
Torque Resource Manager
Administrator Guide 6.1.3

February 2021

© 2018, 2021 Adaptive Computing Enterprises, Inc. All rights reserved.

This documentation and related software are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

This documentation and related software may provide access to or information about content,
products, and services from third-parties. Adaptive Computing is not responsible for and expressly
disclaims all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Adaptive Computing.
Adaptive Computing will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Adaptive Computing.

Adaptive Computing, Moab®, Moab HPC Suite, Moab Viewpoint, Moab Grid, NODUS Cloud OS™, and
other Adaptive Computing products are either registered trademarks or trademarks of Adaptive
Computing Enterprises, Inc. The Adaptive Computing logo is a trademark of Adaptive Computing
Enterprises, Inc. All other company and product names may be trademarks of their respective
companies.

The information contained herein is subject to change without notice and is not warranted to be
error free. If you find any errors, please report them to us in writing.

Adaptive Computing Enterprises, Inc.
1100 5th Avenue South, Suite #201
Naples, FL 34102
+1 (239) 330-6093
www.adaptivecomputing.com

2

http://www.adaptivecomputing.com/

Contents

Welcome 14

Chapter 1: Introduction 15
1.1 Torque Administrator Guide Overview 15
1.2 Getting Started 17

1.2.1What Is A ResourceManager? 17
1.2.2What Are Batch Systems? 17
1.2.3 Basic Job Flow 18

Chapter 2: Installation And Configuration 20
2.1 Torque Installation Overview 22
2.2 Basic Server Configuration 23

2.2.1 Server Configuration File (serverdb) 23
2.2.2 ./torque.setup 23
2.2.3 Pbs_server -t Create 24
2.2.4 Setting Up The Environment For Pbs_server And Pbs_mom 24

2.3 Torque Architecture 26
2.4 Installing Torque ResourceManager 27

2.4.1 Requirements 27
2.4.2 Open Necessary Ports 28
2.4.3 Install Dependencies, Packages, Or Clients 29
2.4.4 Install Torque Server 31
2.4.5 Install TorqueMOMs 33
2.4.6 Install Torque Clients 34
2.4.7 Configure DataManagement 35

2.5 Compute Nodes 37
2.6 Enabling Torque As A Service 39
2.7 Initializing/Configuring TorqueOn The Server (pbs_server) 40
2.8 Specifying Compute Nodes 41
2.9 Configuring TorqueOnCompute Nodes 43
2.10 Configuring Ports 44

2.10.1 Configuring Torque Communication Ports 44
2.10.2 Changing Default Ports 48

2.11 Configuring Trqauthd For Client Commands 51
2.12 Finalizing Configurations 53
2.13 Advanced Configuration 54
2.14 Customizing The Install 55

3

4

2.14.1 HAVE_WORDEXP 62
2.15 Server Configuration 63

2.15.1 Server Configuration Overview 63
2.15.2 Name Service Configuration 63
2.15.3 Configuring Job Submission Hosts 63
2.15.4 Configuring TorqueOn A Multi-Homed Server 65
2.15.5 Architecture Specific Notes 65
2.15.6 Specifying Non-Root Administrators 65
2.15.7 Setting Up Email 65
2.15.8 UsingMUNGE Authentication 66

2.16 Setting Up TheMOMHierarchy (Optional) 68
2.16.1MOMHierarchy Example 68
2.16.2 Setting Up TheMOM Hierarchy 70
2.16.3 Putting TheMOM Hierarchy On TheMOMs 70

2.17 Opening Ports In A Firewall 72
2.17.1 Red Hat 6-Based Systems 72
2.17.2 Red Hat 7-Based Systems 72
2.17.3 SUSE 11-Based Systems 73
2.17.4 SUSE 12-Based Systems 73

2.18 Port Reference 74
2.19 Manual Setup Of Initial Server Configuration 80
2.20 Server Node File Configuration 82
2.21 Basic Node Specification 83
2.22 Specifying Virtual Processor Count For A Node 84
2.23 Specifying GPU Count For A Node 85
2.24 Specifying Node Features (Node Properties) 86
2.25 Testing Server Configuration 87
2.26 Configuring Torque For NUMA Systems 89
2.27 Torque NUMA-Aware Configuration 90

2.27.1 About Cgroups 90
2.27.2 Prerequisites 90
2.27.3 Installation Instructions 91
2.27.4Multiple Cgroup Directory Configuration 92

2.28 Torque NUMA-Support Configuration 93
2.28.1 Configure Torque For NUMA-Support 93
2.28.2 Create TheMom.layout File 93
2.28.3 Configure The Server_priv/nodes File 96
2.28.4 Limit Memory Resources (Optional) 97

2.29 TorqueMulti-MOM 98
2.30 Multi-MOM Configuration 99

2.30.1 Configure Server_priv/nodes 99
2.30.2 Edit The /etc/hosts File 99
2.30.3 Start Pbs_momWithMulti-MOMOptions 100

2.31 Stopping Pbs_mom InMulti-MOMMode 101

Chapter 3: Submitting And Managing Jobs 102
3.1 Job Submission 104
3.2 Multiple Job Submission 106

3.2.1 Submitting Job Arrays 106
3.2.2 Slot Limit 107

3.3 ManagingMulti-Node Jobs 108
3.4 Requesting Resources 109

3.4.1 Native Torque Resources 109
3.4.2 Interpreting Resource Requests 116
3.4.3 Interpreting Node Requests 116
3.4.4Moab Job Extensions 117

3.5 Requesting NUMA-Aware Resources 119
3.6 Requesting Generic Resources 120
3.7 Requesting Floating Resources 121
3.8 Requesting Other Resources 122
3.9 Exported Batch Environment Variables 123
3.10 Enabling Trusted Submit Hosts 125
3.11 Example Submit Scripts 126
3.12 Job Files 127
3.13 Monitoring Jobs 129
3.14 Canceling Jobs 131
3.15 Job Preemption 132
3.16 Keeping Completed Jobs 133
3.17 Job Checkpoint And Restart 134
3.18 Introduction To BLCR 135
3.19 Configuration Files And Scripts 136
3.20 Starting A Checkpointable Job 141
3.21 Checkpointing A Job 143
3.22 Restarting A Job 144

3.22.1 Restarting A Job In The Held State 144
3.22.2 Restarting A Job In The Completed State 144

3.23 Acceptance Tests 145
3.24 Job Exit Status 146
3.25 Torque Process Tracking 150

3.25.1 Default Process Tracking 150

5

6

3.25.2 Task Manager API 150
3.25.3 Process TrackingWith Cgroups/Cpusets 151

Chapter 4: Managing Nodes 152
4.1 Adding Nodes 153
4.2 Node Properties 155

4.2.1 Run-time Node Changes 155
4.2.2Manual Node Changes 155
4.2.3 AddingMemory To A Node 155

4.3 Changing Node State 157
4.3.1Marking Jobs Offline 157
4.3.2 Listing Node States 157
4.3.3 Node Recovery 157

4.4 Changing Node Power States 158
4.5 Host Security 161

4.5.1 Enabling PAMWith Torque 161
4.5.2 Using PAM Exception Instructions 162
4.5.3 Legacy Torque PAMConfiguration 162

4.6 Linux Cpuset Support 164
4.6.1 Cpuset Overview 164
4.6.2 Cpuset Support 164
4.6.3 Configuring Cpuset 165
4.6.4 Cpuset Advantages/Disadvantages 165

4.7 Scheduling Cores 166
4.8 Geometry Request Configuration 167
4.9 Geometry Request Usage 168
4.10 Geometry Request Considerations 169
4.11 Scheduling Accelerator Hardware 170
4.12 Node Resource Plug-in 171

4.12.1 Plug-in Implementation Recommendations 171
4.12.2 Building The Plug-in 171
4.12.3 Testing The Plug-in 172
4.12.4 Enabling The Plug-in 173

Chapter 5: Setting Server Policies 175
5.1 Queue Configuration 176
5.2 Example Queue Configuration 177
5.3 Setting Queue Resource Controls With Resource Request Syntax 2.0 178
5.4 Setting A Default Queue 179
5.5 Mapping A Queue To Subset Of Resources 180
5.6 Creating A Routing Queue 181

5.7 Server High Availability 183
5.7.1 Redundant Server Host Machines 183
5.7.2 Enabling High Availability 184
5.7.3 Enhanced High Availability With Moab 185
5.7.4 How Commands Select The Correct Server Host 185
5.7.5 Job Names 186
5.7.6 PersistenceOf The Pbs_server Process 186
5.7.7 High Availability Of The NFS Server 186
5.7.8 Installing Torque In High Availability Mode 187
5.7.9 Installing Torque In High Availability ModeOnHeadless Nodes 192
5.7.10 Example SetupOf High Availability 197

5.8 SettingMin_threads AndMax_threads 199

Chapter 6: Integrating Schedulers For Torque 200

Chapter 7: Configuring Data Management 201
7.1 SCP Setup 202
7.2 Generating SSH Key On Source Host 203
7.3 Copying Public SSH Key To Each Destination Host 204
7.4 Configuring The SSH DaemonOn Each Destination Host 205
7.5 Validating Correct SSH Configuration 206
7.6 Enabling Bi-Directional SCP Access 207
7.7 Compiling Torque To Support SCP 208
7.8 Troubleshooting 209
7.9 NFS AndOther Networked Filesystems 210
7.10 File Stage-in/stage-out 211

Chapter 8: MPI (Message Passing Interface) Support 212
8.1 MPICH 213

8.1.1MPIExec Overview 213
8.1.2MPIExec Troubleshooting 213
8.1.3 General MPI Troubleshooting 214

8.2 OpenMPI 215

Chapter 9: Resources 217
9.1 About Resources 218

9.1.1 Configuration 218
9.1.2 Utilization 219
9.1.3 Node States 219

Chapter 10: Accounting Records 221
10.1 About Accounting Records 222

7

8

10.1.1 Location 222
10.1.2 Record Types 222
10.1.3 Accounting Variables 223

Chapter 11: Job Logging 224
11.1 Job Log Location And Name 225
11.2 Enabling Job Logs 226

Chapter 12: NUMA And Torque 227
12.1 Supported NUMA Systems 229
12.2 NUMA-Aware Systems 230

12.2.1 About NUMA-Aware Systems 230
12.2.2 Installation And Configuration 231
12.2.3 Job Resource Requests 231
12.2.4 JobMonitoring 232
12.2.5Moab/Torque NUMA Configuration 232
12.2.6 Considerations WhenUpgrading Versions Or Changing Hardware 232

12.3 NUMA Tutorials 233
12.4 NUMA Primer 234

12.4.1 Torque Cgroup Hierarchy 234
12.4.2 Cpuset Subsystem 235
12.4.3 Cpuacct Subsystem 236
12.4.4Memory Subsystem 236
12.4.5 Resource Request 2.0 236
12.4.6 Single Resource Request With Two Tasks And Default Settings 237
12.4.7Multiple Lprocs 238
12.4.8 Usecores 239
12.4.9 Usethreads 239
12.4.10Multiple Resource Requests 240
12.4.11 Place Directives 240
12.4.12 Pbsnodes And Dedicated Resources 242

12.5 How NUMA Places Jobs 243
12.6 NUMA Discovery And Persistence 246

12.6.1 Initial Discovery 246
12.6.2 Job Placement Decisions 246
12.6.3 Persistence Across Restarts 246

12.7 -L NUMA Resource Request 249
12.7.1 Syntax 249
12.7.2 Allocation Options 249

12.8 Pbsnodes With NUMA-Awareness 258
12.9 NUMA-Support Systems 260

12.9.1 About NUMA-Supported Systems 260
12.9.2 Torque Installation And Configuration 260
12.9.3Moab/Torque NUMA Configuration 260

Chapter 13: Troubleshooting 261
13.1 Automatic Queue And Job Recovery 263
13.2 Host Resolution 264
13.3 Firewall Configuration 265
13.4 Torque Log Files 266

13.4.1 Pbs_server And Pbs_mom Log Files 266
13.4.2 Trqauthd Log Files 266

13.5 Using "tracejob" To Locate Job Failures 268
13.5.1 Overview 268
13.5.2 Syntax 268
13.5.3 Example 268

13.6 Using GDB To Locate Job Failures 271
13.7 Other Diagnostic Options 272
13.8 Stuck Jobs 273
13.9 Frequently AskedQuestions (FAQ) 274

13.9.1 Cannot Connect To Server: Error=15034 274
13.9.2 Deleting 'stuck' Jobs 274
13.9.3Which User Must Run Torque? 275
13.9.4 Scheduler Cannot Run Jobs - Rc: 15003 275
13.9.5 PBS_Server: Pbsd_init, Unable To Read Server Database 275
13.9.6 QsubWill Not Allow The Submission Of Jobs RequestingMany Processors 277
13.9.7 Qsub Reports 'Bad UID For Job Execution' 277
13.9.8Why Does My Job Keep Bouncing From Running ToQueued? 278
13.9.9 How Do I Use PVMWith Torque? 278
13.9.10My Build Fails Attempting To Use The TCL Library 278
13.9.11My JobWill Not Start, FailingWith TheMessage 'cannot Send Job ToMom, State-
e=PRERUN' 279
13.9.12 How Do I DetermineWhat Version Of Torque I Am Using? 279
13.9.13 How Do I Resolve Autogen.sh Errors That Contain "error: Possibly UndefinedMacro: AC_
MSG_ERROR"? 279
13.9.14 How Do I Resolve Compile Errors With Libssl Or Libcrypto For Torque 4.0 OnUbuntu 10.04? 279
13.9.15Why Are There SoMany Error Messages In The Client Logs (trqauthd Logs)When I Don't
Notice Client Commands Failing? 280

13.10 Compute Node Health Check 281
13.11 ConfiguringMOMs To Launch A Health Check 282
13.12 Creating The Health Check Script 283
13.13 Adjusting Node State BasedOn The Health Check Output 284

9

10

13.14 Example Health Check Script 285
13.15 Debugging 286

13.15.1 Diagnostic And DebugOptions 286
13.15.2 Torque Error Codes 287

Appendix A: Commands Overview 293
A.1 Torque Services 293
A.2 Client Commands 293
A.3 Momctl 295
A.4 Pbs_mom 304
A.5 Pbs_server 310
A.6 Pbs_track 314
A.7 Pbsdsh 316
A.8 Pbsnodes 318
A.9 Qalter 322
A.10 Qchkpt 332
A.11 Qdel 334
A.12 Qgpumode 337
A.13 Qgpureset 339
A.14 Qhold 340
A.15 Qmgr 343
A.16 Qmove 347
A.17 Qorder 349
A.18 Qrerun 351
A.19 Qrls 353
A.20 Qrun 356
A.21 Qsig 358
A.22 Qstat 361
A.23 Qsub 370
A.24 Qterm 390
A.25 Trqauthd 392

Appendix B: Server Parameters 395

Appendix C: Node Manager (MOM) Configuration 422
C.1 MOM Parameters 423
C.2 Node Features AndGeneric Consumable Resource Specification 447

Appendix D: Diagnostics And Error Codes 448

Appendix E: Preparing To Upgrade 456
E.1 Considerations Before Upgrading 456

E.1.1 Considerations 456
E.1.2 To Upgrade 457
E.1.3 Rolling Upgrade 457

Appendix F: Large Cluster Considerations 459
F.1 Scalability Guidelines 460
F.2 End-User CommandCaching 461
F.3 Moab And Torque Configuration For Large Clusters 463
F.4 Starting Torque In Large Environments 464
F.5 Other Considerations 465

F.5.1 Job_stat_rate 465
F.5.2 Poll_jobs 465
F.5.3 Scheduler Settings 465
F.5.4 File System 465
F.5.5 Network ARP Cache 466

Appendix G: Prologue And Epilogue Scripts 467
G.1 MOM Prologue And Epilogue Scripts 468
G.2 Script Order Of Execution 470
G.3 Script Environment 471

G.3.1 Prologue Environment 471
G.3.2 Epilogue Environment 472
G.3.3 Environment Variables 472
G.3.4 Standard Input 474

G.4 Per Job Prologue And Epilogue Scripts 475
G.5 Prologue And Epilogue Scripts TimeOut 476
G.6 Prologue Error Processing 477

Appendix H: Running Multiple Torque Servers And MOMs On The Same Node 480
H.1 ConfiguringMultiple Servers To RunOn The SameNode 480

H.1.1 Configuring The First Torque 480
H.1.2 Configuring The Second Torque 480
H.1.3 Bringing The First Torque Server Online 481
H.1.4 Bringing The Second Torque Server Online 481

11

12

Appendix I: Security Overview 482

Appendix J: Job Submission Filter ("qsub Wrapper") 483

Appendix K: "torque.cfg" Configuration File 485

Appendix L: Torque Quick Start 491
L.1 TorqueQuick Start Guide 492

L.1.1 Initial Installation 492
L.1.2 Initialize/Configure TorqueOn The Server (pbs_server) 493
L.1.3 Install TorqueOn The Compute Nodes 493
L.1.4 Configure TorqueOn The Compute Nodes 494
L.1.5 Configure DataManagement On The Compute Nodes 494
L.1.6 Update Torque Server Configuration 494
L.1.7 Start The Pbs_mom Daemons OnCompute Nodes 494
L.1.8 Verify Correct Torque Installation 495
L.1.9 Enable The Scheduler 495
L.1.10 Startup/Shutdown Service Script For Torque/Moab (OPTIONAL) 495

Appendix M: BLCR Acceptance Tests 497
M.1 Test Environment 498
M.2 Test 1 - Basic Operation 499

M.2.1 Introduction 499
M.2.2 Test Steps 499
M.2.3 Possible Failures 499
M.2.4 Successful Results 499

M.3 Test 2 - PersistenceOf Checkpoint Images 502
M.3.1 Introduction 502
M.3.2 Test Steps 502
M.3.3 Possible Failures 502
M.3.4 Successful Results 502

M.4 Test 3 - Restart After Checkpoint 504
M.4.1 Introduction 504
M.4.2 Test Steps 504
M.4.3 Successful Results 504

M.5 Test 4 - Multiple Checkpoint/Restart 505
M.5.1 Introduction 505
M.5.2 Test Steps 505

M.6 Test 5 - Periodic Checkpoint 506
M.6.1 Introduction 506
M.6.2 Test Steps 506

M.6.3 Successful Results 506
M.7 Test 6 - Restart From Previous Image 507

M.7.1 Introduction 507
M.7.2 Test Steps 507
M.7.3 Successful Results 507

Appendix N: Queue Attributes 508
N.1 Queue Attribute Reference 509

N.1.1 Attributes 509
N.1.2 Assigning Queue Resource Limits 519

13

14

Welcome

Welcome to the Torque 6.1.3 Administrator Guide.
This guide is intended as a reference for system administrators.

For more information about this guide, see these topics:

l Introduction

l Torque Administrator Guide Overview

Welcome

1.1 Torque Administrator Guide Overview 15

Chapter 1: Introduction

In this chapter:

1.1 Torque Administrator GuideOverview 15
1.2 Getting Started 17

1.2.1What is a ResourceManager? 17
1.2.2What are Batch Systems? 17
1.2.3 Basic Job Flow 18

1.1 Torque Administrator Guide Overview

Chapter 1: Introduction - page 15 provides basic introduction information to help you get started
using Torque.

Chapter 2: Installation and Configuration - page 20 provides the details for installation and
initialization, advanced configuration options, and (optional) qmgr option necessary to get the
system up and running. System testing is also covered.

Chapter 3: Submitting and Managing Jobs - page 102 covers different actions applicable to jobs. The
first section details how to submit a job and request resources (nodes, software licenses, and so
forth), and provides several examples. Other actions include monitoring, canceling, preemption, and
keeping completed jobs.

Chapter 4: Managing Nodes - page 152 covers administrator tasks relating to nodes, which include
the following: adding nodes, changing node properties, and identifying state. Also an explanation of
how to configure restricted user access to nodes is covered in Host Security.

Chapter 5: Setting Server Policies - page 175 details server-side configurations of queue and high
availability.

Chapter 6: Integrating Schedulers for Torque - page 200 offers information about using the native
scheduler versus an advanced scheduler.

Chapter 7: Configuring Data Management - page 201 deals with issues of data management. For
non-network file systems, SCP Setup details setting up SSH keys and nodes to automate transferring
data. NFS and Other Networked Filesystems covers configuration for these file systems. This
chapter also addresses the use of file staging using the stagein and stageout directives of the
qsub command.

Chapter 8: MPI (Message Passing Interface) Support - page 212 offers details supporting MPI.

Chapter 9: Resources - page 217 covers configuration, utilization, and states of resources.

Chapter 10: Accounting Records - page 221 explains how jobs are tracked by Torque for accounting
purposes.

Chapter 1: Introduction

Chapter 11: Job Logging - page 224 explains how to enable job logs that contain information for
completed jobs.

Chapter 12: NUMA and Torque - page 227 provides a centralized location for information on
configuring Torque for NUMA systems.

Chapter 13: Troubleshooting - page 261 is a guide that offers help with general problems. It
includes FAQ and instructions for how to set up and use compute node checks. It also explains how
to debug Torque.

The appendices provide tables of commands, parameters, configuration options, error codes, the
Quick Start Guide, and so forth.

l Appendix A: Commands Overview - page 293

l Appendix B: Server Parameters - page 395

l Appendix C: Node Manager (MOM) Configuration - page 422

l Appendix D: Diagnostics and Error Codes - page 448

l Appendix E: Preparing to Upgrade - page 456

l Appendix F: Large Cluster Considerations - page 459

l Appendix G: Prologue and Epilogue Scripts - page 467

l Appendix H: Running Multiple Torque Servers and MOMs on the Same Node - page 480

l Appendix I: Security Overview - page 482

l Appendix J: Job Submission Filter ("qsub Wrapper") - page 483

l Appendix K: "torque.cfg" Configuration File - page 485

l Appendix L: Torque Quick Start - page 491

l Appendix M: BLCR Acceptance Tests - page 497

l Appendix N: Queue Attributes - page 508

Related Topics

l Introduction

Chapter 1: Introduction

16 1.1 Torque Administrator Guide Overview

1.2 Getting Started 17

1.2 Getting Started

This topic contains some basic information to help you get started using Torque.

In this topic:

1.2.1What is a ResourceManager? - page 17
1.2.2What are Batch Systems? - page 17
1.2.3 Basic Job Flow - page 18

1.2.1 What is a Resource Manager?
While Torque has a built-in scheduler, pbs_sched, it is typically used solely as a resource
manager with a scheduler making requests to it. Resource managers provide the low-level
functionality to start, hold, cancel, and monitor jobs. Without these capabilities, a scheduler alone
cannot control jobs.

1.2.2 What are Batch Systems?
While Torque is flexible enough to handle scheduling a conference room, it is primarily used in
batch systems. Torque is based on a job scheduler called Portable Batch System (PBS). Batch
systems are a collection of computers and other resources (networks, storage systems, license
servers, and so forth) that operate under the notion that the whole is greater than the sum of the
parts. Some batch systems consist of just a handful of machines running single-processor jobs,
minimally managed by the users themselves. Other systems have thousands and thousands of
machines executing users' jobs simultaneously while tracking software licenses and access to
hardware equipment and storage systems.

Pooling resources in a batch system typically reduces technical administration of resources while
offering a uniform view to users. Once configured properly, batch systems abstract away many of
the details involved with running and managing jobs, allowing higher resource utilization. For
example, users typically only need to specify the minimal constraints of a job and do not need to
know the individual machine names of each host on which they are running. With this uniform
abstracted view, batch systems can execute thousands and thousands of jobs simultaneously.

Batch systems are comprised of four different components: (1) Master Node, (2) Submit/Interactive
Nodes, (3) Compute Nodes, and (4) Resources.

Component Description

Master Node A batch system will have a master node where pbs_server runs. Depending on the needs
of the systems, a master node may be dedicated to this task, or it may fulfill the roles of
other components as well.

Chapter 1: Introduction

Component Description

Submit/Interactive
Nodes

Submit or interactive nodes provide an entry point to the system for users to manage their
workload. For these nodes, users are able to submit and track their jobs. Additionally, some
sites have one or more nodes reserved for interactive use, such as testing and troubleshoot-
ing environment problems. These nodes have client commands (such as qsub and qhold).

