409
Appendix K: Migrating From Maui 3.2 . .. 1412
K.1 Migrating From Maui To Moab 1413
K 2 Other NOMeS . . 1413
K 2 File NaMING L 1413
K.2.2 Statistics And Checkpointing 1414
K.2.3 Verify Configuration File Compatibility 1414
K.2.4 Environment Variables L 1414
K.3 Running Maui And Moab Side-By-Side 1415
Appendix L: Node Allocation Plug-in Developer Kit 1416
L.1 Moab Configuration 1416
I I 1Y o = o o1 (o E 1417
L1, 2 Syntax RUIES .l 1417

L. 1.3 TroubleshoOting ... 1418

L. 2 Writing The PIUG-In . 1418
L.2.1 Node Allocation Plug-in . .. 1419

L.2.2 API And Data StrucCtUres o 1419

Appendix M: Scalable Systems Software Specification 1424
M.1 Scalable Systems Software Job Object Specification 1425
Status Of This MemMO .. 1425
ADS A, il 1426
Table Of CoNMteNtS . 1426

1.0 INtrodUCiON . . il 1428

2.0 Conventions Used In This DOoCUMENt ... e 1431

3.0 The Job Model 1433

4.0 JobGroup Element . . 1434

5.0 Job And JobDefaults Element ... 1436

6.0 TaskGroup And TaskGroupDefaults Element 1453

7.0 Task And TaskDefaults Element .. i 1455

8.0 Property Categories L 1456

9.0 AwarenessPolicy Attribute 1459
10.0 RefereNCes . 1460
11.0 Units Of Measure Abbreviations 1460

M.2 Scalable Systems Software Resource Management And Accounting Protocol (SSSRMAP) Mes-

Sage FOrMat .. 1461
Status Of This MemoO . 1461
ADSTraCt . 1461
Table Of Contents .l 1462
10 INtrOdUCION . 1463
2.0 Conventions Used In This Document 1463
B0 ENCOAING o 1464
4.0 Ermor RepOrtingl 1477
B 0 REfOrONCES il 1486

M.3 Scalable Systems Software Node Object Specification 1487
Status Of This MemMO . 1487
ADS A, il 1487
Table Of CoNMteNtS . 1487
1.0 INtrodUCiON . . il 1488
2.0 Conventions Used In This Document 1489
3.0The Node Model o e 1491
4.0Node Element .. il 1491
5.0 Units Of Measure Abbreviations 1496

M.4 Scalable Systems Software Resource Management And Accounting Protocol (SSSRMAP) Wire

PrOtOCOl L 1497
Status Of This MemMO . 1497

Table Of CoNteNtS ... 1498

1. 0 INtrodUCHION L 1499

2.0 Conventions Used In This Document ... i 1500

B0 ENCOAING oL 1501

4.0 Trans POt Lay er ... 1502

B 0 FraminNg .. 1502

6.0 ASYNCNIONY . 1504

7.0 SO CUNY oL 1505

8.0 RefereNCes . . 1514
Appendix N: Moab Resource Manager Language Interface Overview __.......................... 1516
N.1 Moab RM Language Socket Protocol Description 1516

N.1.1 RM Language OVervieW ...l 1516

N.1.2 Checksum Algorithm ('C' Version) 1517

N.1.3 Header Creation (PERL Code) 1519

N.1.4 Header Processing (PERL Code) 1519

N.2 Moab Resource Manager Language Data Format 1520

N.2.1 Query Resources Data Format . .. 1520

N.2.2 Query Workload Data Format 1525
Appendix O: SCHEDCFG Flagso . 1531

Chapter 1: Moab Workload Manager Overview

Chapter 1: Moab Workload Manager Overview

Welcome to the Moab Workload Manager 10.0.0 Administrator Guide.
This guide is intended for Moab Workload Manager system administrators.

Moab Workload Manager is a scheduling and management system designed for clusters,
grids, and on-demand/utility computing systems. Moab:

« Applies site policies and extensive optimizations to orchestrate jobs, services, and
other workload across the ideal combination of network, compute, and storage
resources.

o Enables Adaptive Computing; allowing compute resources to be customized to
changing needs and failed systems to be automatically fixed or replaced.

« Increases system resource availability, offers extensive cluster diagnostics, delivers
powerful quality of service (QoS) and service level agreement (SLA) features, and it
provides rich visualization of cluster performance through advanced statistics,
reports, and charts. In addition, the Elastic Computing feature allows Moab to
temporarily utilize systems that can provide additional resources to take care of
increased workload demand (caused by high job backlog) in a more timely manner.

Moab also works with major resource management and resource monitoring tools. From
hardware monitoring systems such as [IPMI to provisioning systems and storage managers,
Moab takes advantage of domain expertise to allow these systems to do what they do best,
importing their state information and providing them with the information necessary to do
their job better. Moab uses its global information to coordinate the activities of both
resources and services, which optimizes overall performance in-line with high-level
mission objectives.

23

Chapter 2: Philosophy and Goals of Moab Workload Manager

Chapter 2: Philosophy and Goals of Moab Workload

Manager

The scheduler's purpose is to optimally use resources in a convenient and manageable
way. System users want to specify resources, obtain quick turnaround on their jobs, and
have reliable resource allocation. On the other hand, administrators want to understand
both the workload and the resources available. This includes current state, problems, and
statistics—information about what is happening that is transparent to the end user.
Administrators need an extensive set of options to enable management enforced policies
and tune the system to obtain desired statistics.

There are other systems that provide batch management; however, Moab is unique in
many respects. Moab matches jobs to nodes, dynamically reprovisions nodes to satisfy
workload, and dynamically modifies workload to better take advantage of available nodes.
Moab allows sites to fully visualize cluster and user behavior. It can integrate and
orchestrate resource monitors, databases, identity managers, license managers, networks,
and storage systems, therefore providing a cohesive view of the cluster—a cluster that
fully acts and responds according to site mission objectives.

Moab can dynamically adjust security to meet specific job needs. Moab can create real and
virtual clusters on demand and from scratch that are custom-tailored to a specific request.
Moab can integrate visualization services, web farms, and application servers; it can also
create powerful grids of disparate clusters. Moab maintains complete accounting and
auditing records, exporting this data to information services on command, even providing
professional billing statements to cover all used resources and services.

Moab provides user- and application-centric web portals and powerful graphical tools for
monitoring and controlling every conceivable aspect of a cluster's objectives, performance,
workload, and usage. Moab is unique in its ability to deliver a powerful user-centric cluster
with little effort. Its design is focused on ROI, better use of resources, increased user
effectiveness, and reduced staffing requirements.

s N\

In this chapter:

2.1 ValueofaBatch System 25
21 Traffic Control 25
2.1.2 Mission Policies 25
2.1.3 Optimizations ... 26

2.2 Philosophy and Goals ... 26
2.2.1 Management Goals 26
2.2.2 Administration Goals 27

24

Chapter 2: Philosophy and Goals of Moab Workload Manager

25

223 End User Goals ... 27
2.3 Workload ... 27
2.3.1 Batch Workload 28
2.3.2 Interactive Workload L 28
2.3.3 Calendar Workload ... 28
2.3.4 Service Workload ... 29

2.1 Value of a Batch System

Batch systems provide centralized access to distributed resources through mechanisms for
submitting, launching, and tracking jobs on a shared resource. This greatly simplifies use of
the cluster's distributed resources, allowing users a single system image in terms of
managing jobs and aggregate compute resources available. Batch systems should do much
more than just provide a global view of the cluster, though. Using compute resources in a
fair and effective manner is complex, so a scheduler is necessary to determine when,
where, and how to run jobs to optimize the cluster. This topic describes the categories of
scheduling decisions.

-~

J/

In this topic:

2.1.1 Traffic Control - page 25
2.1.2 Mission Policies - page 25
2.1.3 Optimizations - page 26

-
.

2.1.1 Traffic Control

A scheduler must prevent jobs from interfering. If jobs contend for resources, cluster
performance decreases, job execution is delayed, and jobs may fail. Therefore, the
scheduler tracks resources and dedicates requested resources to a particular job, which
prevents use of such resources by other jobs.

2.1.2 Mission Policies

Clusters and other HPC platforms typically have specific purposes; to fulfill these purposes,
or mission goals, there are usually rules about system use pertaining to who or what is

2.1 Value of a Batch System

Chapter 2: Philosophy and Goals of Moab Workload Manager

allowed to use the system. To be effective, a scheduler must provide a suite of policies
allowing a site to map site mission policies into scheduling behavior.

2.1.3 Optimizations

The compute power of a cluster is a limited resource; over time, demand inevitably exceeds
supply. Intelligent scheduling decisions facilitate higher job volume and faster job
completion. Though subject to the constraints of the traffic control and mission policies, the
scheduler must use whatever freedom is available to maximize cluster performance.

2.2 Philosophy and Goals

Managers want high system utilization and the ability to deliver various qualities of service
to various users and groups. They need to understand how available resources are
delivered to users over time. They also need administrators to tune cycle delivery to satisfy
the current site mission objectives.

Determining a scheduler's success is contingent upon establishing metrics and a means to
measure them. The value of statistics is best understood if optimal statistical values are
known for a given environment, including workload, resources, and policies. That is, if an
administrator could determine that a site's typical workload obtained an average queue
time of 3.0 hours on a particular system, that would be a useful statistic; however, if an
administrator knew that through proper tuning the system could deliver an average queue
time of 1.2 hours with minimal negative side effects, that would be valuable knowledge.

Moab development relies on extensive feedback from users, administrators, and managers.
At its core, it is a tool designed to manage resources and provide meaningful information
about what is actually happening on the system.

-

J

In this topic:

2.2.1 Management Goals - page 26
2.2.2 Administration Goals - page 27
2.2.3 End User Goals - page 27

,
\.

2.2.1 Management Goals

A manager must ensure that a cluster fulfills the purpose for which it was purchased, so a
manager must deliver cycles to those projects that are most critical to the success of the
funding organizations. Management tasks to fulfill this role may include the following:

2.2 Philosophy and Goals 26

Chapter 2: Philosophy and Goals of Moab Workload Manager

o Define cluster mission objectives and performance criteria
o Evaluate current and historical cluster performance

« Instantly graph delivered service

2.2.2 Administration Goals

An administrator must ensure that a cluster is effectively functioning within the bounds of
the established mission goals. Administrators translate goals into cluster policies, identify
and correct cluster failures, and train users in best practices. Given these objectives, an
administrator may be tasked with each of the following:

o Maximize utilization and cluster responsiveness

o Tune fairness policies and workload distribution

o Automate time-consuming tasks

o Troubleshoot job and resource failures

« Instruct users of available policies and in their use regarding the cluster

Integrate new hardware and cluster services into the batch system

2.2.3 End User Goals

End users are responsible for learning about the resources available, the requirements of
their workload, and the policies to which they are subject. Using this understanding and the
available tools, they find ways to obtain the best possible responsiveness for their own jobs.
A typical end user may have the following tasks:

o Manage current workload

« Identify available resources

o Minimize workload response time
o Track historical usage

« Identify effectiveness of prior submissions

2.3 Workload

Moab can manage a broad spectrum of compute workload types, and it can optimize all
workload types within the same cluster simultaneously, delivering on the objectives most
important to each workload type, as described in this topic.

27 2.3 Workload

Chapter 2: Philosophy and Goals of Moab Workload Manager

J

-

In this topic:
2.3.1 Batch Workload - page 28
2.3.2 Interactive Workload - page 28

2.3.3 Calendar Workload - page 28
2.3.4 Service Workload - page 29

,
\.

2.3.1 Batch Workload

Batch workload is characterized by a job command file that typically describes all critical
aspects of the needed compute resources and execution environment. With a batch job, the
job is submitted to a job queue and runs somewhere on the cluster as resources become
available. In most cases, the submitter submits multiple batch jobs with no execution time
constraints and processes job results as they become available.

Moab can enforce rich policies defining how, when, and where batch jobs run to deliver
compute resources to the most important workload and provide general SLA guarantees
while maximizing system utilization and minimizing average response time.

2.3.2 Interactive Workload

Interactive workload differs from batch in that requestors are interested in immediate
response and are generally waiting for the interactive request to be executed before going
on to other activities. In many cases, interactive submitters will continue to be attached to
the interactive job, routing keystrokes and other input into the job and seeing both output
and error information in real-time. While interactive workload can be submitted within a
job file, commonly, it is routed into the cluster via a web or other graphical terminal and the
end user may never even be aware of the underlying use of the batch system.

For managing interactive jobs, the focus is usually on setting aside resources to guarantee
immediate execution or at least a minimal wait time for interactive jobs. Targeted service
levels require management when mixing batch and interactive jobs. Interactive and other
job types can be dynamically steered in terms of what they are executing, as well as in
terms of the quantity of resources required by the application.

2.3.3 Calendar Workload

Calendar workload must be executed at a particular time and possibly in a regular periodic
manner. For such jobs, time constraints range from flexible to rigid. For example, some
calendar jobs may need to complete by a certain time, while others must run exactly at a
given time each day or each week.

2.3 Workload 28

Chapter 2: Philosophy and Goals of Moab Workload Manager

Moab can schedule the future and can therefore guarantee resource availability at needed
times to allow calendar jobs to run as required. Furthermore, Moab provisioning features
can locate or temporarily create the needed compute environment to properly execute the
target applications.

2.3.4 Service Workload

Moab can schedule and manage both individual applications and long-running or
persistent services. Service workload processes externally-generated transaction requests
while Moab provides the distributed service with needed resources to meet target backlog
or response targets to the service. Examples of service workload include parallel
databases, web farms, and visualization services. Moab can apply cluster, grid, or
dynamically-generated on-demand resources to the service.

When handling service workload, Moab observes the application in a highly abstract
manner. Using the JOBCFG parameter, aspects of the service jobs can be discovered or
configured with attributes describing them as resource consumers possessing response
time, backlog, state metrics, and associated QoS targets. In addition, each application can
specify the type of compute resource required (OS, arch, memory, disk, network adapter,
data store, and so forth), as well as the support environment (network, storage, external
services, and so forth).

If the QoS response time/backlog targets of the application are not being satisfied by the
current resource allocation, Moab evaluates the needs of this application against all other
site mission objectives and workload needs and determines what it must do to locate or
create (that is, provision, customize, secure) the needed resources. With the application
resource requirement specification, a site can also indicate proximity/locality constraints,
partition policies, ramp-up/ramp-down rules, and so forth.

Once Moab identifies and creates appropriate resources, it hands these resources to the
application via a site customized URL. This URL can be responsible for whatever
application-specific handshaking must be done to launch and initialize the needed
components of the distributed application upon the new resources. Moab engages in the
hand-off by providing needed context and resource information and by launching the URL
at the appropriate time.

Related Topics
o Malleable Jobs
o QOS/SLA Enforcement

29 2.3 Workload

Chapter 3: Scheduler Basics

Chapter 3: Scheduler Basics

-~

In this chapter:
3.1 Initial Moab Configuration 31
3.2 Layout of Scheduler Components 32
3.2.1 Layout of Scheduler Components 32
3.2.2 Layout of Scheduler Components with Integrated Database 34
3.3 Scheduling Environment 35
3.3 1 J0ODS 35
3.3, 2 NOGCS 38
3.3.3 Advance Reservations 38
3.3.4 PoOliCIeS ... 38
3.3.5 ReS0UIrCes .. . 39
3.3.6 Class (or QUeUe) 40
3.3.7 Resource Manager (RM) ... 41
3.4 Scheduling Dictionary 42
3.5 Scheduling lterations and Job Flow 52
3.5.1 Scheduling lterations 52
3.5.2 Detailed Job FIOW ... 53
3.6 Configuring the Scheduler 54
3.6.1 Adjusting Server Behavior 55
3.7 Credential Overview ... 58
3.7.1 General Credential Attributes 59
3.7.2UserCredential 65
3.7.3 Group Credential 66
3.7.4 Account (or Project) Credential 67
3.7.5 Class (or Queue) Credential 67
3.76 QoS Credential 89
3.8 JOb Flags ... oo 90

30

Chapter 3: Scheduler Basics

3.1 Initial Moab Configuration

After Moab is installed, there may be minor configuration remaining within the primary
configuration file, moab . c £g. While the configure script automatically sets these
parameters, sites can choose to specify additional parameters. If the values selected in
configure are satisfactory, then this section can be safely ignored.

The parameters needed for proper initial startup include the following:

SCHEDCFG The SCHEDCFG parameter specifies how the Moab server will execute and
communicate with client requests. The SERVER attribute allows Moab client
commands to locate the Moab server and is specified as a URL or in <HOST>
[: <PORT>] format. For example:

Specifying the server in the Moab configuration file is optional. If nothing is
specified, gethostname () is called. You can restart Moab and run mdiag -S to
confirm that the correct host name is specified.

o The SERVER attribute can also be set using the environment variable
SMOABSERVER. Using this variable allows you to quickly change to the
Moab server that client commands will connect to.

ADMINCFG Moab provides role-based security enabled via multiple levels of admin access.
Users who are to be granted full control of all Moab functions should be
indicated by setting the ADMINCFG[1] parameter. The first user in this USERS
attribute list is considered the primary administrator. It is the ID under which
Moab will execute. For example, the following can be used to enable users greg
and thomas as level 1 admins:

A A
| ADMINCFG[1] USERS=greg, thomas |

o Moab can only be launched by the primary administrator user ID.

o The primary administrator should be configured as a
manager/operator/administrator in every resource manager with which
Moab will interface.

>
o If the msub command will be used, then 'root' must be the primary
administrator.

.

31 3.1 Initial Moab Configuration

Chapter 3: Scheduler Basics

{o Moab's home directory and contents should be owned by the primary }

administrator.

RMCFG For Moab to properly interact with a resource manager, the interface to this
resource manager must be defined as described in the Resource Manager
Configuration Overview. Further, it is important that the primary Moab
administrator also be a resource manager administrator within each of those
systems. For example, to interface to a Torque resource manager, the following
can be used:

Related Topics
o Parameter Overview

o mdiag -C command (for diagnosing current Moab configuration)

3.2 Layout of Scheduler Components

In this topic:

3.2.1 Layout of Scheduler Components - page 32
3.2.2 Layout of Scheduler Components with Integrated Database - page 34

3.2.1 Layout of Scheduler Components

Moab is initially unpacked into a simple one-deep directory structure. What follows
demonstrates the default layout of scheduler components; some of the files (such as log
and statistics files) are created while Moab runs.

e $(MOABHOMEDIR) Defaultis /opt/moab, which can be modified via the - -
with-homedir parameter during . /configure. $ (MOABHOMEDIR) contains
the files shown in the table below.

3.2 Layout of Scheduler Components 32

Chapter 3: Scheduler Basics

33

contrib/

.counters

docs/
etc/
lib/
log/

[etc/Jmoab.cfg

.moab.ck

[etc/].moab.key

moab.dat

[etc/Imoab-
client.cfg

moab.lic
moab.log
moab.log.1
.moab.pid

[etc/Imoab-
private.cfg

Fenare _Jomerpten

Directory containing contributed code and plug-ins

File containing last 3 counters for InsightIDs, jobs, and reservations
respectively. Created during installation and required for Moab

operation.

Directory for documentation

Directory for configuration files

Directory for library files (primarily for tools/)

Directory for log files

General configuration file (can be located in $ (MOABHOMEDIR) or

$ (MOABHOMEDIR) /etc).

Checkpoint file

Secret key used in authentication (can be located in
$ (MOABHOMEDIR) or $ (MOABHOMEDIR) /etc).

Configuration file generated by Moab Cluster Manager

Client configuration file (can be located in $ (MOABHOMEDIR) or

$ (MOABHOMEDIR) /etc).

License file
Log file
Previous log file

Lock file

Secure configuration file containing private information (can be
located in $ (MOABHOMEDIR) or $ (MOABHOMEDIR) /etc).

3.2 Layout of Scheduler Components

Chapter 3: Scheduler Basics

Fenare _Jomerpten

stats/ Directory for statistics files:

o events.<date> - event files
o {DAY | WEEK | MONTH | YEAR} . <date> - usage profiling data
o FS.<PARTITION>.<epochtime> - fairshare usage data

e S (MOABINSTDIR) Defaultis /opt/moab, which can be modified via the —-
prefix parameter during . /configure. $ (MOABINSTDIR) contains the files
shown in the table below.

e Lo

bin/ Directory for client commands (for example, showq, setres, etc.)
moab Moab binary

sbin/ Directory for server daemons

tools/ Directory for resource manager interfaces and local scripts

e /etc/moab.cfg If the Moab home directory cannot be found at startup, this file is
checked to see if it declares the Moab home directory. If a declaration exists, the
system checks the declared directory to find Moab. The syntax is:
MOABHOMEDIR=<DIRECTORY>.

If you want to run Moab from a different directory other than /opt/moab but did not use
the --with-homedir parameter during . /configure, you can set the
SMOABHOMEDIR environment variable, declare the home directory in the
/etc/moab.cfq file, or use the -C command line option when using the Moab server or
client commands to specify the configuration file location.

When Moab runs, it creates a log file, moab . 1og, in the 1og/ directory and creates a

statistics file in the stats/ directory with the naming convention events.WWW_ MMM

DD_YYYY (for example, events.Sat Oct 8 2022).Additionally, a checkpoint file,
.moab. ck, and lock file, .moab.pid, are maintained in the Moab home directory.

3.2.2 Layout of Scheduler Components with Integrated Database

Layout of Scheduler Components with Integrated Database Enabled

If USEDATABASE INTERNAL is configured, the layout of scheduler components varies
slightly. The .moab. ck file and usage profiling data (stat/

3.2 Layout of Scheduler Components

Chapter 3: Scheduler Basics

{DAY |WEEK |MONTH | YEAR} .<date>) are stored in the moab . db database. In
addition, the event information is stored in both event files: (stat/events.<date>)
and moab . db.

Related Topics

« Commands Overview

3.3 Scheduling Environment

Moab functions by manipulating a number of elementary objects, including jobs, nodes,
reservations, QoS structures, resource managers, and policies. Multiple minor elementary
objects and composite objects are also used; these objects are defined in 3.4 Scheduling
Dictionary - page 42.

s N

In this topic:

3.3.1 Jobs - page 35

3.3.1.A Job States - page 36

3.3.1.B Task Group (or Req) - page 37
3.3.2 Nodes - page 38
3.3.3 Advance Reservations - page 38
3.3.4 Policies - page 38
3.3.5 Resources - page 39

3.3.5.A Task - page 39

3.3.5.B PE (Processor Equivalent) Calculation - page 39
3.3.6 Class (or Queue) - page 40
3.3.7 Resource Manager (RM) - page 41

. J

Moab functions by manipulating a number of elementary objects, including jobs, nodes,
reservations, QoS structures, resource managers, and policies. Multiple minor elementary
objects and composite objects are also used; these objects are defined in the scheduling
dictionary.

3.3.1 Jobs

Job information is provided to the Moab scheduler from a resource manager such as PBS
or Wiki. Job attributes include ownership of the job, job state, amount and type of resources

35 3.3 Scheduling Environment

Chapter 3: Scheduler Basics

required by the job, and a wallclock limit indicating how long the resources are required. A
job consists of one or more task groups, each of which requests a number of resources of a
given type; for example, a job may consist of two task groups, the first asking for a single
master task consisting of 1 IBM SP node with at least 512 MB of RAM and the second asking
for a set of slave tasks such as 24 IBM SP nodes with at least 128 MB of RAM. Each task
group consists of one or more tasks where a task is defined as the minimal independent
unit of resources. By default, each task is equivalent to one processor. In SMP
environments, however, users might want to tie one or more processors together with a
certain amount of memory and other resources.

3.3.1.A Job States

The job's state indicates its current status and eligibility for execution and can be any of the
values listed in the following tables:

Table 3-1: Pre-execution states

N

Deferred Job that has been held by Moab due to an inability to schedule the job under
current conditions. Deferred jobs are held for DEFERTIME before being placed
in the idle queue. This process is repeated DEFERCOUNT times before the job
is placed in batch hold.

Hold Job is idle and is not eligible to run due to a user, (system) administrator, or
batch system hold (also, batchhold, systemhold, userhold).

Idle Job is currently queued and eligible to run but is not executing (also,
notqueued),

NotQueued The job has not been queued.

Unknown Moab cannot determine the state of the job.

Table 3-2: Execution states

o o

Starting Batch system has attempted to start the job and the job is currently performing
pre-start tasks that may include provisioning resources, staging data, or
executing system pre-launch scripts.

Running Job is currently executing the user application.

3.3 Scheduling Environment 36

Chapter 3: Scheduler Basics

N

37

Suspended

Job was running but has been suspended by the scheduler or an administrator;
user application is still in place on the allocated compute resources, but it is not
executing.

Table 3-3: Post-execution states

o

Completed

Removed

Vacated

Job has completed running without failure.

Job has run to its requested walltime successfully but has been canceled by the
scheduler or resource manager due to exceeding its walltime or violating
another policy; includes jobs canceled by users or administrators either before
or after a job has started.

Job canceled after partial execution due to a system failure.

3.3.1.B Task Group (or Req)

A job task group (or req) consists of a request for a single type of resources. Each task
group consists of the following components:

Task
Definition

Resource
Constraints

Task Count
Task List

Task Group
Statistics

A specification of the elementary resources that compose an individual task.

A specification of conditions that must be met for resource matching to occur.
Only resources from nodes that meet all resource constraints can be allocated
to the job task group.

The number of task instances required by the task group.
The list of nodes on which the task instances are located.

Statistics tracking resource utilization.

3.3 Scheduling Environment

Chapter 3: Scheduler Basics

3.3.2 Nodes

Moab recognizes a node as a collection of resources with a particular set of associated
attributes. This definition is similar to the traditional notion of a node found in a Linux
cluster or supercomputer wherein a node is defined as one or more CPUs, associated
memory, and possibly other compute resources such as local disk, swap, network adapters,
and software licenses. Additionally, this node is described by various attributes such as an
architecture type or operating system. Nodes range in size from small uniprocessor PCs to
large symmetric multiprocessing (SMP) systems where a single node may consist of
hundreds of CPUs and massive amounts of memory.

In many cluster environments, the primary source of information about the configuration
and status of a compute node is the resource manager. This information can be augmented
by additional information sources including node monitors and information services.
Further, extensive node policy and node configuration information can be specified within
Moab via the graphical tools or the configuration file. Moab aggregates this information and
presents a comprehensive view of the node configuration, usages, and state.

While a node in Moab in most cases represents a standard compute host, nodes can also be
used to represent more generalized resources. The GLOBAL node possesses floating
resources that are available cluster wide, and created virtual nodes (such as network,
software, and data nodes) track and allocate resource usage for other resource types.

For additional node information, see General Node Administration.

3.3.3 Advance Reservations

An advance reservation dedicates a block of specific resources for a particular use. Each
reservation consists of a list of resources, an access control list, and a time range for
enforcing the access control list. The reservation ensures the matching nodes are used
according to the access controls and policy constraints within the time frame specified. For
example, a reservation could reserve 20 processors and 10 GB of memory for users Bob
and John from Friday 6:00 a.m. to Saturday 10:00 p.m. Moab uses advance reservations
extensively to manage backfill, guarantee resource availability for active jobs, allow service
guarantees, support deadlines, and enable metascheduling. Moab also supports both
regularly recurring reservations and the creation of dynamic one-time reservations for
special needs. Advance reservations are described in detail in the Advance Reservations
overview.

3.3.4 Policies

A configuration file specifies policies and controls how and when jobs start. Policies include
job prioritization, fairness policies, fairshare configuration policies, and scheduling policies.

3.3 Scheduling Environment 38

Chapter 3: Scheduler Basics

3.3.5 Resources

Jobs, nodes, and reservations all deal with the abstract concept of a resource. A resource in
the Moab world is one of the following:

Resource Description

processors Specify with a simple count value

memory Specify real memory or RAM in megabytes (MB)
swap Specify virtual memory or swap in megabytes (MB)
disk Specify local disk in megabytes (MB)

In addition to these elementary resource types, there are two higher level resource
concepts used within Moab: Task and the processor equivalent (or PE (Processor
Equivalent) Calculation), as explained below.

3.3.5.A Task

A task is a collection of elementary resources that must be allocated together within a
single node. For example, a task may consist of one processor, 512 MB of RAM, and 2 GB of
local disk. A key aspect of a task is that the resources associated with the task must be
allocated as an atomic unit, without spanning node boundaries. A task requesting 2
processors cannot be satisfied by allocating 2 uniprocessor nodes, nor can a task
requesting 1 processor and 1 GB of memory be satisfied by allocating 1 processor on 1
node and memory on another.

In Moab, when jobs or reservations request resources, they do so in terms of tasks typically
using a task count and a task definition. By default, a task maps directly to a single
processor within a job and maps to a full node within reservations. In all cases, this default
definition can be overridden by specifying a new task definition.

Within both jobs and reservations, depending on task definition, it is possible to have
multiple tasks from the same job mapped to the same node. For example, a job requesting
4 tasks using the default task definition of 1 processor per task, can be satisfied by 2 dual
processor nodes.

3.3.5.B PE (Processor Equivalent) Calculation

The concept of the processor equivalent, or PE, arose out of the need to translate multi-
resource consumption requests into a scalar value. It is not an elementary resource but

39 3.3 Scheduling Environment

Chapter 3: Scheduler Basics

rather a derived resource metric. It is a measure of the actual impact of a set of requested
resources by a job on the total resources available system wide. It is calculated as follows:

PE = MAX (ProcsRequestedByJob / TotalOnlineProcs,
MemoryRequestedByJob / TotalOnlineMemory,
DiskRequestedByJob / TotalOnlineDisk,

SwapRequestedByJob / TotalOnlineSwap) * TotalOnlineProcs

For example, if a job requested 20% of the total processors and 50% of the total memory of
a 128-processor MPP system, only two such jobs could be supported by this system. The
job is essentially using 50% of all available resources since the system can only be
scheduled to its most constrained resource - memory in this case. The processor
equivalents for this job should be 50% of the processors, or PE = 64.

Another example: Assume a homogeneous 100-node system with 4 processors and 1 GB of
memory per node. A job is submitted requesting 2 processors and 768 MB of memory. The
PE for this job would be calculated as follows:

PE = MAX(2/(100%*4), 768/(100*%1024)) * (100*4) = 3.

This result makes sense since the job would be consuming 3/4 of the memory on a 4-
processor node.

The calculation works equally well on homogeneous or heterogeneous systems,
uniprocessor or large SMP systems.

3.3.6 Class (or Queue)

A class (or queue) is a logical container object that implicitly or explicitly applies policies to
jobs. In most cases, a class is defined and configured within the resource manager and
associated with one or more of the following attributes or constraints:

N

Default Job A queue can be associated with a default job duration, default size, or default

Attributes resource requirements.

Host A queue can constrain job execution to a particular set of hosts.
Constraints

Job A queue can constrain the attributes of jobs that can be submitted, including

Constraints setting limits such as max wallclock time and minimum number of processors.

Access List A queue can constrain who can submit jobs into it based on such things as user
lists and group lists.

3.3 Scheduling Environment

Chapter 3: Scheduler Basics

41

e

Special A queue can associate special privileges with jobs including adjusted job
Access priority.

As stated previously, most resource managers allow full class configuration within the
resource manager. Where additional class configuration is required, the CLASSCFG
parameter can be used.

Moab tracks class usage as a consumable resource allowing sites to limit the number of
jobs using a particular class. This is done by monitoring class initiators that may be
considered to be a ticket to run in a particular class. Any compute node can simultaneously
support several types of classes and any number of initiators of each type. By default,
nodes will have a one-to-one mapping between class initiators and configured processors.
For every job task run on the node, one class initiator of the appropriate type is consumed.
For example, a 3-processor job submitted to the class 'batch' consumes three batch class
initiators on the nodes where it runs.

Using queues as consumable resources allows sites to specify various policies by adjusting
the class initiator to node mapping. For example, a site running serial jobs might want to
allow a particular 8-processor node to run any combination of batch and special jobs
subject to the following constraints:

o Only 8 jobs of any type allowed simultaneously.
o No more than 4 special jobs allowed simultaneously.

To enable this policy, the site can set the node's MAXJOB policy to 8 and configure the node
with 4 special class initiators and 8 batch class initiators.

In virtually all cases, jobs have a one-to-one correspondence between processors
requested and class initiators required. However, this is not a requirement, and with
special configuration, sites can choose to associate job tasks with arbitrary combinations of
class initiator requirements.

In displaying class initiator status, Moab signifies the type and number of class initiators
available using the format [<CLASSNAME>:<CLASSCOUNT?>]. This is most commonly seen
in the output of node status commands indicating the number of configured and available
class initiators, or in job status commands when displaying class initiator requirements.

3.3.7 Resource Manager (RM)

While other systems may have more strict interpretations of a resource manager and its
responsibilities, Moab's multi-resource manager support allows a much more liberal
interpretation. In essence, any object that can provide environmental information and
environmental control can be used as a resource manager, including sources of resource,

3.3 Scheduling Environment

Chapter 3: Scheduler Basics

workload, credential, or policy information such as scripts, peer services, databases, web
services, hardware monitors, or even flats files. Likewise, Moab considers to be a resource
manager any tool that provides control over the cluster environment whether that be a
license manager, queue manager, checkpoint facility, provisioning manager, network
manager, or storage manager.

Moab aggregates information from multiple unrelated sources into a larger more complete
world view of the cluster that includes all the information and control found within a
standard resource manager such as Torque, including node, job, and queue management
services. For more information, see the Resource Managers and Interfaces overview.

3.3.7.A Arbitrary Resource

Nodes can also be configured to support various arbitrary resources. Use the NODECFG
parameter to specify information about such resources. For example, you could configure a
node to have 256 MB RAM, 4 processors, 1 GB Swap, and 2 tape drives.

3.4 Scheduling Dictionary

Index: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Definition A credential also known as 'project ID." Multiple users can be associated a single
account ID and each user can have access to multiple accounts. See credential
definition and ACCOUNTCFG parameter.

P ————————— e

Example ACCOUNT=hgc13 |

I
|
~

ACL (Access Control List)

Definition In the context of scheduling, an access control list is used and applied much as it
is elsewhere. An ACL defines what credentials are required to access or use
particular objects. The principal objects to which ACLs are applied are
reservations and QoSs. ACLs can contain both allow and deny statements,
include wildcards, and contain rules based on multiple object types.

Example Reservation META1 contains 4 access statements:

3.4 Scheduling Dictionary

Chapter 3: Scheduler Basics

43

ACL (Access Control List)

|

Allocation

Definition

Example

O W

Definition

Example

N

CPU

Definition

Definition

Credential

o Allow jobs owned by user "john" or "bob"

o Allow jobs with QoS "premium"

o Deny jobs in class "debug"

o Allow jobs with a duration of less than 1 hour

A logical, scalar unit assigned to users on a credential basis, providing access to a
particular quantity of compute resources. Allocations are consumed by jobs
associated with those credentials.

e

| ALLOCATION=30000 1
S)

(See Queue) A class is a logical container object that holds jobs allowing a site to
associate various constraints and defaults to these jobs. Class access can also be
tied to individual nodes defining whether a particular node will accept a job
associated with a given class. Class based access to a node is denied unless
explicitly allowed via resource manager configuration. Within Moab, classes are
tied to jobs as a credential.

job "cw.073" is submitted to class batch
node "cl02" accepts jobs in class batch

reservation weekend allows access to jobs in class batch

A single processing unit. A CPU is a consumable resource. Nodes typically consist
of one or more CPUs. (same as processor)

An attribute associated with jobs and other objects that determines object

3.4 Scheduling Dictionary

Chapter 3: Scheduler Basics

Credential

|

identity. In the case of schedulers and resource managers, credential based
policies and limits are often established. At submit time, jobs are associated with
a number of credentials such as user, group, account, QoS, and class. These job
credentials subject the job to various polices and grant it various types of access.

In most cases, credentials set both the privileges of the job and the ID of the
actual job executable.

Example Job "cw.24001" possesses the following credentials:

(__ ~N
| USER=john; GROUP=staff; ACCOUNT=[NONE] ; [

:QOS:[DEFAULT];CLASS:batch |
e e e e e e e e e ey e ey ey J

v

Definition A quantity of local disk available for use by batch jobs. Disk is a consumable
resource.

T

Execution Environment

|

Definition A description of the environment where the executable is launched. This
environment can include attributes such as the following:

e an executable

o command line arguments
o input file

o output file

o local user ID

e local group ID

e process resource limits

Example Job "cw.24001" possesses the following execution environment:
: EXEC=/bin/sleep; ARGS="60";
| INPUT=[NONE] ; OUTPUT=[NONE] ;

| USER=10adl;GROUP=staff;
e e e e e e e e e e e e e J

3.4 Scheduling Dictionary

44

Chapter 3: Scheduler Basics

=

Definition A mechanism that allows historical resource utilization information to be
incorporated into job priority decisions.

Definition The access to shared compute resources that each user is granted. Access can be
equal or based on factors such as historical resource usage, political issues, and
job value.

D

Definition A credential typically directly mapping to a user's UNIX group ID.

= =

—(

Job

Definition The fundamental object of resource consumption. A job contains the following
components:

o Alist of required consumable resources

o Alist of resource constraints controlling which resources can be allocated to
the job

o Alist of job constraints controlling where, when, and how the job should
run

e Alist of credentials
e An execution environment

Job Constraints

Definition A set of conditions that must be fulfilled for the job to start. These conditions are

45 3.4 Scheduling Dictionary

Chapter 3: Scheduler Basics

N
|

Job Constraints

far reaching and can include one or more of the following:

o When the job can run. After time X, within Y minutes.

o Which resources can be allocated. For example, node must possess at least
512 MB of RAM, run only in partition or Partition C, or run on HostA and
HostB.

o Starting job relative to a particular event. Start after job X successfully
completes.

——————————— e

| RELEASETIME>='Tue Feb 12, 11:00AM'
| DEPEND=AFTERANY : cw.2004
| NODEMEMORY==256MB

Example

M

Memory

~

Definition A quantity of physical memory (RAM). Memory is provided by compute nodes. It
is required as a constraint or consumed as a consumable resource by jobs.
Within Moab, memory is tracked and reported in megabytes (MB).

Example Node "node001" provides the following resources:
PROCS=1,MEMORY=512, SWAP=1024
"Job cw.24004" consumes the following resources per task:
PROCS=1, MEMORY=256

2

N
|

Definition A node is the fundamental object associated with compute resources. Each node
contains the following components:

e Alist of consumable resources
e Alist of node attributes

3.4 Scheduling Dictionary

46

Chapter 3: Scheduler Basics

47

Node Attribute

|

Definition

Example

A node attribute is a non-quantitative aspect of a node. Attributes typically
describe the node itself or possibly aspects of various node resources such as
processors or memory. While it is probably not optimal to aggregate node and
resource attributes together in this manner, it is common practice. Common
node attributes include processor architecture, operating system, and processor
speed. Jobs often specify that resources be allocated from nodes possessing
certain node attributes.

" ARCH=AMD, OS=LINUX24, PROCSPEED=950 |
Y S 0 S0 S S J

Node Feature

Definition

Example

=T O

Processor

A node feature is a node attribute that is typically specified locally via a
configuration file. Node features are opaque strings associated with the node by
the resource manager that generally only have meaning to the end-user, or
possibly to the scheduler. A node feature is commonly associated with a subset
of nodes allowing end-users to request use of this subset by requiring that
resources be allocated from nodes with this feature present. In many cases, node
features are used to extend the information provided by the resource manager.

e

| FEATURE=s950, pIII,geology)
N e e e e e e e s — — — — — — — ——— ——

:(. This can be used to indicate that the node possesses a 950 MHz \
! Pentium III processor and that the node is owned by the Geology |
| department. }

Definition

=)

A processing unit. A processor is a consumable resource. Nodes typically consist
of one or more processors. (same as CPU)

Quality of Service (QoS)

|

Definition

An object that provides special services, resources, and so forth.

3.4 Scheduling Dictionary

Chapter 3: Scheduler Basics

i
|

Definition

)

Reservation

(see Class)

|

Definition

Example

Resource

An object that reserves a specific collection or resources for a specific timeframe
for use by jobs that meet specific conditions. Each reservation consists of three
major components: (1) a set of resources, (2) a time frame, and (3) an access
control list. It is a scheduler role to ensure that the access control list is not
violated during the reservation's lifetime (that is, its time frame) on the
resources listed. For example, a reservation may specify that node002 is
reserved for user Tom on Friday. The scheduler is therefore constrained to make
certain that only Tom's jobs can use node002 at any time on Friday.

Reserve 24 processors and 8 GB of memory from time T1 to time T2 for use by
user X or jobs in the class batch.

Definition

Hardware, generic resources such as software, and features available on a node,
including memory, disk, swap, and processors.

Definition

Example

Resource, Available

A compute node's configured resources minus the maximum of the sum of the
resources utilized by all job tasks running on the node and the resources
dedicated; that is, R.Available = R.Configure - MAX(R.Dedicated,R.Utilized).

In most cases, resources utilized will be associated with compute jobs that the
batch system has started on the compute nodes, although resource consumption
may also come from the operating system or rogue processes outside of the
batch system's knowledge or control. Further, in a well-managed system, utilized
resources are less than or equal to dedicated resources and when exceptions are
detected, one or more usage-based limits are activated to preempt the jobs
violating their requested resource usage.

Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of
job "clserver.0041" that are using 1 processor and 60 MB of memory each. One
processor and 250 MB of memory are reserved for user "jsmith" but are not
currently in use.

Resources available to user jsmith on node "cl003":

3.4 Scheduling Dictionary

48

Chapter 3: Scheduler Basics

N
|

Resource, Available

e 2 processors
e 392 MB memory

Resources available to a user other than jsmith on node "cl003":

e 1 processor
e 142 MB memory

Resource, Configured

Definition The total amount of consumable resources that are available on a compute node
for use by job tasks.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of
job "clserver.0041" that are using 1 processor and 60 MB of memory each. One
processor and 250 MB of memory are reserved for user "jsmith" but are not
currently in use.

Configured resources for node "cl003":

e 4 processors
e 512 MB memory

N
|

Resource, Consumable

Definition Any object that can be used (that is, consumed and therefore made unavailable
to another job) by, or dedicated to a job is considered to be a resource. Common
examples of resources are a node's physical memory or local disk. As these
resources can be given to one job and therefore become unavailable to another,
they are considered to be consumable. Other aspects of a node, such as its
operating system, are not considered to be consumable since its use by one job
does not preclude its use by another. Note that some node objects, such as a
network adapter, can be dedicated under some operating systems and resource
managers and not under others. On systems where the network adapter cannot
be dedicated and the network usage per job cannot be specified or tracked,
network adapters are not considered to be resources, but rather attributes.

Nodes possess a specific quantity of consumable resources such as real memory,
local disk, or processors. In a resource management system, the node manager
can choose to report only those configured resources available to batch jobs. For
example, a node may possess an 80 GB hard drive but may have only 20 GB
dedicated to batch jobs. Consequently, the resource manager may report that the
node has 20 GB of local disk available when idle. Jobs can explicitly request a
certain quantity of consumable resources.

49 3.4 Scheduling Dictionary

Chapter 3: Scheduler Basics

Resource, Constraint

|
|

Definition A resource constraint imposes a rule on which resources can be used to match a
resource request. Resource constraints either specify a required quantity and
type of resource or a required node attribute. All resource constraints must be
met by any given node to establish a match.

Resource, Dedicated

Definition A job may request that a block of resources be dedicated while the job is
executing. At other times, a certain number of resources can be reserved for use
by a particular user or group. In these cases, the scheduler is responsible for
guaranteeing that these resources, utilized or not, are set aside and made
unavailable to other jobs.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of
job "clserver.0041" that are using 1 processor and 60 MB of memory each. One
processor and 250 MB of memory are reserved for user "jsmith" but are not
currently in use.

Dedicated resources for node "cl003":

e 1 processor
e 250 MB memory

Resource, Utilized

Definition All consumable resources actually used by all job tasks running on the compute
node.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of
job "clserver.0041" that are using 1 processor and 60 MB of memory each. One
processor and 250 MB of memory are reserved for user "jsmith" but are not
currently in use.

Utilized resources for node "cl003":

e 2 processors
e 120 MB memory

%]

Definition A quantity of virtual memory available for use by batch jobs. Swap is a
consumable resource provided by nodes and consumed by jobs.

3.4 Scheduling Dictionary

50

Chapter 3: Scheduler Basics

Task

|H

Definition An atomic collection of consumable resources.

Time to Live (TTL)

Definition Specifies the time that a node is supposed to be retired by Moab. Moab will not
schedule any jobs on a node after its time to live has passed.

User, Global

Definition The user credential used to provide access to functions and resources. In local
scheduling, global user IDs map directly to local user IDs.

User, Local

Definition The user credential under which the job executable will be launched.

Workload

|s<

Definition A set of tasks to be performed or services to be provided by a system that
comprises a set of resources.

>

=<

N

51 3.4 Scheduling Dictionary

Chapter 3: Scheduler Basics

3.5 Scheduling Iterations and Job Flow

-

J

In this topic:

3.5.1 Scheduling lterations - page 52
3.5.1.A Update State Information - page 52
3.5.1.B Handle User Requests - page 53
3.5.1.C Perform Next Scheduling Cycle - page 53
3.5.2 Detailed Job Flow - page 53
3.5.2.A Determine Basic Job Feasibility - page 53
3.5.2.B Prioritize Jobs - page 53
3.5.2.C Enforce Configured Throttling Policies - page 53
3.5.2.D Determine Resource Availability - page 53
3.5.2.E Allocate Resources to Job - page 54
3.5.2.F Launch Job - page 54

,
\.

3.5.1 Scheduling Iterations

In any given scheduling iteration, many activities take place, examples of which are listed
below:

« Update State Information

« Handle User Requests

o Perform Next Scheduling Cycle
o Refresh reservations

o Schedule reserved jobs

o Schedule priority jobs

o Backfill jobs

o Update statistics

3.5.1.A Update State Information

Each iteration, the scheduler contacts the resource manager(s) and requests up-to-date

information on compute resources, workload, and policy configuration. On most systems,
these calls are to a centralized resource manager daemon that possesses all information.
Jobs can be reported as being in any of the following states listed in the job state table.

3.5 Scheduling lterations and Job Flow

Chapter 3: Scheduler Basics

3.5.1.B Handle User Requests

User requests include any call requesting state information, configuration changes, or job
or resource manipulation commands. These requests can come in the form of user client
calls, peer daemon calls, or process signals.

3.5.1.C Perform Next Scheduling Cycle

Moab operates on a polling/event driven basis. When all scheduling activities complete,
Moab processes user requests until a new resource manager event is received or an
internal event is generated. Resource manager events include activities such as a new job
submission or completion of an active job, addition of new node resources, or changes in
resource manager policies. Internal events include administrator schedule requests,
reservation activation/deactivation, or the expiration of the RMPOLLINTERVAL timer.

3.5.2 Detailed Job Flow

3.5.2.A Determine Basic Job Feasibility

The first step in scheduling is determining which jobs are feasible. This step eliminates jobs
that have job holds in place, invalid job states (such as Completed, Not Queued, Deferred),
or unsatisfied preconditions. Preconditions can include stage-in files or completion of
preliminary job steps.

3.5.2.B Prioritize Jobs

With a list of feasible jobs created, the next step involves determining the relative priority
of all jobs within that list. A priority for each job is calculated based on job attributes such
as job owner, job size, and length of time the job has been queued.

3.5.2.C Enforce Configured Throttling Policies

Any configured throttling policies are then applied constraining how many jobs, nodes,
processors, and so forth are allowed on a per credential basis. Jobs that violate these
policies are not considered for scheduling.

3.5.2.D Determine Resource Availability

For each job, Moab attempts to locate the required compute resources needed by the job.
For a match to be made, the node must possess all node attributes specified by the job and

53 3.5 Scheduling lterations and Job Flow

Chapter 3: Scheduler Basics

possess adequate available resources to meet the 'TasksPerNode' job constraint. (Default
'TasksPerNode' is 1.) Normally, Moab determines that a node has adequate resources if the
resources are neither utilized by nor dedicated to another job using the calculation.

R.Available = R.Configured - MAX(R.Dedicated,R.Utilized).
The NODEAVAILABILITYPOLICY parameter can be modified to adjust this behavior.

3.5.2.E Allocate Resources to Job

If adequate resources can be found for a job, the node allocation policy is then applied to
select the best set of resources. These allocation policies allow selection criteria such as
speed of node, type of reservations, or excess node resources to be figured into the
allocation decision to improve the performance of the job and maximize the freedom of the
scheduler in making future scheduling decisions.

3.5.2.F Launch Job

With the resources selected and task distribution mapped, the scheduler then contacts the
resource manager and informs it where and how to launch the job. The resource manager
then initiates the actual job executable.

3.6 Configuring the Scheduler

-

J

In this topic:

3.6.1 Adjusting Server Behavior - page 55
3.6.1.A Logging - page 55
3.6.1.B Checkpointing - page 56
3.6.1.C Client Interface - page 56
3.6.1.D Scheduler Mode - page 56
3.6.1.E Configuring a Job ID Offset - page 57

Scheduler configuration is maintained using the flat text configuration file moab . cfg. All
configuration file entries consist of simple <PARAMETER> <VALUE> pairs that are
whitespace delimited. Parameter names are not case sensitive but <VALUE> settings are.
Some parameters are array values and should be specified as <PARAMETER>
[<INDEX>] (Example: QOSCFG[hiprio] PRIORITY=1000); the <VALUE> settings
can be integers, floats, strings, or arrays of these. Some parameters can be specified as
arrays wherein index values can be numeric or alphanumeric strings. If no array index is

3.6 Configuring the Scheduler

Chapter 3: Scheduler Basics

55

specified for an array parameter, an index of zero (0) is assumed. The example below
includes both array based and non-array based parameters:

o —————————————————————————

| SCHEDCFG[cluster2] SERVER=head.c2.org MODE=NORMAL
| LOGLEVEL 6
| LOGDIR /var/tmp/moablog

See the parameters documentation for information on specific parameters.

The moab . cfq file is read when Moab is started up or recycled. Also, the mschedctl -m
command can be used to reconfigure the scheduler at any time, updating some or all of the
configurable parameters dynamically. This command can be used to modify parameters
either permanently or temporarily. For example, the command mschedctl -m
LOGLEVEL 3will temporarily adjust the scheduler log level. When the scheduler restarts,
the log level restores to the value stored in the Moab configuration files. To adjust a
parameter permanently, the option -—-flags=persistent should be set.

At any time, the current server parameter settings can be viewed using the mschedctl -1
command.

3.6.1 Adjusting Server Behavior

Most aspects of Moab behavior are configurable. This includes both scheduling policy
behavior and daemon behavior. In terms of configuring server behavior, the following
realms are most commonly modified.

3.6.1.A Logging

Moab provides extensive and highly configurable logging facilities controlled by
parameters.

LOGDIR Indicates directory for log files.

LOGFACILITY Indicates scheduling facilities to track.

LOGFILE Indicates path name of log file.
LOGFILEMAXSIZE Indicates maximum size of log file before rolling.

LOGFILEROLLDEPTH [ndicates maximum number of log files to maintain.

LOGLEVEL Indicates verbosity of logging.

3.6 Configuring the Scheduler

Chapter 3: Scheduler Basics

3.6.1.B Checkpointing

Moab checkpoints its internal state. The checkpoint file records statistics and attributes for
jobs, nodes, reservations, users, groups, classes, and almost every other scheduling object.

CHECKPOINTEXPIRATIONTIME [ndicates how long unmodified data should be kept after
the associated object has disappeared; that is, job priority
for a job no longer detected.

CHECKPOINTFILE Indicates path name of checkpoint file.

CHECKPOINTINTERVAL Indicates interval between subsequent checkpoints.

3.6.1.C Client Interface

Clients will read from the client configuration file (moab-client.cfq), if present, and
then from the server configuration file (moab . cfg), if present. First, clients will search for
the presence of amoab-client.cfq file, loading client parameters from the first file
detected in SMOABHOMEDIR or SMOABHOMEDIR/etc. Next, clients will search for the
presence of amoab . cfqg file, loading client parameters from the first file detected in
SMOABHOMEDIR or SMOABHOMEDIR/etc, overriding any parameter values read from
the client configuration file. If both files are present on a host, it is safe to remove the
moab-client.cfq file after merging the client parameters into the moab . cfg file.

The Client interface is configured using the SCHEDCFG parameter. Most commonly, the
attributes SERVER and PORT must be set to point client commands to the appropriate
Moab server. Other parameters such as CLIENTTIMEOUT can also be set.

By default, Moab listens on all the interfaces of the machine on which it is installed. To bind
Moab to a specific address use 'SCHEDCFG[] BINDADDRESS=<IPV4>'and specify the
specific [IPv4 address of the interface on which Moab should listen. By default, Moab also
verifies that the SERVER parameter matches the output of the 'gethostbyname' system
call. To configure Moab to use a different alias (on multi-homed hosts for example) you can
specify the valid server aliases using 'SCHEDCFG []
SERVERALIAS=<aliasl>,<alias2>...'

3.6.1.D Scheduler Mode

The scheduler mode of operation is controlled by setting the MODE attribute of the
SCHEDCFG parameter. The following modes are allowed:

3.6 Configuring the Scheduler

Chapter 3: Scheduler Basics

57

N

INTERACTIVE Moab interactively confirms each scheduling action before taking any steps.
See interactive mode overview for more information.

MONITOR Moab observes cluster and workload performance, collects statistics,
interacts with allocation management services, and evaluates failures, but it
does not actively alter the cluster, including workload scheduling, and
resource provisioning. See monitor mode overview for more information.

NORMAL Moab actively schedules workload according to mission objectives and
policies; it creates reservations; starts, cancels, preempts, and modifies jobs;
and takes other scheduling actions.

SINGLESTEP Moab behaves as in NORMAL mode but will only schedule a single iteration
and then exit.

SLAVE Moab behaves as in NORMAL mode but will only start a job when explicitly
requested by a trusted grid peer service or administrator.

TEST Moab behaves as in NORMAL mode, will make reservations, and scheduling
decisions, but will then only log scheduling actions it would have taken if
running in NORMAL mode. In most cases, 'TEST' mode is identical to
MONITOR mode. See test mode overview for more information.

3.6.1.E Configuring a Job ID Offset

Moab assigns job IDs as integers in numeric order as jobs are submitted, starting with 1. In
some situations, you might want to offset the integer at which Moab starts to assign job IDs
in your system.

This example describes how you would offset the job IDs in a compound system consisting
of Site A, Site B, and Site C, each of which runs its own instance of Moab. Users belonging to
any of the sites can submit jobs to their own site and to the other two. To simplify
aggregation of usage records from the three sites, offset the job IDs for Site B to a starting
value higher than the expected total lifetime value for the system; in this example, to
20000000. Likewise, set Site C to 20,000,000 more, or 40000000. To do so, set the
MINJOBID attribute of SCHEDCFG in each system's moab . cfg to the offset value. To
ensure that Moab will never use the same job ID for two different sites, also set
MAXJOBID. If the Moab job naming process ever reaches the MAXJOBID, it will start over
again with the MINJOBID.

——————————————— € ———

3.6 Configuring the Scheduler

Chapter 3: Scheduler Basics

——————————————— € ———

——————————————— € ———

When users submit jobs to Moab using msub, Moab selects the job ID in numeric order,
starting with 1 in Site A, 20000000 in Site B, and 40000000 in Site C.

If the compound system in this example uses Torque as its resource manager and users
submit jobs directly to Torque using qsub, Torque assigns the job ID instead of Moab. In
this case, you should also offset the Torque job IDs by setting the next_job_number server
parameter of Site B and Site Cto 20000000 and 40000000, respectively.

———————————————————

———————————————————

o Torque job ID limits will allow you to use the 20,000,000 offset scheme for up to 4
sites.

Related Topics

« Initial Configuration

o Adding #INCLUDE files to moab.cfg

3.7 Credential Overview

Moab supports the concept of credentials, which provide a means of attributing policy and
resource access to entities such as users and groups. These credentials allow specification
of job ownership, tracking of resource usage, enforcement of policies, and many other
features. There are five types of credentials: user, group, account, class, and QoS. While the
credentials have many similarities, each plays a slightly different role.

e A

In this topic:

3.7.1 General Credential Attributes - page 59
3.7.1.A Credential Priority Settings - page 60
3.7.1.B Credential Usage Limits - page 60
3.7.1.C Service Targets - page 61
3.7.1.D Credential and Partition Access - page 61

3.7 Credential Overview

Chapter 3: Scheduler Basics

59

3.7.1.E Credential Statistics - page 63
3.7.1.F Job Defaults, Credential State, and General Configuration - page 63
3.7.2 User Credential - page 65
3.7.2.A Role - page 65
3.7.2.B Privileges - page 65
3.7.2.C Email Address - page 66
3.7.2.D Disable Moab User Email - page 66
3.7.2.E Disable Memory Enforcementin RESOURCELIMITPOLICY - page
66
3.7.3 Group Credential - page 66
3.7.4 Account (or Project) Credential - page 67
3.7.5 Class (or Queue) Credential - page 67
3.7.5.A Class Job Defaults - page 68
3.7.5.B Per Job Min/Max Limits - page 69
3.7.5.C Resource Access - page 70
3.7.5.D Class Membership Constraints - page 70
3.7.5.E Attributes Enabling Class Access to Other Credentials - page 71
3.7.5.F Special Class Attributes - page 71
3.7.5.G Setting Default Classes - page 73
3.7.5.H Creating a Remap Class - page 74
3.7.5.1 Class Attribute Overview - page 75
3.7.5.J Enabling Queue Complex Functionality - page 88
3.7.6 QoS Credential - page 89
3.7.6.A QoS Usage Limit Overrides - page 89
3.7.6.B QoS Service Targets - page 89
3.7.6.C QoS Privilege Flags - page 90
3.7.6.D QoS Charge Rate - page 90
3.7.6.E QoS Access Controls - page 90

3.7.1 General Credential Attributes

Internally, credentials are maintained as objects. Credentials can be created, destroyed,
queried, and modified. They are associated with jobs and requests providing access and
privileges. Each credential type has the following attributes:

o Priority Settings
o Usage Limits

o Service Targets

3.7 Credential Overview

Chapter 3: Scheduler Basics

o Credential and Partition Access
o Statistics
o Credential Defaults, State and Configuration Information

All credentials represent a form of identity, and when applied to a job, express ownership.
Consequently, jobs are subject to policies and limits associated with their owners.

3.7.1.A Credential Priority Settings

Each credential can be assigned a priority using the PRIORITY attribute. This priority
affects a job's total credential priority factor as described in the Priority Factors section. In
addition, each credential can also specify priority weight offsets, which adjust priority
weights that apply to associated jobs. These priority weight offsets include FSWEIGHT (see
Priority-Based Fairshare for more information), QTWEIGHT, and XFWEIGHT.

For example:

e
set priority weights)
CREDWEIGHT 1
USERWEIGHT 1
CLASSWEIGHT 1

i |
I I
i |
I I
| SERVICEWEIGHT 1

| XFACTORWEIGHT 10

| QUEUETIMEWEIGHT 1000

: # set credential priorities

| USERCFG[john] PRIORITY=200

| CLASSCFG[batch] PRIORITY=15

| CLASSCFG[debug] PRIORITY=100 :
: QOSCFEG[bottomfeeder] QTWEIGHT=-50 XFWEIGHT=100 |
| ACCOUNTCFG [topfeeder] PRIORITY=100 J

3.7.1.B Credential Usage Limits

Usage limits constrain which jobs can run, which jobs can be considered for scheduling,
and what quantity of resources each individual job can consume. With usage limits, policies
such as MAXJOB, MAXNODE, and MAXMEM can be enforced against both idle and active
jobs. Limits can be applied in any combination as shown in the example below where usage
limits include 32 active processors per group and 12 active jobs for user john. For a job to
run, it must satisfy the most limiting policies of all associated credentials. The Throttling
Policy section documents credential usage limits in detail.

. —— —————————————————————————

: GROUPCFG [DEFAULT] MAXPROC=32 MAXNODE=100
| GROUPCFG[staff] MAXNODE=200
| USERCFG[john] MAXJOB=12 |

3.7 Credential Overview

Chapter 3: Scheduler Basics

61

3.7.1.C Service Targets

Credential service targets allow jobs to obtain special treatment to meet usage or response
time based metrics. Additional information about service targets can be found in the
Fairshare section.

3.7.1.D Credential and Partition Access

Access to partitions and to other credentials can be specified on a per credential basis with
credential access lists, default credentials, and credential membership lists.
Credential Access Lists

You can use the ALTIST, PLIST, and QLIST attributes (shown in the following table) to
specify the list of credentials or partitions that a given credential can access.

Account ALIST (allows credential to access specified list of accounts

Partition PLIST (allows credential to access specified list of partitions)

QoS QLIST (allows credential to access specified list of QoSes)
Example 3-1:
{ USERCFG[bob] ALIST-jupiter,quantum 1
| USERCFG[steve] ALIST=quantum |
e e e e e e e e e e e e e e e e o e o o e o o o o e o o o o o o o o o o o o o o o o T o T o o o T — — —— — —— —— — J

o Account-based access lists are only enforced if using an accounting manager or if the
ENFORCEACCOUNTACCESS parameter is set to "TRUE.'

Assigning Default Credentials

Use the *DEF attribute (shown in the following table) to specify the default credential or
partition for a particular credential.

Account ADEF (specifies default account)

Class CDEF (specifies default class)

3.7 Credential Overview

Chapter 3: Scheduler Basics

QoS QDEF (specifies default QoS)

Example 3-2:

: # user bob can access accounts a2, a3, and a6. If no account is explicitly requested,
: # his job will be assigned to account a3

| USERCFG [bob] ALIST=a2,a3,a6b ADEF=a3

: # user steve can access accounts al4, a7, a2, a6, and al. If no account is explicitly
: # requested, his job will be assigned to account a2

L USERCFG[steve] ALIST=al4,a7,a2,a6,al ADEF=a2

Specifying Credential Membership Lists

As an alternate to specifying access lists, administrators can also specify membership lists.
This allows a credential to specify who can access it rather than allowing each credential to
specify which credentials it can access. Membership lists are controlled using the
MEMBERULIST, EXCLUDEUSERLIST and REQUIREDUSERLIST attributes, shown in
the following table:

User

Account, Group, QoS MEMBERULIST

Class EXCLUDEUSERLIST and REQUIREDUSERLIST

Example 3-3:

[# account omega3 can only be accessed by users johnh, stevek, jemp 1
L ACCOUNTCFG[omega3] MEMBERULIST=johnh, stevek, jenp |

Example 3-4: Controlling Partition Access on a Per User Basis

A site may specify the user john can access partitions atlas,pluto, and zeus and will
default to partition pluto. To do this, include the following line in the configuration file:

e

Example 3-5: Controlling QoS Access on a Per Group Basis

A site may also choose to allow everyone in the group staff toaccess QoS standard
and special with a default QoS of standard. To do this, include the following line in the
configuration file:

3.7 Credential Overview

62

Chapter 3: Scheduler Basics

63

——————————————— € ———

Example 3-6: Controlling Resource Access on a Per Account Basis

An organization wants to allow everyone in the account omega3 to access nodes 20
through 24. To do this, include the following in the configuration file:

I ACCOUNTCFG [omega3] MEMBERULIST=johnh, stevek, jenp
| SRCFG[omega3] HOSTLIST=r:20-24 ACCOUNTLIST=omegal
\

3.7.1.E Credential Statistics

Full statistics are maintained for each credential instance. These statistics record current
and historical resource usage, level of service delivered, accuracy of requests, and many
other aspects of workload. Note, though, that you must explicitly enable credential statistics
as they are not tracked by default. You can enable credential statistics by including the
following in the configuration file:

;
: USERCFG [DEFAULT] ENABLEPROFILING=TRUE]
| GROUPCFG [DEFAULT] ENABLEPROFILING=TRUE |
: ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE :
: CLASSCFG [DEFAULT] ENABLEPROFILING=TRUE |
L QOSCFG [DEFAULT] ENABLEPROFILING=TRUE J

3.7.1.F Job Defaults, Credential State, and General Configuration

Credentials can apply defaults and force job configuration settings via the following
parameters:

COMMENT

Description Associates a comment string with the target credential.

T T T T T T T T T e —— N
:USERCFG[steve] COMMENT="'works for boss, provides good

|
| service' :
:CLASSCFG[i3] COMMENT="queue for I/O intensive workload' |

——————

Example

HOLD

Description Specifies a hold should be placed on all jobs associated with the target
credential. Any job associated with the target credential will remain in the hold
state (i.e., the only way to remove the hold is to remove or disassociate the
target credential from the job).

3.7 Credential Overview

Chapter 3: Scheduler Basics

HOLD

|

o The order in which this HOLD attribute is evaluated depends on the
following credential precedence: USERCFG, GROUPCFG, ACCOUNTCEFG,
CLASSCEFG, QOSCFG, USERCFG [DEFAULT], GROUPCFG [DEFAULT],
ACCOUNTCFG [DEFAULT], CLASSCFG [DEFAULT], QOSCFG
[DEFAULT].

Sy
| USERCFG[userl] HOLD=false

GROUPCFG [userl] HOLD=true

Example
{

| Moab evaluates the user hold first, sees that it should not put a hold

| on the job, and moves on with scheduling.

T T
| GROUPCFG[userl] HOLD=true !
I

CLASSCFG[userl] HOLD=false

N O)

JOBFLAGS

Description Assigns the specified job flag to all jobs with the associated credential.

\
Example | CLASSCFG[batch] JOBFLAGS=suspendable i
| 00SCFG[special] JOBFLAGS=restartable !

NOSUBMIT

Description Specifies whether jobs belonging to this credential can submit jobs using msub.

R S———S——S—————.,
:ACCOUNTCFG[general] NOSUBMIT=TRUE }
| CLASSCFG[speciall] NOSUBMIT=TRUE J
N

Example

OVERRUN

Description = The amount of time a job can exceed its wallclock limit before being
terminated. (Only applies to user and class credentials.)

(
Example | CLASSCFG [bigmem] OVERRUN=00:15:00 |
\

3.7 Credential Overview

Chapter 3: Scheduler Basics

VARIABLE

|
|

Description Specifies attribute-value pairs associated with the specified credential. These
variables can be used in triggers and other interfaces to modify system
behavior.

(
Example | GROUPCFG[staff] VARIABLE='nocharge=true' 1
\

Credentials can carry additional configuration information. They can specify that detailed
statistical profiling should occur, that submitted jobs should be held, or that corresponding
jobs should be marked as preemptible.

3.7.2 User Credential

The user credential is the fundamental credential within a workload manager; each job
requires an association with exactly one user. In fact, the user credential is the only
required credential in Moab; all others are optional. In most cases, the job's user credential
is configured within or managed by the operating system itself, although Moab can be
configured to obtain this information from an independent security and identity
management service.

As the fundamental credential, the user credential has a number of unique attributes:
« Role

Privileges

o Email Address

o Disable Moab User Email

o Disable Memory Enforcement in RESOURCELIMITPOLICY

3.7.2.A Role

Moab supports role-based authorization, mapping particular roles to collections of specific
users. See the Security section for more information.

3.7.2.B Privileges

Moab supports the ability to configure which 'mdiag' commands a user can run.

Give all users as default:

———————— € ————

65 3.7 Credential Overview

Chapter 3: Scheduler Basics

Users without any specific PRIVILEGES can run 'mdiag -R' and 'mdiag -n".
Give specific PRIVILEGES:

——————————————— € ———

User 'carol' can run 'mdiag -S' and 'mdiag -n' but NOT 'mdiag -R'.

3.7.2.C Email Address

Facilities exist to allow user notification in the event of job or system failures or under
other general conditions. This attribute allows these notifications to be mailed directly to
the target user.

——————————————— € ———

3.7.2.D Disable Moab User Email

You can disable Moab email notifications for a specific user.

———————————————————

(0
| USERCFG[john] NOEMAIL=TRUE)l

\

3.7.2.E Disable Memory Enforcement in RESOURCELIMITPOLICY

You can disable memory enforcement for a specific user.

——————————————— € ———

3.7.3 Group Credential

The group credential represents an aggregation of users. User-to-group mappings are
often specified by the operating system or resource manager and typically map to a user's
UNIX group ID. However, user-to-group mappings can also be provided by a security and
identity management service, or you can specify such directly within Moab.

With many resource managers such as Torque and PBSPro, the group associated with a job
is either the user's active primary group as specified within the operating system or a
group that is explicitly requested at job submission time. When a secondary group is
requested, the user's default group and associated policies are not taken into account. Also
note that a job can only run under one group. If more constraining policies are required for
these systems, an alternate aggregation scheme such as the use of Account or QOS
credentials is recommended.

To enable support for secondary groups, add a SCHEDCFG line to moab.cfg with
FLAGS=EXTENDEDGROUPSUPPORT.

3.7 Credential Overview

Chapter 3: Scheduler Basics

67

To submit a job as a secondary group, refer to your local resource manager's job
submission options. For Torque users, see the group 1list=g 1ist option of the qsub -
W command.

3.7.4 Account (or Project) Credential

The account credential is also referred to as the project. This credential is generally
associated with a group of users along the lines of a particular project for accounting and
billing purposes. User-to-accounting mapping can be obtained from a resource manager or
accounting manager, or you can configure it directly within Moab. Access to an account can
be controlled via the ALTST and ADEF credential attributes specified via the Identity
Manager or the moab. cfg file.

The MANAGERS attribute (applicable only to the account and class credentials) allows an
administrator to assign a user the ability to manage jobs inside the credential, as if the user
is the job owner.

Example 3-7: MANAGERS Attribute

ACCOUNTCFG[general] MANAGERS=o0ps
ACCOUNTCFG[special] MANAGERS=stevep |

If a user is able to access more than one account, the desired account can be specified at
job submission time using the resource-manager specific attribute. For example, with
Torque this is accomplished using the -A argument to the qsub command.

Example 3-8: Enforcing Account Usage

Job-to-account mapping can be enforced using the ALTI ST attribute and the
ENFORCEACCOUNTACCESS parameter.

USERCFG[john] ALIST=projl,proj3
USERCFG([steve] ALIST=proj2,proj3,proj4

USERCFG[DEFAULT] ALIST=proj2

|
I
I
: USERCEFG [brad] ALIST=projl
I
: ENFORCEACCOUNTACCESS TRUE

I

3.7.5 Class (or Queue) Credential

o Class Job Defaults
o Per Job Min/Max Limits
« Resource Access

Class Membership Constraints

Attributes Enabling Class Access to Other Credentials

3.7 Credential Overview

Chapter 3: Scheduler Basics

o Special Class Attributes (such as Managers and Job Prologs)
o Setting Default Classes

¢ Creating a Remap Class

o Class Attribute Overview

« Enabling Queue Complex Functionality

The concept of the class credential is derived from the resource manager class or queue
object. Classes differ from other credentials in that they more directly impact job attributes.
In standard HPC usage, a user submits a job to a class and this class imposes a number of
factors on the job. The attributes of a class can be specified within the resource manager or
directly within Moab. Class attributes include the following:

o Job Defaults
Per Job Min/Max Limits

o Resource Access Constraints

o Class Membership Constraints

o Attributes Enabling Class Access to Other Credentials
o Special Class Attributes

~

o For all classes configured in Moab, a resource manager queue with the same name
should be created.

. J

~

o When Torque reports a new queue to Moab, a class of the same name is automatically
applied to all nodes (the same goes for existing queues when adding nodes). To
associate nodes to only specific classes, add CLASSCFG entries for every Torque
queue, and define the nodes linked to each queue/class via HOSTLIST expressions
and/or REMAPCLASS. (This augments the optional resources
default.neednodes queue setting in gmgr.)

3.7.5.A Class Job Defaults

Classes can be assigned to a default job template that can apply values to job attributes not
explicitly specified by the submitter. Additionally, you can specify shortcut attributes from
the table that follows:

3.7 Credential Overview

Chapter 3: Scheduler Basics

69

EE T

DEFAULT.ATTR Job Attribute
DEFAULT.DISK Required Disk (in MB)
DEFAULT.EXT Job RM Extension

DEFAULT.FEATURES Required Node Features/Properties
DEFAULT.GRES Required Consumable Generic Resources
DEFAULT.MEM Required Memory/RAM (in MB)
DEFAULT.NODESET Node Set Specification

DEFAULT.PROC Required Processor Count
DEFAULT.TPN Tasks Per Node

DEFAULT.WCLIMIT Wallclock Limit

N

o Defaults set in a class/queue of the resource manager will override the default values
of the corresponding class/queue specified in Moab.

. J

o RESOURCELIMITPOLICY must be configured in order for the CLASSCFG limits to
take effect.

\ J

Example 3-9:

I CLASSCFG[batch] DEFAULT.DISK=200MB DEFAULT.FEATURES=prod DEFAULT.WCLIMIT=1:00:00
| CLASSCFG[debug] DEFAULT.FEATURES=debug DEFAULT.WCLIMIT=00:05:00
\

3.7.5.B Per Job Min/Max Limits

Classes can be assigned a minimum and a maximum job template that constrains resource
requests. Jobs submitted to a particular queue must meet the resource request constraints
of these templates. If a job submission exceeds these limits, the entire job submission fails.

3.7 Credential Overview

Chapter 3: Scheduler Basics

MAX.ARRAYSUBJOBS

MAX.CPUTIME

MAX.NODE

MAX.PROC

MAX.PS

MIN.NODE

MIN.PROC

MIN.PS

MIN.TPN

MIN.WCLIMIT

MAX.WCLIMIT

Max Allowed Jobs in an Array
Max Allowed Utilized CPU Time
Max Allowed Node Count

Max Allowed Processor Count
Max Requested Processor-Seconds
Min Allowed Node Count

Min Allowed Processor Count

Min Requested Processor-Seconds
Min Tasks Per Node

Min Requested Wallclock Limit

Max Requested Wallclock Limit

o The parameters listed in the preceding table are for classes and PARCFG only, not
users, accounts, groups or QoSes, and they function on a per-job basis. The MAX . *
and MIN. * parameters are different from the MAXJOB, MAXNODE, and MAXMEM
parameters described earlier in Credential Usage Limits.

3.7.5.C Resource Access

Classes can be associated with a particular set of compute resources. Consequently, jobs

submitted to a given class can only use listed resources. This can be handled at the
resource manager level or via the CLASSCFG HOSTLIST attribute.

3.7.5.D Class Membership Constraints

Classes can be configured at either the resource manager or scheduler level to only allow
select users and groups to access them. Jobs that do not meet these criteria are rejected. If

specifying class membership/access at the resource manager level, see the respective

3.7 Credential Overview

70

Chapter 3: Scheduler Basics

71

resource manager documentation. Moab automatically detects and enforces these
constraints. If specifying class membership/access at the scheduler level, use the
REQUIREDUSERLIST or EXCLUDEUSERLIST attributes of the CLASSCFG parameter.

o Under most resource managers, jobs must always be a member of one and only one
class.

3.7.5.E Attributes Enabling Class Access to Other Credentials

Classes can be configured to allow jobs to access other credentials such as QoSs and
Accounts. This is accomplished using the QDEF, QLIST, ADEF, and ALIST attributes.

3.7.5.F Special Class Attributes

The class object also possesses a few unique attributes including JOBPROLOG,
JOBEPILOG,RESFAILPOLICY,and DISABLEAM attributes described in what follows.

MANAGERS

Users listed via the MANAGERS parameter are granted full control over all jobs submitted
to or running within the specified class.

: # allow john and steve to cancel and modify all jobs submitted to the class/queue ‘1
: special :
| CLASSCFG[special] MANAGERS=john, steve JI

In particular, a class manager can perform the following actions on jobs within a
class/queue:

« view/diagnose job (checkjob)
« cancel, requeue, suspend, resume, and checkpoint job (mjobctl)

« modify job (mjobctl)
JOBPROLOG

The JOBPROLOG class performs a function similar to the resource manager level job
prolog feature; however, there are some key differences:

« Moab prologs execute on the head node; resource manager prologs execute on the
nodes allocated to the job.

« Moab prologs execute as the primary Moab administrator, resource manager prologs
execute as root.

3.7 Credential Overview

Chapter 3: Scheduler Basics

Moab prologs can incorporate cluster environment information into their decisions
and actions. See Valid Variables.

Unique Moab prologs can be specified on a per class basis.

Job start requests are not sent to the resource manager until the Moab job prolog is
successfully completed.

Error messages generated by a Moab prolog are attached to jobs and associated
objects; stderr from prolog script is attached to job.

Moab prologs have access to Moab internal and peer services.

Valid epilog and prolog variables are:

$TIME Time that the trigger launches
$HOME Moab home directory

$USER User name the job is running under
$JOBID Unique job identifier

$HOSTLIST Entire host list for job

$SMASTERHOST Master host for job

The JOBPROLOG class attribute allows a site to specify a unique per-class action to take
before a job is allowed to start. This can be used for environmental provisioning, pre-

execution resource checking, security management, and other functions. Sample uses may

include enabling a VLAN, mounting a global file system, installing a new application or

virtual node image, creating dynamic storage partitions, or activating job specific software
services.

&

o A prolog is considered to have failed if it returns a negative number. If a prolog fails,
the associated job will not start.

o If a prolog executes successfully, the associated epilog is guaranteed to start, even if
the job fails for any reason. This allows the epilog to undo any changes made to the
system by the prolog.

3.7 Credential Overview

72

Chapter 3: Scheduler Basics

73

Job Prolog Examples

explicitly specify prolog arguments for special epilog :
CLASSCFG[special] JOBPROLOG='S$TOOLSDIR/specialprolog.pl $JOBID $HOSTLIST' I
use default prolog arguments for batch prolog :
CLASSCFG [batch] JOBPROLOG=$TOOLSDIR/batchprolog.pl I

JOBEPILOG

The Moab epilog is nearly identical to the prolog in functionality except that it runs after
the job completes within the resource manager but before the scheduler releases the
allocated resources for use by subsequent jobs. It is commonly used for job clean-up, file
transfers, signaling peer services, and undoing other forms of resource customization.

o An epilog is considered to have failed if it returns a negative number. If an epilog fails,
the associated job will be annotated and a message will be sent to administrators.

RESFAILPOLICY

This policy allows specification of the action to take on a per-class basis when a failure
occurs on a node allocated to an actively running job. See the Node Availability Overview
for more information.

DISABLEAM

You can disable allocation management for jobs in specific classes by setting the
DISABLEAM class attribute to TRUE. For all jobs outside of the specified classes, allocation
enforcement will continue to be enforced.

e, . T T T T T]
: # do not enforce allocations on low priority and debug jobs |
: CLASSCFG[lowprio] DISABLEAM=TRUE :
| CLASSCFG [debug] DISABLEAM=TRUE |
\

3.7.5.G Setting Default Classes

In many cases, end-users do not want to be concerned with specifying a job class/queue.
This is often handled by defining a default class. Whenever a user does not explicitly
submit a job to a particular class, a default class, if specified, is used. In resource managers
such as Torque, this can be done at the resource manager level and its impact is
transparent to the scheduler. The default class can also be enabled within the scheduler on
a per resource manager or per user basis. To set a resource manager default class within
Moab, use the DEFAULTCLASS attribute of the RMCFG parameter. For per user defaults,
use the CDEF attribute of the USERCFG parameter.

3.7 Credential Overview

Chapter 3: Scheduler Basics

3.7.5.H Creating a Remap Class

If a single default class is not adequate, Moab provides more flexible options with the
REMAPCLASS parameter. If this parameter is set and a job is submitted to the remap class,
Moab attempts to determine the final class to which a job belongs based on the resources
requested. If a remap class is specified, Moab compares the job's requested nodes,
processors, memory, and node features with the class's corresponding minimum and
maximum resource limits. Classes are searched in the order in which they are defined;
when the first match is found, Moab assigns the job to that class.

A You should not use remap classes to route jobs to queues/nodes in conjunction with
a Torque routing queue. You should select only one of the two methods.

Because Moab remaps at job submission, updates you make to job requirements after
submission will not cause any class changes. Moab does not restart the process.

o In order to use REMAPCLASS, you must specify a DEFAULTCLASS. For example:

In the example that follows, a job requesting 4 processors and the node feature fast are
assigned to the class quick:

You must specify a default class in order to use remap classes
RMCFG[internal] DEFAULTCLASS=batch

Jobs submitted to "batch" should be remapped
REMAPCLASS batch

stevens only queue
CLASSCFG[stevens] REQ.FEATURES=stevens REQUIREDUSERLIST=stevens, stevens2

Special queue for I/0O nodes
CLASSCFG[io] MAX.PROC=8 REQ.FEATURES=io

General access queues

CLASSCFG[quick] MIN.PROC=2 MAX.PROC=8 REQ.FEATURES=fast|short
CLASSCFG[medium] MIN.PROC=2 MAX.PROC=8

CLASSCFG[DEFAULT] MAX.PROC=64

The following parameters can be used to remap jobs to different classes:
e MIN.PROC

¢ MAX.PROC

e MIN.TPN

¢ MAX.TPN

¢ MIN.WCLIMIT

3.7 Credential Overview

Chapter 3: Scheduler Basics

75

MAX .WCLIMIT
e REQ.FEATURES

e REQ.FLAGS=INTERACTIVE

REQUIREDUSERLIST

If the parameter REMAPCLASSLIST is set, then only the listed classes are searched and
they are searched in the order specified by this parameter. If none of the listed classes are
valid for a particular job, that job retains its original class.

o The remap class only works with resource managers that allow dynamic modification
of a job's assigned class/queue.

& J

o If default credentials are specified on a remap class, a job submitted to that class will
inherit those credentials. If the destination class has different default credentials, the
new defaults override the original settings. If the destination class does not have
default credentials, the job maintains the defaults inherited from the remap class.

3.7.5.1 Class Attribute Overview

The following table enumerates the different attributes for CLASSCFG.

o Setting DEFAULT.* on a class does not assign resources or features to that class.
Rather, it specifies resources that jobs will inherit when they are submitted to the
class without their own resource requests. To configure features, use NODECFG.

3.7 Credential Overview

Chapter 3: Scheduler Basics

CLASSCFG Parameters

DEFAULT.ATTR

Format <ATTRIBUTE>[,<ATTRIBUTE>]...
Description One or more comma-delimited generic job attributes.

Example

DEFAULT.DISK

Format <INTEGER>
Description Default amount of requested disk space.

Example

DEFAULT.EXT

Format <STRING>
Description Default job RM extension.

Example

DEFAULT.FEATURESDEFAULT.EXT

Format Comma-delimited list of features.

Description Default list of requested node features (a.k.a. node properties).
This only applies to compute resource regs.

Example

DEFAULT.GRES

Format <STRING>[<COUNT>][,<STRING>[<COUNT>]]...

3.7 Credential Overview

Chapter 3: Scheduler Basics

DEFAULT.GRES

|
|

Description Default list of per task required consumable generic resources.

(
Example | CLASSCFG[viz] DEFAULT.GRES=viz:2 i

DEFAULT.MEM

Format <INTEGER> (in MB)
Description Default amount of requested memory.

Example

DEFAULT.NODE

Format <INTEGER>

Description Default required node count.

(
Example | CLASSCFG[viz] DEFAULT.NODE=5 I
\

When a user submits a job to the viz class without a specified node count,
the job is assigned 5 nodes.

DEFAULT.NODESET

Format <SETTYPE>:<SETATTR>[:<SETLIST>[<SETLIST>]...]

Description Default node set.

Example | CLASSCFG [amd]

: DEFAULT .NODESET=ONEOF : FEATURE : ATHLON, OPTERON

DEFAULT.PROC

Format <INTEGER>

77 3.7 Credential Overview

Chapte

|

r 3: Scheduler Basics

DEFAULT.PROC

Description Default number of requested processors.

Example

DEFAULT.TPN

Format <INTEGER>
Description Default number of tasks per node.

Example

DEFAULT.WCLIMIT

Format <INTEGER>
Description Default wallclock limit.

Example

EXCL.FEATURES

Format Comma- or pipe-delimited list of node features.

Description Set of excluded (disallowed) features. If delimited by commas, reject job if
all features are requested; if delimited by the pipe symbol (|), reject job if
at least one feature is requested.

(
Example | CLASSCFG[intel] EXCL.FEATURES=ATHLON, AMD
N

EXCL.FLAGS

Format Comma-delimited list of job flags.

Description Set of excluded (disallowed) job flags. Reject job if any listed flags are set.

3.7 Credential Overview

78

Chapter 3: Scheduler Basics

79

N

EXCL.FLAGS

Example

CLASSCFG [batch] EXCL.FLAGS=INTERACTIVE |

|
|
~——

EXCLUDEUSERLIST

Format
Description

Example

FLAGS

Comma-delimited list of users.

List of users not permitted access to class.

Format
Description

Example

NoBackfill

Disable jobs from this class from backfilling.

ppr——

CLASSCFG [batch] FLAGS=NoBackfill 1

|
|
~——

FORCENODEACCESSPOLICY

Format

Description

Example

FSCAP

Format
Description

Example

One of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Node access policy associated with queue. If set, this value overrides
any per job settings specified by the user at the job level. See Node
Access Policy overview for more information.

<DOUBLE>[%]

See fairshare policies specification.

3.7 Credential Overview

Chapter 3: Scheduler Basics

FSTARGET

I
|

Format <DOUBLE>[%]

Description See fairshare policies specification.

Example

HOSTLIST

Format Host expression, or comma-delimited list of hosts or host ranges.

Description List of hosts associated with a class. If specified, Moab constrains the
availability of a class to only nodes listed in the class host list.

(
Example | CLASSCFG [batch] HOSTLIST=r:abs[45-113] |
\

IGNHOSTLIST

Format <BOOLEAN>
Default FALSE

Description If set to TRUE, any job submitted to the class will have its requested
hostlist ignored by the scheduler.

(
Example | CLASSCFG [batch] IGNHOSTLIST=TRUE |
\

JOBEPILOG

Format <STRING>

Description Scheduler level job epilog to be run after job is completed by resource
manager. See special class attributes.

Example

3.7 Credential Overview

Chapter 3: Scheduler Basics

JOBFLAGS

|

Format Comma-delimited list of job flags.

Description See the flag overview for a description of legal flag values.

(
Example | CLASSCFG [batch] JOBFLAGS=restartable [
\

JOBPROLOG

Format <STRING>

Description Scheduler level job prolog to be run before job is started by resource
manager. See special class attributes.

Example

JOBTRIGGER

Format <STRING>

Description Job trigger associated with the class. See Job Triggers.

~
| CLASSCFG [batch] JOBTRIGGER=atype=exec,etype=create,action="/opt/moab/tools }
|

|
| /job_trigger.pl" |
LS

| Execute /opt/moab/tools/job trigger.pl when a job
| of class batch is created.

Example

Format <USER>[,<USER>]...

Description Users allowed to control, cancel, preempt, and modify jobs within
class/queue. See special class attributes.

f
Example | CLASSCFG[fast] MANAGERS=root, kerry,e43 I
\

81 3.7 Credential Overview

Chapter 3: Scheduler Basics

MAXJOB

|

Format <INTEGER>
Description = Maximum number of active (starting or running) jobs allowed in the class.

Example

MAXPROCPERNODE

|

Format <INTEGER>

Description = Maximum number of processors requested per node. May optionally
include node names to articulate which nodes have a specific limit.

e
: CLASSCFG[cpu] MAXPROCPERNODE=20 # When using this class, limit 20 for }
all nodes |

|

N)
ey ——
: CLASSCFG[cpu] MAXPROCPERNODE [nl,n2]=20 MAXPROCPERNODE[n3]=10 # When |

| using this class, limit 20 for nl & n2 and limit 10 for n3 J
N
R S ———————.
:CLASSCFG[Cpu] MAXPROCPERNODE [nl,n2]=20 MAXPROCPERNODE=10 # When using |
| this class, limit 20 for nl & n2 and limit 10 for all other nodes |
\

Example

MAX.CPUTIME

Format <INTEGER>
Description = Maximum allowed utilized CPU time.

Example

MAX.NODE

Format <INTEGER>

Description =~ Maximum number of requested nodes per job. Also used when
REMAPCLASS is set to correctly route the job.

3.7 Credential Overview

Chapter 3: Scheduler Basics

MAX.NODE

|
|

(
Example | CLASSCFG [batch] MAX.NODE=64 i
\

Deny jobs requesting over 64 nodes access to the class batch.

MAX.PROC

Format <INTEGER>

Description = Maximum number of requested processors per job. Also used when
REMAPCLASS is set to correctly route the job.

o This enforces the requested processors, not the actual processors
dedicated to a job. When enforcing limits for NODEACCESSPOLICY
SINGLEJOB, use MAX.NODE instead.

Example | CLASSCFG[small] MAX.PROC[USER]=3,6 I
\

MAX.PS

Format <INTEGER>
Description = Maximum requested processor-seconds.

Example

MAX.TPN

|
|

Format <INTEGER>

Description =~ Maximum required tasks per node per job. Also used when REMAPCLASS
is set to correctly route the job.

Example

83 3.7 Credential Overview

Chapter 3: Scheduler Basics

MAX.WCLIMIT

|
|

Format

Description

Example

Format

Description

Example

MIN.PROC

[[[DD:]HH:]MM:]SS

Maximum allowed wallclock limit per job. Also used when REMAPCLASS is
set to correctly route the job.

<INTEGER>

Minimum number of requested nodes per job. Also used when
REMAPCLASS is set to correctly route the job.

Jobs must request at least 16 nodes to be allowed to access the class.

Format

Description

Example

<INTEGER>

Minimum number of requested processors per job. Also used when
REMAPCLASS is set to correctly route the job.

Jobs must request at least 32 processors to be allowed to access the class.

Format
Description

Example

3.7 Credential Overview

<INTEGER>

Minimum requested processor-seconds.

84

Chapter 3: Scheduler Basics

85

MIN.TPN

|
|

Format

Description

Example

MIN.WCLIMIT

<INTEGER>

Minimum required tasks per node per job. Also used when REMAPCLASS is
set to correctly route the job.

Format

Description

Example

[[[DD:]HH:]MM:]SS

Minimum required wallclock limit per job. Also used when REMAPCLASS is
set to correctly route the job.

NODEACCESSPOLICY

Format

Description

Example

PARTITION

One of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Default node access policy associated with queue. This value will be
overridden by any per job settings specified by the user at the job level. See
Node Access Policy overview.

|

Format
Description

Example

<STRING>

Partition name where jobs associated with this class must run.

3.7 Credential Overview

Chapter 3: Scheduler Basics

PRIORITY

|

Format <INTEGER>

Description Priority associated with the class. See Priority overview.

CLASSCFG[batch] PRIORITY=1000 !

Example

Format <QOSID>

Description Default QoS for jobs submitted to this class. You can specify a maximum of
four QDEF entries per credential. Any QoSes specified after the fourth will
not be accepted.

o In addition to classes, you can also specify QDEF for accounts,
groups, and users.

Example | CLASSCFG[batch] QDEF-base |
\

Jobs submitted to class batch that do not explicitly request a QoS will
have the QoS base assigned.

QLIST

Format <QOSID>[,<QO0SID>]...

Description List of accessible QoSs for jobs submitted to this class.

(T T T T T T T T T T T T T T e e e N
| CLASSCFG[batch] QDEF=base |
| OLIST=base, fast, special,bigio |
N J

Example

REQ.FEATURES

Format Comma- or pipe-delimited list of node features.

Description Set of required features. If delimited by commas, all features are required;
if delimited by the pipe symbol (|), at least one feature is required.

3.7 Credential Overview

Chapter 3: Scheduler Basics

REQ.FEATURES

|
|

(
Example | CLASSCFG [amd] REQ.FEATURES=ATHLON, AMD I
\

REQ.FLAGS

Format REQ.FLAGS can be used with only the INTERACTIVE flag.

Description Sets the INTERACTIVE flag on jobs in this class.

Example

CLASSCFG[orion] REQ.FLAGS=INTERACTIVE |

REQUIREDACCOUNTLIST

Format Comma-delimited list of accounts.

Description List of accounts allowed to access and use a class (analogous to *LIST
for other credentials).

P —————————— e

,' CLASSCFEG[jasper] REQUIREDACCOUNTLIST=testers,development 1
e J

Example

REQUIREDUSERLIST

|
|

Format Comma-delimited list of users.

Description List of users allowed to access and use a class (analogous to *LIST for
other credentials).

{
Example | CLASSCFG[jasper] REQUIREDUSERLIST=john,ul3, steve,guest 1
\

REQUIREDQOSLIST

Format Comma-delimited list of QoSs

Description List of QoSs allowed to access and use a class (analogous to *LIST for
other credentials).

87 3.7 Credential Overview

Chapter 3: Scheduler Basics

- _

REQUIREDQOSLIST

o The number of unique QoSs is limited by the Moab Maximum ACL
limit, which defaults to 32.

Example { CLASSCFG[jasper] REQUIREDQOSLIST=hi,lo j
SYSPRIO
Format <INTEGER>

Description Value of system priority applied to every job submitted to this class.

o Once a system priority has been added to a job, either manually or
through configuration, it can only be removed manually.

(
Example | CLASSCFG[special] SYSPRIO=100 I
\

WCOVERRUN

Format [[[DD:]HH:]MM:]SS
Description Tolerated amount of time beyond the specified wallclock limit.

Example

3.7.5.] Enabling Queue Complex Functionality

Queue complexes allow an organization to build a hierarchy of queues and apply certain
limits and rules to collections of these queues. Moab supports this functionality in two ways.
The first way, queue mapping, is very simple but limited in functionality. The second
method provides very rich functionality but requires more extensive configuration using
the Moab hierarchical fairshare facility.

Queue Mapping

Queue mapping allows collections of queues to be mapped to a parent credential object
against which various limits and policies can be applied, as in the following example:

3.7 Credential Overview

88

Chapter 3: Scheduler Basics

89

: QOSCFG[general] MAXIJOB[USER]=14 PRIORITY=20 E
| QOSCFG[prio] MAXIJOB[USER]=8 PRIORITY=2000 |
: # group short, med, and long jobs into 'general' QOS :
: CLASSCFG[short] QDEF=general FSTARGET=30 :
| CLASSCFG[med] QDEF=general FSTARGET=40 |
: CLASSCFG[long] QDEF=general FSTARGET=30 MAXPROC=200 :
| # group interactive and debug jobs into 'prio' QOS I
| CLASSCFG[inter] QDEF=prio :
: CLASSCFG[debug] QDEF=prio :
|\ CLASSCFG[premier] PRIORITY=10000 j|

3.7.6 QoS Credential

The concept of a quality of service (QoS) credential is unique to Moab and is not derived
from any underlying concept or peer service. In most cases, the QoS credential is used to
allow a site to set up a selection of service levels for end-users to choose from on a long-
term or job-by-job basis. QoSs differ from other credentials in that they are centered
around special access where this access may allow use of additional services, additional
resources, or improved responsiveness. Unique to this credential, organizations can also
choose to apply different charge rates to the varying levels of service available within each
QoS. As QoS is an internal credential, all QoS configuration occurs within Moab.

QoS access and QoS defaults can be mapped to users, groups, accounts, and classes,
allowing limited service offering for key users. As mentioned, these services focus around
increasing access to special scheduling capabilities & additional resources and improving
job responsiveness. At a high level, unique QoS attributes can be broken down into the
following:

o Usage Limit Overrides
o Service Targets

« Privilege Flags

o Charge Rate

o Access Controls

3.7.6.A QoS Usage Limit Overrides

All credentials allow specification of job limits. In such cases, jobs are constrained by the
most limiting of all applicable policies. With QoS override limits, however, jobs are limited
by the override, regardless of other limits specified.

3.7.6.B QoS Service Targets

Service targets cause the scheduler to take certain job-related actions as various
responsiveness targets are met. Targets can be set for either job queue time or job

3.7 Credential Overview

Chapter 3: Scheduler Basics

expansion factor and cause priority adjustments, reservation enforcement, or preemption
activation. In strict service centric organizations, Moab can be configured to trigger various
events and notifications in the case of failure by the cluster to meet responsiveness targets.

3.7.6.C QoS Privilege Flags

QoSs can provide access to special capabilities. These capabilities include preemption, job

deadline support, backfill, next to run priority, guaranteed resource reservation, resource
provisioning, dedicated resource access, and many others. See the complete list in the QoS
Facility Overview section.

3.7.6.D QoS Charge Rate

Associated with the QoSs many privileges is the ability to assign end-users costs for the use
of these services. This charging can be done on a per-QoS basis and can be specified for
both dedicated and use-based resource consumption. The Quality of Service (QoS) Facilities
section covers more details on QoS level costing configuration while the Charging and
Allocation Management section provides more details regarding general single cluster and
multi-cluster charging capabilities.

3.7.6.E QoS Access Controls

QoS access control can be enabled on a per QoS basis using the MEMBERULIST attribute or
specified on a per-requestor basis using the QDEF and QLIST attributes of the USERCFG,
GROUPCFG, ACCOUNTCFG, and CLASSCFG parameters. See Managing QoS Access for more
detail.

Related Topics

« Identity Manager Interface

o Usage Limits

3.8 Job Flags

ADVRES

Format ADVRES[:<RESID>]

3.8 Job Flags

Chapter 3: Scheduler Basics

91

ADVRES

|
|

Default

Description

Example

ALLPROCS

Use available resources where ever found, whether inside a reservation or not.

Specifies the job can only utilize accessible, reserved resources. If <RESID> is
specified, only resources in the specified reservation can be utilized.

I The job can only utilize resources located in the META. 1
| reservation.

Format
Default

Description

Example

Each task should occupy all the processors on the node.

o Incompatible with ppn and non-Torque systems.

o ALLPROCS is scheduled to be deprecated in a future Moab version
where it will be replaced with the new NUMA job submission syntax
(place=node in this particular case).

:r Each of the 6 tasks will occupy all the processors on the node and |
| the job will launch enough processes to occupy each of those |
| processors. }

ARRAYJOBPARLOCK

Format
Default

Description

Specifies that the job array being submitted should not span across multiple
partitions. This locks all subjobs of the array to a single partition. If you want
to lock all job arrays to a single partition, specify the ARRAYJOBPARLOCK
parameter in moab . cfg to force this behavior on a global scale.

3.8 Job Flags

Chapter 3: Scheduler Basics

ARRAYJOBPARLOCK

(
Example | > msub -t moab.[1-5]%3 -1 walltime=30, flags=arrayjobparlock 1
8

ARRAYJOBPARSPAN

Format
Default

Description Specifies that the job array being submitted should span across multiple
partitions. This is the default behavior in Moab, unless the ARRAYJOBPARLOCK
parameter is specified in moab . c£g. This job flag overrides the
ARRAYJOBPARLOCK parameter so that job arrays can be allowed to span
multiple partitions at submit time.

(
Example | > msub -t moab.[1-5]%3 -1 walltime=30, flags=arrayjobparspan |
8

FORCEPROVISION

Format FORCEPROVISION

Default
Description A job will provision nodes whether or not they already have the requested OS.
When provisioning is enabled (on KNL systems, for example) and this flag is

present, the default provisioning behavior (where Moab does not provision a
node if the current OS already matches the one being requested) is overridden.

(
Example | msub -1 os=RHEL, flags=forceprovision |
\

GRESONLY
Format GRESONLY
Default False

Description Uses no compute resources such as processors, memory, and so forth; uses

3.8 Job Flags

Chapter 3: Scheduler Basics

GRESONLY

|
|

only generic resources.

(
Example | > msub -1 gres=matlab,walltime=300 |
N

IGNIDLEJOBRSV

Format IGNIDLEJOBRSV

Default N/A

Description Only applies to QOS. IGNIDLEJOBRSV allows jobs to start without a
guaranteed walltime. Instead, it overlaps the idle reservations of real jobs and
is preempted 2 minutes before the real job starts.

(
Example | QOSCFG [standby] JOBFLAGS=IGNIDLEJOBRSV I
\

Format NOQUEUE
Default Jobs remain queued until they are able to run.

Description Specifies that the job should be removed if it is unable to allocate resources
and start execution immediately.

Example | FLAGS=NOQUEUE [
\

|
|
| time.

This functionality is identical to the resource manager extension
QUEUE]JOB:FALSE.

NORMSTART

Format: NORMSTART

93 3.8 Job Flags

Chapter 3: Scheduler Basics

NORMSTART

|
|

Default:

Description:

Example:

PREEMPTEE

|
|

Format:

Default:

Description:

Example:

PREEMPTOR

Format
Default

Description

Example

3.8 Job Flags

Moab passes jobs to a resource manager to schedule.

Specifies that the job is an internal system job and will not be started via an
RM.

PREEMPTEE
Jobs cannot be preempted by other jobs

Specifies that the job can be preempted by other jobs that have the
PREEMPTOR flag set.

| ﬂag set.

PREEMPTOR

Jobs cannot preempt other jobs.

Specifies that the job can preempt other jobs that have the PREEMPTEE flag
set.

__

94

Chapter 3: Scheduler Basics

95

PURGEONSUCCESSONLY

Format PURGEONSUCCESSONLY

|
|

Default Completed jobs are sent to a queue for a short period of time before Moab

purges them from the system.

Description Specifies that Moab should only purge the job from the completed queue if it
completed successfully. If the job failed, Moab will keep it in the queue
indefinitely to allow you to restart it at any time. This flag is particularly

useful for setup and take down jobs in job workflows. See Creating
Workflows with Job Templates for more information.

Example

FLAGS=PURGEONSUCCESSONLY

RESTARTABLE
Format RESTARTABLE
Default Jobs cannot be restarted if preempted.

Description Specifies jobs can be requeued and later restarted if preempted.

s ey Sy —
| 3\
|

Example FLAGS=RESTARTABLE i

~

:{ The associated job can be preempted and restarted at a
! later date.

SUSPENDABLE

Format SUSPENDABLE

Default Jobs cannot be suspended if preempted.

Description Specifies jobs can be suspended and later resumed if preempted.

(
Example | FLAGS=SUSPENDABLE t

|
Y S 0 0 R J

e

3.8 Job Flags

Chapter 3: Scheduler Basics

SUSPENDABLE

|

SYSTEMJOB

- N

The associated job can be suspended and resumed at a
later date.

Format
Default
Description

Example

SYSTEMJOB
N/A

Creates an internal system job that does not require resources.

USEMOABJOBID

Format
Default

Description

Example

<BOOLEAN>
FALSE

Specifies whether to return the Moab job ID when running 'msub’, or the
resource manager's job ID if it is available.

o Setting USEMOABJOBID here overrides the global setting for
USEMOAB]JOBID in moabcfg. See USEMOABJOBID for more information.

[
| FLAGS=USEMOABJOBID SELECT=TRUE J
N e e e

WIDERSVSEARCHALGO

|
|

Format
Default

Description

3.8 Job Flags

<BOOLEAN>

When Moab is determining when and where a job can run, it either searches
for the most resources or the longest range of resources. In almost all cases
searching for the longest range is ideal and returns the soonest starttime. In
some rare cases, however, a particular job may need to search for the most

96

Chapter 3: Scheduler Basics

WIDERSVSEARCHALGO

resources. In those cases this flag can be used to have the job find the soonest
starttime. The flag can be specified at submit time, or you can use mjobctl -m
to modify the job after it has been submitted. See the RSVSEARCHALGO

parameter.
(T 3\
Example | > msub -1 flags=widersvsearchalgo :
| |
| > mjobctl -m flags+=widersvsearchalgo job.1l)l
L
Related Topics

o Setting Per-Credential Job Flags

97 3.8 Job Flags

Chapter 4: Scheduler Commands

Chapter 4: Scheduler Commands

-~

In this chapter:

4.1

4.2
43
4.4
4.5
4.6
4.7

Moab Command Overview 99
4.1.1 Moab Commands 99
4.1.2 Moab Command Options ... 101
4.1.3 Commands Providing Maui Compatibility 102
Status Commands 102
Job Management Commands ... 103
Reservation Management Commands ... 104
Policy/Configuration Management Commands 105
End-User Commands 105
Moab Commands 106
4.7 CheCK oD o 106
A.7.2 checknode 118
4.7 83 meredetl 123
A7 A MAIAG . o 127
475 MAIAQ =8 ..o 132
4.7 6 mdiag -b 133
47,7 MAIag ~C 133
4.7 8 Mdiag —f o 137
A 7.9 MAIAG T oo 139
4740 Mdiag N .o 141
A7 A MNAiag —P 147
A7 12 MAIAG Qoo 150
4.7 A3 MAiag I o 151
4.7 14 mdiag -R oo 155
47 A5 Mdiag =S . 156
4.7 A6 MAiag =S 157
47 AT mdiag -t 158
4.7 A8 MAiag - o 159
4719 Mdiag ~U . 161
4.7, 20 MO Cl . L 162
4.7 21 mnodect] . 179

~

98

Chapter 4: Scheduler Commands

4.7 .22 MOAD 185
4.7, 23 MIrmCHl 186
A7 24 MIrSVCH 190
4.7 .26 mschedctl .. 216
A7 27 MSNOW 225
A.7.28 MSNOW -8 227
4.7.29 mshow -a (mshow in a Hosting Environment) 237
4.7, 30 MSUD L 239
4.7.31 mvcctl (Moab Virtual Container Control) 268
4.7.32 ShOWDT . 273
4.7.33 SNOWQ .o 277
4.7.34 showhist.moab.pl 287
A.7.35 SNOWIES L 291
4.7.36 showstart .. 297
4.7.37 showstate ... L 301
4.7.38 showstats ... L 302
4.7.39 showstats —f . 315
4.7.40 Deprecated Commands ... 318

4.1 Moab Command Overview

-

In this topic:

4.1.1 Moab Commands - page 99
4.1.2 Moab Command Options - page 101
4.1.3 Commands Providing Maui Compatibility - page 102

J/

4.1.1 Moab Commands

checkjob Provide detailed status report for specified job

99

4.1 Moab Command Overview

checknode
mcredctl
mdiag
mjobctl
mnodectl
moab
mrmctl
mrsvctl
mschedctl
mshow
mshow -a
msub
mvcctl
showbf
showhist.moab.pl
showq
showres
showstart

showstate

4.1 Moab Command Overview

Chapter 4: Scheduler Commands

Provide detailed status report for specified node

Controls various aspects about the credential objects within Moab
Provide diagnostic reports for resources, workload, and scheduling
Control and modify job

Control and modify nodes

Control the Moab daemon

Query and control resource managers

Create, control and modify reservations

Modify scheduler state and behavior

Displays various diagnostic messages about the system and job queues
Query and show available system resources

Scheduler job submission

Create, modify, and delete VCs

Show current resource availability

Show past job information

Show queued jobs

Show existing reservations

Show estimates of when job can/will start

Show current state of resources

100

Chapter 4: Scheduler Commands

101

showstats Show usage statistics

showstats -f Show various tables of scheduling/system performance

4.1.2 Moab Command Options

For many Moab commands, you can use the following options to specify that Moab will run
the command in a different way or different location from the configured default. These
options do not change your settings in the configuration file; they override the settings for
this single instance of the command.

R

--about Displays build and version information and the status of your Moab
license.

--help Displays usage information about the command.

--host= Causes Moab to run the client command on the specified host.

<serverHostName>

-- Causes Moab to write log information to STDERR as the client

loglevel= command is running. For more information, see Logging Overview.

<logLevel>

--msg=<message>

port=
<serverPort>

timeout=<seconds>
--version

--xml

Causes Moab to annotate the action in the event log.

Causes Moab to run the command using the port specified.

Sets the maximum time that the client command will wait for a
response from the Moab server.

Displays version information.

Causes Moab to return the command output in XML format.

4.1 Moab Command Overview

Chapter 4: Scheduler Commands

4.1.3 Commands Providing Maui Compatibility

A The following commands are deprecated. Click the link for respective deprecated
commands to see the updated replacement command for each.

canceljob
changeparam

diagnose

releasehold
releaseres
runjob
sethold
setqos
setres
setspri

showconfig

Cancel job
Change in memory parameter settings

Provide diagnostic report for various aspects of resources, workload, and
scheduling

Release job defers and holds
Release reservations

Force a job to run immediately
Set job holds

Modify job QOS settings

Set an admin/user reservation
Adjust job/system priority of job

Show current scheduler configuration

4.2 Status Commands

The status commands organize and present information about the current state and
historical statistics of the scheduler, jobs, resources, users, and accounts. The following
table presents the primary status commands and flags:

4.2 Status Commands

102

Chapter 4: Scheduler Commands

103

checkjob Displays detailed job information such as job state, resource
requirements, environment, constraints, credentials, history, allocated
resources, and resource utilization.

checknode Displays detailed node information such as node state, resources,
attributes, reservations, history, and statistics.

mdiag -f Displays summarized fairshare information and any unexpected fairshare
configuration.

mdiag -j Displays summarized job information and any unexpected job state.

mdiag -n Displays summarized node information and any unexpected node state.

mdiag -p Displays summarized job priority information.

mschedctl -f Resets internal statistics.

showstats -f Displays various aspects of scheduling performance across a job

duration/job size matrix.

showq [-r|-i] Displays various views of currently queued active, idle, and non-eligible
jobs.

showstats -g Displays current and historical usage on a per group basis.

showstats -u Displays current and historical usage on a per user basis.

showstats -v Displays high level current and historical scheduling statistics.

4.3 Job Management Commands

Moab shares job management tasks with the resource manager. Typically, the scheduler
only modifies scheduling relevant aspects of the job such as partition access, job priority,
charge account, and hold state. The following table covers the available job management
commands. The Commands Overview lists all available commands.

4.3 Job Management Commands

Chapter 4: Scheduler Commands

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints,
credentials, history, allocated resources, and resource utilization.

mdiag -j Displays summarized job information and any unexpected job state.
releasehold -a Removes job holds or deferrals.

runjob Starts job immediately, if possible.

sethold Sets hold on job.

setqos Sets/modifies QoS of existing job.

setspri Adjusts job/system priority of job.

Related Topics

o Job State Definitions

4.4 Reservation Management Commands

Moab exclusively controls and manages all advance reservation features including both
standing and administrative reservations. The following table covers the available
reservation management commands:

mdiag -r Displays summarized reservation information and any unexpected state.
mrsvctl Reservation control.
mrsvctl -r Removes reservations.

mrsvctl -c Creates an administrative reservation.

4.4 Reservation Management Commands 104

Chapter 4: Scheduler Commands

105

showres Displays information regarding location and state of reservations.

4.5 Policy/Configuration Management Commands

Moab allows dynamic modification of most scheduling parameters allowing new scheduling
policies, algorithms, constraints, and permissions to be set at any time. Changes made via
Moab client commands are temporary and are overridden by values specified in Moab
configuration files the next time Moab is shut down and restarted. The following table
covers the available configuration management commands:

mschedctl -1 Displays triggers, messages, and settings of all configuration parameters.
mschedctl Controls the scheduler (behavior, parameters, triggers, messages).

mschedctl -m Modifies system values.

4.6 End-User Commands

While the majority of Moab commands are tailored for use by system administrators, a
number of commands are designed to extend the knowledge and capabilities of end-users.
The following table covers the commands available to end-users.

~

o When using Active Directory as a central authentication mechanism, all nodes must
be reported with a different name when booted in both Linux and Windows (for
instance, node01-1 for Linux and node 01 for Windows). If a machine account with
the same name is created for each OS, the most recent OS will remove the previously-
joined machine account. The nodes must report to Moab with the same hostname.
This can be done by using aliases (adding all node names to the /etc/hosts file on
the system where Moab is running) and ensuring that the Linux resource manager
reports the node with its global name rather than the Linux-specific one (node01
rather than node01-1).

,
\

4.5 Policy/Configuration Management Commands

Chapter 4: Scheduler Commands

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints, credentials,
history, allocated resources, and resource utilization.

msub Submit a new job.

releaseres Releases a user reservation.

setres Create a user reservation.
showbf Shows resource availability for jobs with specific resource requirements.
showq Displays detailed prioritized list of active and idle jobs.

showstart Shows estimated start time of idle jobs.

showstats Shows detailed usage statistics for users, groups, and accounts, to which the
end-user has access.

Related Topics

« Commands Overview

4.7 Moab Commands

See the Moab commands below.

4.7.1 checkjob

4.7.1.A Synopsis

checkjob [exactjobid] [jobname:jobname] [-] policylevel] [-n nodeid] [-q qosid] [-r
reservationid] [-v] [--flags=future | complete] [--blocking] jobid [--about] [--help]

4.7 Moab Commands 106

Chapter 4: Scheduler Commands

107

[--host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.1.B Overview

check job displays detailed job state information and diagnostic output for a specified job.
Detailed information is available for queued, blocked, active, and recently completed jobs.
The checkjob command shows the master job of an array, as well as a summary of array
subjobs but does not display all subjobs. Use checkjob -v to display all job-array subjobs.

4.7.1.C Access

This command can be run by level 1-3 Moab administrators for any job. Also, end users can
use checkjob to view the status of their own jobs.

4.7.1.D Options

Format --blocking

Description Do not use cache information in the output. The --blocking flag retrieves
results exclusively from the scheduler.

|'> checkjob -v --blocking 1234)‘
C

Example

Format -—-flags=future | complete

« future - Evaluates future eligibility of job (ignore current resource state

Description and usage limitations).
e complete - Queries details for jobs that have already terminated.
Example (> checkjob —v -—-flags=future 6235 i

I
\

Display reasons why idle job is blocked ignoring node state and
current node utilization constraints.

4.7 Moab Commands

Chapter 4: Scheduler Commands

I

Format exact:<JOBID>

Description Searches for and returns the exact job ID.

YV)y Y Yy Sy
| \
|

> checkjob exact:1.job dependencyl 1

Example

jobname

Format jobname : <JOBNAME >

Description Searches for and returns the first job with the matching
<JOBNAME>.

(
Example | > checkjob jobname:STEP4 |
L

-l (Policy level)

Format <POLICYLEVEL>

HARD, SOFT, or OF'F

Description Reports job start eligibility subject to specified throttling policy level.

e
I'> checkjob -1 SOFT 6235 :
| > checkjob -1 HARD 6235 |
8

Example

-n (NodelD)

Description Checks job access to specified node and preemption status with regards to jobs
located on that node.

I'> checkjob -n nodell3 6235 i

Example [
\ J

4.7 Moab Commands 108

Chapter 4: Scheduler Commands

109

-q (QoS)

I

Format <QOSID>

Description Checks job access to specified QoS <QOSID>.

T T T T T mmm———— \
I'> checkjob -g special 6235 1

Example , J

-r (Reservation)

Description Checks job access to specified reservation <RSVID>.

B

Example

-v (Verbose)

Description Sets verbose mode. If the job is part of an array, the —v option shows pertinent
array information before the job-specific information (see Example 2 and
Example 3 for differences between standard output and -v output).

o Specifying the double verbose (-v -v) displays additional information
about the job. See the Output table for details.

I's checkjob -v 6235 i
\

Example

4.7.1.E Details

This command allows any Moab administrator to check the detailed status and resource
requirements of an active, queued, or recently completed job. Additionally, this command
performs numerous diagnostic checks and determines if and where the job could
potentially run. Diagnostic checks include policy violations, reservation constraints,
preemption status, and job to resource mapping. If a job cannot run, a text reason is
provided along with a summary of how many nodes are and are not available. If the -v flag
is specified, a node by node summary of resource availability will be displayed for idle jobs.

4.7 Moab Commands

Chapter 4: Scheduler Commands

Job Eligibility

If a job cannot run, a text reason is provided along with a summary of how many nodes are
and are not available. If the -v flag is specified, a node by node summary of resource
availability will be displayed for idle jobs. For job level eligibility issues, one of the following

reasons will be given:

Reason Description

Job has hold in place

Insufficient idle procs

Idle procs do not meet
requirements

Start date not reached

Expected state is not idle
State is not idle
Dependency is not met

Rejected by policy

One or more job holds are currently in place

There are currently not adequate processor resources
available to start the job

adequate idle processors are available but these do not meet
job requirements

Job has specified a minimum Start date that is still in the
future

Job is in an unexpected state
Job is not in the idle state
Job depends on another job reaching a certain state

Job start is prevented by a throttling policy

If a job cannot run on a particular node, one of the following 'per node' reasons will be

given:

Class Node does not allow required job class/queue
CPU Node does not possess required processors
Disk Node does not possess required local disk

Features Node does not possess required node features

Memory Node does not possess required real memory

4.7 Moab Commands

110

Chapter 4: Scheduler Commands

Reason Description

Network Node does not possess required network interface

State Node is not Idle or Running

Reservation Access

The -r flag can be used to provide detailed information about job access to a specific

reservation

Preemption Status

If a job is marked as a preemptor and the -v and -n flags are specified, check job will
perform a job by job analysis for all jobs on the specified node to determine if they can be

preempted.

4.7.1.F Output

The checkjob command displays the following job attributes:

I R

Account

Allocated Nodes

Applied Nodeset**

Arch

Attr

Available Memory**

111

<STRING>

Square bracket
delimited list of node
and processor IDs

<STRING>

<STRING>

square bracket
delimited list of job
attributes

<INTEGER>

Name of account associated with job.

List of nodes and processors allocated
to job.

Nodeset used for job's node
allocation.

Node architecture required by job.

Job Attributes (i.e., [BACKFILL]
[PREEMPTEE]}

The available memory requested by
job. Moab displays the relative or
exact value by returning a comparison
symbol (>, <, >=, <=, or ==) with the
value (i.e, Available Memory <=

4.7 Moab Commands

Chapter 4: Scheduler Commands

I R

Available Swap**

Average Utilized
Procs*

Avg Util Resources
Per Task*

BecameEligible

Bypass

CheckpointStartTime**

Class

Dedicated Resources
Per Task*

Disk

Estimated Walltime

EnvVariables**

4.7 Moab Commands

<INTEGER>

<FLOAT>

<FLOAT>

<TIMESTAMP>

<INTEGER>

[[[DD:]HH:]MM:]SS

[<CLASS NAME>
<CLASS COUNT>]

Space-delimited list of
<STRING>

.<INTEGER>

<INTEGER>

[[[DD:]HH:]MM:]SS

Comma-delimited list of

2048).

The available swap requested by job.
Moab displays the relative or exact
value by returning a comparison
symbol (>, <, >=, <=, or ==) with the
value (i.e., Available Swap >=
1024).

Average load balance for a job.

The date and time when the job
moved from Blocked to Eligible.

Number of times a lower priority job
with a later submit time ran before
the job.

The time the job was first
checkpointed.

Name of class/queue required by job
and number of class initiators
required per task.

Resources dedicated to a job on a per-
task basis.

Amount of local disk required by job
(in MB).

The scheduler's estimated walltime.

o In simulation mode, it is the
actual walltime.

List of environment variables assigned

112

Chapter 4: Scheduler Commands

113

Exec Size*
Executable

Features

Flags

Group

Holds

Image Size

IWD (Initial Working
Directory)

Job Messages**
Job Submission**

Memory

Max Util Resources
Per Task*

NodeAccess*
Nodecount

Opsys

<STRING>
<INTEGER>

<STRING>

Square bracket

delimited list of
<STRING>g

<STRING>

Zero or more of User,
System, and Batch

<INTEGER>

<DIR>

<STRING>
<STRING>

<INTEGER>

<FLOAT>

<INTEGER>

<STRING>

I R

to job.
Size of job executable (in MB).
Name of command to run.

Node features required by job.

Name of UNIX group associated with
job.

Types of job holds currently applied
to job.

Size of job data (in MB).

Directory to run the executable in.

Messages attached to a job.
Job script submitted to RM.

Amount of real memory required per
node (in MB).

Number of nodes required by job.

Node operating system required by
job.

4.7 Moab Commands

Chapter 4: Scheduler Commands

I R

Partition Mask ALL or colon delimited List of partitions the job has access to.
list of partitions

PE <FLOAT> Number of processor-equivalents
requested by job.

Per Partition Tabular Table showing job template priority

Priority** for each partition.

Priority Analysis** Tabular Table showing how job's priority was
calculated:

Job PRIORITY* Cred
(User:Group:Class) Serv

(QTime)
QoS <STRING> Quality of Service associated with job.
Reservation <RSVID> (<T11‘_’1E1> - RESID specifies the reservation ID,
<TIME2> Duration: TIMEL1 is the relative start time,
<TIME3>) TIME2 the relative end time, TIME3

the duration of the reservation.

Req [<KINTEGER>] A job requirement for a single type of
TaskCount: resource followed by the number of
<INTEGER> Partition: tasks instances required and the
<partition> appropriate partition.

Stageln <SOURCE> The <SOURCE> is the username,
0,<DESTINATION> hostname, directory and file name of

origin for the file(s) that Moab will
stage in for this job. The
<DESTINATION> is the username,
hostname, directory and file name
where Moab will place the file during
this job. See Data Staging Example for
more information.

StagelnSize <INTEGER><UNIT> The size of the file Moab will stage in
for this job. <UNIT> can be KB, MB,
GB, or TB. See Data Staging Example
for more information.

4.7 Moab Commands

Chapter 4: Scheduler Commands

I R

StageOut <SOURCE> The <SOURCE> is the username,
0)<DESTINATION> hostname, directory and file name of

origin for the file(s) that Moab will
stage out for this job. The
<DESTINATION> is the username,
hostname, directory and file name
where Moab will place the file during
this job. See Data Staging Example for
more information.

StageOutSize <INTEGER><UNIT> The size of the file Moab will stage
out for this job. <UNIT> can be KB,
MB, GB, or TB. See Data Staging
Example for more information.

StartCount <INTEGER> Number of times job has been started
by Moab.

StartPriority <INTEGER> Start priority of job.

StartTime <TIME> Time job was started by the resource

management system.

State One of Idle, Starting, Current Job State.
Running, etc. See Job

States for all possible

values.
SubmitTime <TIME> Time job was submitted to resource
management system.
Swap <INTEGER> Amount of swap disk required by job
(in MB).
Task Distribution* Square bracket
delimited list of nodes
Time Queued
Total Requested <INTEGER> Number of nodes the job requested.

Nodes**

115 4.7 Moab Commands

Chapter 4: Scheduler Commands

I R

Total Requested Tasks <INTEGER> Number of tasks requested by job.
User <STRING> Name of user submitting job.

Utilized Resources Per = <FLOAT>
Task*

WallTime [[[DD:]HH:]MM:]SS of Length of time job has been running
[[[DD:]HH:]MM:]SS out of the specified limit.

In the above table, fields marked with an asterisk (*) are only displayed when set or when
the -v flag is specified. Fields marked with two asterisks (**) are only displayed when set
or when the -v -v flag is specified.

Example 4-1: checkjob 717

|'> checkjob 717 i
| job 717 :
| State: Idle :
: Creds: wuser:jacksond group:jacksond class:batch |
| WallTime: 00:00:00 of 00:01:40 :
: SubmitTime: Mon Aug 15 20:49:41

: (Time Queued Total: 3:12:23:13 Eligible: 3:12:23:11) :
| TerminationDate: INFINITY Sat Oct 24 06:26:40 :
: Total Tasks: 1

| Req[0] TaskCount: 1 Partition: ALL :
| Network: --- Memory >= 0 Disk > 0 Swap >= 0 :
: Opsys: -—-- Arch: --- Features: ---

|

| TwD: /home/jacksond/moab/moab-4.2.3 :
: Executable: STDIN

| Flags: RESTARTABLE, NORMSTART :
: StartPriority: 5063

: Reservation '717' (INFINITY -> INFINITY Duration: 00:01:40) l
| Note: Job cannot run in partition base (idle procs do not meet requirements : 0 of 1 :
: procs found)

| idle procs: 4 feasible procs: 0 :
: Rejection Reasons: [State : 3] [ReserveTime : 1] |
: cannot select job 717 for partition GM (partition GM does not support requested class :
| batch) J

|
|
|
e It is temporarily blocked from partition base :
because of node state and node reservation I
conflicts. E

|

e It is permanently blocked from partition GM because |
|

|

|

|

|

the requested class batch is not supported in that
partition.

4.7 Moab Commands

116

Chapter 4: Scheduler Commands

117

—————

—_——————— e

Example 4-2: Using check job (no -v) on a job array master job:

checkjob array.l
job array.l

AName: array
Job Array Info:
Name: array.l

Sub-jobs: 10
Active: 6
Eligible: 2
Blocked: 2
Complete: 0

$ checkjob -v array.l
job array.l

AName: array
Job Array Info:

Name: array.l

1 : array.l.1 Running

2 array.l.2 Running

3 array.l.3 Running

4 array.l.4 Running

5 array.1l.5 Running

6 array.l.6 Running

7 array.l.7 Idle

8 array.1l.8 : Idle

9 : array.l.9 : Blocked

10 : array.l1.10 : Blocked
Sub-jobs: 10

Active: 6 (60.0%)

Eligible: 2 (20.0%)

Blocked: 2 (20.0%)

Complete: 0 (0.0%)

$ checkjob -v moab.l4.dsin
job moab.l4.dsin

AName: moab.l4.dsin
State: Running
Creds: user:fred group:company
WallTime: 00:00:00 of 00:01:01
SubmitTime: Wed Apr 16 10:07:19
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Wed Apr 16 10:07:19
TemplateSets: dsin

stagein:FALSE
Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: SHARED
Dedicated Resources Per Task: bandwidth: 1
NodeAccess: SHARED

Triggers: 78$start+0@0.000000:exec@/opt/moab/tools/datastaging/ds move rsync --

4.7 Moab Commands

Chapter 4: Scheduler Commands

Allocated Nodes:
[GLOBAL:1]

Job Group: moab.1l4
SystemID: moab
SystemJID: moab.l4.dsin
Task Distribution: GLOBAL

| |
I I
I I
I I
I I
I I
I I
i |
| IWD: SHOME/test/datastaging

| SubmitDir: SHOME/test/datastaging :
| StartCount: 1 I
| Parent VCs: vcll :
: User Specified Partition List: local I
| Partition List: local

| SrcRM: internal

| Flags: NORMSTART, GRESONLY, TEMPLATESAPPLIED :
| Attr: dsin I
| StageInSize: 386MB

| StageOutsize: 100MB

| Stageln: fred@remotelab: /home/fred/inputl/%$fred@scratch:/home/fred/inputl/ :
: StagelIn: fred@remotelab: /home/fred/input2/%fred@scratch: /home/fred/input2/ I
| Stageln: fred@remotelab:/home/fred/input3/%$fred@scratch:/home/fred/input3/ :
: StageOut: fred@scratch: /home/fred/output/$fred@remotelab: /home/fred/output/ I
| StartPriority: 1

: SJob Type: datastaging I
| Completion Policy: datastaging :
| PE: 0.00 I
L Reservation 'moab.l4.dsin' (-00:00:06 -> 00:00:55 Duration: 00:01:01) J

Related Topics

o showhist.moab.pl - explains how to query for past job information

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

« mdiag -j command - display additional detailed information regarding jobs
o showqg command - showq high-level job summaries

« JOBCPURGETIME parameter - specify how long information regarding completed jobs
is maintained

« diagnosing job preemption

4.7.2 checknode

4.7.2.A Synopsis

checknode flags [nodelD | ALL] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--

4.7 Moab Commands

Chapter 4: Scheduler Commands

119

msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--

version] [—--xml]

4.7.2.B Overview

This command shows detailed state information and statistics for nodes that run jobs.

The following information is returned by this command:

.

ACL Node Access Control List (displayed only if set)

ActiveTime Total time node has been busy (allocated to active jobs) since
statistics initialization expressed in HH:MM: SS notation (percent of
time busy: BusyTime/TotalTime)

Adapters Network adapters available

Arch Architecture

Classes Classes available

Disk Disk space available

Downtime Displayed only if downtime is scheduled

EffNodeAccessPolicy Configured effective node access policy

Features Features available

Load CPU Load (Berkley one-minute load average)

Memory Memory available

Opsys Operating system

RequestID Dynamic Node RequestID set by the RM (displayed only if set)

State Node state

StateTime Time node has been in current state in HH:MM:SS notation

4.7 Moab Commands

Chapter 4: Scheduler Commands

e Jpeerpen

Swap Swap space available

Total Time Total time node has been detected since statistics initialization
expressed in HH:MM: SS notation

TTL Dynamic Node Time To Live set by the RM (expiration date,
displayed only if set)

UpTime Total time node has been in an available (Non-Down) state since
statistics initialization expressed in HH:MM: SS notation (percent of
time up: UpTime/TotalTime)

After displaying this information, some analysis is performed and any unusual conditions
are reported.

4.7.2.C Access

By default, this command can be run by any Moab Administrator (see ADMINCFG).

4.7.2.D Parameters
oo

NODE Node name you want to check. Moab uses regular expressions to return any node
that contains the provided argument. For example, if you ran checknode nodel,
Moab would return information about nodel, nodel0, nodel00, etc. If you want
to limit the results to nodel only, you would run checknode "“nodelsS".

4.7.2.E Flags

T

ALL Returns checknode output on all nodes in the cluster.
-h Help for this command.
-V Returns verbose output.

4.7 Moab Commands 120

Chapter 4: Scheduler Commands

.

--xml

Example 4-5: checknode

Output in XML format. Same as mdiag -n --xml.

| > checknode P690-032 !
| node P690-032 !
' [
: State: Busy (in current state for 11:31:10) :
: Configured Resources: PROCS: 1 MEM: 16G SWAP: 2000M DISK: 500G |
| Utilized Resources: PROCS: 1 }
| Dedicated Resources: PROCS: 1

: Opsys: AIX Arch: P690 I
| Speed: 1.00 CPULoad: 1.000 :
: Network: InfiniBand,Myrinet

: Features: Myrinet :
| Attributes: [Batch] :
| Classes: [batch] !
! [
: Total Time: 5:23:28:36 Up: 5:23:28:36 (100.00%) Active: 5:19:44:22 (97.40%) :
! I
: Reservations:

: Job '13678'(x1) 10:16:12:22 -> 12:16:12:22 (2:00:00:00) |
: Job '13186'(x1) -11:31:10 -> 1:12:28:50 (2:00:00:00) :
| Jobs: 13186

N J
Example 4-6: checknode ALL

T — \
: > checknode ALL :
: node ahe :
I

: State: Idle (in current state for 00:00:30) :
| Configured Resources: PROCS: 12 MEM: 8004M SWAP: 26G DISK: 1M :
: Utilized Resources: PROCS: 1 SWAP: 4106M :
: Dedicated Resources: --- |
| MTBF (longterm) : INFINITY MTBF (24h): INFINITY :
| Opsys: linux Arch: -

I Speed: 1.00 CPULoad: 1.400 |
| Flags: rmdetected

: Classes: [batch] |
| RM[ahe]*: TYPE=PBS :
: EffNodeAccessPolicy: SHARED

| I
: Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:00 (0.00%) :
[I
: Reservations: --- :
| node ahe-ubuntu32 :
[I
: State: Running (in current state for 00:00:05) :
: Configured Resources: PROCS: 12 MEM: 2013M SWAP: 3405M DISK: 1M :
: Utilized Resources: PROCS: 6 SWAP: 55M |
| Dedicated Resources: PROCS: 6 :
: MTBF (longterm) : INFINITY MTBF (24h): INFINITY :
| Opsys: linux Arch: === |
| speed: 1.00 CPULoad: 2.000 |
: Flags: rmdetected |
L Classes: [batch] J

121

4.7 Moab Commands

Chapter 4: Scheduler Commands

e e —— — —— ———————————————————————— € ———

RM[ahe] *: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:02 (1.92%)

Reservations:
6x2 Job:Running -00:00:07 -> 00:01:53 (00:02:00)
7x2 Job:Running -00:00:06 -> 00:01:54 (00:02:00)
8x2 Job:Running -00:00:05 -> 00:01:55 (00:02:00)

Jobs: 6,7,8

node ahe-ubuntu64

State: Busy (in current state for 00:00:06)

Configured Resources: PROCS: 12 MEM: 2008M SWAP: 3317M DISK: 1M
Utilized Resources: PROCS: 12 SWAP: 359M

Dedicated Resources: PROCS: 12

)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
- I
Speed: 1.00 CPULoad: 0.000 :
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
)

MTBF (longterm) : INFINITY MTBF (24h) : INFINITY

Opsys: linux Arch: ==

Flags: rmdetected

Classes: [batch]

RM[ahe] *: TYPE=PBS

EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:55 (52.88%)

Reservations:
0x2 Job:Running -00:01:10 -> 00:00:50 (00:02:00)
1x2 Job:Running -00:00:20 -> 00:01:40 (00:02:00)
2x2 Job:Running -00:00:20 -> 00:01:40 (00:02:00)
3x2 Job:Running -00:00:17 -> 00:01:43 (00:02:00)
4x2 Job:Running -00:00:13 -> 00:01:47 (00:02:00)
5x2 Job:Running -00:00:07 -> 00:01:53 (00:02:00)

Jobs: 0,1,2,3,4,5

L ALERT: node is in state Busy but load is low (0.000)

> checknode node(001
node node001

State: Idle (in current state for 00:13:50)
Configured Resources: PROCS: 2 MEM: 4096M
Utilized Resources: PROCS: 2

Dedicated Resources: —---

ACL: USER==FRED+ :==BOB+ GROUP==DEV+

MTBF (longterm) : INFINITY MTBF (24h): INFINITY
Opsys: == Arch: SES
Speed: 1.00 CPULoad: 2.000

RM[local]*: TYPE=NATIVE:AGFULL

EffNodeAccessPolicy: SHARED

RequestID: 1234

TTL: Tue Nov 10 00:00:00 2022

Total Time: 2:21:19:05 Up: 2:21:19:05 (100.00%) Active: 00:00:00 (0.00%)

Reservations:
node001-TTL-1234x1 User 441days -> INFINITY (INFINITY)
Blocked Resources(@ 441days Procs: 2/2 (100.00%) Mem: 4096/4096 (100.00%)
Swap: 1/1 (100.00%) Disk: 1/1 (100.00%)

I
|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
:
Partition: local Rack/Slot: --- ©NodeIndex: 1 :
|
|
|
|
|
|
I
I
I
I
I
I
I
I
I
ALERT: node is in state Idle but load is high (2.000) [

4.7 Moab Commands

122

Chapter 4: Scheduler Commands

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o mdiag -n

o showstate

4.7.3 mcredctl

4.7.3.A Synopsis

mcredctl [-d credtype[:credid]] [-h credtype:credid] [-]l credtype] [-q
{role|limit|profile|accessfrom|accessto|policies} credtype[:credid]] [--format=xml] [-r

{stats|fairshare|uid} <type>[:<ID>] [-t <STARTTIME>[,<ENDTIME>] [--about] [--help]
[--host=<serverHostName>] [--loglevel=<logLevel>] [--msg=<message>]
[--port=<serverPort>] [--timeout=<seconds>] [--version] [--xml]

4.7.3.B Overview

The mcredctl command controls various aspects about the credential objects within Moab. It can
be used to display configuration, limits, roles, and relationships for various Moab credential objects.

o If using Insight, you must restart Moab to view credential modifications.

e
—

4.7.3.C Options

J

o In all cases <CREDTYPE> is one of acct, group, user, class, or gos.

-

J

~

o In most cases it is necessary to use the ——-format=xml flag in order to print the output (see
examples below for specific syntax requirements).

-
(.

-d - DESTROY

|

Format <TYPE>:<VAL>

123 4.7 Moab Commands

Chapter 4: Scheduler Commands

-d - DESTROY

|

Description Purge a credential from moab . cfg (does not delete credential from memory).

Example {(> mcredctl -d user:john
| All references to USERCFG[§ohn] will be commented out of }
| moab.cfq) :
e e e e e e o e e e e e e o e -

-h - HOLD

Format <TYPE>:<VAL>

Description Toggles whether a given credential's jobs should be placed on hold or not.

(
Example | > mcredctl -h user:john 1
8

-l - LIST

Format <TYPE>

Description List the various sub-objects of the specified credential.

—————————— e

Example ,' > mcredctl -1 user --format=xml |
e J

P ——————————

Format {role | accessfrom | accessto | limit| profile | policies}
limit <TYPE>
policies <TYPE>
role <USER>:<USERID>
profile <TYPE>[:<VAL>]

4.7 Moab Commands

124

Chapter 4: Scheduler Commands

- _

-q - QUERY

accessfrom <TYPE>[:<VAL>]
accessto <TYPE>[:<VAL>]

Description Display various aspects of a credential (formatted in XML)

Example 1 > mcredctl -gq role user:bob --format=xml |

" View limits organized by credential for user bob on each partition
and resource manager

: > mcredctl -g profile group —--format=xml --timeout=00:10:00 Il
|

| -0 time:1388590200,1431529200, types:TPSD
\

: Generates a report of processor hours used by groups per month. \
| TPSD represents total proc-seconds dedicated by this credential in |
| |
I |

the profiling interval.

Format {stats|fairshare|uid} <TYPE> [:<ID>]

Description Reset the stats, fairshare, or UID/GID of a given credential.

o When resetting UID, only a type of user is
supported.

Example {> mcredctl -r uid user:john |

-t - TIMEFRAME

Format <STARTTIME>[,<ENDTIME>]

125 4.7 Moab Commands

Chapter 4: Scheduler Commands

-t - TIMEFRAME

Description Can be used in conjunction with the -q profile option to display profiling
information for the specified timeframe.

e
|

Example | > mcredetl -g profile user -t 14:30_06/20 II
|

4.7.3.D Credential Statistics XML Output

Credential statistics can be requested as XML (via the -—format=xml argument) and will be
written to STDOUT in the following format:

I's N
: > mcredctl -g profile user --format=xml -o time:1182927600,1183013999 :
| <Data> |
: <user ...> :
[<Profile ...> :
: </Profile> I
| </user> :
| </Data> I
N o J
Example 4-8: Deleting a group

(T TS TS TS TS TS TS TS TS TS TS TS TS TS T T T T T T T T T T T T T T T T T —— hY
I'> mcredctl -d group:john :
| GROUPCFG[john] Successfully purged from config files |
. /
Example 4-9: List users in XML format

: > mcredctl -1 user --format=xml }
: <Data><user ID="john"</user><user ID="john"></user><user ID="root"></user><user :
| ID="dev"></user></Data>]
R T Yy Yy ——p——
Example 4-10: Display information about a user

(ST hY
: > mcredctl -g role user:john --format=xml :
| <Data><user ID="test" role="admin5"></user></Data> |
. /

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

4.7 Moab Commands 126

Chapter 4: Scheduler Commands

127

4.7.4 mdiag

4.7.4.A Synopsis

mdiag -a [accountid]

mdiag -b [-1 policylevel] [-t partition] [-V]
mdiag -c [classid] [-V]

mdiag -C [configfile]

mdiag -e [-w
<starttime>|<endtime>|<eventtypes>|<oidlist>|<eidlist>]|<object
list>] —--xml

mdiag -f [-o user|grouplacct|gos|class] [-v] [—--
flags=relative]

mdiag -g [groupid]

mdiag -G [Green]

mdiag -j [jobid] [-t <partition>] [-Vv][-w
state|user|account|class|group|gos=VALUE] [--flags=policy] [--
blocking]

mdiag -1

mdiag -L [-V]

mdiag -n [-A <creds>] [-t partition] [nodeid] [-Vv]
mdiag -p [-t partition] [-v] [-V]

mdiag -P [-v] [-V]

mdiag -g [gosid] [-V]

mdiag -r [reservationid] [-v] [--blocking]
mdiag -R [resourcemanagername] [-V] [-V]

mdiag -s [standingreservationid] [--blocking]
mdiag -S [-v] [-V]

mdiag -t [-v] [-v] [partitionid]

mdiag -T [triggerid] [-v][--blocking]

mdiag -u [userid] [-Vv]

mdiag [-—-format=xml]

4.7 Moab Commands

Chapter 4: Scheduler Commands

[--—about] [--help] [--host=<serverHostName>] [--
loglevel=<loglLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.4.B Overview

The mdiag command is used to display information about various aspects of the cluster
and the results of internal diagnostic tests. In summary, it provides the following:

o Current object health and state information

o Current object configuration (resources, policies, attributes, etc.)
o Current and historical performance/utilization information

o Reports on recent failure

o Object messages

Some mdiag options gather information from the Moab cache, which prevents them from
interrupting the scheduler, but the --blocking option can be used to bypass the cache
and interrupt the scheduler.

4.7.4.C Arguments
o oo

-a [accountid] Display account information.

-b [-1 policylevel] [-t partition] [-v] Display information on jobs
blocked by policies, holds, or
other factors.

o [f blocked job diagnostics
are specified, the -t
option is also available to
constrain the report to
analysis of particular
partition. Also, with
blocked job diagnosis, the
-1 option can be used to
specify the analysis policy
level.

-c [classid] [-v] Display class information.

4.7 Moab Commands 128

Chapter 4: Scheduler Commands

R N

-C [file] With the vast array of options
in the configuration file, the —C
option does not validate
function, but it does analyze the
configuration file for syntax
errors including use of invalid
parameters, deprecated
parameters, and some illegal
values. If you start Moab with
the -e flag, Moab evaluates the
configuration file at startup and
quits if an error exists.