Compute Nodes Compute nodes are the workhorses of the system. Their role is to execute submitted jobs.
On each compute node, pbs_mom runs to start, kill, and manage submitted jobs. It com-
municates with pbs_server on the master node. Depending on the needs of the systems,
a compute node may double as the master node (or more).

Resources Some systems are organized for the express purpose of managing a collection of resources
beyond compute nodes. Resources can include high-speed networks, storage systems,
license managers, and so forth. Availability of these resources is limited and needs to be
managed intelligently to promote fairness and increased utilization.

1.2.3 Basic Job Flow
The life cycle of a job can be divided into four stages: (1) creation, (2) submission, (3) execution,
and (4) finalization.

Stage Description

Creation Typically, a submit script is written to hold all of the parameters of a job. These parameters could
include how long a job should run (walltime), what resources are necessary to run, and what to
execute. The following is an example submit file:

#PBS -N localBlast
#PBS -S /bin/sh
#PBS -l nodes=1:ppn=2,walltime=240:00:00
#PBS -M user@my.organization.com
#PBS -m ea
source ~/.bashrc
cd $HOME/work/dir
sh myBlast.sh -i -v

This submit script specifies the name of the job (localBlast), what environment to use (/bin/sh),
that it needs both processors on a single node (nodes=1:ppn=2), that it will run for at most 10
days, and that Torque should email "user@my.organization.com" when the job exits or aborts.
Additionally, the user specifies where and what to execute.

Submission A job is submitted with the qsub command. Once submitted, the policies set by the administration
and technical staff of the site dictate the priority of the job and therefore, when it will start execut-
ing.

Chapter 1: Introduction

18 1.2 Getting Started

1.2 Getting Started 19

Stage Description

Execution Jobs often spend most of their lifecycle executing. While a job is running, its status can be queried
with qstat.

Finalization When a job completes, by default, the stdout and stderr files are copied to the directory where
the job was submitted.

Chapter 1: Introduction

20

Chapter 2: Installation and Configuration

This chapter contains some basic information about Torque, including how to install and configure
it on your system.

In this chapter:

2.1 Torque Installation Overview 22
2.2 Basic Server Configuration 23

2.2.1 Server Configuration File (serverdb) 23
2.2.2 ./torque.setup 23
2.2.3 pbs_server -t create 24
2.2.4 Setting Up the Environment for pbs_server and pbs_mom 24

2.3 Torque Architecture 26
2.4 Installing Torque ResourceManager 27

2.4.1 Requirements 27
2.4.2 Open Necessary Ports 28
2.4.3 Install Dependencies, Packages, or Clients 29
2.4.4 Install Torque Server 31
2.4.5 Install TorqueMOMs 33
2.4.6 Install Torque Clients 34
2.4.7 Configure DataManagement 35

2.5 Compute Nodes 37
2.6 Enabling Torque as a Service 39
2.7 Initializing/Configuring Torque on the Server (pbs_server) 40
2.8 Specifying Compute Nodes 41
2.9 Configuring Torque on Compute Nodes 43
2.10 Configuring Ports 44

2.10.1 Configuring Torque Communication Ports 44
2.10.2 Changing Default Ports 48

2.11 Configuring trqauthd for Client Commands 51
2.12 Finalizing Configurations 53
2.13 Advanced Configuration 54
2.14 Customizing the Install 55

2.14.1 HAVE_WORDEXP 62
2.15 Server Configuration 63

2.15.1 Server Configuration Overview 63
2.15.2 NameService Configuration 63
2.15.3 Configuring Job Submission Hosts 63

Chapter 2: Installation and Configuration

2.15.4 Configuring Torque on aMulti-Homed Server 65
2.15.5 Architecture Specific Notes 65
2.15.6 Specifying Non-Root Administrators 65
2.15.7 Setting Up Email 65
2.15.8 UsingMUNGE Authentication 66

2.16 Setting Up theMOMHierarchy (Optional) 68
2.16.1MOMHierarchy Example 68
2.16.2 Setting Up theMOM Hierarchy 70
2.16.3 Putting theMOM Hierarchy on theMOMs 70

2.17 Opening Ports in a Firewall 72
2.17.1 Red Hat 6-Based Systems 72
2.17.2 Red Hat 7-Based Systems 72
2.17.3 SUSE 11-Based Systems 73
2.17.4 SUSE 12-Based Systems 73

2.18 Port Reference 74
2.19 Manual Setup of Initial Server Configuration 80
2.20 Server Node File Configuration 82
2.21 Basic Node Specification 83
2.22 Specifying Virtual Processor Count for a Node 84
2.23 Specifying GPU Count for a Node 85
2.24 Specifying Node Features (Node Properties) 86
2.25 Testing Server Configuration 87
2.26 Configuring Torque for NUMA Systems 89
2.27 Torque NUMA-Aware Configuration 90

2.27.1 About cgroups 90
2.27.2 Prerequisites 90
2.27.3 Installation Instructions 91
2.27.4Multiple cgroup Directory Configuration 92

2.28 Torque NUMA-Support Configuration 93
2.28.1 Configure Torque for NUMA-Support 93
2.28.2 Create themom.layout File 93
2.28.3 Configure the server_priv/nodes File 96
2.28.4 Limit MemoryResources (Optional) 97

2.29 TorqueMulti-MOM 98
2.30 Multi-MOM Configuration 99

2.30.1 Configure server_priv/nodes 99
2.30.2 Edit the /etc/hosts File 99
2.30.3 Start pbs_momwithMulti-MOMOptions 100

2.31 Stopping pbs_mom inMulti-MOMMode 101

Chapter 2: Installation and Configuration

21

2.1 Torque Installation Overview 22

2.1 Torque Installation Overview

This section contains information about Torque architecture and explains how to install Torque. It
also describes how to install Torque packages on compute nodes and how to enable Torque as a
service.

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 2: Installation and Configuration

2.2 Basic Server Configuration

In this topic:

2.2.1 Server Configuration File (serverdb) - page 23
2.2.2 ./torque.setup - page 23
2.2.3 pbs_server -t create - page 24
2.2.4 Setting Up the Environment for pbs_server and pbs_mom - page 24

2.2.1 Server Configuration File (serverdb)
The server configuration is maintained in a file named serverdb, located in TORQUE_
HOME/server_priv. The serverdb file contains all parameters pertaining to the operation of
Torque plus all of the queues that are in the configuration. For pbs_server to run, serverdb must
be initialized.

You can initialize serverdb in two different ways, but the recommended way is to use the
./torque.setup script:

l As root, execute ./torque.setup from the build directory (see ./torque.setup).

l Use pbs_server -t create (see -t).

Restart pbs_server after initializing serverdb.

l Red Hat 6-based or SUSE 11-based systems

> qterm
> service pbs_server start

l Red Hat 7-based or SUSE 12-based systems

> qterm
> systemctl start pbs_server.service

2.2.2 ./torque.setup
The torque.setup script uses pbs_server -t create to initialize serverdb and then adds a
user as a manager and operator of Torque and other commonly used attributes. The syntax is as
follows:

/torque.setupusername

> ./torque.setup ken
> qmgr -c 'p s'

#
Create queues and set their attributes.
#

Chapter 2: Installation and Configuration

23 2.2 Basic Server Configuration

2.2 Basic Server Configuration 24

#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = ken@kmn
set server operators = ken@kmn
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6
set server mom_job_sync = True
set server keep_completed = 300

A single queue named batch and a few needed server attributes are created.

2.2.3 pbs_server -t create
The -t create option instructs pbs_server to create the serverdb file and initialize it with a
minimum configuration to run pbs_server.

> pbs_server -t create

To see the configuration and verify that Torque is configured correctly, use qmgr:

> qmgr -c 'p s'

#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6

2.2.4 Setting Up the Environment for pbs_server and pbs_mom
The pbs_environment file (default location: TORQUE_HOME/pbs_environment) will be
sourced by pbs_mom and pbs_server when they are launched. If there are environment variables
that should be set for pbs_server and/or pbs_mom, they can be placed in this file.

Chapter 2: Installation and Configuration

A pbs_environment file with a non-default name and/or location can be specified before
compilation with the --with-environ=PATH configuration option. See Table 2-2: Optional
Packages - page 59 for more information. To determine whether a non-default pbs_environment file
is in use, run pbs_server --about.

The pbs_environment file should not be confused with the PBS_ENVIRONMENT job
environment variable.

Related Topics

l Appendix C: Node Manager (MOM) Configuration - page 422

l 2.13 Advanced Configuration - page 54

l 13.15 Debugging - page 286

Chapter 2: Installation and Configuration

25 2.2 Basic Server Configuration

2.3 Torque Architecture 26

2.3 Torque Architecture

A Torque cluster consists of one head node and many compute nodes. The head node runs the
pbs_server daemon and the compute nodes run the pbs_mom daemon. Client commands for
submitting and managing jobs can be installed on any host (including hosts not running pbs_server
or pbs_mom).

The head node also runs a scheduler daemon. The scheduler interacts with pbs_server to make local
policy decisions for resource usage and allocate nodes to jobs. A simple FIFO scheduler, and code to
construct more advanced schedulers, is provided in the Torque source distribution. Most Torque
users choose to use a packaged, advanced scheduler such as Maui or Moab.

Users submit jobs to pbs_server using the qsub command. When pbs_server receives a new job, it
informs the scheduler. When the scheduler finds nodes for the job, it sends instructions to run the
job with the node list to pbs_server. Then, pbs_server sends the new job to the first node in the
node list and instructs it to launch the job. This node is designated the execution host and is called
Mother Superior. Other nodes in a job are called sister MOMs.

Related Topics

l 2.1 Torque Installation Overview - page 22

l 2.4 Installing Torque Resource Manager - page 27

Chapter 2: Installation and Configuration

2.4 Installing Torque Resource Manager

If you intend to use Torque Resource Manager 6.1.3 with Moab Workload Manager, you
must run Moab version 8.0 or later. However, some Torque functionality may not be
available. See "Compatibility Requirements" in the Moab HPC Suite Release Notes for more
information.

This topic contains instructions on how to install and start Torque Resource Manager (Torque).

For Cray systems, Adaptive Computing recommends that you install Moab and Torque
Servers (head nodes) on commodity hardware (not on Cray compute/service/login nodes).

However, you must install the Torque pbs_mom daemon and Torque client commands on
Cray login and "mom" service nodes since the pbs_mom must run on a Cray service node
within the Cray system so it has access to the Cray ALPS subsystem.

See Installation Notes for Moab and Torque for Cray" in the Moab Workload Manager
Administrator Guide for instructions on installing Moab and Torque on a non-Cray server.

In this topic:

2.4.1 Requirements - page 27

2.4.1.A Supported Operating Systems - page 27

2.4.1.B Software Requirements - page 28

2.4.2 Open Necessary Ports - page 28
2.4.3 Install Dependencies, Packages, or Clients - page 29

2.4.3.A Install Packages - page 29

2.4.3.B Install hwloc - page 30

2.4.4 Install Torque Server - page 31
2.4.5 Install TorqueMOMs - page 33
2.4.6 Install Torque Clients - page 34
2.4.7 Configure DataManagement - page 35

2.4.1 Requirements

2.4.1.A Supported Operating Systems

l CentOS 6, 7

l RHEL 6, 7

Chapter 2: Installation and Configuration

27 2.4 Installing Torque Resource Manager

2.4 Installing Torque Resource Manager 28

l Scientific Linux 6, 7

l SUSE Linux Enterprise Server 12, 12-SP1

2.4.1.B Software Requirements

l libxml2-devel package (package name may vary)

l openssl-devel package (package name may vary)

l Tcl/Tk version 8 or later if you plan to build the GUI portion of Torque, or use a Tcl-based
scheduler

l cpusets and cgroups

cgroups are supported and cpusets are handled by the cgroup cpuset subsystem.

It is recommended that you use --enable-cgroups instead of --enable-cpuset.
--enable-cpuset is deprecated and no new features will be added to it.

o boost version: 1.41 or later
o libcgroup version: Red Hat-based systems must use libcgroup version 0.40.rc1-16.el6
or later; SUSE-based systems need to use a comparative libcgroup version.

o libhwloc version: 1.9.1 is the minimum supported, however NVIDIA K80 requires
libhwloc 1.11.0. Instructions for installing hwloc are provided as part of the Torque
Resource Manager install or upgrade instructions.

l if you build Torque from source (i.e. clone from github), the following additional software is
required:

o gcc
o gcc-c++
o posix-compatible version of make
o libtool 1.5.22 or later
o boost-devel 1.36.0 or later

Red Hat 6-based systems come packaged with 1.41.0 and Red Hat 7-based
systems come packaged with 1.53.0. If needed, use the --with-boost-path=DIR
option to change the packaged boost version. See 2.14 Customizing the Install -
page 55 for more information.

2.4.2 Open Necessary Ports
Torque requires certain ports to be open for essential communication.

Chapter 2: Installation and Configuration

If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the necessary ports.

Location Ports Functions When
Needed

Torque
Server Host

15001 Torque Client and MOM communication to
Torque Server

Always

Torque
MOM Host
(Compute
Nodes)

15002 Torque Server communication to Torque
MOMs

Always

Torque
MOM Host
(Compute
Nodes)

15003 Torque MOM communication to other Torque
MOMs

Always

If using the MOM hierarchy (documented in 2.16 Setting Up the MOM Hierarchy (Optional) - page
68 in the Torque Resource ManagerAdministrator Guide) you must also open port 15003 from the
server to the nodes.

See also:

l 1.1 Opening Ports in a Firewall for general instructions and an example of how to open ports
in the firewall.

l 2.10 Configuring Ports - page 44 for more information on how to configure the ports that
Torque uses for communication.

2.4.3 Install Dependencies, Packages, or Clients

2.4.3.A Install Packages
On the Torque Server Host, use the following commands to install the libxml2-devel,
openssl-devel, and boost-devel packages.

l Red Hat 6-based or Red Hat 7-based systems

[root]# yum install libtool openssl-devel libxml2-devel boost-devel gcc gcc-c++

l SUSE 11-based or SUSE 12-based systems

[root]# zypper install libopenssl-devel libtool libxml2-devel boost-devel gcc gcc-c++
make gmake postfix

Chapter 2: Installation and Configuration

29 2.4 Installing Torque Resource Manager

2.4 Installing Torque Resource Manager 30

2.4.3.B Install hwloc

Using "yum install hwloc" for Red Hat-based systems or "zypper install hwloc" for SUSE-
based systems may install an older, non-supported version.

When cgroups are enabled (recommended), hwloc version 1.9.1 or later is required. NVIDIA K80
requires libhwloc 1.11.0. If cgroups are to be enabled, check the Torque Server Host to see if the
required version of hwloc is installed. You can check the version number by running the following
command:

[root]# hwloc-info --version

The following instructions are for installing version 1.9.1.

If hwloc is not installed or needs to be upgraded to the required version, do the following:

1. On the Torque Server Host, each Torque MOM Host, and each Torque Client Host, do the
following:

a. Download hwloc-1.9.1.tar.gz from https://www.open-mpi.org/software/hwloc/v1.9.

b. Run each of the following commands in order.

l Red Hat 6-based or Red Hat 7-based systems

[root]# yum install gcc make
[root]# tar -xzvf hwloc-1.9.1.tar.gz
[root]# cd hwloc-1.9.1
[root]# ./configure
[root]# make
[root]# make install

l SUSE 11-based or SUSE 12-based systems

[root]# zypper install gcc make
[root]# tar -xzvf hwloc-1.9.1.tar.gz
[root]# cd hwloc-1.9.1
[root]# ./configure
[root]# make
[root]# make install

2. For Red Hat 6-based or Red Hat 7-based systems, run the following commands on the Torque
Server Host only.

[root]# echo /usr/local/lib >/etc/ld.so.conf.d/hwloc.conf
[root]# ldconfig

3. For SUSE 11- based systems, run the following commands on the Torque Server Host, each
Torque MOM Host, and each Torque Client Host.

[root]# echo /usr/local/lib >/etc/ld.so.conf.d/hwloc.conf
[root]# ldconfig

Chapter 2: Installation and Configuration

https://www.open-mpi.org/software/hwloc/v1.9

4. For SUSE 12- based systems, run the following commands on the Torque Server Host only.

[root]# echo /usr/local/lib >/etc/ld.so.conf.d/hwloc.conf
[root]# ldconfig

2.4.4 Install Torque Server

You must complete the tasks to install the dependencies, packages, or clients before
installing Torque Server. See 2.4.3 Install Dependencies, Packages, or Clients - page 29.

If your configuration uses firewalls, you must also open the necessary ports before installing
the Torque Server. See 2.4.2 Open Necessary Ports - page 28.

On the Torque Server Host, do the following:

1. Download the latest 6.1.3 build from the Adaptive Computing website. It can also be
downloaded via command line (github method or the tarball distribution).

l Clone the source from github.

If git is not installed:

Red Hat 6-based or Red Hat 7-based systems
[root]# yum install git

SUSE 11-based or SUSE 12-based systems
[root]# zypper install git

For SUSE 11-based systems, you will also need to install automake:

[root]# zypper install autotools automake pkg-config

[root]# git clone https://github.com/adaptivecomputing/torque.git -b 6.1.3 6.1.3
[root]# cd 6.1.3
[root]# ./autogen.sh

l Download the latest Torque build from Adaptive Computing Torque Downloads.

[root]# tar -xzvf torque-6.1.3.tar.gz
[root]# cd torque-6.1.3/

2. Determine which ./configure command options you need to add, based on your system
configuration.

At a minimum, you add:

l --enable-cgroups

l --with-hwloc-path=/usr/local See 2.4.1 Requirements - page 27 for more information.

Chapter 2: Installation and Configuration

31 2.4 Installing Torque Resource Manager

http://www.adaptivecomputing.com/support/download-center/
http://www.adaptivecomputing.com/support/download-center/torque-download/

2.4 Installing Torque Resource Manager 32

These instructions assume you are using cgroups. When cgroups are supported, cpusets
are handled by the cgroup cpuset subsystem. If you are not using cgroups, use
--enable-cpusets instead.

For SUSE 12-based systems only. If --enable-gui is part of your configuration, do the
following:

$ cd /usr/lib64
$ ln -s libXext.so.6.4.0 libXext.so
$ ln -s libXss.so.1 libXss.so

When finished, cd back to your install directory.

See 2.14 Customizing the Install - page 55 for more information on which options are available
to customize the ./configure command.

3. Run each of the following commands in order.

[root]# ./configure --enable-cgroups --with-hwloc-path=/usr/local # add any other
specified options
[root]# make
[root]# make install

4. Source the appropriate profile file to add /usr/local/bin and /usr/local/sbin to your
path.

[root]# . /etc/profile.d/torque.sh

5. Initialize serverdb by executing the torque.setup script.

[root]# ./torque.setup root

6. Add nodes to the /var/spool/torque/server_priv/nodes file. See 2.8 Specifying
Compute Nodes - page 41 for information on syntax and options for specifying compute nodes.

7. Configure pbs_server to start automatically at system boot, and then start the daemon.

l Red Hat 6-based systems

[root]# chkconfig --add pbs_server
[root]# service pbs_server restart

l Red Hat 7-based systems

[root]# qterm
[root]# systemctl enable pbs_server.service
[root]# systemctl start pbs_server.service

l SUSE 11-based systems

[root]# chkconfig --add pbs_server
[root]# service pbs_server restart

Chapter 2: Installation and Configuration

l SUSE 12-based systems

[root]# qterm
[root]# systemctl enable pbs_server.service
[root]# systemctl start pbs_server.service

2.4.5 Install Torque MOMs
In most installations, you will install a Torque MOM on each of your compute nodes.

See "Specifying Compute Nodes" or "Configuring Torque on Compute Nodes" for more
information.

Do the following:

1. On the Torque Server Host, do the following:

a. Create the self-extracting packages that are copied and executed on your nodes.

[root]# make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-gui-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.

The package files are self-extracting packages that can be copied and executed
on your production machines. Use --help for options.

b. Copy the self-extracting MOM packages to each Torque MOM Host.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install
packages on remote systems. Set up shared SSH keys if you do not want to supply a
password for each Torque MOM Host.

[root]# scp torque-package-mom-linux-x86_64.sh <mom-node>:

c. Copy the pbs_mom startup script to each Torque MOM Host.

l Red Hat 6-based systems

[root]# scp contrib/init.d/pbs_mom <mom-node>:/etc/init.d

Not all sites see an inherited ulimit, but those that do can change it in the pbs_mom
init script, which is responsible for starting and stopping the pbs_mom process. The
script includes a check for the presence of /etc/sysconfig/pbs_mom, so the
natural place to put ulimits would be there (or directly in the init script itself).

l Red Hat 7-based systems

Chapter 2: Installation and Configuration

33 2.4 Installing Torque Resource Manager

2.4 Installing Torque Resource Manager 34

[root]# scp contrib/systemd/pbs_mom.service <mom-node>:/usr/lib/systemd/system/

l SUSE 11-based systems

[root]# scp contrib/init.d/suse.pbs_mom <mom-node>:/etc/init.d/pbs_mom

l SUSE 12-based systems

[root]# scp contrib/systemd/pbs_mom.service <mom-node>:/usr/lib/systemd/system/

2. On each Torque MOM Host, do the following:

a. For Red Hat 7-based or SUSE 12-based systems, install cgroup-tools.

l Red Hat 7-based systems

[root]# yum install libcgroup-tools

l SUSE 12-based systems

[root]# zypper install libcgroup-tools

b. Install the self-extracting MOM package.

[root]# ./torque-package-mom-linux-x86_64.sh --install

c. Configure pbs_mom to start at system boot, and then start the daemon.

l Red Hat 6-based systems

[root]# chkconfig --add pbs_mom
[root]# service pbs_mom start

l Red Hat 7-based systems

[root]# systemctl enable pbs_mom.service
[root]# systemctl start pbs_mom.service

l SUSE 11-based systems

[root]# chkconfig --add pbs_mom
[root]# service pbs_mom start

l SUSE 12-based systems

[root]# systemctl enable pbs_mom.service
[root]# systemctl start pbs_mom.service

2.4.6 Install Torque Clients
If you want to have the Torque client commands installed on hosts other than the Torque Server
Host (such as the compute nodes or separate login nodes), do the following:

Chapter 2: Installation and Configuration

1. On the Torque Server Host, do the following:

a. Copy the self-extracting client package to each Torque Client Host.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install
packages on remote systems. Set up shared SSH keys if you do not want to supply a
password for each Torque Client Host.

[root]# scp torque-package-clients-linux-x86_64.sh <torque-client-host>:

b. Copy the trqauthd startup script to each Torque Client Host.

l Red Hat 6-based systems

[root]# scp contrib/init.d/trqauthd <torque-client-host>:/etc/init.d

l Red Hat 7-based systems

[root]# scp contrib/systemd/trqauthd.service <torque-client-
host>:/usr/lib/systemd/system/

l SUSE 11-based systems

[root]# scp contrib/init.d/suse.trqauthd <torque-client-
host>:/etc/init.d/trqauthd

l SUSE 12-based systems

[root]# scp contrib/systemd/trqauthd.service <torque-client-
host>:/usr/lib/systemd/system/

2. On each Torque Client Host, do the following:

a. Install the self-extracting client package.

[root]# ./torque-package-clients-linux-x86_64.sh --install

b. Enable and start the trqauthd service.

l Red Hat 6 and SUSE 11-based systems

[root]# chkconfig --add trqauthd
[root]# service trqauthd start

l Red Hat 7 and SUSE 12-based systems

[root]# systemctl enable trqauthd.service
[root]# systemctl start trqauthd.service

2.4.7 Configure Data Management
When a batch job completes, stdout and stderr files are generated and placed in the spool directory
on the master Torque MOM Host for the job instead of the submit host. You can configure the

Chapter 2: Installation and Configuration

35 2.4 Installing Torque Resource Manager

2.4 Installing Torque Resource Manager 36

Torque batch environment to copy the stdout and stderr files back to the submit host. See
"Configuring Data Management" for more information.