129

o mdiag -C does not print

N

out any #INCLUDE lines
listed in moab.cfg (and
moab.dat), but it does
evaluate and print out the
lines found in those
included files.

-e [-w Moab will do a query for all
starttime|endtime|eventtypes|oidlist|eidlist|objectlist] events whose eventtime
--xml starts at <starttime> and

matches the search criteria.
This works only when Moab is
configured with ODBC MySQL.
The syntax is:

mdiag -e[-w

<starttime>
|<eventtypes>|
<oidlist>

<eidlist>|<objectlist>]
--xml

starttime default is -

eventtypes default is
command delimited, the
default is all event types
(possible values can be
found in the EventType
table in the Moab
database)

oidlist is a comma-
delimited list of object IDs,

4.7 Moab Commands

Chapter 4: Scheduler Commands

o o

-f [-0 user|group|acct|qos|class] [-v] [--flags=relative]

-g [groupid]

-G [Green]

-j [obid] [-t partition] [-v] [-w
state|user|account|class|group|qos=VALUE] [--
flags=policy] [--blocking]

-1

-L [-v]

-n [-A creds] [-t partition] [nodeid] [-v]

-p [-t partition] [-v] [-V]

4.7 Moab Commands

the default is all objects
IDs

e eidlist isacomma-
delimited list of specific
event IDs, the default is all
event IDs

e Objectlist isacomma-
delimited list of object
types, the default is all
object types (possible
values can be found in the
ObjectType table in the
Moab database)

Display fairshare information.
Display group information.

Display green computing
information.

Display job information.

Diagnose license information
contained in the moab.lic file.

Display limits.

Display nodes.

o [f node diagnostics are
specified, the -t option
is also available to
constrain the report to a
particular partition.

Display job priority,

130

Chapter 4: Scheduler Commands

N R

o If priority diagnostics are
specified, the -t option
is also available to
constrain the report to a
particular partition.

-P [-v] [-v] Display partition information.

-q [qosid] [-v] Display qos information.

-r [reservationid] [-v] [--blocking] Display reservation
information.

-R [rmid] [-v] [-v] Display resource manager
information.

-s [srsv] [--blocking] Display standing reservation
information.

-S [-v] [-v] Display general scheduler
information.

-t [-v] [-v] [partitionid] Display configuration, usage,

health, and diagnostic
information about partitions
maintained by Moab.

-T [triggerid] [-v] [--blocking] Display trigger information.

-u [userid] [-v] Display user information.

--format=xml Display output in XML format.
XML Output

Information for most of the options can be reported as XML as well. This is done with the
command mdiag -<option> <CLASS ID> --format=xml.For example, XML-
based class information will be written to STDOUT in the following format:

I <Data> |
| <class <ATTR>="<VAIL>" ... > |

131 4.7 Moab Commands

Chapter 4: Scheduler Commands

<stats <ATTR>="<VAL>" ... > |
<Profile <ATTR>="<VAL>" ... > {
</Profile> |
</stats>
</class> :
<Data> :
I
)

Of the mdiag options, only -G and -1 cannot be reported as XML.

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o checkjob

o checknode

4.7.5 mdiag -a

4.7.5.A Synopsis

mdiag -alaccountid]

4.7.5.B Overview

The mdiag -a command provides detailed information about the accounts (a.ka.
projects) Moab is currently tracking. This command also allows an administrator to verify
correct throttling policies and access provided to and from other credentials.

Example 4-11: Generating information about accounts

e \
: > mdiag -a :
I evaluating acct information

| Name Priority Flags QDef QOSList* :
: PartitionList Target Limits

| engineering 100 = high high,urgent, low [A] :
| [B] 30.00 MAXJOB=50,75 MAXPROC=400,500 :
: marketing 1 = low low [A] |
[5.00 MAXJOB=100,110 MAXPS=54000,54500 :
it 10 - DEFAULT DEFAULT, high, urgent, low [A] [
I 100.00 MAXPROC=100,1250 MAXPS=12000,12500 }
| FSWEIGHT=1000 |
: development 100 - high high,urgent, low [A] I
| [B] 30.00 MAXJOB=50,75 MAXNODE=100,120)I

4.7 Moab Commands

132

Chapter 4: Scheduler Commands

133

(

| research 100 - high DEFAULT, high, low [A] :

' [B) 30.00 MAXNODE=400,500 MAXPS=900000,1000000 |

| DEFAULT 0 - - - - :
— |

S 0)

Related Topics

o Account credential

4.7.6 mdiag -b

4.7.6.A Synopsis

mdiag -b [-1 policylevel] [-t partition] [-V]

4.7.6.B Overview

The mdiag -b command returns information about blocked jobs.

4.7.7 mdiag -c

4.7.7.A Synopsis

mdiag -c[classid][-V]

4.7.7.B Overview

The mdiag -c command provides detailed information about the classes Moab is
currently tracking. This command also allows an administrator to verify correct throttling
policies and access provided to and from other credentials.

0 The term class is used interchangeably with the term queue and generally refers to
resource manager queue.

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.7.C XML Attributes
N

ADEF Accounts a class has access to.
CAPACITY Number of procs available to the class.
DEFAULT.ATTR Default attributes attached to a job.
DEFAULT.DISK Default required disk attached to a job.

DEFAULT.FEATURES Default required node features attached to a job.
DEFAULT.GRES Default generic resources attached to a job.
DEFAULT.MEM Default required memory attached to a job.
DEFAULT.NODESET Default specified nodeset attached to a job.

DEFAULT.WCLIMIT Default wallclock limit attached to a job.

EXCL.FEATURES List of excluded (disallowed) node features.

EXCL.FLAGS List of excluded (disallowed) job flags.

FSTARGET The class' fairshare target.

HOLD If TRUE this credential has a hold on it, FALSE otherwise.

HOSTLIST The list of hosts in this class.

JOBEPILOG Scheduler level job epilog to be run after job is completed by resource

manager (script path).
JOBFLAGS Default flags attached to jobs in the class.

JOBPROLOG Scheduler level job prolog to be run before job is started by resource
manager (script path).

ID The unique ID of this class.

4.7 Moab Commands 134

Chapter 4: Scheduler Commands

135

LOGLEVEL
MAX.PROC

MAX.PS
MAX.WCLIMIT
MAXIJOB
MAXIPROC
MAXJOBPERUSER
MAXNODEPERJOB
MAXNODEPERUSER
MAXPROCPER]OB
MAXPROCPERNODE
MAXPROCPERUSER
MIN.NODE
MIN.PROC
MIN.WCLIMIT
NODEACCESSPOLICY
OCDPROCFACTOR
OCNODE

PRIORITY

The log level attached to jobs in the class.

The max processors per job in the class.

The max processor-seconds per job in the class.
The max wallclock limit per job in the class.
The max idle jobs in the class.

The max idle processors in the class.

The max jobs per user.

The max nodes per job.

The max nodes per user.

The max processors per job.

The max processors per node.

The max processors per user.

The minimum nodes per job in the class.

The minimum processors per job in the class.

The minimum wallclock limit per job in the class.

N

The node access policy associated with jobs in the class.

Dedicated processor factor.

Overcommit node.

The class' associated priority.

4.7 Moab Commands

Chapter 4: Scheduler Commands

N

PRIORITYF

REQ.FEATURES

REQ.FLAGS

REQ.IMAGE

REQUIREDUSERLIST The list of users who have access to the class.

Priority calculation function.

RM The resource manager reporting the class.
STATE The class' state.
WCOVERRUN

Example 4-12: Generating information about classes

> mdiag -c
Class/Queue Status

ClassID Priority Flags
Target Limits

DEFAULT 0 ===
0.00 ---

batch 1l ===

70.00 MAXJOB=33:200,250

long 1l ===
10.00 MAXJOB=3:100,200

fast 100 ---
10.00 MAXJOB=8:100,150

bigmem 1l ===
10.00 MAXJOB=1:100,200
MAXPROCPERJOB=128

>

running 8 jobs.

MAX.WCLIMIT=10:00:00 MAXPROCPERJOB=128

low

MAX .WCLIMIT=1:00:00:00 MAXPROCPERJOB=128

high

MAX.WCLIMIT=00:30:00 MAXPROCPERJOB=128

low, high

low

high

Required features for a job to be considered in the class.
Required flags for a job to be considered in the class.

Required image for a job to be considered in the class.

Tolerated amount of time beyond the specified wallclock limit.

PartitionList
[A] [B]

[A]

[B]

In the example above, class fast has MAXJOB soft and hard limits of 100 and 150 respectively and is currently

o The Limits column will display limits in the following format:
<USAGE>:<HARDLIMIT>[,<SOFTLIMIT>]

Related Topics

« showstats command - display general statistics

4.7 Moab Commands

136

Chapter 4: Scheduler Commands

137

4.7.8 mdiag -f

4.7.8.A Synopsis

mdiag —-f [-o user|grouplacct|gos]|class]

[--flags=relative]

4.7.8.B Overview

The mdiag -f command is used to display at a glance information about the fairshare
configuration and historic resource utilization. The fairshare usage might impact job
prioritization, job eligibility, or both based on the credential FSTARGET and FSCAP
attributes and by the fairshare priority weights as described in the Job Prioritization
Overview. The information presented by this command includes fairshare configuration

and credential fairshare usage over time.

The command hides information about credentials that have no fairshare target and no

fairshare cap.

If an object type (<OTYPE>) is specified, then only information for that credential type
(user, group, acct, class, or qos) will be displayed. If the relative flag is set, then per
user fairshare usage will be displayed relative to each non-user credential (see the second

example below).

o Relative output is only displayed for credentials that have user mappings. For
example, if there is no association between classes and users, no relative per user
fairshare usage class breakdown will be provided.

Example 4-13: Standard Fairshare Output

> mdiag -f

FairShare Information

Depth: 6 intervals Interval Length: 00:20:00
FS Policy: DEDICATEDPES

System FS Settings: Target Usage: 0.00

|

|

|

|

|

|

I

: FSInterval % Target 0 1
L e 1.0000 0.5000
| TotalUsage 10000 ===——— 85.3 476.1
| USER

| e

| mattp 2.51 ———=mm- 2.20 2.69
| jsmith 12.82 ————--- 12.66 15.36
I kyliem 3.44 ——————- 3.93 2.78
I tgh 4.94 ——————- 4.44 5.12
| walex 1.51 ——————- 3.14 1.15
| jimf 4,73 ————mm- 4.67 4.31

Decay Rate:

2

0.2500
478.9

0.

3

0.1250
478.5

50

4

0.0625
475.5

4.7 Moab Commands

Chapter 4: Scheduler Commands

| poy 4.64 ——————- 4.43 4.61 4.58 4.76 5.36 4.90 |
: mjackson 066 === 0.35 0.78 0.67 0.77 0.55 0.43 :
| tfw 17.44 ———-——- 16.45 15.59 19.93 19.72 21.38 15.68 [
| gjohn 2.81 ——————- 1.66 3.00 3.16 3.06 2.41 3.33 |
I 13i11 10.85 ———-——- 18.09 7.23 13.28 9.24 14.76 6.67 :
l kbill 11.10 —=-—---- 7.31 14.94 4.70 15.49 5.42 16.61 [
| stevei il 5 1.41 1.34 2.09 0.75 3.30 2.15 I
| gms 1.54 ——————- 1.15 1.74 1.63 1.40 1.38 0.90 :
| patw 5.11 ——————- 5.22 5.11 4.85 5.20 5.28 5.78 I
I wer 6.65 ——————- 5.04 7.03 7.52 6.80 6.43 2.83 }
| anna 1.97 ——————- 2.29 1.68 2.27 1.80 2.37 2.17 [
| susieb 5.69 ——————- 5.58 5.55 5.57 6.48 5.83 6.16 |
! GROUP |
] S I
| dallas 13.25 15.00 14.61 12.41 13.19 13.29 15.37 15.09 I
| sanjose* 8.86 15.00 6.54 9.55 9.81 8.97 8.35 4.16 :
| seattle 10.05 15.00 9.66 10.23 10.37 9.15 9.94 10.54 |
| austin* 30.26 15.00 29.10 30.95 30.89 28.45 29.53 29.54 :
| boston* 3.44 15.00 3.93 2.78 4.36 3.11 3.94 4.25 |
| orlando* 26.59 15.00 29.83 26.77 22.56 29.49 25.53 28.18 |
| newyork* 7.54 15.00 6.33 7.31 8.83 7.54 7.34 8.24 :
| accr l
| |
| engineering 31.76 30.00 32.25 32.10 31.94 30.07 30.74 31.14 :
: marketing 8.86 5.00 6.54 9.55 9.81 8.97 8.35 4.16 I
I it 9.12 5.00 7.74 8.65 10.92 8.29 10.64 10.40 }
| development* 24.86 30.00 24.15 24.76 25.00 24.84 26.15 26.78 [
| research 25.40 30.00 29.32 24.94 22.33 27.84 24.11 27.53 |
| Q0s l
| S I
| DEFAULT* 0.00 50.00 ==—==== mmmmmmm e e e
i high* 83.69 90.00 86.76 83.20 81.71 84.35 83.19 88.02 |
: urgent 0.00 5.00 —=----- mmmmmmm mmmmmom —mmmmem e I
| Low* 12.00 5.00 7.34 12.70 14.02 12.51 12.86 7.48 :
! CLASS :
_____________ |
| batch* 51.69 70.00 53.87 52.01 50.80 50.38 48.67 52.65 :
I long* 18.75 10.00 16.54 18.36 20.89 18.36 21.53 16.28 |
| fast* 15.29 10.00 18.41 14.98 12.58 16.80 15.15 18.21 I
| bigmem 14.27 10.00 11.17 14.65 15.73 14.46 14.65 12.87 J
o An asterisk (*) next to a credential name indicates that that credential has exceeded
its fairshare target.
Example 4-14: Grouping User Output by Account
/25 \
: > mdiag -f -o acct --flags=relative
| FairShare Information |
: Depth: 6 intervals Interval Length: 00:20:00 Decay Rate: 0.50 :
| FS Policy: DEDICATEDPES |
| System FS Settings: Target Usage: 0.00 :
{ FSInterval % Target 0 1 2 3 4 5 :
| FSWeight ~— ———---— —------ 1.0000 0.5000 0.2500 0.1250 0.0625 0.0312 |
| TotalUsage 100.00 ——-—-—- 23.8 476.1 478.9 478.5 475.5 482.8 :
| ACCOUNT :
| ——————————— |
| dallas 13.12 15.00 15.42 12.41 13.19 13.29 15.37 15.09 :
| mattp 19.47 ——————- 15.00 21.66 16.75 19.93 17.26 19.95 |
| walex 9.93 ——————- 20.91 9.28 7.97 12.14 7.91 10.59 J
4.7 Moab Commands

138

Chapter 4: Scheduler Commands

139

| stevei 12,08 com———e 9.09 10.78 15.85 5.64 21.46 14.28 }
| anna N — 16.36 13.54 17.18 13.55 15.44 14.37 !
| susieb 43.64 ——————- 38.64 44.74 42.25 48.74 37.92 40.81 |
| sanjose* 9.26 15.00 8.69 9.55 9.81 8.97 8.35 4.16 !
| mjackson F I E—— 6.45 8.14 6.81 8.62 6.54 10.29 !
| gms 17.61 ——————- 21.77 18.25 16.57 15.58 16.51 21.74 |
| wer 74.68 ——————- 71.77 73.61 76.62 75.80 76.95 67.97 !
| seattle 10.12 15.00 10.16 10.23 10.37 9.15 9.94 10.54 !
| tgh 49.56 ——————- 46.21 50.05 53.26 43.14 46.91 45.13 ,
| patw 50.44 ——————- 53.79 49.95 46.74 56.86 53.09 54.87 !
| austin* 30.23 15.00 25.58 30.95 30.89 28.45 29.53 29.54 |
| Jsmith TV —— 48.77 49.62 35.47 30.70 27.59 46.90 :
| tfw 5756 —omm—e 51.23 50.38 64.53 69.30 72.41 53.10 !
| boston* 3.38 15.00 3.78 2.78 4.36 3.11 3.94 4.25 |
I kyliem 100.00 ————-—- 100.00 100.00 100.00 100.00 100.00 100.00 !
| orlando* 26.20 15.00 30.13 26.77 22.56 29.49 25.53 28.18 !
| poy T/ — 16.28 17.22 20.30 16.15 20.98 17.39 |
L1311 Ey) e — 58.60 26.99 58.87 31.33 57.79 23.67 !
| kbill 44.25 ——————- 25.12 55.79 20.83 52.52 21.23 58.94 |
| newyork* 7.69 15.00 6.24 7.31 8.83 7.54 7.34 8.24 :
| jimf IR — 69.66 58.94 64.20 59.46 67.21 59.64 !
| __gjohn 38.58 ——————- 30.34 41.06 35.80 40.54 32.79 40.36]

Related Topics

o Fairshare Overview

4.7.9.A Synopsis

4.7.9 mdiag -j

mdiag -7 [jobid] [-t <partition>] [-v] [-w] [--flags=policy] [-
-xml] [--blocking]

4.7.9.B Overview

The mdiag -7 command provides detailed information about the state of jobs Moab is
currently tracking. This command also performs a large number of sanity and state checks.
The job configuration and status information, as well as the results of the various checks,
are presented by this command. The command gathers information from the Moab cache
that prevents it from interrupting the scheduler, but the --blocking option can be used
to bypass the cache and interrupt the scheduler. If the —v (verbose) flag is specified,
additional information about less common job attributes is displayed. If —-
flags=policy is specified, information about job templates is displayed.

4.7 Moab Commands

Chapter 4: Scheduler Commands

If used with the -t <partition> option on a running job, the only thing mdiag -7
shows is if the job is running on the specified partition. If used on job that is not running, it
shows if the job is able to run on the specified partition.

The -w flag enables you to specify specific job states, such as Running, Completed, Idle, or
ALL (see Job States for all valid options), or jobs associated with a given credential (user,
acct, class, group, jobgroup, qos). For example:

g

: mdiag -j -w user=david # Displays only David's jobs :
: mdiag -j -w state=Idle,Running # Displays only idle or running jobs :
| mdiag -j -w jobgroup=workflowl # displays jobs in jobgroup workflowl J
.- - .

o The mdiag -7 command does not show all subjobs of an array unless you use
mdiag -7 --xml.In the XML, the master job element contains a child element
called ArraySubJobs that contains the subjobs in the array. Using mdiag -3 -v
--xm1l shows the completed subjobs as well.

4.7.9.C XML Output

If XML output is requested (via the --format=xml argument), XML based node information
will be written to STDOUT in the following format:

<Data>

For information about legal attributes, refer to the XML Attributes table.

o To show jobs in XML, use mdiag -j --xml -w
[completed=true|system=true|ALL=true] to limit or filter jobs. This is for
XML use only.

Related Topics
o checkjob

« mdiag

4.7 Moab Commands 140

Chapter 4: Scheduler Commands

4.7.10 mdiag -n

4.7.10.A Synopsis

mdiag -n [-t partitionid] [-A creds] [-v] [nodeid]

4.7.10.B Overview

The mdiag -n command provides detailed information about the state of nodes Moab is
currently tracking. This command also performs a large number of sanity and state checks.
The node configuration and status information and the results of the various checks are
presented by this command.

4.7.10.C Arguments

T T

[-A] {user|group|account|qos|class|job}: Report if each node is accessible by requested
<OBJECTID> job or credential.

[nodeid] Report on the specified node (default is all
nodes).

[-t] <partitionid> Report only nodes from specified partition.

[-v] Show verbose output (do not truncate columns
and add columns for additional node
attributes).

4.7.10.D Output

This command presents detailed node information in whitespace-delineated fields.

The output of this command can be extensive and the values for a number of fields can be
truncated. If truncated, the -v flag can be used to display full field content.

141 4.7 Moab Commands

Chapter 4: Scheduler Commands

State <NODE STATE>
Procs <AVAILABLE PROCS>:<CONFIGURED PROCS>

Memory <AVAILABLE MEMORY>;<CONFIGURED MEMORY>

Disk <AVAILABLE DISK>:<CONFIGURED DISK>
Swap <AVAILABLE SWAP>.<CONFIGURED SWAP>
Speed <RELATIVE MACHINE SPEED>

Opsys <NODE OPERATING SYSTEM>

Arch <NODE HARDWARE ARCHITECTURE>

Par <PARTITION NODE IS ASSIGNED TO>
Load <CURRENT 1 MINUTE BSD LOAD>

Rsv <NUMBER OF RESERVATIONS ON NODE>
Classes <CLASS NAME>

Network <NETWORK NAME>

Features <NODE FEATURE>

4.7.10.E Examples

compute node summary

(
| |
: [
I
! I
: Name State Procs Memory Opsys :
I

I
I
I opt-001 Busy 0:2 2048:2048 SUSE :
: opt-002 Busy 0:2 2048:2048 SUSE :
: opt-003 Busy 0:2 2048:2048 SUSE |
| opt-004 Busy 0:2 2048:2048 SUSE {
: opt-005 Busy 0:2 2048:2048 SUSE I
| opt-006 Busy 0:2 2048:2048 SUSE :
| WARNING: swap is low on node opt-006 J
.

4.7 Moab Commands 142

Chapter 4: Scheduler Commands

143

P690-001
P690-002
P690-003
P690-004
P690-005
P690-006
P690-007
P690-008
WARNING: node P690-008
P690-009
P690-010
P690-011
P690-012
P690-013
P690-014
P690-015
P690-016

Total Nodes: 36 (Active:

Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:2 2048:2048
Busy 0:1 512:512
Busy 0:1 512:512
Busy 0:1 512:512
Busy 0:1 512:512
Idle 1:1 512:512
Idle 1:1 512:512
Idle 1:1 512:512
Busy 0:1 512:512
Down 1:1 512:512
Busy 0:1 512:512
Busy 0:1 512:512
Busy 0:1 512:512
Busy 0:1 512:512
Busy 0:1 512:512
Busy 0:1 512:512
Busy 0:1 512:512
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Idle 1:1 16384:16384
Idle 1:1 16384:16384
is missing ethernet adapter
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
Busy 0:1 16384:16384
= 6:64 745472:745472
30 Idle: 5 Down: 1)

SUSE
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat
Redhat

ATX
AIX
ATX
ATX
AIX
ATX
ATX
AIX

AIX
ATIX
AIX
AIX
AIX
AIX
AIX
AIX

o Warning messages are interspersed with the node configuration information with all
warnings preceded by the keyword WARNING.

4.7.10.F XML Output

If XML output is requested (via the --format=xml argument), XML based node information

will be written to STDOUT in the following format:

4.7 Moab Commands

Chapter 4: Scheduler Commands

<Data>
<node> <ATTR>="<VAL>"

——————

</Data>

' ... </node>

4.7.10.G XML Attributes

e

ACL

AGRES

ALLOCRES

ARCH

AVLCLASS

AVLETIME

AVLSTIME

CFGCLASS

ENABLEPROFILING

FEATURES

GEVENT

GMETRIC

GRES

HOPCOUNT

ISDELETED

4.7 Moab Commands

Node Access Control List.

Available generic resources.

Special allocated resources (like VLANS).
The node's processor architecture.
Classes available on the node.

Time when the node will no longer be available (used in Utility
centers).

Time when the node will be available (used in Utility centers).
Classes configured on the node.

If true, a node's state and usage is tracked over time.

A list of comma-separated custom features describing a node.
A user-defined event that allows Moab to perform some action.

A list of comma-separated consumable resources associated with a
node.

generic resources on the node.

How many hops the node took to reach this Moab (used in
hierarchical grids).

Node has been deleted.

144

Chapter 4: Scheduler Commands

e Jomepen

ISDYNAMIC Node is dynamic (used in Utility centers).
JOBLIST The list of jobs currently running on a node.
LOAD Current load as reported by the resource manager.
LOADWEIGHT Load weight used when calculating node priority.
MAX]JOB See Node Policies for details.

MAXJOBPERUSER See Node Policies for details.

MAXLOAD See Node Policies for details.

MAXPROC See Node Policies for details.

MAXPROCPERUSER See Node Policies for details.

NETWORK The ability to specify which networks are available to a given node is
limited to only a few resource managers. Using the NETWORK
attribute, administrators can establish this node to network
connection directly through the scheduler. The NODECFG parameter
allows this list to be specified in a comma-delimited list.

NODEID The unique identifier for a node.

NODESTATE The state of a node.

(01 A node's operating system.

OSLIST Operating systems the node can run.

OSMODACTION URL for changing the operating system.

OWNER Credential type and name of owner.

PARTITION The partition a node belongs to. See Node Location for details.

145 4.7 Moab Commands

Chapter 4: Scheduler Commands

e Jomepen

POWER
PRIORITY
PROCSPEED
RACK
RADISK
RAMEM
RAPROC
RASWAP
RCMEM
RCPROC
RCSWAP
RequestID
RESCOUNT
RESOURCES
RSVLIST

RMACCESSLIST

SIZE
SLOT

SPEED

4.7 Moab Commands

The state of the node's power. Either ON or OFF.
The fixed node priority relative to other nodes.

A node's processor speed information specified in MHz.
The rack associated with a node's physical location.
The total available disk on a node.

The total available memory on a node.

The total number of processors available on a node.
The total available swap on a node.

The total configured memory on a node.

The total configured processors on a node.

The total configured swap on a node.

Dynamic Node RequestID set by the RM.

Number of reservations on the node.

Deprecated (use GRES).

List of reservations on the node.

A comma-separated list of resource managers who have access to a
node.

The number of slots or size units consumed by the node.

The first slot in the rack associated with the node's physical location.

A node's relative speed.

146

Chapter 4: Scheduler Commands

147

e Jomepen

SPEEDWEIGHT Speed weight used to calculate node's priority.
STATACTIVETIME Time node was active.
STATMODIFYTIME Time node's state was modified.

STATTOTALTIME Time node has been monitored.

STATUPTIME Time node has been up.
TASKCOUNT The number of tasks on a node.
TTL Dynamic Node Time To Live set by the RM (expiration date in epoch
format).
Related Topics

o checknode

4.7.11 mdiag -p

4.7.11.A Synopsis

mdiag -p [-t partition] [-v] [-V]

4.7.11.B Overview

The mdiag -p command is used to display at a glance information about the job priority
configuration and its effects on the current eligible jobs. The information presented by this
command includes priority weights, priority components, and the percentage contribution
of each component to the total job priority.

The command hides information about priority components that have been deactivated
(i.e., by setting the corresponding component priority weight to 0). For each displayed
priority component, this command gives a small amount of context sensitive information.
The following table documents this information. In all cases, the output is of the form

4.7 Moab Commands

Chapter 4: Scheduler Commands

<PERCENT> (<CONTEXT INFO>) where <PERCENT> is the percentage contribution of

the associated priority component to the job's total priority.

o By default, this command only shows information for jobs that are eligible for
immediate execution. Jobs that violate soft or hard policies, or have holds, job
dependencies, or other job constraints in place will not be displayed. If priority

information is needed for any of these jobs, use the -v flag or the checkjob command.

4.7.11.C Format
1 0 2 i

-V VERBOSE

4.7 Moab Commands

partltlon

partltlons

Constrain the report
to a particular
partition.

Display verbose
priority information.
If specified, display
priority breakdown
information for
blocked, eligible,
and active jobs.

o By default,
only

information
for eligible
jobs is
displayed. To
view blocked
jobs in
addition to
eligible, run
mdiag -p -
v —V.

|| > mdiag -p -t
| partitionl
\

Display
priority
summary
information
for jobs in
partition1.

:rDispIay :

| priority :

| summary |
| information |
| for eligible |
' i
|

148

Chapter 4: Scheduler Commands

47.11.D Output

149

Priority

Component

Target

QoS

FairShare

Service

Resource

<PERCENT>()

<PERCENT>
(<Q0S>:<QOSPRI>)

<PERCENT>

(

<USR>

<GRP>
:<ACC>:<QO0S>:<CLS>)

<PERCENT>
(<QT>:<XF>:<Byp>)

<PERCENT>

(

<NDE>:<PE>:<PRC>:<MEM>)

Description

Q0S — QOS associated with job
QOSPRI — Priority assigned to the QOS

USR — user fs usage - user fs target

GRP — group fs usage - group fs target
ACC — account fs usage - account fs target
Q0S — QOS fs usage - QOS fs target

CLS — class fs usage - class fs target

QTime — job queue time that is applicable
towards priority (in minutes)

XF — current theoretical minimum XFactor
is job were to start immediately

Byp — number of times job was bypassed
by lower priority jobs via backfill

NDE — nodes requested by job

PE — Processor Equivalents as calculated
by all resources requested by job

PRC — processors requested by job

MEM — real memory requested by job

4.7.11.E Examples

Example 4-15: mdiag -p

diagnosing job priority information

Job

I
I
I
I
I
I
I
i
{ 13698
I
I
I
I
I
I
I
I

(partition:

PRIORITY* Cred(QOS)
————— 1(1) 1(1)
1321* 7.6(100.0)
235%* 42.6(100.0)

8699 0.6(50.0)
8699 0.6(50.0)
8537 0.6(50.0)
8438 0.6(50.0)
8428 0.6(50.0)
8360 0.0(1.0)

ALL)
FS (Accnt) Serv (QTime)
1 1)
0.2(2.7) 92.2(1218.)
1.1(2.7) 56.3(132.3)
0.3(25.4) 99.1(8674.)
0.3(25.4) 99.1(8674.)
0.3(25.4) 99.1(8512.)
0.2(17.6) 99.2(8370.)
0.2(17.6) 99.2(8360.)
0.1(11.6) 99.8(8347.)

4.7 Moab Commands

Chapter 4: Scheduler Commands

r hY
: 13177 8216 0.0(1.0) 0.1(11.6) 99.8(8203.) :
| 13203 8127 0.6(50.0) 0.3(25.4) 99.1(8102.) |
: 13211 8098 0.0(1 0.1(11.6) 99.8(8085.) {
... |
: 13703 137 36.6(50.0) 12.8(17.6) 50.6(69.2) :
} 13702 79 1.3(1.0) 5.7(4.5) 93.0(73.4) :
I I
: Percent Contribution - -—-—————-- 0.9(0.9) 0.4(0.4) 98.7(98.7) :
I I
: * indicates system prio set on job :
\ /

The mdiag -p command only displays information for priority components actually utilized. In the above example,
QOS, Account Fairshare, and QueueTime components are utilized in determining a job's priority. Other components,
such as Service Targets, and Bypass are not used and therefore are not displayed. See the Priority Overview for more
information. The output consists of a header, a job by job analysis of jobs, and a summary section.

The header provides column labeling and provides configured priority component and subcomponent weights. In the
above example, QOSWEIGHT is set to 1000 and FSWEIGHT is set to 100. When configuring fairshare, a site also
has the option of weighting the individual components of a job's overall fairshare, including its user, group, and
account fairshare components. In this output, the QoS and account fairshare weights are set to 1.

priority components. In this example, job 13019 has a total priority of 8699. Both QOS and Fairshare contribute to
the job's total priority although these factors are quite small, contributing 0. 6% and 0. 3% respectively with the
fairshare factor being contributed by an account fairshare target. For this job, the dominant factor is the service
subcomponent gt ime, which is contributing 99. 1% of the total priority since the job has been in the queue for
approximately 8600 minutes.

At the end of the job by job description, a Totals line is displayed, which documents the average percentage
contributions of each priority component to the current idle jobs. In this example, the QOS, Fairshare, and Service

(
| |
i I
i I
i I
i I
i I
i I
i I
i I
i I
I
| |
i [
: The job by job analysis displays a job's total priority and the percentage contribution to that priority of each of the :
I
I
I
! l
i I
i I
i I
i I
i I
i I
i I
i I
I
{ components contributed an average of 0. 9%, 0. 4%, and 98. 7% to the jobs' total priorities. :

Related Topics

« Job Priority Overview

4.7.12 mdiag -q

4.7.12.A Synopsis
mdiag -g[gosid]

4.7.12.B Overview

The mdiag -g command is used to present information about each QOS maintained by
Moab. The information presented includes QOS name, membership, scheduling priority,
weights and flags.

4.7 Moab Commands 150

Chapter 4: Scheduler Commands

151

4.7.12.C Examples

Example 4-16: Standard QOS Diagnostics

> mdiag -g

Q0S Status

System QOS Settings: QList: DEFAULT (Def: DEFAULT) Flags: O

Name * Priority QTWeight QTTarget XFWeight XFTarget QFlags
JobFlags Limits

DEFAULT 1 1 3 1 5.00 PREEMPTEE

[NONE] [NONE]
Accounts: 1t research
Classes: Dbatch

e

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

high 1000 1 2 1 10.00 PREEMPTOR :
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

7

[ALL] 0 0 0 0 0.00 [NONE]
[NONE] [NONE]
[NONE] [NONE]

Accounts: engineering it development research

Classes: fast
urgent 10000 1 1 1 7.00 PREEMPTOR
[NONE] [NONE]

Accounts: engineering it development
low 100 1 5 1 1.00 PREEMPTEE
[NONE] [NONE]

Accounts: engineering marketing it development research

Classes: long bigmem

4.7.13 mdiag -r

4.7.13.A Synopsis

mdiag -r[reservationid] [-v] [--blocking]

4.7.13.B Overview

The mdiag -r command allows administrators to look at detailed reservation
information. It provides the name, type, partition, starttime and endtime, proc and node
counts, as well as actual utilization figures. It also provides detailed information about
which resources are being used, how many nodes, how much memory, swap, and
processors are being associated with each task. Administrators can also view the Access
Control Lists for each reservation, as well as any flags that may be active in the reservation.
The command gathers information from the Moab cache, which prevents it from waiting for
the scheduler, but the --blocking option can be used to bypass the cache and allow
waiting for the scheduler.

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.13.C Examples

4.7

> mdiag -r

Diagnosing Reservations

RsvID Type Par StartTime EndTime Duration Node Task
Proc

engineer.0.1 User A -6:29:00 INFINITY INFINITY 0 0
7

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT

ACL: CLASS==batch+:==long+:==fast+:==bigmem+ QO0S==low-:==high+ JATTR==PREEMPTEE+

Qg RSV==engineer.0.1

Task Resources: PROCS: [ALL]

Attributes (HostExp='frl0n0l frl10n03 frlOn05 frlOn07 frl0On09 frl10Onll fr10nl3
fri10nl5")

PH Allocated to Jobs: 43.77/45.44 (96.31%)

SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 1:00:00:00 Days: ALL)
research.0.2 User A -6:29:00 INFINITY INFINITY 0 0
8

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT

ACL: CLASS==batch+:==long+:==fast+:==bigmem+ QOS==high+:==low- JATTR==PREEMPTEE+

CL: RSV==research.0.2

Task Resources: PROCS: [ALL]

Attributes (HostExp='fr3n0l fr3n03 fr3n05 fr3n07 fr3n07 fr3n09 fr3nll fr3nl3
fr3nl5")

PH Allocated to Jobs: 51.60/51.93 (99.36%)

SRAttributes (TaskCount: O StartTime: 00:00:00 EndTime: 1:00:00:00 Days: ALL)
fast.0.3 User A 00:14:05 5:14:05 5:00:00 0 0
16

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT

ACL: CLASS==fast+ Q0S==high+:==low+:==urgent+:==DEFAULT+ JATTR==PREEMPTEE+

CL: RSV==fast.0.3

Task Resources: PROCS: [ALL]

Attributes (HostExp='frl2n0l frl12n02 frl12n03 frl12n04 fr12n05 frl2n06 frl2n07
fr12n08 fr12n09 frl12nl0 frl2nll frl2nl2 fr12nl3 frl2nl4 fr12nl5 frl2nlé6"')

SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 5:00:00 Days:

Mon, Tue, Wed, Thu, Fri)
fast.1.4 User A 1:00:14:05 1:05:14:05 5:00:00 0 0
16

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT

ACL: CLASS==fast+ Q0S==high+:==low+:==urgent+:==DEFAULT+ JATTR==PREEMPTEE+

CL: RSV==fast.1l.4

Task Resources: PROCS: [ALL]

Attributes (HostExp='frl2n0l frl12n02 frl2n03 frl2n04 £frl2n05 frl2n06 £frl2n07
fr12n08 fr12n09 frl2nl0 frl2nll frl2nl2 frl12nl3 frl2nl4 frl12nl5 frl2nlé"')

SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 5:00:00 Days:

Mon, Tue, Wed, Thu, Fri)
job2411 Job A -00:01:00 00:06:30 Each tile contains a
summary information about the service it represents, including the following:

ACL: JOB==job2411l=

Cikhg JOB==70b2411 USER==jimf GROUP==newyork ACCT==it CLASS==bigmem QOS==low
JATTR==PREEMPTEE DURATION==00:07:30 PROC==6 PS==2700
jobl292 Job A 00:00:00 00:07:30 00:07:30 0 0

4

ACL: JOB==jobl292=

CL: JOB==70b1292 USER==jimf GROUP==newyork ACCT==it CLASS==batch QOS==DEFAULT
JATTR==PREEMPTEE DURATION==00:07:30 PROC==4 PS==1800

Moab Commands

152

Chapter 4: Scheduler Commands

Example 4-17:

With the -v option, a nodes line is included for each reservation and shows how many

nodes are in the reservation, as well as how many tasks are on each node.
{ > mdiag -r -v

: Diagnosing Reservations

|

|

|

RsvID Type Par StartTime EndTime Duration Node Task
Proc
|\ ———__ . oo oo Mmoo |
Moab. 6 Job B -00:01:05 00:00:35 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.6=

CL: JOB==Moab.6 USER==tuserl GROUP==tgroupl CLASS==fast QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes="'node002:1"
Rsv-Group: Moab.6

I
! I
I I
I I
I I
I I
I I
I I
: I
! I
I I
I I
I I
I I
I I
I I
: I
| Moab.4 Job B -00:01:05 00:00:35 00:01:40 1 1 :
I

1 I
I
: Flags: ISACTIVE :
1 ACL: JOB==Moab. 4= :
: CL: JOB==Moab.4 USER==tuserl GROUP==tgroupl CLASS==batch QOS==starter I
| JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100 ;
: SubType: JobReservation
: Nodes="'node002:1"' I
I Rsv-Group: Moab.4 :
I I
I
: Moab.5 Job A -00:01:05 00:00:35 00:01:40 3 3 :
I 6 :
: Flags: ISACTIVE I
| ACL: JOB==Moab.5= :
: CL: JOB==Moab.5 USER==tuserl GROUP==tgroupl ACCT==marketing CLASS==long :
: QO0S==1low JPRIORITY<=0 DURATION==00:01:40 PROC==6 PS==600 |
| Task Resources: PROCS: [ALL] :
: SubType: JobReservation
: Nodes="'node008:1,node007:1,node006:1" |
| Rsv-Group: Moab.5 :
! I
I
: Moab.7 Job A -00:01:04 00:00:36 00:01:40 1 1 :

1 I
I
: Flags: ISACTIVE :
| ACL: JOB==Moab.7=
: (@nf JOB==Moab.7 USER==tuserl GROUP==tgroupl CLASS==bigmen QOS==starter :
: JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100 |
| SubType: JobReservation
: Nodes="node005:1" [
: Rsv-Group: Moab.7 :

I
! I
: Moab.?2 Job A -00:01:07 3:58:53 4:00:00 1 2 I
12 :
: Flags: ISACTIVE :
: ACL: JOB==Moab.2= I
| Qg JOB==Moab.2 USER==tuserl GROUP==tgroupl QOS==starter JPRIORITY<=0 :
: DURATION==4:00:00 PROC==2 PS==28800 |
| SubType: JobReservation :
: Nodes="node009:1" :
: Rsv-Group: Moab.2 I
I

e J

153

4.7 Moab Commands

Chapter 4: Scheduler Commands

Moab. 8 Job A 3:58:53 7:58:53 4:00:00 8
16
Flags: PREEMPTEE
ACL: JOB==Moab. 8=
CL: JOB==Moab.8 USER==tuserl GROUP==tgroupl ACCT==development CLASS==bigmen

QO0S==starter JPRIORITY<=0 DURATION==4:00:00 PROC==16 PS==230400

Nodes='node009:1,n0de008:1,node007:1,node006:1,node005:1,node004:1,n0ode003:1,node001:

SubType: JobReservation

1V
Attributes (Priority=148)
Rsv-Group: idle
system.3 User bas
2
Flags: ISCLOSED, ISACTIVE
ACL: RSV==system. 3=
CL: RSV==system. 3
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node254:1"
Attributes (HostExp='node254"')
PH Allocated to Jobs: 0.00/0.01
History: 1322773208:PROCS=2
system. 2 User bas
2
Flags: ISCLOSED, ISACTIVE
ACL: RSV==system. 2=
Chg RSV==system. 2
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes="node255:1"
Attributes (HostExp='node255")
PH Allocated to Jobs: 0.00/0.01
History: 1322773208:PROCS=2
system.1 User bas
2

Flags: ISCLOSED, ISACTIVE

ACL: RSV==system. 1=

Qg RSV==system.1

Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes="'node256:1"

Attributes (HostExp='node256"'")
PH Allocated to Jobs: 0.00/0.01
History: 1322773208:PROCS=2

4.7 Moab Commands

-00:01:08 INFINITY
(0.00%)

-00:01:08 INFINITY
(0.00%)

-00:01:08 INFINITY
(0.00%)

INFINITY

INFINITY

INFINITY

1

1

1

154

Chapter 4: Scheduler Commands

155

4.7.14 mdiag -R

4.7.14.A Synopsis

mdiag =R [-v] [-V] [resourcemanagerid]

4.7.14.B Overview

The mdiag -R command is used to present information about configured resource
managers. The information presented includes name, host, port, state, type, performance
statistics and failure notifications.

4.7.14.C Examples

S

> $ mdiag -R -v

diagnosing resource managers

RM[internal]
Max Fail/Iteration:
JobCounter:
Partition:

RM Performance:
RM Languages:
RM Sub-Languages:

State:

I

|

|

I

|

|

|

I

I

I

I

I

I

I

i

: RM[torque] State:
| Timeout:

: Version:

| Job Submit URL:

: Objects Reported:
| Nodes Reported:

{ Flags:

| Partition:

: Event Management:
| NOTE: SSS protocol
: Submit Command:

| DefaultClass:

: Total Jobs Started:
| RM Performance:

: RM Languages:

| RM Sub-Languages:
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

\

RM[torque] Failures:
(6
'can

clusterquery
-12days
error')"'
NOTE: wuse 'mrmctl -f
RM[FLEX1m]
Timeout:
Cluster Query URL:
Licenses Reported:
Partition:
License Stats:
Iteration Summary:
License biocol

State:

—-—— Type: SSS ResourceType: COMPUTE
0

6

SHARED

AvgTime=0.00s MaxTime=0.00s

Active Type: PBS ResourceType: COMPUTE
30000.00 ms

'4.2.4"

exec:///opt/torque-4.2/bin/gsub

Nodes=1 (12 procs) Jobs=1

1 (N/R)

executionServer

torque

EPORT=15004 (last event: 00:03:07)
enabled

/opt/torque-4.2/bin/gsub

batch

1

AvgTime=0.00s MaxTime=35.00s (220097 samples)
PBS

PBS

83 of 55349 failed)
not connect to PBS server ''
messages <RMID>'

Active Type:
30000.00 ms

NATIVE ResourceType:

exec://$STOOLSDIR/flexlm/license.mon.flexILM.pl

6 types (250 of 282 available)
SHARED

Avg License Avail: 239.01
Idle: 396.42 Active: 150.92

50 of 50 available (Idle:

(55353 samples)

(pbs_errno=15033,

to clear stats/failures

(978 iterations)
Busy:
100.00%

'Batch protocol

LICENSE

-447.34

Active: 0.00%)

4.7 Moab Commands

Chapter 4: Scheduler Commands

e e —————————————————— € ———

License cloudform 100 of 100 available (Idle: 100.00% Active: 0.00%)
License mathworks 8 of 25 available (Idle: 52.00% Active: 48.00%)
License verity 25 of 25 available (Idle: 100.00% Active: 0.00%)
Event Management: (event interface disabled)

RM Performance: AvgTime=0.00s MaxTime=0.61ls (1307618 samples)

clusterquery: AvgTime=0.02s MaxTime=0.61ls (9465 samples)
queuequery: AvgTime=0.00s MaxTime=0.00s 1 samples)

I

I

I

I

I

I

I

I

I (

| rminitialize: AvgTime=0.00s MaxTime=0.00s (1 samples)

: getdata: AvgTime=0.17s MaxTime=0.60s (978 samples)
: RM Languages: NATIVE

I RM Sub-Languages: NATIVE

I

: AM[mam] Type: MAM State: 'Active'

: Host: localhost

| Port: 7112

| Timeout: 15

: Accounting Mode: strict-allocation

| Job Charge Policy: All

: Reservation Charge Policy: Select

: Retry Failed Charges: TRUE

I

I AM[mam] Failures:

: Thu Jun 21 14:32:45 Create 'Failure registering job Create (1) with
: accounting manager —-- server rejected request with status code 740 - Insufficient
I

\

funds: There are no valid allocations to satisfy the quote'

4.7.15 mdiag -s

4.7.15.A Synopsis

mdiag -s|[reservationid] [-v]>]

4.7.15.B Overview

The mdiag -s command allows administrators to look at detailed standing reservation

information. It provides the name, type, partition, starttime and endtime, period, task count,

host list, and a list of child instances.

4.7.15.C Examples

4.7 Moab Commands

156

Chapter 4: Scheduler Commands

N
:{ standing reservation overview :
| RsvID Type Par StartTime EndTime Duration Period I
— e :
| |
| TestSR User --- 00:00:00 ——— 00:00:00 DAY I
: Days: ALL :
I Depth: 2 I
| RsvList: testSR.1, testSR.2, testSR.3 |
: HostExp: 'nodel, node2,node4, nodes8’ :
1 |
: test?2 User - 00:00:00 - 00:00:00 DAY :
I Days: ALL I
: TaskCount: 4 :
: Depth: 1 :
|\ RsvList: test2.4,test2.5 JI

4.7.16 mdiag -S

4.7.16.A Synopsis

mdiag =S [-v] [-V]

4.7.16.B Overview

The mdiag -S command is used to present information about the status of the scheduler
and grid interface.

This command will report on the following aspects of scheduling:

o General Scheduler Configuration
o Reports short and long term scheduler load

o Reports detected overflows of node, job, reservation, partition, and other
scheduler object tables

« High Availability
o Configuration
o Reports health of HA primary
o Reports health of HA backup
¢ Scheduling Status
o Reports if scheduling is paused
o Reports if scheduling is stopped

157 4.7 Moab Commands

Chapter 4: Scheduler Commands

« System Reservation Status
o Reports if global system reservation is active
o Message Profiling/Statistics Status
o Moab scheduling activities (only with mdiag -S -v -v)

o Activity[JobStart]: Time Moab spends telling the RM to start a job and waiting
for a response.

o Activity[RMResourceLoad]: Time Moab spends querying license managers and
nodes.

o Activity[RMWorkloadLoad]: Time Moab spends querying resource managers
about jobs (as opposed to nodes)

o Activity[Schedule]: Time Moab spends prioritizing jobs and scheduling them
onto nodes.

o Activity[UIProcess]: Time Moab spends handling client commands.

4.7.16.C Examples

Example 4-18:

: mdiag -S

| Moab Server running on orion-1:43225 (Mode: NORMAL)

: Load (5m) Sched: 12.27% RMAction: 1.16% RMQuery: 75.30% User: 0.29% 1Idle: 10.98%
: Load(24h) Sched: 10.14% RMAction: 0.93% RMQuery: 74.02% User: 0.11% Idle: 13.80%
I

|

|

=V

HA Fallback Server: orion-2:43225 (Fallback is Ready)
Note: system reservation blocking all nodes
Message: profiling enabled (531 of 600 samples/5:00 interval)

e ——)

4.7.17 mdiag -t

4.7.17.A Synopsis

mdiag -t [-v][-V] [partitionid]

4.7.17.B Overview

The mdiag -t command is used to present configuration, usage, health, and diagnostic
information about partitions maintained by Moab. The information presented includes
partition name, limits, configured and available resources, allocation weights and policies.

4.7 Moab Commands 158

Chapter 4: Scheduler Commands

159

4.7.17.C Examples

Example 4-19: Standard partition diagnostics

C> mdiag -t
: Partition Status

|

4.7.18 mdiag -T

4.7.18.A Synopsis
mdiag -T[triggerid] [-v] [--blocking]

4.7.18.B Overview

The mdiag -T command is used to present information about each Trigger. The
information presented includes TriglD, Object ID, Event (Etype) TType, Attype, ActionDate,
State. The command gathers information from the Moab cache, which prevents it from
waiting for the scheduler, but the --b1ocking option can be used to bypass the cache
and allow waiting for the scheduler.

4.7.18.C Examples

r

: > mdiag -T 3
| TrigID Object ID Event TType AType ActionDate I
| State :
] oo e e e e I e IS e e e S e e e
Jpu— |
: sched trig.0 sched:Moab end generic exec = :
I Blocked |
: 3 node:node010 threshol generic exec = :
: Blocked I
I 5 job:Moab.7 preempt generic exec = :
| Blocked :
: 6 job:Moab.8 preempt generic exec = |
| Blocked :
: 7 qos:HIGH threshol elastic exec - :
I Blocked |
: 4% job:Moab.5 start generic exec 0:00:36 :
: Failure I
L * indicates trigger has completed J

4.7 Moab Commands

Chapter 4: Scheduler Commands

: TrigID
: ActionDate

sched trig.0

= Blocked
Name:
Flags:
BlockUntil:
Action Data:
NOTE: trigger

Blocked
Flags:
BlockUntil:
Threshold:
Action Data:
NOTE: trigger
supported

= Blocked
Flags:
BlockUntil:
Action Data:

= Blocked
Flags:

Action Data:
NOTE: trigger

Blocked
Flags:
BlockUntil:
Timeout:
Threshold:
Trigger Type:
RearmTime:
Action Data:

NOTE: trigger cannot launch - threshold not satisfied - threshold not satisfied -
requires usage O.

4% job:Moab.5 start generic exec Mon Jan 16
12:33:00 Failure

Launch Time: -00:02:17

Flags: globaltrig

Last Execution State: Failure (ExitCode: 0)

BlockUntil: 00:00:00 ActiveTime: 00:00:00

Action Data:

Object ID Event TType AType
State

sched:Moab end generic exec
sched trig
globaltrig
INFINITY ActiveTime: -

date
can launch

node:node010 threshol generic exec

globaltrig

INFINITY ActiveTime: -——=

CPULoad > 3.00 (current value: 0.00)

date

cannot launch - threshold not satisfied - threshold type

job:Moab.7 preempt generic exec

user,globaltrig
INFINITY ActiveTime: ---
$HOME/tools/preemptnotify.pl $OID SOWNER SHOSTNAME

job:Moab.8 preempt generic exec

user,globaltrig

INFINITY ActiveTime: ---
SHOME/tools/preemptnotify.pl $OID $SOWNER S$SHOSTNAME
cannot launch - parent job Moab.8 is in state Idle

gos:HIGH threshol elastic exec

multifire,globaltrig

INFINITY ActiveTime: -——=

00:05:00

BacklogCompletionTime > 500.00 (current value: 0.00)
elastic

00:00:10

SHOME/geometry.pl SREQUESTGEOMETRY

000000 > 500.000000

SHOME/tools/preemptnotify.pl $OID SOWNER S$SHOSTNAME

ALERT: trigger failure detected

Message:

|
I
|
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
: BlockUntil:
I
I
I
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: not executable'
|
|
|

'exec '/usr/test/moab/tools/preemptnotify.pl' cannot be located or is

* indicates trigger has completed

4.7 Moab Commands

not

160

Chapter 4: Scheduler Commands

161

4.7.19 mdiag -u

4.7.19.A Synopsis

mdiag -u[userid]

4.7.19.B Overview

The mdiag -ucommand is used to present information about user records maintained
by Moab. The information presented includes user name, UID, scheduling priority, default
job flags, default QOS level, List of accessible QOS levels, and list of accessible partitions.

4.7.19.C Examples

S

> mdiag -u

evaluating user information

Name Priority Flags
Target Limits

jvella 0 [NONE]
0.00 [NONE]

ALIST=Engineering

Message: profiling enabled (597

[NONE] 0 [NONE]
0.00 [NONE]
reynolds 0 [NONE]

0.00 [NONE]
ALIST=Administration
Message: profiling enabled (597

mshaw 0 [NONE]
0.00 [NONE]

ALIST=Test

Message: profiling enabled (584
kforbes 0 [NONE]

0.00 [NONE]

ALIST=Shared

Message: profiling enabled (597
gastor 0 [NONE]
0.00 [NONE]

ALIST=Engineering

QDef

[NONE]

QOSList*

[NONE]

of 3000 samples/00:15:00 interval)

[NONE]

[NONE]

[NONE]

[NONE]

of 3000 samples/00:15:00 interval)

[NONE]

[NONE]

of 3000 samples/00:15:00 interval)

[NONE]

[NONE]

of 3000 samples/00:15:00 interval)

[NONE]

[NONE]

Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

[NONE]

[NONE]

[NONE]

[NONE]

[NONE]

[NONE]

Note that only users who have jobs that are currently queued or have been queued since
Moab was most recently started are listed.

Related Topics

« showstats command (display user statistics)

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.20 mjobctl

4.7.20.A Synopsis

mjobctl -c Jjobexp

mjobctl -c -w [Jjobexp] attr=val

mjobctl -C Jjobexp

mjobctl -e jobid

mjobctl -F Jjobexp

mjobctl -h [User|System|Batch|Defer|All] jobexp
mjobctl -m attr{+=|=|-=}val jobexp [--flags=force]
mjobctl -N [<SIGNO>] jobexp

mjobctl -p <PRIORITY> jobexp

mjobctl -g {diag|starttime|hostlist} jobexp
mjobctl -r Jjobexp

mjobctl -R jobexp [--flags=force | unmigrate
mjobctl -s Jjobexp

mjobctl -u jobexp

mjobctl -w attr{+=|=|-=}val Jjobexp

mjobctl -x [-w flags=val jobexp

[--—about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[-—timeout=<seconds>] [--version] [--xml]

4.7.20.B Overview

The mjobct1 command controls various aspects of jobs. It is used to submit, cancel,
execute, and checkpoint jobs. It can also display diagnostic information about each job. The
mjobctl command enables the Moab administrator to control almost all aspects of job
behavior. See General Job Administration for more details on jobs and their attributes.

4.7 Moab Commands 162

Chapter 4: Scheduler Commands

4.7.20.C Options

-c - Cancel

Format JOBEXP

Description Cancel a job.

o Use -w (following a -c flag) to specify job cancellation according to given
credentials or job attributes. See -c -w for more information.

You can use mjobctl -c flags=follow-dependency <job id>to
cancel all jobs that the <job id> depends on.

o If you want to cancel all jobs that depend on this <job id>, add
FLAGS=CANCELFAILEDDEPENDENCYJOBS to your SCHEDCFG entry
in moab.cfg file. See CANCELFAILEDDEPENDENCY]JOBS for more
information.

(
> mjobctl -c jobl045 |

Example [>mjobetl —e jobloas j

-c -w - Cancel Where

Format [JOBEXP] <ATTR>=<VALUE>

where <ATTR>=[user | account | qos | class | reqreservation (RsvName) |
state (JobState) | jobname (JobName, not job ID)] | partition

Description Cancel a job based on a given credential or job attribute. Use —w following a -c
flag to specify job cancellation according to credentials or job attributes (see
examples) .

See Job States for a list of all valid job states.

Also, you can cancel jobs from given partitions using -w
partition=<PARI1>[<PAR2>...]]; however, you must also either use
another -w flag to specify a job or use the standard job expression.

(
> mjobctl -c -w state=USERHOLD |

Example [>mjobctl —c -w statesUSEREOLD !

(
| > mjobctl -c -w user=userl -w acct=acctl J
N

163 4.7 Moab Commands

Chapter 4: Scheduler Commands

N

N

-c -w - Cancel Where

r Y
| Cancels all jobs assigned to userl or acctl. :

{> mjobotl -c moab.48655 -w state=toLe]
N
- Y
| Cancels job moab.48655, if it is idle.)

-C - Checkpoint

Format JOBEXP

Description Checkpoint a job. See Checkpoint/Restart Facilities for more information.

Example

Format JOBID

Description Rerun the completed Torque job. This works only for jobs that are completed
and show up in Torque as completed. This flag does not work with other
resource managers.

(
Example | > mjobctl —e jobl045 i
\

-F - Force Cancel

Format JOBEXP

Description Forces a job to cancel and ignores previous cancellation attempts.

4.7 Moab Commands

164

Chapter 4: Scheduler Commands

- _

-F - Force Cancel

Specifying this option tells Moab to purge a job from Torque

(equivalent to qdel -p). This only tells pbs_server to remove any
knowledge of the job from its internal memory. If the job is actually
running, this will not cause pbs_server to tell the nodes with the job to
cancel it. Therefore, users and administrators should only use this form
of mjobctl when they've confirmed that the job no longer exists on any
compute nodes, and want to force Torque to stop tracking the job.

(
Example | > mjobctl -F jobl045 [
\

i
|

Format <HOLDTYPE><JOBEXP>

<HOLDTYPE> = { user | batch | system | defer | ALL }

Default user

Description Set or release a job hold.
See Job Holds for more information

-, ————————— e

| > mjobctl -h user jobl045 |
. J

Example

D

-m - Modify

Format <ATTR>{ += | =| -= } <VAL>

o When using mjobctl -m with the hostlist attribute, only "=" is
supported.

165 4.7 Moab Commands

Chapter 4: Scheduler Commands

Description

4.7 Moab Commands

o If using Torque and mjobctl -m with the partition attribute, only "="
is supported. "+=", "-=", and "=" are supported with other resource

managers (Native).

<ATTR>={ account | advres | arraylimit | awduration| class | cpuclock |
deadline | depend | eeduration | env | features | feature | flags | gres | group |
hold | hostlist | jobdisk | jobmem | jobname | jobswap | loglevel | maxmem |
messages | minstarttime | nodeaccess | nodecount | notificationaddress |
partition | priority | queue | qos | reqreservation | rmxstring | reqattr

| reqawduration | sysprio | tpn | trig | trigvar | user | userprio | var | wclimit}

Modify a specific job attribute.

o Ifan mjobctl -m attribute can affect how a job starts, then it
generally cannot affect a job that is already running. For example, it is
not feasible to change the host1list of ajob that is already running.

The userprio attribute allows you to specify user priority. For job priority, use
the "-p' flag.

Modification of the job dependency is also communicated to the resource
manager in the case of PBS/Torque.

Adding --flags=warnifcompleted causes a warning message to print
when a job completes.

To define values for awduration, eeduration, minstarttime (Note
that the minstarttime attribute performs the same function as msub -a.),
reqawduration, and wclimit, use the time spec format.

A non-active job's partition list can be modified. If using Torque, only "=" (set)
is supported. If using a Native resource manager you can add or subtract
partitions, even multiple partitions. When adding or subtracting multiple
partitions, each partition must have its own -m partition{+= | = | -
=}name on the command line. An example for adding multiple partitions is
provided in the list of examples.

To modify a job's generic resources, use the following format: gres{ += |
= | -= } <gresName>[:<count>].<gresName> is a single resource,
not a list. <count> is an integer that, if not specified, is assumed to be 1.
Modifying a job's generic resources causes Moab to append the new gres (+=),
subtract the specified gres (—=), or clear out all existing generic resources
attached to the job and override them with the newly-specified one (=). If
<gresName> is an empty string, all generic resources will be removed from
the job.

To modify the node access policy for a queued job, use nodeaccess=
[<policy>]. See 5.3 Node Access Policies - page 366 for a list of supported
node access policies.

166

Chapter 4: Scheduler Commands

-m - Modify

A
Example |{> mjobctl -m messages+="Adding a message" --flags=completed 1664)I
\
Y
Set the message on the job, even if the job is completed !
(- - TSI T T T T T T N

\
: Sets the notification email address associated with a job to ',
| name@server.com ',

[> mjobctl -m partition+=p3 -m partitiont-pd Moab.s]
N
< N
| Adds multiple partitions (p3 and p4) to job Moab. 5. {

I ” ”n ”n " " ” n L}

| Torque only supports "=". "+=" " and "=" are supported with |

! other resource managers (Natlve]. |

___ J
{> mjobctl -m arraylimit-10 sim.25]
N

\

: Changes the concurrently running subjob limit to 10 for array :

| sim.25. !
AV |

" Overrides all generic resources applied to job job0201 and :
replaces them with 1 matlab. }

Modlﬁes the user of a job that was submitted directly to moab ',
(msub] and has not yet been migrated. ',

167 4.7 Moab Commands

Chapter 4: Scheduler Commands

-m - Modify

| Modifies the total job memory of job 157. See MAXMEM - page 674 \}
| for more information. }

-N - Notify

Format [signal=]<STIGID>JOBEXP

Description Send a signal to all jobs matching the job expression.

Example

-p - Priority

Format [+|+=|-=]<VAL><JOBID> [--flags=relative]

Description Modify a job's system priority.

Example Priority is the job priority plus the system priority. Each format affects the job
and system priorities differently. Using the format <VAL><JOBID> or
+<VAL><JOBID> will set the system priority to the maximum system priority
plus the specified value. Using +=<VAL><JOBID> or <VAL><JOBID> --
flags=relative will relatively increase the job's priority and set the
system priority. Using the format —=<VAL> <JOBID> sets the system
priority to 0, and does not change priority based on <VAL> (it will not
decrease priority by that number).

For the following example, j0b1045 has a priority of 10, which is composed
of a job priority of 10 and a system priority of 0.

The system priority changes to the max system priority plus 1000
points, ensuring that this job will be higher priority than all normal
jobs. In this case, the job priority of 10 is not added, so the priority
of 7ob1045 is now 1000001000.

4.7 Moab Commands 168

Chapter 4: Scheduler Commands

-p - Priority

| > mjobctl -p -=1 jobl045 }
: The system priority of job1045 resets to 0. The job priority is still |
| 10, so the overall priority becomes 10. }
{> mjobctl —p 3 jobl045 —-flags-relative j
| Adds 3 points to the relative system priority. The priority for {
jObl 045 changes from 10 to 13. }
Format [diag(ALL)| hostlist | starttime| template] <JOBEXP>
Description Query a job.
Example {>mjobctl —q aiag jobloss j
Query]ob Jjob1045. !
(T TSI T T T T T T T 3\

| Query the estimated starttime of job job1045. The method used to
| estimate the start time can be specified by adding the --flags option
| with a value of prio, rsv, hist or all. If the --flags option is not

| specified, the value of the DEFAULTSTARTTIMEQUERY parameter

| will determine the default estimation method to be used -- which

| defaults to PRIORITY.

Query]ob templates. If the <job> is set to ALL or empty, it will
return information for all job templates.

: Query a job with the output displayed in a WIKI string. The job's \{
| name can be replaced with ALL. }
[o -—-flags=completed will only work with the diag option.]

169 4.7 Moab Commands

Chapter 4: Scheduler Commands

i
|

Format JOBEXP

Description Resume a job.

Example

-R - Requeue

Format JOBEXP [--flags=force|unmigrate]

Description Requeue a job.
Adding --flags=force forces an asynchronous requeue on Torque systems.

Adding --flags=unmigrate causes Moab to pull a grid job back to the
central scheduler for further evaluation on all valid partitions.

(
Example | > mjobctl -R jobl045 [
\

Format JOBEXP

Description Suspend a job. For more information, see Suspend/Resume Handling.

Example

Format [<TYPE>[,<TYPE>]]JOBEXP

<TYPE> = [user | system | batch | defer | ALL]

4.7 Moab Commands 170

Chapter 4: Scheduler Commands

I

Default ALL

Description Release a hold on a job. See Job Holds for more information.

Example | > mjobctl -u user,system scrib.1045)

: Release user and system holds on job }
| scrib.1045. }

Format [CompletionTime | StartTime][<= | = | >=]<EPOCH_TIME>

Description Add a where constraint clause to the current command. As it pertains to
CompletionTime | StartTime, the where constraint only works for
completed jobs. CompletionTime filters according to the completed jobs'
completion times; StartTime filters according to the completed jobs' start
times.

Example ; > mjobctl -q diag ALL --flags=COMPLETED --format=xml :
| -w CompletionTime>=1246428000 -w CompletionTime<=1254376800 |

: Prints all completed jobs still in memory that completed between
: July 1, 2009 and October 1, 2009.

Format JOBEXP

Description Execute a job. The -w option allows flags to be set for the job. Allowable flags
are, ignorepolicies, ignorenodestate, and ignorersv.

f
Example | > mjobctl -x jobl045 !
L
N
Execute]ob jobl1045. !
___ o
| > mjobctl -x -w flags=ignorepolicies jobl046)I

171 4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.20.D Parameters

JOB EXPRESSION

Format <STRING>

Descriptio = The name of a job or a regular expression for several jobs. The flags that

n support job expressions can use node expression syntax as described in Node
Selection, Using % : indicates the following string is to be interpreted as a
regular expression, and using ' : indicates the following string is to be
interpreted as a range. Job expressions do not work for array subjobs.

o Moab uses regular expressions conforming to the POSIX 1003.2 standard.
This standard is somewhat different than the regular expressions
commonly used for filename matching in UNIX environments (see man 7
regex). To interpret a job expression as a regular expression, use x :.

o In most cases, it is necessary to quote the job expression (for example,
job13[5-91) to prevent the shell from intercepting and interpreting
the special characters.

| J

o The mjobctl command accepts a comma-delimited list of job
expressions. Example usage might be mjobctl -r job[1-2], job4
ormjobctl -c jobl, job2, job4.

Example I{> mjobctl -c "x:80.*"
job '802' cancelled
job '803' cancelled
job '804' cancelled
job '805' cancelled
job '806' cancelled
job '807' cancelled
job '808' cancelled
job '809' cancelled

:> mjobctl -m priority+=200 "x:74[3-5]"
| job '743' system priority modified
:job '744' system priority modified
{job '745' system priority modified

> mjobctl -h x:17.%

This puts a hold on any job that has a 17 that is followed by an unlimited
amount of any

character and includes jobs 1701, 17mjk10, and 17DjN_JW-07

> mjobctl -h r:1-17
This puts a hold on jobs 1 through 17.

4.7 Moab Commands 172

Chapter 4: Scheduler Commands

4.7.20.E XML Output

mjobctl information can be reported as XML as well. This is done with the command
mjobctl -g diag <JOB_ ID>.

173

XML Attributes

I

Account
AllocNodeList
Args
AWDuration
BlockReason
Bypass
Calendar

Class

CmdFile
CompletionCode
CompletionTime
Cost

CPULimit
Depend

DRM

DRMJID

The account assigned to the job

The nodes allocated to the job

The job's executable arguments

The active wall time consumed

The block message index for the reason the job is not eligible
Number of times the job has been bypassed by other jobs
The job's timeframe constraint calendar

The class assigned to the job

The command file path

The return code of the job as extracted from the RM

The time of the job's completion

The cost of executing the job relative to an accounting manager
The CPU limit for the job

Any dependencies on the status of other jobs

The master destination RM

The master destination RM job ID

4.7 Moab Commands

Chapter 4: Scheduler Commands

I

EEDuration The duration of time the job has been eligible for scheduling
EFile The stderr file

Env The job's environment variables set for execution
EnvOverride The job's overriding environment variables set for execution
EState The expected state of the job

EstHistStartTime The estimated historical start time

EstPrioStartTime The estimated priority start time

EstRsvStartTime The estimated reservation start time
ExcHList The excluded host list

Flags Command delimited list of Moab flags on the job
GAttr The requested generic attributes

GJID The global job ID

Group The group assigned to the job

Hold The hold list

Holdtime The time the job was put on hold
HopCount The hop count between the job's peers
HostList The requested host list

IFlags The internal flags for the job
IsInteractive If set, the job is interactive

4.7 Moab Commands 174

Chapter 4: Scheduler Commands

I

IsRestartable If set, the job is restartable

IsSuspendable If set, the job is suspendable

IWD The directory where the job is executed

JobID The job's batch ID.

JobName The user-specified name for the job

JobGroup The job ID relative to its group

LogLevel The individual log level for the job

MasterHost The specified host to run primary tasks on
Messages Any messages reported by Moab regarding the job

MinPreemptTime The minimum amount of time the job must run before being eligible for

preemption
Notification Any events generated to notify the job's user
OFile The stdout file
OldMessages Arlljy messages reported by Moab in the old message style regarding the
jo
OWCLimit The original wallclock limit
PAL The partition access list relative to the job
QueueStatus The job's queue status as generated this iteration
(0]01 The QoS assigned to the job
QOSReq The requested QoS for the job
ReqAWDuration The requested active walltime duration

175 4.7 Moab Commands

Chapter 4: Scheduler Commands

I

ReqCMaxTime
ReqMem
ReqNodes

ReqProcs

ReqReservation

ReqRMType
ReqSMinTime
RM
RMXString
RsvAccess
RsvStartTime
RunPriority
Shell

SID

Size

STotCPU
SMaxCPU
STotMem

SMaxMem

4.7 Moab Commands

The requested latest allowed completion time
The total memory requested/dedicated to the job
The number of requested nodes for the job

The number of requested procs for the job

The required reservation for the job

The required RM type

The requested earliest start time

The master source resource manager

The resource manager extension string

The list of reservations accessible by the job

The reservation start time

The effective job priority

The execution shell's output

The job's system ID (parent cluster)

The job's computational size

The average CPU load tracked across all nodes
The max CPU load tracked across all nodes

The average memory usage tracked across all nodes

The max memory usage tracked across all nodes

176

Chapter 4: Scheduler Commands

I

177

SRMJID
StartCount
StartPriority
StartTime

State

StatMSUtl
StatPSDed
StatPSUtl

StdErr

StdIn

StdOut

SteplID
SubmitHost
SubmitLanguage
SubmitString
SubmissionTime
SuspendDuration
SysPrio

SysSMinTime

The source RM's ID for the job

The number of the times the job has tried to start

The effective job priority

The most recent time the job started executing

The state of the job as reported by Moab

The total number of memory seconds utilized

The total number of processor seconds dedicated to the job
The total number of processor seconds utilized by the job
The path to the stderr file

The path to the stdin file

The path to the stdout file

SteplD of the job (used with LoadLeveler systems)

The host where the job was submitted

The RM language that the submission request was performed
The string containing the entire submission request

The time the job was submitted

The amount of time the job has been suspended

The admin specified job priority

The system specified min. start time

4.7 Moab Commands

Chapter 4: Scheduler Commands

I

TaskMap The allocation taskmap for the job
TermTime The time the job was terminated
User The user assigned to the job
UserPrio The user specified job priority
UtiIMem The utilized memory of the job
UtlProcs The number of utilized processors by the job
Variable
VWCTime The virtual wallclock limit
Example 4-21:
[N

> mjobctl -g diag ALL --format=xml

<Data><job AWDuration="346" Class="batch" CmdFile="jobsleep.sh" EEDuration="0"
EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test" JobID="11578"
Q0S="high"

RMJID="11578.1lolo.icluster.org" RegAWDuration="00:10:00" RegNodes="1" RegProcs="1"
StartCount="1"

StartPriority="1" StartTime="1083861225" StatMSUtl="903.570" StatPSDed="364.610"
StatPSUt1="364.610"

State="Running" SubmissionTime="1083861225" SuspendDuration="0" SysPrio="0O"
SysSMinTime="00:00:00"

User="test"><req AllocNodeList="hana" AllocPartition="access" RegNodeFeature="[NONE]"
RegPartition="access"></reg></job><job AWDuration="346" Class="batch"
CmdFile="jobsleep.sh"

EEDuration="0" EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test"
JobID="11579"

Q0S="high" RMJID="11579.lolo.icluster.org" RegAWDuration="00:10:00" RegNodes="1"
RegProcs="1"

StartCount="1" StartPriority="1" StartTime="1083861225" StatMSUtl="602.380"
StatPSDed="364.610"

StatPSUt1="364.610" State="Running" SubmissionTime="1083861225" SuspendDuration="0"
SysPrio="0"

SysSMinTime="00:00:00" User="test"><req AllocNodeList="lolo" AllocPartition="access"
RegNodeFeature="[NONE]" RegPartition="access"></reqg></job></Data>

4.7 Moab Commands

178

Chapter 4: Scheduler Commands

179

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

e setspri
« canceljob

e runjob

4.7.21 mnodectl

4.7.21.A Synopsis

mnodectl -m attr{=|-=[+=}val nodeexp

mnodectl -q [cat|diag|profile|wiki] nodeexp

[-—about] [--help] [--host=<serverHostName>] [--
loglevel=<loglLevel>] [--msg=<message>] [—--port=<serverPort>]
[--timeout=<seconds>] [--version] [—--xml]

4.7.21.B Overview

Change specified attributes for a given node expression.