Chapter 2: Installation and Configuration

2.5 Compute Nodes

Use the Adaptive Computing Torque package system to create self-extracting tarballs which can be
distributed and installed on compute nodes. The Torque packages are customizable. See the
INSTALL file for additional options and features.

If you installed Torque using the RPMs, you must install and configure your nodes manually
by modifying the /var/spool/torque/mom_priv/config file of each one. This file is
identical for all compute nodes and can be created on the head node and distributed in
parallel to all systems.

[root]# vi /var/spool/torque/mom_priv/config

$pbsserver headnode # hostname running pbs server
$logevent 225 # bitmap of which events to log

[root]# service pbs_mom restart

To create Torque packages

1. Configure and make as normal, and then run make packages.

> make packages
Building ./torque-package-clients-linux-i686.sh ...
Building ./torque-package-mom-linux-i686.sh ...
Building ./torque-package-server-linux-i686.sh ...
Building ./torque-package-gui-linux-i686.sh ...
Building ./torque-package-devel-linux-i686.sh ...
Done.

The package files are self-extracting packages that can be copied and executed on
your production machines. Use --help for options.

2. Copy the desired packages to a shared location.

> cp torque-package-mom-linux-i686.sh /shared/storage/
> cp torque-package-clients-linux-i686.sh /shared/storage/

3. Install the Torque packages on the compute nodes.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install Torque
packages on remote systems. Set up shared SSH keys if you do not want to supply a password
for each host.

The only required package for the compute node is mom-linux. Additional packages are
recommended so you can use client commands and submit jobs from compute nodes.

The following is an example of how to copy and install mom-linux in a distributed fashion.

> for i in node01 node02 node03 node04 ; do scp torque-package-mom-linux-i686.sh

Chapter 2: Installation and Configuration

37 2.5 Compute Nodes

2.5 Compute Nodes 38

${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do scp torque-package-clients-linux-
i686.sh ${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-package-mom-linux-
i686.sh --install ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-package-clients-
linux-i686.sh --install ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} ldconfig ; done

Alternatively, you can use a tool like xCAT instead of dsh.

To use a tool like xCAT:

1. Copy the Torque package to the nodes.

> prcp torque-package-linux-i686.sh noderange:/destinationdirectory/

2. Install the Torque package.

> psh noderange /tmp/torque-package-linux-i686.sh --install

Although optional, it is possible to use the Torque server as a compute node and install a pbs_mom
with the pbs_server daemon.

Related Topics

l 2.4 Installing Torque Resource Manager - page 27

l 2.1 Torque Installation Overview - page 22

Chapter 2: Installation and Configuration

2.6 Enabling Torque as a Service

Enabling Torque as a service is optional. In order to run Torque as a service, you must enable
trqauthd. (see Configuring trqauthd for Client Commands).

The method for enabling Torque as a service is dependent on the Linux variant you are using.
Startup scripts are provided in the contrib/init.d/ or contrib/systemd/ directory of the
source package. To enable Torque as a service, run the following as root on the host for the
appropriate Torque daemon:

l Red Hat 6-based systems

> cp contrib/init.d/pbs_mom /etc/init.d/pbs_mom
> chkconfig --add pbs_mom
> cp contrib/init.d/pbs_server /etc/init.d/pbs_server
> chkconfig --add pbs_server

l SUSE 11-based systems

> cp contrib/init.d/suse.pbs_mom /etc/init.d/pbs_mom
> insserv -d pbs_mom
> cp contrib/init.d/suse.pbs_server /etc/init.d/pbs_server
> insserv -d pbs_server

l Red Hat 7-based or SUSE 12-based systems

> cp contrib/systemd/pbs_mom.service /usr/lib/systemd/pbs_server.service
> systemctl enable pbs_mom.service
> cp contrib/systemd/pbs_server.service /usr/lib/systemd/pbs_server.service
> systemctl enable pbs_server.service

You will need to customize these scripts to match your system.

These options can be added to the self-extracting packages. For more details, see the INSTALL file.

Related Topics

l 2.1 Torque Installation Overview - page 22

l 2.4 Installing Torque Resource Manager - page 27

l 2.11 Configuring trqauthd for Client Commands - page 51

Chapter 2: Installation and Configuration

39 2.6 Enabling Torque as a Service

2.7 Initializing/Configuring Torque on the Server (pbs_server) 40

2.7 Initializing/Configuring Torque on the Server (pbs_
server)

The Torque server (pbs_server) contains all the information about a cluster. It knows about all
of the MOM nodes in the cluster based on the information in the TORQUE_HOME/server_
priv/nodes file (See 2.9 Configuring Torque on Compute Nodes - page 43). It also maintains the
status of each MOM node through updates from the MOMs in the cluster (see pbsnodes). All jobs
are submitted via qsub to the server, which maintains a master database of all jobs and their
states.

Schedulers such as Moab Workload Manager receive job, queue, and node information from pbs_
server and submit all jobs to be run to pbs_server.

Chapter 2: Installation and Configuration

2.8 Specifying Compute Nodes

The environment variable TORQUE_HOME holds the directory path where configuration files are
stored. If you used the default locations during installation, you do not need to specify the
TORQUE_HOME environment variable.

The pbs_server must recognize which systems on the network are its compute nodes. Specify
each node on a line in the server's nodes file. This file is located at TORQUE_HOME/server_
priv/nodes. In most cases, it is sufficient to specify just the names of the nodes on individual
lines; however, various properties can be applied to each node.

Only a root user can access the server_priv directory.

Syntax of nodes file:

node-name[:ts] [np=] [gpus=] [properties]

l The node-name must match the hostname on the node itself, including whether it is fully
qualified or shortened.

You can specify a compute node's hostname by starting each pbs_mom with the -H
hostname option, or by adding a line for $mom_host in TORQUE_HOME/mom_
priv/config on the pbs_mom host(s). (You can run hostname -f to obtain a
node's hostname.)

l The [:ts] option marks the node as timeshared. Timeshared nodes are listed by the server
in the node status report, but the server does not allocate jobs to them.

l The [np=] option specifies the number of virtual processors for a given node. The value can
be less than, equal to, or greater than the number of physical processors on any given node.

l The [gpus=] option specifies the number of GPUs for a given node. The value can be less
than, equal to, or greater than the number of physical GPUs on any given node.

l The node processor count can be automatically detected by the Torque server if auto_
node_np is set to TRUE. This can be set using this command:

qmgr -c 'set server auto_node_np = True'

Setting auto_node_np to TRUE overwrites the value of np set in TORQUE_
HOME/server_priv/nodes.

l The [properties] option allows you to specify arbitrary strings to identify the node.
Property strings are alphanumeric characters only and must begin with an alphabetic
character.

l Comment lines are allowed in the nodes file if the first non-white space character is the
pound sign (#).

The following example shows a possible node file listing.

Chapter 2: Installation and Configuration

41 2.8 Specifying Compute Nodes

2.8 Specifying Compute Nodes 42

TORQUE_HOME/server_priv/nodes:

Nodes 001 and 003-005 are cluster nodes
#
node001 np=2 cluster01 rackNumber22
#
node002 will be replaced soon
node002:ts waitingToBeReplaced
node002 will be replaced soon
#
node003 np=4 cluster01 rackNumber24
node004 cluster01 rackNumber25
node005 np=2 cluster01 rackNumber26 RAM16GB
node006
node007 np=2
node008:ts np=4
...

Related Topics

l Initializing/Configuring Torque on the Server (pbs_server)

Chapter 2: Installation and Configuration

2.9 Configuring Torque on Compute Nodes

If you are using Torque self-extracting packages with default compute node configuration, no
additional steps are required and you can skip this section.

If installing manually, or advanced compute node configuration is needed, edit the TORQUE_
HOME/mom_priv/config file on each node. The recommended settings follow.

TORQUE_HOME/mom_priv/config:

$logevent 1039 # bitmap of which events to log

This file is identical for all compute nodes and can be created on the head node and distributed in
parallel to all systems.

Related Topics

l 2.7 Initializing/Configuring Torque on the Server (pbs_server) - page 40

Chapter 2: Installation and Configuration

43 2.9 Configuring Torque on Compute Nodes

2.10 Configuring Ports 44

2.10 Configuring Ports

This topic provides information on configuring and managing the ports Torque uses for
communication.

In this topic:

2.10.1 Configuring Torque Communication Ports - page 44

2.10.1.A Configuring the pbs_server Listening Port - page 44

2.10.1.B Configuring the pbs_momListening Port - page 45

2.10.1.C Configuring the Port pbs_server Uses to Communicate with pbs_mom - page
46

2.10.1.D Configuring the Port pbs_momUses to Communicate with pbs_server - page
47

2.10.1.E Configuring the Port Client CommandsUse to Communicate with pbs_server -
page 47

2.10.1.F Configuring the Port trqauthd Uses to Communicate with pbs_server - page 47

2.10.2 Changing Default Ports - page 48

2.10.2.A MOMService Port - page 48

2.10.2.B Default Port on the Server - page 48

2.10.2.C MOMManager Port - page 49

2.10.1 Configuring Torque Communication Ports
You can optionally configure the various ports that Torque uses for communication. Most ports can
be configured multiple ways. Instructions for configuring each of the ports is provided below.

If you are running PBS Professional on the same system, be aware that it uses the same
environment variables and /etc/services entries.

2.10.1.A Configuring the pbs_server Listening Port
To configure the port the pbs_server listens on, follow any of these steps:

l Set an environment variable called PBS_BATCH_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs port_num/tcp.

l Start pbs_server with the -p option.

Chapter 2: Installation and Configuration

o Red Hat 6-based or SUSE 11-based systems

o Edit /etc/sysconfig/pbs_server.

PBS_ARGS="-p"

o Start the service.

service pbs_server start

o Red Hat 7-based or SUSE 12-based systems

o Edit /etc/systemconfig/pbs_server.

PBS_ARGS="-p"

o Start the service.

systemctl start pbs_server.service

l Edit the $PBS_HOME/server_name file and change server_name to server_
name:<port_num>

l Start pbs_server with the -H option.
o Red Hat 6-based or SUSE 11-based systems

o Edit /etc/sysconfig/pbs_server.

PBS_ARGS="-H"

o Start the service.

service pbs_server start

o Red Hat 7-based or SUSE 12-based systems

o Edit /etc/systemconfig/pbs_server.

PBS_ARGS="-H"

o Start the service.

systemctl start pbs_server.service

2.10.1.B Configuring the pbs_mom Listening Port
To configure the port the pbs_mom listens on, follow any of these steps:

l Set an environment variable called PBS_MOM_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs_mom port_num/tcp.

Chapter 2: Installation and Configuration

45 2.10 Configuring Ports

2.10 Configuring Ports 46

l Start pbs_mom with the -M option.
o Red Hat 6-based or SUSE 11-based systems

o Edit /etc/sysconfig/pbs_mom.

PBS_ARGS="-M"

o Start the service.

service pbs_mom start

o Red Hat 7-based or SUSE 12-based systems

o Edit /etc/systemconfig/pbs_mom.

PBS_ARGS="-M"

o Start the service.

systemctl start pbs_mom.service

l Edit the pbs_server nodes file to add mom_service_port=port_num.

2.10.1.C Configuring the Port pbs_server Uses to Communicate with pbs_mom
To configure the port the pbs_server uses to communicate with pbs_mom, follow any of these
steps:

l Set an environment variable called PBS_MOM_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs_mom port_num/tcp.

l Start pbs_mom with the -M option.
o Red Hat 6-based or SUSE 11-based systems

o Edit /etc/sysconfig/pbs_mom.

PBS_ARGS="-M"

o Start the service.

service pbs_mom start

o Red Hat 7-based or SUSE 12-based systems

o Edit /etc/systemconfig/pbs_mom.

PBS_ARGS="-M"

Chapter 2: Installation and Configuration

o Start the service.

systemctl start pbs_mom.service

2.10.1.D Configuring the Port pbs_mom Uses to Communicate with pbs_server
To configure the port the pbs_mom uses to communicate with pbs_server, follow any of these
steps:

l Set an environment variable called PBS_BATCH_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs port_num/tcp.

l Start pbs_mom with the -S option.
o Red Hat 6-based or SUSE 11-based systems

o Edit /etc/sysconfig/pbs_mom.

PBS_ARGS="-S"

o Start the service.

service pbs_mom start

o Red Hat 7-based or SUSE 12-based systems

o Edit /etc/systemconfig/pbs_mom.

PBS_ARGS="-S"

o Start the service.

systemctl start pbs_mom.service

l Edit the nodes file entry for that list: add mom_service_port=port_num.

2.10.1.E Configuring the Port Client Commands Use to Communicate with pbs_
server
To configure the port client commands use to communicate with pbs_server, follow any of these
steps:

l Edit the /etc/services file and set pbs port_num/tcp.

l Edit the $PBS_HOME/server_name file and change server_name to server_
name:<port_num>

2.10.1.F Configuring the Port trqauthd Uses to Communicate with pbs_server
To configure the port trqauthd uses to communicate with pbs_server, do the following:

Chapter 2: Installation and Configuration

47 2.10 Configuring Ports

2.10 Configuring Ports 48

l Edit the $PBS_HOME/server_name file and change server_name to server_
name:<port_num>

2.10.2 Changing Default Ports
This section provides examples of changing the default ports (using non-standard ports).

In this section:

l 2.10.2.A MOM Service Port - page 48

l 2.10.2.B Default Port on the Server - page 48

l 2.10.2.C MOM Manager Port - page 49

2.10.2.A MOM Service Port
The MOM service port is the port number on which MOMs are listening. This example shows how
to change the default MOM service port (15002) to port 30001.

Do the following:

1. On the server, for the server_priv/nodes file, change the node entry.

nodename np=4 mom_service_port=30001

2. On the MOM, start pbs_mom with the -M option.

l Red Hat 6-based or SUSE 11-based systems

o Edit /etc/sysconfig/pbs_mom.

PBS_ARGS="-M"

o Start the service.

service pbs_mom start

l Red Hat 7-based or SUSE 12-based systems

o Edit /etc/systemconfig/pbs_mom.

PBS_ARGS="-M"

o Start the service.

systemctl start pbs_mom.service

2.10.2.B Default Port on the Server
Do the following:

Chapter 2: Installation and Configuration

1. Set the $(TORQUE_HOME)/server_name file.

hostname:newport
numa3.ac:45001

2. On the MOM, start pbs_mom with the -S option.

l Red Hat 6-based or SUSE 11-based systems

o Edit /etc/sysconfig/pbs_mom.

PBS_ARGS="-S"

o Start the service.

service pbs_mom start

l Red Hat 7-based or SUSE 12-based systems

o Edit /etc/systemconfig/pbs_mom.

PBS_ARGS="-S"

o Start the service.

systemctl start pbs_mom.service

2.10.2.C MOM Manager Port
The MOM manager port tell MOMs which ports on which other MOMs are listening for MOM-to-
MOM communication. This example shows how to change the default MOM manager port (15003)
to port 30002.

Do the following:

1. On the server nodes file.

nodename np=4 mom_manager_port=30002

2. On the MOM, start pbs_mom with the -R option.

l Red Hat 6-based or SUSE 11-based systems

o Edit /etc/sysconfig/pbs_mom.

PBS_ARGS="-R"

o Start the service.

service pbs_mom start

l Red Hat 7-based or SUSE 12-based systems

Chapter 2: Installation and Configuration

49 2.10 Configuring Ports

2.10 Configuring Ports 50

o Edit /etc/systemconfig/pbs_mom.

PBS_ARGS="-R"

o Start the service.

systemctl start pbs_mom.service

Related Topics

l 2.7 Initializing/Configuring Torque on the Server (pbs_server) - page 40

l pbs_server

l pbs_mom

l trqauthd

l client commands

Chapter 2: Installation and Configuration

2.11 Configuring trqauthd for Client Commands

trqauthd is a daemon used by Torque client utilities to authorize user connections to pbs_
server. Once started, it remains resident. Torque client utilities then communicate with
trqauthd on port 15005 on the loopback interface. It is multi-threaded and can handle large
volumes of simultaneous requests.

Running trqauthd
trqauthd must be run as root. It must also be running on any host where Torque client
commands will execute.

By default, trqauthd is installed to /usr/local/bin.

If you run trqauthd before starting pbs_server, you will receive a warning that no
servers are available. To avoid this message, start pbs_server before running trqauthd.

trqauthd can be invoked directly from the command line or by the use of scripts that are located
in the Torque source tree.

l For Red Hat 6-based or SUSE 11-based systems, the init.d scripts are located in the
contrib/init.d directory

l For Red Hat 7-based or SUSE 12-based systems, the systemd scripts are located in the
contrib/systemd directory

There are two scripts for trqauthd:

Script Description

suse.trqauthd Used only for SUSE-based systems

trqauthd An example for other package managers (Red Hat, Scientific, CentOS, and Fedora are some com-
mon examples)

You should edit these scripts to be sure they will work for your site.

Inside each of the scripts are the variables PBS_DAEMON and PBS_HOME. These two variables
should be updated to match your Torque installation. PBS_DAEMON needs to point to the location
of trqauthd. PBS_HOME needs to match your Torque installation.

Do the following:

1. Choose the script that matches your dist system and copy it to /etc/init.d. If needed,
rename it to trqauthd.

2. Restart the service.

Chapter 2: Installation and Configuration

51 2.11 Configuring trqauthd for Client Commands

2.11 Configuring trqauthd for Client Commands 52

l Red Hat 6-based or SUSE 11-based systems

service trqauthd restart

l Red Hat 7-based or SUSE 12-based systems

systemctl restart trqauthd.service

If you receive an error that says "Could not open socket in trq_simple_connect. error 97" and
you use a CentOS, RedHat, or Scientific Linux 6+ operating system, check your /etc/hosts
file for multiple entries of a single host name pointing to the same IP address. Delete the
duplicate(s), save the file, and launch trqauthd again.

Related Topics

l Initializing/Configuring Torque on the Server (pbs_server)

Chapter 2: Installation and Configuration

2.12 Finalizing Configurations

After configuring the serverdb and the server_priv/nodes files, and after ensuring minimal
MOM configuration, restart the pbs_server on the server node and the pbs_mom on the
compute nodes.

l Compute Nodes:
o Red Hat 6-based or SUSE 11-based systems

> service pbs_mom start

o Red Hat 7-based or SUSE 12-based systems

> systemctl start pbs_mom.service

l Server Node:

o Red Hat 6-based or SUSE 11-based systems

> service pbs_server restart

o Red Hat 7-based or SUSE 12-based systems

> systemctl restart pbs_server.service

After waiting several seconds, the pbsnodes -a command should list all nodes in state free.

Related Topics

l 2.7 Initializing/Configuring Torque on the Server (pbs_server) - page 40

Chapter 2: Installation and Configuration

53 2.12 Finalizing Configurations

2.13 Advanced Configuration 54

2.13 Advanced Configuration

This section contains information about how you can customize the installation and configure the
server to ensure that the server and nodes are communicating correctly.

Related Topics

l Appendix B: Server Parameters - page 395

Chapter 2: Installation and Configuration

2.14 Customizing the Install

The Torque configure command has several options available. Listed below are some suggested
options to use when running ./configure.

By default, only children MOM processes use syslog. To enable syslog for all of Torque, use --
enable-syslog.

Table 2-1: Optional Features

Option Description

--disable-
clients

Directs Torque not to build and install the Torque client utilities such as qsub, qstat, qdel,
etc.

--disable-
FEATURE

Do not include FEATURE (same as --enable-FEATURE=no).

--disable-
libtool-lock

Avoid locking (might break parallel builds).

--disable-mom Do not include the MOM daemon.

--disable-
mom-
checkspool

Don't check free space on spool directory and set an error.

--disable-
posixmemlock

Disable the MOM's use of mlockall. Some versions of OSs seem to have buggy POSIX
MEMLOCK.

--disable-
privports

Disable the use of privileged ports for authentication. Some versions of OSX have a buggy
bind() and cannot bind to privileged ports.

--disable-
qsub-keep-
override

Do not allow the qsub -k flag to override -o -e.

--disable-
server

Do not include server and scheduler.

--disable-
shell-pipe

Give the job script file as standard input to the shell instead of passing its name via a pipe.

Chapter 2: Installation and Configuration

55 2.14 Customizing the Install

2.14 Customizing the Install 56

Option Description

--disable-
spool

If disabled, Torque will create output and error files directly in TORQUE_HOME/.pbs_spool
if it exists or in TORQUE_HOME otherwise. By default, Torque will spool files in TORQUE_
HOME/spool and copy them to the users home directory when the job completes.

--disable-
xopen-
networking

With HPUX and GCC, don't force usage of XOPEN and libxnet.

--enable-
acct-x

Enable adding x attributes to accounting log.

--enable-
array

Setting this under IRIX enables the SGI Origin 2000 parallel support. Normally autodetected
from the /etc/config/array file.

--enable-
autorun

Turn on the AUTORUN_JOBS flag. When enabled, Torque runs the jobs as soon as they are
submitted (destroys Moab compatibly). This option is not supported.

--enable-blcr Enable BLCR support.

--enable-
cgroups

Enable cgroups. When cgroups are enabled, cpusets are handled by the cgroup cpuset sub-
system. Requires --with-hwloc-path.

If you are building with cgroups enabled, you must have Boost version 1.41 or later.

--enable-cgroups is not compatible with --enable-geometry-requests.

--enable-cpa Enable Cray's CPA support.

--enable-
cpuset

Enable Linux 2.6 kernel cpusets.

It is recommended that you use --enable-cgroups instead of --enable-cpuset.
--enable-cpuset is deprecated and no new features will be added to it.
--enable-cgroups and --enable-cpuset are mutually exclusive.

--enable-
debug

Prints debug information to the console for pbs_server and pbs_mom while they are run-
ning. (This is different than --with-debug which will compile with debugging symbols.)

--enable-
dependency-
tracking

Do not reject slow dependency extractors.

Chapter 2: Installation and Configuration

Option Description

--enable-
fast-install
[=PKGS]

Optimize for fast installation [default=yes].

--enable-
FEATURE[=ARG]

Include FEATURE [ARG=yes].

--enable-
filesync

Open files with sync on each write operation. This has a negative impact on Torque per-
formance. This is disabled by default.

--enable-
force-
nodefile

Forces creation of nodefile regardless of job submission parameters. Not on by default.

--enable-gcc-
warnings

Enable gcc strictness and warnings. If using gcc, default is to error on any warning.

--enable-
geometry-
requests

Torque is compiled to use procs_bitmap during job submission.

When using --enable-geometry-requests, do not disable cpusets. Torque looks
at the cpuset when killing jobs.

--enable-geometry-requests is not compatible with --enable-cgroups.

--enable-gui Include the GUI-clients.

--enable-
maintainer-
mode

This is for the autoconf utility and tells autoconf to enable so called rebuild rules. See
maintainer mode for more information.

--enable-
maxdefault

Turn on the RESOURCEMAXDEFAULT flag.

Versions of Torque earlier than 2.4.5 attempted to apply queue and server defaults to
a job that didn't have defaults specified. If a setting still did not have a value after
that, Torque applied the queue and server maximum values to a job (meaning, the
maximum values for an applicable setting were applied to jobs that had no specified
or default value).

In Torque 2.4.5 and later, the queue and server maximum values are no longer used
as a value for missing settings. To re-enable this behavior in Torque 2.4.5 and later,
use --enable-maxdefault.

Chapter 2: Installation and Configuration

57 2.14 Customizing the Install

http://www.gnu.org/software/hello/manual/automake/maintainer_002dmode.html

2.14 Customizing the Install 58

Option Description

--enable-
nochildsignal

Turn on the NO_SIGCHLD flag.

--enable-
nodemask

Enable nodemask-based scheduling on the Origin 2000.

--enable-
nvidia-gpus

Include support for NVIDIA GPUs. See Scheduling GPUs in the Accelerators chapter of the
Moab Administrator Guide for setup details and options.

--enable-
pemask

Enable pemask-based scheduling on the Cray T3e.

--enable-
plock-daemons
[=ARG]

Enable daemons to lock themselves into memory: logical-or of 1 for pbs_server, 2 for pbs_
scheduler, 4 for pbs_mom (no argument means 7 for all three).

--enable-
quickcommit

Turn on the QUICKCOMMIT flag. When enabled, adds a check to make sure the job is in an
expected state and does some bookkeeping for array jobs. This option is not supported.

--enable-
shared[=PKGS]

Build shared libraries [default=yes].

--enable-
shell-use-
argv

Enable this to put the job script name on the command line that invokes the shell. Not on by
default. Ignores --enable-shell-pipe setting.

--enable-sp2 Build PBS for an IBM SP2.

--enable-srfs Enable support for SRFS on Cray.

--enable-
static[=PKGS]

Build static libraries [default=yes].

--enable-
syslog

Enable (default) the use of syslog for error reporting.

--enable-tcl-
qstat

Setting this builds qstat with Tcl interpreter features. This is enabled if Tcl is enabled.

--enable-
unixsockets

Enable the use of Unix Domain sockets for authentication.

Chapter 2: Installation and Configuration

Table 2-2: Optional Packages

Option Description

--with-blcr=DIR BLCR installation prefix (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-include=DIR Include path for libcr.h (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-lib=DIR Lib path for libcr (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-bin=DIR Bin path for BLCR utilities (Available in versions 2.5.6 and 3.0.2 and later).

--with-boost-path=DIR
Boost version 1.36.0 or later is supported. Red Hat 6-based systems come
packaged with 1.41.0 and Red Hat 7-based systems come packaged with
1.53.0.

Set the path to the Boost header files to be used during make. This option does not
require Boost to be built or installed.

The --with-boost-path value must be a directory containing a subdirectory
called boost that contains the boost .hpp files.

For example, if downloading the boost 1.55.0 source tarball to the adaptive user's
home directory:

[adaptive]$ cd ~
[adaptive]$ wget
http://sourceforge.net/projects/boost/files/boost/1.55.0/boost_1_55_
0.tar.gz/download
[adaptive]$ tar xzf boost_1_55_0.tar.gz
[adaptive]$ ls boost_1_55_0
boost
boost-build.jam
...

In this case use --with-boost-path=/home/adaptive/boost_1_55_0
during configure.

Another example would be to use an installed version of Boost. If the installed
Boost header files exist in /usr/include/boost/*.hpp, use --with-boost-
path=/usr/include.

--with-cpa-include=DIR Include path for cpalib.h.

--with-cpa-lib=DIR Lib path for libcpalib.

--with-debug=no Do not compile with debugging symbols.

Chapter 2: Installation and Configuration

59 2.14 Customizing the Install

2.14 Customizing the Install 60

Option Description

--with-default-server-
r=HOSTNAME

Set the name of the computer that clients will access when no machine name is
specified as part of the queue name. It defaults to the hostname of the machine on
which PBS is being compiled.

--with-environ=PATH Set the path containing the environment variables for the daemons. For SP2 and
AIX systems, suggested setting it to /etc/environment. Defaults to the file pbs_
environment in the server home. Relative paths are interpreted within the con-
text of the server home.

--with-gnu-ld Assume the C compiler uses GNU ld [default=no].

--with-hwloc-path Path for hwloc include and library files. Example:

./configure --with-hwloc-path=/usr/local/hwloc-1.9

Specifies that the include files are in /usr/local/hwloc-1.9/include and the
libraries are in /usr/local/hwloc-1.9/lib.

--with-mail-
domain=MAILDOMAIN

Override the default domain for outgoing mail messages, i.e. user@maildomain.
The default maildomain is the hostname where the job was submitted from.

--with-modulefiles[=DIR] Use module files in specified directory [/etc/modulefiles].

--with-momlogdir Use this directory for MOM logs.

--with-momlogsuffix Use this suffix for MOM logs.

--with-nvml-include=DIR Include path for nvml.h. See Scheduling GPUs in the Accelerators chapter of the
Moab Administrator Guide for setup details and options.

--with-nvml-lib=DIR Library path for libnvidia-ml.so. See Scheduling GPUs in the Accelerators
chapter of the Moab Administrator Guide for setup details and options.

--without-PACKAGE Do not use PACKAGE (same as --with-PACKAGE=no).

--without-readline Do not include readline support (default: included if found).

--with-PACKAGE[=ARG] Use PACKAGE [ARG=yes].

--with-pam=DIR Directory that holds the system PAM modules. Defaults to /lib(64)/security
on Linux.

Chapter 2: Installation and Configuration

Option Description

--with-pic Try to use only PIC/non-PIC objects [default=use both].

--with-qstatrc-file=FILE Set the name of the file that qstat will use if there is no .qstatrc file in the dir-
ectory where it is being invoked. Relative path names will be evaluated relative to
the server home directory (see above). If this option is not specified, the default
name for this file will be set to qstatrc (no dot) in the server home directory.

--with-rcp One of scp, rcp, mom_rcp, or the full path of a remote file copy program. scp is
the default if found, otherwise mom_rcp is used. Some rcp programs don't always
exit with valid error codes in case of failure. mom_rcp is a copy of BSD rcp
included with this source that has correct error codes, but it is also old, unmain-
tained, and doesn't have large file support.

--with-reserved-port-start-
t=PORT

Set the lower bound of the reserved port range that Torque will used when
opening a reserved port. PORTmust be between 144 and 823, inclusive.

Setting this parameter reduces the number of privileged ports available
to the system. This could affect performance, because it limits the

number of concurrent reserved ports pbs_server can open.

--with-sched=TYPE Sets the scheduler type. If TYPE is c, the scheduler will be written in C. If TYPE is
tcl the server will use a Tcl based scheduler. If TYPE is basl, Torque will use the
rule based scheduler. If TYPE is no, then no scheduling is done. c is the default.

--with-sched-code=PATH Sets the name of the scheduler to use. This only applies to BASL schedulers and
those written in the C language. For C schedulers this should be a directory name
and for BASL schedulers a filename ending in .basl. It will be interpreted rel-
ative to srctree/src/schedulers.SCHD_TYPE/samples. As an example, an
appropriate BASL scheduler relative path would be nas.basl. The default sched-
uler code for "C" schedulers is fifo.

--with-scp In Torque 2.1 and later, SCP is the default remote copy protocol. See --with-rcp
if a different protocol is desired.

--with-sendmail[=PATH_
TO_EXECUTABLE]

Sendmail executable to use. If =PATH_TO_EXECUTABLE is not specified or if --
with-sendmail is not used at all, configure will attempt to find sendmail.

--with-server-home=DIR Set the server home/spool directory for PBS use. Defaults to
/var/spool/torque.

Chapter 2: Installation and Configuration

61 2.14 Customizing the Install

2.14 Customizing the Install 62

Option Description

--with-server-name-file-
e=FILE

Set the file that will contain the name of the default server for clients to use. If this
is not an absolute pathname, it will be evaluated relative to the server home dir-
ectory that either defaults to /var/spool/torque or is set using the --with-
server-home option to configure. If this option is not specified, the default name
for this file will be set to server_name.

--with-tcl Directory containing tcl configuration (tclConfig.sh).

--with-tclatrsep=CHAR Set the Tcl attribute separator character this will default to "." if unspecified.

--with-tclinclude Directory containing the public Tcl header files.

--with-tclx Directory containing tclx configuration (tclxConfig.sh).

--with-tk Directory containing tk configuration (tkConfig.sh).

--with-tkinclude Directory containing the public Tk header files.

--with-tkx Directory containing tkx configuration (tkxConfig.sh).

--with-xauth=PATH Specify path to xauth program.

2.14.1 HAVE_WORDEXP
Wordxp() performs a shell-like expansion, including environment variables. By default, HAVE_
WORDEXP is set to 1 in src/pbs_config.h. If set to 1, will limit the characters that can be used
in a job name to those allowed for a file in the current environment, such as BASH. If set to 0, any
valid character for the file system can be used.

If a user would like to disable this feature by setting HAVE_WORDEXP to 0 in
src/include/pbs_config.h, it is important to note that the error and the output file names
will not expand environment variables, including $PBS_JOBID. The other important consideration
is that characters that BASH dislikes, such as (), will not be allowed in the output and error file
names for jobs by default.

Related Topics

l 2.13 Advanced Configuration - page 54

l 2.15 Server Configuration - page 63

Chapter 2: Installation and Configuration

2.15 Server Configuration

This topic contains information and instructions to configure your server.

In this topic:

2.15.1 Server Configuration Overview - page 63
2.15.2 NameService Configuration - page 63
2.15.3 Configuring Job Submission Hosts - page 63
2.15.4 Configuring Torque on aMulti-Homed Server - page 65
2.15.5 Architecture Specific Notes - page 65
2.15.6 Specifying Non-Root Administrators - page 65
2.15.7 Setting Up Email - page 65
2.15.8 UsingMUNGE Authentication - page 66

Also see 2.16 Setting Up the MOM Hierarchy (Optional) - page 68

2.15.1 Server Configuration Overview
There are several steps to ensure that the server and the nodes are completely aware of each other
and able to communicate directly. Some of this configuration takes place within Torque directly
using the qmgr command. Other configuration settings are managed using the pbs_server
nodes file, DNS files such as /etc/hosts and the /etc/hosts.equiv file.

2.15.2 Name Service Configuration
Each node, as well as the server, must be able to resolve the name of every node with which it will
interact. This can be accomplished using /etc/hosts, DNS, NIS, or other mechanisms. In the case
of /etc/hosts, the file can be shared across systems in most cases.

A simple method of checking proper name service configuration is to verify that the server and the
nodes can "ping" each other.

2.15.3 Configuring Job Submission Hosts

Using RCmd authentication
When jobs can be submitted from several different hosts, these hosts should be trusted via the R*
commands (such as rsh and rcp). This can be enabled by adding the hosts to the /etc/hosts.equiv
file of the machine executing the pbs_server daemon or using other R* command authorization
methods. The exact specification can vary from OS to OS (see the man page for ruserok to find

Chapter 2: Installation and Configuration

63 2.15 Server Configuration

2.15 Server Configuration 64

out how your OS validates remote users). In most cases, configuring this file is as simple as adding a
line to your /etc/hosts.equiv file, as in the following:

/etc/hosts.equiv:

#[+ | -] [hostname] [username]
mynode.myorganization.com
.....

Either of the hostname or username fields may be replaced with a wildcard symbol (+). The (+)
may be used as a stand-alone wildcard but not connected to a username or hostname, e.g.,
+node01 or +user01. However, a (-) may be used in that manner to specifically exclude a user.

Following the Linux man page instructions for hosts.equiv may result in a failure. You cannot
precede the user or hostname with a (+). To clarify, node1 +user1 will not work and
user1 will not be able to submit jobs.

For example, the following lines will not work or will not have the desired effect:

+node02 user1
node02 +user1

These lines will work:

node03 +
+ jsmith
node04 -tjones

The most restrictive rules must precede more permissive rules. For example, to restrict user tsmith
but allow all others, follow this format:

node01 -tsmith
node01 +

Please note that when a hostname is specified, it must be the fully qualified domain name (FQDN)
of the host. Job submission can be further secured using the server or queue acl_hosts and
acl_host_enabled parameters (for details, see Queue Attributes).

Using the "submit_hosts" service parameter
Trusted submit host access may be directly specified without using RCmd authentication by setting
the server submit_hosts parameter via qmgr as in the following example:

> qmgr -c 'set server submit_hosts = host1'
> qmgr -c 'set server submit_hosts += host2'
> qmgr -c 'set server submit_hosts += host3'

Use of submit_hosts is potentially subject to DNS spoofing and should not be used
outside of controlled and trusted environments.

Chapter 2: Installation and Configuration

Allowing job submission from compute hosts
If preferred, all compute nodes can be enabled as job submit hosts without setting .rhosts or
hosts.equiv by setting the allow_node_submit parameter to true.

2.15.4 Configuring Torque on a Multi-Homed Server
If the pbs_server daemon is to be run on a multi-homed host (a host possessing multiple
network interfaces), the interface to be used can be explicitly set using the SERVERHOST parameter.

2.15.5 Architecture Specific Notes
With some versions of Mac OS/X, it is required to add the line $restricted *.<DOMAIN> to
the pbs_mom configuration file. This is required to work around some socket bind bugs in the OS.

2.15.6 Specifying Non-Root Administrators
By default, only root is allowed to start, configure and manage the pbs_server daemon.
Additional trusted users can be authorized using the parameters managers and operators. To
configure these parameters use the qmgr command, as in the following example:

> qmgr
Qmgr: set server managers += josh@*.fsc.com
Qmgr: set server operators += josh@*.fsc.com

All manager and operator specifications must include a user name and either a fully qualified
domain name or a host expression.

To enable all users to be trusted as both operators and administrators, place the + (plus)
character on its own line in the server_priv/acl_svr/operators and server_
priv/acl_svr/managers files.

2.15.7 Setting Up Email
Moab relies on emails from Torque about job events. To set up email, do the following:

To set up email

1. Specify the location of the sendmail executable. You can do this using the sendmail_path
server attribute.

qmgr -c 'set server sendmail_path = <path_to_executable>'

Chapter 2: Installation and Configuration

65 2.15 Server Configuration

2.15 Server Configuration 66

If this server option is not set, you can set a default location during the build.

> ./configure --with-sendmail=<path_to_executable>

If a location for the sendmail executable is not specified, Torque will attempt to find it when you
run configure. If you installed Torque using RPMs from Adaptive Computing, the default path
will be /usr/sbin/sendmail.

2. Set mail_domain in your server settings. If your domain is clusterresources.com,
execute:

> qmgr -c 'set server mail_domain=clusterresources.com'

3. (Optional) You can override the default mail_body_fmt and mail_subject_fmt values via qmgr:

> qmgr -c 'set server mail_body_fmt=Job: %i \n Name: %j \n On host: %h \n \n %m \n
\n %d'
> qmgr -c 'set server mail_subject_fmt=Job %i - %r'

By default, users receive e-mails on job aborts. Each user can select which kind of e-mails to receive
by using the qsub -m option when submitting the job. If you want to dictate when each user should
receive e-mails, use a submit filter (for details, see Job Submission Filter ("qsub Wrapper")).

2.15.8 Using MUNGE Authentication

The same version on MUNGE must be installed on all of your Torque Hosts (Server, Client,
MOM).

MUNGE is an authentication service that creates and validates user credentials. It was developed by
Lawrence Livermore National Laboratory (LLNL) to be highly scalable so it can be used in large
environments such as HPC clusters. To learn more about MUNGE and how to install it, see
https://dun.github.io/munge/.

Configuring Torque to use MUNGE is a compile time operation. When you are building Torque, use
--enable-munge-auth as a command line option with ./configure.

> ./configure --enable-munge-auth

You can use only one authorization method at a time. If --enable-munge-auth is configured,
the privileged port ruserok method is disabled.

Torque does not link any part of the MUNGE library into its executables. It calls the MUNGE and
UNMUNGE utilities which are part of the MUNGE daemon. The MUNGE daemon must be running
on the server and all submission hosts. The Torque client utilities call MUNGE and then deliver the
encrypted credential to pbs_server where the credential is then unmunged and the server
verifies the user and host against the authorized users configured in serverdb.

Chapter 2: Installation and Configuration

https://dun.github.io/munge/

Authorized users are added to serverdb using qmgr and the authorized_users parameter. The
syntax for authorized_users is authorized_users=<user>@<host>. To add an
authorized user to the server you can use the following qmgr command:

> qmgr -c 'set server authorized_users=user1@hosta
> qmgr -c 'set server authorized_users+=user2@hosta

The previous example adds user1 and user2 from hosta to the list of authorized users on the
server. Users can be removed from the list of authorized users by using the -= syntax as follows:

> qmgr -c 'set server authorized_users-=user1@hosta

Users must be added with the <user>@<host> syntax. The user and the host portion can use the '*'
wildcard to allow multiple names to be accepted with a single entry. A range of user or host names
can be specified using a [a-b] syntax where a is the beginning of the range and b is the end.

> qmgr -c 'set server authorized_users=user[1-10]@hosta

This allows user1 through user10 on hosta to run client commands on the server.

Related Topics

l 2.16 Setting Up the MOM Hierarchy (Optional) - page 68

l 2.13 Advanced Configuration - page 54

Chapter 2: Installation and Configuration

67 2.15 Server Configuration

2.16 Setting Up the MOM Hierarchy (Optional) 68

2.16 Setting Up the MOM Hierarchy (Optional)

Mom hierarchy is designed for large systems to configure how information is passed directly
to the pbs_server.

The MOM hierarchy allows you to override the compute nodes' default behavior of reporting status
updates directly to the pbs_server. Instead, you configure compute nodes so that each node
sends its status update information to another compute node. The compute nodes pass the
information up a tree or hierarchy until eventually the information reaches a node that will pass the
information directly to pbs_server. This can significantly reduce network traffic and ease the
load on the pbs_server in a large system.

Adaptive Computing recommends approximately 25 nodes per path. Numbers larger than this
may reduce the system performance.

In this topic:

2.16.1MOMHierarchy Example - page 68
2.16.2 Setting Up theMOM Hierarchy - page 70
2.16.3 Putting theMOM Hierarchy on theMOMs - page 70

2.16.1 MOM Hierarchy Example
The following example illustrates how information is passed to the pbs_server without and with
mom_hierarchy.

Chapter 2: Installation and Configuration

The dotted lines indicates an alternate path if the hierarchy-designated node goes down.

The following is the mom_hierachy_file for the mom_hierarchy example:

<path>
 <level>hostA,hostB</level>
 <level>hostB,hostC,hostD</level>
</path>
<path>
 <level>hostE,hostF</level>
 <level>hostE,hostF,hostG</level>
</path>

Chapter 2: Installation and Configuration

69 2.16 Setting Up the MOM Hierarchy (Optional)

2.16 Setting Up the MOM Hierarchy (Optional) 70

2.16.2 Setting Up the MOM Hierarchy
The name of the file that contains the configuration information is named mom_hierarchy. By
default, it is located in the /var/spool/torque/server_priv directory. The file uses syntax
similar to XML:

<path>
 <level>comma-separated node list</level>
 <level>comma-separated node list</level>
 ...
</path>
...

The <path></path> tag pair identifies a group of compute nodes. The <level></level> tag
pair contains a comma-separated list of compute node names listed by their hostnames. Multiple
paths can be defined with multiple levels within each path.

Within a <path></path> tag pair, the levels define the hierarchy. All nodes in the top level
communicate directly with the server. All nodes in lower levels communicate to the first available
node in the level directly above it. If the first node in the upper level goes down, the nodes in the
subordinate level will then communicate to the next node in the upper level. If no nodes are
available in an upper level then the node will communicate directly to the server.

When setting up the MOM hierarchy, you must open port 15003 for communication from
pbs_server to pbs_mom.

If an upper level node has gone down and then becomes available, the lower level nodes will
eventually find that the node is available and start sending their updates to that node.

If you want to specify MOMs on a different port than the default, you must list the node in the
form: hostname:mom_manager_port.

For example:

<path>
 <level>hostname:mom_manager_port,... </level>
 ...
</path>
...

2.16.3 Putting the MOM Hierarchy on the MOMs
You can put the MOM hierarchy file directly on the MOMs. The default location is
/var/spool/torque/mom_priv/mom_hierarchy. This way, the pbs_server doesn't have
to send the hierarchy to all the MOMs during each pbs_server startup. The hierarchy file still has
to exist on the pbs_server and if the file versions conflict, the pbs_server version overwrites
the local MOM file. When using a global file system accessible from both the MOMs and the pbs_
server, it is recommended that the hierarchy file be symbolically linked to the MOMs.

Chapter 2: Installation and Configuration

Once the hierarchy file exists on the MOMs, start pbs_server with the -n option which tells
pbs_server to not send the hierarchy file on startup. Instead, pbs_server waits until a MOM
requests it.

Chapter 2: Installation and Configuration

71 2.16 Setting Up the MOM Hierarchy (Optional)

2.17 Opening Ports in a Firewall 72

2.17 Opening Ports in a Firewall

If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the products in your installation.

This topic provides an example and general instructions for how to open ports in your firewall. See
2.18 Port Reference - page 74 for the actual port numbers for the various products.

In this topic:

2.17.1 Red Hat 6-Based Systems - page 72
2.17.2 Red Hat 7-Based Systems - page 72
2.17.3 SUSE 11-Based Systems - page 73
2.17.4 SUSE 12-Based Systems - page 73

2.17.1 Red Hat 6-Based Systems
Red Hat 6-based systems use iptables as the default firewall software. For the ip6tables service,
replace all occurrences of iptables with ip6tables in the example. If you use different firewall
software, refer to your firewall documentation for opening ports in your firewall.

The following is an example of adding port 1234 when using iptables.

[root]# iptables-save > /tmp/iptables.mod

[root]# vi /tmp/iptables.mod

Add the following lines immediately *before* the line matching
"-A INPUT -j REJECT --reject-with icmp-host-prohibited"

-A INPUT -p tcp --dport 1234 -j ACCEPT

[root]# iptables-restore < /tmp/iptables.mod
[root]# service iptables save

2.17.2 Red Hat 7-Based Systems
Red Hat 7-based systems use firewalld as the default firewall software. If you use different firewall
software, refer to your firewall documentation for opening ports in your firewall.

The following is an example of adding port 1234 when using firewalld.

[root]# firewall-cmd --add-port=1234/tcp --permanent
[root]# firewall-cmd --reload

Chapter 2: Installation and Configuration

2.17.3 SUSE 11-Based Systems
SUSE 11-based systems use SuSEfirewall2 as the default firewall software. If you use different
firewall software, refer to your firewall documentation for opening ports in your firewall.

The following is an example of adding port 1234 when using SuSEfirewall2.

[root]# vi /etc/sysconfig/SuSEfirewall2

FW_SERVICES_EXT_TCP="1234"

[root]# service SuSEfirewall2_setup restart

2.17.4 SUSE 12-Based Systems
SUSE 12-based systems use SuSEfirewall2 as the default firewall software. If you use different
firewall software, refer to your firewall documentation for opening ports in your firewall.

The following is an example of adding port 1234 when using SuSEfirewall2.

[root]# vi /etc/sysconfig/SuSEfirewall2

FW_SERVICES_EXT_TCP="1234"

[root]# systemctl restart SuSEfirewall2

Chapter 2: Installation and Configuration

73 2.17 Opening Ports in a Firewall

2.18 Port Reference 74

2.18 Port Reference

The following table contains the port numbers for the various products in the Moab HPC Suite.

Adaptive Computing Local RPM Repository

Location Ports Functions When Needed

Deployment
Host

80

443

Adaptive Computing
Local RPM repository

The duration of the install when using RPM install-
ation or Automated Installer methods.

RLM Server

Location Ports Functions When Needed

RLM Server
Host

5053 RLM Server Port Always

RLM Server
Host

5054 RLM Web Interface Port Always

RLM Server
Host

57889 Remote Visualization Port If Remote Visualization is part of your con-
figuration

RLM Server
Host

5135 ISV adaptiveco Port (for the Adaptive
license-enabled products)

For Moab Workload Manager and if Nitro
is part of your configuration.

Automated Installer User Interface

Location Ports Functions When Needed

Deployment
Host

7443 User interface for collecting info
about the install

The duration of the install using the Auto-
mated Installer method.