4.7.21.C Access

By default, this command can be run by any Moab Administrator.

4.7.21.D Options

-m - Modify

Format <ATTR>{=|-=|+=}<VAL>

Where <ATTR> is one of the following:
CFGCLASS,

FEATURES

GEVENT,

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7

-m - Modify

Description

Example

Format

Description

Example

GMETRIC,
MESSAGE,
oS,
POWER,
STATE,
VARIABLE

and -=, except when used for features, clears the attribute instead of
decrementing the attribute's value and = indicates that you are specifying a
new value to replace the old one(s), if any.

When the —= option is used to modify features, it removes the specified
features from the node. The += option, which is only available for features,
allows you to append additional features to the current list rather than
replacing the current list entirely.

o Changing OS and POWER require a Moab Adaptive Computing Suite
license and a provisioning resource manager.

Modify the state or attribute of specified node(s).

| > mnodectl -m cfgclass-=debug nodel

=> mnodectl -m features+=fastio,highmem nodel

| > mnodectl -m gevent=cpufail:'cpu02 has failed w/ec:0317' nodel

:> mnodectl -m gmetric=temp:131.2 nodel

| > mnodectl -m message='cpufailure:cpul02 has failed w/ec:0317' nodel
:> mnodectl -m OS=RHAS30 nodel

| > mnodectl -m power=off nodel

:> mnodectl -m state=idle nodel

| > mnodectl -m variable=IP=10.10.10.100,Location=R1S2 nodel

{cat | diag | profile | wiki}

Query node categories or node profile information (see ENABLEPROFILING for

nodes).

[o The diag and profile options must use ——xml.

J

180

Chapter 4: Scheduler Commands

181

Parameters

-

CFGCLASS

Format

Description

:> mnodectl -q cat ALL
| node categorization stats

Node: moab
Categories:

Node: maka
Categories:

Node: pau
Categories:

Node: maowu
Categories:

busy: 96.88%

idle: 3.

12%

busy: 96.88%

idle: 3.

12%

busy: 96.88%

idle: 3.

12%

busy: 96.88%

down-hw: 3.

Cluster Summary:

12%

busy: 96.88%

down-hw: 0.
idle: 2.

> mnodectl -g wiki <ALL>
GLOBAL STATE=Idle PARTITION=SHARED

n0
nl
n2
n3
n4
nb
né
n7
n8
n9

STATE=Idle
STATE=Idle
STATE=Idle
STATE=Idle
STATE=Idle
STATE=Idle
STATE=Idle
STATE=Idle
STATE=Idle
STATE=Idle

<STRING>

Class name.

PARTITION=base
PARTITION=base
PARTITION=base
PARTITION=base
PARTITION=base
PARTITION=base
PARTITION=base
PARTITION=base
PARTITION=base
PARTITION=base

78%
34%

APROC=4
APROC=4
APROC=4
APROC=4
APROC=4
APROC=4
APROC=4
APROC=4
APROC=4
APROC=4

from Mon Jul 10 00:00:00 to Mon Jul 10 15:30:00

|
NODEACCESSPOLICY=SHARED |
NODEACCESSPOLICY=SHARED :
NODEACCESSPOLICY=SHARED I
NODEACCESSPOLICY=SHARED I
NODEACCESSPOLICY=SHARED :
NODEACCESSPOLICY=SHARED |
NODEACCESSPOLICY=SHARED 1
NODEACCESSPOLICY=SHARED :
NODEACCESSPOLICY=SHARED I
NODEACCESSPOLICY=SHARED |

o Only "-=" is supported when modifying cfgclass on a node. To add or set
classes on a node, see HOSTLIST

4.7 Moab Commands

Chapter 4: Scheduler Commands

CFGCLASS

|

Example

FEATURES

Format

Description

Example

GEVENT

<STRING>
One of the following:

e« acomma-delimited list of features
« [NONE] (to clear features on the node)

Sets the features on a node.

o These node features will be overwritten when an RM reports
features.

Yy v vy ey Sy Sy ——————————————
|

mnodectl -m features=fastio,highmem nodel
| mnodectl -m features=[NONE] nodel

-~

Format

Description

Example

GMETRIC

<EVENT>.<MESSAGE>

Creates a generic event on the node to which Moab can respond (see Enabling

Generic Events).

[
| mmodectl -m gevent=powerfail:'power has failed' nodel
\

|

Format

Description

4.7 Moab Commands

<ATTR>.<VALUE>

Sets the value for a generic metric on the node (see Enabling Generic Metrics),

o When a gmetric set in Moab conflicts with what the resource manager
reports, Moab uses the set gmetric until the next time the resource

manager reports a different number.

182

Chapter 4: Scheduler Commands

- _

GMETRIC

(
Example | mnodectl -m gmetric=temp:120 nodel 1
8

Format '<MESSAGE>'

Description Sets a message to be displayed on the node.

mnodectl -m message='powerfailure: power has failed' II
: nodel 1

(
|

Example

NODEEXP

Format <STRING>
Where <NODEEXP> is a node name, regex or ALL

o Node regex has the potential to unintentionally match many nodes (for
example, specifying n1 will match n10, n11, n12, n100, etc). To ensure
correct matching, explicitly use the "x:<node_regex>" when modifying
multiple nodes in one command. Currently, this is supported for features.

Description Identifies one or more nodes.

Example nodel - applies only to nodel
fr10n* - all nodes starting with fr10n
ALL - all known nodes

Format <STRING>

Description Operating System (see Resource Provisioning).

T T T T T T T T T T T T —— N
I modectl nodel -m OS=RHELAS30 [

Example !)

183 4.7 Moab Commands

Chapter 4: Scheduler Commands

- _

Format

Description

Example

{off|on}

Set the power state of a node. Action will NOT be taken if the node is already
in the specified state.

.

o [f you power off a node, a green policy will try to turn it back on. If you
want the node to remain powered off, you must associate a reservation
with it.

.

N

s

o If you request to power off a node that has active work on it, Moab
returns a status indicating that the node is busy with a job and will not
be powered off. You will see one of these messages:

¢ Ignoring node <name>: power ON in process
(indicates node is currently powering on)

¢ Ignoring node <name>: power OFF in process
(indicates node is currently powering off)

¢ Ignoring node <name>: has active jobs running
(indicates the node is currently running active jobs)

Once you resolve the activity on the node (by preempting or migrating
the jobs, for example), you can attempt to power the node off again.

You can use the --flags=force option to cause a force override.
However, doing this will power off the node regardless of whether or not
its jobs get migrated or preempted (i.e., you run the risk of losing the
jobs entirely). For example:

‘> mnodectl nodel -m power=off

I
N e e e e

STATE

Format
Description

Example

4.7 Moab Commands

{drained|idle}

Remove (drained) or add (idle) a node from scheduling.

e
{mnodectl nodel -m state=drained |

~,

| Moab ignores node1 when scheduling. \‘,

S e e e e e e e e e e e e e e e e e s e e e e e e e -

184

Chapter 4: Scheduler Commands

VARIABLE

Format <name>[=<value>]<name>[=<value>],,

Description Set a list of variables for a node.

Example : > mnodectl nodel -m I
| variable=IP=10.10.10.100, Location=R1S2 :
! I

Related Topics

« (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o mdiag -n
e showres -n
o checknode

o showstats -n — report current and historical node statistics

4.7.22 moab

4.7.22.A Synopsis

moab --about --help --loglevel=<LOGLEVEL> --version [-c <CONFIG_FILE>] [-C] [-d] [-€e] [-
h] [-P [<PAUSEDURATION>]] [-R <RECYCLEDURATION>] [-s] [-S [<STOPITERATION>]] [-
v]

4.7.22.B Options

N

--about Displays build environment and version information.

--loglevel Sets the server loglevel to the specified value.

185 4.7 Moab Commands

Chapter 4: Scheduler Commands

N

--version Displays version information.

-C Configuration file the server should use.

-C Clears checkpoint files (.moab.ck, .moab.ck.1).

-d Debug mode (does not background itself).

-e Forces Moab to exit if there are any errors in the configuration file,
if it can't connect to the configured database, or if it can't find these
directories:

e statdir
e logdir
e spooldir

. toolsdir

-P Starts Moab in a paused state for the duration specified (default:
pause indefinitely; resume with mschedctl -r (or -R), ora
service restart).

-R Causes Moab to automatically recycle every time the specified
duration transpires.

-S Starts Moab in the state that was most recently checkpointed.

-S Suspends/stops scheduling at specified iteration (or at startup if no
iteration is specified).

-V Same as --version.

4.7.23 mrmctl

4.7.23.A Synopsis
mrmctl -f [<fobject>] {<rmid> | AM[:<amid>] | ID[:<imid>]}

mrmctl -l [<rmid> | AM[:<amid>]]

4.7 Moab Commands 186

Chapter 4: Scheduler Commands

mrmctl -m <attr>=<value> [<rmid>]
mrmctl -p {<rmid> | AM[:<amid>]}
mrmctl -q AccountBalanceCache AM[:<amid>]

mrmctl -R {AM[:<amid>] | ID[:<imid>]}

[--—about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[-—timeout=<seconds>] [--version] [—--xml]

4.7.23.B Overview

mrmct1 allows an admin to query, list, modify, and ping the resource managers and
accounting managers in Moab. mrmct 1 also allows for a queue (often referred to as a
class) to be created for a resource manager.

4.7.23.C Access

By default, this command can be run by level 1 and level 2 Moab administrators (see
ADMINCFG).

4.7.23.D Options

Format -f [<fobject>] where fobject is optional and one of messages or stats.

Default If no fobject is specified, then reported failures and performance data will
be flushed. If no resource manager ID is specified, the first resource manager
will be flushed.

Description Clears resource manager statistics. If messages is specified, then reported
failures, performance data, and messages will be flushed.

(
> mrmctl -f base |

Example |>mmetl £Pase !

187 4.7 Moab Commands

Chapter 4: Scheduler Commands

|

Format
Default

Description

Example

Format
Default
Description

Example

Format
Default
Description

Example

-1
All RMs and AMs (when no RM/AM is specified).
List Resource and Accounting Manager(s).

T T ——— \
I'> mrmetl -1 |

-m <attr>=<val>
All RMs and AMs (when no RM/AM is specified).

Modify Resource and Accounting Manager(s).

p
First RM configured.

Ping Resource Manager.

Format

4.7 Moab Commands

-q AccountBalanceCache

188

Chapter 4: Scheduler Commands

Default

Description When an accounting manager is being used and the fast-allocation accounting
mode is configured, this option queries Moab's internal cache of account
balances. See 6.5.2 Accounting Mode - page 420. Also see 'Select an
Appropriate Accounting Mode' in the Moab Accounting Manager Administrator
Guide for more information.

(
Example | > mrmctl -g AccountBalanceCache AM |
N

Format -R

Description Dynamically reloads server information for the identity manager service if ID
is specified; if AM is specified, reloads the accounting manager service.

Example |(> mrmctl -R ID |
\

Reloads the identity manager on demand.

~

o Resource manager interfaces can be enabled/disabled using the modify operation to
change the resource manager state as in the following example:

disable active resource manager interface

> mrmctl -m state=disabled torque

restore disabled resource manager interface
> mrmctl -m state=enabled torque J

.

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o mdiag -R

» mdiag -c

189 4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.24 mrsvctl

4.7.24.A Synopsis
mrsvctl -BSRVSID

mrsvctl ¢ [-a ACL] [-b SUBTYPE] [-d DURATION] [-D DESCRIPTION] [-e ENDTIME] [-E
EXCLUSIVE] [-f FEATURES) [-F FLAGS) [-g RSVGROUP] [-h HOSTLIST] [-n NAME] [-0
OWNER] [-p PARTITION] [-P PROFILE] [-R RESOURCES) [-s STARTTIME] [-S SET
ATTRIBUTE] [-t TASKS] [-T TRIGGER] [-V VARIABLE) [-x JOBLIST]

mrsvetl -C [-g SRSVID] {RESERVATION PATTERN}
mrsvctl -1 [{RESERVATION PATTERN | -i INDEX}]

mrsvctl -m
<duration|endtime|hostexp|loglevel |reqgtaskcount|rsvaccesslist|
rsvgroup|starttime|variable>{=|+=|-=}<VAL> <hostexp>{+=| —=}<VAL>

<variable>{+=KEY=VAL|-=KEY_TO_REMOVE} {RESERVATION PATTERN | -i INDEX}
mrsvctl -q {RESERVATION PATTERN | -i INDEX} [--blocking]
mrsvctl -r {RESERVATION PATTERN | -i INDEX}

[-—about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.24.B Overview

mrsvctl controls the creation, modification, querying, and releasing of reservations.

The timeframe covered by the reservation can be specified on either an absolute or
relative basis. Only jobs with credentials listed in the reservation's access control list can
utilize the reserved resources. However, these jobs still have the freedom to utilize
resources outside of the reservation. The reservation will be assigned a name derived from
the ACL specified. If no reservation ACL is specified, the reservation is created as a system
reservation and no jobs will be allowed access to the resources during the specified
timeframe (valuable for system maintenance, etc.). See the Reservation Overview for more
information.

Reservations can be viewed using the —g flag and can be released using the -r flag.

o By default, reservations are not exclusive and can overlap with other reservations
and jobs. Use the '-E' flag to adjust this behavior.

4.7 Moab Commands 190

Chapter 4: Scheduler Commands

191

4.7.24.C Access

By default, this command can be run by level 1 and level 2 Moab administrators (see

ADMINCFG).

4.7.24.D Options

Name

Format

Description

Example

Notes

ACL

<TYPE>==<VAL>[,<TYPE>==<VAL>] ...

Where <TYPE> is one of the following:
ACCT,

CLASS,

DURATION,

GROUP,

JATTR,

PROC,

QOS,

USER

List of limitations for access to the reserved resources (see also ACL
Modifiers).

|'> mrsvctl -c¢ -h node0l -a USER==john+, CLASS==batch- |
‘ r

| Moab will make a reservation on node01 allowing access to user |
| john and restricting access from class batch when other resources |
| are available to class batch }

o When you specify multiple credentials, a user must only match one of
them in order to access the reservation. To require one or more of the
listed limitations for reservation access, each required specification must
end with an asterisk (*). If a user meets the required limitation(s), that
user has access to the reservation (without meeting any that are not
marked required).

o There are three different assignment operators that can be used for
modifying most credentials in the ACL. The operator == will reassess the

4.7 Moab Commands

Chapter 4: Scheduler Commands

- _

4.7 Moab Commands

list for that particular credential type. The += operator will append to the
list for that credential type, and —= will remove from the list. Two other
operators are used to specify DURATION and PROC: >= (greater than)
and <= (less than).

To add multiple credentials of the same type with one command, use a
colon to separate them. To separate lists of different credential types, use
commas. For example, to reassign the user list to consist of users Joe and
Bob, and to append the group MyGroup to the groups list on the
system. 1 reservation, you could use the command mrsvctl -m -a
USER==Joe:Bob, GROUP+=MyGroup system.l.

Any of the ACL modifiers can be used. When using them, it is often useful
to put single quotes on either side of the assignment command. For
example, mrsvctl -m -a 'USER==¢Joe' system.l.

Some flags are mutually exclusive. For example, the ! modifier means that
the credential is blocked from the reservation and the & modifier means

that the credential must run on that reservation. Moab will take the most
recently parsed modifier. Modifiers can be placed on either the left or the

right of the argument, so USER==&JOE and USER==JOE & are equivalent.

Moab parses each argument starting from right to left on the right side of
the argument, then from left to right on the left side. So, if the command
was USER==! Joe &, Moab would keep the equivalent of USER==! Joe
because the ! would be the last one parsed.

You can set a reservation to have a time limit for submitted jobs using
DURATION and the * modifier. For example, nrsvctl -m -a
'"DURATION<=*1:00:00" system.1 would cause the system.1
reservation to not accept any jobs with a walltime greater than one hour.
Similarly, you can set a reservation to have a processor limit using PROC
and the * modifier. mrsvctl -a 'PROC>=2*' system.2 would
cause the system. 2 reservation to only allow jobs requesting more than
2 procs to run on it.

You can verify the ACL of a reservation using the mdiag -r command.

I'mrsvctl -m —a 'USER==Joe:Bob, GROUP-=BadGroup, ACCT+=GoodAccount, DURATION<=
| *1:00:00" system.l

. system.lormrsvctl -m -a USER==Joe,USER+=Bob

Moab will reassign the USER list to be Joe and Bob, will remove
BadGroup from the GROUP list, append GoodAccount to the
ACCT list, and only allow jobs that have a submitted walltime of an
hour or less on the system. 1 reservation.

" Moab will assign the USER list to Joe, and then reassign it again
to Bob. The final result will be that the USER list will just be Bob.
To add Joe and Bob, use mrsvctl -m -a USER==Joe:Bob

192

Chapter 4: Scheduler Commands

|

r Y

| system. 1. ,

R e e e e o -

Name SUBTYPE

Format One of the node category values or node category shortcuts.

Description Add subtype to reservation.

|‘> mrsvctl -c -b SoftwareMaintenance -t ALL)‘
L

r Y

Moab will associate the reserved nodes with the node category }
SoftwareMaintenance. }

S e e e e e S S e S S S o S o e e e e -

Example

|

Name REBUILD

Description Rebuilds standing reservations while Moab is running.

—————————— e

Example | > mrsvctl -B <SRSVID> ,
'SR S0 J

Name CREATE

Format <ARGUMENTS>

Description Creates a reservation.

193 4.7 Moab Commands

Chapter 4: Scheduler Commands

- _

~N

g
o If a created reservation has a given duration but the start time is in the
past, one of the following actions occur depending on whether the

present time falls within the reservation's given duration:

o Ifthe present time is still within the reservation's duration time
frame, the start time does not change and the reservation shows
however long is left in the reservation (present time minus the
duration time).

o If present time is outside of the reservation's duration time frame,
the reservation start time automatically sets to the present time and
the reservation continues for its full given duration.

|\ J

~

h
o The -x flag, when used with -F ignjobrsv, lets users create
reservations but exclude certain nodes from being part of the
reservation because they are running specific jobs. The -F flag instructs
mrsvctl to still consider nodes with current running jobs.

Examples | > mrsvctl -c -t ALL i
\

| Moab will create the reservation while assigning the nodes. Nodes |
| running jobs moab5 and moab 6 will not be assigned to the :
| reservation. }

Name CLEAR

Format <RSVID> | -g <SRSVID>

Description Clears any disabled time slots from standing reservations and allows the
recreation of disabled reservations.

Example |'> mrsvctl -C -g testing |
\

4.7 Moab Commands 194

Chapter 4: Scheduler Commands

|

Name DURATION
Format [[[DD:]HH:]MM:]SS
Default INFINITY

Description Duration of the reservation (not needed if ENDTIME is specified).

Example : > mrsvetl -c¢ -h node0l -d 5:00:00 J
I Moab will create a reservation on node01 lasting 5 hours :
,' > mrsvctl -c¢ -h node0l -d INFINITY }
__ J
r
| Moab will create a reservation with a duration of INFINITY |
| (no endtime). }

|

Name DESCRIPTION

Format <STRING>

Description = Human-readable description of reservation or purpose.

Example ,'> mrsvctl -c¢ -h node0l -d 5:00:00 -D 'system maintenance to test [
{ network' |

195 4.7 Moab Commands

Chapter 4: Scheduler Commands

|
|

Name ENDTIME
Format [HH[:MM[:SS]]1[_.MO[/DD[/YY]]]
or

+[[[DD:]JHH:]MM:]SS
Default INFINITY

Description Absolute or relative time reservation will end (not required if Duration
specified). ENDTIME also supports an epoch timestamp.

(
Example | > mrsvctl -c -h node0l -e +3:00:00 |
\

Name EXCLUSIVE

Description =~ When specified, Moab will only create a reservation if there are no other
reservations (exclusive or otherwise) that would conflict with the time and
space constraints of this reservation. If exceptions are desired, the rsvaccesslist
attribute can be set or the ignrsv flag can be used.

(
Example | > mrsvctl -c -h node0l -E |
\

Moab will only create a reservation on node01 if no conflicting
reservations are found.

o This flag is only used at the time of reservation creation. Once the
reservation is created, Moab allows jobs into the reservation based on
the ACL. Also, once the exclusive reservation is created, it is possible that
Moab will overlap it with jobs that match the ACL.

|
|

Name FEATURES

4.7 Moab Commands 196

Chapter 4: Scheduler Commands

197

N
1
|

Format

Description

Example

<STRING>[:<STRING>]...

List of node features that must be possessed by the reserved resources. You
can use a backslash and pipe to delimit features to indicate that Moab can use
one or the other.

| Moab will create a reservation on nodes matching the expression
| and which also have either the feature fast or the feature slow.

Name
Format

Description

Example

|

Name
Format

Description

Example

FLAGS
<flag>[[,<flag>]...]

Comma-delimited list of flags to set for the reservation (see Managing
Reservations for flags).

Moab will create a reservation on node01 ignoring any conflicting
node states.

RSVGROUP

<STRING>

For a create operation, create a reservation in this reservation group. For list
and modify operations, take actions on all reservations in the specified
reservation group. The —g option can also be used in conjunction with the -r
option to release a reservation associated with a specified group. See
Reservation Group for more information.

4.7 Moab Commands

Chapter 4: Scheduler Commands

.
| Moab will create a reservation on nodes matching the node
| expression given and assign it to the reservation group stafrft.

R e e e N -

Name HOSTLIST

Format class:<classname>[,<classname>]..
or

<STRING>

or

T:<nodeNameStart>[<beginRange>-<endRange>]'
or

ALL

Description Host expression or a class mapping indicating the nodes that the reservation
will allocate.

When you specify a <STRING>, the HOSTLIST attribute is always

treated as a regular expression. foo1 0 will map to foo010, fool01,
f001006, etc. To request an exact host match, the expression can be
bounded by the carat and dollar op expression markers as in *f0010S.

(
Example | > mrsvctl -¢ -h 'r:nodeO[1-9]"' |
\

| Moab will create a reservation on nodes node01, node02, \
| node03, node04, node05, node06, node07, node08, and :
| node09. }

| Moab will create a reservation on all nodes that support
| class/queue batch.

Name INDEX

4.7 Moab Commands 198

Chapter 4: Scheduler Commands

|

Format <STRING>

Description Use the reservation index instead of full reservation ID.

Example

r
| Moab will create a reservation on nodes matching the
|
|

expression given.

Name LIST

Format <RSV_ID> or ALL

RSV _ID can be the name of a reservation or a regular expression.

Default ALL
Description List reservation(s).

(
Example | > mrsvctl -1 system* |
\

r Y

| Moab will list all of the reservations whose names start }
| with system. {

S e e e e S e e S S e S S S e S S S e e e e -

|

Name MODIFY

199 4.7 Moab Commands

Chapter 4: Scheduler Commands

Format <ATTR>=<VAL>[-m <ATTR2>=<VAL2>]..

Where <ATTR> js one of the following:

duration duration{+=|-=|=}<RELTIME>

endtime endtime{+=|-=}<RELTIME> or endtime=<ABSTIME>
hostexp hostexp[+=|-=]<node>[,<node>]

loglevel loglevel[=]<1loglevel>

reqtaskcount reqtaskcount{+=|-=|=}<TASKCOUNT>

rsvaccesslist rsvaccesslist[=]<reservation>

rsvgroup rsvgroup[=]<rsvgroup>
starttime starttime{+=|-=}<RELTIME> or starttime=<ABSTIME>
variable variable[+=key1l=vall|-=key_to_remove]

Description Modify aspects of a reservation.

o Moab is constantly scheduling and updating reservations. Before
modifying a reservation it is recommended that you first stop the
scheduler (mschedclt -s) so that the scheduler and reservation are
in a stable and steady state. Once the reservation has been modified,
resume the scheduler with mschedctl -r.

(
Example | > mrsvctl -m duration=2:00:00 system.1l |
N

r Y

Moab sets the duration of reservation system. 1 to be exactly two |
hours, therefore modifying the endtime of the reservation. }

4.7 Moab Commands 200

Chapter 4: Scheduler Commands

A

| > mrsvctl -m endtime+=5:00:00 system.l)I
| Moab moves the endtime of reservation system. 1 ahead by five |
' hours !

(- - T T T T T T T T T T T T T TSI T T T T T T T N

: Moab moves the endtime of reservation system. 1 five hours from |
| its current endtime (without modifying the starttime; therefore, this |
: action is equivalent to modifying the duration of the reservation). }

: Overrides the global LOGLEVEL parameter when dealing with \{
| events related to the reservation. LOGLEVEL values are 0-9, where |
I 9 is most verbose. }

S
Increases the TASKCOUNT for the system. 1 reservation by 5. '
___ |
|{> mrsvctl -m rsvaccesslist=network system.l)l
N
r N
| Gives the system. 1 reservation access to the network }
: reservation. |
A \

r N
| Moab advances the starttime of system. 1 five hours from its {
| current starttime (without modifying the duration of the :
: reservation). }

{> mrsvetl -m starttime=15:00:00_7/6/22 system.l)
N e e e
f N

| Moab sets the starttime of reservation system. 1 to 3:00 p.m.on |
gevezozz)

{> mrsvotl -m starttime-=5:00:00 system.l)

N

S
: Moab moves the starttime of reservation system. 1 ahead five ',
| hours. '
| |

201 4.7 Moab Commands

Chapter 4: Scheduler Commands

| Moab adds the variable key1 with the value vall, and variable |
| key2 with val2to system. 1. (Note that each variable flag |
| requires a distinct —m entry.) }

o Modifying the starttime does not change the duration of the reservation,
so the endtime changes as well. The starttime can be changed to be before
the current time, but if the change causes the endtime to be before the
current time, the change is not allowed.

Notes:

« Modifying the endtime changes the duration of the reservation as well
(and vice versa). An endtime cannot be placed before the starttime or
before the current time.

o Duration cannot be negative.

o The += and -= operators operate on the time of the reservation
(starttime+=5 adds five seconds to the current reservation starttime),
while + and - operate on the current time (starttime+5 sets the
starttime to five seconds from now).

o If the starttime or endtime specified is before the current time without a
date specified, it is set to the next time that fits the command. To force the
date, add the date as well. For the following examples, assume that the
current time is 9:00 a.m. on March 1, 2022.

(
| > mrsvctl -m starttime=8:00:00 3/1/22 system.l)l
LS e

|
N)

I
\)

:’ Moab moves system. 1's endtime to 7:00 a.m., March 3. This }
| _happens because the endtime must also be after the starttime, so |

4.7 Moab Commands 202

Chapter 4: Scheduler Commands

|

r Y

Moab continues searching until it has found a valid time that is in |
the future and after the starttime. }

| Moab will return an error because the endtime cannot be before the
| starttime.

Name NAME

Format <STRING>

Description = Name for new reservation.

o If no name is specified, the reservation name is set to first name listed in
ACL or SYSTEM if no ACL is specified.

[o Reservation names cannot contain whitespace.]

(
Example | mrsvctl -c¢ -h node0l -n John |
\

Name OWNER

Format <CREDTYPE>:<CREDID>

Description The owner of a reservation. See Reservation Ownership for more information.

(
Example | mrsvctl -c¢ -h node0l -o USER:userl |
\

203 4.7 Moab Commands

Chapter 4: Scheduler Commands

|

Name
Format
Description

Example

PARTITION

<STRING>

Only allocate resources from the specified partition.

T T T T T T ——— ~
I'mrsvctl -c -p switchB -t 14 !

| Moab will allocate 14 tasks from the
l\ switchB partition.

Name
Format
Description

Example

Name

Format

Description

Example

4.7 Moab Commands

PROFILE

<STRING>

Indicates the reservation profile to load when creating this reservation.

r Y

Moab will allocate 14 tasks to a reservation defined by the
testingZ2 reservation profile.

e e ————— -

QUERY

<RSV_ID> — The -r option accepts x: node regular expressions and r: node
range expressions (asterisks (*) are supported wildcards as well).

Get diagnostic information or list all completed reservations. The command
gathers information from the Moab cache, which prevents it from interrupting
the scheduler, but the --blocking option can be used to bypass the cache
and interrupt the scheduler.

204

Chapter 4: Scheduler Commands

Name RELEASE

Format <RSV_ID> — The -r option accepts x: node regular expressions and r: node
range expressions (asterisks (*) are supported wildcards as well).

Description Releases the specified reservation.

o When you release an instance of a standing reservation, Moab will
remember that and prevent a reservation from being created for that
same period (even after a restart of Moab). When Moab reaches the end
of the period, it will still create new reservations in the future to meet
the reservation depth requirement.

(
Example | > mrsvctl -r system.l |
\

Name RESOURCES
Format <tid>
or

<RES>=<VAL>[{|+|;}<KRES>=<VAL>]...

205 4.7 Moab Commands

Chapter 4: Scheduler Commands

Where <RES> is one of the following:
PROCS,

MEM,

DISK,

SWAP,
GRES

Default PROCS=-1

Description The resources to be reserved per task (-1 indicates all resources on node).

o When specifying multiple resources, enclose the resource list in single
quotes and separate the resource identifiers with semicolons (example:
'MEM=100;PROCS=1"). Alternatively, you can omit the single quotes and
separate the resource identifiers with escaped semicolons (example:
MEM=100\;PROCS=1).

|\

(.

p
o For GRES resources, <VAL> is specified in the format <GRESNAME >
[: <COUNT>]

(
Example | > mrsvetl -c -R 'MEM=100;PROCS=2' -t 2 [
\

Name STARTTIME
Format [HH[:MM[:SS]]][MO[/DD[/YY]]]
or

+[[[DD:]HH:]MM:]SS
Default [NOW]

Description Absolute or relative time reservation will start. STARTTIME also supports an
epoch timestamp.

4.7 Moab Commands 206

Chapter 4: Scheduler Commands

207

Example

Name

Format

Description

Example

__)

r

| Moab will create a reservation on all system resources at 3:00 am |

| on April 4, 2022. }
Y
| > mrsvctl -c -h node0l -s +5:00)‘
N e

@ - = - - A

| Moab will create a reservation in 5 minutes on node01. :
(T AY
| > mrsvctl -m -s -=5:00 system.1l)I
N e e e

SET ATTRIBUTE

<ATTR>=<VALUE> where <ATTR> is one of:

aaccount - accountable account

agroup - accountable group

aqos - accountable QoS

auser - accountable user

reqarch - required architecture

reqmemory - required node memory (in MB)
reqos - required operating system

rsvaccesslist - comma-delimited list of reservations or reservation groups
that can be accessed by this reservation request. Because each reservation
can access all other reservations by default, you should make any
reservation with a specified rsvaccesslist exclusive by setting the -E flag.
This setting gives the otherwise exclusive reservation access to
reservations specified in the list.

A reservation attribute will be used to create this reservation.

-

| Moab will create a reservation on node01 and will use the QOS
| high as the accountable credential.

~

4.7 Moab Commands

Chapter 4: Scheduler Commands

Name TASKS

Format <INTEGER>[-<INTEGER>]

Description = The number of tasks to reserve. ALL indicates all resources available should be
reserved.

o If the task value is set to ALL, Moab applies the reservation regardless of
existing reservations and exclusive issues. If an integer is used, Moab
only allocates accessible resources. If a range is specified Moab attempts
to reserve the maximum number of tasks, or at least the minimum.

Example

I
S)

| Moab will attempt to reserve 10 tasks but will fail if it cannot get at |
| least three. }

Name TRIGGER

Description = Comma-delimited reservation trigger list following format described in the
trigger format section of the reservation configuration overview. See Creating a
Trigger for more information.

o To cancel a standing reservation with a trigger, the SRCFG parameter's
attribute DEPTH must be set to 0.

___ N
|‘> mrsvctl -c -h node0l -T offset=200, etype=start, atype=exec,action=/tmp/email.sh |
\

Example

4.7 Moab Commands 208

Chapter 4: Scheduler Commands

209

Name

Format

Description

Example

Name

Format

Description

Example

VARIABLE

<name>[=<value>][[;<name>[=<value>]]..]

Semicolon-delimited list of variables that will be set when the reservation is
created (see About Trigger Variables for more information). Names with no
values will simply be set to TRUE.

’> mrsvctl -c -h node0l -V $Tl=mac;var2=18.19 |

S)

r Y

Moab will create a reservation on node01 and set $T1 to mac and
var2to 18.109.

S o o o o o o S o S S o S S o S o o S e e -

[o For information on modifying a variable on a reservation, see MODIFY.]

JOBLIST

-X <jobs to be excluded>

The -x flag, when used with -F ignjobrsv, lets users create reservations
but exclude certain nodes that are running the listed jobs. The -F flag instructs
mrsvctl to still consider nodes with current running jobs. The nodes are not
listed directly.

’> mrsvctl -c¢ -t 5 -F ignjobrsv -x moab.5,moab.6 |

S A)

| Moab will create the reservation while assigning the nodes. Nodes |
| running jobs moab5 and moab 6 will not be assigned to the :
| reservation. }

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.24.E Parameters

RESERVATION PATTERN

Format <STRING>

Description A pattern specifying the reservation(s) to be affected by this action consisting
of a space-delimited list of one or more of the following reservation
expressions:

e The name of a reservation.
o The string "ALL", which matches all reservations.

o Aregular expression matching zero or more reservations. A reservation
expression is treated as a regular expression if it has a prefix of "x:" or if it
contains one of the charactersin "[] () * * $,". Moab does a case-
insensitive match using POSIX extended regular expressions and will
match any part of the reservation name unless anchored with "*" or "$".

Example |‘ '~system' |
\

B e e e e e e L N i

4.7.24.F Resource Allocation Details
When allocating resources, the following rules apply:

o When specifying tasks, each task defaults to one full compute node unless otherwise
specified using the -R specification.

« When specifying tasks, the reservation will not be created unless all requested
resources can be allocated (this behavior can be changed by specifying -F besteffort).

« When specifying tasks or hosts, only nodes in an idle or running state will be
considered (this behavior can be changed by specifying -F ignstate).

4.7.24.G Reservation Timeframe Modification

Moab supports dynamically modifying the timeframe of existing reservations. This can be
accomplished using the mrsvctl -m flag. By default, Moab will perform advanced boundary
and resource access to verify that the modification does not result in an invalid scheduler
state. However, in certain circumstances administrators may want to FORCE the
modification in spite of any access violations. This can be done using the switch mrsvctl
-m --flags=force, which forces Moab to bypass any access verification and force the
change through.

4.7 Moab Commands

210

Chapter 4: Scheduler Commands

211

4.7.24.H Extending a Reservation by Modifying the Endtime

The following increases the endtime of a reservation using the += tag:

$> showres

ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:35:57 1:11:35:57 1:00:00:00 1/2 Sat Nov 18
00:00:00

I
I
I
I
I
1 reservation located
$> mrsvcetl -m endtime+=24:00:00 system.l :
endtime for rsv 'system.l' changed
I
I
I
I
I
I

I
I
I
I
I
I
I
I
[
[
[
| $> showres
I
I
I
I
I
I

ReservationID Type S Start End Duration N/P StartTime
system.1l User - 11:35:22 2:11:35:22 2:00:00:00 1/2 Sat Nov 18
00:00:00
L 1 reservation located)
The following increases the endtime of a reservation by setting the endtime to an absolute
time:
(___ ~
I $> showres :
: ReservationID Type S Start End Duration N/P StartTime I
: system.1 User - 11:33:18 1:11:33:18 1:00:00:00 1/2 Sat Nov 18 :
1 00:00:00 :
| 1 reservation located
: $> mrsvctl -m endtime=0 11/20 system.l :
| endtime for rsv 'system.l' changed
: $> showres |
| ReservationID Type S Start End Duration N/P StartTime :
: system.1l User - 11:33:05 2:11:33:05 2:00:00:00 1/2 Sat Nov 18 I
| 00:00:00 :
L 1 reservation located J

4.7.24.1 Extending a Reservation by Modifying the Duration

$> showres

ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:28:46 1:11:28:46 1:00:00:00 1/2 Sat Nov 18
00:00:00

I

I

I

I

I

1 reservation located

$> mrsvctl -m duration+=24:00:00 system.l :

duration for rsv 'system.l' changed

>$ showres I
I
I
I
I
I
I

ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:28:42 2:11:28:42 2:00:00:00 1/2 Sat Nov 18
00:00:00

1 reservation located
\

The following increases the duration of a reservation by setting the duration to an absolute
time:
"S> showres

ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:26:41 1:11:26:41 1:00:00:00 1/2 Sat Nov 18

—————

4.7 Moab Commands

Chapter 4: Scheduler Commands

| 00:00:00

: 1 reservation located

: $> mrsvctl -m duration=48:00:00 system.l
| duration for rsv 'system.l' changed
: $> showres

|

|

|

|

|

|

ReservationID Type S Start End Duration N/P StartTime
system.1l User - 11:26:33 2:11:26:33 2:00:00:00 1/2 Sat Nov 18
00:00:00

1 reservation located
\

4.7.24.] Shortening a Reservation by Modifying the Endtime

$> showres

ReservationID Type S Start End Duration N/P StartTime
system.1l User - 11:15:51 2:11:15:51 2:00:00:00 1/2 Sat Nov 18
00:00:00

I

I

I

I

I

: 1 reservation located

: $> mrsvctl -m endtime-=24:00:00 system.l

| endtime for rsv 'system.l' changed

: $> showres

| ReservationID Type S Start End Duration N/P StartTime
: system.1 User - 11:15:48 1:11:15:48 1:00:00:00 1/2 Sat Nov 18
: 00:00:00

L 1 reservation located

time:

$ showres

ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:14:00 2:11:14:00 2:00:00:00 1/2 Sat Nov 18
00:00:00

1 reservation located

$> mrsvcetl -m endtime=0 11/19 system.l
endtime for rsv 'system.l' changed

$> showres

ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:13:48 1:11:13:48 1:00:00:00 1/2 Sat Nov 18
00:00:00

1 reservation located

4.7.24.K Shortening a Reservation by Modifying the Duration

The following modifies the duration of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
00:00:00

1 reservation located
$> mrsvctl -m duration-=24:00:00 system.l
duration for rsv 'system.l' changed

r
I
I
: system.1 User - 11:12:20 2:11:12:20 2:00:00:00 1/2 Sat Nov 18
I
[
[
I
I
:
| $> showres

4.7 Moab Commands

212

Chapter 4: Scheduler Commands

1 reservation located

——————

ReservationID Type S Start End Duration
system.1l User - 11:12:07 1:11:12:07 1:00:00:00
00:00:00

1/2

StartTime :
Sat Nov 18 :
|
I

The following modifies the duration of a reservation by setting the duration to an absolute

time:

$> showres

1 reservation located

I

: ReservationID Type S Start End Duration
: system.1 User - 11:10:57 2:11:10:57 2:00:00:00
| 00:00:00

| 1 reservation located

: $> mrsvctl -m duration=24:00:00 system.l

| duration for rsv 'system.l' changed

: $> showres

| ReservationID Type S Start End Duration
: system.1l User - 11:10:50 1:11:10:50 1:00:00:00
: 00:00:00

I

N/P
1/2

N/P
1/2

StartTime
Sat Nov 18

StartTime
Sat Nov 18

4.7.24.L. Modifying the Starttime of a Reservation

The following increases the starttime of a reservation using the += tag:

$> showres

1 reservation located
\

$> showres

00:00:00

I

: ReservationID Type S Start End Duration
: system.1 User - 11:08:30 2:11:08:30 2:00:00:00
| 00:00:00

: 1 reservation located

: $> mrsvctl -m starttime+=24:00:00 system.l

| starttime for rsv 'system.l' changed

: $> showres

I ReservationID Type S Start End Duration
: system.1l User — 1:11:08:22 3:11:08:22 2:00:00:00
: 00:00:00

I

I

: ReservationID Type S Start End Duration
: system. 1 User - 11:07:04 2:11:07:04 2:00:00:00
| 00:00:00

: 1 reservation located

: $> mrsvctl -m starttime-=24:00:00 system.l

| starttime for rsv 'system.l' changed

: $> showres

| ReservationID Type S Start End Duration
: system.1 User - -12:53:04 1:11:06:56 2:00:00:00
I

I

\

1 reservation located

r

: $> showres

| ReservationID
\

213

N/P
1/2

N/P
1/2

N/P
1/2

StartTime
Sat Nov 18

StartTime
Sun Nov 19

StartTime
Sat Nov 18

StartTime
Fri Nov 17

4.7 Moab Commands

Chapter 4: Scheduler Commands

system.1 User - 11:05:31 2:11:05:31
00:00:00

1 reservation located

$> mrsvctl -m starttime=0 11/19 system.l

starttime for rsv 'system.l' changed

$> showres

ReservationID Type S Start End
system.1 User - 1:11:05:18 3:11:05:18
00:00:00

|
I
I
I
I
I
I
I
I
I
|
|
I
|
| .
| 1 reservation located

$> showres

ReservationID Type S Start End
system.1 User - 11:04:04 2:11:04:04
00:00:00

1 reservation located

$> mrsvcetl -m starttime=0 11/17 system.l
starttime for rsv 'system.l' changed

$> showres

ReservationID Type S Start End
system.1l User - -12:56:02 1:11:03:58
00:00:00

—————

1 reservation located

2:00:00:00

Duration
2:00:00:00

Duration
2:00:00:00

Duration
2:00:00:00

N/P
1/2

N/P
1/2

Sat Nov 18

StartTime
Sun Nov 19

StartTime
Sat Nov 18

StartTime
Fri Nov 17

4.7.25 Examples

« Basic Reservation

o System Maintenance Reservation
o Explicit Task Description

o Dynamic Reservation Modification
« Reservation Modification

o Allocating Reserved Resources

« Modifying an Existing Reservation

Example 4-22: Basic Reservation

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24

hours.

I .
| reservation 'system.l' created

Example 4-23: System Maintenance Reservation

Schedule a system wide reservation to allow a system maintenance on Jun 20, 8:00 AM

until Jun 22, 5:00 PM.

4.7 Moab Commands

' > mrsvctl -c -a USER=john,USER=mary -starttime +24:00:00 -duration 8:00:00 -t 2

214

Chapter 4: Scheduler Commands

% mrsvctl -c -s 8:00:00 06/20 -e 17:00:00 06/22 -h ALL I
reservation 'system.l' created |

Example 4-24: Explicit Task Description

Reserve one processor and 512 MB of memory on nodes node 00 3 through node
node006 for members of the group staff and jobs in the interactive class.

: > mrsvctl -c¢ -R PROCS=1,MEM=512 -a GROUP=staff,CLASS=interactive -h 'nodeO0[3-6]"' |

| reservation 'system.l' created I
\

Example 4-25: Dynamic Reservation Modification

Modify reservation john. 1 to startin 2 hours, run for 2 hours, and include node02 in

the hostlist.

: > mrsvctl -m starttime=+2:00:00,duration=2:00:00,HostExp+=node02 :
Note: hosts added to rsv system.3 |

. J
Example 4-26: Reservation Modification

Remove user John's access to reservation system. 1

: > mrsvctl -m -a USER=John system.l --flags=unset :
| successfully changed ACL for rsv system.l I
\

Example 4-27: Allocating Reserved Resources

Allocate resources for group dev that are exclusive except for resources found within
reservations myrinet.3 or john.6

: > mrsvctl -c¢ -E -a group=dev,rsv=myrinet.3,rsv=john.6 -h 'node0OO0[3-6]" [
| reservation 'dev.14' created I
\

{ > mrsvctl -c¢ -E -a group=ops -g network -f rack3 -h ALL :
: reservation 'ops.l' created

: > mrsvctl -c¢ -E -a group=ops -g network -f rack4 -h ALL :
L reservation 'ops.2' created |

___ J
Allocate 64 nodes for 2 hours to new reservation and grant access to reservation

system. 3 and all reservations in the reservation group network.

(T A
: > mrsvctl -c¢ -E -d 2:00:00 -a group=dev -t 64 -S rsvaccesslist=system.3,network l
| reservation 'system.23' created I
. - . /
Allocate 4 nodes for 1 hour to new reservation and grant access to idle job reservations.

(T \

I'> mrsvetl -¢ -E -d 1:00:00 -t 4 -S rsvaccesslist=idle |
I , I
| reservation 'system.24' created I
\

Example 4-28: Modifying an Existing Reservation

Remove user john from reservation ACL.

215 4.7 Moab Commands

Chapter 4: Scheduler Commands

(T TS TS TS TS TS TS T TS T TS TS TS T TS TS T T TS T T T T T T T T T T T T T T T T T T T —— hY
Il > mrsvctl -m -a USER=john system.l --flags=unset :
| successfully changed ACL for rsv system.l I
. /
Change reservation group.

(T TS TS TS TS TS TS TS TS TS T T T T T T T T T T T T T T T —— hY
|| > mrsvctl -m RSVGROUP=network ops.4 :
| successfully changed RSVGROUP for rsv ops.4 I
S Y Y Y Y Y Y e g Sy /

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

¢ Admin Reservation Overview

« showres

e mdiag -r

« mshow -a command to identify available resources

« job torsv binding

4.7.26 mschedctl

4.7.26.A Synopsis

mschedctl -A '<MESSAGE>'

mschedctl -c message messagestring [-0 type:val]
mschedctl -c trigger triggerid-o type:val

mschedctl -d trigger:triggerid

mschedctl -d message:index:wq

mschedctl -f {all|fairshare|usage}

mschedctl -k

mschedctl -1 {config|feature|gmetric|gres|message|opsys|trigger|trans} [-v] [--xml]
mschedct] -L [<LOGLEVEL>[:<LOG_ FILE>]]

mschedctl -m config string [-€]

mschedctl -m trigger triggerid attr=vall[attr=val..]

mschedctl -q mschedctl -q pactions --xml

4.7 Moab Commands 216

Chapter 4: Scheduler Commands

mschedctl -p

mschedctl -r [resumetime]
mschedctl -R

mschedctl -s [STOPITERATION]
mschedctl -S [STEPITERATION]
mschedctl -W

[-—about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.26.B Overview

The mschedctl command controls various aspects of scheduling behavior. It is used to
manage scheduling activity, shutdown the scheduler, and create resource trace files. It can
also evaluate, modify, and create parameters, triggers, and messages.

o With many flags, the ——msg=<MSG> option can be specified to annotate the action in
the event log.

4.7.26.C Options

-A - ANNOTATE

Format <STRING>

Description Report the specified parameter modification to the event log and annotate it
with the specified message. The RECORDEVENTLIST parameter must be set
in order for this to work.

(
| mschedctl -A 'increase logging' -m 'LOGLEVEL 6' |
\

Example

5
| Adjust the LOGLEVEL parameter and record an associated
| message.

-c - CREATE

Format One of:

217 4.7 Moab Commands

Chapter 4: Scheduler Commands

-c - CREATE

o« message <STRING> [-0 <TYPE>:<VAL>]
o trigger<TRIGSPEC> -0 <OBJECTTYPE>:<OBJECTID>
e gevent -n <NAME> [-m <message>]

Where <ATTR> is one of account, duration, ID, messages, profile,
reqresources, resources, rsvprofile, starttime, user, or variables.

Description Create a message, trigger, or gevent and attach it to the specified object.

To create a trigger on a default object, use the Moab configuration file
(moab . cfg) rather than the mschedctl command.

Example {mschedctl -c message tell the admin to be nice l|
___ J

-~ N

| Create a message on the system table !

S S A T T Y T Y Y) o e))) e e e e e e o e e e e e e e =2

e
| mschedctl -c trigger EType=start,AType=exec,Action="/tmp/email $OWNER
I sTIME"

{ -0 rsv:system.l

o Creating triggers on default objects via mschedctl -c
trigger does not propagate the triggers to individual objects. To
propagate triggers to all objects, the triggers must be created
within the moab . cfg file; for example: NODECFG
[DEFAULT] TRIGGER.

-d - DESTROY

Format One of:

o trigger:<TRIGID>
e message:<INDEX>

Description Delete a trigger or message.

Example {mschedctl -d trigger:3 |

4.7 Moab Commands 218

Chapter 4: Scheduler Commands

-d - DESTROY

I

:, Delete trigger 3. \{

(\
I

Delete message
with index 5.

-f - FLUSH

Format {all|fairshare|usage}

Description Reset all internally-stored Moab Scheduler statistics to the initial start-up state
as of the time the command was executed.

(7\
o Flushing should only be used if you experience corrupt statistics. The
best practice is to pause the Moab scheduler with mschedctl -p

before running the flush command. After running the flush command,

unpause the Moab scheduler with mschedctl -r and the jobs will

start flowing again. For all external observers this will be a transparent

flush unless they are watching the stats.

(
Example | mschedctl -f usage |
8

-k - KILL

Description Stop scheduling and exit the scheduler.

(T T T T T T T e e e — ~
|

Example I mschedctl -k i

-l - LIST

Format {config|feature|gmetric|gres|message|opsys|trans|trigger} [-v] [--xml]

219 4.7 Moab Commands

Chapter 4: Scheduler Commands

-l - LIST

Default

Description

Example

4.7 Moab Commands

o Using the --xm1 argument with the trans option returns XML that
states if the queried TID is valid or not.

config

List the generic metrics, generic resources, scheduler configuration, system
messages, operating systems, triggers, transactions, or node features
recognized by Moab.

o This command does not show credential parameters (such as user,
group class, QoS, account).

o The config command without the -v flag does not show the settings
of all scheduling parameters. To show the settings of all scheduling
parameters, use the —v flag. This will provide an extended output. This
output is often best used in conjunction with the grep command as the
output can be voluminous.

r Y
| List all node features recognized by Moab. !

| mschedctl -1 gmetric

N
7z 3 - - 3
I List all configured generic metrics. !

| mschedctl -1 gres

N
@ - - . 3
| List aI.I configured generic resources. Use the -v flag to display ',
| generic resource traits (such as license or numa). ',

| mschedctl -1 message

N e
(L 3
| List all system messages. i

| mschedctl -1 opsys

N
& - - - 3
| List all recognized operating systems. !

| mschedctl -1 trans 1

N
@ . . - 3
| List transaction id 1. '

220

Chapter 4: Scheduler Commands

N

————— e

-L -LOG
Format [<LOGLEVEL>[: <LOG_FILE>]]
Default 7 $MOABHOMEDIR/log/moab.log

Description = Create a temporary log file with the specified loglevel. If no log file is given,
Moab creates a log file in the log directory whose filename extension is the
timestamp of when the command was run (for example,
"/opt/moab/log/moab.log.20220405081227").

Example I{mschedctl -L7:/tmp/moab.log |
\

-m - MODIFY

|
|

Format One of:

o config [<STRING>]
[-e]

<STRING> is any string that would be acceptable in moab.cfg

o If no string is specified, <STRING> is read from STDIN.

o If -e is specified, the configuration string will be evaluated for
correctness but no configuration changes will take place. Any issues
with the provided string will be reported to STDERR.

o Use of mschedctl --flags=persistent -m <config> has been
deprecated; use the following method instead:

1. Run mschedctl -m <config> to put the change into effect
dynamically.

2. Manually add the settings to the moab.cfg file, so that it always
goes into effect after any future Moab restarts/recycles.)

221 4.7 Moab Commands

Chapter 4: Scheduler Commands

-m - MODIFY

o Dynamically modifying classes is not recommended. Moab should be
restarted whenever classes are modified. This is especially true
given the fact that sometimes the classes/queues/partitions are
under control of a resource manager. For dynamic operations, use
node sets/features or reservations.

o trigger:<TRIGID> <ATTR>=<VAL>
Where <ATTR> is one of action, atype, etype, iscomplete, oid, otype,
offset, or threshold.

Description Modify a system parameter or trigger.

o Moab only loads the following list of parameters when first starting up.
Therefore, to change any of these, you must edit the setting in moab.cfg
and then restart/recycle with mschedctl -R.

« JOBMAXNODECOUNT
« MAXGMETRIC

« MAXGRES
. MAXOB
« MAXNODE

« MAXRSVPERNODE
o STATPROC*
e STATTIME*)

(
Example | mschedctl -m config LOGLEVEL 9 I
\

Description Disable scheduling but allow the scheduler to update its cluster and workload
state information.

Example 1(mschedctl -p |
N

4.7 Moab Commands 222

Chapter 4: Scheduler Commands

-q QUERY PENDING ACTIONS

|

Default mschedctl -g pactions —--xml

Description A way to view pending actions. Only an XML request is valid. Pending actions
can be system jobs.

(
| mschedctl -g pactions --xml |
\

Example

i

Format mschedctl -r [[HH:[MM:]]SS]

Default 0

Description Resume scheduling in the specified amount of time (or immediately if none is
specified).

Example |r mschedctl -r |
\

-R -RECYCLE

Description Recycle scheduler immediately (shut it down and restart it using the original
execution environment and command line arguments).

o If Moab has been started under systemd, use systemctl restart
moab.service instead of using this option.

Example 1{ mschedctl -R |
\

o To restart Moab with its last known scheduler state, use:
mschedctl -R savestate

223 4.7 Moab Commands

Chapter 4: Scheduler Commands

-s - STOP

|

Format
Default

Description

Example

Format
Default

Description

Example

l

Description

Example

4.7 Moab Commands

<INTEGER>

Suspend/stop scheduling at specified iteration (or at the end of the current
iteration if none is specified). If the letter I follows <ITERATION>, Moab will
not process client requests until this iteration is reached.

|
|
| then.

<INTEGER>

Step the specified number of iterations (or to the next iteration if none is
specified) and suspend scheduling. If the letter I follows <ITERATION>, Moab
will not process client requests until this iteration is reached.

Preform a manual checkpoint file write.

(\
I

224

Chapter 4: Scheduler Commands

225

4.7.26.D Examples

Example 4-29: Shutting down the Scheduler

r

' mschedctl -k

| scheduler will be shutdown immediately
\

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

4.7.27 mshow

4.7.27.A Synopsis

mshow [-a] [-qQ Jobgueue=active] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<loglLevel>] [--

msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.27.B Overview

The mshow command displays various diagnostic messages about the system and job
queues.

4.7.27.C Arguments

T

-a AVAILABLE RESOURCES

-q [<RQUEUENAME>] Displays the job queues.

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.27.D Format

AVAILABLE RESOURCES

Format Can be combined with --flags=[tid|verbose|future] --
format=xml and/or -w

Description Display available resources.

|'> mshow -a -w user=john --flags=tid --format=xml |
\

Example

Show resources available to john in XML format with a transaction
id. See mshow -a for details.

S o o o o o S o S o o S e e e

JOB QUEUE

Format <QUEUENAME>, where the queue name is one of: active, eligible, or blocked.
Job queue names can be delimited by a comma to display multiple queues. If
no job queue name is specified, mshow displays all job queues.

Description Displays the job queues. If a job queue name is specified, mshow shows only
that job queue.

(
Example | > mshow -g active,blocked |
[Displays all jobs in the active and blocked queues] :
|

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

« mshow -a command to show available resources

4.7 Moab Commands 226

Chapter 4: Scheduler Commands

227

4.7.28 mshow -a

4.7.28.A Synopsis

mshow =a [-i] [-0] [-T] [W where] [-X] [-—about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--

version] [—--xml]

4.7.28.B Overview

The mshow -a command allows for querying of available system resources.

4.7.28.C Arguments

[-1] INTERSECTION
[[0] NO AGGREGATE
[[T] TIMELOCK

[W] WHERE

[X] EXCLUSIVE

Table 4-1: Argument Format

|
|

Name Flags
Format --flags=[future | policy | tid | summary | verbose]
Description future will return resources available immediately and available in the future.

policy (Deprecated. May be removed in a future release.) will apply
charging policies to determine the total cost of each reported solution (only
enabled for XML responses).

summary will assign all jointly allocated transactions as dependencies of the

4.7 Moab Commands

Chapter 4: Scheduler Commands

|

first transaction reported.
tid will associate a transaction ID with the reported results.

verbose will return diagnostic information.

Example |{> mshow -a -w user=john --flags=tid --xml)I
N e

r Y

| Show resources available to john in XML format with a transaction |

I ID |

| : |

|

Name XML
Format --xml
Description Report results in XML format.

(
Example | > mshow -a -w user=john --flags=tid --xml |
\

Show resources available to john in XML format with a
transaction ID.

Name INTERSECTION

Description Specifies that an intersection should be performed during an mshow -a
command with multiple requirements.

Name NO AGGREGATE

Description Specifies that the results of the command mshow -a with multiple
requirements should not be aggregated together.

4.7 Moab Commands 228

Chapter 4: Scheduler Commands

Name TIMELOCK

Description Specifies that the multiple requirements of an mshow -a command should be
timelocked.

(

Example | > mshow -a -w minprocs=1,o0s=1linux,duration=1:00:00 \ |
: -w minprocs=1,o0s=aix,duration=10:00 \ }
| --flags=tid, future -x -T |
\

Name WHERE

Format Comma-delimited list of <ATTR>=<VAL> pairs:
<ATTR>=<VAL> [,<ATTR>=<VAL>]...

o If any of the <ATTR>=<VAL> pairs contains a sub-list that is also
comma-delimited, the entire -w string must be wrapped in single
quotations with the sub-list expression wrapped in double quotations.
See the example below.

Attributes are listed below in table 2.

Description Add a Where clause to the current command (currently supports up to six co-
allocation clauses).

(
Example | > mshow -a -w minprocs=2,duration=1:00:00 -w nodemem=512,duration=1:00:00 |
N

| Moab returns a list of all nodes with at least 2 processors and one
| hour duration or with a memory of 512 and a duration of one hour.

| Moab returns a list of all nodes that do not contain the vmware
feature but that do contain the gpfs feature.

|
|
N o o o — ——————————————————————————————————————— ——— s -

| Moab returns a list of all nodes with a duration of INFINITY, :
I except for nodes named n01, n12, and n23. }
[.

| Note the use of single quotations containing the entire —w string i
! and the use of double quotations containing the |
| excludehostlist attribute. |

229 4.7 Moab Commands

Chapter 4: Scheduler Commands

- _

Name EXCLUSIVE

Description Specifies that the multiple requirements of an mshow -a command should be
exclusive (i.e., each node can only be allocated to a single requirement).

Example

f q g q q q
| > mshow -a -w minprocs=1,o0s=linux -w minprocs=1,os=aix --flags=tid -x |
\

Table 4-2: Request Attributes

e Do

account

acl

arch
class

coalloc

count

displaymode

duration

excludehostlist

4.7 Moab Commands

The account credential of the requestor.

ACL to attach to the reservation.

This ACL must be enclosed in quotation marks. For example:
$ mshow -a ... -w acl=\"user=john\"

Select only nodes with the specified architecture.
The class credential of the requestor.

The co-allocation group of the specific Where request (can be any string
but must match co-allocation group of at least one other Where request).

o The number of tasks requested in each Where request must be
equal whether this taskcount is specified via minprocs,
mintasks, or gres.

The number of profiles to apply to the resource request.

Possible value is future. (Example: displaymode=future).
Constrains how results are presented; setting future evaluates which
resources are available now and which resources will be available in the
future that match the requested attributes.

The duration for which the resources will be required in format
[[[DD:]HH:] MM:]SS

Do not select any nodes from the given list. The list must be comma-
delimited.

230

Chapter 4: Scheduler Commands

e Jomerpten

(T \
| > mshow -a -w 'duration=INFINITY, "excludehostlist=n01,nl12,n23""' |
\

| Moab returns a list of all nodes with a duration of INFINITY, |

| except for nodes named n01, n12, and n23. }

|

| Note the use of single quotations to contain the entire —w string, |
|

i !

1 |

and the use of double quotations containing the
excludehostlist attribute.

gres Select only nodes that possess the specified generic resource.
group The group credential of the requestor.
hostlist Select only the specified resources. The list must be comma-delimited.

| Moab returns a list of nodes from the selected hostlist that have
| a duration of INFINITY.

|

| Note the use of single quotations to contain the entire —w string,
| and the use of double quotations containing the hostlist

| attribute.

job Use the resource, duration, and credential information for the job specified
as a resource request template.

jobfeature Select only resources that would allow access to jobs with the specified job
features.

jobflags Select only resources that would allow access to jobs with the specified job
flags. The jobflags attribute accepts a colon delimited list of multiple
flags.

minnodes Return only results with at least the number of nodes specified. If used

with TIDs, return only solutions with exactly minnodes nodes available.

minprocs Return only results with at least the number of processors specified. If
used with TIDs, return only solutions with exactly minprocs processors
available.

mintasks FORMAT: <TASKCOUNT>[@<RESTYPE>:<COUNT>

[+<RESTYPE>:<COUNT>]..] where <RESTYPE> is one of procs, mem,
disk, or swap. Return only results with at least the number of tasks
specified. If used with TIDs, return only solutions with exactly mintasks

231 4.7 Moab Commands

Chapter 4: Scheduler Commands

e Jomerpten

available.
nodedisk Select only nodes with at least nodedisk MB of local disk configured.
nodefeature Select only nodes with all specified features present and nodes without all
\ ! specified features using format [\ !] <feature>[:
[\!]<feature>]... You must set the future flag when specifying node
features.
nodemem Select only nodes with at least nodemem MB of memory configured.
offset Select only resources that can be co-allocated with the specified time offset

where offset is specified in the format [[[DD:]HH:]MM:]SS

0s Select only nodes with have, or can be provisioned to have, the specified
operating system.

partition The partition where the resources must be located.

policylevel Enable policy enforcement at the specified policy constraint level.

qos The qos credential of the requestor.

rsvprofile Use the specified profile if committing a resulting transaction ID directly to

a reservation.

starttime Constrain the timeframe for the returned results by specifying one or more
ranges using the format <STIME>[-<ENDTIME>][;<STIME>[-
<ENDTIME>]] where each time is specified in the format in absolute,
relative, or epoch time format ([HH[:MM[:SS]]][MO[/DD[/YY]]]
or+[[[DD:]HH:]MM:]SS or <EPOCHTIME>).

o The starttime specified is not the exact time at which the returned
range must start, but is rather the earliest possible time the range

can start.
taskmem Require taskmem MB of memory per task located.
tpn Require exactly tpn tasks per node on all discovered resources.

4.7 Moab Commands 232

Chapter 4: Scheduler Commands

233

e Jomerpten

user The user credential of the requestor.
var Use associated variables in generating per transaction charging quotes.
variables Takes a string of the format variables="var[=attr]'[; 'var

[=attr] ' and passes the variables onto the reservation when used in
conjunction with --flags=tid and mrsvctl -c -R <tid>.

4.7.28.D Usage Notes

The mshow -a command allows for querying of available system resources. When
combined with the --flags=tid option these available resources can then be placed
into a packaged reservation (using mrsvctl -c -R). This allows system administrators to grab
and reserve available resources for whatever reason, without conflicting with jobs or
reservations that may be holding certain resources.

There are a few restrictions on which <ATTR> from the -w command can be placed in the
same req: minprocs,minnodes, and gres are all mutually exclusive, only one can be
used per -w request.

The allocation of available nodes will follow the global NODEALLOCATIONPOLICY.

When the '-0' flag is not used, multi-request results will be aggregated. This aggregation
will negate the use of offsets and request-specific starttimes.

The config parameter RESOURCEQUERYDEPTH controls the maximum number of options
that will be returned in response to a resource query.

4.7.28.E Examples

Example 4-30: Basic Compute Node Query and Reservation

(ST hY
: > mshow -a -w duration=10:00:00,minprocs=1,0s=AIX53, jobfeature=shared -- :
| flags=tid, future |
I |
I I
: Partition Tasks Nodes Duration StartOffset StartDate :
| —=----—"— = TTTTT TTTTT ST ToTTToTTTS ST TToTTToTTS ST m T meee o |
| ALL 1 1 10:00:00 00:00:00 13:28:09_04/27 TID=4 ReqID=0 |
| ALL 1 1 10:00:00 10:00:00 17:14:48 04/28 TID=5 ReqgID=0 |
: ALL 1 1 10:00:00 20:00:00 21:01:27 04/29 TID=6 ReqlID=0 }
: > mrsvctl -¢c -R 4 :
| Note: reservation system.2 created |
e e e e e e o o o o T — —— ———— — — — —— — — — o o o o o o o o J

4.7 Moab Commands

Chapter 4: Scheduler Commands

Example 4-31: Mixed Processor and License Query

Select one node with 4 processors and 1 matlab license where the matlab license is only

available for the last hour of the reservation. Also, select 16 additional processors that are

available during the same timeframe but which can be located anywhere in the cluster.

Group the resulting transactions together using transaction dependencies so only the first

transaction needs to be committed to reserve all associated resources.

-w minprocs=16,duration=10:00:00 --flags=tid, future, summary
Partition Tasks Nodes Duration StartOffset StartDate
e 0 e e e e
ALL 1 1 10:00:00 00:00:00 13:28:09 04/27 TID=4
ALL 1 1 10:00:00 10:00:00 17:14:48 04/28 TID=5
ALL 1 1 10:00:00 20:00:00 21:01:27_04/29 TID=6

> mrsvctl -c¢ -R 4
Note: reservation system.2 created

Note: reservation system.3 created
Note: reservation system.4 created

Example 4-32: Request for Generic Resources

> mshow -a -1 -0 -xX -w mintasks=1@PROCS:4,duration=10:00:00,coalloc=a \
-w gres=matlab,o0ffset=9:00:00,duration=1:00:00,coalloc=a \

RegID=0
ReqID=0
RegID=0

Query for a generic resource on a specific host (no processors, only a generic resource).

> mshow -a -1 -x -0 -w gres=dvd,duration=10:00,hostlist=node03 --flags=tid, future

Partition Tasks Nodes StartOffset
ALL 1 1 00:00:00
RegID=0
ALL 1 1 00:10:00
ReqID=0
ALL 1 1 00:20:00
RegID=0

> mrsvctl -c -R 16
Note: reservation system.6 created
> mdiag -r system.6

Duration

StartDate

00:10:00 11:33:25 07/27

00:10:00 11:43:25 07/27

00:10:00 11:53:25_07/27

RsvID Type Par StartTime EndTime
Proc
system. 6 User loc -00:01:02 00:08:35
0

Flags: ISCLOSED

ACL: RSV==system. 6=

CL: RSV==system. 6

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I Diagnosing Reservations
I

I

I

I

I

I

I

I

I

I

I

I

I

:

I Accounting Creds: User:test
: Task Resources: dvd: 1
: Attributes (HostExp='"node03$")
| Rsv-Group: system.6

Example 4-33: Allocation of Shared Resources

This example walks through a relatively complicated example where a set of resources can

TID=16

TID=17

TID=18

00:09:37

1

be reserved to be allocated for shared requests. In the example below, the first mshow
query looks for resources within an existing shared reservation. In the example, this first

4.7 Moab Commands

234

Chapter 4: Scheduler Commands

query fails because there is now existing reservation. The second query looks for
resources within an existing shared reservation. In the example, this first query fails
because there is now existing reservation. The second mshow request asks for resources
outside of a shared reservation and finds the desired resources. These resources are then
reserved as a shared pool. The third mshow request again asks for resources inside of a
shared reservation and this time finds the desired resources.

> mshow -a -w duration=10:00:00,minprocs=1,0s=AIX53, jobflags=ADVRES, jobfeature=shared
--flags=tid

Partition Tasks Nodes Duration StartOffset StartDate

] e oo comes cmemeerreeresy comerererere ooeserereeee e

> mshow -a -w duration=100:00:00,minprocs=1, 0s=AIX53, jobfeature=shared --flags=tid
Partition Tasks Nodes Duration StartOffset StartDate

: ALL 1 1 100:00:00 00:00:00 13:20:23_04/27 TID=1 ReqgID=0
| > mrsvctl -¢ -R 1

: Note: reservation system.l created

: > mshow -a -w duration=10:00:00,minprocs=1,0s=AIX53, jobflags=ADVRES, jobfeature=shared
I

I

--flags=tid
Partition Tasks Nodes Duration StartOffset StartDate
| e e e el el
ALL 1 1 10:00:00 00:00:00 13:20:36_04/27 TID=2 ReqID=0

I

I

: > mrsvctl -c¢ -R 2

| Note: reservation system.2 created

Example 4-34: Full Resource Query in XML Format

The following command will report information on all available resources that meet at least
the minimum specified processor and walltime constraints and which are available to the
specified user. The results will be reported in XML to allow for easy system processing.