Chapter 2: Installation and Configuration

Torque Resource Manager

Location Ports Functions When
Needed

Torque
Server Host

15001 Torque Client and MOM communication to
Torque Server

Always

Torque
MOM Host
(Compute
Nodes)

15002 Torque Server communication to Torque
MOMs

Always

Torque
MOM Host
(Compute
Nodes)

15003 Torque MOM communication to other Torque
MOMs

Always

Moab Workload Manager

Location Ports Functions When Needed

Moab
Server Host

42559 Moab Server
Port

If you intend to run client commands on a host different from the
Moab Server Host or if you will be using Moab in a grid

Moab Accounting Manager

Location Ports Functions When Needed

MAM
Server Host

7112 MAM Server
Port

If you will be installing the MAM Server on a different host from
where you installed the Moab Server or you will be installing the
MAM Clients on other hosts

MAM GUI
Host

443 HTTPS Port If using the MAM GUI

MAM Web
Services
Host

443 HTTPS Port If using MAM Web Services

MAM Data-
base Host

5432 MAM Post-
greSQL
Server Port

If you will be installing the MAM Database on a different host from
the MAM Server

Chapter 2: Installation and Configuration

75 2.18 Port Reference

2.18 Port Reference 76

Moab Web Services

Location Ports Functions When Needed

MWS
Server Host

8080 Tomcat Server
Port

Always

MWS Data-
base Host

27017 MWS MongoDB
Server Port

If you will be installing the MWS Database on a different
host from the MWS Server

Moab Insight

Location Ports Functions When Needed

Insight Server Host 5568 Insight Server Port Always

Moab MongoDB Database Host 27017 Moab MongoDB Server Port Always

Moab Server Host 5574 Moab Data Port Always

Moab Server Host 5575 Moab Reliability Port Always

Moab Viewpoint

Location Ports Functions When Needed

Viewpoint
Server Host

8081 Viewpoint Web
Server Port

Always

Moab
Server Host

8443 Viewpoint File Man-
ager Port

Always

Viewpoint
Database
Host

5432 Viewpoint Post-
greSQL Database
Port

If you will be installing the Viewpoint Database on a dif-
ferent host from the Viewpoint Server

Chapter 2: Installation and Configuration

Remote Visualization

Location Ports Functions When Needed

Remote Visualization Server Host
(also known as the Gateway Server)

3443 FastX Web
Server Port

Always

Remote Visualization Session Server
Host (Torque MOM Host)

Add ports as
required, e.g.

TCP: 3443, 6000-
6005, 16001,
35091

UDP: 117

Session
Server Ports

Ports 16001 and 35091 are
only needed when using
gnome

Nitro

The listed ports are for configurations that have only one coordinator. If multiple
coordinators are run on a single compute host, then sets of ports (range of 4) must be
opened for the number of expected simultaneous coordinators.

Location Ports Functions When
Needed

Compute
Hosts (Nitro
Coordinator)

47000 Coordinator/Worker communication Always

Compute
Hosts (Nitro
Coordinator)

47001 Coordinator PUB/SUB channel - publishes
status information

Always

Compute
Hosts (Nitro
Coordinator)

47002 Reserved for future functionality

Compute
Hosts (Nitro
Coordinator)

47003 API communication channel Always

Chapter 2: Installation and Configuration

77 2.18 Port Reference

2.18 Port Reference 78

Nitro Web Services

Location Ports Functions When Needed

Nitro Web
Services
Host

9443 Tornado Web Port Always

Nitro Web
Services
Host

47100 ZMQ Port Always

Nitro Web
Services
Database
Host

27017 Nitro Web Services
MongoDB Server
Port

If you will be installing the Nitro Web Services Data-
base on a different host from Nitro Web Services

Reporting

Suggested
Host Service Ports Function When

Needed

Reporting
Master

HDFS
name
node

8020 HDFS communication Always

Reporting
Master

HDFS
name
node

50070 HDFS web interface Always

Reporting
Master

Spark
Master

6066, 7077 Spark communication Always

Reporting
Master

Spark
Master

8082 Spark Master web interface Always

Reporting
Master

Apache
Kafka

9092 Kafka communication Always

Reporting
Master

Apache
Zookeeper

2181 Zookeeper communication with
Kafka and Drill

Always

Chapter 2: Installation and Configuration

Suggested
Host Service Ports Function When

Needed

Insight Server Apache
Drill

8047 Drill HTTP interface Always

Reporting
Worker

HDFS data
node

50075, 50010,
50020

HDFS communication Always

Reporting
Worker

Spark
Worker

4040 Spark communication Always

Reporting
Worker

Spark
worker

8083 Spark worker web interface Always

MWS Host Tomcat 8080 Reporting Web Services HTTP
interface

Always

MWS Host MongoDB 27017 MongoDB communication Always

Chapter 2: Installation and Configuration

79 2.18 Port Reference

2.19 Manual Setup of Initial Server Configuration 80

2.19 Manual Setup of Initial Server Configuration

On a new installation of Torque, the server database must be initialized using the command pbs_
server -t create. This command creates a file in $TORQUE_HOME/server_priv named
serverdb which contains the server configuration information.

The following output from qmgr shows the base configuration created by the command pbs_
server -t create:

qmgr -c 'p s'
#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6

This is a bare minimum configuration and it is not very useful. By using qmgr, the server
configuration can be modified to set up Torque to do useful work. The following qmgr commands
will create a queue and enable the server to accept and run jobs. These commands must be
executed by root.

pbs_server -t create
qmgr -c "set server scheduling=true"
qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"
qmgr -c "set server default_queue=batch"

When Torque reports a new queue to Moab a class of the same name is automatically applied
to all nodes.

In this example, the configuration database is initialized and the scheduling interface is activated
using ('scheduling=true'). This option allows the scheduler to receive job and node events
which allow it to be more responsive (See scheduling for more information). The next command
creates a queue and specifies the queue type. Within PBS, the queue must be declared an
'execution queue in order for it to run jobs. Additional configuration (i.e., setting the queue to
started and enabled) allows the queue to accept job submissions, and launch queued jobs.

The next two lines are optional, setting default node and walltime attributes for a submitted
job. These defaults will be picked up by a job if values are not explicitly set by the submitting user.
The final line, default_queue=batch, is also a convenience line and indicates that a job should
be placed in the batch queue unless explicitly assigned to another queue.

Additional information on configuration can be found in the admin manual and in the qmgr main
page.

Chapter 2: Installation and Configuration

Related Topics

l 2.1 Torque Installation Overview - page 22

Chapter 2: Installation and Configuration

81 2.19 Manual Setup of Initial Server Configuration

2.20 Server Node File Configuration 82

2.20 Server Node File Configuration

This section contains information about configuring server node files. It explains how to specify
node virtual processor counts and GPU counts, as well as how to specify node features or
properties. See these topics for details:
(missing or bad snippet)

Related Topics

l 2.1 Torque Installation Overview - page 22

l Appendix B: Server Parameters - page 395

l Node Features/Node Properties in the Moab Workload Manager Administrator Guide

Chapter 2: Installation and Configuration

2.21 Basic Node Specification

For the pbs_server to communicate with each of the MOMs, it needs to know which machines to
contact. Each node that is to be a part of the batch system must be specified on a line in the server
nodes file. This file is located at TORQUE_HOME/server_priv/nodes. In most cases, it is
sufficient to specify just the node name on a line as in the following example:

server_priv/nodes:

node001
node002
node003
node004

The server nodes file also displays the parameters applied to the node. See Adding nodes for
more information on the parameters.

Related Topics

l 2.20 Server Node File Configuration - page 82

Chapter 2: Installation and Configuration

83 2.21 Basic Node Specification

2.22 Specifying Virtual Processor Count for a Node 84

2.22 Specifying Virtual Processor Count for a Node

By default each node has one virtual processor. Increase the number using the np attribute in the
nodes file. The value of np can be equal to the number of physical cores on the node or it can be set
to a value which represents available "execution slots" for the node. The value used is determined
by the administrator based on hardware, system, and site criteria.

The following example shows how to set the np value in the nodes file. In this example, we are
assuming that node001 and node002 have four physical cores. The administrator wants the value of
np for node001 to reflect that it has four cores. However, node002 will be set up to handle multiple
virtual processors without regard to the number of physical cores on the system.

server_priv/nodes:

node001 np=4
node002 np=12
...

Related Topics

l 2.20 Server Node File Configuration - page 82

Chapter 2: Installation and Configuration

2.23 Specifying GPU Count for a Node

This section describes a rudimentary method for configuring GPUs manually. Administrators
can configure the MOMs to automatically detect the number of NVIDIA GPUs and get detailed
GPU reporting on each node (the recommended method). Combining this with cgroups will
also prevent unauthorized access to resources. See Scheduling GPUs in the Moab
Administrator Guide for details on this automated method.

When using this method, pbs_server automatically appends "gpus=<count>" to the end
of the line in TORQUE_HOME/server_priv/nodes for any node with a GPU, overriding
any such manual configuration.

To manually set the number of GPUs on a node, use the gpus attribute in the nodes file. The value
of GPUs is determined by the administrator based on hardware, system, and site criteria.

The following example shows how to set the GPU value in the nodes file. In the example, we assume
node01 and node002 each have two physical GPUs. The administrator wants the value of
node001 to reflect the physical GPUs available on that system and adds gpus=2 to the nodes file
entry for node001. However, node002 will be set up to handle multiple virtual GPUs without
regard to the number of physical GPUs on the system.

server_priv/nodes:

node001 gpus=2
node002 gpus=4
...

Related Topics

l 2.20 Server Node File Configuration - page 82

Chapter 2: Installation and Configuration

85 2.23 Specifying GPU Count for a Node

2.24 Specifying Node Features (Node Properties) 86

2.24 Specifying Node Features (Node Properties)

Node features can be specified by placing one or more white space-delimited strings on the line for
the associated host as in the following example:

server_priv/nodes:

node001 np=2 fast ia64
node002 np=4 bigmem fast ia64 smp
...

These features can be used by users to request specific nodes when submitting jobs. For example:

qsub -l nodes=1:bigmem+1:fast job.sh

This job submission will look for a node with the bigmem feature (node002) and a node with the
fast feature (either node001 or node002).

Related Topics

l 2.20 Server Node File Configuration - page 82

Chapter 2: Installation and Configuration

2.25 Testing Server Configuration

If you have initialized Torque using the torque.setup script or started Torque using pbs_server -t
create and pbs_server is still running, terminate the server by calling qterm. Next, start pbs_server
again without the -t create arguments. Follow the script below to verify your server
configuration. The output for the examples below is based on the nodes file example in Specifying
node features and Server configuration.

verify all queues are properly configured
> qstat -q

server:kmn

Queue Memory CPU Time Walltime Node Run Que Lm State
----- ------ -------- -------- ---- --- --- -- -----
batch -- -- -- -- 0 0 -- ER

--- ---
0 0

view additional server configuration
> qmgr -c 'p s'
#
Create queues and set their attributes
#
#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = user1@kmn
set server operators = user1@kmn
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 300
set server job_stat_rate = 45
set server poll_jobs = True
set server mom_job_sync = True
set server keep_completed = 300
set server next_job_number = 0

verify all nodes are correctly reporting
> pbsnodes -a
node001
state=free
np=2
properties=bigmem,fast,ia64,smp
ntype=cluster

Chapter 2: Installation and Configuration

87 2.25 Testing Server Configuration

2.25 Testing Server Configuration 88

status=rectime=1328810402,varattr=,jobs=,state=free,netload=6814326158,gres=,loadave=0
.21,ncpus=6,physmem=8193724kb,
availmem=13922548kb,totmem=16581304kb,idletime=3,nusers=3,nsessions=18,sessions=1876
1120 1912 1926 1937 1951 2019 2057 28399 2126 2140 2323 5419 17948 19356 27726 22254
29569,uname=Linux kmn 2.6.38-11-generic #48-Ubuntu SMP Fri Jul 29 19:02:55 UTC 2011
x86_64,opsys=linux
mom_service_port = 15002
mom_manager_port = 15003
gpus = 0

submit a basic job - DO NOT RUN AS ROOT
> su - testuser
> echo "sleep 30" | qsub

verify jobs display
> qstat

Job id Name User Time Use S Queue
------ ----- ---- -------- -- -----
0.kmn STDIN knielson 0 Q batch

At this point, the job should be in the Q state and will not run because a scheduler is not running
yet. Torque can use its native scheduler by running pbs_sched or an advanced scheduler (such as
Moab Workload Manager). See Integrating Schedulers for Torque for details on setting up an
advanced scheduler.

Related Topics

l 2.1 Torque Installation Overview - page 22

Chapter 2: Installation and Configuration

2.26 Configuring Torque for NUMA Systems

Torque supports these two types of Non-Uniform Memory Architecture (NUMA) systems:

l NUMA-Aware – For Torque 6.0 and later, supports multi-req jobs and jobs that span hosts.
Requires the --enable-cgroups configuration command to support cgroups. See 2.27
Torque NUMA-Aware Configuration - page 90 for instructions and additional information.

l NUMA-Support – For Torque version 3.0 and later; only for large-scale SLES systems (SGI
Altix and UV hardware). Requires the --enable-numa-support configuration command.
See 2.28 Torque NUMA-Support Configuration - page 93 for instructions and additional
information.

Torque cannot be configured for both systems at the same.

Related Topics

l 2.27 Torque NUMA-Aware Configuration - page 90

l 2.28 Torque NUMA-Support Configuration - page 93

Chapter 2: Installation and Configuration

89 2.26 Configuring Torque for NUMA Systems

2.27 Torque NUMA-Aware Configuration 90

2.27 Torque NUMA-Aware Configuration

This topic provides instructions for enabling NUMA-aware, including cgroups, and requires Torque
6.0 or later. For instructions on NUMA-support configurations, see 2.28 Torque NUMA-Support
Configuration - page 93. This topic assumes you have a basic understanding of cgroups. See RedHat
Resource Management Guide (https://access.redhat.com/documentation/en-US/Red_Hat_
Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html) or cgroups on kernel.org
(https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt) for basic information on
cgroups.

In this topic:

2.27.1 About cgroups - page 90
2.27.2 Prerequisites - page 90
2.27.3 Installation Instructions - page 91
2.27.4Multiple cgroup Directory Configuration - page 92

2.27.1 About cgroups
Torque uses cgroups to better manage CPU and memory accounting, memory enforcement, cpuset
management, and binding jobs to devices such as MICs and GPUs.

Be aware of the following:

l Cgroups is incompatible with (and supersedes) cpuset support (--enable-cpuset and -
-enable-geometry-requests). Configuring with --enable-cgroups overrides
these other options.

l If you are building with cgroups enabled, you must have boost version 1.41 or later.

l The pbs_mom daemon is the binary that interacts cgroups, but both the server and the MOM
must be built with --enable-cgroups to understand all of the new structures.

l Beginning with Torque 6.0.2, Cray-enabled Torque may be configured with cgroups. On the
login node, each job will have all of the CPUs and all of the memory controllers in its cgroup.

2.27.2 Prerequisites
1. Install the prerequisites found in Installing Torque Resource Manager.

2. hwloc version 1.9.1 or later is required. Version 1.11.0 is needed if installing with NVIDIA K80
or newer GPU hardware

Chapter 2: Installation and Configuration

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

l download hwloc-1.9.1.tar.gz from: https://www.open-mpi.org/software/hwloc/v1.9

l perform the following command line actions:

$ tar -xzvf hwloc-1.9.1.tar.gz
$ cd hwloc-1.9.1.tar.gz
$ sudo ./configure

l You do not need to overwrite the default installation of hwloc. By default hwloc will install
to the /usr/local directory. You can also configure hwloc with the --prefix option to have it
install to a location of your choosing. If you do not install hwloc to /usr directory you can
tell Torque where to find the version you want it to use at configure time using the --with-
hwloc-path option. For example:

./configure --enable-cgroups --with-hwloc-path=/usr/local

l Run make

l sudo make install

2.27.3 Installation Instructions
Do the following:

1. Install the libcgroup package.

Red Hat-based Systems must use libcgroup version 0.40.rc1-16.el6 or later; SUSE-
based systems need to use a comparative libcgroup version.

l Red Hat 6-based systems

yum install libcgroup

l Red Hat 7-based systems

yum install libcgroup-tools

l SUSE 11-based systems

zypper install libcgroup-devel

l SUSE 12-based systems

zypper install libcgroup-tools

2. Enable Torque to access cgroups.

$./configure --enable-cgroups --with-hwloc-path=/usr/local

Chapter 2: Installation and Configuration

91 2.27 Torque NUMA-Aware Configuration

https://www.open-mpi.org/software/hwloc/v1.9

2.27 Torque NUMA-Aware Configuration 92

2.27.4 Multiple cgroup Directory Configuration
If your system has more than one cgroup directory configured, you must create the
trq-cgroup-paths file in the $TORQUE_HOME directory. This file has a list of the cgroup
subsystems and the mount points for each subsystem in the syntax of <subsystem> <mount
point>.

All five subsystems used by pbs_mom must be in the trq-cgroup-paths file. In the example
that follows, a directory exists at /cgroup with subdirectories for each subsystem. Torque uses this
file first to configure where it will look for cgroups.

cpuset /cgroup/cpuset
cpuacct /cgroup/cpuacct
cpu /cgroup/cpu
memory /cgroup/memory
devices /cgroup/devices

Chapter 2: Installation and Configuration

2.28 Torque NUMA-Support Configuration

This topic provides instructions for enabling NUMA-support on large-scale SLES systems
using SGI Altix and UV hardware and requires Torque 3.0 or later. For instructions on
enabling NUMA-aware, see 2.27 Torque NUMA-Aware Configuration - page 90.

Perform the following steps:

1. Configure Torque for NUMA-Support

2. Create themom.layout File

a. Automatically Createmom.layout (Recommended)

b. Manually Createmom.layout

3. Configure the server_priv/nodes File

4. Limit MemoryResources (Optional)

2.28.1 Configure Torque for NUMA-Support
To turn on NUMA-support for Torque the --enable-numa-support option must be used
during the configure portion of the installation. In addition to any other configuration options, add
the --enable-numa-support option as indicated in the following example:

$./configure --enable-numa-support

Don't use MOM hierarchy with NUMA.

When Torque is enabled to run with NUMA support, there is only a single instance of pbs_mom
(MOM) that is run on the system. However, Torque will report that there are multiple nodes
running in the cluster. While pbs_mom and pbs_server both know there is only one instance of
pbs_mom, they manage the cluster as if there were multiple separate MOM nodes.

The mom.layout file is a virtual mapping between the system hardware configuration and how
the administrator wants Torque to view the system. Each line in mom.layout equates to a node in
the cluster and is referred to as a NUMA node.

2.28.2 Create the mom.layout File
This section provides instructions to create the mom.layout file.

Do one of the following:

Chapter 2: Installation and Configuration

93 2.28 Torque NUMA-Support Configuration

2.28 Torque NUMA-Support Configuration 94

l 2.28.2.A Automatically Create mom.layout (Recommended) - page 94

l 2.28.2.B Manually Create mom.layout - page 94

2.28.2.A Automatically Create mom.layout (Recommended)
A perl script named mom_gencfg is provided in the contrib/ directory that generates the
mom.layout file for you. The script can be customized by setting a few variables in it.

To automatically create the mom.layout file, do the following:

1. Verify hwloc library and corresponding hwloc-devel package are installed. See Installing
Torque Resource Manager for more information.

2. Install Sys::Hwloc from CPAN.

3. Verify $PBS_HOME is set to the proper value.

4. Update the variables in the 'Config Definitions' section of the script. Especially update
firstNodeId and nodesPerBoard if desired. The firstNodeId variable should be set
above 0 if you have a root cpuset that you wish to exclude and the nodesPerBoard variable is
the number of NUMA nodes per board. Each node is defined in
/sys/devices/system/node, in a subdirectory node<node index>.

5. Back up your current file in case a variable is set incorrectly or neglected.

6. Run the script.

$./mom_gencfg

2.28.2.B Manually Create mom.layout
To properly set up the mom.layout file, it is important to know how the hardware is configured.
Use the topology command line utility and inspect the contents of
/sys/devices/system/node. The hwloc library can also be used to create a custom discovery
tool.

Typing topology on the command line of a NUMA system produces something similar to the
following:

Partition number: 0
6 Blades
72 CPUs
378.43 Gb Memory Total

Blade ID asic NASID Memory

 0 r001i01b00 UVHub 1.0 0 67089152 kB
 1 r001i01b01 UVHub 1.0 2 67092480 kB
 2 r001i01b02 UVHub 1.0 4 67092480 kB
 3 r001i01b03 UVHub 1.0 6 67092480 kB
 4 r001i01b04 UVHub 1.0 8 67092480 kB
 5 r001i01b05 UVHub 1.0 10 67092480 kB

Chapter 2: Installation and Configuration

CPU Blade PhysID CoreID APIC-ID Family Model Speed L1(KiB) L2(KiB) L3(KiB)

 0 r001i01b00 00 00 0 6 46 2666 32d/32i 256 18432
 1 r001i01b00 00 02 4 6 46 2666 32d/32i 256 18432
 2 r001i01b00 00 03 6 6 46 2666 32d/32i 256 18432
 3 r001i01b00 00 08 16 6 46 2666 32d/32i 256 18432
 4 r001i01b00 00 09 18 6 46 2666 32d/32i 256 18432
 5 r001i01b00 00 11 22 6 46 2666 32d/32i 256 18432
 6 r001i01b00 01 00 32 6 46 2666 32d/32i 256 18432
 7 r001i01b00 01 02 36 6 46 2666 32d/32i 256 18432
 8 r001i01b00 01 03 38 6 46 2666 32d/32i 256 18432
 9 r001i01b00 01 08 48 6 46 2666 32d/32i 256 18432
 10 r001i01b00 01 09 50 6 46 2666 32d/32i 256 18432
 11 r001i01b00 01 11 54 6 46 2666 32d/32i 256 18432
 12 r001i01b01 02 00 64 6 46 2666 32d/32i 256 18432
 13 r001i01b01 02 02 68 6 46 2666 32d/32i 256 18432
 14 r001i01b01 02 03 70 6 46 2666 32d/32i 256 18432

From this partial output, note that this system has 72 CPUs on 6 blades. Each blade has 12 CPUs
grouped into clusters of 6 CPUs. If the entire content of this command were printed you would see
each Blade ID and the CPU ID assigned to each blade.

The topology command shows how the CPUs are distributed, but you likely also need to know
where memory is located relative to CPUs, so go to /sys/devices/system/node. If you list
the node directory you will see something similar to the following:

ls -al
total 0
drwxr-xr-x 14 root root 0 Dec 3 12:14 .
drwxr-xr-x 14 root root 0 Dec 3 12:13 ..
-r--r--r-- 1 root root 4096 Dec 3 14:58 has_cpu
-r--r--r-- 1 root root 4096 Dec 3 14:58 has_normal_memory
drwxr-xr-x 2 root root 0 Dec 3 12:14 node0
drwxr-xr-x 2 root root 0 Dec 3 12:14 node1
drwxr-xr-x 2 root root 0 Dec 3 12:14 node10
drwxr-xr-x 2 root root 0 Dec 3 12:14 node11
drwxr-xr-x 2 root root 0 Dec 3 12:14 node2
drwxr-xr-x 2 root root 0 Dec 3 12:14 node3
drwxr-xr-x 2 root root 0 Dec 3 12:14 node4
drwxr-xr-x 2 root root 0 Dec 3 12:14 node5
drwxr-xr-x 2 root root 0 Dec 3 12:14 node6
drwxr-xr-x 2 root root 0 Dec 3 12:14 node7
drwxr-xr-x 2 root root 0 Dec 3 12:14 node8
drwxr-xr-x 2 root root 0 Dec 3 12:14 node9
-r--r--r-- 1 root root 4096 Dec 3 14:58 online
-r--r--r-- 1 root root 4096 Dec 3 14:58 possible

The directory entries node0, node1,...node11 represent groups of memory and CPUs local to each
other. These groups are a node board, a grouping of resources that are close together. In most
cases, a node board is made up of memory and processor cores. Each bank of memory is called a
memory node by the operating system, and there are certain CPUs that can access that memory
very rapidly. Note under the directory for node board node0 that there is an entry called cpulist.
This contains the CPU IDs of all CPUs local to the memory in node board 0.

Chapter 2: Installation and Configuration

95 2.28 Torque NUMA-Support Configuration

2.28 Torque NUMA-Support Configuration 96

Now create the mom.layout file. The content of cpulist 0-5 are local to the memory of node board
0, and the memory and CPUs for that node are specified in the layout file by saying nodes=0. The
cpulist for node board 1 shows 6-11 and memory node index 1. To specify this, simply write
nodes=1. Repeat this for all twelve node boards and create the following mom.layout file for the
72 CPU system.

nodes=0
nodes=1
nodes=2
nodes=3
nodes=4
nodes=5
nodes=6
nodes=7
nodes=8
nodes=9
nodes=10
nodes=11

Each line in the mom.layout file is reported as a node to pbs_server by the pbs_mom daemon.