<Data>
<Object>cluster</Object>
<job User="john" time="1162407604"></job>
<par Name="template">
<range duration="Duration" nodecount="Nodes" proccount="Procs"
starttime="StartTime"></range>
</par>
<par Name="ALL" feasibleNodeCount="131" feasibleTaskCount="163">
<range duration="1200" hostlist="opt-001:1,0pt-024:1,0pt-025:1,0pt-027:2, 0pt-
041:1,0pt-042:1,x86-001:1,P690-001:1,P690-021:1,P690-022:1"
index="0" nodecount="10" proccount="8" reqgid="0"
starttime="1162407604"></range>
<range duration="1200" hostlist="opt-001:1,0pt-024:1,0pt-025:1,0pt-027:2,0pt-
039:1,0pt-041:1,0pt-042:1,x86-001:1,P690-001:1,P690-021:1,P690-022:1"
index="0" nodecount="11" proccount="8"reqgid="0"
starttime="1162411204"></range>
<range duration="1200" hostlist="opt-001:1,0pt-024:1,0pt-025:1,0pt-027:2, 0pt-
039:1,0pt-041:1,0pt-042:1,x86-001:1,x86-002:1,x86-004:1,
x86-006:1,x86-013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1,P690-001:1,P690-
021:1,P690-022:1"
index="0" nodecount="19" proccount="8" reqgid="0"
starttime="1162425519"></range>
</par>
<par Name="SharedMem">

235 4.7 Moab Commands

Ch

apter 4: Scheduler Commands

005:1,P690-006:1,P690-007:1,P690-008:1,P690-009:1,
P690-010:1,P690-011:1,P690-012:1,P690-013:1,P690-014:1,P690-015:1,P690-
016:1,P690-017:1,P690-018:1,P690-019:1,P690-020:1,P690-021:1,
P690-022:1,P690-023:1,P690-024:1,P690-025:1,P690-026:1,P690-027:1,P690~
028:1,P690-029:1,P690-030:1,P690-031:1,P690-032:1"
index="0" nodecount="32" proccount="8" reqgid="0"
starttime="1163122507"></range>
</par>
<par Name="64Bit">
<range duration="1200" hostlist="opt-001:1,0pt-024:1,0pt-025:1,0pt-027:2,0pt-
039:1,0pt-041:1,0pt-042:1"
index="0" nodecount="7" proccount="8" reqgid="0"
starttime="1162411204"></range>
<range duration="1200" hostlist="opt-001:1,0pt-024:1,0pt-025:1,0pt-027:2, 0pt-
039:1,0pt-041:1,0pt-042:1,0pt-043:1,0pt-044:1,0pt-045:1,
opt-046:1,0pt-047:1,0pt-048:1,0pt-049:1,0pt-050:1"
index="0" nodecount="15" proccount="8" reqgid="0"
starttime="1162428996"></range>
<range duration="1200" hostlist="opt-001:1,0pt-006:1,0pt-007:2,0pt-008:2, opt-
009:2,0pt-010:2,0pt-011:2,0pt-012:2,0pt-013:2,0pt-014:2,
opt-015:2,0pt-016:2,0pt-017:2,0pt-018:2,0pt-019:2, opt-020:2,0pt-021:2, opt-
022:2,0pt-023:2,0pt-024:2,0pt-025:1,0pt-027:2,0pt-039:1,
opt-041:1,0pt-042:1,0pt-043:1,0pt-044:1,0pt-045:1,0pt-046:1,0pt-047:1, 0opt-
048:1,0pt-049:1, 0pt-050:1"
index="0" nodecount="33" proccount="8" reqgid="0"
starttime="1162876617"></range>
</par>
<par Name="32Bit">
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-
013:1,x86-014:1,x86-015:1,%x86-016:1,x86-037:1"
index="0" nodecount="9" proccount="8" regid="0"
starttime="1162425519"></range>
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-
013:1,x86-014:1,x86-015:1,%x86-016:1,x86-037:1,x86-042:1,x86-043:1"
index="0" nodecount="11" proccount="8" reqgid="0"
starttime="1162956803"></range>
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-
013:1,x86-014:1,%x86-015:1,%x86-016:1,x86-027:1,x86-028:1,
x86-029:1,x86-030:1,x86-037:1,x86-041:1,x86-042:1,x86-043:1,x86-046:1,x86-
047:1,x86-048:1,x86-049:1"
index="0" nodecount="20" proccount="8" reqgid="0"
starttime="1163053393"></range>
</par>
</Data>

<range duration="1200" hostlist="P690-001:1,P690-002:1,P690-003:1,P690-004:1,P690~

o This command reports the original query, and the timeframe, resource size, and
hostlist associated with each possible time slot.

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration

Guide explains how to distribute this command to client nodes

o mshow in a hosting environment

4.7 Moab Commands

236

Chapter 4: Scheduler Commands

237

4.7.29 mshow -a (mshow in a Hosting Environment)

4.7.29.A Basic Current and Future Requests

The mshow command can report information on many aspects of the scheduling
environment. To request information on available resources, the —a flag should be used. By
default, the mshow command resource availability query only reports resources that are
immediately available. To request information on specific resources, the type of resources
required can be specified using the -w flag as in the following example:

(T —— hY
: > mshow -a -w taskmem=1500,duration=600 :
N J
To view current and future resource availability, the future flag should be set as in the
following example:
25 A
: > mshow -a -w taskmem=1500,duration=600 --flags=future I
| |
. . /

4.7.29.B Co-Allocation Resources Queries

In many cases, a particular request will need simultaneous access to resources of different
types. The mshow command supports a co-allocation request specified by using multiple -
w arguments. For example, to request 16 nodes with feature fastcpu and 2 nodes with
feature fastio, the following request might be used:

> mshow -a -w minprocs=16,duration=1:00:00,nodefeature=fastcpu -w

|]
I |
: minprocs=2,nodefeature=fastio,duration=1:00:00 --flags=future :
: Partition Procs Nodes StartOffset Duration StartDate :
| ~—°—~~~""~""7" T~TTTT TTTTT TTTTTTTTTTTT TTTTTTTTTTTT TTT T T T T |
: ALL 16 8 00:00:00 1:00:00 13:00:18 08/25 ReqID=0 :
| ALL 2 1 00:00:00 1:00:00 13:00:18 08/25 ReqglID=1 |

_— J

The mshow -a documentation contains a list of the different resources that can be queried,
as well as examples on using mshow.

4.7.29.C Using Transaction IDs

By default, the mshow command reports simply when and where the requested resources
are available. However, when the tid flag is specified, the mshow command returns both
resource availability information and a handle to these resources called a Transaction ID as
in the following example:

(

I > mshow -a -w minprocs=16,nodefeature=fastcpu,duration=2:00:00 --flags=future,tid :
: Partition Procs Nodes StartOffset Duration StartDate :
| e e e e e e

| |
| ALL 16 16 00:00:00 2:00:00 13:00:18 08/25 TID=26 ReqID=0 J
. . = =

4.7 Moab Commands

Chapter 4: Scheduler Commands

In the preceding example, the returned transaction ID (TID) can then be used to reserve
the available resources using the mrsvctl -c -R command:

: > mrsvctl -c -R 26 |
| reservation system.l successfully created I
\

Where A1 is the hostlist, A2 is the duration, A3 is the starttime, 24 are any flags, and A5
are any features.

4.7.29.D Using Reservation Profiles

Reservation profiles (RSVPROFILE) stand as templates against which reservations can be
created. They can contain a hostlist, startime, endtime, duration, access-control list, flags,
triggers, variables, and most other attributes of an Administrative Reservation. The
following example illustrates how to create a reservation with the exact same trigger-set:

I
I
i
RSVPROFILE [testl] TRIGGER=Sets=$Varl.$Var2.$Var3.!Net,EType=start,AType=exec, :
Action=/tmp/host/triggers/Net.sh, I
Timeout=1:00:00 :
RSVPROFILE [testl] TRIGGER=Requires=$Varl.S$Var2.S$vVar3, |
Sets=$Vard.$Var5,EType=start, :
AType=exec,Action=/tmp/host/triggers/ :
FS.sh+$Varl:$Var2:$Var3, Timeout=20:00 I
RSVPROFILE [test1] }
TRIGGER=Requires=$Varl.$Var2.$Var3.$Vard.S$var5s, :
Sets=!INOOSinit.0Sinit,Etype=start, |
AType=exec, :
Action=/tmp/host/triggers/ |
0S.sh+$Varl:S$Var2:$Var3:$Vard:svarb :
RSVPROFILE [testl] :
TRIGGER=Requires=N0O0Sini, AType=cancel,EType=start I
RSVPROFILE [testl] {
TRIGGER=EType=start,Requires=0Sinit, AType=exec, :
Action=/tmp/host/triggers/success.sh |

I

I

g

: > mrsvctl -c -P testl

I

I .

| reservation system.l successfully created
\

4.7 Moab Commands 238

Chapter 4: Scheduler Commands

4.7.29.E Using Reservation Groups

Reservation groups are a way for Moab to tie reservations together. When a reservation is
created using multiple Transaction IDs, these transactions and their resulting reservations
are tied together into one group.

> mrsvctl -¢ -R 34,35,36

reservation system.99 successfully created I
reservation system.100 successfully created :
reservation system.101l successfully created |

In the preceding example, these three reservations would be tied together into a single
group. The mdiag -r command can be used to see which group a reservation belongs to.
The mrsvctl -q diag -g command can also be used to print out a specific group of
reservations. The mrsvctl -c -g command can also be used to release a group of
reservations.

Related Topics

¢ mshow

4.7.30 msub

4.7.30.A Synopsis

msub [-a datetime] [-A account] [-b retry_count] [-c interval] [-C directive_prefix] [-d path]
[-e path] [-E] [-F] [-h] [-I] [-j join] [-k keep] [-K] [-] resourcelist] [-L. NUMA_resourcelist] [-m
mailoptions] [-M user_list] [-n node_exclusive] [-N name] [-o path] [-p priority] [-P <user>
[-q destination] [-r yn] [-S pathlist] [-t jobarrays] [-u userlist] [-v variablelist] [-V] [-w
<path>] [-W additionalattributes] [-X] [-z] [--stagein] [--stageout] [--stageinfile] [--
stageoutfile] [--stageinsize] [--stageoutsize] [--workflowjobids] [script] [--about] [--
help] [--host=<serverHostName>] [--loglevel=<loglevel>] [--

msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.30.B Overview

msub allows users to submit jobs directly to Moab. When a job is submitted directly to a
resource manager (such as Torque), it is constrained to run on only those nodes that the
resource manager is directly monitoring. In many instances, a site may be controlling
multiple resource managers. When a job is submitted to Moab rather than to a specific

239 4.7 Moab Commands

Chapter 4: Scheduler Commands

resource manager, it is not constrained as to what nodes it is executed on. msub can accept
command line arguments (with the same syntax as qsub), job scripts (in either PBS or
LoadLeveler syntax), or the SSS Job XML specification.

o Moab must run as a root user in order for msub submissions to work. Workload
submitted via msub when Moab is running as a non-root user fail immediately.

Submitted jobs can then be viewed and controlled via the mjobctl command.

o Flags specified in the following table are not necessarily supported by all resource
managers.

4.7.30.C Access

When Moab is configured to run as root, any user can submit jobs via msub.

4.7.30.D Options

Name Eligible Date

Format [[[[CC]YY]MM]DD]hhmm[.SS]

Description Declares the time after which the job is eligible for execution.

Example [> msub -a 12041300 cmd.pbs !
N e
| Moab will not schedule the job until 1:00 pm on December 4, of the |
| current year. ',
Name Account

Description Defines the account associated with the job.

4.7 Moab Commands 240

Chapter 4: Scheduler Commands

|

Example

Moab will associate this job with
account research.

Name
Format

Description

Example

Retry count

<retry count>

Defines the number of times msub should retry connecting to the server.

Name
Format

Description

Example

241

Checkpoint Interval

[n]|s|c|c=<minutes>]

Checkpoint of the job will occur at the specified interval.

n — No Checkpoint is to be performed.

s — Checkpointing is to be performed only when the server executing the job
is shut down.

¢ — Checkpoint is to be performed at the default minimum time for the server
executing the job.

c=<minutes> — Checkpoint is to be performed at an interval of minutes.

4.7 Moab Commands

Chapter 4: Scheduler Commands

Name Directive Prefix
Format '<PREFIX NAME>
Default First known prefix (#PBS, #@, #BSUB, #!, #MOAB, #MSUB)

Description Specifies which directive prefix should be used from a job script:

o Itis best to submit with single quotes. '#PBS'

« An empty prefix will cause Moab to not search for any prefix. -C "
o Command line arguments have precedence over script arguments.
o Custom prefixes can be used with the -C flag. -C '#MYPREFIX'

o Custom directive prefixes must use PBS syntax.

o Ifthe -C flag is not given, Moab will take the first default prefix found.
Once a directive is found, others are ignored.

A —————
|

> msub -C '"#MYPREFIX' cmd.pbs
| #MYPREFIX -1 walltime=5:00:00 (in cmd.pbs))
N

| Moab will use the #MYPREFIX directive specified in cmd.pbs, setting
| the wallclock limit to five hours.

Example

Name Initial Working Directory
Format <path>
Default Depends on the RM being used. If using Torque, the default is $HOME.

Description Specifies which directory the job should execute in.
Example (> mowp -d /nome/test/jop1z emd.pps \

The job will begin execution in the /home/test/jobl2
directory.

4.7 Moab Commands 242

Chapter 4: Scheduler Commands

- _

243

Name
Format
Default
Description

Example

Name

Description

Error Path

[<hostname>:]<path>

$SSUBMISSIONDIR/S$SJOBNAME.eS$SJOBID

Defines the path to be used for the standard error stream of the batch job.

(
| > msub -e testl2/stderr.txt)I
N

The STDERR stream of the job will be placed in the relative (to ',
execution) directory specified. ',

Environment Variables

Moab adds the following variables, if populated, to the job's environment:

e MOAB_ACCOUNT — Account name.

o MOAB_BATCH — Set if a batch job (non-interactive).

« MOAB_CLASS — (Class name.

« MOAB_DEPEND — Job dependency string.

« MOAB_GROUP — Group name.

« MOAB_JOBARRAYINDEX —For a job in an array, the index of the job.

« MOAB_OBARRAYRANGE — For a system with job arrays, the range of all
job arrays.

« MOAB_JOBID — Job ID. If submitted from the grid, grid jobid.
« MOAB_JOBNAME — Job name.

e MOAB_MACHINE — Name of the machine (i.e., Destination RM) that the
job is running on.

e MOAB_NODECOUNT — Number of nodes allocated to job.

e MOAB_NODELIST — Comma-separated list of nodes (listed singly with no
ppn info).

o MOAB_PARTITION — Partition name the job is running in. If grid job,
cluster scheduler's name.

e MOAB_PROCCOUNT — Number of processors allocated to job.
¢« MOAB_QOS — QOS name.
« MOAB_SUBMITDIR — Directory from which the job was submitted.

4.7 Moab Commands

Chapter 4: Scheduler Commands

|

e MOAB_TASKMAP — Node list with procs per node listed.
<nodename>.<procs>

¢ MOAB_USER — User name.

This feature only works with Torque/PBS.

(
Example | > msub -E mySim.cmd |
8

Name Script Flags

Format "<STRING>"

Description Specifies the flags Torque will pass to the job script at execution time.

[o The -F flag is only compatible with Torque resource managers.]
___ |
Example |{> msub -F "argl arg2" -1 nodes=1,walltime=60 files/Jjob.sh)I
N e e e

r N

| Torque will pass parameters argl and argZ2 to the job. sh script
| when the job executes.

Name Hold

Description Specifies that a user hold be applied to the job at submission time.

Example {(> msub -h cmd.ll ‘l
___ J
| The job will be submitted with a user hold on it. \{

Name Interactive

4.7 Moab Commands 244

Chapter 4: Scheduler Commands

|

Description Declares the job is to be run interactively.

o gsub must exist on the same host as msub if the interactive job is
destined for a Torque cluster, because the interactive msub request will
be converted to a gsub -T request.

Example { > msub -I jobll7.sh I
\

Name Join
Format [eoloe|n]
Default n (not merged)

Description If eo is specified, the error and output streams are merged into the error
stream. If oe is specified, the error and output streams will be merged into the
output stream.

o [f using either the -e or the -0 option and the —-j eo | oe option, the —j
option takes precedence and all standard error and output messages go
to the chosen output file.

(
Example | > msub -j oe cmd.sh |
N

Name Keep
Format [e|loleo|oeln]
Default n (not retained)

Description Defines which (if either) of output and error streams will be retained on the

245 4.7 Moab Commands

Chapter 4: Scheduler Commands

|

execution host (overrides path for stream).

(
Example | > msub -k oe myJjob.sh |
N

|
|
| host.

Name Continue Running

Format N/A

Description Tells the client to continue running until the submitted job is completed. The
client will query the status of the job every 5 seconds. The time interval
between queries can be specified or disabled via MSUBQUERYINTERVAL.

o Use the —K option sparingly (if at all) as it slows down the Moab
scheduler with frequent queries. Running ten jobs with the -K option
creates an additional fifty queries per minute for the scheduler.

(
Example | > msub -K newjob.sh :
I3
| |
| Job 3 completed* !
\

|

Name Resource List

-1 [BANDWIDTH|DDISK|DEADLINE | DEPEND |DMEM|EXCLUDENODES |
FEATURE. .. |]

Additional options can be referenced on the resource manager extensions page.

Description Defines the resources that are required by the job and establishes a limit to the
amount of resource that can be consumed. Resources native to the resource
manager, scheduler resource manager extensions, or job flags can be specified.

4.7 Moab Commands

246

Chapter 4: Scheduler Commands

- _

Note that resource lists are dependent on the resource manager in use.

For information on specifying multiple types of resources for allocation, see
Multi-Req Support.

o Moab does not support the combination of msub -1 excludenodes
and ENABLEHIGHTHROUGHPUT TRUE.

Example [
N
| The job requires 32 nodes with 2 processors each, 1800 MB per :
| task, a walltime of 3600 seconds, and a variable named testvar |
| |
| |

with a value of myvalue.

p
o If JOBNODEMATCHPOLICY is not set, Moab does not reserve the

requested number of processors on the requested number of nodes. It
reserves the total number of requested processors (nodes x ppn) on any
number of nodes. Rather than setting
nodes=<value>:ppn=<value>, set procs=<value>, replacing
<value> with the total number of processors the job requires. Note
that JOBNODEMATCHPOLICY is not set by default.

| This entry would tell Moab to only consider resources other than the
| specified <reservation id>.

Name NUMA req_information

LESERTTEDT o Available with Moab 9.0 or later with Torque 6.0 or later. This uses a

different syntax than the -1 resource_list option.

Defines the NUMA-aware resource requests for NUMA hardware. This option
will work with non-NUMA hardware.

See '-L. NUMA Resource Request' in the Torque Resource Manager
Administrator Guide for the syntax and valid values.

Name Mail Options

247 4.7 Moab Commands

Chapter 4: Scheduler Commands

|

Format <STRING> (either n or one or more of the characters a, b, and ¢)

Description Defines the set of conditions (abort,begin,end) when the server will send a
mail message about the job to the user.

Example | > msub -m be cmd.sh |

l

Name Mail List
Format <user>[@<host>] [,<user>[@<host>],...]
Default $JOBOWNER

Description Specifies the list of users to whom mail is sent by the execution server.
Overrides the EMAILADDRESS specified on the USERCFG credential.

Example 1 > msub -M jon@node0l,bill@node01l,jill@node02 cmd.sh |

Name Node Exclusive

Description Allows a user to specify an exclusive-node access/allocation request for the job.
SeeSINGLEJOB - page 366 for more information.

Example | > msub -n jobll87.sh |

4.7 Moab Commands

248

Chapter 4: Scheduler Commands

- _

Name Name
Default STDIN or name of job script

Description Specifies the user-specified job name attribute.

T —— \
Example I'> msub -N chemjob3 cmd.sh |
I

e

:{- Job will be associated with the name \{
! chemjob3. }

Name Output Path

Format [<hostname>:] <path> - %] and %l are acceptable variables. %] is the
master array name and %l is the array member index in the array.

Default $SUBMISSIONDIR/S$JOBNAME .o$SJOBID

Description Defines the path to be used for the standard output stream of the batch job.

More variables are allowed when they are used in the job script instead of
msub -o.In the job script, specify a #PBS -o line and input your desired
variables. The allowable variables are:

. 0OID

« OTYPE

« USER

« OWNER

« JOBID

« JOBNAME

Submitting a job script that has the line #PBS -o $ (USER) $ (JOBID) _
$ (JOBNAME) . txt results in a file called <username> <jobID>
<jobName>. txt.

Do not use msub -o when submitting a job script that has a #PBS -o line

defined.

249 4.7 Moab Commands

Chapter 4: Scheduler Commands

Example [> msub -o test12/stdout.txt }
N
r N
| The STDOUT stream of the job will be placed in the relative (to :
| execution) directory specified. :
{> msub -t 1-2 -0 /home/jsmith/simulations/5J-51.out ~/simS.sh j
N

| A job array is submitted and the name of the output files includes
| the master array index and the array member index.

Name Priority
Format <INTEGER> (between -1024 and 0)
Default 0

Description Defines the priority of the job. To enable priority range from -1024 to +1023,
see ENABLEPOSUSERPRIORITY.

(
Example | > msub -p 25 cmd.sh |
N

Name Proxy User
Format <user>[:<group>]

Description Allows a root user or manager to submit a job as another user. Moab treats
proxy jobs as though the jobs were submitted by the supplied username.

[o This option can only be used by users in the ADMINCFG|[1] security]
level.

(
Example | msub -P userl cmd.pbs |
\

4.7 Moab Commands 250

Chapter 4: Scheduler Commands

|

Name Destination Queue (Class)
Format [<queue>] [@<server>]
Default [<DEFAULT>]

Description Defines the destination of the job.

o If no destination queue is specified and the environment variable MOAB_
DEFAULTQUEUE is present, msub will use the environment variable
when submitting the job.

(
Example | > msub -q priority cmd.sh |
N

Name Rerunable
Format [ylIn]
Default n

Description: Declares whether the job is rerunable.

2 e Y
I'> msub -r n cmd.sh 1

e e B L

{\ The job cannot be rerun. [

Example

o The default for qsub -r is 'y' (yes), which is opposite from msub -r. For

better clarity, use the following instead.

T T SR
{ msub -1 [flags|jobflags]=restartable] |

Name Shell

251 4.7 Moab Commands

Chapter 4: Scheduler Commands

|

Format
Default
Description

Example

<path>[@<host>] [, <path>[@<host>],...]

$SHELL

Declares the shell that interprets the job script.

:{ The job script will be interpreted by the
|
|

/bin/bash shell

Name
Format

Description

Example

Job Arrays

<name> [<indexlist>]%<limit>

Starts a job array with the jobs in the index list. The limit variable specifies
how many jobs can run at a time. For more information, see Submitting Job
Arrays.

o Moab enforces an internal limit of 100,000 subjobs that a single array
job submission can specify.

Name
Format
Default
Description

Example

4.7 Moab Commands

User List

<user>[@<host>[,<user>[@<host>],...]

UID of msub command.

Defines the user name under which the job is to run on the execution system.

T T T T T T T T T T T T s ———— Y
: > msub -u bill@node0l cmd.sh)l

e e e

252

Chapter 4: Scheduler Commands

1
|

Name Variable List

Format <string>[,<string>,...]

Description Retrieves the values of the included environment variables on the job
submission node (if no value is provided) or defines a name and value and
exports these variables to the job's compute node(s).

I'> msub -v DEBUG cmd.sh !

o)

| The DEBUG environment variable on the job submission node will
| be defined for the job.

Example

I
e e)

The VAR1 environment variable will be defined for the job, with a
value of xxx.

|

Name All Variables

Description Declares that all environment variables in the msub environment are exported
to the batch job.

Example [> msub -V cmd.sh |
\

Name Working Directory
Format <path>

Description Defines the working directory path to be used for the job. If the -w option is
not specified, the default working directory is the current directory. This
option sets the environment variable PBS_0_WORKDIR.

Example |{> msub -1 -w /tmp |
N

253 4.7 Moab Commands

Chapter 4: Scheduler Commands

N

Name
Format

Description

Example

Format

Description

Example

Additional Attributes

<string>

Allows for specification of additional job attributes (see Resource Manager
Extension).

This flag can be used to set a filter for what namespaces will be passed from a
job to a trigger using a comma-delimited list. This limits the trigger's action to
objects contained in certain workflows. For more information, see Requesting
Name Space Variables.

<script> or <command>

When running an interactive job, the —X flag makes it so that the
corresponding script won't be parsed for PBS directives, but is instead a
command that is launched once the interactive job has started. The job
terminates at the completion of this command. This option works only when
using Torque.

o The -x option for msub differs from gsub in that qsub does not require
the script name to come directly after the flag. The msub command
requires a script or command immediately after the —x declaration.

S ——
: > msub -I -x ./script.pl II
> msub -I -x /tmp/command |

|
\)

Name

4.7 Moab Commands

Silent Mode

254

Chapter 4: Scheduler Commands

Description The job's identifier will not be printed to stdout upon submission.

Example

| No job identifier will be printout the stdout upon successful
l\ submission.

Staging Data

Data staging, or the ability to copy data required for a job from one location to another or to
copy resulting data to a new location (see Data Staging Example for more information),
must be specified at job submission. To stage data in, you would use the msub --
stagein and/or --stageinfile option, optionally with --stageinsize. You would
use similar options the same way for staging out: --stageout, --stageoutfile,
and --stageoutsize.--stagein and —--stageout, which you can use multiple
times in the same msub command, allow you to specify a single file or directory to stage in
or out. ——stageinfile and --stageoutfile allow you to specify a text file that lists
the files to stage in or out. The -—stageinsize and [--stageoutsize] options allow
you to estimate the total size of the files and directories that you want to stage in or out,
which can help Moab make an intelligent guess about how long it will take to stage the data
in or out, therefore ensuring that the job can start as soon as possible after the staging has
occurred.

Staging a File or Directory
The --stagein and --stageout options use the same format.

--<stagein|stageout><=| ><source>%<destination>

Where <source> and <destination> take on the following format:

[<user>@]<host>:/<path>[/<fileName>]

Specifying a user and file name are optional. If you do not specify a file name, Moab will
assume a directory.

I'> msub ... --stagein=student@biology:/stats/file00l1%admin@moab:/tmp/staging |
| <jobScript> \
___’ __ o e

: This msub commands tells Moab that the job requires £i1e001 from student's stats directory on the

L biology server to be staged to admin's staging directory on the moab server prior to the job's starting.

You can specify the option multiple times for the same msub command; however, staging
large number of files is easier with --stageinfile or --stageoutfile.

255 4.7 Moab Commands

Chapter 4: Scheduler Commands

You can also use #MSUB or #PBS within a job script to specify data staging options. For

example:

See Sample User Job Script for more information. Note that the data staging options are not

#MSUB --stageinsize=1gb
#MSUB --stagein=...

compatible with gsub.

Staging Multiple Files or Directories

The --stageinfile and --stageoutfile options use the same format. You must
include the path to a text file that lists each file to stage in or out on its own line. Each file
specification follows the same formatas a --stagein or ——stageout specification as
described above. The format of the command options looks like this:

--<stageinfile|stageoutfile><=| ><path>/<fileName>

The file contains multiple lines with the following format:

[<user>Q@]<host>:/<path>[/<fileName>]%[<user>@]<host>:/<path>
[/<fileName>]

Moab ignores blank lines in the file. You can comment out lines by preceding them with a
pound sign (#). The following examples demonstrate what the -—-stageinfile option
looks like on the command line and what the file it specifies might look like.

———————————————————

=

student@biology:

student@biology:
student@biology:
student@biology:
student@biology:
student@biology:

/stats/file006%moab:
/stats/file007%moab:
/stats/file008%moab:
/stats/fi1le009%moab:
/stats/file010%moab:

Moab stages in each file listed in myStagingFile to the /tmp/staging directory. Each file resides on the
I\ biology host as the student user. Moab ignores the blank line and the line specifying £i1e004.

Stage in or out File Size

/tmp/staging

/tmp/staging
/tmp/staging
/tmp/staging
/tmp/staging
/tmp/staging

The optional --stageinsize and --stageoutsize options give you the opportunity
to estimate the size of the file(s) or directory(-ies) being staged to aid Moab in choosing an
appropriate start time. Both options use the same format:

--<stageinsize|stageoutsize>=<integer>[unit]

4.7 Moab Commands

student@biology:/stats/file001%moab:/tmp/staging
student@biology:/stats/file002%moab: /tmp/staging
student@biology:/stats/file003%moab:/tmp/staging
#student@biology:/stats/file004%moab:/tmp/staging

/stats/file005%moab:

256

Chapter 4: Scheduler Commands

The integer indicates the size of the file(s) and directory(-ies) in megabytes unless you
specify a different unit. Moab accepts the follow case-insensitive suffixes: KB, MB, GB, or TB.

——————————————— € ———

i Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes, from the
l biology node to the host where the job will run prior to job start.

———————————————————

|' > msub --stageinfile=/stats/file002 --stageinsize=1gb <jobScript> J

L e
: Moab copies all files specified in the /davidharris/research/recordlist file, which add up to

l approximately 1 gigabyte, to the host where the job will run prior to job start.

Return all the Job IDs in the Workflow at Submission Time

By default, msub will print the job ID to stdout at the time of submission. If you want msub
to print all of the jobs that are created as part of the workflow template, you can use the
msub --workflowjobids option to show all the job IDs at submission time:

—_—————————————

$ echo sleep 60 | msub -1 walltime=15 --workflowjobids

MoabA 3.dsin MoabA.3 MoabA.3.dsout

Job Script

The msub command supports job scripts written in any one of the following languages:

)

PBS/Torque Job Submission Language ---

SSS XML Job Object Specification

Low Latency

The msub can be configured to return a job ID very quickly by eliminating the processing
of some job attributes, filters, remap classes, job arrays, templates, workflows, limits and
other information when a job is submitted. This can be done globally by configuring
DISPLAYFLAGS USENOBLOCKMSUB or on the individual job submission by appending "--
noblock" to the command line.

o It is recommended that when using a non-blocking msub that JOBIDFORMAT be
configured (and PROXYJOBSUBMISSION if desired).

257 4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.30.E /etc/msubrc

Sites that want to automatically add parameters to every job submission can populate the
file /etc/msubrc with global parameters that every job submission will inherit.

For example, if a site wanted every job to request a particular generic resource the
following /etc/msubrc could be used:

—_——————————————————————————

4.7.30.F Usage Notes

msub is designed to be as flexible as possible, allowing users accustomed to PBS or
LoadLeveler syntax, to continue submitting jobs as they normally would. It is not
recommended that different styles be mixed together in the same msub command.

When only one resource manager is configured inside of Moab, all jobs are immediately
staged to the only resource manager available. However, when multiple resource
managers are configured Moab will determine which resource manager can run the job
soonest. Once this has been determined, Moab will stage the job to the resource manager.

It is possible to have Moab take a best effort approach at submission time using the
forward flag. When this flag is specified, Moab will do a quick check and make an
intelligent guess as to which resource manager can run the job soonest and then
immediately stage the job.

Moab can be configured to instantly stage a job to the underlying resource manager (like
Torque/LOADLEVELER) through the parameter INSTANTSTAGE. When set inside

moab . cfg, Moab will migrate the job instantly to an appropriate resource manager. Once
migrated, Moab will destroy all knowledge of the job and refresh itself based on the
information given to it from the underlying resource manager.

In most instances Moab can determine what syntax style the job belongs to (PBS or
LoadLeveler); if Moab is unable to make a guess, it will default the style to whatever
resource manager was configured at compile time. If LoadLeveler and PBS were both
compiled then LoadLeveler takes precedence.

Moab can translate a subset of job attributes from one syntax to another. It is therefore
possible to submit a PBS style job to a LoadLeveler resource manager, and vice versa,
though not all job attributes will be translated.

4.7.30.G Examples

msub -1 nodes=3:ppn=2,walltime=1:00:00,pmem=100kb script2.pbs.cmd
364.orion

SV

4.7 Moab Commands 258

Chapter 4: Scheduler Commands

This example is the XML-formatted version of the above example. See Submitting Jobs via
msub in XML for more information.

<job> !
<InitialWorkingDirectory>/home/user/test/perlAPI :
</InitialWorkingDirectory>
<Executable>/home/user/test/perlAPI/script2.pbs.cmd :
</Executable> I
<SubmitLanguage>PBS</SubmitLanguage> :
<Requested> :
<Feature>ppn2</Feature>
<Processors>3</Processors>
<WallclockDuration>3600</WallclockDuration> I
</Requested>
</job> |

Related Topics

« (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o mjobctl command to view, modify, and cancel jobs

o checkjob command to view detailed information about the job
o mshow command to view all jobs in the queue

« MSUBQUERYINTERVAL parameter

o SUBMITFILTER parameter

o Applying the msub Submit Filter for job script sample

4.7.30.H Applying the msub Submit Filter

When you use msub to submit a job, msub processes the input, converts it to XML, and
sends the job specification XML to the Moab scheduler. You can create a submission filter
to modify the job XML based on the criteria you set before Moab receives and processes it.

259 4.7 Moab Commands

Chapter 4: Scheduler Commands

Image 4-1: Job submission process

job submission
msub -1 nodes=1 job.sh

job submission . job submission
<xml> submit <modified-xml>

filter

The filter gives you the ability to customize the submission process, which is helpful if jobs
should have certain defaults assigned to them, if you want to keep detailed submission
statistics, or if you want to change job requests based on custom needs.

The submit filter, is a simple executable or script that receives XML via its standard input
and returns the modified XML in its standard output. It modifies the attributes of the job
specification XML based on policies you specify. It can perform various other actions at
your request, too; for instance, logging. Once the submit filter has modified the

job XML based on your criteria, it writes the XML representing the actual job submission to
stdout. The new XML could potentially match the original XML, depending on whether the
job met the criteria for modification set in the job submit filter script. Job submissions you
want to proceed will leave the filter with an exit code of 0 and continue to Moab for
scheduling. If the job meets the filter's specified criteria for rejection, it exits with a non-
zero value, aborting the job submission process. You can configure the filter script to write
a descriptive rejection message to stderr.

Job submit filters follow these rejection rules: 1) msub will reject job XML with an exit code
of anything other than zero, 2) the msub command displays filter's error output on the
command line, 3) msub will reject the job if the filter outputs invalid job XML, and

4) msubwill reject the job if it violates any policies in your general Moab configuration; you
cannot use a submit filter to bypass other policies.

To see the schema for job submission XML, refer to Submitting Jobs via msub in XML.

Submit Filter Types

You can implement submit filters on either the client or server side of a job submission.
The primary differences between the two submit filter types are the location from which
the filter runs, the powers and privileges of the user running the filter, and whether a user
can bypass the filter. Client-based submit filters run from the msub client as the user who
submits the job and can be bypassed, and server-based submit filters run from the Moab
server as the user as which the server is running and cannot be bypassed.

4.7 Moab Commands 260

Chapter 4: Scheduler Commands

261

Client-Based Submit Filter

Client-based filters run from the msub client as the user who is submitting the job. Because
they do not have elevated privileges, the risk of client-based submit filters' being abused is
low; however, it is possible for the client to specify its own configuration file and bypass the
filter or substitute its own filter. Job submissions do not even reach the server if a client-
based submit filter rejects it.

To configure msub to use the submit filter, give each submission host access to the submit
filter script and add a SUBMITFILTER parameter to the Moab configuration file
(moab.cfg) on each submission host. The following example demonstrates how you
might modify the moab . cfqg file:

e

If you experience problems with your submit filter and want to debug its interaction with
msub, enter msub --loglevel=9. This will cause msub to print verbose log messages
to the terminal.

Server-Based Submit Filter

Server-based submit filters run from the Moab server as the user as which the server is
running. Because it runs as a privileged user, you must evaluate the script closely for
security implications. A client configuration cannot bypass the filter.

To configure Moab to automatically apply a filter to all job submissions, use the
SERVERSUBMITFILTER parameter. SERVERSUBMITFILTER specifies the path to a global
job submit filter script, which Moab will run on the head node and apply to every job
submitted.

——————————————— € ———

i Moab runs jobFilter.pl, located in the /opt/moab/scripts directory, on the head node, applying theﬁlter
I\ to all jobs submitted.

OutputFormat XML Tag

The 'OutputFormat' element is used by a job submit filter to alter the output of the msub
command when it reports the submitted job's job ID. For example, if a job submit filter
performs a complex procedure on behalf of the user, such as submitting system jobs for a
pre-defined workflow to accomplish some function, the filter can set this element to a value
that permits it to return the job IDs of the system jobs it submitted in addition to the user's
job ID the msub command returns (The Moab integration with Cray's SSD-based DataWarp
service does precisely this using a job submit filter).

4.7 Moab Commands

Chapter 4: Scheduler Commands

To illustrate this element's functionality using the Moab/DataWarp integration example, a
DataWarp job submit filter submits a 'DataWarp instance creation/input data staging'
script as a system job and a corresponding 'output data staging/DataWarp instance
destruction’ script as another system job, and then ties them together with job
dependencies in a 'DataWarp job workflow' that causes the user job's execution to depend
on the successful completion of the DataWarp creation/input staging job and the
DataWarp output staging/DataWarp Destruction system job to depend on the user job,
regardless whether it completes successfully or not, or is cancelled. This DataWarp 3-job
workflow guarantees the proper creation and destruction of job-based DataWarp storage;
all set up and accomplished by a job submit filter.

However, users often create job workflows that have dependencies between their own jobs
and may require the job IDs of all jobs to be made available in order to build a desired job
workflow (i.e., 'jobB' may require 'jobA' to complete before 'jobB' is able to run). For
example, if jobA was a DataWarp job and jobB should not run unless JobA successfully
completes, but not until JobA's output data files are successfully staged, jobB must depend
on jobA's job ID, as well as jobA's 'output data staging/DataWarp instance destruction’
system job's job ID. The user can indicate jobB's job dependencies when jobA is a
DataWarp job using the job submission option:

-1 depend=afterok:<jobAid>:<jobAocutputSystemJobId>.

The OutputFormat XML tag provides a way for a job submit filter to pass the job IDs of
additional jobs it submitted to perform a service on behalf of the user's job.

o The <OutputFormat> tag must be added to the job tag. If it is outside, it is treated as
an invalid XML.

For example, you might submit a job and a job submit filter submits two additional jobs to
assist it; the first additional job, 'job11’, will run before your job, and the second additional
job, 'job12', needs to run after your job finishes. If the job submit filter requires them to
output in the order of 'pre’, 'user’, and 'post' job IDs (which is the same order Moab
outputs job IDs for user jobs with input and output data-staging options), it would return
the following OutputFormat element as the user's job ID string:

—_——————————————————————————

[
<OutputFormat>moab.1ll %s moab.12</OutputFormat>)

I
N _—
|{ msub displays the user 1D string as "Moab.11 Moab.13 Moab.12" |

This means that you can have all three job IDs delivered to the end user, or a job workflow
generation script in an easy to read format.

4.7 Moab Commands 262

Chapter 4: Scheduler Commands

263

Sample Submit Filter Script

The following example is a trivial implementation that will not affect whether a job is
submitted. Use it as reference to verify that you are writing your filter properly.

#!/usr/bin/perl
use strict;

Simple filter example that re-directs the output to a file.

my $file = "xmllog.out";

while (<>)
{
print FILE;
print;

}

|
:
I
I
I
I
I
I
I
I
I
I
I
|
|
|
|
|
|
:
| close FILE;

]
I
I
I
|
I
I
I
I
I
I
open FILE,">>$file" or die "Couldn't open $file: $!"; :
I
I
I
I
I
I
I
I
J

4.7.30.1 Submitting Jobs Via msub in XML

The following describes the XML format used with the msub command to submit a job to a
Moab server. This information can be used to implement a filter and modify the XML
normally generated by the msub command. The XML format described in what follows is
based on a variant of the Scalable Systems Software Job Object Specification.

Overall XML Format

The overall format of an XML request to submit a job can be shown through the following
example:

| <job> [
| **job attribute children**

| </job> I
\

An example of a simple job element with all the required children for a job submission is as
follows:

<job>
<Owner>user</Owner>
<UserId>user</UserId>
<GroupId>group</GroupId>
<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory>
<UMask>18</UMask>
<Executable>/full/path/to/script/or/first/line/of/stdin</Executable>
<SubmitLanguage>Resource Manager Type</SubmitLanguage>
<SubmitString>\START\23!/usr/bin/ruby\0contents\200f\20script</SubmitString>

</job>

4.7 Moab Commands

Chapter 4: Scheduler Commands

The section that follows entitled Job Element Format describes the possible attributes and
their meanings in detail. In actuality, all that is needed to run a job in Moab is something
similar to the following:

e e e e e e o e e e e s

<job>

</job>
\

I
this case a simple sh script to sleep for 1000 seconds. The msub command will create default values for all other }
needed attributes. ;

. _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ . _ . _ 4

Job Element Format

The job element of the submission request contains a list of children and string values
inside the children that represent the attribute/value pairs for the job. The earlier section,
Overall XML Format, gives an example of this format. This section explains these attributes
in detail.

Arguments — The arguments to be passed to the program are normally specified as
arguments after the first argument specifying the script to be executed.

EligibleTime — The minimum time after which the job is eligible. This is the equivalent of
the —a option in msub. Format: [[[[CC]YY]MM]DD]hhmm[.SS]

Environment — The semi-colon list of environment variables that are exported to the job
(taken from the msub command environment). The -V msub flag, for example, adds all the
environment variables present at the time msub is invoked. Environment variables are
delimited by the ~rs; characters. Following is an example of the results of the msub -v
argl=1,arg2=2 command:

—_——————————————————————————

ErrorFile — Defines the path to be used for the standard error stream of the batch job.
This is equivalent to the -e flag in msub.

Executable — This is normally either the name of the script to be executed, or the first line
of the script if it is passed to msub through standard input.

Extension — The resource manager extension string. This can be specified via the
command line in a number of ways, including the -W x= directive. Some other requests,
such as some extensions used in the -1 flag, are also converted to an extension string. The
element has the following format:

e

See Using the Extension Element to Submit Triggers for additional information on the
extension element.

4.7 Moab Commands 264

Chapter 4: Scheduler Commands

265

Groupld — The string name of the group of the user submitting the job. This will
correspond to the user's primary group on the operating system.

Hold — Specifies that a user hold be applied to the job at submission time. This is the
equivalent to the msub flag -h. It will have the form:

InitialWorkingDirectory — Specifies in which directory the job should begin executing.
This is equivalent to the -d flag in the msub command.

——————————————— € ———

in msub.

e

]obName — The user-specified job name attribute. This is equivalent to the -N flag in
msub.

NotificationList — The job states after which an email should be sent and also specifies
the users to be emailed. This is the equivalent of the -m and -M options in msub.

e

: In this example, the command msub -m abe -M userl:userZ2 ran indicating that emails should be sent when

! a job fails, starts, or ends, and that they should be sent to userl and user2.

OutputFile — Defines the path to be used for the standard output stream of the batch job.
This is the equivalent of the -o flag in msub.

Priority — A user-requested priority value. This is the equivalent to the msub -p flag.

Projectld — Defines the account associated with the job. This is equivalent to the -A msub
flag.

QueueName — The requested class of the job. This is the equivalent of the msub —q flag.

Requested — Specifies resources and attributes the job specifically requests and has the
following form:

g

: <Requested>

: <... requested attributes>
| </Requested>

\

See the section dedicated to requestable attributes in this element.

RMFlags — Flags that will get passed directly to the resource manager on job submission.
This is equivalent to any arguments listed after the -1 msub flag.

———————— € ———

4.7 Moab Commands

Chapter 4: Scheduler Commands

ShellName — Declares the shell that interprets the job script. This is equivalent to the
msub flag -S.

SubmitLanguage — Resource manager whose language the job is using. Use Torque to
specify a Torque resource manager.

SubmitString — Contains the contents of the script to be run, retrieved either from an
actual script or from standard input. This also includes all resource manager specific
directives that may have been in the script already or added as a result of other command
line arguments.

TaskGroup — Groups a set of requested resources together. It does so by encapsulating a
Requested element. For example, the command msub -1 nodes=2+nodes=3:ppn=2
generates the following XML:

| <TaskGroup>

: <Requested>

| <Processors>2</Processors>
: <TPN>2</TPN>

: </Requested>

I </TaskGroup>

: <TaskGroup>

| <Requested>

: <Processors>2</Processors>
: </Requested>

I </TaskGroup>

Userld — The string value of the user ID of the job owner. This will correspond to the
user's name on the operating system.

Using the Extension Element to Submit Triggers

Use the Extension element to submit triggers. With the exception of certain characters, the
syntax for trigger creation is the same for non-XML trigger submission. See Object Triggers
for detailed information on triggers. The ampersand (&) and less than sign (<) characters
must be replaced for the XML to be valid. The following example shows how the Extension
element is used to submit multiple triggers (separated by a semi-colon). Note that
ampersand characters are replaced with samp; in the example:

<Job>
<UserId>userl</UserId>
<GroupId>userl</GroupId>
<Arguments>60</Arguments>
<Executable>/bin/sleep</Executable>

<Extension>x=trig:AType=exec&Action="env"&EType=start;trig:AType=execé&Acti
on="trig2.sh"& EType=end</Extension>

<Processors>3</Processors>

<Disk>500</Disk>

<Memory>1024</Memory>

<Swap>600</Swap>

<WallclockDuration>300</WallclockDuration>

<Environment>PERL5LIB=/perl5:</Environment>

4.7 Moab Commands 266

Chapter 4: Scheduler Commands

Elements Found in Requested Element

The following describes the tags that can be found in the Requested sub-element of the job
element in a job submission request.

Nodes — A list of nodes that the job requests to be run on. This is the equivalent of the -1
hosts=<host-1ist> msub directive.

e
: <Requested> E
| <Nodes> |
: <Node>nl:n2</Node> :
: </Nodes> |
| </Requested> J
N _—

|‘ In this example, the users requested the hosts n1 and n2 with the command msub -1 host=nl:nZ2. [

Processors — The number of processors requested by the job. The following example was
generated with the command msub -1 nodes=5:

: <Requested> I
! <Processors>5</Processors>

| </Requested> I
\

TPN — Tasks per node. This is generated using the ppn resource manager extensions. For
example, frommsub -1 nodes=3:ppn=2, the following results:

<Requested>
<Processors>6</Processors>
<TPN>2</TPN>

</Requested>

WallclockDuration — The requested wallclock duration of the job. This attribute is
specified in the Requested element.

: <Requested> i
: <WallclockDuration>3600</WallclockDuration> :
| </Requested> |
\ 7/

Related Topics

o Applying the msub Submit Filter
o SUBMITFILTER parameter

267 4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.31 mvcctl (Moab Virtual Container Control)

4.7.31.A Synopsis

mvcctl -a <OType>:<OName>[,<OType>:<OName>] <name>
mvcctl -c [<description>]

mvcctl -d <name>

mvcctl -m <ATTR>=VAL[,<ATTR>=<VAL>] <name>

mvcctl -q [<name>|ALL] [--xml][--blocking] [--flags=fullxml]
mvcctl -r <OType>:<OName>[,<OType>:<OName>] <name>

mvcctl -x <action><name>

[-—about] [--help] [--host=<serverHostName>] [--
loglevel=<loglLevel>] [--msg=<message>] [—--port=<serverPort>]
[-—timeout=<seconds>] [--version] [--xml]

4.7.31.B Overview

A virtual container (VC) is a logical grouping of objects with a shared variable space and
applied policies. Containers can hold virtual machines, jobs, reservations, and nodes.
Containers can also be nested inside other containers.

A VC can be owned by a user, group, or account. Users can only view VCs to which they
have access. Level 1 administrators (Admin1) can view and modify all VCs. The owner can
also be changed. When modifying the owner, you must also specify the owner type:

——————————————— € ———

Adding objects to VCs at submission: You associate jobs and reservations with a specified
VC upon submission. For example:

e mrsvctl -c...-H <vC>

e msub ... -W x="vc=<vC>"

e

o The user who submits objects must have access to the VC or the command is rejected.]

4.7.31.C FullXML flag

The FullXML flag will cause the mvcctl -gcommand to show VCs in a hierarchical
manner. If doing a non-XML (plaintext) query, sub-VCs will be listed inside their parent

4.7 Moab Commands 268

Chapter 4: Scheduler Commands

269

VCs. Each VC will be indented more than its parent.

VCI[vcl] (vcl)
Owner: user:jason
VCs:
VC[vc2] (vc2)
Owner: user:jason
Jobs: Moab.l1l
Rsvs: system.1l
VCs:
VCI[vc3] (ve3)
Owner: user:jason
VC[vc4d] (vcé)
Owner: user:jason

R

If doing an XML query, the XML for all sub-objects (VCs, but also reservations, jobs, etc.)
will also be included in the VC.

/25 \
: <Data> :
I <vcs> |
: <vc CREATETIME="1460666817" CREATOR="tshaw" DESCRIPTION="vcl" :
: NAME="vcl" OWNER="user:tshaw" VCS="vc2,vcd"> |
| <ACL aff="positive" cmp="%=" name="tshaw" type="USER" /> [
: </vec> :
: <vc CREATETIME="1460666818" CREATOR="tshaw" DESCRIPTION="vc2" |
| JOBS="moab.1" NAME="vc2" OWNER="user:tshaw" RSVS="system.2" :
: VCS="vc3"> I
I <ACL aff="positive" cmp="%=" name="tshaw" type="USER" /> :
: </ve> :
: <vc CREATETIME="1460666818" CREATOR="tshaw" DESCRIPTION="vc3" 1
[NAME="vc3" OWNER="user:tshaw"> :
: <ACL aff="positive" cmp="%=" name="tshaw" type="USER" /> :
: </vc> I
| <vc CREATETIME="1460666818" CREATOR="tshaw" DESCRIPTION="vc4" :
: NAME="vc4" OWNER="user:tshaw"> I
I <ACL aff="positive" cmp="%=" name="tshaw" type="USER" /> :
l </vec>

: </vcs> |
| </Data> JI

4.7.31.D Virtual Container Flags

The following table indicates available virtual container (VC) flags and associated
descriptions. Note that the Deleting, HasStarted, and Workf1low flags cannot be set
by a user but are helpful indicators of status.

VC Flags

DestroyObjects When the VC is destroyed, any reservations and jobs in the VC
are also destroyed. This is recursive, so any objects in sub-VCs
are also destroyed. Nodes are not removed.

4.7 Moab Commands

Chapter 4: Scheduler Commands

VC Flags

DestroyWhenEmpty

Deleting

HasStarted

Hold]obs

NoReleaseWhenScheduled

Workflow

4.7.31.E Options

When the VC is empty, it is destroyed.

Set by the scheduler when the VC has been instructed to be
removed.

[o Internal flag. Administrators cannot set or clear this]
flag.

This flag is set on a VC workflow where at least one job has
started.

[o Internal flag. Administrators cannot set or clear this
flag.

This flag will place a hold on any job that is submitted to the
VC while this flag is set. It is not applied for already existing
jobs that are added into the VC. If a job with a workflow is
submitted to the V(, all jobs within the workflow are placed
on hold.

Prevents Moab from lifting the UserHold on the workflow
when it is scheduled. This enables an approval method where
an administrator must release the hold manually before the
service is allowed to start as scheduled.

Designates this VC as a VC that is for workflows. This flag is
set when generated by a job template workflow. Workflow
jobs can only be attached to one workflow VC.

[o Internal flag. Administrators cannot set or clear this J
flag.

- _

Format mvcctl —-a<0Type>:<OName>[,<OType>:<OName>] <name>
Where <OType> is one of JOB, RSV, NODE, or VC.

4.7 Moab Commands

270

Chapter 4: Scheduler Commands

|

Description Add the given object(s).

Example |mvcctl -a JOB:Moab.45 vcl3 Il
l >>job 'Moab.45' added to VC 'vcl3' !

Format mvcctl -c[<description>]

Description Create a virtual container (VC). The VC name is auto-generated. It is
recommended that you supply a description; otherwise the description is the
same as the auto-generated name.

Example :mvcctl -c "Linux testing machine" II
|

|>>VC 'vcl3' created

Format mvcectl -d<lab01>

Description Destroy the VC.

Example : mvcectl -d vel3 II

|>>VC 'vcl3' destroyed)I

|

Format mvcctl -m<ATTR>=VAL[<ATTR>=<VAL>] <name>

Description Modify the VC. Attributes are flags, owner, reqstarttime, reqnodeset, variables,
and owner; note that only the owner can modify owner. Use reqgstarttime
when implementing guaranteed start time to specify when jobs should start.
The reqnodeset attribute indicates the node set that jobs should run in that
are submitted to a virtual container.

271 4.7 Moab Commands

Chapter 4: Scheduler Commands

N
|

sy Sy Y Yy Yy N ———
' mvectl -m variables+=HV=node8 vcl3
>>VC 'vcl3' successfully modified

Example

>>VC 'vcl' successfully modified

mvcctl -m messages="\"This VC is for internal use, etc.\"" vc5

1
|
|
|
mvcetl -m £lags+=DESTROYWHENEMPTY vcl :
|
|
|
>>VC 'veb' successfully modified |

|
|
:
|
|
|
|
|
|
\

Format mvcctl -qg[<name>|ALL] [--xml][--blocking][--flags=fullxml]

Description Query VCs.

Example mveetl -g ALL |
VC[vcl3] (Linux testing machine) :
Create Time: 1311027343 Creator: jdoe |
Owner: user:jdoe

ACL: USER=%=jdoet; [
Jobs: Moab.45

Vars: HV=node88 1
Flags: DESTROYWHENEMPTY :

Format mvcctl —-r<OType>:<OName>[,<OType>:<OName>] <name>
Where <OType> is one of JOB, RSV, NODE, or VC.

Description = Remove the given object(s) from the VC.

mvcctl -r JOB:Moab.45 vcl3
:>>job 'Moab.45' removed from VC 'vcl3'

(
|

Example

o1
|

Format mvcectl -x<action><name>

Description Executes the given action on the virtual container (VC).

Example

4.7 Moab Commands 272

Chapter 4: Scheduler Commands

273

4.7.32 showbf

4.7.32.A Synopsis

showbf [-a account] [-A] [-c class] [-d duration] [-D] [-f features] [-g group] [-h] [-L] [-m
[==|>|>=|<|<=] memory] [-n nodecount] [-p partition] [-q qos] [-r processorcount] [-u user]

[-v] [--blocking] [--about] [--help] [--host=<serverHostName>] [-
-loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

4.7.32.B Overview

Shows what resources are available for immediate use.

o The results Moab returns do not include resources that may be freed due to
preemption.

This command can be used by any user to find out how many processors are available for
immediate use on the system. It is anticipated that users will use this information to submit
jobs that meet these criteria and therefore obtain quick job turnaround times. This
command incorporates down time, reservations, and node state information in determining
the available backfill window.

J

o If specific information is not specified, showb £ will return information for the user
and group running but with global access for other credentials. For example, if -g
gos is not specified, Moab will return resource availability information for a job as if
it were entitled to access all QOS based resources (i.e., resources covered by
reservations with a QOS based ACL), if -c class is not specified, the command will
return information for resources accessible by any class.

&

A

~N

o The showb f command incorporates node configuration, node utilization, node state,
and node reservation information into the results it reports. This command does not
incorporate constraints imposed by credential based fairness policies on the results it
reports.

-
&

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.32.C Access

By default, this command can be used by any user or administrator.

4.7.32.D Parameters

ACCOUNT

CLASS

DURATION

FEATURELIST

GROUP

MEMCMP

MEMORY

NODECOUNT

PARTITION

PROCESSORCOUNT

QoS

USER

4.7 Moab Commands

Account name.
Class/queue required.

Time duration specified as the number of seconds or in
[DD:]JHH:MM:SS notation.

Colon separated list of node features required.

Specify particular group.

Memory comparison used with the —-m flag. Valid signs are >, >=, ==,
<=, and <.

Specifies the amount of required real memory configured on the node,
(in MB), used with the -m flag.

Specify number of nodes for inquiry with —n flag.

Specify partition to check with -p flag.

Specify number of processors required.

Specify QOS to check with -qg flag.

Specify particular user to check with —-u flag.

274

Chapter 4: Scheduler Commands

275

4.7.32.E Options
opuen Dot

-a

--blocking

Show resource availability information only for the specified
account.

Show resource availability information for all users, groups, and
accounts. By default, showb £ uses the default user, group, and
account ID of the user issuing the command.

Do not use cache information in the output. The --blocking flag
retrieves results exclusively from the scheduler.

Show resource availability only for the specified class.
Show resource availability information for specified duration.
Display current and future resource availability notation.

Display availability for the specified colon-separated list of node
features.

Show resource availability information only for specified group.
Help for this command.

Enforce Hard limits when showing available resources.

Allows user to specify the memory requirements for the backfill
nodes of interest. It is important to note that if the optional
MEMCMP and MEMORY parameters are used, they must be enclosed
in single ticks (') to avoid interpretation by the shell. For example,
enter showbf -m '==256" to request nodes with 256 MB
memory.

Show resource availability information for a specified number of
nodes. That is, this flag can be used to force showbf to display only
blocks of resources with at least this many nodes available.

Show resource availability information for the specified partition.

Show information for the specified QOS.

4.7 Moab Commands

Chapter 4: Scheduler Commands

opten _____[peerin

-r Show resource availability for the specified processor count.
-u Show resource availability information only for specified user.
-V Displays verbose information.

4.7.32.F Examples

In this example, a job requiring up to 2 processors could be submitted for immediate
execution in partition ClusterA for any duration. Additionally, a job requiring 1
processor could be submitted for immediate execution in partition ClusterB. Note that
by default, each task is tracked and reported as a request for a single processor.

{ > showbf :
: Partition Tasks Nodes StartOffset Duration StartDate :
| oo oo oooTs | oo OoEeTTEToTTs | O TDS—ee— |
| ALL 3 3 00:00:00 INFINITY 11:32:38 08/19 :
| ReqID=0 I
| ClusterA 1 1 00:00:00 INFINITY 11:32:38 08/19 l
I ReqID=0 '|
| ClusterB 2 2 00:00:00 INFINITY 11:32:38 08/19 I
| RegID=0 J
. .
[o StartOffset is the amount of time remaining before resources will be available.]
Example 4-35:

In this example, the output verifies that a backfill window exists for jobs requiring a 3 hour
runtime and at least 16 processors. Specifying job duration is of value when time based
access is assigned to reservations (i.e., using the SRCFG TIMELIMIT ACL).

> showbf -r 16 -d 3:00:00

|
|
Partition Tasks Nodes Duration StartOffset StartDate :
| . et e e e
|
: ALL 20 20 INFINITY 00:00:00 09:22:25 07/19 J
N e e
Example 4-36:

In this example, a resource availability window is requested for processors located only on
nodes with at least 512 MB of memory.

> Showbf -m ' =512'
|
|

]

|

Partition Tasks Nodes Duration StartOffset StartDate :

| —————————= ————— ————— I
: ALL 20 20 INFINITY 00:00:00 09:23:23 07/19 :
: ClusterA 10 10 INFINITY 00:00:00 09:23:23 07/19 :
| |
e e e e e e e n m m m m m m m m m m — — — —— ——— —— — J

4.7 Moab Commands

Chapter 4: Scheduler Commands

277

——————————————— € ———

Related Topics

« (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o showq

o mdiag -t

4.7.33 showq

4.7.33.A Synopsis
showq [-b] [-g] [-]] [-c|-il-r] [-n] [-N] [-o] [-p partition] [-R rsvid] [-s] [-S] [-u] [-v] [-w

<CONSTRAINT>] [--blocking] [--noblock] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [-—-port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.33.B Overview

Displays information about active, eligible, blocked, and/or recently completed jobs. Since
the resource manager is not actually scheduling jobs, the job ordering it displays is not
valid. The showg command displays the actual job ordering under the Moab Workload
Manager. When used without flags, this command displays all jobs in active, idle, and non-
queued states.

4.7.33.C Access

By default, this command can be run by any user. However, the -c, -1, and -r flags can
only be used by level 1, 2, or 3 Moab administrators.

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.33.D Options
E 77 S

4.7 Moab Commands

partition

rsvid

Display blocked jobs only.

Display details about recently completed jobs (see
example, JOBCPURGETIME).

Display grid job and system IDs for all jobs.

Display extended details about idle jobs.

Display local /remote view. For use in a Grid
environment, displays job usage of both local and
remote compute resources.

Displays normal showq output, but lists job names
under JOBID.

Show the node/task allocation of the job.

Displays jobs in the active queue in the order
specified (uses format showg -o
<specifiedOrder>). Valid options include
REMAINING, REVERSEREMAINING, JOB, USER,
STATE, and STARTTIME. The default is REMAINING.

Display only jobs assigned to the specified partition.

Display extended details about active (running) jobs
(see example).

Display only jobs that overlap the specified
reservation.

Display workload summary.
Display system jobs.

Display all running jobs for a particular user.

278

Chapter 4: Scheduler Commands

R) N

279

Display local and full resource manager job IDs, as

well as partitions. If specified with the -1 option,
will display job reservation time. To see a summary
of array subjobs, run checkjob -v <jobID> To
see array subjobs in showq, include the —-

blocking option.

W constraint Display only jobs associated with the specified
constraint. Valid constraints include user, group,
jobgroup, acct, nodefeature, class, and qos (see

showq -w examples).

--blocking

Do not use cache information in the output. The —-

blocking flag retrieves results exclusively from
the scheduler. This option also causes showgqg to
display an individual line for each array subjob.

--noblock

Use cache information for a faster response.

4.7.33.E Details

Beyond job information, the showg command will also report if the scheduler is stopped or
paused or if a system reservation is in place. Further, the showg command will also report

public system messages.

4.7.33.F Examples

o Default Report
o Detailed Active/Running Job Report
o Eligible Jobs
o Detailed Completed Job Report

« Filtered Job Report

Default Report

The output of this command is divided into three parts, Active Jobs, Eligible Jobs, and

Blocked Jobs.

4.7 Moab Commands

Chapter 4: Scheduler Commands

active jobs

JOBIDUSERNAMESTATEPROCSREMAINING

12941
12954
12944
12946

4 active jobs

eligible jobs

JOBID

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

| 12956
I 12969
| 12939
I 12940
I 12947
| 12949
I 12953
| 12955
| 12957
| 12963
| 12964
| 12937
1 12962
| 12968
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

14 eligible jobs

blocked jobs

JOBID

0 blocked jobs

Total jobs:
\

sartois
tgates
evall
tgates

47 of 48 processors active
32 of 32 nodes active

USERNAME

cfosdyke
cfosdyke
evall
mwillis
mwillis
evall
tgates
evall
tgates
evall
tgates
allendr
aacker
tamaker

USERNAME

The fields are as follows:

JOBID

USERNAME
STATE
PROCS

REMAINING/WCLIMIT

4.7 Moab Commands

Running
Running
Running
Running

STATE

Idle
Idle
Idle
Idle
Idle
Idle
Idle
Idle
Idle
Idle
Idle
Idle
Idle
Idle

STATE

Job identifier.

User owning job.

STARTTIME
25 2:44:11 Thu
4 2:57:33 Thu
16 6:37:31 Thu
2 1:05:57:31 Thu
(97.92%)
(100.00%)

PROCS WCLIMIT
32 6:40:00 Thu
4 6:40:00 Thu
16 3:00:00 Thu
2 3:00:00 Thu
2 3:00:00 Thu
2 3:00:00 Thu
10 4:26:40 Thu
2 4:26:40 Thu
16 3:00:00 Thu
16 1:06:00:00 Thu
16 1:00:00:00 Thu
9 1:00:00:00 Thu
6 00:26:40 Thu
1 4:26:40 Thu
PROCS WCLIMIT

Job State. Current batch state of the job.

Sep
Sep
Sep
Sep

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

Number of processors being used by the job.

R

job. Time specified in [DD:]HH:MM:SS notation.

e e e e e

15:
15:
15:
15:

02:
02:
02:
02:

50
52
50
50

QUEUETIME

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

02:
03:
02:
02:
02:
02:
02:
02:
02:
02:
02:
02:
02:
02:

50
23
50
50
50
50
50
50
50
52
52
50
50
52

QUEUETIME

For active jobs, the time the job has until it has reached its wallclock
limit or for idle/blocked jobs, the amount of time requested by the

280

Chapter 4: Scheduler Commands

281

STARTTIME Time job started running,

Active Jobs

Active jobs are those that are Running or Starting and consuming resources. Displayed are
the job ID*, the job's owner, and the job state. Also displayed are the number of processors
allocated to the job, the amount of time remaining until the job completes (given in
HH:MM:SS notation), and the time the job started. All active jobs are sorted in 'Earliest
Completion Time First' order.

e N

o *Job IDs can be marked with a single character to specify the following conditions:
_ (underbar) job violates usage limit
* (asterisk) job is backfilled AND is preemptible
+ (plus) job is backfilled AND is NOT preemptible

- (hyphen) job is NOT backfilled AND is preemptible

. J

o Detailed active job information can be obtained using the -r flag.

. J

Eligible Jobs

Eligible Jobs are those that are queued and eligible to be scheduled. They are all in the Idle
job state and do not violate any fairness policies or have any job holds in place. The jobs in
the Idle section display the same information as the Active Jobs section except that the
wallclock CPULIMIT is specified rather than job time REMAINING, and job QUEUETIME is
displayed rather than job STARTTIME. The jobs in this section are ordered by job priority.
Jobs in this queue are considered eligible for both scheduling and backfilling.

[o Detailed eligible job information can be obtained using the -i flag.]

4.7 Moab Commands

Chapter 4: Scheduler Commands

Blocked Jobs

Blocked jobs are those that are ineligible to be run or queued. Jobs listed here could be in a
number of states for the following reasons:

swe foeerpen

Idle

UserHold

SystemHold

BatchHold

Deferred

NotQueued

Job violates a fairness policy. Use diagnose -qg for more information.

A user hold is in place.

An administrative or system hold is in place.

A scheduler batch hold is in place (used when the job cannot be run because
the requested resources are not available in the system or because the
resource manager has repeatedly failed in attempts to start the job).

A scheduler defer hold is in place (a temporary hold used when a job has been
unable to start after a specified number of attempts. This hold is automatically
removed after a short period of time).

Job is in the resource manager state NQ (indicating the job's controlling
scheduling daemon in unavailable).

A summary of the job queue's status is provided at the end of the output.

Example 4-37: Detailed Active/Running Job Report

g

active jobs-----------------——————-

I 1
I I
I I
I I
I I
: JOBID S PAR EFFIC XFACTOR Q USER GROUP MHOST PROCS :
: REMAINING STARTTIME II
I I
| 12941 R 3 100.00 1.0 - sartois Arches G5-014 25 :
I 2:43:31 Thu Sep 1 15:02:50
| 12954 R 3 100.00 1.0 Hi tgates Arches G5-016 4 i
{ 2:56:54 Thu Sep 1 15:02:52
| 12944 R 2 100.00 1.0 De evall RedRock P690-016 16 |
| 6:36:51 Thu Sep 1 15:02:50
: 12946 R 3 100.00 1.0 - tgates Arches G5-001 2 :
] 1:05:56:51 Thu Sep 1 15:02:50
I |
I I
I 4 active jobs 47 of 48 processors active (97.92%) :
l 32 of 32 nodes active (100.00%) i
I I
I
: Total jobs: 4 I
N o e J

After displaying the running jobs, a summary is provided indicating the number of jobs, the
number of allocated processors, and the system utilization.

4.7 Moab Commands

282

Chapter 4: Scheduler Commands

JOBID Name of active job.

S Job State. Either R for Running or S for Starting.

PAR Partition in which job is running.

EFFIC CPU efficiency of job.

XFACTOR See Expansion Factor (XFACTOR) Subcomponent for a detailed description.
Q Quality Of Service specified for job.

USER User owning job.

GROUP Primary group of job owner.

MHOST Master Host running primary task of job.

PROCS Number of processors being used by the job.

REMAINING Time the job has until it has reached its wallclock limit. Time specified in
HH:MM:SS notation.

STARTTIME Time job started running.

BlliEplgle JEldE——r— s oo

I

| |
| |
I I
: JOBID PRIORITY XFACTOR Q USER GROUP PROCS WCLIMIT :
: CLASS SYSTEMQUEUETIME :
| |
| 12956* 20 1.0 - cfosdyke RedRock 32 6:40:00 :
I batch Thu Sep 1 15:02:50

: 12969% 19 1.0 - cfosdyke RedRock 4 6:40:00 |
| batch Thu Sep 1 15:03:23 :
1 12939 16 1.0 - evall RedRock 16 3:00:00 I
| batch Thu Sep 1 15:02:50 I
: 12940 16 1.0 - mwillis Arches 2 3:00:00 :
| batch Thu Sep 1 15:02:50

I 12947 16 1.0 - mwillis Arches 2 3:00:00 :
I batch Thu Sep 1 15:02:50 :
: 12949 16 1.0 - evall RedRock 2 3:00:00 I
| batch Thu Sep 1 15:02:50 :
L 12953 16 1.0 - tgates Arches 10 4:26:40 J

283 4.7 Moab Commands

Chapter 4: Scheduler Commands

I

I

I

I

I

I

I

I

I

| batch Thu Sep
I

: batch Thu Sep
: 12937

| batch Thu Sep
I

I

: batch Thu Sep
I

| batch Thu Sep
I

| 14 eligible jobs
I
I
I

Total jobs: 14
\

15:

15:

15:

15:

15:

02:

02:

02:

02:

02:

The fields are as follows:

JOBID

PRIORITY

XFACTOR

Q

USER

GROUP

PROCS

WCLIMIT

CLASS

SYSTEMQUEUETIME

4.7 Moab Commands

52

52

50

50

52

Name of job.

Calculated job priority.

16

16

16

16

tgates
evall
tgates
allendr
aacker

tamaker

RedRock

Arches

RedRock

Arches

RedRock

RedRock

RedRock

16

16

16

:06:

:00:

:00:

00:

:26:

:00:

00:

00:

00:

26:

32683

40

00

00

00

00

40

40

See Expansion Factor (XFACTOR) Subcomponent for a detailed

description.

Quality Of Service specified for job.

User owning job.

Primary group of job owner.

Minimum number of processors required to run job.
Wallclock limit specified for job. Time specified in HH:MM:SS notation.

Class requested by job.

Time job was admitted into the system queue.

284

Chapter 4: Scheduler Commands

285

o An asterisk at the end of a job (job 12956 * in this example) indicates that the job has
a job reservation created for it. The details of this reservation can be displayed using

the checkjob command.