The mom.layout file does not need to match the hardware layout exactly. It is possible to
combine node boards and create larger NUMA nodes. The following example shows how to do this:

nodes=0-1

The memory nodes can be combined the same as CPUs. The memory nodes combined must be
contiguous. You cannot combine mem 0 and 2.

2.28.3 Configure the server_priv/nodes File
The pbs_server requires awareness of how the MOM is reporting nodes since there is only one
MOM daemon and multiple MOM nodes.

You need to configure the server_priv/nodes file with the num_node_boards and numa_
board_str attributes. The attribute num_node_boards tells pbs_server how many numa nodes
are reported by the MOM.

The following is an example of how to configure the nodes file with num_node_boards.

numa-10 np=72 num_node_boards=12

In this example, the nodes file tells pbs_server there is a host named numa-10 and that it has 72
processors and 12 nodes. The pbs_server divides the value of np (72) by the value for num_
node_boards (12) and determines there are 6 CPUs per NUMA node.

The previous example showed that the NUMA system is uniform in its configuration of CPUs per
node board. However, a system does not need to be configured with the same number of CPUs per
node board. For systems with non-uniform CPU distributions, use the attribute numa_board_str
to let pbs_server know where CPUs are located in the cluster.

The following is an example of how to configure the server_priv/nodes file for non-uniformly
distributed CPUs.

Chapter 2: Installation and Configuration

Numa-11 numa_board_str=6,8,12

In this example, pbs_server knows it has 3 MOM nodes and the nodes have 6, 8, and 12 CPUs
respectively. Notice that the attribute np is not used. The np attribute is ignored because the
number of CPUs per node is expressly given.

2.28.4 Limit Memory Resources (Optional)
Torque can better enforce memory limits with the use of the memacctd utility. The memacctd utility
is a daemon that caches memory footprints when it is queried. When configured to use the memory
monitor, Torque queries memacctd.

The memacctd utility is provided by SGI for SLES systems only. It is up to the user to make
sure memacctd is installed.

To configure Torque to use memacctd for memory enforcement, do the following:

1. Start memacctd as instructed by SGI.

2. Reconfigure Torque with --enable-memacct. This will link in the necessary library when
Torque is recompiled.

3. Recompile and reinstall Torque.

4. Restart all MOM nodes.

You use the qsub filter to include a default memory limit for all jobs that are not submitted
with memory limit.

Chapter 2: Installation and Configuration

97 2.28 Torque NUMA-Support Configuration

2.29 Torque Multi-MOM 98

2.29 Torque Multi-MOM

Starting in Torque version 3.0 users can run multiple MOMs on a single node. The initial reason to
develop a multiple MOM capability was for testing purposes. A small cluster can be made to look
larger since each MOM instance is treated as a separate node.

When running multiple MOMs on a node each MOM must have its own service and manager ports
assigned. The default ports used by the MOM are 15002 and 15003. With the multi-mom alternate
ports can be used without the need to change the default ports for pbs_server even when
running a single instance of the MOM.

Chapter 2: Installation and Configuration

2.30 Multi-MOM Configuration

There are three steps to setting up multi-MOM capability.

Perform the following steps:

1. Configure server_priv/nodes

2. Edit the /etc/hosts File

3. Start pbs_momwithMulti-MOMOptions

2.30.1 Configure server_priv/nodes
The attributes mom_service_port and mom_manager_port were added to the nodes file
syntax to accommodate multiple MOMs on a single node. By default pbs_mom opens ports 15002
and 15003 for the service and management ports respectively. For multiple MOMs to run on the
same IP address they need to have their own port values so they can be distinguished from each
other. pbs_server learns about the port addresses of the different MOMs from entries in the
server_priv/nodes file. The following is an example of a nodes file configured for multiple
MOMs:

hosta np=2
hosta-1 np=2 mom_service_port=30001 mom_manager_port=30002
hosta-2 np=2 mom_service_port=31001 mom_manager_port=31002
hosta-3 np=2 mom_service_port=32001 mom_manager_port=32002

Note that all entries have a unique host name and that all port values are also unique. The entry
hosta does not have a mom_service_port or mom_manager_port given. If unspecified, then the
MOM defaults to ports 15002 and 15003.

2.30.2 Edit the /etc/hosts File
Host names in the server_priv/nodes file must be resolvable. Creating an alias for each host
enables the server to find the IP address for each MOM; the server uses the port values from the
server_priv/nodes file to contact the correct MOM. An example /etc/hosts entry for the
previous server_priv/nodes example might look like the following:

192.65.73.10 hosta hosta-1 hosta-2 hosta-3

Even though the host name and all the aliases resolve to the same IP address, each MOM instance
can still be distinguished from the others because of the unique port value assigned in the
server_priv/nodes file.

Chapter 2: Installation and Configuration

99 2.30 Multi-MOM Configuration

2.30 Multi-MOM Configuration 100

2.30.3 Start pbs_mom with Multi-MOM Options
To start multiple instances of pbs_mom on the same node, use the following syntax (see pbs_mom
for details):

pbs_mom -m -M <port value of MOM_service_port> -R <port value of MOM_manager_port> -A
<name of MOM alias>

Continuing based on the earlier example, if you want to create four MOMs on hosta, type the
following at the command line:

pbs_mom -m -M 30001 -R 30002 -A hosta-1
pbs_mom -m -M 31001 -R 31002 -A hosta-2
pbs_mom -m -M 32001 -R 32002 -A hosta-3
pbs_mom

Notice that the last call to pbs_mom uses no arguments. By default pbs_mom opens on ports
15002 and 15003. No arguments are necessary because there are no conflicts.

Related Topics

l 2.29 Torque Multi-MOM - page 98

l 2.31 Stopping pbs_mom in Multi-MOM Mode - page 101

Chapter 2: Installation and Configuration

2.31 Stopping pbs_mom in Multi-MOM Mode

Terminate pbs_mom by using the momctl -s command (for details, see momctl). For any MOM
using the default manager port 15003, the momctl -s command stops the MOM. However, to
terminate MOMs with a manager port value not equal to 15003, you must use the following syntax:

momctl -s -p <port value of MOM_manager_port>

The -p option sends the terminating signal to the MOM manager port and the MOM is terminated.

Related Topics

l 2.29 Torque Multi-MOM - page 98

l 2.30 Multi-MOM Configuration - page 99

Chapter 2: Installation and Configuration

101 2.31 Stopping pbs_mom in Multi-MOM Mode

102

Chapter 3: Submitting and Managing Jobs

This section contains information about how you can submit and manage jobs with Torque.

In this chapter:

3.1 Job Submission 104
3.2 Multiple Job Submission 106

3.2.1 Submitting Job Arrays 106
3.2.2 Slot Limit 107

3.3 ManagingMulti-Node Jobs 108
3.4 Requesting Resources 109

3.4.1 Native Torque Resources 109
3.4.2 Interpreting Resource Requests 116
3.4.3 Interpreting Node Requests 116
3.4.4Moab Job Extensions 117

3.5 Requesting NUMA-Aware Resources 119
3.6 Requesting Generic Resources 120
3.7 Requesting Floating Resources 121
3.8 Requesting Other Resources 122
3.9 Exported Batch Environment Variables 123
3.10 Enabling Trusted Submit Hosts 125
3.11 Example Submit Scripts 126
3.12 Job Files 127
3.13 Monitoring Jobs 129
3.14 Canceling Jobs 131
3.15 Job Preemption 132
3.16 Keeping Completed Jobs 133
3.17 Job Checkpoint and Restart 134
3.18 Introduction to BLCR 135
3.19 Configuration Files and Scripts 136
3.20 Starting a Checkpointable Job 141
3.21 Checkpointing a Job 143
3.22 Restarting a Job 144

3.22.1 Restarting a Job in the Held State 144
3.22.2 Restarting a Job in the Completed State 144

3.23 Acceptance Tests 145
3.24 Job Exit Status 146
3.25 Torque Process Tracking 150

Chapter 3: Submitting and Managing Jobs

3.25.1 Default Process Tracking 150
3.25.2 TaskManager API 150
3.25.3 Process Tracking with Cgroups/Cpusets 151

Chapter 3: Submitting and Managing Jobs

103

3.1 Job Submission 104

3.1 Job Submission

Job submission is accomplished using the qsub command, which takes a number of command line
arguments and integrates such into the specified PBS command file. The PBS command file may be
specified as a filename on the qsub command line or may be entered via STDIN.

l The PBS command file does not need to be executable.

l The PBS command file may be piped into qsub (i.e., cat pbs.cmd | qsub).

l In the case of parallel jobs, the PBS command file is staged to, and executed on, the first
allocated compute node only. (Use pbsdsh to run actions on multiple nodes.)

l The command script is executed from the user's home directory in all cases. (The script may
determine the submission directory by using the $PBS_O_WORKDIR environment variable)

l The command script will be executed using the default set of user environment variables
unless the -V or -v flags are specified to include aspects of the job submission environment.

l PBS directives should be declared first in the job script.

#PBS -S /bin/bash
#PBS -m abe
#PBS -M <yourEmail@company.com>
echo sleep 300

This is an example of properly declared PBS directives.

#PBS -S /bin/bash
SOMEVARIABLE=42
#PBS -m abe
#PBS -M <yourEmail@company.com>
echo sleep 300

This is an example of improperly declared PBS directives. PBS directives below
"SOMEVARIABLE=42" are ignored.

By default, job submission is allowed only on the Torque server host (host on which pbs_
server is running). Enablement of job submission from other hosts is documented in Server
Configuration.

Versions of Torque earlier than 2.4.5 attempted to apply queue and server defaults to a job
that didn't have defaults specified. If a setting still did not have a value after that, Torque
applied the queue and server maximum values to a job (meaning, the maximum values for an
applicable setting were applied to jobs that had no specified or default value).

In Torque 2.4.5 and later, the queue and server maximum values are no longer used as a
value for missing settings.

Chapter 3: Submitting and Managing Jobs

Related Topics

l Maui Documentation

l Appendix J: Job Submission Filter ("qsub Wrapper") - page 483 – Allow local checking and
modification of submitted job

Chapter 3: Submitting and Managing Jobs

105 3.1 Job Submission

http://docs.adaptivecomputing.com/maui/index.php

3.2 Multiple Job Submission 106

3.2 Multiple Job Submission

Sometimes users will want to submit large numbers of jobs based on the same job script. Rather
than using a script to repeatedly call qsub, a feature known as job arrays now exists to allow the
creation of multiple jobs with one qsub command. Additionally, this feature includes a new job
naming convention that allows users to reference the entire set of jobs as a unit, or to reference one
particular job from the set.

In this topic:

3.2.1 Submitting Job Arrays - page 106
3.2.2 Slot Limit - page 107

3.2.1 Submitting Job Arrays
Job arrays are submitted through the -t option to qsub, or by using #PBS -t in your batch script.
This option takes a comma-separated list consisting of either a single job ID number, or a pair of
numbers separated by a dash. Each of these jobs created will use the same script and will be
running in a nearly identical environment.

> qsub -t 0-4 job_script
1098[].hostname

> qstat -t
1098[0].hostname ...
1098[1].hostname ...
1098[2].hostname ...
1098[3].hostname ...
1098[4].hostname ...

Versions of Torque earlier than 2.3 had different semantics for the -t argument. In these
versions, -t took a single integer number—a count of the number of jobs to be created.

Each 1098[x] job has an environment variable called PBS_ARRAYID, which is set to the value of the
array index of the job, so 1098[0].hostname would have PBS_ARRAYID set to 0. This allows you to
create job arrays where each job in the array performs slightly different actions based on the value
of this variable, such as performing the same tasks on different input files. One other difference in
the environment between jobs in the same array is the value of the PBS_JOBNAME variable.

These two examples are equivalent in Torque 2.2
> qsub -t 0-99
> qsub -t 100

You can also pass comma delimited lists of ids and ranges:
> qsub -t 0,10,20,30,40
> qsub -t 0-50,60,70,80

Chapter 3: Submitting and Managing Jobs

Running qstat displays a job summary, which provides an overview of the array's state. To see
each job in the array, run qstat -t.

The qalter, qdel, qhold, and qrls commands can operate on arrays—either the entire array
or a range of that array. Additionally, any job in the array may be accessed normally by using that
job's ID, just as you would with any other job. For example, running the following command would
run only the specified job:

qrun 1098[0].hostname

3.2.2 Slot Limit
The slot limit is a way for administrators to limit the number of jobs from a job array that can be
eligible for scheduling at the same time. When a slot limit is used, Torque puts a hold on all jobs in
the array that exceed the slot limit. When an eligible job in the array completes, Torque removes
the hold flag from the next job in the array. Slot limits can be declared globally with the max_slot_
limit parameter, or on a per-job basis with qsub -t.

Related Topics

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

107 3.2 Multiple Job Submission

3.3 Managing Multi-Node Jobs 108

3.3 Managing Multi-Node Jobs

By default, when a multi-node job runs, the Mother Superior manages the job across all the sister
nodes by communicating with each of them and updating pbs_server. Each of the sister nodes
sends its updates and stdout and stderr directly to the Mother Superior. When you run an
extremely large job using hundreds or thousands of nodes, you may want to reduce the amount of
network traffic sent from the sisters to the Mother Superior by specifying a job radix. Job radix sets
a maximum number of nodes with which the Mother Superior and resulting intermediate MOMs
communicate and is specified using the -W option for qsub.

For example, if you submit a smaller, 12-node job and specify job_radix=3, Mother Superior and
each resulting intermediate MOM is only allowed to receive communication from 3 subordinate
nodes.

Image 3-1: Job radix example

The Mother Superior picks three sister nodes with which to communicate the job information. Each
of those nodes (intermediate MOMs) receives a list of all sister nodes that will be subordinate to it.
They each contact up to three nodes and pass the job information on to those nodes. This pattern
continues until the bottom level is reached. All communication is now passed across this new
hierarchy. The stdout and stderr data is aggregated and sent up the tree until it reaches the
Mother Superior, where it is saved and copied to the .o and .e files.

Job radix is meant for extremely large jobs only. It is a tunable parameter and should be
adjusted according to local conditions in order to produce the best results.

Chapter 3: Submitting and Managing Jobs

3.4 Requesting Resources

Various resources can be requested at the time of job submission. A job can request a particular
node, a particular node attribute, or even a number of nodes with particular attributes. Either
native Torque resources (with the -l <resource> syntax) or external scheduler resource
extensions (with -W x=) may be specified.

qsub -l supports:

l All the native Torque resources. See 3.4.1 Native Torque Resources - page 109 for a list of
resources.

l Some Moab scheduler job extensions (for legacy support). See 3.4.4 Moab Job Extensions -
page 117 for a list of resources.

For Moab resource extensions, qsub -W x= is recommended instead of qsub -l.
See Resource Manager Extensions in the Moab Workload ManagerAdministrator Guide
for a complete list of scheduler-only job extensions.

In this topic:

3.4.1 Native Torque Resources - page 109
3.4.2 Interpreting Resource Requests - page 116
3.4.3 Interpreting Node Requests - page 116
3.4.4Moab Job Extensions - page 117

3.4.1 Native Torque Resources
The native Torque resources are listed in the following table.

Resource Format Description

arch string Specifies the administrator defined system architecture required. This
defaults to whatever the PBS_MACH string is set to in local.mk.

cput seconds, or
[[HH:]MM;]SS

Maximum amount of CPU time used by all processes in the job on all reques-
ted processors.

Chapter 3: Submitting and Managing Jobs

109 3.4 Requesting Resources

3.4 Requesting Resources 110

Resource Format Description

cpuclock string Specify the CPU clock frequency for each node requested for this job. A
cpuclock request applies to every processor on every node in the request.
Specifying varying CPU frequencies for different nodes or different
processors on nodes in a single job request is not supported.

Not all processors support all possible frequencies or ACPI states. If the
requested frequency is not supported by the CPU, the nearest frequency is
used.

ALPS 1.4 or later is required when using cpuclock on Cray.

The clock frequency can be specified via:

l a number that indicates the clock frequency (with or without the SI
unit suffix).

qsub -l cpuclock=1800,nodes=2 script.sh
qsub -l cpuclock=1800mhz,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU
frequencies should be set to 1800 MHz.

l a Linux power governor policy name. The governor names are:
o performance: This governor instructs Linux to operate each

logical processor at its maximum clock frequency.

This setting consumes the most power and workload
executes at the fastest possible speed.

o powersave: This governor instructs Linux to operate each
logical processor at its minimum clock frequency.

This setting executes workload at the slowest possible speed.
This setting does not necessarily consume the least amount of
power since applications execute slower, and may actually
consume more energy because of the additional time needed
to complete the workload's execution.

o ondemand: This governor dynamically switches the logical
processor's clock frequency to the maximum value when
system load is high and to the minimum value when the
system load is low.

This setting causes workload to execute at the fastest possible
speed or the slowest possible speed, depending on OS load.
The system switches between consuming the most power
and the least power.

Chapter 3: Submitting and Managing Jobs

Resource Format Description

The power saving benefits of ondemandmight be
non-existent due to frequency switching latency if the
system load causes clock frequency changes too often.

This has been true for older processors since changing
the clock frequency required putting the processor
into the C3 "sleep" state, changing its clock frequency,
and then waking it up, all of which required a
significant amount of time.

Newer processors, such as the Intel Xeon E5-2600
Sandy Bridge processors, can change clock frequency
dynamically and much faster.

o conservative: This governor operates like the ondemand
governor but is more conservative in switching between
frequencies. It switches more gradually and uses all possible
clock frequencies.

This governor can switch to an intermediate clock frequency
if it seems appropriate to the system load and usage, which
the ondemand governor does not do.

qsub -l cpuclock=performance,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU
frequencies should be set to the performance power
governor policy.

l an ACPI performance state (or P-state) with or without the P prefix.
P-states are a special range of values (0-15) that map to specific
frequencies. Not all processors support all 16 states, however, they all
start at P0. P0 sets the CPU clock frequency to the highest
performance state which runs at the maximum frequency. P15 sets
the CPU clock frequency to the lowest performance state which runs
at the lowest frequency.

qsub -l cpuclock=3,nodes=2 script.sh
qsub -l cpuclock=p3,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU
frequencies should be set to a performance state of 3.

When reviewing job or node properties when cpuclock was used, be
mindful of unit conversion. The OS reports frequency in Hz, not MHz or GHz.

Chapter 3: Submitting and Managing Jobs

111 3.4 Requesting Resources

3.4 Requesting Resources 112

Resource Format Description

epilogue string Specifies a user owned epilogue script which will be run before the system
epilogue and epilogue.user scripts at the completion of a job. The syntax is
epilogue=<file>. The file can be designated with an absolute or relative
path.

For more information, see Prologue and Epilogue Scripts.

feature string Specifies a property or feature for the job. Feature corresponds to Torque
node properties and Moab features.

qsub script.sh -l procs=10,feature=bigmem

file size* Sets RLIMIT_FSIZE for each process launched through the TM interface.

See FILEREQUESTISJOBCENTRIC for information on how Moab schedules.

host string Name of the host on which the job should be run. This resource is provided
for use by the site's scheduling policy. The allowable values and effect on job
placement is site dependent.

mem size* Maximum amount of physical memory used by the job. Ignored on Darwin,
Digital Unix, Free BSD, HPUX 11, IRIX, NetBSD, and SunOS. Not implemented
on AIX and HPUX 10.

The mem resource will only work for single-node jobs. If your job requires
multiple nodes, use pmem instead.

ncpus integer The number of processors in one task where a task cannot span nodes.

You cannot request both ncpus and nodes in the same job.

nice integer Number between -20 (highest priority) and 19 (lowest priority). Adjust the
process execution priority.

Chapter 3: Submitting and Managing Jobs

Resource Format Description

nodes {<node_count> |
<hostname>}
[:ppn=<ppn>]
[:gpus=<gpu>]
[:<property>
[:<property>]...]
[+ ...]

Number and/or type of nodes to be reserved for exclusive use by the job.
The value is one or more node_specs joined with the + (plus) character:
node_spec[+node_spec...]. Each node_spec is a number of nodes required of
the type declared in the node_spec and a name of one or more properties
desired for the nodes. The number, the name, and each property in the
node_spec are separated by a : (colon). If no number is specified, one (1) is
assumed. The name of a node is its hostname. The properties of nodes are:

l ppn=# - Specify the number of virtual processors per node
requested for this job.

The number of virtual processors available on a node by default is 1,
but it can be configured in the TORQUE_HOME/server_
priv/nodes file using the np attribute (see Server Node File
Configuration). The virtual processor can relate to a physical core on
the node or it can be interpreted as an "execution slot" such as on
sites that set the node np value greater than the number of physical
cores (or hyper-thread contexts). The ppn value is a characteristic of
the hardware, system, and site, and its value is to be determined by
the administrator.

l gpus=# - Specify the number of GPUs per node requested for this
job.

The number of GPUs available on a node can be configured in the
TORQUE_HOME/server_priv/nodes file using the gpu attribute (see
Server Node File Configuration). The GPU value is a characteristic of
the hardware, system, and site, and its value is to be determined by
the administrator.

l property - A string assigned by the system administrator specifying
a node's features. Check with your administrator as to the node
names and properties available to you.

Torque does not have a TPN (tasks per node) property. You can
specify TPN in Moab Workload Manager with Torque as your
resource manager, but Torque does not recognize the property when
it is submitted directly to it via qsub.

See qsub -l nodes for examples.

By default, the node resource is mapped to a virtual node (that is,
directly to a processor, not a full physical compute node). This
behavior can be changed within Maui or Moab by setting the
JOBNODEMATCHPOLICY parameter. See Moab Parameters in the
Moab Workload Manager Administrator Guide for more information.

Chapter 3: Submitting and Managing Jobs

113 3.4 Requesting Resources

3.4 Requesting Resources 114

Resource Format Description

All nodes in Torque have their own name as a property. You may
request a specific node by using its name in the nodes request.
Multiple nodes can be requested this way by using '+' as a delimiter.
For example:

qsub -l nodes=node01:ppn=3+node02:ppn=6

See the HOSTLIST RM extension in the Moab Workload Manager
Administrator Guide for more information.

opsys string Specifies the administrator defined operating system as defined in the MOM
configuration file.

other string Allows a user to specify site specific information. This resource is provided
for use by the site's scheduling policy. The allowable values and effect on job
placement is site dependent.

This does not work for msub using Moab and Maui.

pcput seconds, or
[[HH:]MM:]SS

Maximum amount of CPU time used by any single process in the job.

pmem size* Maximum amount of physical memory used by any single process of the job.
(Ignored on Fujitsu. Not implemented on Digital Unix and HPUX.)

procs procs=<integer> (Applicable in version 2.5.0 and later.) The number of processors to be
allocated to a job. The processors can come from one or more qualified node
(s). Only one procs declaration may be used per submitted qsub command.

> qsub -l nodes=3 -1 procs=2

procs_bit-
map

string A string made up of 1's and 0's in reverse order of the processor cores
requested. A procs_bitmap=1110means the job requests a node that has
four available cores, but the job runs exclusively on cores two, three, and
four. With this bitmap, core one is not used.

For more information, see Scheduling Cores.

prologue string Specifies a user owned prologue script which will be run after the system
prologue and prologue.user scripts at the beginning of a job. The syntax is
prologue=<file>. The file can be designated with an absolute or relative
path.

For more information, see Prologue and Epilogue Scripts.

Chapter 3: Submitting and Managing Jobs

Resource Format Description

pvmem size* Maximum amount of virtual memory used by any single process in the job
(ignored on Unicos).

size integer For Torque, this resource has no meaning. It is passed on to the scheduler for
interpretation. In the Moab scheduler, the size resource is intended for use
in Cray installations only. See the note at the end of this table about the
supported format.

software string Allows a user to specify software required by the job. This is useful if certain
software packages are only available on certain systems in the site. This
resource is provided for use by the site's scheduling policy. The allowable val-
ues and effect on job placement is site dependent. See License Management
in the Moab Workload Manager Administrator Guide for more information.

vmem size* Maximum amount of virtual memory used by all concurrent processes in the
job (ignored on Unicos).

walltime seconds, or
[[HH:]MM:]SS

Maximum amount of real time during which the job can be in the running
state.

*size

The size format specifies the maximum amount in terms of bytes or words. It is expressed in the
form integer[suffix]. The suffix is a multiplier defined in the following table ("b" means bytes
[the default] and "w" means words). The size of a word is calculated on the execution server as its
word size.

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

Chapter 3: Submitting and Managing Jobs

115 3.4 Requesting Resources

3.4 Requesting Resources 116

3.4.2 Interpreting Resource Requests
The table below shows how various requests are interpreted in the qsub -l syntax and
corresponding cgroup usage.

Memory parameters (mem, pmem, vmem, pvmem) may specify units (examples: mem=1024mb,
mem=320kb, mem=1gb). Recognized units are kb (kilobytes), mb (megabytes), gb (gigabytes), tb
(terabyte), pb (petabytes), and eb (exabyte). If units are not specified, mb (megabytes) is assumed.

Example 3-1: Interpreting qsub -l requests

Usage Description

node=X:ppn=Y Creates X tasks that will use Y lprocs per task.

procs=X Creates X tasks that will use 1 lproc each.

ncpus=X Creates 1 task that will use X lprocs.

mem=X The entire job will use X memory, divided evenly among the tasks.*

pmem=X Each task will use X memory. In translation, -l nodes=1:ppn=4,pmem=1gb will use 4 GB of
memory.*

vmem=X The entire job will use X swap, divided evenly among the tasks. If legacy_vmem is set to true in
the server, then the entire specified value will be given per host.**

pvmem=X Each task will use X swap. In translation, -l nodes=1:ppn=4,pvmem=1gb will use 4 GB of
swap.**

*If both mem and pmem are specified, the less restrictive of the two will be used as the limit for the
job. For example, qsub job.sh -l nodes=2:ppn=2,mem=4gb,pmem=1gb will apply the
mem requested instead of pmem, because it will allow 2 GB per task (4 GB/2 tasks) instead of 1 GB
per task.

**If both vmem and pvmem are specified, the less restrictive of the two will be used as the limit for
the job. For example, qsub job.sh -l nodes=2:ppn=2,vmem=4gb,pvmem=1gb will apply
pvmem instead of vmem, because it will allow 2 GB swap per task (1 GB * 2 ppn) instead of .5 GB
per task (1 GB/2 tasks).

3.4.3 Interpreting Node Requests
The table below shows how various qsub -l nodes requests are interpreted.

Chapter 3: Submitting and Managing Jobs

Example 3-2: qsub -l nodes

Usage Description

> qsub -l nodes=12 Request 12 nodes of any type

> qsub -l nodes=2:server+14 Request 2 "server" nodes and 14 other nodes (a
total of 16) - this specifies two node_specs,
"2:server" and "14"

> qsub -l
nodes=server:hippi+10:noserver+3:bigmem:hippi

Request (a) 1 node that is a "server" and has a
"hippi" interface, (b) 10 nodes that are not serv-
ers, and (c) 3 nodes that have a large amount of
memory and have hippi

> qsub -l nodes=b2005+b1803+b1813 Request 3 specific nodes by hostname

> qsub -l nodes=4:ppn=2 Request 2 processors on each of four nodes

> qsub -l nodes=1:ppn=4 Request 4 processors on one node

> qsub -l nodes=2:blue:ppn=2+red:ppn=3+b1014 Request 2 processors on each of two blue nodes,
three processors on one red node, and the com-
pute node "b1014"

Example 3-3:

This job requests a node with 200MB of available memory:

> qsub -l mem=200mb /home/user/script.sh

Example 3-4:

This job will wait until node01 is free with 200MB of available memory:

> qsub -l nodes=node01,mem=200mb /home/user/script.sh

3.4.4 Moab Job Extensions
qsub -l also supports some Moab resource extension values listed below, but be advised that this
usage has been deprecated. The ones that currently work will remain for the purpose of legacy
support, but additional ones will not be added. Instead, we recommend transitioning to the -W
x=<resource> syntax mentioned at the top of this page.

Chapter 3: Submitting and Managing Jobs

117 3.4 Requesting Resources

3.4 Requesting Resources 118

advres

cpuclock

deadline

depend

ddisk

dmem

energy_used

epilogue

feature

flags

gattr

geometry

gmetric

gres

hostlist

image

jgroup

jobflags

latency

loglevel

minprocspeed

minpreempttime

minwclimit

naccesspolicy

nallocpolicy

nodeset

opsys

os

partition

pref

procs

procs_bitmap

prologue

qos

queuejob

reqattr

retrycount

retrycc

rmtype

select

sid

signal

stagein

spriority

subnode

subnode_list

taskdistpolicy

template

termsig

termtime

tid

tpn

trig

trl

var

vcores

wcrequeue

Related Topics

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

3.5 Requesting NUMA-Aware Resources

This topic only applies for NUMA-aware systems and requires Torque Resource Manager 6.0
and later.

Various NUMA resources can be requested at the time of job submission.

The qsub -L option allows administrators the ability to place jobs at the "task" or "OS process"
level to get maximum efficiency out of the available hardware. In addition, multiple, non-symmetric
resource requests can be made for the same job using the -L job submission syntax. See 12.7 -L
NUMA Resource Request - page 249 for a complete list of -L values.

For example:

qsub -L tasks=4:lprocs=2:usecores:memory=500mb -L tasks=8:lprocs=4:memory=2gb

Creates two requests. The first will create 4 tasks with two logical processors per task and 500
mb of memory per task. The logical processors will be placed on cores. The second request calls
for 8 tasks with 4 logical processors per task and 2 gb of memory per task. The logical
processors may be placed on cores or threads since the default placement is allowthreads.

The queue attribute resources_default has several options that are not compatible
with the qsub -L syntax. If a queue has any of the following resources_default
options set (again, without a corresponding req_information_default setting), the job
will be rejected from the queue:

nodes, size, mppwidth, mem, hostlist, ncpus, procs, pvmem, pmem, vmem,
reqattr, software, geometry, opsys, tpn, and trl.

See 5.3 Setting Queue Resource Controls with Resource Request Syntax 2.0 - page 178 for
more information about setting queue resource requirements and the use of -l and -L job
submission syntaxes.

Chapter 3: Submitting and Managing Jobs

119 3.5 Requesting NUMA-Aware Resources

3.6 Requesting Generic Resources 120

3.6 Requesting Generic Resources

When generic resources have been assigned to nodes using the server's nodes file, these
resources can be requested at the time of job submission using the other field. See Managing
Consumable Generic Resources in the Moab Workload Manager Administrator Guide for details on
configuration within Moab.

Example 3-5: Generic

This job will run on any node that has the generic resource matlab.

> qsub -l other=matlab /home/user/script.sh

This can also be requested at the time of job submission using the -W x=GRES:matlab
flag.

Related Topics

l 3.4 Requesting Resources - page 109

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

3.7 Requesting Floating Resources

When floating resources have been set up inside Moab, they can be requested in the same way
as generic resources. Moab will automatically understand that these resources are floating and
will schedule the job accordingly. See Managing Shared Cluster Resources (Floating Resources) in
the Moab Workload Manager Administrator Guide for details on configuration within Moab.

Example 3-6: Floating

This job will run on any node when there are enough floating resources available.

> qsub -l other=matlab /home/user/script.sh

This can also be requested at the time of job submission using the -W x=GRES:matlab
flag.

Related Topics

l 3.4 Requesting Resources - page 109

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

121 3.7 Requesting Floating Resources

3.8 Requesting Other Resources 122

3.8 Requesting Other Resources

Many other resources can be requested at the time of job submission using Moab Workload
Manager (via the qsub -W x= syntax (or qsub -l in limited cases), or via msub -l or msub
-W x=). See Resource Manager Extensions in the Moab Workload Manager Administrator Guide
for a list of these supported requests and correct syntax.

Related Topics

l 3.4 Requesting Resources - page 109

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

3.9 Exported Batch Environment Variables

When a batch job is started, a number of variables are introduced into the job's environment that
can be used by the batch script in making decisions, creating output files, and so forth. These
variables are listed in the following table:

Variable Description

PBS_ARRAYID Zero-based value of job array index for this job (in version 2.2.0 and later)

PBS_
ENVIRONMENT

Set to PBS_BATCH to indicate the job is a batch job, or to PBS_INTERACTIVE to indicate the job
is a PBS interactive job (see -I option).

PBS_GPUFILE Line-delimited list of GPUs allocated to the job located in TORQUE_HOME/aux/jobidgpu. Each
line follows the following format:

<host>-gpu<number>

For example, myhost-gpu1.

PBS_
JOBCOOKIE

Job cookie

PBS_JOBID Unique pbs job id

PBS_JOBNAME User specified jobname

PBS_MOMPORT Active port for MOM daemon

PBS_NODEFILE File containing line delimited list of nodes allocated to the job

PBS_NODENUM Node offset number

PBS_NP Number of execution slots (cores) for the job

PBS_NUM_
NODES

Number of nodes allocated to the job

PBS_NUM_PPN Number of procs per node allocated to the job

PBS_O_HOME Home directory of submitting user

PBS_O_HOST Host on which job script is currently running

Chapter 3: Submitting and Managing Jobs

123 3.9 Exported Batch Environment Variables

3.9 Exported Batch Environment Variables 124

Variable Description

PBS_O_LANG Language variable for job

PBS_O_
LOGNAME

Name of submitting user

PBS_O_PATH Path variable used to locate executables within job script

PBS_O_SHELL Script shell

PBS_O_
WORKDIR

Job's submission directory

PBS_QUEUE Job queue

PBS_TASKNUM Number of tasks requested

Related Topics

l 3.4 Requesting Resources - page 109

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

3.10 Enabling Trusted Submit Hosts

By default, only the node running the pbs_server daemon is allowed to submit jobs. Additional
nodes can be trusted as submit hosts by taking any of the following steps:

l Set the allow_node_submit server parameter (see Allowing job submission from
compute hosts).

Allows any host trusted as a compute host to also be trusted as a submit host.

l Set the submit_hosts server parameter (see Using the "submit_hosts" service parameter).

Allows specified hosts to be trusted as a submit host.

l Use .rhosts to enable ruserok() based authentication (see Using RCmd authentication).

See Configuring Job Submission Hosts for more information.

When you enable allow_node_submit, you must also enable the allow_proxy_user
parameter to allow user proxying when submitting and running jobs.

Related Topics

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

125 3.10 Enabling Trusted Submit Hosts

3.11 Example Submit Scripts 126

3.11 Example Submit Scripts

The following is an example job test script:

#!/bin/sh
#
#This is an example script example.sh
#
#These commands set up the Grid Environment for your job:
#PBS -N ExampleJob
#PBS -l nodes=1,walltime=00:01:00
#PBS -q np_workq
#PBS -M YOURUNIQNAME@umich.edu
#PBS -m abe

#print the time and date
date

#wait 10 seconds
sleep 10

#print the time and date again
date

Related Topics

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

3.12 Job Files

Torque 4.5.0 was updated to accept XML-based job files in addition to the binary job files. The
change allows job files to be more human-readable and easier to parse. Below is a sample job file in
the new XML format:

<?xml version="1.0"?>
<job>
<version>131842</version>
<state>1</state>
<substate>10</substate>
<server_flags>33</server_flags>
<start_time>0</start_time>
<jobid>340</jobid>
<fileprefix>340</fileprefix>
<queue>batch</queue>
<destination_queue></destination_queue>
<record_type>1</record_type>
<mom_address>0</mom_address>
<mom_port>11</mom_port>
<mom_rmport>0</mom_rmport>
<attributes>
<Job_Name flags="1">job2.sh</Job_Name>
<Job_Owner flags="1">echan@moabServer.cn</Job_Owner>
<job_state flags="1">Q</job_state>
<queue flags="3">batch</queue>
<server flags="1">company.com</server>
<Checkpoint flags="1">u</Checkpoint>
<ctime flags="1">1384292754</ctime>
<Error_Path flags="1">moabServer.cn:/home/echan/work/job2.sh.e340</Error_Path>
<Hold_Types flags="1">n</Hold_Types>
<Join_Path flags="1">n</Join_Path>
<Keep_Files flags="1">n</Keep_Files>
<Mail_Points flags="1">a</Mail_Points>
<mtime flags="1">1384292754</mtime>
<Output_Path flags="1">moabServer.cn:/home/echan/work/job2.sh.o340</Output_Path>
<Priority flags="1">0</Priority>
<qtime flags="1">1384292754</qtime>
<Rerunable flags="1">True</Rerunable>
<Resource_List>
<epilogue flags="1">/tmp/epilogue.sh</epilogue>
<neednodes flags="1">moabServer:ppn=1</neednodes>
<nodect flags="1">1</nodect>
<nodes flags="1">moabServer:ppn=1</nodes>

</Resource_List>
<substate flags="1">10</substate>
<Variable_List flags="1">PBS_O_QUEUE=batch

PBS_O_HOME=/home/echan
PBS_O_LOGNAME=echan
PBS_O_
PATH=/home/echan/eclipse:/usr/lib/lightdm/lightdm:/usr/local/sbin:/usr/local/bin:/usr/
sbin:/usr/bin:/sbin:/bin:/usr/games:/opt/moab/bin:/opt/moab/sbin
PBS_O_SHELL=/bin/bash
PBS_O_LANG=en_US
PBS_O_WORKDIR=/home/echan/work
PBS_O_HOST=moabServer.cn
PBS_O_SERVER=moabServer
</Variable_List>

<euser flags="1">echan</euser>

Chapter 3: Submitting and Managing Jobs

127 3.12 Job Files

3.12 Job Files 128

<egroup flags="5">company</egroup>
<hop_count flags="1">1</hop_count>
<queue_rank flags="1">2</queue_rank>
<queue_type flags="1">E</queue_type>
<etime flags="1">1384292754</etime>
<submit_args flags="1">-l nodes=lei:ppn=1 -l epilogue=/tmp/epilogue.sh

./job2.sh</submit_args>
<fault_tolerant flags="1">False</fault_tolerant>
<job_radix flags="1">0</job_radix>
<submit_host flags="1">lei.ac</submit_host>

</attributes>
</job>

The above job was submitted with this submit command:

qsub -l nodes=moabServer:ppn=1 -l epilogue=/tmp/epilogue.sh ./job2.sh

Related Topics

l 3.1 Job Submission - page 104

Chapter 3: Submitting and Managing Jobs

3.13 Monitoring Jobs

Torque allows users and administrators to monitor submitted jobs with the qstat command.

If the command is run by a non-administrative user, it will output just that user's jobs. For example:

> qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
4807 scatter user01 12:56:34 R batch
...

Monitoring NUMA Job Task Placement

NUMA-aware job task placement is available with Torque Resource Manager 6.0 and later.

When using NUMA, job resources are tracked per task. To support this qstat -f produces a new
category of information that begins with the req_information keyword. Following each req_
information keyword is another keyword giving information about how the job was allocated.
See 12.7 -L NUMA Resource Request - page 249 for available allocation keywords.

When the job has completed, the output will also include the per-task resident memory used and
per-task CPU time used. The following is a sample qstat -f completed job output.

Timing issues may prevent the resources_uses.mem value from accurately reporting the
maximum amount of memory used, particularly if the logging level is set above 0.

You will see that req_information.task_usage.0.task.0.cpu_list gives the cores to
which the job is bound for the cpuset. The same for mem_list. The keywords memory_used and
cput_used report the per task resident memory used and CPU time used respectively.

Job Id: 832.pv-knielson-dt
Job_Name = bigmem.sh
Job_Owner = knielson@pv-knielson-dt
resources_used.cput = 00:00:00
resources_used.energy_used = 0
resources_used.mem = 3628kb
resources_used.vmem = 31688kb
resources_used.walltime = 00:00:00
job_state = C
queue = second
server = pv-knielson-dt
Checkpoint = u
ctime = Tue Jul 28 23:23:15 2015
Error_Path = pv-knielson-dt:/home/knielson/jobs/bigmem.sh.e832
exec_host = pv-knielson-dt/0-3
Hold_Types = n
Join_Path = n
Keep_Files = n
Mail_Points = a
mtime = Tue Jul 28 23:23:18 2015
Output_Path = pv-knielson-dt:/home/knielson/jobs/bigmem.sh.o832
Priority = 0

Chapter 3: Submitting and Managing Jobs

129 3.13 Monitoring Jobs

3.13 Monitoring Jobs 130

qtime = Tue Jul 28 23:23:15 2015
Rerunable = True
Resource_List.walltime = 00:05:00
session_id = 2708
substate = 59
Variable_List = PBS_O_QUEUE=routeme,PBS_O_HOME=/home/knielson,
PBS_O_LOGNAME=knielson,
PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/b
in:/usr/games:/usr/local/games,PBS_O_SHELL=/bin/bash,PBS_O_LANG=en_US,
PBS_O_WORKDIR=/home/knielson/jobs,PBS_O_HOST=pv-knielson-dt,
PBS_O_SERVER=pv-knielson-dt
euser = knielson
egroup = company
hashname = 832.pv-knielson-dt
queue_rank = 391
queue_type = E
etime = Tue Jul 28 23:23:15 2015
exit_status = 0
submit_args = -L tasks=2:lprocs=2 ../scripts/bigmem.sh
start_time = Tue Jul 28 23:23:18 2015
start_count = 1
fault_tolerant = False
comp_time = Tue Jul 28 23:23:18 2015
job_radix = 0
total_runtime = 0.093262
submit_host = pv-knielson-dt
req_information.task_count.0 = 2
req_information.lprocs.0 = 2
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = pv-knielson-dt:ppn=4
req_information.task_usage.0.task.0.cpu_list = 2,6
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.memory_used = 258048
req_information.task_usage.0.task.0.cput_used = 18
req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 0
req_information.task_usage.0.task.0.host =
req_information.task_usage.0.task.1.cpu_list = 3,7
req_information.task_usage.0.task.1.mem_list = 0
req_information.task_usage.0.task.1.memory_used = 258048
req_information.task_usage.0.task.1.cput_used = 18
req_information.task_usage.0.task.1.cores = 0
req_information.task_usage.0.task.1.threads = 2
req_information.task_usage.0.task.1.host = pv-knielson-dt

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 102

Chapter 3: Submitting and Managing Jobs

3.14 Canceling Jobs

Torque allows users and administrators to cancel submitted jobs with the qdel command. The job
will be sent TERM and KILL signals killing the running processes. When the top-level job script
exits, the job will exit. The only parameter is the ID of the job to be canceled.

If a job is canceled by an operator or manager, an email notification will be sent to the user.
Operators and managers may add a comment to this email with the -m option.

$ qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
4807 scatter user01 12:56:34 R batch
...
$ qdel -m "hey! Stop abusing the NFS servers" 4807
$

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 102

Chapter 3: Submitting and Managing Jobs

131 3.14 Canceling Jobs

3.15 Job Preemption 132

3.15 Job Preemption

Torque supports job preemption by allowing authorized users to suspend and resume jobs. This is
supported using one of two methods. If the node supports OS-level preemption, Torque will
recognize that during the configure process and enable it. Otherwise, the MOM may be configured
to launch a custom checkpoint script in order to support preempting a job. Using a custom
checkpoint script requires that the job understand how to resume itself from a checkpoint after the
preemption occurs.

Configuring a Checkpoint Script on a MOM
To configure the MOM to support a checkpoint script, the $checkpoint_script parameter
must be set in the MOM's configuration file found in TORQUE_HOME/mom_priv/config. The
checkpoint script should have execute permissions set. A typical configuration file might look as
follows:

mom_priv/config:

$pbsserver node06
$logevent 255
$restricted *.mycluster.org
$checkpoint_script /opt/moab/tools/mom-checkpoint.sh

The second thing that must be done to enable the checkpoint script is to change the value of MOM_
CHECKPOINT to 1 in /src/include/pbs_config.h. (In some instances, MOM_CHECKPOINT
may already be defined as 1.) The new line should be as follows:

/src/include/pbs_config.h:

#define MOM_CHECKPOINT 1

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 102

Chapter 3: Submitting and Managing Jobs

3.16 Keeping Completed Jobs

Torque provides the ability to report on the status of completed jobs for a configurable duration
after the job has completed. This can be enabled by setting the keep_completed attribute on the job
execution queue or the keep_completed parameter on the server. This should be set to the number
of seconds that jobs should be held in the queue. If you set keep_completed on the job execution
queue, completed jobs will be reported in the C state and the exit status is seen in the exit_
status job attribute.

If the Mother Superior and Torque server are on the same server, expect the following
behavior:

l When keep_completed is set, the job spool files will be deleted when the specified time
arrives and Torque purges the job from memory.

l When keep_completed is not set, Torque deletes the job spool files upon job
completion.

l If you manually purge a job (qdel -p) before the job completes or time runs out,
Torque will never delete the spool files.

By maintaining status information about completed (or canceled, failed, etc.) jobs, administrators
can better track failures and improve system performance. This allows Torque to better
communicate with Moab Workload Manager and track the status of jobs. This gives Moab the
ability to track specific failures and to schedule the workload around possible hazards. See
NODEFAILURERESERVETIME in Moab Parameters in the Moab Workload Manager Administrator
Guide for more information.

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 102

Chapter 3: Submitting and Managing Jobs

133 3.16 Keeping Completed Jobs

3.17 Job Checkpoint and Restart 134

3.17 Job Checkpoint and Restart

While Torque has had a job checkpoint and restart capability for many years, this was tied to
machine specific features. Now Torque supports BLCR—an architecture independent package that
provides for process checkpoint and restart.

The support for BLCR is only for serial jobs, not for any MPI type jobs.

Related Topics

l Chapter 3: Submitting and Managing Jobs - page 102

Chapter 3: Submitting and Managing Jobs

3.18 Introduction to BLCR

BLCR is a kernel level package. It must be downloaded and installed from BLCR.

After building and making the package, it must be installed into the kernel with commands as
follows. These can be installed into the file /etc/modules but all of the testing was done with
explicit invocations of modprobe.

Installing BLCR into the kernel:

/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_imports.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_vmadump.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr.ko

The BLCR system provides four command line utilities:

l cr_checkpoint

l cr_info

l cr_restart

l cr_run

For more information about BLCR, see the BLCR Administrator's Guide.

Related Topics

l 3.17 Job Checkpoint and Restart - page 134

Chapter 3: Submitting and Managing Jobs

135 3.18 Introduction to BLCR

https://ftg.lbl.gov/projects/CheckpointRestart/
http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html

3.19 Configuration Files and Scripts 136

3.19 Configuration Files and Scripts

Configuring and Building Torque for BLCR:

> ./configure --enable-unixsockets=no --enable-blcr
> make
> sudo make install

Depending on where BLCR is installed you may also need to use the following configure options to
specify BLCR paths:

Option Description

--with-blcr-include=DIR include path for libcr.h

--with-blcr-lib=DIR lib path for libcr

--with-blcr-bin=DIR bin path for BLCR utilities

The pbs_mom configuration file located in /var/spool/torque/mom_priv must be modified
to identify the script names associated with invoking the BLCR commands. The following variables
should be used in the configuration file when using BLCR checkpointing.

Variable Description

$checkpoint_inter-
val

How often periodic job checkpoints will be taken (minutes)

$checkpoint_script The name of the script file to execute to perform a job checkpoint

$restart_script The name of the script file to execute to perform a job restart

$checkpoint_run_
exe

The name of an executable program to be run when starting a checkpointable job (for
BLCR, cr_run)

The following example shows the contents of the configuration file used for testing the BLCR
feature in Torque.

The script files below must be executable by the user. Be sure to use chmod to set the
permissions to 754.