Example 4-38: Detailed Completed Job Report

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

The fields are as follows:

> showqg -c

completed jobs

JOBID
PROC
13098

25 23
13102

4 23
13103

16 6:
13115

2 1.80585688il

43:31

56:54

36:51

WALLTIME

Thu

Thu

Thu

Thu

3 completed jobs

SCCODE PAR EFFIC XFACTOR Q USERNAME

@
Sep
@
Sep
©
Sep
@
Sep

STARTTIME
0 bas 93.17
15:02:50
0 bas 99.55
15502552
2 tes 99.30
15:02:50
0 tes 97.04
15:02:50

1

Ao

.0

GROUP

= sartois Arches
Hi tgates Arches
De evall RedRock
= tgates Arches

MHOST

G5-014

G5-016

P690-016

G5-001

JOBID

CCODE

PAR

EFFIC

XFACTOR

Q

USERNAME

GROUP

MHOST

job ID for completed job.

Job State. Either C for Completed or V for Vacated.

Completion code reported by the job.

Partition in which job ran.

CPU efficiency of job.

See Expansion Factor (XFACTOR) Subcomponent for a detailed description.

Quality of Service specified for job.

User owning job.

Primary group of job owner.

Master Host that ran the primary task of job.

4.7 Moab Commands

Chapter 4: Scheduler Commands

PROCS Number of processors being used by the job.
WALLTIME Wallclock time used by the job. Time specified in [DD:]HH:MM:SS notation.
STARTTIME Time job started running.

After displaying the active jobs, a summary is provided indicating the number of jobs, the
number of allocated processors, and the system utilization.

o If the DISPLAYFLAGS parameter is set to ACCOUNTCENTRIC, job group information
will be replaced with job account information.

Example 4-39: Filtered Job Report

Show only jobs associated with user john, class benchmark, and nodefeature bigmem.

Example 4-40: Filtered Job Report

Show only jobs associated with jobgroup workflowl.

4.7.33.G Job Array

Job arrays show the name of the job array and then in parenthesis, the number of subjobs
in the job array that are in the specified state.

BERIYTE J@lg——r—me e s eaooes

JOBID USERNAME STATE PROCS REMAINING STARTTIME
14 active jobs 14 of 14 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

I
I
| :
: I
: I
' I
' I
' I
I
} Moab.1(14) aesplin Running 14 00:59:41 Fri May 27 14:58:57 :

I
I
' I
' I
| |
| I
| I
| I
| I
I

Bllieplgla JEldE——m— s oo
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
\

4.7 Moab Commands 286

Chapter 4: Scheduler Commands

287

Moab.1 (4) aesplin Idle 4 1:00:00 Fri May 27 14:58:52
4 eligible jobs

r
I
I
I
I
I
I
| blocked jobs-—-———===-——=—-—-—————-

: JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
[

I

I

I

I

I

I

I

I

\

Moab.1(2) aesplin Blocked 2 1:00:00 Fri May 27 14:58:52
2 blocked jobs

Total jobs: 20

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o showbf - command to display resource availability.
« mdiag -j - command to display detailed job diagnostics.
o checkjob - command to check the status of a particular job.

o JOBCPURGETIME - parameter to adjust the duration of time Moab preserves
information about completed jobs

o DISPLAYFLAGS - parameter to control what job information is displayed

4.7.34 showhist.moab.pl

4.7.34.A Synopsis

showhist.moab.pl [-a accountname]
[-c classname] [-e enddate]

[-g groupname] [-j jobid] [-n days]

[-q gosname] [-s startdate]

[-u username]

4.7.34.B Overview

The showhist.moab.pl script displays historical job information. Its purpose is similar
to the checkjob command's, but showhist.moab.pl displays information about jobs
that have already completed.

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.34.C Access

By default, this script's use is limited to administrators on the head node; however, end
users can also be given power to run the script. To grant access to the script to end users,
move showhist.moab.pl from the tools directory to the bin directory.

4.7.34.D Options

-a (Account)

Format <ACCOUNTNAME>

Description Displays job records matching the specified account.

Example

:{ Information about jobs related to the account myAccount
| is displayed.

Format <CLASSNAME>

Description Displays job records matching the specified class (queue).

(T \
{> showhist.moab.pl -c newClass |

Example

Information about jobs related to the class newClass |
is displayed. }

-e (End Date)

Format YYYY-MM-DD

Description Displays the records of jobs recorded before or on the specified date.

Example

Information about all jobs recorded on or before January 3, 2022
is displayed.

4.7 Moab Commands 288

Chapter 4: Scheduler Commands

-e (End Date)

|
|

Format <GROUPNAME>

Description Displays job records matching the specified group.

S T e e e \
Example " > showhist.moab.pl -g admins)I

:{ Information about jobs related to the group admins
! is displayed.

-j (Job ID)

Description = Displays job records matching the specified job ID.

~
Example " > showhist.moab.pl -j moab0l 1

:' Information about job moab01 is
! displayed.

-n (Number of Days)

Description Restricts the number of past jobs to search by a specified number of days
relative to today.

(
Example | > showhist.moab.pl -n 90 -j moab924
\

-

| Displays job information for job moab924. The search is restricted |
| to the last 90 days. }

S o o o o o o S o S S o S S S S o o S e e e -

289 4.7 Moab Commands

Chapter 4: Scheduler Commands

-q (QoS)

|

Description Displays job records matching the specified quality of service.

Example l' > showhist.moab.pl -q myQos [

l Information about jobs related to the QoS myQos
l\ is displayed.

-s (Start Date)

Format YYYY-MM-DD

Description Displays the records of jobs that recorded on the specified date and later.

Example (> showhist.mosb.pl -s 1776-07-04 j
: Information about all jobs recorded on July 4, 1776 and later is \}
| displayed }
{> showhist.mosb.pl -s 2020-07-05 - 2022-07-05)
: Information is displayed about all jobs recorded between July 5, \}
: 2020 and July 5, 2022. :
Description Displays job records matching the specified user.
Example {> showhist.mosb.pl -ubob]
: Information about user bob's jobs is \}
displayed)
Sample Output
[> shownist.moab.pl

4.7 Moab Commands 290

Chapter 4: Scheduler Commands

291

Information is displayed for all completed jobs.

Job Id

User Name

Group Name
Queue Name
Processor Count
Wallclock Duration:
Submit Time
Start Time
End Time
Exit Code 3
Allocated Nodelist:

Job Id
Executable
User Name
Group Name
Account Name
Queue Name
Quality Of Service:
Processor Count
Wallclock Duration:
Submit Time
Start Time
End Time
Exit Code 3
Allocated Nodelist:

company

: NONE

4
00:00:00

: Mon Nov 21
: Mon Nov 21
: Mon Nov 21

0
10.10.10.3

: Moab.l

4

: userl
: company

1321897709

: NONE

oM
-0
00:01:05

: Mon Nov 21
: Mon Nov 21
: Mon Nov 21

10:48:32 2022
10:49:37 2022
10:49:37 2022

10:48:29 2022
10:48:32 2022
10:49:37 2022

running.

o When a job's Start Time and End Time are the same, the job is infinite and still

Related Topics

« checkjob - explains how to query for a status report for a specified job

« mdiag -j command - display additional detailed information regarding jobs

« showqg command - showq high-level job summaries

4.7.35 showres

4.7.35.A Synopsis

showres [-f] [-n [-g]] [-0] [-T] [V] [reservationid] [--blocking] [--about] [--

help]

msg=<message>]

version]

[-—xml]

[--host=<serverHostName>]
[--port=<serverPort>]

[--loglevel=<logLevel>] [--
[--timeout=<seconds>] [--

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.35.B Overview

This command displays all reservations currently in place within Moab. The default
behavior is to display reservations on a reservation-by-reservation basis.

4.7.35.C Access

By default, this command can be run by any Moab administrator.

4.7.35.D Options

T

-f Show free (unreserved) resources rather than reserved resources. The - £ flag
cannot be used in conjunction with the any other flag.

-g When used with the —n flag, shows grep-able output with nodename on every line.
-n Display information regarding all nodes reserved by <RSVID>
-0 Display all reservations that overlap <RSVID> (in time and space).

[o Not supported with —n flag J
-r Display reservation timeframes in relative time mode.
-v Show verbose output. If used with the -n flag, the command will display all

reservations found on nodes contained in <RSVID>. Otherwise, it will show long
reservation start dates including the reservation year.

RSVID ID of reservation of interest — optional

4.7.35.E Examples

T \
: > showres =
I I
I' ReservationID Type S Start End Duration N/P StartTime :
! I
| 12941 Job R -00:05:01 2:41:39 2:46:40 13/25 Thu Sep 1]
. .

4.7 Moab Commands 292

Chapter 4: Scheduler Commands

293

15:02:52

21:02:50

21:42:50

Job R -00:05:

Job R -00:04:

Job I 1:05:54:

Job I 6:34:

The fields are as follows:

Type

ReservationID

Start

End

Duration

Nodes

StartTime

Example 4-41:

59

59

59

:54:

:55:

:34:

01

59

:59

:00:

:40:

:40:

00

00

00

2/4 Thu Sep 1
16/32 Fri Sep 2

4/4 Thu Sep 1

Reservation Type. This will be one of the following: Job or User.

This is the name of the reservation. Job reservation names are identical to
the job name. User, Group, or Account reservations are the user, group, or
account name followed by a number. System reservations are given the

name SYSTEM followed by a number.

State. This field is valid only for job reservations. It indicates whether the

job is (S)tarting, (R)unning, or (I)dle.

Relative start time of the reservation. Time is displayed in HH:MM:SS

notation and is relative to the present time.

Relative end time of the reservation. Time is displayed in HH:MM:SS
notation and is relative to the present time. Reservations that will not
complete in 1,000 hours are marked with the keyword INFINITY.

Duration of the reservation in HH:MM:SS notation. Reservations lasting
more than 1,000 hours are marked with the keyword INFINITY.

Number of nodes involved in reservation.

Time Reservation became active.

e e o o e e e e e e e e e e e e e e e e o e e e e

> showres -n

reservations on Thu Sep 1 16:49:59

4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7

NodeName
StartTime

G5-001
Sep 1
G5-001
Sep 2
G5-002
Sep 2
G5-002
Sep 1
G5-003
Sep 2
G5-003
Sep 1
G5-004
Sep 2
G5-004
Sep 1
G5-005
Sep 2
G5-005
Sep 1
G5-006
Sep 2
G5-006
Sep 1
G5-007
Sep 2
G5-007
Sep 1
G5-008
Sep 2
G5-008
Sep 1
G5-009
Sep 2
G5-009
Sep 1
G5-010
Sep 2
G5-010
Sep 1
G5-011
Sep 2
G5-011
Sep 1
G5-012
Sep 2
G5-012
Sep 1
G5-013
Sep 2
G5-013
Sep 1
G5-014
Sep 2
G5-014
Sep 1
G5-015
Sep 2
G5-015

15:

21:

218

16:

21:

16:

218

16:

21:

16:

218

16:

21:

16:

218

16:

21:

16:

218

16:

21:

16:

218

16:

21:

16:

218

16:

21:

02:

02:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

20:

02:

50

50

50

22

50

22

50

22

50

22

50

22

50

22

50

22

50

22

50

22

50

22

50

22

50

22

50

22

50

Moab Commands

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

Job

ReservationID

12946

12956

12956

12953

12956

12953

12956

12953

12956

12953

12956

12953

12956

12939

12956

12939

12956

12939

12956

12939

12956

12939

12956

12939

12956

12939

12956

12939

JobState Task

Running 2
Idle 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2
Idle 2

Running 2

:04:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

-00:

:04:

12:

12:

29:

123

29:

12:

29:

123

29:

12:

29:

123

29:

12:

29:

123

29:

12:

29:

123

29:

12:

29:

123

29:

12:

29:

309

51

51

37

51

37

51

37

51

37

51

37

51

37

51

37

51

37

51

37

51

37

51

37

51

37

51

37

1:06:00:00

6:

40:

:40:

:26:

:40:

126:

:40:

:26:

:40:

126:

:40:

:26:

:40:

:00:

:40:

:00:

:40:

:00:

:40:

:00:

:40:

:00:

:40:

:00:

:40:

:00:

:40:

:00:

:40:

00

00

40

00

40

00

40

00

40

00

40

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

Thu

Fri

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

Fri

Thu

294

Chapter 4: Scheduler Commands

295

___ <
{ Sep 1 16:41:02 :
| G5-016 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri I
| Sep 2 21:02:50 :
I G5-016 Job 12947 Running 2 -00:08:57 3:00:00 Thu |
| Sep 1 16:41:02 I
: P690-001 Job 12944 Running 1 -1:47:09 6:40:00 Thu :
| Sep 1 15:02:50 I
: P690-002 Job 12944 Running 1 -1:47:09 6:40:00 Thu :
: Sep 1 15:02:50 :
| P690-003 Job 12944 Running 1 =i, 347308 6:40:00 Thu |
| Sep 1 15:02:50 :
I P690-004 Job 12944 Running 1 -1:47:09 6:40:00 Thu |
| Sep 1 15:02:50 I
| P690-005 Job 12944 Running 1 -1:47:09 6:40:00 Thu :
| Sep 1 15:02:50

: P690-006 Job 12944 Running 1 -1:47:09 6:40:00 Thu :
: Sep 1 15:02:50

| P690-007 Job 12944 Running 1 =i, 347308 6:40:00 Thu I
| Sep 1 15:02:50 :
I P690-008 Job 12944 Running 1 -1:47:09 6:40:00 Thu I
! 'sep 1 15:02:50 |
| P690-009 Job 12944 Running 1 -1:47:09 6:40:00 Thu |
| Sep 1 15:02:50

: P690-010 Job 12944 Running 1 -1:47:09 6:40:00 Thu :
: Sep 1 15:02:50

| P690-011 Job 12944 Running 1 =i, 347308 6:40:00 Thu I
| sep 1 15:02:50 :
I P690-012 Job 12944 Running 1 -1:47:09 6:40:00 Thu |
 Sep 1 15:02:50 |
: P690-013 Job 12944 Running 1 -1:47:09 6:40:00 Thu :
| Sep 1 15:02:50

: P690-013 Job 12969 Idle 1 4:52:51 6:40:00 Thu :
: Sep 1 21:42:50

| P690-014 Job 12944 Running 1 =i, 347308 6:40:00 Thu |
| Sep 1 15:02:50 :
I P690-014 Job 12969 Idle 1 4:52:51 6:40:00 Thu |
| Sep 1 21:42:50 I
: P690-015 Job 12944 Running 1 -1:47:09 6:40:00 Thu }
| Sep 1 15:02:50 I
: P690-015 Job 12969 Idle 1 4:52:51 6:40:00 Thu :
: Sep 1 21:42:50 :
| P690-016 Job 12944 Running 1 =i, 347308 6:40:00 Thu I
| Sep 1 15:02:50 :
I P690-016 Job 12969 Idle 1 4:52:51 6:40:00 Thu I
| Sep 1 21:42:50 |
| |
L 52 nodes reserved J

The fields are as follows:

NodeName Node on which reservation is placed.

Type Reservation Type. This will be one of the following: Job or User.

4.7 Moab Commands

Chapter 4: Scheduler Commands

ReservationID

JobState

Start

Duration

StartTime

Example 4-42:

i > showres 12956

ReservationID

21:02:50

1 reservation located

|
|
|
|
|
|
I 12956
:
|
|
|
|

This is the name of the reservation. Job reservation names are identical to
the job name. User, Group, or Account reservations are the user, group, or
account name followed by a number. System reservations are given the
name SYSTEM followed by a number.

This field is valid only for job reservations. It indicates the state of the job
associated with the reservation.

Relative start time of the reservation. Time is displayed in HH:MM:SS
notation and is relative to the present time.

Duration of the reservation in HH:MM:SS notation. Reservations lasting
more than 1000 hours are marked with the keyword INFINITY.

Time Reservation became active.

e e e e e e e e e e e e o e e e e e e e

Type S Start End Duration N/P StartTime

|
|

|

|

I

:

Job I 1:04:09:32 1:10:49:32 6:40:00 16/32 Fri Sep 2 :
:

|

I

|

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o mrsvctl -c - create new reservations

o mrsvctl -r - release existing reservations

« mdiag -r - diagnose/view the state of existing reservations

o Reservation Overview - description of reservations and their use

4.7 Moab Commands

296

Chapter 4: Scheduler Commands

297

4.7.36 showstart

4.7.36.A Synopsis
showstart {jobid|proccount[@duration]|s3jobspec} [-e {all|hist|prio|rsv}] [-f] [-g [peer]]

[-1 qos=<Q0S>] [--blocking] [--format=xml] [-v] [--about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--
version] [--xml]

4.7.36.B Overview

This command displays the estimated start time of a job based a number of analysis types.
This analysis may include information based on historical usage, earliest available
reservable resources, and priority based backlog analysis. Each type of analysis will
provide somewhat different estimates based on current cluster environmental conditions.
The default estimation method used is determined by the value of the
DEFAULTSTARTTIMEQUERY parameter, which defaults to PRIORITY.

A showstart is a processor-intensive command. Multiple submissions per iteration may
slow Moab's scheduling, especially on larger/busier systems.

. J

~

o The start time estimate Moab returns does not account for resources that will become
available due to preemption.

.

(.

J

o showstart only determines where a job would run if it were to run next, taking into
account all currently running jobs, queued idle jobs with advance reservations, and
all current standing and administrative reservations in the system.

For example, assume RESERVATIONDEPTH is set to 1 (the default value), job 12300
is at the top of the idle queue and has an advance reservation to run next, and job
12312 is in position 12 in the idle queue. If the owner of job 12312 runs showstart
12312, in calculating where the job will run, Moab does not consider jobs 12301-
12311. It only estimates where and when job 12312 would be scheduled to run after
job 12300 starts.

S

(.

Historical analysis utilizes historical queue times for jobs that match a similar processor
count and job duration profile. This information is updated on a sliding window, which is
configurable within moab.cfg

4.7 Moab Commands

Chapter 4: Scheduler Commands

Reservation based start time estimation incorporates information regarding current
administrative, user, and job reservations to determine the earliest time the specified job
could allocate the needed resources and start running. In essence, this estimate will
indicate the earliest time the job would start assuming this job was the highest priority job
in the queue.

Priority based job start analysis determines when the queried job would fit in the queue
and determines the estimated amount of time required to complete the jobs that are
currently running or scheduled to run before this job can start.

In all cases, if the job is running, this command will return the time the job started. If the
job already has a reservation, this command will return the start time of the reservation.

4.7.36.C Access

By default, this command can be run by any user.

4.7.36.D Parameters

DURATION Duration of pseudo-job to be checked in format [[[DD:]HH:]MM:]SS (default
duration is 1 second).

(0]01 Specifies what QOS the job must start under, using the same syntax as the
msub command. Currently, no other resource manager extensions are
supported. This flag only applies to hypothetical jobs by using the proccount
[@duration] syntax.

JOBID Job to be checked.

PROCCOUNT Number of processors in pseudo-job to be checked.

S3JOBSPEC XML describing the job according to the Dept. of Energy Scalable Systems
Software/S3 job specification.

4.7 Moab Commands 298

Chapter 4: Scheduler Commands

4.7.36.E Options

299

--blocking

-1 qos=<QO0S>

'

retrieves results exclusively from the scheduler.

Do not use cache information in the output. The --blocking flag

Estimate method. If not specified, Moab will use the value of the
DEFAULTSTARTTIMEQUERY parameter, which defaults to PRIORITY.

Use feedback. If specified, Moab will apply historical accuracy information
to improve the quality of the estimate. See ENABLESTARTESTIMATESTATS

for more information.

Grid mode. Obtain showstart information from remote resource managers.
If -g is not used and Moab determines that job is already migrated, Moab
obtains showstart information from the remote Moab where the job was
migrated to. All resource managers can be queried by using the keyword
'all', which returns all information in a table.

showstart -g all head.l
stimated Start Times

cl] [00:15:35] [1 []
c2] [3:15:38 1 [1 [1]

— — — &0

Remote RM] [Reservation] [Priority]

[Historical]

Specifies what QOS the job must start under, using the same syntax as the

msub command. Currently, no other resource manager extensions are
supported. This flag only applies to hypothetical jobs by using the
proccount[@duration] syntax.

Displays verbose information.

4.7.36.F Examples

Estimated
Estimated
Estimated
Estimated
Estimated
Estimated

13762 requires 2 procs for 0:33:20
Rsv based start in
Rsv based completion in

Priority based completion in
Historical based start in 0
Historical based completion in

1
2
Priority based start in 5:
6
0
1

Best Partition: fast

:04:
: 44
14:
:54:
:00:
:40:

58
55
S5
58
00
00

on
on
on
on
on
on

Fri
Fri
Fri
Fri
Fri
Fri

Jul
Jul
Jul
Jul
Jul
Jul

15
15
15
15
15
15

12:
14:
17:
18:
11:
13:

53:
33:

03

43:
48:
28:

—_——————————————————

> showstart orion.13762
job orion.

|

|
40 '.
40 |
:40 |
40 I
45 'l
45 !

4.7 Moab Commands

Chapter 4: Scheduler Commands

Example 4-43:

: > showstart 12@3600

I job 12@3600 requires 12 procs for 1:00:00 :
: Earliest start in 00:01:39 on Wed Aug 31 16:30:45 :
I I
I

| I

Earliest completion in 1:01:39 on Wed Aug 31 17:30:45
Best Partition: 32Bit J
e o e e o o e o o o o o o o o o o o o o o o o o — — — o —— —

o You cannot specify job flags when running showstart, and since a job by default
can only run on one partition, shows tart fails when querying for a job requiring
more nodes than the largest partition available.

4.7.36.G Additional Information

For reservation based estimates, the information provided by this command is more highly
accurate if the job is highest priority, if the job has a reservation, or if the majority of the
jobs that are of higher priority have reservations. Consequently, sites wanting to make
decisions based on this information might want to consider using the RESERVATIONDEPTH
parameter to increase the number of priority based reservations. This can be set so that
most or even all idle jobs receive priority reservations and make the results of this
command generally useful. The only caution of this approach is that increasing the
RESERVATIONDEPTH parameter more tightly constrains the decisions of the scheduler
and might result in slightly lower system utilization (typically less than 8% reduction).

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o checkjob

o showres

o showstats -f eststarttime
« showstats -f avgqtime

o Job Start Estimates

4.7 Moab Commands 300

Chapter 4: Scheduler Commands

301

4.7.37 showstate

4.7.37.A Synopsis

showstate [-—about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]

[--timeout=<seconds>] [--version] [—--xml]

4.7.37.B Overview

This command provides a summary of the state of the system. It displays a list of all active
jobs and a text-based map of the status of all nodes and the jobs they are servicing. Basic
diagnostic tests are also performed and any problems found are reported.

4.7.37.C Access

By default, this command can be run by any Moab Administrator.

4.7.37.D Examples

> showstate
cluster state summary for Wed Nov 23 12:00:21

[1
I I
I I
i JobID S User Group Procs Remaining StartTime i
I

: (A) fr17n11.942.0 R johns staff 16 18821813 Nov 22 12:00:21 i
1 (B) fr17nl12.942.0 S johns staff 32 13:07:11 Nov 22 12:00:21 |
: (C) fr17n13.942.0 R johns staff 8 11:22:25 Nov 22 12:00:21 }
I (D) fr17nl14.942.0 S johns staff 8 10:43:43 Nov 22 12:01:21 I
: (E) fr17nl15.942.0 S johns staff 8 9:19:25 Nov 22 12:01:21 I
: (F) fr17n16.942.0 R johns staff 8 9:01:106 Nov 22 12:01:21 :
I (G) frl17nl17.942.0 R johns staff 1 7:28:25 Nov 22 12:03:22 |
: (H) fr17n18.942.0 R johns staff 1 3:05:17 Nov 22 12:04:22 :
: (1) fr17n19.942.0 S johns staff 24 0:54:38 Nov 22 12:00:22 :
| Usage Summary: 9 Active Jobs 106 Active Nodes |
: [01[001[01[01[01[OT[O][OT[OT [T CLI[2I[2I[2]12]1] :
: [11021031041[51([61[7]1[8]1[9110][1]1[2]1([3]1T14]1[5]1I[6] :
| Frame 2 XXXXXXXXXXXXXXXXXXXXXXXX[1[A][C][1[A][C][C][A] [
} Frame 2 1 e I A I A :
: Frame 4: [J[T10C 10 10 10AYC I0TIC 10 10 TMEXC QITIIC 1IE] I
| Frame S: [FIL IMEIT 10 10 JIFICFICRICIIL 10 JI(EIL 1I[E][E] :
| Frame 6: [JITIILTI(EILTIIL J0TDCTI0 JI[TD[CFILIIITIIINIIILFEI] :
| Frame T: []IXXX[]XXX[]XXX[]XXX[D]XXX[]XXX[]XXX[#]XXX |
| Frame LS 1 A e A I O O A O A B B 2 B A :
| Frame 11: 0101010 10 10 J0TIIFI(@IL JIATLTIIL TIFIL 1([A] :
| Frame 12: [ATLT I0 J[AIC 10 JICI[AIL TICI[ATIAIL IC 10 101 I
: Frame 13: [DIXXX[I]XXX[JXXX[1XXX[]XXX[]XXX[I]XXX[I]XXX :
| Frame 14: [DIXXX[I]XXX[I]XXX[D]XXX[JXXX[H]XXX[I]XXX[]XXX |
: Frame 15: [DL]IXXX[Db]XXX[D]XXX[Db]XXX[D] XXX [b] XXX [b]XXX[b]XXX :
: Frame 16: [D]IXXX[JXXX[D]XXX[]1XXX[D]XXX[b]XXX[]XXX[b]XXX :
L Frame 7. 01011010111y 10y I o1n ol]

4.7 Moab Commands

Chapter 4: Scheduler Commands

(— 21: []1XXX[b]XXX[b]XXX[]XXX[b]XXX[b]XXX[b]XXX[b]XXX :
: Frame 22: [D]XXX[D]XXX[D]XXX[]XXX[D]XXX[]XXX[b]XXX[b]XXX [
: Frame 27: [D]IXXX[Db]XXX[1XXX[b]XXX[b]XXX[b]XXX[b]XXX[b]XXX 1
| Frame 28: [G]XXX[]XXX[D]XXX[]XXX[D]XXX[D]XXX[D]XXX[]XXX :
: Frame 29: [A][C]I[A][A][IC][]1[A] [C]XXXXXXXXXXXXXXXXXXXXXXKXX |
: Key: XXX:Unknown [*]:Down w/Job [#]:Down [']:Idle w/Job []:Idle [Q]:Busy w/No Job :
| [!']:Drained [
: Key: [a]l: (Any lower case letter indicates an idle node that is assigned to a job) :
i |
: Check Memory on Node fr3n07

: Check Memory on Node fr4n06

L Check Memory on Node fr4n09 J

In this example, nine active jobs are running on the system. Each job listed in the top of the output is associated with
a letter. For example, job fr17n11.942. 0 is associated with the letter A. This letter can now be used to determine
where the job is currently running. By looking at the system map, it can be found that job frl17nl1l.942.0 (job
A) is running on nodes £fr2nl10, fr2nl13, fr2nlé, fr3n07..

I
I
I
I
I
I
: The key at the bottom of the system map can be used to determine unusual node states. For example, fr7nl15 is
: currently in the state down.

I

I

I

I

I

After the key, a series of warning messages may be displayed indicating possible system problems. In this case,
warning message indicate that there are memory problems on three nodes, fr3n07, £r4n06, and fr4n09. Also,
warning messages indicate that job fr15n09.1097. 0 is having difficulty starting. Node fr11n08 is in state BUSY
but has no job assigned to it (it possibly has a runaway job running on it).

Related Topics

« (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

« Specifying Node Rack/Slot Location

4.7.38 showstats

4.7.38.A Synopsis

showstats

showstats -a [accountid] [-v] [-t <TIMESPEC>]
showstats -c [classid] [-v] [-t <TIMESPEC>]
showstats -f <statistictype>

showstats -g [groupid] [-v] [-t <TIMESPEC>]
showstats -j [jobtemplate] [-t <TIMESPEC>]
showstats -n [nodeid] [-t <TIMESPEC>]
showstats -q [qosid] [-v] [-t <TIMESPEC>]

showstats -s

4.7 Moab Commands 302

Chapter 4: Scheduler Commands

303

showstats -T [leafid | tree-level]
showstats -u [userid] [-v] [-t <TIMESPEC>]

[--—about] [--help] [--host=<serverHostName>] [--
loglevel=<loglLevel>] [--msg=<message>] [--port=<serverPort>]
[-—-timeout=<seconds>] [--version] [—--xml]

4.7.38.B Overview

This command shows various accounting and resource usage statistics for the system.
Historical statistics cover the timeframe from the most recent execution of the mschedctl -f

command.

4.7.38.C Access

By default, this command can be run by any Moab level 1, 2, or 3 Administrator.

4.7.38.D Options

N

-a[<ACCOUNTID>] Display account statistics. See Account Statistics for an example.
-c[<CLASSID>] Display class statistics.

-f <statistictype> Display full matrix statistics (see showstats -f for full details).
-g[<GROUPID>] Display group statistics. See Group Statistics for an example.

-j[<JOBTEMPLATE>] Display template statistics.

-n[<NODEID>] Display node statistics (ENABLEPROFILING must be set). See Node
Statistics for an example.

-q [<QOSID>] Display QoS statistics.
-S Display general scheduler statistics.
-t Display statistical information from the specified timeframe:

4.7 Moab Commands

Chapter 4: Scheduler Commands

N

T e e e ——— ~
: <START TIME>[,<END TIME>] :
| (ABSTIME: [HH[:MM[:SS]]][MO[/DD[/YY]]] ie 14:30 06/20) |
: (RELTIME: —[[[DD:]HH:]MM:]SS) |

See Statistics from an Absolute Time Frame and Statistics from a
Relative Time Frame for examples.

o Profiling must be enabled for the credential type you want
statistics for. See Credential Statistics for information on how
to enable profiling. Also, -t is not a stand-alone option. It must
be used in conjunction with the -a, -c, -g, -n, -q, or -u flag.

-T Display fairshare tree statistics. See Fairshare Tree Statistics for an
example.

-u[<USERID>] Display user statistics. See User Statistics for an example.

-v Display verbose information. See Verbose Statistics for an example.

4.7.38.E Examples

Example 4-44: Account Statistics

(

I > showstats -a

: Account Statistics Initialized Tue Aug 26 14:32:39
I

I

|
|
[====— Running ------ R R e Completed ------ :
I e R | !
: Account Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF :
| MaxXF AvgOH Effic WCAcc
| 137651 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00 0.77 |
| 8.15 5.21 90.70 34.69
| 462212 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25 0.71 |
| 5.40 3.14 98.64 40.83 i
! 462213 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25 0.37 |
| 4.88 0.52 82.01 24.14
: 005810 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 ----—- 1.53 |
| 14.81 0.42 98.73 28.40
| 175436 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50 1.78 |
| 8.61 5.60 83.64 17.04 |
I 000102 0 0 0.00 1 0.17 64 0.16 5.1 0.03 ————- 10.85 |
| 10.85 10.77 27.90 7.40 |
: 000023 0 0 0.00 1 0.17 12 0.03 0.2 0.00 ————- 0.04 |
| 0.04 0.19 21.21 1.20)

output indicates the beginning of the timeframe covered by the displayed statistics.

The statistical output is divided into two categories, Running and Completed. Running statistics include information
about jobs that are currently running. Completed statistics are compiled using historical information from both
running and completed jobs.

—
This example shows a statistical listing of all active accounts. The top line (Account Statistics Initialized...) of the :
I
I
I
:
I
)

4.7 Moab Commands

304

Chapter 4: Scheduler Commands

305

Account
Jobs

Procs
ProcHours
Jobs*

%

PHReq*

%

PHDed

%

FSTgt

AvgXF*

MaxXF*
AvgQH*

Effic

WCAcc*

The fields are as follows:

Account Number.

Number of running jobs.

Number of processors allocated to running jobs.

Number of proc-hours required to complete running jobs.
Number of jobs completed.

Percentage of total jobs that were completed by account.
Total proc-hours requested by completed jobs.

Percentage of total proc-hours requested by completed jobs that were
requested by account.

Total proc-hours dedicated to active and completed jobs. The proc-hours
dedicated to a job are calculated by multiplying the number of allocated procs
by the length of time the procs were allocated, regardless of the job's CPU usage.

Percentage of total proc-hours dedicated that were dedicated by account.

Fairshare target. An account's fairshare target is specified in the £s.cfq file.
This value should be compared to the account's node-hour dedicated percentage
to determine if the target is being met.

Average expansion factor for jobs completed. A job's XFactor (expansion factor)
is calculated by the following formula: (QueuedTime + RunTime) /
WallClockLimit.

Highest expansion factor received by jobs completed.
Average queue time (in hours) of jobs.

Average job efficiency. Job efficiency is calculated by dividing the actual node-
hours of CPU time used by the job by the node-hours allocated to the job.

Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated

4.7 Moab Commands

Chapter 4: Scheduler Commands

by dividing a job's actual run time by its specified wallclock limit.

o A job's wallclock accuracy is capped at 100% so even if a job exceeds its

requested walltime it will report an accuracy of 100%.

* These fields are empty until an account has completed at least one job.

Example 4-45: Group Statistics

: > showstats -g

| Group Statistics Initialized Tue Aug 26 14:32:39
|

|

[-=——= Running ------ |-————— Completed
| TTTTTTTTT T T |
: GroupName GID Jobs Procs ProcHours Jobs % PHReqg % PHDed % FSTgt
| AvgXF MaxXF AvgQH Effic WCAcc
: univ 214 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00
: 0.77 8.15 5.21 90.70 34.69
I daf 204 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25
: 0.71 5.40 3.14 98.64 40.83
I dnavy 207 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25
| 0.37 4.88 0.52 82.01 24.14
: govt 232 3 24 220.72 77 13.16 2537 6.21 1526.6 906 ===
| 1.53 14.81 0.42 98.73 28.40
: asp 227 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50
: 1.78 8.61 5.60 83.64 17.04
I derim 229 0 0 0.00 74 12.65 669 1.64 352.5 2009 ==—==
: 0.50 1.93 0.51 96.03 32.60
I dchall 274 0 0 0.00 3 0.51 447 1.10 169.2 1.00 25.00
: 0.52 0.88 2.49 95.82 33.67
: nih 239 0 0 0.00 17 2.91 170 0.42 148.1 088 ==—==
1 0.95 1.83 0.14 97.59 84.31
: darmy 205 0 0 0.00 31 5.30 366 0.90 53.9 0.32 6.25
: 0.14 0.59 0.07 81.33 12.73
I systems 80 0 0 0.00 6 1.03 67 0.16 22.4 0:18 ===
: 4.07 8.49 1.23 28.68 37.34
I pdc 252 0 0 0.00 1 0.17 64 0.16 Bodl 0:.08 ==—===
| 10.85 10.85 10.77 27.90 7.40
: staff 1 0 0 0.00 1 0.17 12 0.03 0.2 .00 ===
I

0.0 0.04 0.19 21.21 1.20

indicates the beginning of the timeframe covered by the displayed statistics.

running and completed jobs.

The fields are as follows:

4.7 Moab Commands

about jobs that are currently running. Completed statistics are compiled using historical information from both

This example shows a statistical listing of all active groups. The top line (Group Statistics Initialized...) of the output

I
I
:
The statistical output is divided into two categories, Running and Completed. Running statistics include information |
I
I
I
)

306

Chapter 4: Scheduler Commands

307

GroupName
GID

Jobs

Procs
ProcHours
Jobs*

%

PHReq*

%

PHDed

%

FSTgt

AvgXF*

MaxXF*
AvgQH*

Effic

Name of group.

Group ID of group.

Number of running jobs.

Number of procs allocated to running jobs.

Number of proc hours required to complete running jobs.
Number of jobs completed.

Percentage of total jobs that were completed by group.
Total proc-hours requested by completed jobs.

Percentage of total proc-hours requested by completed jobs that were
requested by group.

Total proc-hours dedicated to active and completed jobs. The proc-hours
dedicated to a job are calculated by multiplying the number of allocated procs
by the length of time the procs were allocated, regardless of the job's CPU
usage.

Percentage of total proc-hours dedicated that were dedicated by group.

Fairshare target. A group's fairshare target is specified in the fs. cfg file. This
value should be compared to the group's node-hour dedicated percentage to
determine if the target is being met.

Average expansion factor for jobs completed. A job's XFactor (expansion
factor) is calculated by the following formula: (QueuedTime + RunTime) /
WallClockLimit.

Highest expansion factor received by jobs completed.
Average queue time (in hours) of jobs.

Average job efficiency. Job efficiency is calculated by dividing the actual node-
hours of CPU time used by the job by the node-hours allocated to the job.

4.7 Moab Commands

Chapter 4: Scheduler Commands

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated
by dividing a job's actual run time by its specified wallclock limit.

o A job's wallclock accuracy is capped at 100% so even if a job exceeds its
requested walltime it will report an accuracy of 100%.

* These fields are empty until a group has completed at least one job.

Example 4-46: Node Statistics

> showstats -n
node stats from Mon Jul 10 00:00:00 to Mon Jul 10 16:30:00

I I
| |
| |
: node CfgMem MinMem MaxMem AvgMem | CfgProcs MinLoad MaxLoad AvgLoad :
I node01 58368 0 21122 5841 32 0.00 32.76 27.62 :
: node02 122880 0 19466 220 30 0.00 33.98 29.54 |
: node03 18432 0 9533 2135 24 0.00 25.10 18.64 :
| node04 60440 0 17531 4468 32 0.00 30.55 24.61 [
: node05 13312 0 2597 1189 8 0.00 9.85 8.45 :
: node06 13312 0 3800 1112 8 0.00 8.66 5.27 :
| node07 13312 0 2179 1210 8 0.00 9.62 8.27 I
: node08 13312 0 3243 1995 8 0.00 11.71 8.02 :
I node09 13312 0 2287 1943 8 0.00 10.26 7.58 :
: nodelO 13312 0 2183 1505 8 0.00 13.12 9.28 I
: nodell 13312 0 3269 2448 8 0.00 8.93 6.71 :
| nodel2 13312 0 10114 6900 8 0.00 13.13 8.44 I
: nodel3 13312 0 2616 2501 8 0.00 9.24 8.21 :
I node o . .

| deld 13312 0 3888 869 8 0.00 8.10 3.85 :
| nodelb 13312 0 3788 308 8 0.00 8.40 4.67 I
: nodel6 13312 0 4386 2191 7 0.00 18.37 8.36 :
I nodel?7 13312 0 3158 1870 8 0.00 8.95 5.91 :
: nodel8 13312 0 5022 2397 8 0.00 19.25 8.19 |
: nodel9 13312 0 2437 1371 8 0.00 8.98 7.09 :
| node20 13312 0 4474 2486 8 0.00 8.51 7.11 [
: node2l 13312 0 4111 2056 8 0.00 8.93 6.68 :
: node22 13312 0 5136 2313 8 0.00 8.61 5.75 :
| node23 13312 0 1850 1752 8 0.00 8.39 5.71 I
: node24 13312 0 3850 2539 8 0.00 8.94 7.80 :
I node25 13312 0 3789 3702 8 0.00 21.22 12.83 :
: node26 13312 0 3809 1653 8 0.00 9.34 4.91 |
: node27 13312 0 5637 70 4 0.00 17.97 2.46 :
| node28 13312 0 3076 2864 8 0.00 22.91 10.33 J
R T Yy Yy ——p——

> showstats -v
current scheduler time: Sat Aug 18 18:23:02 2007

| 1
I I
I |
I moab active for 00:00:01 started on Wed Dec 31 17:00:00 I
: statistics for iteration 0 initialized on Sat Aug 11 23:55:25 :
: Eligible/Idle Jobs: 6/8 (75.000%) :
| Active Jobs: 13 |
. J

4.7 Moab Commands

308

Chapter 4: Scheduler Commands

309

| Successful/Completed Jobs: 167/167 (100.000%)
| Preempt Jobs: 0

| Avg/Max QTime (Hours) : 0.34/2.07

: Avg/Max XFactor: 1.165/3.26

| Avg/Max Bypass: 0.40/8.00

: Dedicated/Total ProcHours: 4.46K/4.47K (99.789%)
| Preempt/Dedicated ProcHours: 0.00/4.46K (0.000%)

: Current Active/Total Procs: 32/32 (100.0%)

: Current Active/Total Nodes: 16/16 (100.0%)
| Avg WallClock Accuracy: 64.919%

| Avg Job Proc Efficiency: 99.683%

: Min System Utilization: 87.323% (on iteration 46)
I

Est/Avg Backlog:

e e e e e e VoV VY,
This example shows a concise summary of the system scheduling state. Note that showstats and showstats -s

are equivalent.

02:14:06/03:02:567

The first line of output indicates the number of scheduling iterations performed by the current scheduling process,
followed by the time the scheduler started. The second line indicates the amount of time the Moab Scheduler has been
scheduling in HH:MM:SS notation followed by the statistics initialization time.

The fields are as follows:

Active Jobs

Eligible Jobs

Idle Jobs

Completed Jobs
Successful Jobs
XFactor

Max XFactor
Max Bypass

Available
ProcHours

Dedicated
ProcHours

Number of jobs currently active (Running or Starting).

.4

—-

Number of jobs in the system queue (jobs that are considered when

scheduling).

Number of jobs both in and out of the system queue that are in the

LoadLeveler Idle state.

Number of jobs completed since statistics were initialized.

Jobs that completed successfully without abnormal termination.

Average expansion factor of all completed jobs.

Maximum expansion factor of completed jobs.
Maximum bypass of completed jobs.

Total proc-hours available to the scheduler.

Total proc-hours made available to jobs.

4.7 Moab Commands

Chapter 4: Scheduler Commands

Effic

Min Efficiency
Iteration
Available Procs
Busy Procs
Effic

WallClock
Accuracy

Job Efficiency
Est Backlog

Avg Backlog

Scheduling efficiency (DedicatedProcHours / Available ProcHours).
Minimum scheduling efficiency obtained since scheduler was starte
[teration on which the minimum scheduling efficiency occurred.
Number of procs currently available.

Number of procs currently busy.

Current system efficiency (BusyProcs/AvailableProcs).

d.

Average wallclock accuracy of completed jobs (job-weighted average).

Average job efficiency (UtilizedTime / DedicatedTime).
Estimated backlog of queued work in hours.

Average backlog of queued work in hours.

Example 4-48: User Statistics

> showstats -u

User Statistics Initialized Tue Aug 26 14:32:39

Running ------ [—==——— Completed

UserName UID Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc

moorejt 2617
1.02 1.04 0.
zhong 1767
0.71 0.96 0.
lui 2467
1.02 6.33 0.
evans 3092
0.62 1.64 SF
wengel 2430
0.18 0.18 4.
mukho 2961
0.31 0.82 0.
jimenez 1449
0.80 0.98 2.
neff 3194
0.50 1.93 0.

4.7 Moab Commands

16 58.80 2 0.34 221 0.84 lE96:.6 Lil.28 =====
99.52 100.00

24 220.72 20 3.42 2306 5.65 1511.3 B8998 oo
99.37 67.48

0 0.00 16 2.74 1970 4.82 1505.1 8098 ===
98.96 57.72
0 0.00 62 10.60 4960 12.14 1464.3 8.69 S0

87.64 30.62

64 824.90 1 0.17 767 1.88 630.3 o 1l =====
99.63 0.40

16 71.06 6 1.03 776 1.90 563.5 o8l oo
93.15 30.28

16 302.29 2 0.34 768 1.88 458.3 Do W ——=—=
97.99 70.30

0 0.00 74 12.65 669 1.64 352.5 2.09 10.0

310

Chapter 4: Scheduler Commands

cholik 1303 0 0 0.00 2 0.34 552 1.35 281.9 1,67 ===
1.72 3.07 25.35 99.69 66.70

jshoemak 2508 1 24 572.22 1 0.17 576 1.41 229.1 1086 ===
0.55 0,58 3.74 99.20 39.20

[

|

|

|

|

! kudo 2324 1 8 163.35 6 1.03 1152 2.82 211.1 1.25 ————-

| 0.12 0.34 1.54 96.77 5.67

| xztang 1835 1 8 1§99 === —mm—ce cmcoe mooe—- 176.3 1.05 10.0 ——-—- !
| = o==ses =om==c 99.62 ———-—- !
| feller 1880 0 0 0.00 17 2.91 170 0.42 148.1 0.88 ---—- .
 0.95 1.83 0.14 97.59 84.31

i maxia 2936 0 0 0.00 1 0.17 191 0.47 129.1 0.77 7.5 i
| 0.88 0.88 4.49 99.84 69.10

| ktgnov7l 2838 0 0 0.00 1 0.17 192 0.47 95.5 0.57 ———— !
| |

08 0.53 0.34 90.07 51.20
\

This example shows a statistical listing of all active users. The top line (User Statistics Initialized...) of the output
indicates the timeframe covered by the displayed statistics.

information about jobs that are currently running. Completed statistics are compiled using historical information

I
I
! I
I
: The statistical output is divided into two statistics categories, Running and Completed. Running statistics include 1
I
I
I
: from both running and completed jobs. }

The fields are as follows:

UserName Name of user.

UID User ID of user.
Jobs Number of running jobs.
Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by user.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were

requested by user.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours
dedicated to a job are calculated by multiplying the number of allocated procs
by the length of time the procs were allocated, regardless of the job's CPU usage.

311 4.7 Moab Commands

Chapter 4: Scheduler Commands

%

FSTgt

AvgXF*

MaxXF*
AvgQH*

Effic

WCAcc*

Percentage of total proc-hours dedicated that were dedicated by user.

Fairshare target. A user's fairshare target is specified in the fs. cfg file. This

value should be compared to the user's node-hour dedicated percentage to

determine if the target is being met.

Average expansion factor for jobs completed. A job's XFactor (expansion factor)

is calculated by the following formula: (QueuedTime + RunTime) /
WallClockLimit.

Highest expansion factor received by jobs completed.

Average queue time (in hours) of jobs.

Average job efficiency. Job efficiency is calculated by dividing the actual node-

hours of CPU time used by the job by the node-hours allocated to the job.

Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated
by dividing a job's actual run time by its specified wallclock limit.

o A job's wallclock accuracy is capped at 100% so even if a job exceeds its
requested walltime it will report an accuracy of 100%.

* These fields are empty until a user has completed at least one job.

Example 4-49: Fairshare Tree Statistics

g g

> showstats -T

statistics initialized Mon Jul 10 15:29:41

I

I

I

I

I

I

: user

I

| root

I 1.22 0.00
lo11.1

{ 1.97 0.00
| Administrati
: 3.67 0.00
: Engineering
| 0.83 0.00
: 11.2

I 0.62 0.00
: Shared

: 0.58 0.00
I Test

4.7 Moab Commands

Jobs Procs ProcHours
AvgXF MaxXF AvgQH Effic

0
0.24
0
0.20
0
0.25
0
0.17

0.27

0

100.

0

100.

0

100.

0

100.

0

100.

0

100.

00

00

00

00

00

00

FSTgt

- Active -———————- R e e Completed
Mem Jobs % PHReq % PHDed
WCAcc
0.00 0 56 100.00 2.47K 100.00 1.58K
58.84
0.00 0 25 44.64 845.77 34.31 730.25
65.50
0.00 0 10 17.86 433.57 17.59 197.17
62.74
0.00 0 15 26.79 412.20 16.72 533.08
67.35
0.00 0 31 55.36 1.62K 65.69 853.00
53.46
0.00 0 3 5.36 97.17 3.94 44.92
31.73
0.00 0 3 5.36 14.44 0.59 14.58

312

Chapter 4: Scheduler Commands

313

0.43 0.00 0.17 100.00 30.57
Research 0 0 0.00 0 25 44.64 1.51K 61.16 793.50 24.49 ————- l
0.65 0.00 0.24 100.00 58.82

I

I

I

> showstats -T 2 I
statistics initialized Mon Jul 10 15:29:41 :
I

[

|

[

[

[

I

3.01 0.00 3.66 100.00 63.70

|

|

|

> showstats -T 11.1 :
statistics initialized Mon Jul 10 15:29:41 :
I

I

I

I

I

I

| ommmeee= RAEEITE —ooooooos | SememeeemeeeeeeeoeeeoeecoeeeTee oo Completed
| e e e e e e e \
: user Jobs Procs ProcHours Mem Jobs % PHReg % PHDed % FSTgt
: AvgXF MaxXF AvgQH Effic WCAcc
: Test 0 0 0.00 0 22 4.99 271.27 0.55 167.42 0.19 ————-]
| 3.86 0.00 2.89 100.00 60.76
: Shared 0 0 0.00 0 59 13.38 12.30K 24.75 4.46K Bl =———= I
I 6.24 0.00 10.73 100.00 49.87
: Research 0 0 0.00 0 140 31.75 9.54K 19.19 5.40K 625 =——— :
: 2.84 0.00 5.52 100.00 57.86
I Administrati 0 0 0.00 0 84 19.05 7.94K 15.96 4.24K 4.91 —-———- :
: 4.77 0.00 0.34 100.00 62.31 :
: Engineering 0 0 0.00 0 136 30.84 19.67K 39.56 28.77K 33.27 —-——-—- I
I
I
I
I
I
: [—==————- Active --------- [—=———— Completed
| —mmT T T m oo oo \
user Jobs Procs ProcHours Mem Jobs % PHRe % PHDe % FSTgt
: b b o q ° d o g
I AvgXF MaxXF AvgQH Effic WCAcc
: 11.1 0 0 0.00 0 220 49.89 27.60K 55.52 33.01K 38.17 ----- :
: 3.68 0.00 2.39 100.00 63.17 I
I Administrati 0 0 0.00 0 84 19.05 7.94K 15.96 4.24K 4.91 -———- :
l 4.77 0.00 0.34 100.00 62.31 :
: Engineering 0 0 0.00 0 136 30.84 19.67K 39.56 28.77K 33.27 --—-- I
I 3.01 0.00 3.66 100.00 63.70 J
.- . .
Example 4-50: Statistics from an Absolute Time Frame
: > showstats -c batch -v -t 00:00:01 01/01/22,23:59:59 12/31/22 }
: statistics initialized Wed Jan 1 00:00:00
| |
I mmmem it M T Completed -—-——-———-——-——————— :
I I
: class Jobs Procs ProcHours Mem Jobs % PHReqg % PHDed % FSTgt AvgXF :
| MaxXF AvgQH Effic WCAcc
: batch 0 0 0.00 0 23 100.00 15 100.00 1 100.00 ----- 0.40 :
| 5.01 0.00 88.94 39.87 J
N
o N
: Moab returns information about the class batch from January 1, 2022 to December 31, 2022. For more information :
I\ about specifying absolute dates, see "Absolute Time Format" in TIMESPEC. |
___ J
Example 4-51: Statistics from a Relative Time Frame
| > showstats -u bob -v -t -30:00:00:00
: statistics initialized Mon Nov 11 15:30:00 :
I I
| e Bl m——om || oo Completed -----=-———=——-——————- }
N J

4.7 Moab Commands

Chapter 4: Scheduler Commands

25 Y
: user Jobs Procs ProcHours Mem Jobs % PHReqg % PHDed % FSTgt AvgXF :
| MaxXF AvgQH Effic WCAcc |
: bob 0 0 0.00 0 23 100.00 15 100.00 1 100.00 ----- 0.40 :
I I

5.01 0.00 88.94 39.87
\

: Moab returns information about user bob from the past 30 days. For more information about specifying relative

I\ dates, see "Relative Time Format" in TIMESPEC.

Related Topics

« (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

« mschedctl -f command - re-initialize statistics

« showstats -f command - display full matrix statistics

4.7.38.F TIMESPEC

Relative Time Format

The relative time format specifies a time by using the current time as a reference and
specifying a time offset.

Format

+[[[DD:]HH:]MM:]SS

Examples

2 days, 3 hours and 57 seconds in the future:
+02:03:0:57

21 days (3 weeks) in the future:
+21:0:0:0
30 seconds in the future:

+30

Absolute Time Format
The absolute time format specifies a specific time in the future.
Format

[HH[:MM[:SS]]][_MO[/DD[/YY]]] (i.e., 14:30_06/20)

4.7 Moab Commands 314

Chapter 4: Scheduler Commands

315

Examples

1 PM, March 1 (this year)
13:00 03/01

4.7.39 showstats -f

4.7.39.A Synopsis

showstats -f<statistictype> [-—-about] [--help] [--
host=<serverHostName>] [--loglevel=<logLevel>] [--
msg=<message>] [--port=<serverPort>] [--timeout=<seconds>] [--

version] [--xml]

4.7.39.B Overview

Shows table of various scheduler statistics.

This command displays a table of the selected Moab Scheduler statistics, such as expansion
factor, bypass count, jobs, proc-hours, wallclock accuracy, and backfill information.

o Statistics are aggregated over time. This means statistical information is not available
for time frames and the -t option is not supported with showstats -f.

4.7.39.C Access

This command can be run by any Moab Scheduler Administrator.

4.7.39.D Options

o T

AVGBYPASS The number of times a priority job has been 'bypassed’ by backfill,
allowing a lower priority job to run ahead of it. See Example 4-52 for more
information.

AVGQTIME Average queue time. Includes summary of job-weighted queue time and

total samples.

4.7 Moab Commands

Chapter 4: Scheduler Commands

optens__Jomserpten

AVGXFACTOR Average expansion factor. Includes summary of job-weighted expansion
factor, processor-weighted expansion factor, processor-hour-weighted
expansion factor, and total number of samples.

BFCOUNT Number of jobs backfilled. Includes summary of job-weighted backfill job
percent and total samples.

BFPHRUN Number of proc-hours backfilled. Includes summary of job-weighted
backfill proc-hour percentage and total samples.

ESTSTARTTIME Job start time estimate for jobs meeting specified processor/duration
criteria. This estimate is based on the reservation start time analysis

algorithm.
JOBCOUNT Number of jobs. Includes summary of total jobs and total samples.
MAXBYPASS Maximum bypass count. Includes summary of overall maximum bypass and

total samples.

MAXXFACTOR Maximum expansion factor. Includes summary of overall maximum
expansion factor and total samples.

PHREQUEST proc-hours requested. Includes summary of total proc-hours requested and
total samples.

PHRUN proc-hours run. Includes summary of total proc-hours run and total
samples.

QOSDELIVERED Quality of service delivered. Includes summary of job-weighted quality of
service success rate and total samples.

WCACCURACY Wallclock accuracy. Includes summary of overall wall clock accuracy and
total samples.

4.7.39.E Examples

| > showstats -f AVGXFACTOR }
| Average XFactor Grid ||
I [NODES][00:02:00][00:04:00][00:08:00][00:16:00][00:32:00][01:04:00 1T |
: 02:08:00][04:16:00][08:32:00][17:04:00][34:08:00 11 TOTAL] :
| |

|

4.7 Moab Commands 316

Chapter 4: Scheduler Commands

317

]

I

[I
1.00 1][-————--- 10 1.12 2][———---—- 1[———————- 11 1.10 3] :
[8 J[———=———- 1 === [== 1 === [== 1 === 11 :
1.00 210 1.24 2] [=== L L 11 1.15 4] I
[16 1[===~ 1 === [=== 1 === [=== 10 1.01 210 ——- {
————— -1 ------—170---—-—— 10 - 1[1.01 2] :
[32 10 ———==—- 1 === [== 1 === [== 10 === 10 -
————— M- 1t - 1 - [=] :
[64][———————- 1 === [== 1 === [== 1 === 1L -1
————— 1l ======== 1[========][—=======][========][—===--=-] |
[128][—-——————- [- [== 1 === [== 1 == 1 - :
----- -1 -1 - 10 - 1 =1 I
[256][——===——- 1 === [=== 1 === [=== 1 === 10 - :
————— -1 11— 10 - [=] :
[TTOT][———=———- 1 === [== 1 === [== 10 1.01 211 I
1.00 31[1.24 21[1.12 2][—---———- 1 -] {
Job Weighted X Factor: 1.0888 I
Node Weighted X Factor: 1.1147 :
NS Weighted X Factor: 1.1900 :
Total Samples: 9 |
___r __ ____J

(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The showstats -f command returns a table with data for the specified STATISTICTYPE parameter. The left-most
column shows the maximum number of processors required by the jobs shown in the other columns. The column
headers indicate the maximum wallclock time (in HH:MM:SS notation) requested by the jobs shown in the columns.
The data returned in the table varies by the STATISTICTYPE requested. For table entries with one number, it is of the
data requested. For table entries with two numbers, the left number is the data requested and the right number is the
number of jobs used to calculate the average. Table entries that contain only dashes (———---— -) indicate no job has
completed that matches the profile associated for this inquiry. The bottom row shows the totals for each column.
Following each table is a summary, which varies by the STATISTICTYPE requested.

The column and row break down can be adjusted using the STATPROC* and STATTIME* parameters
o respectively.

This particular example shows the average expansion factor grid. Each table entry indicates two pieces of
information — the average expansion factor for all jobs that meet this slot's profile and the number of jobs that were
used to calculate this average. For example, the XFactors of two jobs were averaged to obtain an average XFactor of
1.24 for jobs requiring over 2 hours 8 minutes, but not more than 4 hours 16 minutes and between 5 and 8
processors. Totals along the bottom provide overall XFactor averages weighted by job, processors, and processor-
hours.

> showstats -f AVGBYPASS

Average Bypass (bypass count)

[PROCS][0:15:00][1:00:00][4:00:00][16:00:00][64:00:00][256:00:00][TOTAL
]

[11[0.00 10][0.00 701[0.00 311[0.00 34][0.00 6][-——————————~ 17 0.00 150]

[16][0.08 37687][0.08 164307][0.32 117767][0.10 34073][0.58 1282] [-——————————-]
[0.16 355116]

[64][0.18 769][0.13 1839][0.18 8084][0.82 2812][0.00 34] [--——==--————-][0.31
13538]
[256][0.39 316][1.40 778][4.40 494]1[1.77 28917][0.33 6] [-———=——————- 10 1.79
30511]

[TOTAL][0.08 38782][0.09 166994][0.33 126376][0.86 65835][0.57 1328] [-————————- |
--]

Job Weighted X Bypass: 0.2932
Total Samples: 399315 J

4.7 Moab Commands

Chapter 4: Scheduler Commands

The showstats -f command returns a table with data for the specified STATISTICTYPE parameter, in this case :
for AVGBYPASS. In this particular example, the upper left cell indicates that 10 jobs were run by Moab, which had 0- |
15 minutes of requested walltime and 0-1 procs allocated. The 0.00 indicates that of the 10 jobs, the average number I
of times the jobs were bypassed was 0, meaning it did not occur. Further, looking at row 256 and column 4:00, we see |
that 494 jobs have been run by Moab that meet this criteria. On average, these jobs were each bypassed 4.40 times. :

Related Topics

o (Optional) Install Moab Client - in the Moab HPC Suite Installation and Configuration
Guide explains how to distribute this command to client nodes

o mschedctl -f command

» showstats command

o« STATPROCMIN parameter

o« STATPROCSTEPCOUNT parameter
o« STATPROCSTEPSIZE parameter

e STATTIMEMIN parameter

o STATTIMESTEPCOUNT parameter
o STATTIMESTEPSIZE parameter

4.7.40 Deprecated Commands

e N

In this topic:

canceljob
changeparam
diagnose
releasehold
releaseres
resetstats
runjob
sethold
setqos

setres

4.7 Moab Commands 318

Chapter 4: Scheduler Commands

setspri
showconfig

4.7.40.A canceljob

[A This command is deprecated. Use mjobctl -c instead. J

Synopsis
canceljob jobid [jobid]..

Overview

The canceljob command is used to selectively cancel the specified job(s) (active, idle, or
non-queued) from the queue.

Access
This command can be run by any Moab Administrator and by the owner of the job (see
ADMINCFG).
-h HELP N/A Display usage | > canceljob -h [
information. STttt ’
JOB <STRING> --- A jobid, a job expression, :’Z_CQEEeEE;b'IEOBI"' !
ID or the keyword ALL. s)
Examples
Example 4-53: Cancel job 6397
[> canceljob 6397

319 4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.40.B changeparam

[A This command is deprecated. Use mschedctl -m instead. J

Synopsis

changeparam parameter value

Overview

The changeparam command is used to dynamically change the value of any parameter
that can be specified in the moab . cfg file. The changes take effect at the beginning of the
next scheduling iteration. They are not persistent, only lasting until Moab is shut down.

changeparamis a compact command of mschedctl -m.

Access

This command can be run by a level 1 Moab administrator.

4.7.40.C diagnose

[A This command is deprecated. Use mdiag instead.]

Synopsis

diagnose -a [accountid]

diagnose -b [-] policylevel] [-t partition]
diagnose -c [classid]

diagnose -C [configfile]

diagnose -f [-0 user|group|account|qos|class]
diagnose -g [groupid]

diagnose -j [jobid]

diagnose -L

diagnose -m [rackid]

diagnose -n [-t partition] [nodeid]
diagnose -p [-t partition]

4.7 Moab Commands 320

Chapter 4: Scheduler Commands

321

diagnose -q [qosid]

diagnose -r [reservationid]

diagnose -R [resourcemanagername]
diagnose -s [standingreservationid)]
diagnose -S diagnose -u [userid]
diagnose -v

diagnose -x

Overview

The diagnose command is used to display information about various aspects of
scheduling and the results of internal diagnostic tests.

4.7.40.D releasehold

[A This command is deprecated. Use mjobctl -u instead.]

Synopsis
releasehold [-a|-b] jobexp

Overview
Release hold on specified job(s).

This command allows you to release batch holds or all holds (system, user, and batch) on
specified jobs. Any number of jobs can be released with this command.

Access

By default, this command can be run by any Moab Scheduler Administrator.

Parameters

JOBEXP Job expression of job(s) to release.

Flags

-a Release all types of holds (user, system, batch) for specified job(s).

4.7 Moab Commands

Chapter 4: Scheduler Commands

-b Release batch hold from specified job(s).

-h Help for this command.

Examples

Example 4-54: releasehold -b

I > releasehold -b 6443 !
| batch hold released for job 6443 |
\

L —
|‘ In this example, a batch hold was released from this one job. [

: > releasehold -a "81[1-6]"

| holds modified for job 811

| holds modified for job 812 :
I holds modified for job 813 :
| holds modified for job 814 i
: holds modified for job 815 :
| holds modified for job 816 I

e e
|{ In this example, all holds were released from the specified jobs. [

\

Related Topics
o sethold

o mjobctl

4.7.40.E releaseres

[A This command is deprecated. Use mrsvctl -r instead. J

Synopsis
releaseres [arguments] reservationid [reservationid..]
Overview

Release existing reservation.

This command allows Moab Scheduler Administrators to release any user, group, account,
job, or system reservation. Users are allowed to release reservations on jobs they own.

4.7 Moab Commands

322

Chapter 4: Scheduler Commands

Note that releasing a reservation on an active job has no effect since the reservation will be
automatically recreated.

Access

Users can use this command to release any reservation they own. Level 1 and level 2 Moab
administrators can use this command to release any reservation.

Parameters

RESERVATION ID Name of reservation to release.

Examples

Example 4-56: Release two existing reservations

: > releaseres system.l bob.2
: released User reservation 'system.1l' :
| released User reservation 'bob.2' I

4.7.40.F resetstats

[A This command is deprecated. Use mschedctl -f instead.]

Synopsis

resetstats

Overview

This command resets all internally-stored Moab Scheduler statistics to the initial start-up
state as of the time the command was executed.

Access

By default, this command can be run by level 1 scheduler administrators.

Examples

——————————————— € ———

323 4.7 Moab Commands

Chapter 4: Scheduler Commands

4.7.40.G runjob

[A This command is deprecated. Use mjobctl -x instead. J

Synopsis

runjob [-c|-f|-n nodelist|-p partition|-s|-x] jobid

Overview

This command will attempt to immediately start the specified job.

runjob is a deprecated command, replaced by mjobctl.

Access

By default, this command can be run by any Moab administrator.

Parameters

JOBID Name of the job to run.

R

=€

-f

-n <NODELIST>

-p <PARTITION>

-X

4.7 Moab Commands

Clear job parameters from previous runs (used to clear PBS
neednodes attribute after PBS job launch failure)

Attempt to force the job to run, ignoring throttling policies

Attempt to start the job using the specified nodelist where nodenames
are comma or colon delimited

Attempt to start the job in the specified partition

Attempt to suspend the job

Attempt to force the job to run, ignoring throttling policies, QoS
constraints, and reservations

324

Chapter 4: Scheduler Commands

Examples

Example 4-57: Run job cluster.231

> runjob cluster.231
job cluster.231 successfully started I

See Also
o mjobctl
« canceljob - cancel a job
o checkjob - show detailed status of a job

« showq - list queued jobs

4.7.40.H sethold

[A This command is deprecated. Use mjobctl -h instead. J

Synopsis
sethold [-b] jobid [jobid..]

Overview
Set hold on specified job(s).

Permissions

This command can be run by any Moab Scheduler Administrator.

Parameters

JOB Job number of job to hold.

Flags

-b Set a batch hold. Typically, only the scheduler places batch holds. This flag allows an
administrator to manually set a batch hold.

-h Help for this command.

325 4.7 Moab Commands

Chapter 4: Scheduler Commands

Examples

' > sethold -b fr17n02.1072.0 fr15n03.1017.0 [
| Batch Hold Placed on All Specified Jobs I
\

L e
In this example, a batch hold is placed on job fr17n02.1072.0 and job fr15n03.1017.0. [

4.7.40.1 setqos

[A This command is deprecated. Use mjobctl -m instead.]

Synopsis
setgos gosid jobid
Overview

Set Quality Of Service for a specified job.

This command allows users to change the QOS of their own jobs.

Access

This command can be run by any user.

Parameters
JOBID Job name.

QOSID QOS name.

Examples

o —————————————————————————

> setgos high priority moab.3

Job QO0S Adjusted

e e
|{ This example sets the Quality Of Service to a value of high priority for job moab. 3. [

4.7.40.] setres

[A This command is deprecated. Use mrsvctl -c instead. J

4.7 Moab Commands 326

Chapter 4: Scheduler Commands

327

Synopsis

setres [arguments] resourceexpression
[-a <ACCOUNT_LIST>]

[-b <SUBTYPE> |

[-c <CHARGE_SPEC>]

[-d <DURATION> |

[-e <ENDTIME>]

[-E] // EXCLUSIVE

[-f <FEATURE_LIST> |

[- <GROUP_LIST>]

[-n <NAME>]

[-o <OWNER>]

[-p <PARTITION>]

[-9 <QUEUE_LIST>] // (i.e.,, CLASS_LIST)
[-Q <QOSLIST>]

[-r <RESOURCE_DESCRIPTION>]

[-R <RESERVATION_PROFILE> |

[-s <STARTTIME>]

[-T <TRIGGER>]

[-u <USER_LIST>]

[-x <FLAGS>]

Overview

Reserve resources for use by jobs with particular credentials or attributes.

Access

This command can be run by level 1 and level 2 Moab administrators.

Parameters

I I T

ACCOUNT_LIST <STRING>
[[<STRING>]..

SUBTYPE <STRING> -

CHARGE_SPEC <ACCOUNT> ==
[[<GROUP>

[[<USER>]]

CLASS_LIST <STRING> -

List of accounts that will be allowed
access to the reserved resources

Specify the subtype for a reservation

Specifies which credentials will be
accountable for unused resources
dedicated to the reservation

List of classes that will be allowed

4.7 Moab Commands

Chapter 4: Scheduler Commands

I N N N

[:<STRING>].. access to the reserved resource

DURATION [[[DD:]JHH:]MM:]SS INFINITY Duration of the reservation (not
needed if ENDTIME is specified)

ENDTIME [HH[:MMI:SSIL. INFINITY Absolute or relative time reservation
MO[/DDI[/YY]]] will end (not required if Duration
or specified)
+

[[[DD:]JHH:]MM:]SS

EXCLUSIVE N/A N/A Requests exclusive access to
resources
FEATURE_LIST <STRING> List of node features that must be
[(<STRING>].. possessed by the reserved resources
FLAGS <STRING> - List of reservation flags (see
[:<STRING>]... Managing Reservations for details)
GROUP_LIST <STRING> List of groups that will be allowed
[(<STRING>].. access to the reserved resources
NAME <STRING> Name set Name for new reservation
to first
name listed
in ACL or
SYSTEM if
no ACL
specified
OWNER <CREDTYPE> N/A Specifies which credential is granted
:<CREDID> where reservation ownership privileges

CREDTYPE is one
of user, group,
acct, class, or qos

PARTITION <STRING> [ANY] Partition where resources must be
located
QOS_LIST <STRING> List of QOSs that will be allowed
[[<STRING>].. access to the reserved resource

4.7 Moab Commands 328

Chapter 4: Scheduler Commands

N T

329

RESERVATION_
PROFILE

RESOURCE_
DESCRIPTION

RESOURCE_

EXPRESSION

STARTTIME

TRIGGER

USER_LIST

Existing
reservation profile
ID

Colon delimited
list of zero or
more of the
following
<ATTR>
=<VALUE> pairs
PROCS=
<INTEGER>
MEM=
<INTEGER>
DISK=<INTEGER>
SWAP=
<INTEGER>
GRES=<STRING>

ALL
or
TASKS

{

|
>
}<TASKCOUNT>
or
<HOST_REGEX>

[HH[:MM[:SS]]][
MO[/DD[/YY]]]

or
+

[[[DD:]JHH:]MM:]SS

<STRING>

<STRING>
[:<STRING>]...

PROCS=-1

Required
Field. No
Default

NOW

N/A

Requests that default reservation
attributes be loaded from the
specified reservation profile (see
RSVPROFILE)

The resources to be reserved per
task. (-1 indicates all resources on
node)

The tasks to reserve. ALL indicates
all resources available should be
reserved.

o If ALL or a host expression is
specified, Moab will apply the
reservation regardless of
existing reservations and
exclusive issues. If TASKS is
used, Moab will only allocate
accessible resources.

Absolute or relative time reservation
will start

Comma-delimited reservation trigger
list following format described in the
trigger format section of the
reservation configuration overview

List of users that will be allowed
access to the reserved resources

4.7 Moab Commands

Chapter 4: Scheduler Commands

Description

The setres command allows an arbitrary block of resources to be reserved for use by
jobs that meet the specified access constraints. The timeframe covered by the reservation
can be specified on either an absolute or relative basis. Only jobs with credentials listed in
the reservation ACL (i.e, USERLIST, GROUPLIST,..) can utilize the reserved resources.
However, these jobs still have the freedom to utilize resources outside of the reservation.
The reservation will be assigned a name derived from the ACL specified. If no reservation

ACL is specified, the reservation is created as a system reservation and no jobs will be
allowed access to the resources during the specified timeframe (valuable for system

maintenance, etc.). See the Reservation Overview for more information.

Reservations can be viewed using the showres command and can be released using the

releaseres command.

Examples

> setres =il john:mary s +24-00:00 ~d 8:00:00 TASKS==
| reservation 'john.l' created on 2 nodes (2 tasks)
node001:1
node005:1

|
|
|
|
... e

: > setres -s 8:00:00 06/20 -e 17:00:00 06/22 ALL
| reservation 'system.l' created on 8 nodes (8 tasks)
| node001:1

{ node002:
| node003:
: node004:
I node005:
: node006:
: node007:
L node008:1

: > setres -r PROCS=1:MEM=512 -g staff -1 interactive 'node00[3-6]"
: reservation 'staff.l' created on 4 nodes (4 tasks)

I node003:1

| node004:1

: node005:1

| node006:1

~
|

lgnmpstaffandﬂwsh1MeinteractiveCM$

4.7 Moab Commands

| Reserve one processor and 512 MB of memory on nodes node 003 through node node006 for members of the

. __4

330

Chapter 4: Scheduler Commands

331

4.7.40.K setspri

[A This command is deprecated. Use mjobctl -p instead. J

Synopsis
setspri [-r] priorityjobid

Overview
(This command is deprecated by the mjobctl command)
Set or remove absolute or relative system priorities for a specified job.

This command allows you to set or remove a system priority level for a specified job. Any
job with a system priority level set is guaranteed a higher priority than jobs without a
system priority. Jobs with higher system priority settings have priority over jobs with lower
system priority settings.

Access

This command can be run by any Moab Scheduler Administrator.
Parameters

JOB Name of job.

PRIORITY System priority level. By default, this priority is an absolute priority overriding
the policy generated priority value. Range is 0 to clear, 1 for lowest, 1000 for
highest. The given value is added onto the system priority (see 32-bit and 64-bit
values below), except for a given value of zero. If the '-r' flag is specified, the
system priority is relative, adding or subtracting the specified value from the
policy generated priority.

If a relative priority is specified, any value in the range +/- 1,000,000,000 is
acceptable.

Flags

-r Set relative system priority on job.

Examples

> setspri 10 orion.4752 [
job system priority adjusted I
e e

,‘ In this example, a system priority of 10 is set for job orion.4752. [

~

4.7 Moab Commands

Chapter 4: Scheduler Commands

Example 4-60:

> setspri 0 clusterB.1102 |
job system priority adjusted I

25 A
: > setspri -r 100000 job.00001 ||
| job system priority adjusted 1
N ——————_————_————_———— e ————————————————————————— ____J
: In this example, the job's priority will be increased by 100000 over the value determine by configured priority :
I policy. I
e e J
[o This command is deprecated. Use mjobctl instead.]

4.7.40.L. showconfig

Synopsis

showconfig[-v] [--about] [--help] [--host=<serverHostName>] [--
loglevel=<logLevel>] [--msg=<message>] [--port=<serverPort>]
[--timeout=<seconds>] [--version] [--xml]

Overview
View the current configurable parameters of the Moab Scheduler.

The showconfig command shows the current scheduler version and all scheduler
parameters. These parameters are set via internal defaults, command line arguments,
environment variable settings, parameters in the moab . cfg file, and via the mschedctl -m
command. Because of the many sources of configuration settings, the output may differ
from the contents of the moab . c fg file. The output is such that it can be saved and used
as the contents of the moab . cfg file if desired.

o The showconfig command does not show credential parameters (such as user, group
class, QoS, account).

Access

This command can be run by a level 1, 2, or 3 Moab administrator.

4.7 Moab Commands 332

Chapter 4: Scheduler Commands

Flags

-h Help for this command.

-V This optional flag turns on verbose mode, which shows all possible Moab
Scheduler parameters and their current settings. If this flag is not used, this
command operates in context-sensitive terse mode, which shows only certain
parameter settings.

Examples

Example 4-62: showconfig

> showconfig
moab scheduler version 4.2.4 (PID: 11080)

| |
' 1
|
: BACKFILLPOLICY FIRSTFIT :
| BACKFILLMETRIC NODES :
: ALLOCATIONPOLICY MINRESOURCE |
: RESERVATIONPOLICY CURRENTHIGHEST :
|
N J

o The showcon fig command without the —v flag does not show the settings of all
scheduling parameters. To show the settings of all scheduling parameters, use the -v
(verbose) flag. This will provide an extended output. This output is often best used in
conjunction with the grep command as the output can be voluminous.

Related Topics

o Usethemschedctl -m command tochange the various Moab Scheduler
parameters

o See the Moab Parameters appendix for details about configurable parameters

333 4.7 Moab Commands

Chapter 5: Prioritizing Jobs and Allocating Resources

Chapter 5: Prioritizing Jobs and Allocating Resources

In this chapter:

5.1 Job Prioritization L 335
5.1.1 Priority OVervVIeW ... 335
5.1.2 Job Priority Factors ... L. 336
5.1.3 Fairshare Job Priority Example 348
5.1.4 Common Priority Usage 349
5.1.5 Prioritization Strategies ... 352
5.1.6 Manual Job Priority Adjustment 353

5.2 Node Allocation PoliCIeS ... 354
5.2.1 Node Allocation Overview ... 354
5.2.2 Node Selection Factors ... 358
5.2.3 Resource-Based Algorithms 358
5.2.4 User-Defined Algorithms 364
5.2.5 Specifying Per Job Resource Preferences_. 365

5.3 Node Access PoliCies 366
5.3.1 Node Access Policy Descriptions ... 366
5.3.2 Configuring Node Access Policies ... 367

5.4 Node Availability Policies 368
5.4.1 Node Resource Availability Policies .. 369
5.4.2 Node Categorization L. 370
5.4.3 Node Failure/Performance Based Notification 372
5.4.4 Node Failure/Performance Based Triggers 372
5.4.5 Handling Transient Node Failures 373
5.4.6 Allocated Resource Failure Policy forJdobs 374

334

Chapter 5: Prioritizing Jobs and Allocating Resources

335

5.1 Job Prioritization

In general, prioritization is the process of determining which of many options best fulfills
overall goals. In the case of scheduling, a site will often have multiple, independent goals
that may include maximizing system utilization, giving preference to users in specific
projects, or making certain that no job sits in the queue for more than a given period of
time. The approach used by Moab in representing a multi-faceted set of site goals is to
assign weights to the various objectives so an overall value or priority can be associated
with each potential scheduling decision. With the jobs prioritized, the scheduler can
roughly fulfill site objectives by starting the jobs in priority order.

e A

In this chapter:
5.1.1 Priority OVervieW ... L 335
5.1.2 Job Priority Factors 336
5.1.3 Fairshare Job Priority Example 348
5.1.4 Common Priority Usage 349
5.1.5 Prioritization Strategies ... 352
5.1.6 Manual Job Priority Adjustment 353
Related Topics

o mdiag -p (Priority Diagnostics)

5.1.1 Priority Overview

Moab's prioritization mechanism allows component and subcomponent weights to be
associated with many aspects of a job to enable fine-grained control over this aspect of
scheduling. To allow this level of control, Moab uses a simple priority-weighting hierarchy
where the contribution of each priority subcomponent is calculated as follows:

<COMPONENT WEIGHT> * <SUBCOMPONENT WEIGHT> * <PRIORITY SUBCOMPONENT
VALUE>

Each priority component contains one or more subcomponents as described in the section
titled Job Priority Factors. For example, the Resource component consists of Node,
Processor, Memory, Swap, Disk, Walltime, and PE subcomponents. While there are
numerous priority components and many more subcomponents, a site need only focus on
and configure the subset of components related to their particular priority needs. In actual

5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

usage, few sites use more than a small fraction (usually 5 or fewer) of the available priority
subcomponents. This results in fairly straightforward priority configurations and tuning. By
mixing and matching priority weights, sites can generally obtain the desired job-start
behavior. At any time, you can issue the mdiag -p command to determine the impact of the
current priority-weight settings on idle jobs. Likewise, the command showstats -f can assist
the administrator in evaluating priority effectiveness on historical system usage metrics
such as queue time or expansion factor.

As mentioned above, a job's priority is the weighted sum of its activated subcomponents.
By default, the value of all component and subcomponent weights is set to 1 and 0
respectively. The one exception is the '"QUEUETIME' subcomponent weight that is set to 1.
This results in a total job priority equal to the period of time the job has been queued,
causing Moab to act as a simple FIFO. Once the summed component weight is determined,
this value is then bounded resulting in a priority ranging between 0 and MAX_PRIO_VAL,
which is currently defined as 1000000000 (one billion). In no case will a job obtain a
priority in excess of MAX_PRIO_VAL through its priority subcomponent values.

o Negative priority jobs can be allowed if desired; see ENABLENEGJOBPRIORITY and
REJECTNEGPRIOJOBS for more information.

Using the mjobctl -p command, site administrators can adjust the base calculated job
priority by either assigning a relative priority adjustment or an absolute system priority. A
relative priority adjustment causes the base priority to be increased or decreased by a
specified value. Setting an absolute system priority, SPRIO, causes the job to receive a
priority equal to MAX_PRIO_VAL + SPRIO, and therefore guaranteed to be of higher value
than any naturally occurring job priority.

Related Topics
« REJECTNEGPRIOJOBS parameter

5.1.2 Job Priority Factors

e N

In this topic:

5.1.2.A Job Priority Factors and Subfactors - page 337
5.1.2.B Credential (CRED) Component - page 340
5.1.2.C Fairshare (FS) Component - page 341

5.1 Job Prioritization 336

Chapter 5: Prioritizing Jobs and Allocating Resources

337

5.1.2.D Resource (RES) Component - page 342
5.1.2.E Service (SERVICE) Component - page 343
5.1.2.F Target Service (TARG) Component - page 346
5.1.2.G Usage (USAGE) Component - page 346
5.1.2.H Job Attribute (ATTR) Component - page 347

5.1.2.A Job Priority Factors and Subfactors

Moab allows jobs to be prioritized based on a range of job related factors. These factors are
broken down into a two-tier hierarchy of priority factors and subfactors, each of which can
be independently assigned a weight. This approach provides the administrator with
detailed yet straightforward control of the job selection process.

Each factor and subfactor can be configured with independent priority weight and priority
cap values (described later). In addition, per credential and per QoS priority weight
adjustments can be specified for a subset of the priority factors. For example, QoS
credentials can adjust the queuetime subfactor weight and group credentials can adjust
fairshare subfactor weight.

The following table highlights the factors and subfactors that make up a job's total priority:

CRED USER user-specific priority (see USERCFG)
(job credentials)

GROUP group-specific priority (see GROUPCFG)

ACCOUNT account-specific priority (see ACCOUNTCFG)

QoS QoS-specific priority (see QOSCFG)

CLASS class/queue-specific priority (see CLASSCFG)
FS FSUSER user-based historical usage (see Fairshare
(fairshare Overview)
usage)

FSGROUP group-based historical usage (see Fairshare

Overview)
FSACCOUNT account-based historical usage (see Fairshare

5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

Overview)

FSQOS QoS-based historical usage (see Fairshare
Overview)

FSCLASS class/queue-based historical usage (see

Fairshare Overview)

FSGUSER imported global user-based historical usage
(see ID Manager and Fairshare Overview)

FSGGROUP imported global group-based historical usage
(see ID Manager and Fairshare Overview)

FSGACCOUNT imported global account-based historical usage
(see ID Manager and Fairshare Overview)

FSJPU current active jobs associated with job user

FSPPU current number of processors allocated to
active jobs associated with job user

FSPSPU current number of processor-seconds allocated
to active jobs associated with job user

WCACCURACY user's current historical job wallclock accuracy
calculated as total processor-seconds dedicated
/ total processor-seconds requested

o Factor values are in the range of 0.0 to
1.0.

5.1 Job Prioritization 338

Chapter 5: Prioritizing Jobs and Allocating Resources

339

RES

(requested job
resources)

SERV

(current service
levels)

TARGET

(target service
levels)

MEM

SWAP

DISK

PS

PE

WALLTIME

QUEUETIME

XFACTOR

BYPASS

STARTCOUNT

DEADLINE

SPVIOLATION

USERPRIO

TARGETQUEUETIME

TARGETXFACTOR

number of nodes requested

number of processors requested

total real memory requested (in MB)
total virtual memory requested (in MB)
total local disk requested (in MB)

total processor-seconds requested
total processor-equivalent requested
total walltime requested (in seconds)
time job has been queued (in minutes)
minimum job expansion factor

number of times job has been bypassed by
backfill

number of times job has been restarted

proximity to job deadline

Boolean indicating whether the active job
violates a soft usage limit

user-specified job priority

time until queuetime target is reached
(exponential)

distance to target expansion factor
(exponential)

5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

USAGE CONSUMED

(consumed

resources --

active jobs only) REMAINING
PERCENT
EXECUTIONTIME

ATTR ATTRATTR

(job attribute-

based

prioritization)
ATTRSTATE
ATTRGRES

processor-seconds dedicated to date
processor-seconds outstanding
percent of required walltime consumed

seconds since job started

Attribute priority if specified job attribute is set
(attributes can be user-defined or one of
preemptor, or preemptee). Default is 0.

Attribute priority if job is in specified state (see
Job States). Default is 0.

Attribute priority if a generic resource is
requested. Default is 0.

-

directions.

.

o *CAP parameters (FSCAP, for example) are available to limit the maximum absolute
value of each priority component and subcomponent. If set to a positive value, a
priority cap will bound priority component values in both the positive and negative

Non-integer values are not supported.

.

o All *CAP and *WEIGHT parameters are specified as positive or negative integers.

5.1.2.B Credential (CRED) Component

The credential component allows a site to prioritize jobs based on political issues such as
the relative importance of certain groups or accounts. This allows direct political priorities

to be applied to jobs.

The priority calculation for the credential component is as follows:

Priority += CREDWEIGHT * (
USERWEIGHT * Job.User.Priority +
GROUPWEIGHT * Job.Group.Priority +

ACCOUNTWEIGHT * Job.Account.Priority +

QOSWEIGHT * Job.Qos.Priority +
CLASSWEIGHT * Job.Class.Priority)

5.1 Job Prioritization

340

Chapter 5: Prioritizing Jobs and Allocating Resources

341

All user, group, account, QoS, and class weights are specified by setting the PRIORITY
attribute of using the respective *CFG parameter (namely, USERCFG, GROUPCFG,
ACCOUNTCFG, QOSCFG, and CLASSCFG).

For example, to set user and group priorities, you could use the following:

| CREDWEIGHT 1 :
| USERWEIGHT 1 {
| GROUPWEIGHT 1 |
| USERCFG[john] PRIORITY=2000 :
| USERCFG[paul] ~ PRIORITY=-1000 !
| GROUPCFG[staff] PRIORITY=10000)

o Class (or queue) priority can also be specified via the resource manager where
supported (as in PBS queue priorities). However, if Moab class priority values are
also specified, the resource manager priority values will be overwritten.

All priorities can be positive or negative.

5.1.2.C Fairshare (FS) Component

Fairshare components allow a site to favor jobs based on short-term historical usage. The
Fairshare Overview describes the configuration and use of fairshare in detail.

The fairshare factor is used to adjust a job's priority based on current and historical
percentage system utilization of the job's user, group, account, class, or QoS. This allows
sites to steer workload toward a particular usage mix across user, group, account, class,
and QoS dimensions.

The fairshare priority factor calculation is as follows:

Priority += FSWEIGHT * MIN(FSCAP, (
FSUSERWEIGHT * DeltaUserFSUsage +
FSGROUPWEIGHT * DeltaGroupFSUsage +
FSACCOUNTWEIGHT * DeltaAccountFSUsage +
FSQOSWEIGHT * DeltaQOSFSUsage +
FSCLASSWEIGHT * DeltaClassFSUsage +
FSJPUWEIGHT * ActiveUser]obs +
FSPPUWEIGHT * ActiveUserProcs +
FSPSPUWEIGHT * ActiveUserPS +
WCACCURACYWEIGHT * UserWCAccuracy))

All *WEIGHT parameters just listed are specified on a per partition basis in the

moab . cfqg file. The Delta*Usage components represent the difference in actual
fairshare usage from the corresponding fairshare usage target. Actual fairshare usage is
determined based on historical usage over the time frame specified in the fairshare
configuration. The target usage can be a target, floor, or ceiling value as specified in the

5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

fairshare configuration file. See the Fairshare Overview for further information on
configuring and tuning fairshare. Additional insight may be available in the fairshare usage
example. The ActiveUser* components represent current usage by the job's user
credential.

How violated ceilings and floors affect fairshare-based priority

Moab determines FSUsageWeight in the previous section. In order to account for
violated ceilings and floors, Moab multiplies that number by the FSUsagePriority as
demonstrated in the following formula:

FSPriority = FSUsagePriority * FSUsageWeight

When a ceiling or floor is violated, FSUsagePriority = 0,soFSPriority = 0.
This means the job will gain no priority because of fairshare. If fairshare is the only
component of priority, then violation takes the priority to 0. For more information, see
Priority-Based Fairshare and Fairshare Targets.

5.1.2.D Resource (RES) Component

Weighting jobs by the amount of resources requested allows a site to favor particular types
of jobs. Such prioritization may allow a site to better meet site mission objectives, improve
fairness, or even improve overall system utilization.

Resource based prioritization is valuable when you want to favor jobs based on the
resources requested. This is good in three main scenarios: (1) when you need to favor
large resource jobs because it's part of your site's mission statement, (2) when you want to
level the response time distribution across large and small jobs (small jobs are more easily
backfilled and therefore generally have better turnaround time), and (3) when you want to
improve system utilization. While this might be surprising, system utilization actually
increases as large resource jobs are pushed to the front of the queue. This keeps the
smaller jobs in the back where they can be selected for backfill and therefore increase
overall system utilization. The situation is like the story about filling a cup with golf balls
and sand. If you put the sand in first, it gets in the way and you are unable to putin as
many golf balls. However, if you put in the golf balls first, the sand can easily be poured in
around them completely filling the cup.

The calculation for determining the total resource priority factor is as follows:

Priority += RESWEIGHT* MIN(RESCAP, (
NODEWEIGHT * TotalNodesRequested +
PROCWEIGHT * TotalProcessorsRequested +
MEMWEIGHT * TotalMemoryRequested +
SWAPWEIGHT * TotalSwapRequested +
DISKWEIGHT * TotalDiskRequested +
WALLTIMEWEIGHT* TotalWalltimeRequested +
PEWEIGHT * TotalPERequested))

5.1 Job Prioritization 342

Chapter 5: Prioritizing Jobs and Allocating Resources

343

The sum of all weighted resources components is then multiplied by the RESWEIGHT
parameter and capped by the RESCAP parameter. Memory, Swap, and Disk are all
measured in megabytes (MB). The final resource component, PE, represents Processor
Equivalents. This component can be viewed as a processor-weighted maximum percentage
of total resources factor.

For example, if a job requested 25% of the processors and 50% of the total memory on a
128-processor system, it would have a PE value of MAX(25,50) * 128, or 64. The concept of
PEs is a highly effective metric in shared resource systems.

o Ideal values for requested job processor count and walltime can be specified using
PRIORITYTARGETPROCCOUNT and PRIORITYTARGETDURATION.

5.1.2.E Service (SERVICE) Component

The Service component specifies which service metrics are of greatest value to the site.
Favoring one service subcomponent over another generally improves that service metric.

The priority calculation for the service priority factor is as follows:

Priority += SERVICEWEIGHT * (
QUEUETIMEWEIGHT * <QUEUETIME> +
XFACTORWEIGHT * <XFACTOR> +
BYPASSWEIGHT * <BYPASSCOUNT> +
STARTCOUNTWEIGHT * <STARTCOUNT> +
DEADLINEWEIGHT * <DEADLINE> +
SPVIOLATIONWEIGHT * <SPBOOLEAN> +
USERPRIOWEIGHT * <USERPRIO>)

QueueTime (QUEUETIME) Subcomponent

In the priority calculation, a job's queue time is a duration measured in minutes. Using this
subcomponent tends to prioritize jobs in a FIFO order. Favoring queue time improves
queue time based fairness metrics and is probably the most widely used single job priority
metric. In fact, under the initial default configuration, this is the only priority subcomponent
enabled within Moab. It is important to note that within Moab, a job's queue time is not
necessarily the amount of time since the job was submitted. The parameter
JOBPRIOACCRUALPOLICY allows a site to select how a job will accrue queue time based on
meeting various throttling policies. Regardless of the policy used to determine a job's
queue time, this effective queue time is used in the calculation of the QUEUETIME,
XFACTOR, TARGETQUEUETIME, and TARGETXFACTOR priority subcomponent values.

The need for a distinct effective queue time is necessitated by the fact that many sites have
users who like to work the system, whatever system it happens to be. A common practice at
some long existent sites is for some users to submit a large number of jobs and then place

5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

them on hold. These jobs remain with a hold in place for an extended period of time and
when the user is ready to run a job, the needed executable and data files are linked into
place and the hold released on one of these pre-submitted jobs. The extended hold time
guarantees that this job is now the highest priority job and will be the next to run. The use
of the JOBPRIOACCRUALPOLICY parameter can prevent this practice and prevent
'queue stuffers' from doing similar things on a shorter time scale. These 'queue stuffer'
users submit hundreds of jobs at once to swamp the machine and consume use of the
available compute resources. This parameter prevents the user from gaining any
advantage from stuffing the queue by not allowing these jobs to accumulate any queue
time based priority until they meet certain idle and active Moab fairness policies (such as
max job per user and max idle job per user).

As a final note, you can adjust the QUEUETIMEWEIGHT parameter on a per QoS basis using
the QOSCFG parameter and the QTWEIGHT attribute. For example, the line QOSCFG
[special] QTWEIGHT=5000 causes jobs using the QoS special to have their queue
time subcomponent weight increased by 5000.

Expansion Factor (XFACTOR) Subcomponent

The expansion factor subcomponent has an effect similar to the queue time factor but
favors shorter jobs based on their requested wallclock run time. In its traditional form, the
expansion factor (XFactor) metric is calculated as follows:

XFACTOR = 1 + <QUEUETIME> / <EXECUTIONTIME>

However, a couple of aspects of this calculation make its use more difficult. First, the length
of time the job will actually run—<EXECUTIONTIME>—is not actually known until the job
completes. All that is known is how much time the job requests. Secondly, as described in
the Queue Time Subcomponent section, Moab does not necessarily use the raw time since
job submission to determine <QUEUETIME> to prevent various scheduler abuses.
Consequently, Moab uses the following modified equation:

XFACTOR =1 + <EFFQUEUETIME> / <WALLCLOCKLIMIT>

In the equation Moab uses, <EFFQUEUETIME> is the effective queue time subject to the
JOBPRIOACCRUALPOLICY parameter and <WALLCLOCKLIMIT> is the user—or system—
specified job wallclock limit.

Using this equation, it can be seen that short running jobs will have an XFactor that will
grow much faster over time than the xfactor associated with long running jobs. The
following table demonstrates this favoring of short running jobs:

Job Queue
Time

XFactor for 1 1+(1/1) 1+(2/1) 1+(4/1) 1+(8/1) 1+(16/1)
hour job =2.00 =3.00 =5.00 =9.00 =17.0

5.1 Job Prioritization 344

Chapter 5: Prioritizing Jobs and Allocating Resources

345

Job Queue
Time

XFactor for 4 1+(1/4) 1+(2/4 1+(4/4) 1+(8/4 1+(16/4)
hour job =1.25 = 1.50 =2.00 =3.00 =5.0

Since XFactor is calculated as a ratio of two values, it is possible for this subcomponent to
be almost arbitrarily large, potentially swamping the value of other priority
subcomponents. This can be addressed either by using the subcomponent cap
XFACTORCAP, or by using the XFMINWCLIMIT parameter. If the latter is used, the
calculation for the XFactor subcomponent value becomes:

XFACTOR = 1 + <EFFQUEUETIME> / MAX(<XFMINWCLIMIT>,<WALLCLOCKLIMIT>)

Using the XFMINWCLIMIT parameter allows a site to prevent very short jobs from
causing the XFactor subcomponent to grow inordinately.

Some sites consider XFactor to be a more fair scheduling performance metric than queue
time. At these sites, job XFactor is given far more weight than job queue time when
calculating job priority and job XFactor distribution consequently tends to be fairly level
across a wide range of job durations. (That is, a flat XFactor distribution of 1.0 would result
in a one-minute job being queued on average one minute, while a 24-hour job would be
queued an average of 24 hours.)

Like queue time, the effective XFactor subcomponent weight is the sum of two weights, the
XFACTORWE IGHT parameter and the QoS-specific XFWEIGHT setting. For example, the
line QOSCFG[special] XFWEIGHT=5000 causes jobs using the QoS special to
increase their expansion factor subcomponent weight by 5000.

Bypass (BYPASS) Subcomponent

The bypass factor is based on the bypass count of a job where the bypass count is
increased by one every time the job is bypassed by a lower priority job via backfill. Backfill
starvation has never been reported, but if encountered, use the BYPASS subcomponent.

StartCount (STARTCOUNT) Subcomponent

Apply the startcount factor to sites with trouble starting or completing due to policies or
failures. The primary causes of an idle job having a startcount greater than zero are
resource manager level job start failure, administrator based requeue, or requeue based
preemption.

Deadline (DEADLINE) Subcomponent

The deadline factor allows sites to take into consideration the proximity of a job to its
DEADLINE. As a jobs moves closer to its deadline its priority increases linearly. This is an
alternative to the strict deadline discussed in QOS SERVICE.

5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

Soft Policy Violation (SPVIOLATION) Subcomponent

The soft policy violation factor allows sites to favor jobs that do not violate their associated
soft resource limit policies.

User Priority (USERPRIO) Subcomponent

The user priority subcomponent allows sites to consider end-user specified job priority in
making the overall job priority calculation. Under Moab, end-user specified priorities can
only be negative and are bounded in the range 0 to -1024. See Manual Priority Usage and
Enabling End-user Priorities for more information.

o User priorities can be positive, ranging from -1024 to 1023, if
ENABLEPOSUSERPRIORITY TRUE is specified in moab.cfg.

5.1.2.F Target Service (TARG) Component

The target factor component of priority takes into account job scheduling performance
targets. Currently, this is limited to target expansion factor and target queue time. Unlike
the expansion factor and queue time factors described earlier that increase gradually over
time, the target factor component is designed to grow exponentially as the target metric is
approached. This behavior causes the scheduler to do essentially all in its power to make
certain the scheduling targets are met.

The priority calculation for the target factor is as follows:

Priority += TARGETWEIGHT* (
TARGETQUEUETIMEWEIGHT * QueueTimeComponent +
TARGETXFACTORWEIGHT * XFactorComponent)

The queue time and expansion factor target are specified on a per QoS basis using the
XFTARGET and QTTARGET attributes with the QOSCFG parameter. The QueueTime and
XFactor component calculations are designed to produce small values until the target value
begins to approach, at which point these components grow very rapidly. If the target is
missed, this component remains high and continues to grow, but it does not grow
exponentially.

5.1.2.G Usage (USAGE) Component

The Usage component applies to active jobs only. The priority calculation for the usage
priority factor is as follows:

Priority += USAGEWEIGHT * (
USAGECONSUMEDWEIGHT * ProcSecondsConsumed +
USAGEHUNGERWEIGHT * ProcNeededToBalanceDynamicjob +
USAGEREMAININGWEIGHT * ProcSecRemaining +

5.1 Job Prioritization 346

Chapter 5: Prioritizing Jobs and Allocating Resources

347

USAGEEXECUTIONTIMEWEIGHT * SecondsSinceStart +

USAGEPERCENTWEIGHT * WalltimePercent)

5.1.2.H Job Attribute (ATTR) Component

The Attribute component allows the incorporation of job attributes into a job's priority. The
most common usage for this capability is to do one of the following:

« adjust priority based on a job's state (favor suspended jobs)

« adjust priority based on a job's requested node features (favor jobs that request

attribute pvfs)

« adjust priority based on internal job attributes (disfavor backfill or preemptee

jobs)

« adjust priority based on a job's requested licenses, network consumption, or generic

resource requirements

To use job attribute based prioritization, the JOBPRIOF parameter must be specified to set
corresponding attribute priorities. To favor jobs based on node feature requirements, the
parameter NODETOJOBATTRMAP must be set to map node feature requests to job

attributes.

The priority calculation for the attribute priority factor is as follows:

Priority += ATTRWEIGHT * (

ATTRATTRWEIGHT * <ATTRPRIORITY> +
ATTRSTATEWEIGHT * <STATEPRIORITY> +
ATTRGRESWEIGHT * <GRESPRIORITY>
JOBIDWEIGHT * <JOBID> +
JOBNAMEWEIGHT * <JOBNAME_INTEGER>)

Example 5-1:
ATTRWEIGHT 100
ATTRATTRWEIGHT 1
ATTRSTATEWEIGHT 1
ATTRGRESWEIGHT 5

favor suspended jobs
disfavor preemptible jobs
favor jobs requesting 'matlab'

JOBPRIOF STATE[Running]=100 STATE [Suspended]=1000
[gpfs]=30 GRES[matlab]=400

map node features to job features

NODETOJOBATTRMAP gpfs,pvfs

ATTR[PREEMPTEE]=-200

ATTR

5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

Related Topics

« Node Allocation Priority
o Per Credential Priority Weight Offsets

« Managing Consumable Generic Resources

5.1.3 Fairshare Job Priority Example

Consider the following information associated with calculating the fairshare factor for job X.

Job X
User A
Group B
Account C
QOSD
Class E

User A
Fairshare Target: 50.0
Current Fairshare Usage: 45.0

Group B
Fairshare Target: [NONE]
Current Fairshare Usage: 65.0

Account C
Fairshare Target: 25.0
Current Fairshare Usage: 35.0

QOSD
Fairshare Target: 10.0+
Current Fairshare Usage: 25.0

Class E
Fairshare Target: [NONE]
Current Fairshare Usage: 20.0

Priority Weights:
FSWEIGHT 100
FSUSERWEIGHT 10
FSGROUPWEIGHT 20
FSACCOUNTWEIGHT 30
FSQOSWEIGHT 40
FSCLASSWEIGHT 0

5.1 Job Prioritization 348

Chapter 5: Prioritizing Jobs and Allocating Resources

In this example, the Fairshare component calculation would be as follows:

Priority += 100 * (
10 *5+
20*0 +
30 * (-10) +
40 *0 +

0*0)

User A is 5% below his target so fairshare increases the total fairshare factor accordingly.
Group B has no target so group fairshare usage is ignored. Account C is above its 10%
above its fairshare usage target so this component decreases the job's total fairshare
factor. QOS D is 15% over its target but the '+' in the target specification indicates that this
is a 'floor’ target, only influencing priority when fairshare usage drops below the target
value. Therefore, the QOS D fairshare usage delta does not influence the fairshare factor.

Fairshare is a great mechanism for influencing job turnaround time via priority to favor a
particular distribution of jobs. However, it is important to realize that fairshare can only
favor a particular distribution of jobs, it cannot force it. If user X has a fairshare target of
50% of the machine but does not submit enough jobs, no amount of priority favoring will
get user X's usage up to 50%.

Related Topics
o 6.3 Fairshare - page 402

5.1.4 Common Priority Usage

s N\

In this topic:

5.1.4.A Credential Priority Factors - page 350
5.1.4.B Service Level Priority Factors - page 350
5.1.4.C Priority Factor Caps - page 351

5.1.4.D User Selectable Prioritization - page 352

N\ J

Site administrators vary widely in their preferred manner of prioritizing jobs. Moab's
scheduling hierarchy allows sites to meet job control needs without requiring adjustments
to dozens of parameters. Some choose to use numerous subcomponents, others a few, and
still others are content with the default FIFO behavior. Any subcomponent that is not of
interest can be safely ignored.

349 5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

5.1.4.A Credential Priority Factors

To help clarify the use of priority weights, a brief example may help. Suppose a site wanted
to maintain the FIFO behavior but also incorporate some credential based prioritization to
favor a special user. Particularly, the site would like the user john to receive a higher
initial priority than all other users. Configuring this behavior requires two steps. First, the
user credential subcomponent must be enabled and second, john must have his relative
priority specified. Take a look at the sample moab . cfg file:

(T T T T T T T T T T T T T T T T \
: USERWEIGHT 1 II
| USERCFG[john] PRIORITY=300 |
\

o The "USER' priority subcomponent was enabled by setting the USERWEIGHT
parameter. In fact, the parameters used to specify the weights of all components and

subcomponents follow this same *WEIGHT' naming convention (as in RESWEIGHT
and TARGETQUEUETIMEWEIGHT.

The second part of the example involves specifying the actual user priority for the user
john. This is accomplished using the USERCFG parameter. Why was the priority 300
selected and not some other value? Is this value arbitrary? As in any priority system, actual
priority values are meaningless, only relative values are important. In this case, we are
required to balance user priorities with the default queue time based priorities. Since
queuetime priority is measured in minutes queued, the user priority of 300 places a job by
user john on par with a job submitted 5 minutes earlier by another user.

[s this what the site wants? Maybe, maybe not. At the onset, most sites are uncertain what
they want in prioritization. Often, an estimate initiates prioritization and adjustments occur
over time. Cluster resources evolve, the workload evolves, and even site policies evolve,
resulting in changing priority needs over time. Anecdotal evidence indicates that most sites
establish a relatively stable priority policy within a few iterations and make only occasional
adjustments to priority weights from that point.

5.1.4.B Service Level Priority Factors

In another example, suppose a site administrator wants to do the following:
« Favor jobs in the low, medium, and high QoSs so they will run in QoS order
« Balance job expansion factor
« Use job queue time to prevent jobs from starving

Under such conditions, the sample moab . cfg file might appear as follows:

| QOSWEIGHT 1 ‘I
| XFACTORWEIGHT 1 I

5.1 Job Prioritization 350

Chapter 5: Prioritizing Jobs and Allocating Resources

351

: QUEUETIMEWEIGHT 10 :
: TARGETQUEUETIMEWEIGHT 1 {
I QOSCFG[low] PRIORITY=1000 I
| QOSCFG [medium] PRIORITY=10000 :
: QOSCFG[high] PRIORITY=100000 :
LQOSCFG[DEFAULT] QTTARGET=4:00:00)

This example is a bit more complicated but is more typical of the needs of many sites. The
desired QoS weightings are established by enabling the QoS subfactor using the
QOSWEIGHT parameter while the various QoS priorities are specified using QOSCFG.
XFACTORWEIGHT is then set as this subcomponent tends to establish a balanced
distribution of expansion factors across all jobs. Next, the queuetime component is used to
gradually raise the priority of all jobs based on the length of time they have been queued.
Note that in this case, QUEUETIMEWEIGHT was explicitly set to 10, overriding its default
value of 1. Finally, the TARGETQUEUETIMEWEIGHT parameter is used in conjunction with
the USERCFG line to specify a queue time target of 4 hours.

5.1.4.C Priority Factor Caps

Assume now that the site administrator is content with this priority mix but has a problem
with users submitting large numbers of very short jobs. Very short jobs would tend to have
rapidly growing XFactor values and would consequently quickly jump to the head of the
queue. In this case, a factor cap would be appropriate. Such caps allow a site to limit the
contribution of a job's priority factor to be within a defined range. This prevents certain
priority factors from swamping others. Caps can be applied to either priority components
or subcomponents and are specified using the <COMPONENTNAME>CAP parameter (such
as QUEUETIMECAP, RESCAP, and SERVCAP). Note that both component and
subcomponent caps apply to the pre-weighted value, as in the following equation:

Priority = i
CIWEIGHT * MIN (C1CAP, SUM (|
S11WEIGHT * MIN(S11CAP,S118) + :
S12WEIGHT * MIN(S12CAP,S12S) + :
L))+ [
C2WEIGHT * MIN (C2CAP, SUM (:
S21WEIGHT * MIN(S21CAP,S21S) + I
S22WEIGHT * MIN (S22CAP,S22S) + :
L))+ :

|

J

| QOSWEIGHT 1 }
| goscap 10000 !
| XFACTORWETIGHT 1 |
| XFACTORCAP 1000 :
| QUEUETIMEWEIGHT 10 |
| QUEUETIMECAP 1000)

5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

5.1.4.D User Selectable Prioritization

Moab allows users to specify a job priority to jobs they own or manage. This priority can be
set at job submission time or it can be dynamically modified (using setspri or mjobctl) after
submitting the job. For fairness reasons, users can only apply a negative priority to their
job and therefore slide it further back in the queue. This enables users to allow their more
important jobs to run before their less important ones without gaining unfair advantage
over other users.

~

o User priorities can be positive if ENABLEPOSUSERPRIORITY TRUE is specified in
moab.cfaq.

In order to set ENABLEPOSUSERPRIORITY, you must change the
USERPRIOWEIGHT from its default value of 0. For example:

\
I > setspri -r 100 332411 |
| successfully modified job priority :

N

o Specifying a user priority at job submission time is resource manager specific. See the
associated resource manager documentation for more information.

\ J

User Selectable Priority w/QoS

Using the QoS facility, organizations can set up an environment where users can more
freely select the desired priority of a given job. Organizations can enable access to a
number of QoSs each with its own charging rate, priority, and target service levels. Users
can then assign job importance by selecting the appropriate QoS. If desired, this can allow a
user to jump ahead of other users in the queue if they are willing to pay the associated
costs.

Related Topics

o User Selectable Priority

5.1.5 Prioritization Strategies

Each component or subcomponent can be used to accomplish different objectives.
WALLTIME can be used to favor (or disfavor) jobs based on their duration. Likewise,

5.1 Job Prioritization 352

Chapter 5: Prioritizing Jobs and Allocating Resources

ACCOUNT can be used to favor jobs associated with a particular project while QUEUET IME
can be used to favor those jobs waiting the longest.

e Queue Time

o Expansion Factor
« Resource

o Fairshare

o Credential

o Target Metrics

Each priority factor group can contain one or more subfactors. For example, the Resource
factor consists of Node, Processor, Memory, Swap, Disk, and PE components. From the table
in Job Priority Factors section, it is apparent that the prioritization problem is fairly
complex since every site needs to prioritize a bit differently. When calculating a priority,
the various priority factors are summed and then bounded between 0 and MAX_PRIO_VAL,
which is currently defined as 100000000 (one billion).

The mdiag -p command assists with visualizing the priority distribution resulting from the
current job priority configuration. Also, the showstats -f command helps indicate the impact
of the current priority settings on scheduler service distributions.

5.1.6 Manual Job Priority Adjustment

Batch administrators regularly find a need to adjust the calculated priority of a job to meet
current needs. Current needs often are broken into two categories:

1. The need to run an administrator test job as soon as possible.

2. The need to pacify a disserviced user.

You can use the setspri command to handle these issues in one of two ways; this command
allows the specification of either a relative priority adjustment or the specification of an
absolute priority. Using absolute priority specification, administrators can set a job priority
guaranteed to be higher than any calculated value. Where Moab-calculated job priorities
are in the range of 0 to 1 billion, system administrator assigned absolute priorities start at
1 billion and go up. Issuing the setspri <PRIO> <JOBID> command, for example,
assigns a priority of 1 billion + <PRIO> to the job. Therefore, setspri 5 job.1294 sets
the priority of 'job.1294' to 1000000005.

For more information, see Common Priority Usage - End-user Adjustment.

353 5.1 Job Prioritization

Chapter 5: Prioritizing Jobs and Allocating Resources

5.2 Node Allocation Policies

While job prioritization allows a site to determine which job to run, node allocation policies
allow a site to specify how available resources should be allocated to each job. The
algorithm used is specified by the parameter NODEALLOCATIONPOLICY. There are
multiple node allocation policies to choose from allowing selection based on reservation
constraints, node configuration, resource usage, preferences, and other factors. You can
specify these policies with a system-wide default value, on a per-partition basis, or on a
per-job basis. Note that LASTAVATILABLE is the default policy.

Available algorithms are described in detail in the following sections and include
CONTIGUOUS, CPULOAD, FIRSTAVAILABLE, LASTAVAILABLE, MINRESOURCE,
MAXBALANCE, PLUGIN, PRIORITY.

s N\

In this topic:

5.2.1 Node Allocation Overview - page 354
5.2.1.A Heterogeneous Resources - page 355
5.2.1.B Shared Nodes - page 355
5.2.1.C Reservations or Service Guarantees - page 357
5.2.1.D Non-Flat Network - page 358

5.2.2 Node Selection Factors - page 358

5.2.3 Resource-Based Algorithms - page 358

5.2.4 User-Defined Algorithms - page 364
5.2.4.A PLUGIN - page 364

5.2.5 Specifying Per Job Resource Preferences - page 365
5.2.5.A Specifying Resource Preferences - page 365
5.2.5.B Selecting Preferred Resources - page 365

5.2.1 Node Allocation Overview

Node allocation is the process of selecting the best resources to allocate to a job from a list
of available resources. Making this decision intelligently is important in an environment
that possesses one or more of the following attributes:

« Heterogeneous resources (resources which vary from node to node in terms of
quantity or quality)

o Shared nodes (nodes can be utilized by more than one job)

» Reservations or service guarantees

5.2 Node Allocation Policies 354

Chapter 5: Prioritizing Jobs and Allocating Resources

« Non-flat network (a network where a perceptible performance degradation may
potentially exist depending on workload placement)

5.2.1.A Heterogeneous Resources

Moab analyzes job processing requirements and assigns resources to maximize hardware
utility.

For example, suppose two nodes are available in a system, A and B. Node A has 768 MB of
RAM and node B has 512 MB. The next two jobs in the queue are X and Y. Job X requests
256 MB and job Y requests 640 MB. Job X is next in the queue and can fit on either node,
but Moab recognizes that job Y (640 MB) can only fit on node A (768 MB). Instead of
putting job X on node A and blocking job Y, Moab can put job X on node B and job Y on
node A.

5.2.1.B Shared Nodes

Symmetric Multiprocessing (SMP)

When sharing SMP-based compute resources amongst tasks from more than one job,
resource contention and fragmentation issues arise. In SMP environments, the general goal
is to deliver maximum system utilization for a combination of compute-intensive and
memory-intensive jobs while preventing overcommitment of resources.

By default, most current systems do not do a good job of logically partitioning the resources
(such as CPU, memory, and network bandwidth) available on a given node. Consequently
contention often arises between tasks of independent jobs on the node. This can resultin a
slowdown for all jobs involved, which can have significant ramifications if large-way
parallel jobs are involved. Virtualization, CPU sets, and other techniques are maturing
quickly as methods to provide logical partitioning within shared resources.

On large-way SMP systems (> 32 processors/node), job packing can result in intra-node
fragmentation. For example, take two nodes, A and B, each with 64 processors. Assume
they are currently loaded with various jobs and A has 24 and B has 12 processors free.
Two jobs are submitted; job X requests 10 processors and job Y requests 20 processors.
Job X can start on either node but starting it on node A prevents job Y from running. An
algorithm to handle intra-node fragmentation is straightforward for a single resource case,
but the algorithm becomes more involved when jobs request a combination of processors,
memory, and local disk. These workload factors should be considered when selecting a
site's node allocation policy, as well as identifying appropriate policies for handling
resource utilization limit violations.

355 5.2 Node Allocation Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

Interactive Nodes

In many cases, sites are interested in allowing multiple users to simultaneously use one or
more nodes for interactive purposes. Workload is commonly not compute intensive
consisting of intermittent tasks including coding, compiling, and testing. Because these jobs
are highly variant in terms of resource usage over time, sites are able to pack a larger
number of these jobs onto the same node. Consequently, a common practice is to restrict
job scheduling based on utilized, rather than dedicated resources.

Interactive Node Example

The example configuration files that follow show one method by which node sharing can be
accomplished within a Torque + Moab environment. This example is based on a
hypothetical cluster composed of 4 nodes each with 4 cores. For the compute nodes, job
tasks are limited to actual cores preventing overcommitment of resources. For the
interactive nodes, up to 32 job tasks are allowed, but the node also stops allowing
additional tasks if either memory is fully utilized or if the CPU load exceeds 4.0. Therefore,
Moab continues packing the interactive nodes with jobs until carrying capacity is reached.

Example 5-3: /opt/moab/etc/moab.cfg

{ # constrain interactive jobs to interactive nodes

I # constrain interactive jobs to 900 proc-seconds

: CLASSCFG[interactive] HOSTLIST=interactiveOl, interactive02

| CLASSCFG[interactive] MAX.CPUTIME=900

: RESOURCELIMITPOLICY CPUTIME :ALWAYS:CANCEL

I # base interactive node allocation on load and jobs

: NODEALLOCATIONPOLICY PRIORITY

: NODECFG[interactive(0l] PRIORITYF='-20*LOAD - JOBCOUNT'

| NODECFG[interactive02] PRIORITYF='-20*LOAD - JOBCOUNT' J

interactiveOl np=32
interactive02 np=32
computeOl np=4
compute02 np=4

: # interactiveOl |
| $max load 4.0

.- J

s
: # interactive02 I
| Smax load 4.0

5.2 Node Allocation Policies 356

Chapter 5: Prioritizing Jobs and Allocating Resources

357

5.2.1.C Reservations or Service Guarantees

A reservation-based system adds the time dimension into the node allocation decision. With
reservations, node resources must be viewed in a type of two dimension node-time space.
Allocating nodes to jobs fragments this node-time space and makes it more difficult to
schedule jobs in the remaining, more constrained node-time slots. Allocation decisions
should be made in such a way as to minimize this fragmentation and maximize the
scheduler's ability to continue to start jobs in existing slots. The following figure shows that
job A and job B are running. A reservation, X, is created some time in the future. Assume
that job A is 2 hours long and job B is 3 hours long. Again, two new single-processor jobs
are submitted, C and D; job C requires 3 hours of compute time while job D requires 5
hours. Either job will just fit in the free space located above job A or in the free space
located below job B. If job C is placed above job A, job D, requiring 5 hours of time will be
prevented from running by the presence of reservation X. However, if job C is placed below
job B, job D can still start immediately above job A.

Image 5-1: Job A, Job B, and Reservation X scheduled on nodes

Reservation X

Nodes

Time >

The preceding example demonstrates the importance of time based reservation
information in making node allocation decisions, both at the time of starting jobs and at the
time of creating reservations. The impact of time based issues grows significantly with the
number of reservations in place on a given system. The LASTAVAILABLE algorithm

5.2 Node Allocation Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

works on this premise, locating resources that have the smallest space between the end of
a job under consideration and the start of a future reservation.

5.2.1.D Non-Flat Network

On systems where network connections do not resemble a flat all-to-all topology, task
placement may impact performance of communication intensive parallel jobs. If latencies
and network bandwidth between any two nodes vary significantly, the node allocation
algorithm should attempt to pack tasks of a given job as close to each other as possible to
minimize impact of bandwidth and latency differences.

5.2.2 Node Selection Factors

While the node allocation policy determines which nodes a job will use, other factors
narrow the options before the policy makes the final decision. The following process
demonstrates how Moab executes its node allocation process and how other policies affect
the decision:

=

Moab eliminates nodes that do not meet the hard resource requirements set by the job.

N

Moab gathers affinity information, first from workload proximity rules and then from
reservation affinity rules (see Affinity for more information). Reservation affinity rules
trump workload proximity rules.

w

Moab allocates nodes using the allocation policy:

« If more than enough nodes with Required affinity exist, only they are passed down
for the final sort by the node allocation policy.

o If the number of nodes with Required affinity matches the number of nodes
requested exactly, then the node allocation policy is skipped entirely and all of those
nodes are assigned to the job.

« If too few nodes have Required affinity, all of them are assigned to the job, then the
node allocation policy is applied to the remaining eligible nodes (after Required,
Moab will use Positive, then Neutral, then Negative).

5.2.3 Resource-Based Algorithms

Moab contains a number of allocation algorithms that address some of the needs described
earlier. You can also create allocation algorithms and interface them with the Moab
scheduling system. Each of these policies has a name and descriptive alias. They can be
configured using either one, but Moab will only report their names.

5.2 Node Allocation Policies 358

Chapter 5: Prioritizing Jobs and Allocating Resources

o If ENABLEHIGHTHROUGHPUT is TRUE, you must set NODEALLOCATIONPOLICY to
FIRSTAVAILABLE.

The current suite of algorithms is described in the table below:

359 5.2 Node Allocation Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

Allocation Algorithms
Allocation
Algorithm
Name
CONTIGUOU Contiguous
S
CPULOAD ProcessorLoad
FIRSTAVAIL InReportedOrder
ABLE
LASTAVAIL InReserveReportedOr
ABLE der
MAXBALAN ProcessorSpeedBalanc
CE e
MINRESOUR MinimumConfiguredR
CE esources
PRIORITY CustomPriority

5.2 Node Allocation Policies

Description

Allocates nodes in contiguous (linear) blocks as
required by the Compaq RMS system.

Nodes are selected that have the maximum
amount of available, unused CPU power (<#of
CPU's> - <CPU load>). CPULOAD is a good
algorithm for timesharing node systems and
applies to jobs starting immediately. For the
purpose of future reservations, the
MINRESOURCE algorithm is used.

Simple first come, first served algorithm where
nodes are allocated in the order they are
presented by the resource manager. This is a
very simple, and very fast algorithm.

Nodes are allocated in descending order that
they are presented by the resource manager, or
the reverse of FIRSTAVAILABLE.

Attempts to allocate the most balanced set of
nodes possible to a job. In most cases, but not
all, the metric for balance of the nodes is node
procspeed. Therefore, if possible, nodes with
identical procspeeds are allocated to the job. If
identical procspeed nodes cannot be found, the
algorithm allocates the set of nodes with the
minimum node procspeed span or range.

Prioritizes nodes according to the configured
memory resources on each node. Those nodes
with the fewest configured memory resources,
that still meet the job's resource constraints, are
selected.

Allows a site to specify the priority of various
static and dynamic aspects of compute nodes
and allocate them with preference for higher
priority nodes. It is highly flexible allowing node
attribute and usage information to be combined

360

Chapter 5: Prioritizing Jobs and Allocating Resources

Allocation

Algorithm
Name

361

Description

with reservation affinity. Using node allocation
priority, you can specify the following priority
components:

e ADISK - Local disk currently available to
batch jobs in MB.

e« AMEM - Real memory currently available to
batch jobs in MB.

e APROCS - Processors currently available to
batch jobs on node (configured procs -
dedicated procs).

e ARCH[<ARCH>] - Processor architecture.
e ASWAP - Virtual memory currently
available to batch jobs in MB.

e CDISK - Total local disk allocated for use
by batch jobs in MB.

e CMEM - Total real memory on node in MB.

¢ COST - Based on node CHARGERATE.

e CPROCS - Total processors on node.

e CSWAP - Total virtual memory configured
on node in MB.

e FEATURE [<FNAME>] - Boolean; specified
feature is present on node.

e FREETIME - FREETIME is calculated as the
time during which there is no reservation
on the machine. It uses either the job
wallclock limit (if there is a job), or 2
months. The more free time a node has
within either the job wallclock limit or 2
months, the higher this value will be.

¢ GMETRIC[<GMNAME>] - Current value of
specified generic metric on node.

e JOBCOUNT - Number of jobs currently
running on node.

e JOBFREETIME - The number of seconds
that the node is idle between now and
when the job is scheduled to start.

e LOAD - Current 1 minute load average.
¢ MTBF - Mean time between failures (in

5.2 Node Allocation Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

Allocation

Algorithm
Name

5.2 Node Allocation Policies

Description

seconds).

NODEINDEX - Node's nodeindex as
specified by the resource manager.

0S - True if job compute requirements
match node operating system.

PARAPROCS - Processors currently
available to batch jobs within partition
(configured procs - dedicated procs).

POWER - TRUE if node is ON.

PREF - Boolean; node meets job specific
resource preferences.

PRIORITY - Administrator specified node
priority.

RANDOM - Per iteration random value

between 0 and 1. (Allows introduction of
random allocation factor.)

o Regardless of coefficient, the
contribution of this weighted factor
cannot exceed 32768.

The coefficient, if any, of the RANDOM
component must precede, not follow,
the component in order to work
correctly. For example:

N EEnEEEEEmEEE—S———

SPEED - If set, node processor speed
(procspeed); otherwise, relative node
speed.

SUSPENDEDJCOUNT - Number of
suspended jobs currently on the node.

USAGE - Percentage of time node has been
running batch jobs since the last statistics
initialization.

WINDOWTIME - The window of time
between the end of one reservation and the
beginning of another. This algorithm, given
a negative value, can be used to pack
reservations as close together on a node as
possible.

362

Chapter 5: Prioritizing Jobs and Allocating Resources

Allocation Description

Algorithm
Name

The node allocation priority function can be
specified on a node by node or cluster wide
basis. In both cases, the recommended approach
is to specify the PRIORITYF attribute with the
NODECFG parameter. Some examples follow.

Example 1: Favor the fastest nodes with the
most available memory that are running the
fewest jobs.

S
| NODEALLOCATIONPOLICY PRIORITY]
| NODECFG [DEFAULT] PRIORITYF='SPEED + .01 * AMEM - |
1'10 * JOBCOUNT' |

|

o If spaces are placed within the priority
function for readability, the priority
function value must be quoted to allow
proper parsing.

Example 2: Favor the nodes with the least
amount of idle time between now and the job's
scheduled start time.

ey Sy ———
|

NODEALLOCATIONPOLICY PRIORITY ll
|

| NODECFG [DEFAULT] PRIORITYF=-JOBFREETIME)
N
S

Moab stacks jobs on the nodes that |
are busiest between now and the |
| job's scheduled start time. }

=TT TN

Example 3: A site has a batch system consisting
of two dedicated 'batchX' nodes, as well as
numerous desktop systems. The allocation
function should favor batch nodes first, followed
by desktop systems that are the least loaded and
have received the least historical usage.

{NODEALLOCATIONPOLICY PRIORITY |
| NODECFG [DEFAULT] PRIORITYF='-LOAD - 5*USAGE'’ l
| NODECFG [batchl] PRIORITY=1000 |
| PRIORITYF="'PRIORITY + APROCS' :
| NODECFG [batch2] PRIORITY=1000 |
| PRIORITYF='PRIORITY + APROCS' :

I

363 5.2 Node Allocation Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

Allocation Description

Algorithm
Name

Example 4: Pack tasks onto loaded nodes first.

(

| NODEALLOCATIONPOLICY PRIORITY ||

| NODECFG [DEFAULT] PRIORITYF=JOBCOUNT |
|

Example 5: Pack tasks onto nodes with the most
processors available and the lowest CPU
temperature.

_____________________________________ N
{RMCFG[torque] TYPE=pbs

: RMCFG [temp] TYPE=NATIVE

| CLUSTERQUERYURL=exec://$TOOLSDIR/hwmon.pl

: NODEALLOCATIONPOLICY PRIORITY

| NODECFG[DEFAULT] PRIORITYF='100*APROCS - GMETRIC
I [temp]’
|

5.2.4 User-Defined Algorithms

User-defined algorithms allow administrators to define their own algorithms based on
factors such as their system's network topology. When node allocation is based on topology,
jobs finish faster, administrators see better cluster productivity and users pay less for
resources.

5.2.4.A PLUGIN

This algorithm allows administrators to define their own node allocation policy and create a
plug-in that allocates nodes based on factors such as a cluster's network topology. This has
the following advantages:

« plug-ins keep the source code of the cluster's interconnect network for node
allocation separate from Moab's source code (customers can implement plug-ins
independent of Moab's release schedule)

o plug-ins can be independently created and tailored to specific hardware and network
topology

o plug-ins can be modified without assistance from Adaptive Computing

5.2 Node Allocation Policies 364

Chapter 5: Prioritizing Jobs and Allocating Resources

365

5.2.5 Specifying Per Job Resource Preferences

While the resource based node allocation algorithms can make a good guess at what
compute resources would best satisfy a job, sites often possess a subset of jobs that benefit
from more explicit resource allocation specification. For example, one job might perform
best on a particular subset of nodes due to direct access to a tape drive, another might be
very memory intensive. Resource preferences are distinct from node requirements. While
the former describes what a job needs to run at all, the latter describes what the job needs
to run well. In general, a scheduler must satisfy a job's node requirement specification and
then satisfy the job's resource preferences as well as possible.

5.2.5.A Specifying Resource Preferences

A number of resource managers natively support the concept of resource preferences
(such as Loadleveler). When using these systems, the language specific preferences
keywords can be used. For systems that do not support resource preferences natively,
Moab provides a resource manager extension keyword 'PREF’, which you can use to
specify desired resources. This extension allows specification of node features, memory,
swap, and disk space conditions that define whether the node is considered preferred.

——

[o Moab 5.2 (and earlier) only supports feature-based preferences.

5.2.5.B Selecting Preferred Resources

Enforcing resource preferences is not completely straightforward. A site might have a
number of potentially conflicting requirements that the scheduler is asked to
simultaneously satisfy. For example, a scheduler may be asked to maximize the proximity
of the allocated nodes at the same time it is supposed to satisfy resource preferences and
minimize node overcommitment. To allow site specific weighting of these varying
requirements, Moab allows resource preferences to be enabled through the PRIORITY
node allocation algorithm. For example, to use resource preferences together with node
load, the following configuration might be used:

. —— ————————————————————————

: NODEALLOCATIONPOLICY PRIORITY
: NODECFG [DEFAULT] PRIORITYF='5 * PREF - LOAD'
|

To request specific resource preferences, a user could then submit a job indicating those
preferences. In the case of a PBS job, the following can be used:

———————————————————

5.2 Node Allocation Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

Related Topics

e Generic Metrics

o Per Job Node Allocation Policy Specification via Resource Manager Extensions

5.3 Node Access Policies

Moab allocates resources to jobs on the basis of a job task—an atomic collection of
resources that must be co-located on a single compute node. A given job may request 20
tasks where each task is defined as one processor and 128 MB of RAM. Compute nodes
with multiple processors often possess enough resources to support more than one task
simultaneously. When it is possible for more than one task to run on a node, node access
policies determine which tasks can share the compute node's resources.

In this topic:

5.3.1 Node Access Policy Descriptions - page 366
5.3.2 Configuring Node Access Policies - page 367

5.3.1 Node Access Policy Descriptions

Moab supports a distinct number of node access policies that are listed in the following
table:

SHARED Tasks from any combination of jobs can use available resources.

SHAREDONLY Only jobs requesting shared node access can use available resources.

SINGLEACCOUNT Tasks from any jobs owned by the same account can use available

resources.
SINGLECLASS Tasks from any jobs owned by the same class can use available resources.
SINGLEGROUP Tasks from any jobs owned by the same group can use available
resources.
SINGLEJOB Only tasks from a single job can use the node's resources.

5.3 Node Access Policies 366

Chapter 5: Prioritizing Jobs and Allocating Resources

o When enforcing limits using CLASSCFG attributes, use MAX . NODE
instead of MAX . PROC. MAX . PROC enforces the requested
processors, not the actual processors dedicated to the job.

SINGLETASK Only a single task from a single job can run on the node.
SINGLEUSER Tasks from any jobs owned by the same user can use available resources.
UNIQUEUSER Any number of tasks from a single job can allocate resources from a node

but only if the user has no other jobs running on that node.
UNIQUEUSER limits the number of jobs a single user can run on a node,
allowing other users to run jobs with the remaining resources.

o This policy is useful in environments where job epilog/prologs
scripts are used to clean up processes based on userid.

5.3.2 Configuring Node Access Policies

The global node access polices can be specified via the parameter NODEACCESSPOLICY.
This global default can be overridden on a per node basis with the ACCESS attribute of the
NODECFG parameter or on a per job basis using the resource manager extension
NACCESSPOLICY. Finally, a per queue node access policy can also be specified by setting
either the NODEACCESSPOLICY or FORCENODEACCESSPOLICY attributes of the CLASSCFG
parameter. FORCENODEACCESSPOLICY overrides any per job specification in all cases,
whereas NODEACCESSPOLICY is overridden by per job specification.

o When multiple node access policies apply to a given job or node (for example
SINGLEJOB is configured globally but the class is configured as SHARED) then the
more restrictive policy applies. The most restrictive policy is SINGLETASK, followed
by SINGLEJOB, the single credentials, and SHARED being the least restrictive.

By default, nodes are accessible using the setting of the system wide
NODEACCESSPOLICY parameter unless a specific ACCESS policy is specified on a per
node basis using the NODECFG parameter. Jobs can override this policy and subsequent
jobs are bound to conform to the access policies of all jobs currently running on a given
node. For example, if the NODEACCESSPOLICY parameter is set to SHARED, a new job
can be launched on an idle node with a job specific access policy of SINGLEUSER. While
this job runs, the effective node access policy changes to SINGLEUSER and subsequent
job tasks can only be launched on this node provided they are submitted by the same user.

367 5.3 Node Access Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

When all single user jobs have completed on that node, the effective node access policy
reverts back to SHARED and the node can again be used in SHARED mode.

For example, to set a global policy of SINGLETASK on all nodes except nodes 13 and 14,
use the following:

: # by default, enforce dedicated node access on all nodes :
| NODEACCESSPOLICY SINGLETASK |
: # allow nodes 13 and 14 to be shared :
: NODECFG[nodel3] ACCESS=SHARED |
|\ NODECFG [nodel4] ACCESS=SHARED J

——————————————— € ———

{ gsub -n jobscript.sh J
e e e e e —_—

|{ This will set node_exclusive = True in the output for gstat -f <job Id>. }
Alternatively, you could also use either of the following:

I gsub -1 naccesspolicy=singlejob jobscript.sh |
| gsub -W x=naccesspolicy:singlejob jobscript.sh]
\

Related Topics
o Per job naccesspolicy specification via Resource Manager Extensions
« JOBNODEMATCHPOLICY parameter
« NODEAVAILABILITYPOLICY parameter

5.4 Node Availability Policies

s N\

In this topic:

5.4.1 Node Resource Availability Policies - page 369
5.4.1.A Per Resource Availability Policies - page 370

5.4.2 Node Categorization - page 370
5.4.3 Node Failure/Performance Based Notification - page 372
5.4.4 Node Failure/Performance Based Triggers - page 372

5.4.5 Handling Transient Node Failures - page 373
5.4.5.A Creating Automatic Reservations - page 373
5.4.5.B Blocking Out Down Nodes - page 374

5.4 Node Availability Policies 368

Chapter 5: Prioritizing Jobs and Allocating Resources

5.4.6 Allocated Resource Failure Policy for Jobs - page 374
5.4.6.A Failure Responses - page 374
5.4.6.B Policy Precedence - page 375
5.4.6.C Failure Definition - page 375
5.4.6.D Torque Failure Details - page 376

N\ J

Moab enables several features relating to node availability. These include policies that
determine how per node resource availability should be reported, how node failures are
detected, and what should be done in the event of a node failure.

5.4.1 Node Resource Availability Policies

Moab allows a job to be launched on a given compute node as long as the node is not full or
busy. The NODEAVAILABILITYPOLICY parameter allows a site to determine what criteria
constitute a node being busy. The legal settings are listed in the following table:

Availability Description

Policy

DEDICATED The node is considered busy if dedicated resources equal or exceed configured
resources.

UTILIZED The node is considered busy if utilized resources equal or exceed configured
resources.

COMBINED The node is considered busy if either dedicated or utilized resources equal or

exceed configured resources.

The default setting for all nodes is COMBINED, indicating that a node can accept workload
so long as the jobs that the node was allocated to do not request or use more resources
than the node has available. In a load balancing environment, this might not be the desired
behavior. Setting the NODEAVAILABILITYPOLICY parameter to UTILIZED allows jobs
to be packed onto a node even if the aggregate resources requested exceed the resources
configured. For example, assume a scenario with a 4-processor compute node and 8 jobs
requesting 1 processor each. If the resource availability policy was set to COMBINED, this
node would only allow 4 jobs to start on this node even if the jobs induced a load of less
than 1.0 each. With the resource availability policy setto UTTILIZED, the scheduler
continues allowing jobs to start on the node until the node's load average exceeds a per
processor load value of 1.0 (in this case, a total load of 4.0). To prevent a node from being
over populated within a single scheduling iteration, Moab artificially raises the node's load

369 5.4 Node Availability Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

for one scheduling iteration when starting a new job. On subsequent iterations, the actual
measured node load information is used.

5.4.1.A Per Resource Availability Policies

By default, the NODEAVAILABILITYPOLICY sets a global per node resource availability
policy. This policy applies to all resource types on each node such as processors, memory,
swap, and local disk. However, the syntax of this parameter is as follows:

<POLICY>[:<RESOURCETYPE>]

This syntax allows per resource availability specification. For example, consider the
following:

This configuration causes Moab to only consider the quantity of processing resources
actually dedicated to active jobs running on each node and ignore utilized processor
information (such as CPU load). For memory and disk, both utilized resource information
and dedicated resource information should be combined to determine what resources are
actually available for new jobs.

5.4.2 Node Categorization

Moab allows organizations to detect and use far richer information regarding node status
than the standard batch 'idle,' 'busy,' '"down states' commonly found. Using node
categorization, organizations can record, track, and report on per node and cluster level
status including the following categories:

Active Node is healthy and currently executing batch workload.

BatchFailure Node is unavailable due to a failure in the underlying batch
system (such as a resource manager server or resource manager
node daemon).

Benchmark Node is reserved for benchmarking.
EmergencyMaintenance Node is reserved for unscheduled system maintenance.

GridReservation Node is reserved for grid use.

5.4 Node Availability Policies 370

Chapter 5: Prioritizing Jobs and Allocating Resources

371

HardwareFailure

HardwareMaintenance

Node is unavailable due to a failure in one or more aspects of its
hardware configuration (such as a power failure, excessive
temperature, memory, processor, or swap failure).

Node is reserved for scheduled system maintenance.

Idle Node is healthy and is currently not executing batch workload.

JobReservation Node is reserved for job use.

NetworkFailure Node is unavailable due to a failure in its network adapter or in
the switch.

Other Node is in an uncategorized state.

OtherFailure Node is unavailable due to a general failure.

PersonalReservation Node is reserved for dedicated use by a personal reservation.

Site[1-8] Site specified usage categorization.

SoftwareFailure Node is unavailable due to a failure in a local software service
(such as automounter, security or information service such as
NIS, local databases, or other required software services).

SoftwareMaintenance Node is reserved for software maintenance.

StandingReservation Node is reserved by a standing reservation.

StorageFailure Node is unavailable due to a failure in the cluster storage system
or local storage infrastructure (such as failures in Lustre, GPFS,
PVFS, or SAN).

UserReservation Node is reserved for dedicated use by a particular user or group

and may or may not be actively executing jobs.

Node categories can be explicitly assigned by cluster administrators using the mrsvctl -c
command to create a reservation and associate a category with that node for a specified
timeframe. Further, outside of this explicit specification, Moab automatically mines all
configured interfaces to learn about its environment and the health of the resources it is
managing. Consequently, Moab can identify many hardware failures, software failures, and

5.4 Node Availability Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

batch failures without any additional configuration. However, it is often desirable to make
additional information available to Moab to allow it to integrate this information into
reports; automatically notify managers, users, and administrators; adjust internal policies
to steer workload around failures; and launch various custom triggers to rectify or mitigate
the problem.

J

o You can specify the FORCERSVSUBTYPE parameter to require all administrative
reservations be associated with a node category at reservation creation time. For
example:

\
| NODECFG [DEFAULT] ENABLEPROFILING=TRUE [
| FORCERSVSUBTYPE TRUE :
\

Ve
A

Node health and performance information from external systems can be imported into
Moab using the native resource manager interface. This is commonly done using generic
metrics or consumable generic resources for performance and node categories or node
variables for status information. Combined with arbitrary node messaging information,
Moab can combine detailed information from remote services and report this to other
external services.

o Use the NODECATCREDLIST parameter to generate extended node category based
statistics.

5.4.3 Node Failure/Performance Based Notification

Moab can be configured to cause node failures and node performance levels that cross
specified thresholds to trigger notification events. This is accomplished using the
GEVENTCFG parameter as described in the Generic Event Overview section. For example,
the following configuration can be used to trigger an email to administrators each time a
node is marked down:

5.4.4 Node Failure/Performance Based Triggers

Moab supports per node triggers that can be configured to fire when specific events are
fired or specific thresholds are met. These triggers can be used to modify internal policies
or take external actions. A few examples follow:

o decrease node allocation priority if node throughput drops below threshold X

« launch local diagnostic/recovery script if parallel file system mounts become stale

5.4 Node Availability Policies

372

Chapter 5: Prioritizing Jobs and Allocating Resources

« reset high performance network adapters if high speed network connectivity fails
o create general system reservation on node if processor or memory failure occurs

As mentioned, Moab triggers can be used to initiate almost any action, from sending mail to
updating a database, to publishing data for an SNMP trap, to driving a web service.

5.4.5 Handling Transient Node Failures

Since Moab actively schedules both current and future actions of the cluster, it is often
important for it to have a reasonable estimate of when failed nodes will be again available
for use. This knowledge is particularly useful for proper scheduling of new jobs and
management of resources in regard to backfill. With backfill, Moab determines which
resources are available for priority jobs and when the highest priority idle jobs can run. If
a node experiences a failure, Moab should have a concept of when this node will be
restored.

When Moab analyzes down nodes for allocation, one of two issues may occur with the
highest priority jobs. If Moab believes that down nodes will not be recovered for an
extended period of time, a transient node failure within a reservation for a priority job
might cause the reservation to slide far into the future allowing other lower priority jobs to
allocate and launch on nodes previously reserved for it. Moments later, when the transient
node failures are resolved, Moab might be unable to restore the early reservation start
time as other jobs may already have been launched on previously available nodes.

In the reverse scenario, if Moab recognizes a likelihood that down nodes will be restored
too quickly, it might make reservations for top priority jobs that allocate those nodes. Over
time, Moab slides those reservations further into the future as it determines that the
reserved nodes are not being recovered. While this does not delay the start of the top
priority jobs, these unfulfilled reservations can end up blocking other jobs that should have
properly been backfilled and executed.

5.4.5.A Creating Automatic Reservations

If a node experiences occasional transient failures (often not associated with a node state
of down), Moab can automatically create a temporary reservation over the node to allow
the transient failure time to clear and prevent Moab from attempting to re-use the node
while the failure is active. This reservation behavior is controlled using the
NODEFAILURERESERVETIME parameter as in the following example:

I # reserve nodes for 1 minute if transient failures are detected |
| NODEFAILURERESERVETIME 00:01:00 |

373 5.4 Node Availability Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

5.4.5.B Blocking Out Down Nodes

If one or more resource managers identify failures and mark nodes as down, Moab can be
configured to associate a default unavailability time with this failure and the node state
down. This is accomplished using the NODEDOWNSTATEDELAYTIME parameter. This
delay time floats and is measured as a fixed time into the future from the time 'NOW"; it is
not associated with the time the node was originally marked down. For example, if the
delay time was set to 10 minutes, and a node was marked down 20 minutes ago, Moab
would still consider the node unavailable until 10 minutes into the future.

While it is difficult to select a good default value that works for all clusters, the following is
a general rule of thumb:

e Increase NODEDOWNSTATEDELAYTIME if jobs are getting blocked due to priority
reservations sliding as down nodes are not recovered.

o Decrease NODEDOWNSTATEDELAYTIME if high priority job reservations are getting
regularly delayed due to transient node failures.

assume down nodes will not be recovered for one hour
| NODEDOWNSTATEDELAYTIME 01:00:00
\

5.4.6 Allocated Resource Failure Policy for Jobs

If a failure occurs within a collection of nodes allocated to a job, Moab can automatically re-
allocate replacement resources. This can be configured with JOBACTIONONNODEFAILURE.

How an active job behaves when one or more of its allocated resources fail depends on the
allocated resource failure policy. Depending on the type of job, type of resources, and type
of middleware infrastructure, a site may choose to have different responses based on the
job, the resource, and the type of failure.

5.4.6.A Failure Responses

By default, Moab cancels a job when an allocated resource failure is detected. However,
you can specify the following actions:

Option | Policy Action

CANCEL Cancels the job

FAIL Terminates the job as a failed job
HOLD Places a hold on the job. This option is only applicable if you are using check-
pointing

5.4 Node Availability Policies 374

Chapter 5: Prioritizing Jobs and Allocating Resources

| Option | Policy Action

375

IGNORE
NOTIFY

REQUEUE

Job

Class/Queue

Partition

System

Ignores the failed node, allowing the job to proceed

Notifies the administrator and user of failure but takes no further action

Requeues job and allows it to run when alternate resources become available

5.4.6.B Policy Precedence

For a given job, the applied policy can be set at various levels with policy precedence
applied in the job, class/queue, partition, and then system level. The following table
indicates the available methods for setting this policy:

RESFAILPOLICY resource
manager extension

RESFAILPOLICY attribute of
CLASSCFG parameter

JOBACTIONONNODE
FAILURE attribute of PARCFG
parameter

NODEALLOCRESFAILURE
POLICY parameter

_______________._______________

(
| PARCFG [web3]

II JOBACTIONONNODEFAILURE=NOTIFY)

5.4.6.C Failure Definition

Any allocated node going down constitutes a failure. However, for certain types of
workload, responses to failures may be different depending on whether it is the master
task (task 0) or a slave task that fails. To indicate that the associated policy should only take

effect if the master task fails, the allocated resource failure policy should be specified with

a trailing asterisk (*), as in the following example:

e

5.4 Node Availability Policies

Chapter 5: Prioritizing Jobs and Allocating Resources

5.4.6.D Torque Failure Details

When a node fails to send a status update within a configurable time frame (default 600
seconds, see node_check_rate in the Torque Resource Manager Administrator Guide),

pbs_ server determines that the node is down. Depending on the
JOBACTIONONNODEFAILURE parameter setting, Moab may then notify administrators,
hold the job, requeue the job, allocate replacement resources to the job, or cancel the job. If
Moab requests that Torque cancel or requeue the job, Torque immediately frees all non-
failed resources, making them available for use by other jobs. pbs mom also cleans up
parallel jobs after a configurable time frame (default 600 seconds, see $job_exit_wait_time
in the Torque Resource Manager Administrator Guide). Once the failed node is recovered,
it contacts the resource manager, determines that the associated job has been
canceled/requeued, cleans up, and makes itself available for new workload.

Related Topics

« Node State Overview
« JOBACTIONONNODEFAILURE parameter
« NODEFAILURERESERVETIME parameter

« NODEDOWNSTATEDELAYTIME parameter (down nodes will be marked unavailable
for the specified duration)

« NODEDRAINSTATEDELAYTIME parameter (offline nodes will be marked unavailable
for the specified duration)

« NODEBUSYSTATEDELAYTIME parameter (nodes with unexpected background load
will be marked unavailable for the specified duration)

« NODEALLOCRESFAILUREPOLICY parameter (action to take if executing jobs have
one or more allocated nodes fail)

5.4 Node Availability Policies 376

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Chapter 6: Managing Fairness - Throttling Policies,

Fairshare, Allocation Management

In this chapter:

6.5.6Accounting Properties Reported to the Accounting Manager

6.1 Fairness OVerVieW

6.1.2 Selecting the Correct Policy Approach
6.2 Usage Limits/Throttling Policies
6.2.1 Fairness via Throttling Policies
6.2.2 Override Limits
6.2.3 Idle Job Limits
6.2.4 Hard and Soft Limits
6.2.5 Per-partition Limits
6.2.6 Usage-based limits
6.3 Fairshare L
6.3.1 Fairshare Parameters
6.3.2 Using Fairshare Information
6.3.3 Hierarchical Fairshare/Share Trees
6.4 Sample FairShare Data File
6.5 Accounting, Charging, and Allocation Management ._._.._.._............... ..
6.5.1 Accounting Manager Overview ...
6.5.2 Accounting Mode
6.5.3 Accounting Manager Interface Types
6.5.4 Charging forJobs
6.5.5 Charging for Reservations

6.5.7 Accounting Stages
6.5.8 Accounting Events
6.5.9 Blocking Versus Non-Blocking Accounting Actions ._................_.
6.5.10 Retrying Failed Charges
6.6 AMCFG Parametersand Flags
6.6.1 AMCFG Parameters
6.6.2 AMCFG Flags

377

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

378

6.1 Fairness Overview

The concept of cluster fairness varies widely from person to person and site to site. While
some interpret it as giving all users equal access to compute resources, more complicated
concepts incorporating historical resource usage, political issues, and job value are equally
valid. While no scheduler can address all possible definitions of fair, Moab provides one of
the industry's most comprehensive and flexible set of tools allowing most sites the ability to
address their many and varied fairness management needs.

In this topic:

6.1.1 Fairness Facilities - page 378
6.1.2 Selecting the Correct Policy Approach - page 381

6.1.1 Fairness Facilities

Under Moab, most fairness policies are addressed by a combination of the facilities
described in the following table:

6.1 Fairness Overview

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Fairness Facilities

Job Prioritization

Description Specifies what is most important to the scheduler. Using service based
priority factors allows a site to balance job turnaround time, expansion
factor, or other scheduling performance metrics.

o
Example | SERVICEWEIGHT 1 :
| QUEUETIMEWEIGHT 10 J
N e e

r Y

Causes jobs to increase in priority by 10 points for every minute
they remain in the queue.

Usage Limits (Throttling Policies)

Description Specifies limits on exactly what resources can be used at any given instant.

(
Example | USERCFG[john] MAXJOB=3
| GROUPCFG[DEFAULT] MAXPROC=64
| GROUPCFG[staff] MAXPROC=128
\

| Allows john to only run 3 jobs at a time. Allows the group \
| staff touse up to 128 total processors and all other groups to |
| use up to 64 processors. }

|

Description Specifies usage targets to limit resource access or adjust priority based on
historical cluster and grid level resource usage.

(

Example | USERCFG [steve] FSTARGET=25.0+ i
| FSWEIGHT 1 }
| FSUSERWEIGHT 10 [
\

| Enables priority based fairshare and specifies a fairshare target |
| for user steve such that his jobs are favored in an attempt to :
| keep his jobs using at least 25. 0% of delivered compute cycles. |

Allocation Management

Description Specifies long term, credential-based resource usage limits.

6.1 Fairness Overview 379

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Allocation Management

(
Example | AMCFG [mam] TYPE=MAM HOST=server.sys.net i
\

N
|

| Enables the Moab Accounting Manager allocation management

| interface. Within the accounting manager, project or account

| based allocations can be configured. These allocations can, for

| example, do such things as allow project X to use up to 100,000

| processor-hours per quarter, provide various QoS sensitive charge
| rates, and share allocation access.

Quality of Service

Description Specifies additional resource and service access for particular users, groups,
and accounts. QoS facilities can provide special priorities, policy exemptions,
reservation access, and other benefits (as well as special charge rates).

D e ey M S
| Q0SCFG[orion] PRIORITY=1000 XFTARGET=1.2
QOSCFG[orion] QFLAGS=PREEMPTOR, IGNSYSTEM, RESERVEALWAYS

Example
{

| Enables jobs requesting the orion QoS a priority increase, an |

| expansion factor target to improve response time, the ability to |

| preempt other jobs, an exemption from system level job size :

| policies, and the ability to always reserve needed resources if it |

| cannot start immediately. :

o1
|

Standing Reservations

Description Reserves blocks of resources within the cluster for specific, periodic time
frames under the constraints of a flexible access control list.

(
Example | SRCFG[jupiter] HOSTLIST=node0l[1-4]
ISRCFG[jupiter] STARTTIME=9:00:00 ENDTIME=17:00:00
| SRCFG[jupiter] USERLIST=john,steve ACCOUNTLIST=jupiter
\

Reserve nodes node011 through node014 from 9:00 AM until |
:00 PM for use by jobs from user john or steve or from the :
roject jupiter. :

Class/Queue Constraints

Description Associates users, resources, priorities, and limits with cluster classes or

(______
T G

380 6.1 Fairness Overview

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Class/Queue Constraints

cluster queues that can be assigned to or selected by end-users.

e
| CLASSCFG[long] HOSTLIST=acn[1-4] [0-9]

| CLASSCFG [long] MIN.WCLIMIT=24:00:00

| SRCFG[jupiter] PRIORITY=10000

LSRCFG[jupiter CLASSLIST=longé&)

:rAssigns long jobs a high priority but only allows them to run on
| certain nodes.

S e e e e e e e S e e S S D e e S S S e e S S S o e e e e e

6.1.2 Selecting the Correct Policy Approach

Moab supports a rich set of policy controls in some cases allowing a particular policy to be
enforced in more than one way. For example, cycle distribution can be controlled using
usage limits, fairshare, or even queue definitions. Selecting the most correct policy depends
on site objectives and needs; consider the following when making such a decision:

Example

e Minimal end-user training

o Does the solution use an approach familiar to or easily learned by existing
users?

End-user transparency

o Can the configuration be enabled or disabled without impacting user behavior
or job submission?

Impact on system utilization and system responsiveness

Solution complexity

o [s the impact of the configuration readily intuitive, and is it easy to identify
possible side effects?

Solution extensibility and flexibility

o Will the proposed approach allow the solution to be easily tuned and extended
as cluster needs evolve?

Related Topics
o Job Prioritization
o Usage Limits (Throttling Policies)

o Fairshare

6.1 Fairness Overview 381

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

382

o Allocation Management

Quality of Service

Standing Reservations

Class/Queue Constraints

6.2 Usage Limits/Throttling Policies

A number of Moab policies allow an administrator to control job flow through the system.
These throttling policies work as filters allowing or disallowing a job to be considered for
scheduling by specifying limits regarding system usage for any given moment. These
policies can be specified as global or specific constraints specified on a per user, group,
account, QoS, or class basis.

~

In this topic:

6.2.1 Fairness via Throttling Policies - page 382
6.2.1.A Basic Fairness Policies - page 383
6.2.1.B Multi-Dimension Fairness Policies and Per Credential Overrides -
page 387
6.2.2 Override Limits - page 394
6.2.3 Idle Job Limits - page 395
6.2.4 Hard and Soft Limits - page 397
6.2.5 Per-partition Limits - page 398
6.2.5.A Configuring Per-partition Limits - page 398
6.2.5.B Supported Credentials and Limits - page 399
6.2.6 Usage-based limits - page 399
6.2.6.A Configuring Actions - page 399
6.2.6.B Format - page 400
6.2.6.C Specifying Hard and Soft Policy Violations - page 401
6.2.6.D Constraining Walltime Usage - page 402

& J

6.2.1 Fairness via Throttling Policies

Moab allows significant flexibility with usage limits, or throttling policies. At a high level,
Moab allows resource usage limits to be specified in three primary workload categories:
(1) active, (2) idle, and (3) system job limits.

6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6.2.1.A Basic Fairness Policies

Workload o

category Description

Active job limits Constrain the total cumulative resources available to active jobs at a
given time.

Idle job limits Constrain the total cumulative resources available to idle jobs at a given
time.

System job limits Constrain the maximum resource requirements of any single job.

These limits can be applied to any job credential (user, group, account, QoS, and class), or
on a system-wide basis. Using the keyword DEFAULT, a site can also specify the default
setting for the desired user, group, account, QoS, and class. Additionally, you can configure
QoS to allow limit overrides to any particular policy.

To run, a job must meet all policy limits. Limits are applied using the *CFG set of
parameters, particularly USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and
SYSCFG. Limits are specified by associating the desired limit to the individual or default
object. The usage limits currently supported are listed in the following table.

6.2 Usage Limits/Throttling Policies 383

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Usage Limits

MAXARRAYJOB

|

Units Number of simultaneous active array job subjobs.

Description Limits the number of simultaneously active (starting or running) array
subjobs a credential can have.

(
Example | USERCFG[gertrude] MAXARRAYJOB=10 I
\

MAXGRES

Units # of concurrent uses of a generic resource

Description Limits the concurrent usage of a generic resource to a specific quantity or
quantity range.

Sy
:USERCFG[joe] MAXGRES [matlab]
| USERCFG[jim] MAXGRES [matlab])
\

Example

MAXJOB

|

Units # of jobs

Description Limits the number of jobs a credential can have active (starting or running)
at any given time. Moab places a hold on all new jobs submitted by that
credential once it has reached its maximum number of allowable jobs.

o MAXJOB=0 is not supported. You can, however, achieve similar
results by using the HOLD attribute of the USERCFG parameter:

USERCFG[john] HOLD=yes \

e —
|

USERCFG [DEFAULT] MAXJOB=8 }
|

| GROUPCFG[staff] MAXJOB=2,4)
N e e e e e

Example

384 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

MAXMEM

Units total memory in MB

Description Limits the total amount of dedicated memory (in MB) that can be allocated
by a credential's active jobs at any given time.

Example ! ACCOUNTCFG [jasper] MAXMEM=2048)n
\

MAXNODE

Units # of nodes

Description Limits the total number of compute nodes that can be in use by active jobs
at any given time.

o Adaptive Computing recommends that you set
JOBNODEMATCHPOLICY EXACTNODE when using MAXNODE. This
ensures jobs submitted using the msub/qsub "-1 nodes=#" syntax will
have a node count associated with the request.

On some systems (including Torque/PBS), nodes have been softly
defined rather than strictly defined; that is, a job may request 2
nodes but Torque will translate this request into 1 node with 2
processors. This can prevent Moab from enforcing a MAXNODE
policy correctly for a single job. Correct behavior can be achieved

using MAXPROC.
Example e e e }
N
MAXPE
Units # of processor equivalents

Description Limits the total number of dedicated processor-equivalents that can be
allocated by active jobs at any given time.

Example I 0oscFG[base] MAXPE=128 |
\

6.2 Usage Limits/Throttling Policies 385

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

MAXPROC

|

Units # of processors

Description Limits the total number of dedicated processors that can be allocated by

active jobs at any given time per credential. To set MAXPROC per job, use
msub -W,

Example | CLASSCFG [debug] MAXPROC=32 |
\

MAXPS

|

Units <# of processors> * <walltime>

Description Limits the number of outstanding processor-seconds a credential can have
allocated at any given time. For example, if a user has a 4-processor job
that will complete in 1 hour and a 2-processor job that will complete in 6
hours, they have 4 * 1 * 3600 + 2 * 6 * 3600 = 16 * 3600 outstanding
processor-seconds. The outstanding processor-second usage of each
credential is updated each scheduling iteration, decreasing as jobs
approach their completion time.

Example | USERCFG [DEFAULT] MAXPS=720000 I
\

MAXSUBMITJOBS

Units # of jobs

Description Limits the number of jobs a credential can submit and have in the system
at once. Moab will reject any job submitted beyond this limit.

If you use a Torque resource manager, you should also set max_user
queuable in case the user submits jobs via gsub instead of msub. See
'Queue Attributes' in the Torque Administrator Guide for more
information.

(
Example | USERCFG [DEFAULT] MAXSUBMITJOBS=5 I
\

386 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

MAXWC

Units job duration [[[DD:]JHH:]MM:]SS

Description Limits the cumulative remaining walltime a credential can have associated
with active jobs. It behaves identically to the MAXPS limit (listed earlier)
only lacking the processor weighting. Like MAXPS, the cumulative
remaining walltime of each credential is also updated each scheduling
iteration.

capability, use MAX.WCLIMIT.

o MAXWC does not limit the maximum wallclock limit per job. For this]

Example

| USERCFG[DEFAULT] MAXJOB=4 :
USERCFG[john] MAXJOB=8 |

e e
|{ This example allows user john to run up to 8 jobs while all other users can only run up to 4. [

|
\

Simultaneous limits of different types can be applied per credential and multiple types of
credentials can have limits specified. The next example demonstrates this mixing of limits
and is a bit more complicated.

USERCFEG [steve] MAXJOB=2 MAXNODE=30
GROUPCFG [staff] MAXJOB=5
CLASSCFG[DEFAULT] MAXNODE=16

CLASSCFG [batch] MAXNODE=32

This configuration may potentially apply multiple limits to a single job. As discussed
previously, a job can only run if it satisfies all applicable limits. Thus, in this example, the
scheduler will be constrained to allow at most 2 simultaneous user steve jobs with an
aggregate node consumption of no more than 30 nodes. However, if the job is submitted to
a class other than batch, it may be limited further. Here, only 16 total nodes can be used
simultaneously by jobs running in any given class with the exception of the class batch. If
steve submitted a job to run in the class interactive, for example, and there were
jobs already running in this class using a total of 14 nodes, his job would be blocked unless
it requested 2 or fewer nodes by the default limit of 1 6 nodes per class.

6.2.1.B Multi-Dimension Fairness Policies and Per Credential Overrides

Multi-dimensional fairness policies allow a site to specify policies based on combinations of
job credentials. A common example might be setting a maximum number of jobs allowed
per queue per user or a total number of processors per group per QoS. As with basic

6.2 Usage Limits/Throttling Policies 387

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

fairness policies, multi-dimension policies are specified using the *CFG parameters or
through the identity manager interface. Moab supports the most commonly used multi-
dimensional fairness policies (listed in the table below) using the following format:

*CFG[X] <LIMITTYPE>[<CRED>]=<LIMITVALUE>

*CFG is one of USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, or CLASSCFG, the
<LIMITTYPE> policy is one of the policies listed in the table in section 6.2.1.1, and
<CRED> is of the format <CREDTYPE> [: <VALUE>] with CREDTYPE being one of USER,
GROUP, ACCT, QoS, or CLASS. The optional <VALUE> setting can be used to specify that
the policy only applies to a specific credential value. For example, the following
configuration sets limits on the class fast, controlling the maximum number of jobs any
group can have active at any given time and the number of processors in use at any given
time for user steve.

o —————————————————————————

| CLASSCFG[fast] MAXJOB[GROUP]=12 ,
| CLASSCFG[fast] MAXPROC[USER:steve]=50 !
| CLASSCFG[fast] MAXIJOB[USER]=10 |

: # allow class batch to run up the 3 simultaneous jobs :
: # allow any user to use up to 8 total nodes within class {
I CLASSCFG[batch] MAXJOB=3 MAXNODE [USER]=8 |
I # allow users steve and bob to use up to 3 and 4 total processors respectively within :
: class :
| |

[o Multi-dimensional policies cannot be applied on DEFAULT credentials.]

The table below lists the currently implemented, multi-dimensional usage limit
permutations. The "slmt" stands for "Soft Limit" and "hlmt" stands for "Hard Limit."

388 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimensional Usage Limit Permutations

Multi-dimension usage limit permutations

ACCOUNTCFG[name] ~ MAXIJOB[QOS]=hImt
MAXIJOB[QOS:qosname]=hlmt

MAXIPROC[QOS]=hlmt
MAXIPROC[QOS:qosname]=hlmt

MAXJOB[QOS]=sImt,hlmt
MAX]JOB[QOS:qosname]=slmt,hlmt

MAX]JOB[USER]=slmt,hlmt
MAX]JOB[USER:username]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[QOS]=slmt,hlmt
MAXPE[QOS:qosname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPROC[QOS]=slmt,hlmt
MAXPROC[QOS:qosname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[QOS]=slmt,hlmt
MAXPS[QOS:qosname]=slmt,hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

6.2 Usage Limits/Throttling Policies 389

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimension usage limit permutations

MAXWC[USER]=slmt,hlmt
MAXW C[USER:username]=slmt,hlmt

CLASSCFG[name] MAXIJOB[USER]=hImt

MAX]JOB[GROUP]=slmt,hlmt
MAXJOB[GROUP:groupname]=slmt,hlmt

MAX]JOB[QOS:qosname]=hlmt

MAXJOB[USER]=slmt,hlmt
MAX]JOB[USER:username]=slmt,hlmt

MAXMEM[GROUP]=sImt,hImt
MAXMEM[GROUP]=slmt,hlmt

MAXMEM[GROUP]=sImthlmt
MAXMEM[GROUP:groupname]=slmt,hlmt

MAXMEM[QOS:qosname]=hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[GROUP]=slmt,hlmt
MAXNODE[GROUP:groupname]=slmt,hlmt

MAXNODE[QOS:qosname]=hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[GROUP]=slmt,hlmt
MAXPE[GROUP:groupname]=slmt,hlmt

MAXPE[QOS:qosname]=hImt

390 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimension usage limit permutations

MAXPE[USER]=slmt,hlmt
MAXPE[USER:username]=slmt,himt

MAXPROC[GROUP]=slmt,hlmt
MAXPROC[GROUP:groupname]=slmt,hlmt

MAXPROC[QOS:qosname]=hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[GROUP]=slmt,hlmt
MAXPS[GROUP:groupname]=slmt,hlmt

MAXPS[QOS:qosname]=hlmt

MAXPS[USER]=sImt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[GROUP]=slmt,hlmt
MAXWC[GROUP:groupname]=slmt,hlmt

MAXWC[QOS:qosname]=hlmt

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

6.2 Usage Limits/Throttling Policies 391

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimension usage limit permutations

GROUPCFG[name] MAX]JOB[CLASS:classname]=sImt,hImt

MAX]JOB[USER]=slmt,hlmt
MAX]JOB[USER:username]=slmt,hlmt

MAXMEM|[CLASS:classname]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[CLASS:classname]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[CLASS:classname]=slmt,hlmt

MAXPE[USER]=sImt,hlmt
MAXPE[USER:username]=slmt,hlmt

MAXPROC[CLASS:classname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[CLASS:classname]=sImt,hImt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXW C[CLASS:classname]=slmt,hlmt

MAXW C[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

QOSCFG[name] MAXIJOB[ACCT]=hlmt

392 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimension usage limit permutations

MAXIJOB[ACCT:accountname]=hlmt

MAXIJOB[USER]=hlmt
MAXIJOB[USER:class+classname]=hlmt

MAXINODE[ACCT]=slmt,hlmt
MAXINODE[ACCT:accountname]=slmt,hlmt

MAXINODE[USER]=hlmt
MAXINODE[USER:username]=slmt,hlmt

MAXIPROC[ACCT]=hlmt
MAXIPROC[ACCT:accountname]=hlmt

MAX]JOB[ACCT]=slmt,hlmt
MAX]JOB[ACCT:accountname]=slmt,hlmt

MAXJOB[USER]=slmt,hlmt
MAX]JOB[USER:username]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[ACCT]=slmt,hlmt
MAXPE[ACCT:accountname]=slmt,hlmt

MAXPE[USER]=slmt,hlmt
MAXPE[USER:username]=slmt,hlmt

MAXPROC[ACCT]=slmt,hlmt
MAXPROC[ACCT:accountname]=slmt,hlmt

MAXPROC[USER]=sImt,hImt

6.2 Usage Limits/Throttling Policies 393

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Multi-dimension usage limit permutations

MAXPROC[USER:username]=slmt,hlmt

MAXPS[ACCT]=slmt,hlmt
MAXPS[ACCT:accountname]=slmt,hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[USER]=slmt,hlmt
MAXW C[USER:username]=slmt,hlmt

USERCFG[name] MAX]JOB[GROUP]=slmt,hlmt
MAXJOB[GROUP:groupname]=slmt,hlmt

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP:groupname]=slmt,hlmt

MAXNODE[GROUP]=slmt,hlmt
MAXNODE[GROUP:groupname]=slmt,hlmt

MAXPE[GROUP]=slmt,hlmt
MAXPE[GROUP:groupname]=slmt,hlmt

MAXPROC[GROUP]=slmt,hlmt
MAXPROC[GROUP:groupname]=slmt,hlmt

MAXPS[GROUP]=slmt,hlmt
MAXPS[GROUP:groupname]=slmt,hlmt

MAXWC[GROUP]=slmt,hlmt
MAXWC[GROUP:groupname]=slmt,hlmt

6.2.2 Override Limits

Like all job credentials, the QoS object can be associated with resource usage limits.
However, this credential can also be given special override limits that supersede the limits
of other credentials, effectively causing all other limits of the same type to be ignored. See

394 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

QoS Usage Limits and Overrides for a complete list of policies that can be overridden. The
following configuration provides an example of this in the last line:

: USERCFG [steve] MAXJOB=2 MAXNODE=30 :
I GROUPCFG[staff] MAXJOB=5 i
| CLASSCFG[DEFAULT] MAXNODE=16 :
: CLASSCFG [batch] MAXNODE=32 :
|

QOSCFG [hiprio] OMAXJOB=3 OMAXNODE=64 J
N -~

: Only 3 hiprio QoS jobs can run simultaneously and hiprio QoS jobs can run with up to 64 nodes per credential
! ignoring other credential MAXNODE limits.

Given the preceding configuration, assume a job is submitted with the credentials, user
steve, group staff,class batch,and QoS hiprio.

Such a job will start so long as running it does not lead to any of the following conditions:
o Total nodes used by user steve does not exceed 64.
« Total active jobs associated with user steve does not exceed 2.
« Total active jobs associated with group staff does not exceed 5.
o Total nodes dedicated to class batch does not exceed 64.
« Total active jobs associated with QoS hiprio does not exceed 3.

While the preceding example is a bit complicated for most sites, similar combinations may
be required to enforce policies found on many systems.

6.2.3 Idle Job Limits

Idle (or queued) job limits control which jobs are eligible for scheduling. To be eligible for
scheduling, a job must meet the following conditions:

o Beidle as far as the resource manager is concerned (no holds).
« Have all job prerequisites satisfied (no outstanding job or data dependencies).
o Meet all idle job throttling policies.

If a job fails to meet any of these conditions, it will not be considered for scheduling and will
not accrue service based job prioritization (see Service (SERVICE) Component and
JOBPRIOACCRUALPOLICY.) The primary purpose of idle job limits is to ensure fairness
among competing users by preventing queue stuffing and other similar abuses. Queue
stuffing occurs when a single entity submits large numbers of jobs, perhaps thousands, all
at once so they begin accruing queue time based priority and remain first to run despite
subsequent submissions by other users.

Idle limits are specified in a manner almost identical to active job limits with the insertion of
the capital letter I into the middle of the limit name. The following tables describe the

6.2 Usage Limits/Throttling Policies 395

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

MAXTIARRAYJOB, MAXTIJOB, and MAXINODE limits, which are idle limit equivalents to
MAXARRAY]JOB, MAX]JOB, and MAXNODE limits, respectively.

MAXIARRAYJOB

|
|

Units Number of simultaneous idle array job subjobs.

Description Limits the number of simultaneously idle (eligible) job array subjobs across all
job arrays submitted by a credential.

(
Example | USERCFG[gertrude] MAXARRAYJOB=10 MAXIARRAYJOB=5 1
\

Gertrude can have a maximum of 10 active job array subjobs and 5
eligible job array subjobs.

MAXIJOB

Units # of jobs

Description Limits the number of idle (eligible) jobs a credential can have at any given

time.

Example | USERCFG [DEFAULT] MAXIJOB=8 ||
| GROUPCFG[staff] MAXIJOB=4 i
N e J

MAXINODE

Units # of nodes

Description Limits the total number of compute nodes that can be requested by jobs in the
eligible/idle queue at any time. Once the limit is exceeded, the remaining jobs

will be placed in the blocked queue. The number of nodes is determined by
<tasks> / <maximumProcsOnOneNode> or, if using

JOBNODEMATCHPOLICY EXACTNODE, by the number of nodes requested.

(
Example | USERCFG[DEFAULT] MAXINODE=2 I
\

Idle limits can constrain the total number of jobs considered to be eligible on a per
credential basis. Further, like active job limits, idle job limits can also constrain eligible jobs
based on aggregate requested resources. This could, for example, allow a site to indicate
that for a given user, only jobs requesting up to a total of 64 processors, or 3200
processor-seconds would be considered at any given time. Which jobs to select is

396 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

accomplished by prioritizing all idle jobs and then adding jobs to the eligible list one at a
time in priority order until jobs can no longer be added. This eligible job selection is done
only once per scheduling iteration, so, consequently, idle job limits only support a single
hard limit specification. Any specified soft limit is ignored.

All single dimensional job limit types supported as active job limits are also supported as
idle job limits. In addition, Moab also supports MAXIJOB[USER] and MAXIPROC[USER]
policies on a per class basis (see Basic Fairness Policies.)

Example

(___ ~
| USERCFG|[steve] MAXTIJOB=2 :
| GROUPCFG[staff] MAXIJOB=5 !
: CLASSCFG[batch] MAXTIJOB[USER]=2 MAXIJOB[USER:john]=6 |
| QOSCFG[hiprio] MAXTIJOB=3)l
.- .

6.2.4 Hard and Soft Limits

Hard and soft limit specification allows a site to balance both fairness and utilization on a
given system. Typically, throttling limits are used to constrain the quantity of resources a
given credential (such as user or group) is allowed to consume. These limits can be very
effective in enforcing fair usage among a group of users. However, in a lightly loaded
system, or one in which there are significant swings in usage from project to project, these
limits can reduce system utilization by blocking jobs even when no competing jobs are
queued.

Soft limits help address this problem by providing additional scheduling flexibility. They
allow sites to specify two tiers of limits; the more constraining limits soft limits are in effect
in heavily loaded situations and reflect tight fairness constraints. The more flexible hard
limits specify how flexible the scheduler can be in selecting jobs when there are idle
resources available after all jobs meeting the tighter soft limits have started. Soft and hard
limits are specified in the format [<SOFTLIMIT>,] <HARDLIMIT>. For example, a given
site may want to use the following configuration:

—_——————————————————————————

>

: With this configuration, the scheduler would select all jobs that meet the per user MAXJOB limit of 2. It would then
I attempt to start and reserve resources for all of these selected jobs. If after doing so there still remain available

: resources, the scheduler would then select all jobs that meet the less constraining hard per user MAXJOB limit of 8
: Jjobs. These jobs would then be scheduled and reserved as available resources allow.

I

I

I

If no soft limit is specified or the soft limit is less constraining than the hard limit, the soft limit is set equal to the
. hard limit.

: USERCFG [steve] MAXJOB=2, 4 MAXNODE=15, 30 :
I GROUPCFG[staff] MAXJOB=2, 5 i
| CLASSCFG[DEFAULT] MAXNODE=16, 32 :
| CLASSCFG [batch] MAXNODE=12, 32 |
LQOSCFG[hiprio] MAXJOB=3,5 MAXNODE=32, 64 J|

6.2 Usage Limits/Throttling Policies 397

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

o Job preemption status can be adjusted based on whether the job violates a soft policy
using the ENABLESPVIOLATIONPREEMPTION parameter.

6.2.5 Per-partition Limits

Per-partition scheduling can set limits and enforce credentials and polices on a per-
partition basis. Configuration for per-partition scheduling is done on the Moab Grid Control.
In a grid, each Moab cluster is considered a partition. Per-partition scheduling is typically
used in a Moab Grid Control / Moab Grid Member grid.

To enable per-partition scheduling, add the following to moab.cfg:

I3
: PERPARTITIONSCHEDULING TRUE
| JOBMIGRATEPOLICY JUSTINTIME |

o With per-partition scheduling, it is recommended that limits go on the specific
partitions and not on the global level. If limits are specified on both levels, Moab will
take the more constricting of the limits. Also, note that a DEFAULT policy on the global
partition is not overridden by any policy on a specific partition.

6.2.5.A Configuring Per-partition Limits

You can configure per-job limits and credential usage limits on a per-partition basis in the
moab . cfqg file. Here is a sample configuration for partitions g02 and g03 in moab.cfg.

r
I PARCFG[g02] CONFIGFILE=/opt/moab/parg02.cfg I
PARCFG[g03] CONFIGFILE=/opt/moab/parg03.cfg I

|
. - . /

r

: # /opt/moab/parg02.cfg

| CLASSCFG[pbatch] MAXJOB=5 |
\

r
I # /opt/moab/parg03.cfg |
CLASSCFG[pbatch] MAXJOB=10 |

|
. . /

You can configure Moab so that jobs submitted to any partition besides g02and g03 get
the default limits in moab.cfg:

e — ————————————————————————

398 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6.2.5.B Supported Credentials and Limits

The user, group, account, QoS, and class credentials are supported in per-partition
scheduling.

The following per-job limits are supported:
« MAX.NODE
o MAX.WCLIMIT
« MAX.PROC
The following credential usage limits are supported:
« MAX]JOB
« MAXNODE
« MAXPROC
« MAXWC
« MAXSUBMITJ]OBS

Multi-dimensional limits are supported for the listed credentials and per-job limits. For
example:

e

6.2.6 Usage-based limits

Resource usage limits constrain the amount of resources a given job can consume. These
limits are generally proportional to the resources requested and can include walltime, any
standard resource, or any specified generic resource. The parameter
RESOURCELIMITPOLICY controls which resources are limited, what limit policy is enforced
per resource, and what actions the scheduler should take in the event of a policy violation.

6.2.6.A Configuring Actions

The RESOURCELIMITPOLICY parameter accepts a number of policies, resources, and
actions using the format and values defined below.

o If walltime is the resource to be limited, be sure that the resource manager is
configured to not interfere if a job surpasses its given walltime. For Torque, this is
done by using $ignwalltime in the configuration on each MOM node.

6.2 Usage Limits/Throttling Policies 399

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6.2.6.B Format

RESOURCELIMITPOLICY<RESOURCE>: [<SPOLICY>,]<HPOLICY>:
[<SACTION>, J<HACTION>[:[<SVIOLATIONTIME>,]<HVIOLATIONTIME>]...

Resource Description

CPUTIME Maximum total job proc-seconds used by any single job (allows scheduler
enforcement of cpulimit).

DISK Local disk space (in MB) used by any single job task.
JOBMEM Maximum real memory/RAM (in MB) used by any single job.

[o JOBMEM will only work with the MAXMEM flag.]
JOBPROC Maximum processor load associated with any single job. You must set

MAXPROC tg yse JOBPROC,

MEM Maximum real memory/RAM (in MB) used by any single job task.

MINJOBPROC Minimum processor load associated with any single job (action taken if job is
using 5% or less of potential CPU usage).

NETWORK Maximum network load associated with any single job task.

PROC Maximum processor load associated with any single job task.

SWAP Maximum virtual memory/SWAP (in MB) used by any single job task.
WALLTIME Requested job walltime.

ALWAYS take action whenever a violation is detected
EXTENDEDVIOLATION take action only if a violation is detected and persists for

greater than the specified time limit

BLOCKEDWORKLOADONLY take action only if a violation is detected and the constrained
resource is required by another job

400 6.2 Usage Limits/Throttling Policies

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

o

CANCEL terminate the job

CHECKPOINT checkpoint and terminate job

MIGRATE requeue the job and require a different set of hosts for execution

NOTIFY notify admins and job owner regarding violation

REQUEUE terminate and requeue the job

SUSPEND suspend the job and leave it suspended for an amount of time defined by the

MINADMINSTIME parameter

Example 6-1: Notify and then cancel job if requested memory is exceeded

g

: # if job exceeds memory usage, immediately notify owner
: # 1f job exceeds memory usage for more than 5 minutes, cancel the job
| RESOURCELIMITPOLICY MEM:ALWAYS, EXTENDEDVIOLATION:NOTIFY,CANCEL:00:05:00

1f job exceeds requested walltime, checkpoint job :
RESOURCELIMITPOLICY WALLTIME:ALWAYS:CHECKPOINT |
when checkpointing, send term signal, followed by kill 1 minute later :
RMCFG [base] TYPE=PBS CHECKPOINTTIMEOUT=00:01:00 CHECKPOINTSIG=SIGTERM |

e

e

6.2.6.C Specifying Hard and Soft Policy Violations

Moab is able to perform different actions for both hard and soft policy violations. In most
resource management systems, a mechanism does not exist to allow the user to specify
both hard and soft limits. To address this, Moab provides the RESOURCELIMITMULTIPLIER
parameter that allows per partition and per resource multiplier factors to be specified to
generate the actual hard and soft limits to be used. If the factor is less than one, the soft
limit will be lower than the specified value and a Moab action will be taken before the
specified limit is reached. If the factor is greater than one, the hard limit will be set higher
than the specified limit allowing a buffer space before the hard limit action is taken.

6.2 Usage Limits/Throttling Policies 401

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

402

In the following example, job owners will be notified by email when their memory reaches
100% of the target, and the job will be canceled if it reaches 125% of the target. For
wallclock usage, the job will be requeued when it reaches 90% of the specified limit if
another job is waiting for its resources, and it will be checkpointed when it reaches the full
limit.

: RESOURCELIMITPOLICY MEM:ALWAYS, ALWAYS :NOTIFY, CANCEL |
: RESOURCELIMITPOLICY WALLTIME : BLOCKEDWORKLOADONLY, ALWAYS : REQUEUE, CHECKPOINT :
| RESOURCELIMITMULTIPLIER MEM:1.25,WALLTIME:0.9 I

6.2.6.D Constraining Walltime Usage

While Moab constrains walltime using the parameter RESOURCELIMITPOLICY like other
resources, it also allows walltime exception policies that are not available with other
resources. In particular, Moab allows jobs to exceed the requested wallclock limit by an
amount specified on a global basis using the JOBMAXOVERRUN parameter or on a per
credential basis using the WCOVERRUN attribute of the CLASSCFG parameter.

JOBMAXOVERRUN 00:10:00 |
CLASSCFG[debug] wcoverrun=00:00:30 |

Related Topics
o« RESOURCELIMITPOLICY parameter

o FSTREE parameter (set usage limits within share tree hierarchy)

o Credential Overview

o JOBMAXOVERRUN parameter

o WCVIOLATIONACTION parameter

o RESOURCELIMITMULTIPLIER parameter

6.3 Fairshare

Fairshare allows historical resource utilization information to be incorporated into job
feasibility and priority decisions. This feature allows site administrators to set system
utilization targets for users, groups, accounts, classes, and QoS levels. Administrators can
also specify the time frame over which resource utilization is evaluated in determining
whether the goal is being reached. Parameters allow sites to specify the utilization metric,
how historical information is aggregated, and the effect of fairshare state on scheduling
behavior. You can specify fairshare targets for any credentials (such as user, group, and
class) that administrators want such information to affect.

6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

-

In this topic:

6.3.1 Fairshare Parameters - page 403
6.3.1.A FSPOLICY - Specifying the Metric of Consumption - page 404
6.3.1.B Specifying Fairshare Timeframe - page 405
6.3.1.C Managing Fairshare Data - page 406
6.3.2 Using Fairshare Information - page 407
6.3.2.A Fairshare Targets - page 407
6.3.2.B Fairshare Caps - page 409
6.3.2.C Priority-Based Fairshare - page 410
6.3.2.D Credential-Specific Fairshare Weights - page 411
6.3.2.E Fairshare Usage Scaling - page 411
6.3.2.F Extended Fairshare Examples - page 412
6.3.3 Hierarchical Fairshare/Share Trees - page 413
6.3.3.A Defining the Tree - page 413
6.3.3.B Controlling Tree Evaluation - page 414

N\

J

6.3.1 Fairshare Parameters

Fairshare is configured at two levels. First, at a system level, configuration is required to
determine how fairshare usage information is to be collected and processed. Second, some
configuration is required at the credential level to determine how this fairshare
information affects particular jobs. The following are system level parameters:

FSINTERVAL Duration of each fairshare window.

FSDEPTH Number of fairshare windows factored into current fairshare utilization.
FSDECAY Decay factor applied to weighting the contribution of each fairshare window.
FSPOLICY Metric to use when tracking fairshare usage.

Credential level configuration consists of specifying fairshare utilization targets using the
* CFG suite of parameters, including ACCOUNTCFG, CLASSCFG, GROUPCFG, QOSCFG, and
USERCFG.

If global (multi-cluster) fairshare is used, Moab must be configured to synchronize this
information with an identity manager.

6.3 Fairshare

403

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Image 6-1: Effective fairshare over 7 days

- 35
Fairshare
Interval /| 30
Fairshare Decay /\
+ 25
-
Q.
- 20 &
Q
@
- 15 &
Q
Q
D
- 10
- 5
Past <€¢— | | | | | | | Effecti
6 5 4 3 2 1 0 Present rective
Fairshare

Fairshare Depth =7

6.3.1.A FSPOLICY - Specifying the Metric of Consumption

As Moab runs, it records how available resources are used. Each iteration
(RMPOLLINTERVAL seconds) it updates fairshare resource utilization statistics. Resource
utilization is tracked in accordance with the FSPOLICY parameter allowing various aspects
of resource consumption information to be measured. This parameter allows selection of
both the types of resources to be tracked and the method of tracking. It provides the option
of tracking usage by dedicated or consumed resources, where dedicated usage tracks what
the scheduler assigns to the job and consumed usage tracks what the job actually uses.

e Josepten

DEDICATEDPES Usage tracked by processor-equivalent seconds dedicated to each job. This
is based on the total number of dedicated processor-equivalent seconds
delivered in the system. Useful in dedicated and shared nodes
environments.

DEDICATEDPS Usage tracked by processor seconds dedicated to each job. This is based
on the total number of dedicated processor seconds delivered in the
system. Useful in dedicated node environments.

DEDICATEDPS% Usage tracked by processor seconds dedicated to each job. This is based
on the total number of dedicated processor seconds available in the

404 6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

e Josepten

system.
[NONE] Disables fairshare.
UTILIZEDPS Usage tracked by processor seconds used by each job. This is based on the

total number of utilized processor seconds delivered in the system. Useful
in shared node/SMP environments.

Example 6-5:

An example may clarify the use of the FSPOLICY parameter. Assume a 4-processor job is
running a parallel /bin/sleep for 15 minutes. It will have a dedicated fairshare usage of
1 processor-hour but a consumed fairshare usage of essentially nothing since it did not
consume anything. Most often, dedicated fairshare usage is used on dedicated resource
platforms while consumed tracking is used in shared SMP environments.

| FSPOLICY DEDICATEDPSS :
| FSINTERVAL 24:00:00 !
| FSDEPTH 28 l
| FSDECAY 0.75)'

6.3.1.B Specifying Fairshare Timeframe

When configuring fairshare, it is important to determine the proper timeframe that should
be considered. Many sites choose to incorporate historical usage information from the last
one to two weeks while others are only concerned about the events of the last few hours.
The correct setting is very site dependent and usually incorporates both average job
turnaround time and site mission policies.

With Moab's fairshare system, time is broken into a number of distinct fairshare windows.
Sites configure the amount of time they want to consider by specifying two parameters,
FSINTERVAL and FSDEPTH. The FSINTERVAL parameter specifies the duration of each
window while the FSDEPTH parameter indicates the number of windows to consider.
Therefore, the total time evaluated by fairshare is simply FSINTERVAL * FSDEPTH.

Many sites want to limit the impact of fairshare data according to its age. The FSDECAY
parameter allows this, causing the most recent fairshare data to contribute more to a
credential's total fairshare usage than older data. This parameter is specified as a standard
decay factor, which is applied to the fairshare data. Generally, decay factors are specified
as a value between 1 and 0 where a value of 1 (the default) indicates no decay should be
specified. The smaller the number, the more rapid the decay using the calculation
WeightedValue = Value * <DECAY> ~ <N> where <N> is the window number.

6.3 Fairshare 405

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

406

The following table shows the impact of a number of commonly used decay factors on the
percentage contribution of each fairshare window:

Decay

100% 100% 100% 100% 100% 100% 100% 100%
0.80 100% 80% 64% 51% 41% 33% 26% 21%
0.75 100% 75% 56% 42% 31% 23% 17% 12%
0.50 100% 50% 25% 13% 6% 3% 2% 1%

While selecting how the total fairshare time frame is broken up between the number and
length of windows is a matter of preference, it is important to note that more windows will
cause the decay factor to degrade the contribution of aged data more quickly.

6.3.1.C Managing Fairshare Data

Using the selected fairshare usage metric, Moab continues to update the current fairshare
window until it reaches a fairshare window boundary, at which point it rolls the fairshare
window and begins updating the new window. The information for each window is stored
in its own file located in the Moab statistics directory. Each file is named
FS.<EPOCHTIME> [.<PNAME>] where <EPOCHTIME> is the time the new fairshare
window became active (see sample data file) and <PNAME> is only used if per-partition
share trees are configured. Each window contains utilization information for each entity, as
well as for total usage.

~

o Historical fairshare data is recorded in the fairshare file using the metric specified by
the FSPOLICY parameter. By default, this metric is processor-seconds.

\ J

o Historical fairshare data can be directly analyzed and reported using the mdiag -f -v
command.

. J

When Moab needs to determine current fairshare usage for a particular credential, it
calculates a decay-weighted average of the usage information for that credential using the
most recent fairshare intervals where the number of windows evaluated is controlled by
the FSDEPTH parameter. For example, assume the credential of interest is user john and
the following parameters are set:

6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

g

| FSINTERVAL 12:00:00 ‘l
| FSDEPTH 4 l
| FSDECAY 0.5 !
\

Further assume that the fairshare usage intervals have the following usage amounts:

Fairshare interval | Total user john usage | Total cluster usage

0 60 110
1 0 125
2 10 100
3 50 150

Based on this information, the current fairshare usage for user john would be calculated
as follows:

Usage = (60 * 1 +.5"1 * 0 +.5"2 * 10 +.5"3 * 50) / (110 +.5"1*125 + .572*100 +.5"3*150)

J

o The current fairshare usage is relative to the actual resources delivered by the
system over the timeframe evaluated, not the resources available or configured
during that time.

\

\

J

o Historical fairshare data is organized into a number of data files, each file containing
the information for a length of time as specified by the FSINTERVAL parameter.
Although FSDEPTH, FSINTERVAL, and FSDECAY can be freely and dynamically
modified, such changes might result in unexpected fairshare status for a period of
time as the fairshare data files with the old FSINTERVAL setting are rolled out.

s
(N

6.3.2 Using Fairshare Information

6.3.2.A Fairshare Targets

Once the global fairshare policies have been configured, the next step involves applying
resulting fairshare usage information to affect scheduling behavior. As mentioned in the
Fairshare Overview, by specifying fairshare targets, site administrators can configure how
fairshare information impacts scheduling behavior. The targets can be applied to user,
group, account, QoS, or class credentials using the FSTARGET attribute of *CFG credential

6.3 Fairshare 407

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

408

parameters. These targets allow fairshare information to affect job priority and each target
can be independently selected to be one of the types documented in the following table:

Target type - Ceiling

|
|

Target -
modifier

Job impact Priority
Format Percentage Usage

Description Adjusts job priority down when usage exceeds target. See How violated ceilings
and floors affect fairshare-based priority for more information on how ceilings
affect job priority.

Target type - Floor

Target +
modifier

Job impact Priority
Format Percentage Usage

Description Adjusts job priority up when usage falls below target. See How violated ceilings
and floors affect fairshare-based priority for more information on how floors
affect job priority.

Target type - Target

Target modifier N/A

Job impact Priority
Format Percentage Usage
Description Adjusts job priority when usage does not meet target.

6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

o Setting a fairshare target value of 0 indicates that there is no target and that the
priority of jobs associated with that credential should not be affected by the
credential's previous fairshare target. If you want a credential's cluster usage near
0%, set the target to a very small value, such as 0.001.

Example

The following example increases the priority of jobs belonging to user john until he
reaches 16.5% of total cluster usage. All other users have priority adjusted both up and
down to bring them to their target usage of 10%.

| FSPOLICY DEDICATEDPS |
| FSWEIGHT 1 !
| FSUSERWEIGHT 100

| USERCFG[john] FSTARGET=16.5+

| USERCFG [DEFAULT] FSTARGET=10 !
N J

6.3.2.B Fairshare Caps

Where fairshare targets affect a job's priority and position in the eligible queue, fairshare
caps affect a job's eligibility. Caps can be applied to users, accounts, groups, classes, and
QoSs using the FSCAP attribute of *CFG credential parameters and can be configured to
modify scheduling behavior. Unlike fairshare targets, if a credential reaches its fairshare
cap, its jobs can no longer run and are therefore removed from the eligible queue and
placed in the blocked queue. In this respect, fairshare targets behave like soft limits and
fairshare caps behave like hard limits. Fairshare caps can be absolute or relative as
described in the following table. If no modifier is specified, the cap is interpreted as
relative.

Absolute Cap

Cap A
Modifier

Job Impact Feasibility

Format Absolute Usage

Description Constrains job eligibility as an absolute quantity measured according to the
scheduler charge metric as defined by the FSPOLICY parameter.

6.3 Fairshare 409

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

410

Relative Cap

Cap %
Modifier

Job Impact Feasibility

Format Percentage Usage

Description Constrains job eligibility as a percentage of total delivered cycles measured
according to the scheduler charge metric as defined by the FSPOLICY
parameter.

Example

The following example constrains the marketing account to use no more than 16, 500
processor seconds during any given floating one week window. At the same time, all other
accounts are constrained to use no more than 10% of the total delivered processor seconds
during any given one week window.

| FspoLICY DEDICATEDPS }
| FSINTERVAL 12:00:00 ‘I
| FSDEPTH 14 |
| ACCOUNTCFG [marketing] FSCAP=16500" l
| ACCOUNTCEFG [DEFAULT] FSCAP=10 !
| |

6.3.2.C Priority-Based Fairshare

The most commonly used type of fairshare is priority based fairshare. In this mode,
fairshare information does not affect whether a job can run, but rather only the job's
priority relative to other jobs. In most cases, this is the desired behavior. Using the
standard fairshare target, the priority of jobs of a particular user who has used too many
resources over the specified fairshare window is lowered. Also, the standard fairshare
target increases the priority of jobs that have not received enough resources.

While the standard fairshare target is the most commonly used, Moab can also specify
fairshare ceilings and floors. These targets are like the default target; however, ceilings
only adjust priority down when usage is too high and floors only adjust priority up when
usage is too low.

Since fairshare usage information must be integrated with Moab's overall priority
mechanism, it is critical that the corresponding fairshare priority weights be set.
Specifically, the FSWEIGHT component weight parameter and the target type
subcomponent weight (such as FSACCOUNTWEIGHT, FSCLASSWEIGHT, FSGROUPWEIGHT,
FSQOSWEIGHT, and FSUSERWEIGHT) be specified.

6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

o If these weights are not set, the fairshare mechanism will be enabled but have no
effect on scheduling behavior. See the Job Priority Factor Overview for more
information on setting priority weights.

1 # set relative component weighting
FSWEIGHT 1
FSUSERWEIGHT 10
FSGROUPWEIGHT 50

| I
| |
: [
' [
' [
. I
I [
| FSINTERVAL 12:00:00 :
| FSDEPTH 4 |
| FSDECAY 0.5 ;
| FSPOLICY DEDICATEDPS :
l # all users should have a FS target of 10% |
: USERCFEG [DEFAULT] FSTARGET=10.0 :
| # user john gets extra cycles

: USERCFG[john] FSTARGET=20.0 |
I # reduce staff priority if group usage exceed 15% :
| GROUPCFG[staff] FSTARGET=15.0- |
: # give group orion additional priority if usage drops below 25.7% :
| GROUPCFG[orion] FSTARGET=25.7+ J

o Job preemption status can be adjusted based on whether the job violates a fairshare
target using the ENABLEFSVIOLATIONPREEMPTION parameter.

6.3.2.D Credential-Specific Fairshare Weights

Credential-specific fairshare weights can be set using the FSWEIGHT attribute of the
ACCOUNT, GROUP, and QOS credentials as in the following example:

r
:FSWEIGHT 1000 \l
| ACCOUNTCFG[orionl] FSWEIGHT=100 I
| ACCOUNTCFG[orion2] FSWEIGHT=200 !
| ACCOUNTCFG[orion3] FSWEIGHT=-100 i
| GROUPCEG[staff] FSWEIGHT=10 J|

If specified, a per-credential fairshare weight is added to the global component fairshare
weight.

[o The FSWEIGHT attribute is only enabled for ACCOUNT, GROUP, and QOS credentials. J

6.3.2.E Fairshare Usage Scaling

Moab uses the FSSCALINGFACTOR attribute for QOS credentials to get the calculated
fairshare usage of a job.

6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

Moab will multiple the actual fairshare usage by this value to get the calculated fairshare
usage of a job. The actual fairshare usage is calculated based on the FSPOLICY parameter.

For an example, if FSPOLICY is set to DEDICATEDPS and a job runs on two processors for
100 seconds then the actual fairshare usage would be 200. If the job ran on a qos with
FSSCALINGFACTOR=.5 then Moab would multiply 200*.5=100. If the job ran on a partition
with FSSCALINGFACTOR=2 then Moab would multiply 200*2=400.

o PARCFG also lets you specify the FSSCALINGFACTOR for partitions. See 7.2.5 Per-
Partition Settings - page 523.

6.3.2.F Extended Fairshare Examples

Example 6-6: Multi-Cred Cycle Distribution

Example 1 represents a university setting where different schools have access to a cluster.
The Engineering department has put the most money into the cluster and therefore has
greater access to the cluster. The Math, Computer Science, and Physics departments have
also pooled their money into the cluster and have reduced relative access. A support group
also has access to the cluster, but since they only require minimal compute time and
shouldn't block the higher-paying departments, they are constrained to five percent of the
cluster. At this time, users Tom and John have specific high-priority projects that need
increased cycles.

e
: #global general usage limits - negative priority jobs are considered in scheduling }
| ENABLENEGJOBPRIORITY TRUE

: # site policy - no job can last longer than 8 hours :
: USERCFG [DEFAULT] MAX.WCLIMIT=8:00:00

| # Note: default user FS target only specified to apply default user-to-user balance |
: USERCFG[DEFAULT] FSTARGET=1

I # high-level fairshare config

| FSPOLICY DEDICATEDPS |
: FSINTERVAL 12:00:00

| FSDEPTH 32 #recycle FS every 16 days I
: FSDECAY 0.8 #favor more recent usage info :
: # gos config

| QOSCFG[inst] FSTARGET=25

: QOSCFEG [supp] FSTARGET=5 :
I QOSCFG[premium] FSTARGET=70 I
l # account config (QoS access and fstargets) :
} # Note: wuser-to-account mapping handled via accounting manager :
| # Note: FS targets are percentage of total cluster, not percentage of QOS |
| ACCOUNTCFG[cs] QLIST=inst FSTARGET=10 }
: ACCOUNTCFG[math] QLIST=inst FSTARGET=15 :
I I
: ACCOUNTCFG[phys] QLIST=supp FSTARGET=5 :
| ACCOUNTCFG[eng] QLIST=premium FSTARGET=70 I
: # handle per-user priority exceptions :
: USERCFG[tom] PRIORITY=100

L USERCFG[john] PRIORITY=35)

412 6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

define overall job priority

USERWEIGHT 10 # user exceptions

relative FS weights (Note: QOS overrides ACCOUNT which overrides USER)
FSUSERWEIGHT 1

FSACCOUNTWEIGHT 10

FSQOSWEIGHT 100

I
I
I
I
I
I
I
I
I
} # apply XFactor to balance cycle delivery by job size fairly

: # Note: queuetime factor also on by default (use QUEUETIMEWEIGHT to adjust)
| XFACTORWEIGHT 100

| # enable preemption

| PREEMPTPOLICY REQUEUE

: # temporarily allow phys to preempt math

: ACCOUNTCFG [phys] JOBFLAGS=PREEMPTOR PRIORITY=1000

L ACCOUNTCFG [math] JOBFLAGS=PREEMPTEE

6.3.3 Hierarchical Fairshare/Share Trees

Moab supports arbitrary depth hierarchical fairshare based on a share tree. In this model],
users, groups, classes, and accounts can be arbitrarily organized and their usage tracked
and limited. Moab extends common share tree concepts to allow mixing of credential types,
enforcement of ceiling and floor style usage targets, and mixing of hierarchical fairshare
state with other priority components.

o You can terminate your tnode with '</tnode>' or '<tnode />'.

)
~——

6.3.3.A Defining the Tree

The FSTREE parameter can be used to define and configure the share tree used in
fairshare configuration. This parameter supports the following attributes:

- _

Format <COUNT>[@<PARTITION>][,<COUNT>[@<PARTITION>]]... where <COUNT>
is a double and <PARTITION> is a specified partition name.

Description The node target usage or share.

S
| FSTREE[Eng] SHARES=1500.5 :
I

| FSTREE [Sales] SHARES=2800]
N e e e

Example

MEMBERLIST

Format Comma-delimited list of child nodes of the format [<OBJECT
TYPE>] : <OBJECT ID> where object types are only specified for leaf nodes

6.3 Fairshare 413

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

414

MEMBERLIST

associated with user, group, class, qos, or acct credentials.

Description The tree objects associated with this node.

gy
Example | FSTREE [root] SHARES=100 MEMBERLIST=Eng, Sales }
| FSTREE [Eng] SHARES=1500.5 MEMBERLIST=user:john,user:steve, user:bob |
| FSTREE[Sales] SHARES=2800 MEMBERLIST=Salesl, Sales2,Sales3 :
| FSTREE [Salesl] SHARES=30 MEMBERLIST=user:kellyp,user:sam |
: FSTREE [Sales2?2] SHARES=10 MEMBERLIST=user:ux43,user:ux44,user:ux45 l
|\ FSTREE [Sales3] SHARES=60 MEMBERLIST=user:robert,user:tjackson)I

Current tree configuration and monitored usage distribution is available using the mdiag -f
-v commands.

6.3.3.B Controlling Tree Evaluation

Moab provides multiple policies to customize how the share tree is evaluated.

FSTREETIERMULTIPLIER Decreases the value of sub-level usage discrepancies. It can be a
positive or negative value. When positive, the parent's usage in
the tree takes precedence; when negative, the child's usage takes
precedence. The usage amount is not changed, only the
coefficient used when calculating the value of fstree usage in
priority. When using this parameter, it is recommended that you
research how it changes the values in mdiag -p to determine
the appropriate use.

FSTREECAP Caps lower level usage factors to prevent them from exceeding
upper tier discrepancies.

Using FS Floors and Ceilings with Hierarchical Fairshare

All standard fairshare facilities including target floors, target ceilings, and target caps are
supported when using hierarchical fairshare.

Multi-Partition Fairshare

Moab supports independent, per-partition hierarchical fairshare targets allowing each
partition to possess independent prioritization and usage constraint settings. This is
accomplished by setting the PERPARTITIONSCHEDULING attribute of the FSTREE

6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

parameter to TRUE in moab.cfg and setting partition="name" in your <fstree>
leaf.

___ N
| FSTREE [tree] :
: <fstree> |
: <tnode partition="slavel" name="root" type="acct" share="100" limits="MAXJOB=6"> :
| <tnode name="accta" type="acct" share="50" limits="MAXSUBMITJOBS=2 MAXJOB=1"> I
: <tnode name="fred" type="user" share="1" 1limits="MAXWC=1:00:00"> }
| </tnode> I
: </tnode> :
| <tnode name="acctb" type="acct" share="50" limits="MAXSUBMITJOBS=4 MAXJOB=3"> I
: <tnode name="george" type="user" share="1" > :
I </tnode> I
! </tnode> :
I </tnode>

: <tnode partition="slave2" name="root" type="acct" share="100" :
| 1limits="MAXSUBMITJOBS=6 MAXJOB=5"> |
: <tnode name="accta" type="acct" share="50"> :
| <tnode name="paul" type="user" share="1"> |
: </tnode> }
I </tnode> |
: <tnode name="acctb" type="acct" share="50"> :
| <tnode name="ringo" type="user" share="1"> I
: </tnode>]
I </tnode>

: </tnode>

L </fstree> I

o If no partition is specified for a given share value, then this value is assigned to the
global partition. If a partition exists for which there are no explicitly specified shares
for any node, this partition will use the share distribution assigned to the global
partition.

Dynamically Importing Share Tree Data

Share trees can be centrally defined within a database, flat file, information service, or
other system and this information can be dynamically imported and used within Moab by
setting the FSTREE parameter within the Identity Managers. This interface can be used to
load current information at startup and periodically synchronize this information with the
master source.

To Create a Fairshare Tree in a Separate XML File and Import it into
Moab

1. Create a file to store your fair share tree specification. Give it a descriptive name and
store it in your Moab home directory (SMOABHOMEDIR or $MOABHOMEDIR/etc).In
this example, the file is called fstree.dat.

2. In the firstline of fstree.dat,set FSTREE [myTree] to indicate that this is a
fairshare file.

3. Build a tree in XML to match your needs. For example:

6.3 Fairshare 415

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

416

FSTREE [myTree] :
<fstree> I
<tnode name="root" share="100"> :
<tnode name="john" type="user" share="50" limits="MAXJOB=8 MAXPROC=24 :
MAXWC=01:00:00"></tnode>

<tnode name="jane" type="user" share="50" limits="MAXJOB=5"></tnode> :
</tnode> |
</fstree> J

I This configuration creates a fairshare tree where users share a value of 100. Users john and jane share the

| value equally, because each has been given 50.
. . J

Because 100 is an arbitrary number, users john and jane could be assigned 10000
and 10000 respectively and still have a 50% share under the parent leaf. To keep the
example simple, however, it is recommended that you use 100 as your arbitrary share
value and distribute the share as percentages. In this case, john and jane each have
50%.

If the users' numbers do not add up to at least the fairshare value of 100, the remaining
value is shared among all users under the tree. For instance, if the tree had a value of
100, user john had a value of 50, and user jane had a value of 25, then 25% of the
fairshare tree value would belong to all other users associated with the tree. By default,
tree leaves do not limit who can run under them.

0 Each value specified in the tnode elements must be contained in quotation
marks.

Optional: Share trees defined within a flat file can be cumbersome; consider running
tidy for xml to improve readability. Sample usage:

]
I
I
I
FSTREE [myTree] {
<fstree> I
<tnode name="root" share="100"> :
<tnode name="john" type="user" share="50" limits="MAXJOB=8 :
MAXPROC=24 MAXWC=01:00:00">
</tnode> :
<tnode name="jane" type="user" share="50" limits="MAXJOB=5"> I
</tnode> :
</tnode> I
</fstree> I

g

\
| IDCFG[myTree] server="FILE:///$SMOABHOMEDIR/etc/fstree.dat" REFRESHPERIOD=INFINITY 1

7
I Moab imports the myTree fairshare tree from the fstree. dat file. Setting REFRESHPERIOD to INFINITY |

L 4 A I
: causes Moab to read the file each time it starts or restarts, but setting a positive interval (e.g., 4:00:00) cause I

l Moab to read the file more often. See Refreshing Identity Manager Data for more information. 1

—— o

6.3 Fairshare

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

6. To view your fairshare tree configuration, run mdiag -f. If it is configured correctly, the
tree information will appear beneath all the information about your fairshare settings
configured in moab.cfg.

(
> mdiag -f

|
I I
: Share Tree Overview for partition 'ALL' }
: Name Usage Target (FSFACTOR)
- o |
[
| root 100.00 100.00 of 100.00 (node: 1171.81) (0.00) :
: - john 16.44 50.00 of 100.00 (user: 192.65) (302.04) MAXJOB=8 :
I MAXPROC=24 MAXWC=3600 |
: - Jjane 83.56 50.00 of 100.00 (user: 979.16) (-302.04) MAXJOB=5 J
o _T___ —
:r The settings you configured in fstree.dat appear in the output. The tree of 100 is shared equally between users :
| johnand jane. |
.- . J
Specifying Share Tree Based Limits
Limits can be specified on internal nodes of the share tree using standard credential limit
semantics. The following credential usage limits are valid:
o MAXIJOB (Maximum number of idle jobs allowed for the credential)
« MAXJOB
« MAXMEM
« MAXNODE
« MAXPROC
« MAXSUBMIT]OBS
¢« MAXWC
Example 6-7: FSTREE limits example
(T N\
: FSTREE [myTree] :
| <fstree> |
: <tnode name="root" share="100">
I <tnode name="john" type="user" share="50" limits="MAXJOB=8 |
: MAXPROC=24 MAXWC=01:00:00"> |
| </tnode> :
: <tnode name="jane" type="user" share="50" limits="MAXJOB=5"> :
I </tnode> :
: </tnode> :
| </fstree> |
\

Specifying a Default Account in a Fair Share Tree

The adef attribute in a fair share tree can be used to specify a default account for a
credential and its children. This is useful for sites with many users who need access to an
account and who use an identity manager to import credentials.

The rules are as follows:

6.3 Fairshare 417

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

418

o When you define an adef attribute on a credential such as a user or qos, then the
child under the tnode inherits the credential.

o When a child has an adef, then that adef overrides the parent.
To define an adef, add a qdef attribute to the tnode for the user:

I <tnode name="jane" type="user" adef="acct2" share="1" |
| glist="batch, special, standby, test, exempt, expedite, super"> </tnode> I

Other Uses of Share Trees

If a share tree is defined, it can be used for purposes beyond fairshare, including
organizing general usage and performance statistics for reporting purposes (see showstats
-T), enforcement of tree node based usage limits, and specification of resource access
policies.

Related Topics
o mdiag -f command (provides diagnosis and monitoring of the fairshare facility)
o FSENABLECAPPRIORITY parameter
« ENABLEFSPREEMPTION parameter
o FSTARGETISABSOLUTE parameter

6.4 Sample FairShare Data File

FS.<EPOCHTIME>

FS Data File (Duration: 43200 seconds) Starting: Sat Jul 8 06:00:20

| |
| user jvella 134087.910

| user reynolds 98283.840

| user gastor 18751.770

: user uannan 145551.260

| user mwillis 149279.140

L. I
| group DEFAULT 411628.980 I
| group RedRock 3121560.280 :
| group Summit 500327.640 |
| group Arches 3047918.940 :
| acct Administration 653559.290 :
: acct Engineering 4746858.620 I
I acct Shared 75033.020 :
| acct Research 1605984.910 :
: qgos Deadline 2727971.100 I
I gos HighPriority 4278431.720]
I qos STANDARD 75033.020 I
: class batch 7081435.840 :
L sched iCluster 7081435.840 J

6.4 Sample FairShare Data File

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

,
: scenario had a user, group, account, and QOS assigned to it, the sum of the usage of all members of each category :
| should equal the total usage value: USERA + USERB + USERC + USERD = GROUPA + GROUPB = ACCTA + ACCTB + I
: ACCTC = QOS0 + QOS1 + QOS2 = SCHED. :

e _

6.5 Accounting, Charging, and Allocation Management

e N

In this topic:

6.5.1 Accounting Manager Overview - page 419
6.5.2 Accounting Mode - page 420
6.5.3 Accounting Manager Interface Types - page 421
6.5.3.A MAM - page 421
6.5.3.B Native - page 422
6.5.4 Charging for Jobs - page 424
6.5.5 Charging for Reservations - page 425
6.5.6 Accounting Properties Reported to the Accounting Manager - page 426
6.5.7 Accounting Stages - page 431
6.5.8 Accounting Events - page 434
6.5.9 Blocking Versus Non-Blocking Accounting Actions - page 434
6.5.10 Retrying Failed Charges - page 435

N\ J

For a complete list of and additional information on the AMCFG parameters and flags, see
6.6 AMCFG Parameters and Flags - page 438.

6.5.1 Accounting Manager Overview

An accounting manager is a software system that enables tracking and charging for job
resource usage. Moab Accounting Manager is a commercial charge-back accounting system
that has built-in integration with Moab Workload Manager. Moab Accounting Manager can
be used in a variety of accounting modes such as for usage tracking, notional charging or
allocation enforcement.

When used for usage tracking only, the accounting manager simply records workload
usage details. When configured additionally to perform charging, resource charge rates are
used to impute a charge for each job. When configured to enforce resource allocation
limits, jobs are charged against allocations and new jobs may be blocked from running if
their account runs out of funds. See Accounting Mode and see 'Select an Appropriate
Accounting Mode' in the Moab Accounting Manager Administrator Guide for more details on
supported accounting modes.

6.5 Accounting, Charging, and Allocation Management 419

Chapter 6: Managing Fairness - Throttling Policies, Fairshare, Allocation Management

In a typical allocation enforcement use case, credits are allocated to accounts for
designated time periods; establishing limits on the use of compute resources. The base
currency credits can be defined in terms of system resource units (e.g., Processor-Seconds)
or a real currency (e.g., U.S. dollars). Charge rates are established for the use of resources.
Accounts are created and users are given access to the appropriate accounts. Deposits are
made into funds associated with the account’s creating allocations. An allocation cycle can
be established whereby funds are reset on a regular periodic basis (such as yearly,
quarterly, or monthly) and where allocations are renewed for accepted accounts. Before a
job is started, Moab Workload Manager will verify that the user has sufficient credits to run
the job by attempting to place a hold against their funds (referred to as a lien). When a job
completes, the user's funds will be debited via a charge, usage information will be recorded
for the job, and the lien will be removed.

6.5.2 Accounting Mode

The accounting mode (specified via the AMCFG[] MODE parameter) modifies the way in
which accounting-relevant job and reservation stages (e.g., create, start, end, etc.) are
processed. See 6.5.7 Accounting Stages - page 431 for more information on the behaviors
of the different values of the accounting mode.

The following table describes the valid values for the accounting mode:

strict-allocation Use this mode if you want to strictly enforce allocation limits. Under
this mode, holds (called liens) will be placed against allocations in order
to prevent multiple jobs from starting up on the same funds. Jobs and
reservations can be prevented from running if the end-users do not
have sufficient funds. This is the default.

fast-allocation Use this mode if you want to debit allocations, but need higher
throughput by eliminating the lien and quote operations of strict-
allocation mode. Under this mode, jobs and reservations check a cached
account balance, and can be prevented from running after the balance
has bec