Example 3-7: Script file permissions

chmod 754 blcr*
ls -l

Chapter 3: Submitting and Managing Jobs

total 20
-rwxr-xr-- 1 root root 2112 2008-03-11 13:14 blcr_checkpoint_script
-rwxr-xr-- 1 root root 1987 2008-03-11 13:14 blcr_restart_script
-rw-r--r-- 1 root root 215 2008-03-11 13:13 config
drwxr-x--x 2 root root 4096 2008-03-11 13:21 jobs
-rw-r--r-- 1 root root 7 2008-03-11 13:15 mom.lock

Example 3-8: mom_priv/config

$checkpoint_script /var/spool/torque/mom_priv/blcr_checkpoint_script
$restart_script /var/spool/torque/mom_priv/blcr_restart_script
$checkpoint_run_exe /usr/local/bin/cr_run
$pbsserver makua.cridomain
$loglevel 7

Example 3-9: mom_priv/blcr_checkpoint_script

#! /usr/bin/perl
##
#
Usage: checkpoint_script
#
This script is invoked by pbs_mom to checkpoint a job.
#
##
use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $signalNum, $checkpointDir, $checkpointName);
my $usage =
 "Usage: $0 \n";

Note that depth is not used in this script but could control a limit to the number
of checkpoint
image files that are preserved on the disk.
#
Note also that a request was made to identify whether this script was invoked by the
job's
owner or by a system administrator. While this information is known to pbs_server,
it
is not propagated to pbs_mom and thus it is not possible to pass this to the script.

Therefore, a workaround is to invoke qmgr and attempt to set a trivial variable.
This will fail if the invoker is not a manager.

if (@ARGV == 7)
{

Chapter 3: Submitting and Managing Jobs

137 3.19 Configuration Files and Scripts

3.19 Configuration Files and Scripts 138

($sessionId, $jobId, $userId, $checkpointDir, $checkpointName, $signalNum $depth)
=

@ARGV;
}
else { logDie(1, $usage); }

Change to the checkpoint directory where we want the checkpoint to be created
chdir $checkpointDir
 or logDie(1, "Unable to cd to checkpoint dir ($checkpointDir): $!\n")
 if $logLevel;

my $cmd = "cr_checkpoint";
$cmd .= " --signal $signalNum" if $signalNum;
$cmd .= " --tree $sessionId";
$cmd .= " --file $checkpointName";
my $output = `$cmd 2>&1`;
my $rc = $? >> 8;
logDie(1, "Subcommand ($cmd) failed with rc=$rc:\n$output")
 if $rc && $logLevel >= 1;
logPrint(3, "Subcommand ($cmd) yielded rc=$rc:\n$output")
 if $logLevel >= 3;
exit 0;

##
logPrint($message)
Write a message (to syslog) and die
##
sub logPrint
{
 my ($level, $message) = @_;
 my @severity = ('none', 'warning', 'info', 'debug');

 return if $level > $logLevel;

 openlog('checkpoint_script', '', 'user');
 syslog($severity[$level], $message);
 closelog();
}

##
logDie($message)
Write a message (to syslog) and die
##
sub logDie
{
 my ($level, $message) = @_;
 logPrint($level, $message);
 die($message);
}

Example 3-10: mom_priv/blcr_restart_script

#! /usr/bin/perl
##
#
Usage: restart_script
#
This script is invoked by pbs_mom to restart a job.

Chapter 3: Submitting and Managing Jobs

#
##
use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $checkpointDir, $restartName);
my $usage =
 "Usage: $0 \n";
if (@ARGV == 5)
{

($sessionId, $jobId, $userId, $checkpointDir, $restartName) =
@ARGV;

}
else { logDie(1, $usage); }

Change to the checkpoint directory where we want the checkpoint to be created
chdir $checkpointDir
 or logDie(1, "Unable to cd to checkpoint dir ($checkpointDir): $!\n")
 if $logLevel;

my $cmd = "cr_restart";
$cmd .= " $restartName";
my $output = `$cmd 2>&1`;
my $rc = $? >> 8;
logDie(1, "Subcommand ($cmd) failed with rc=$rc:\n$output")
 if $rc && $logLevel >= 1;
logPrint(3, "Subcommand ($cmd) yielded rc=$rc:\n$output")
 if $logLevel >= 3;
exit 0;

##
logPrint($message)
Write a message (to syslog) and die
##
sub logPrint
{
 my ($level, $message) = @_;
 my @severity = ('none', 'warning', 'info', 'debug');

 return if $level > $logLevel;
 openlog('restart_script', '', 'user');
 syslog($severity[$level], $message);
 closelog();
}

##
logDie($message)
Write a message (to syslog) and die
##

Chapter 3: Submitting and Managing Jobs

139 3.19 Configuration Files and Scripts

3.19 Configuration Files and Scripts 140

sub logDie
{
 my ($level, $message) = @_;

 logPrint($level, $message);
 die($message);
}

Related Topics

l 3.17 Job Checkpoint and Restart - page 134

Chapter 3: Submitting and Managing Jobs

3.20 Starting a Checkpointable Job

Not every job is checkpointable. A job for which checkpointing is desirable must be started with the
-c command line option. This option takes a comma-separated list of arguments that are used to
control checkpointing behavior. The list of valid options available in the 2.4 version of Torque is
show below.

Option Description

none No checkpointing (not highly useful, but included for completeness).

enabled Specify that checkpointing is allowed, but must be explicitly invoked by either the qhold or
qchkpt commands.

shutdown Specify that checkpointing is to be done on a job at pbs_mom shutdown.

periodic Specify that periodic checkpointing is enabled. The default interval is 10 minutes and can be
changed by the $checkpoint_interval option in the MOM configuration file, or by spe-
cifying an interval when the job is submitted.

interval=minutes Specify the checkpoint interval in minutes.

depth=number Specify a number (depth) of checkpoint images to be kept in the checkpoint directory.

dir=path Specify a checkpoint directory (default is /var/spool/torque/checkpoint).

Example 3-11: Sample test program

#include "stdio.h"
int main(int argc, char *argv[])
{
int i;

for (i=0; i<100; i++)
{

 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}

Example 3-12: Instructions for building test program

> gcc -o test test.c

Example 3-13: Sample test script

#!/bin/bash ./test

Chapter 3: Submitting and Managing Jobs

141 3.20 Starting a Checkpointable Job

3.20 Starting a Checkpointable Job 142

Example 3-14: Starting the test job

> qstat
> qsub -c enabled,periodic,shutdown,interval=1 test.sh
77.jakaa.cridomain
> qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
77.jakaa test.sh jsmith 0 Q batch
>

If you have no scheduler running, you might need to start the job with qrun.

As this program runs, it writes its output to a file in /var/spool/torque/spool. This file can
be observed with the command tail -f.

Related Topics

l 3.17 Job Checkpoint and Restart - page 134

Chapter 3: Submitting and Managing Jobs

3.21 Checkpointing a Job

Jobs are checkpointed by issuing a qhold command. This causes an image file representing the
state of the process to be written to disk. The directory by default is
/var/spool/torque/checkpoint.

This default can be altered at the queue level with the qmgr command. For example, the command
qmgr -c set queue batch checkpoint_dir=/tmp would change the checkpoint
directory to /tmp for the queue 'batch'.

The default directory can also be altered at job submission time with the -c dir=/tmp command
line option.

The name of the checkpoint directory and the name of the checkpoint image file become attributes
of the job and can be observed with the command qstat -f. Notice in the output the names
checkpoint_dir and checkpoint_name. The variable checkpoint_name is set when the
image file is created and will not exist if no checkpoint has been taken.

A job can also be checkpointed without stopping or holding the job with the command qchkpt.

Related Topics

l 3.17 Job Checkpoint and Restart - page 134

Chapter 3: Submitting and Managing Jobs

143 3.21 Checkpointing a Job

3.22 Restarting a Job 144

3.22 Restarting a Job

In this topic:

3.22.1 Restarting a Job in the Held State - page 144
3.22.2 Restarting a Job in the Completed State - page 144

3.22.1 Restarting a Job in the Held State
The qrls command is used to restart the hibernated job. If you were using the tail -f
command to watch the output file, you will see the test program start counting again.

It is possible to use the qalter command to change the name of the checkpoint file associated
with a job. This could be useful if there were several job checkpoints and it restarting the job from
an older image was specified.

3.22.2 Restarting a Job in the Completed State
In this case, the job must be moved to the Queued state with the qrerun command. Then the job
must go to the Run state either by action of the scheduler or if there is no scheduler, through using
the qrun command.

Related Topics

l 3.17 Job Checkpoint and Restart - page 134

Chapter 3: Submitting and Managing Jobs

3.23 Acceptance Tests

A number of tests were made to verify the functioning of the BLCR implementation. See BLCR
Acceptance Tests for a description of the testing.

Related Topics

l 3.17 Job Checkpoint and Restart - page 134

Chapter 3: Submitting and Managing Jobs

145 3.23 Acceptance Tests

3.24 Job Exit Status 146

3.24 Job Exit Status

Once a job under Torque has completed, the exit_status attribute will contain the result code
returned by the job script. This attribute can be seen by submitting a qstat -f command to show
the entire set of information associated with a job. The exit_status field is found near the
bottom of the set of output lines.

Example 3-15: qstat -f (job failure)

Job Id: 179.host
 Job_Name = STDIN
 Job_Owner = user@host
 job_state = C
 queue = batchq server = host
 Checkpoint = u ctime = Fri Aug 29 14:55:55 2008
 Error_Path = host:/opt/moab/STDIN.e179
 exec_host = node1/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Fri Aug 29 14:55:55 2008
 Output_Path = host:/opt/moab/STDIN.o179
 Priority = 0
 qtime = Fri Aug 29 14:55:55 2008
 Rerunable = True Resource_List.ncpus = 2
 Resource_List.nodect = 1
 Resource_List.nodes = node1
 Variable_List = PBS_O_HOME=/home/user,PBS_O_LOGNAME=user,
 PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:,PBS_O_
SHELL=/bin/bash,PBS_O_HOST=host,
 PBS_O_WORKDIR=/opt/moab,PBS_O_QUEUE=batchq
 sched_hint = Post job file processing error; job 179.host on host node1/0Ba
 d UID for job execution REJHOST=pala.cridomain MSG=cannot find user 'user' in
password file
 etime = Fri Aug 29 14:55:55 2008
 exit_status = -1

The value of Resource_List.* is the amount of resources requested.

This code can be useful in diagnosing problems with jobs that may have unexpectedly terminated.

If Torque was unable to start the job, this field will contain a negative number produced by the
pbs_mom. Otherwise, if the job script was successfully started, the value in this field will be the
return value of the script.

Chapter 3: Submitting and Managing Jobs

Example 3-16: Torque supplied exit codes

Name Value Description

JOB_EXEC_OK 0 Job execution successful

JOB_EXEC_FAIL1 -1 Job execution failed, before files, no retry

JOB_EXEC_FAIL2 -2 Job execution failed, after files, no retry

JOB_EXEC_RETRY -3 Job execution failed, do retry

JOB_EXEC_INITABT -4 Job aborted on MOM initialization

JOB_EXEC_INITRST -5 Job aborted on MOM init, chkpt, no migrate

JOB_EXEC_INITRMG -6 Job aborted on MOM init, chkpt, ok migrate

JOB_EXEC_BADRESRT -7 Job restart failed

JOB_EXEC_CMDFAIL -8 Exec() of user command failed

JOB_EXEC_STDOUTFAIL -9 Could not create/open stdout stderr files

JOB_EXEC_OVERLIMIT_MEM -10 Job exceeded a memory limit

JOB_EXEC_OVERLIMIT_WT -11 Job exceeded a walltime limit

JOB_EXEC_OVERLIMIT_CPUT -12 Job exceeded a CPU time limit

JOB_EXEC_RETRY_CGROUP -13 Could not create the job's cgroups

JOB_EXEC_RETRY_PROLOGUE -14 Prologue failed

Example 3-17: Exit code from C program

$ cat error.c

#include
#include

int
main(int argc, char *argv)
{

Chapter 3: Submitting and Managing Jobs

147 3.24 Job Exit Status

3.24 Job Exit Status 148

exit(256+11);
}

$ gcc -o error error.c

$ echo ./error | qsub
180.xxx.yyy

$ qstat -f
Job Id: 180.xxx.yyy
 Job_Name = STDIN
 Job_Owner = test.xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:00
 job_state = C
 queue = batch
 server = xxx.yyy
 Checkpoint = u
 ctime = Wed Apr 30 11:29:37 2008
 Error_Path = xxx.yyy:/home/test/STDIN.e180
 exec_host = node01/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Wed Apr 30 11:29:37 2008
 Output_Path = xxx.yyy:/home/test/STDIN.o180
 Priority = 0
 qtime = Wed Apr 30 11:29:37 2008
 Rerunable = True

Resource_List.neednodes = 1
 Resource_List.nodect = 1
 Resource_List.nodes = 1
 Resource_List.walltime = 01:00:00
 session_id = 14107
 substate = 59
 Variable_List = PBS_O_HOME=/home/test,PBS_O_LANG=en_US.UTF-8,
 PBS_O_LOGNAME=test,
 PBS_O_PATH=/usr/local/perltests/bin:/home/test/bin:/usr/local/s
 bin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games,
 PBS_O_SHELL=/bin/bash,PBS_SERVER=xxx.yyy,
 PBS_O_HOST=xxx.yyy,PBS_O_WORKDIR=/home/test,
 PBS_O_QUEUE=batch
 euser = test
 egroup = test
 hashname = 180.xxx.yyy
 queue_rank = 8
 queue_type = E
 comment = Job started on Wed Apr 30 at 11:29

etime = Wed Apr 30 11:29:37 2008
 exit_status = 11
 start_time = Wed Apr 30 11:29:37 2008
 start_count = 1

Chapter 3: Submitting and Managing Jobs

Notice that the C routine exit passes only the low order byte of its argument. In this case, 256+11
is really 267 but the resulting exit code is only 11 as seen in the output.

Related Topics

l 3.17 Job Checkpoint and Restart - page 134

l Chapter 3: Submitting and Managing Jobs - page 102

Chapter 3: Submitting and Managing Jobs

149 3.24 Job Exit Status

3.25 Torque Process Tracking 150

3.25 Torque Process Tracking

This section describes how Torque tracks the lifecycle and resource usage of processes and how to
use the Task Manager (TM) API to inform Torque of processes to be tracked. See Chapter 8: MPI
(Message Passing Interface) Support - page 212 for more details on the TM API.

In this topic:

3.25.1 Default Process Tracking - page 150
3.25.2 TaskManager API - page 150

3.25.2.A Launching Through Torque - page 150

3.25.2.B Informing Torque of Other Processes - page 151

3.25.3 Process Tracking with Cgroups/Cpusets - page 151

3.25.1 Default Process Tracking
By default, Torque tracks all processes that it launches, as well as child processes that share the
same session ID as processes launched by Torque.

When a job is launched, the master process for the job is a child of the pbs_mom daemon on the
mother superior node. If that process forks, the child will share a session ID with the master
process, and Torque automatically tracks the process.

3.25.2 Task Manager API
If a job uses the Task Manager (TM) API to launch a process, then that process will also be
automatically tracked along with its children. Most, if not all, MPI libraries can be built to interact
with Torque. When properly configured to do so, MPI libraries either launch processes in the job
through Torque, or inform Torque that it has launched a new process that should be part of the
job.

3.25.2.A Launching Through Torque
The TM API provides the function tm_spawn(). If this function is invoked by an MPI library or
some other program, it will send the executable path or name with all of its arguments and
environment to the local pbs_mom, along with instructions for where the process should be
launched and some data for identifying and tracking that process. The local MOM will then launch
the process if it is local, or send the information to a remote MOM to launch the process if it should
be launched on another host that is part of the job.

The pbsdsh command that comes with Torque uses tm_spawn() to launch processes that will
be part of the job. If you are doing simple proof-of-concept work, pbsdsh is a built-in launcher
that offers some simple options for launching processes within a Torque job.

Chapter 3: Submitting and Managing Jobs

3.25.2.B Informing Torque of Other Processes
Another option available for making a process part of a job is the tm_adopt() function. Some
MPI implementations have their own launching mechanism for starting processes—whether remote
or local—and use this instead of the one provided by Torque. To accommodate this behavior, the
tm_adopt() function can be used to inform the MOM that it should track the process as part of
the job.

The tm_adopt() function must be called on the host where the process has been launched.

The pbs_track() command can be used to launch a process that will be adopted by a specified
Torque job, or it can be used to inform the local MOM that an existing process should be adopted
by a specified Torque job. In either case, the specified Torque job must be currently executing on
the local MOM.

3.25.3 Process Tracking with Cgroups/Cpusets
With cgroups, Torque generally follows its default approach to tracking processes, but instead of
following session IDs, any process that is part of the job's cgroup is considered part of the job.
Generally speaking, processes launched by processes within a cgroup inherit their parent's cgroup,
but this part is managed by the operating system. In the case of processes that are launched or
adopted by the TM API, the mom daemon will add these processes to the job's cgroup.

If a process is launched in some way that is exterior to Torque and avoids the cgroup, then it will
not be restricted by the job's cgroup. The only way to guarantee that jobs are properly restricted is
to ensure that process launchers (usually MPI implementations) are properly configured to either
launch through Torque or inform Torque of the processes that they launch.

Related Topics

l A.6 pbs_track - page 314

Chapter 3: Submitting and Managing Jobs

151 3.25 Torque Process Tracking

152

Chapter 4: Managing Nodes

This chapter contains information about adding and configuring compute nodes. It explains how to
work with host security for systems that require dedicated access to compute nodes. It also
contains information about scheduling specific cores on a node at job submission.

In this chapter:

4.1 Adding Nodes 153
4.2 Node Properties 155

4.2.1 Run-time Node Changes 155
4.2.2Manual Node Changes 155
4.2.3 AddingMemory to a Node 155

4.3 Changing Node State 157
4.3.1Marking JobsOffline 157
4.3.2 Listing Node States 157
4.3.3 Node Recovery 157

4.4 Changing Node Power States 158
4.5 Host Security 161

4.5.1 Enabling PAMwith Torque 161
4.5.2 Using PAMException Instructions 162
4.5.3 Legacy Torque PAMConfiguration 162

4.6 LinuxCpuset Support 164
4.6.1 Cpuset Overview 164
4.6.2 Cpuset Support 164
4.6.3 Configuring Cpuset 165
4.6.4 Cpuset Advantages/Disadvantages 165

4.7 Scheduling Cores 166
4.8 Geometry Request Configuration 167
4.9 Geometry Request Usage 168
4.10 Geometry Request Considerations 169
4.11 Scheduling Accelerator Hardware 170
4.12 Node Resource Plug-in 171

4.12.1 Plug-in Implementation Recommendations 171
4.12.2 Building the Plug-in 171
4.12.3 Testing the Plug-in 172
4.12.4 Enabling the Plug-in 173

Chapter 4: Managing Nodes

4.1 Adding Nodes

Torque can add and remove nodes either dynamically with qmgr or by manually editing the
TORQUE_HOME/server_priv/nodes file. See Initializing/Configuring Torque on the Server
(pbs_server).

Be aware of the following:

l Nodes cannot be added or deleted dynamically if there is a mom_hierarchy file in the
server_priv directory.

l When you make changes to nodes by directly editing the nodes file, you must restart pbs_
server for those changes to take effect. Changes made using qmgr do not require a restart.

l When you make changes to a node's ip address, you must clear the pbs_server cache. Either
restart pbs_server or delete the changed node and then re-add it.

l Before a newly added node is set to a free state, the cluster must be informed that the new
node is valid and they can trust it for running jobs. Once this is done, the node will
automatically transition to free.

l Adding or changing a hostname on a node requires a pbs_server restart in order to add the
new hostname as a node.

Run-time Node Changes
Torque can dynamically add nodes with the qmgr command. For example, the following command
will add node node003:

$ qmgr -c 'create node node003[,node004,node005...] [np=n][,[TTL=YYYY-MM-
DDThh:mm:ssZ],[acl=user:user1[:user2:user3...]],[requestid=n]]'

The optional parameters are used as follows:

l np – Number of virtual processors.

l TTL – (Time to Live) Specifies the time in UTC format that the node is supposed to be retired
by Moab. Moab will not schedule any jobs on a node after its time to live has passed.

l acl – (Access control list) Can be used to control which users have access to the node in
Moab.

Except for temporary nodes and/or the simplest of cluster configurations, Adaptive
Computing recommends avoiding the use of the acl parameter, as this can lead to
confusion about the root cause of jobs being unable to run. Use Moab reservations
with user ACLs instead.

l requestid – An ID that can be used to track the request that created the node.

You can alter node parameters by following these examples:

Chapter 4: Managing Nodes

153 4.1 Adding Nodes

4.1 Adding Nodes 154

qmgr -c 'set node node003 np=6'
qmgr -c 'set node node003 TTL=2020-12-31T23:59:59Z'
qmgr -c 'set node node003 requestid=23234'
qmgr -c 'set node node003 acl="user:user10:user11:user12"'
qmgr -c 'set node node003 acl=""'

Torque does not use the TTL, acl, and requestid parameters. Information for those
parameters are simply passed to Moab.

The set node subcommand of qmgr supports the += and -= syntax, but has known
problems when used to alter the acl parameter. Do not use it for this. Instead, simply reset
the full user list, as shown in the above example.

The create node and set node command examples above would append the following line(s)
to the bottom of the TORQUE_HOME/server_priv/nodes file:

node003 np=6 TTL=2020-12-31T23:59:59Z acl=user1:user2:user3 requestid=3210
node004 ...

Nodes can also be removed with a similar command:

> qmgr -c 'delete node node003[,node004,node005...]'

Related Topics

l 4.3 Changing Node State - page 157

l Chapter 4: Managing Nodes - page 152

Chapter 4: Managing Nodes

4.2 Node Properties

Torque can associate properties with nodes to aid in identifying groups of nodes. It's typical for a
site to conglomerate a heterogeneous set of resources. To identify the different sets, properties can
be given to each node in a set. For example, a group of nodes that has a higher speed network
connection could have the property ib. Torque can set, update, or remove properties either
dynamically with qmgr or by manually editing the nodes file.

In this topic:

4.2.1 Run-time Node Changes - page 155
4.2.2Manual Node Changes - page 155
4.2.3 AddingMemory to a Node - page 155

4.2.1 Run-time Node Changes
Torque can dynamically change the properties of a node with the qmgr command. For example,
note the following to give node001 the properties of bigmem and dualcore:

> qmgr -c "set node node001 properties = bigmem"
> qmgr -c "set node node001 properties += dualcore"

To relinquish a stated property, use the -= operator.

4.2.2 Manual Node Changes
The properties of each node are enumerated in TORQUE_HOME/server_priv/nodes. The
feature(s) must be in a space-delimited list after the node name. For example, to give node001 the
properties of bigmem and dualcore and node002 the properties of bigmem and matlab, edit
the nodes file to contain the following:

node001 bigmem dualcore
node002 np=4 bigmem matlab

For changes to the nodes file to be activated, pbs_server must be restarted.

For a full description of this file, see 2.20 Server Node File Configuration - page 82.

4.2.3 Adding Memory to a Node
Torque caches information about each node, such as the amount of memory a node has. If you add
memory to a node, pbs_server may not recognize the additional memory. To force Torque to

Chapter 4: Managing Nodes

155 4.2 Node Properties

4.2 Node Properties 156

update a node's configuration, do the following:

1. Stop pbs_server.

2. Remove the entry for the node from the nodes file (TORQUE_HOME/server_priv/nodes).

3. Remove the file with the name corresponding to the modified node from the TORQUE_
HOME/server_priv/node_usage directory.

4. Start pbs_server.

5. Add entry for the node back into the nodes file

6. Restart pbs_server.

Related Topics

l 3.1 Job Submission - page 104

l Chapter 4: Managing Nodes - page 152

Chapter 4: Managing Nodes

4.3 Changing Node State

In this topic:

4.3.1Marking JobsOffline - page 157
4.3.2 Listing Node States - page 157
4.3.3 Node Recovery - page 157

4.3.1 Marking Jobs Offline
A common task is to prevent jobs from running on a particular node by marking it offline with
pbsnodes -o nodename. Once a node has been marked offline, the scheduler will no longer
consider it available for new jobs. Simply use pbsnodes -c nodename when the node is
returned to service.

4.3.2 Listing Node States
Also useful is pbsnodes -l, which lists all nodes with an interesting state, such as down,
unknown, or offline. This provides a quick glance at nodes that might be having a problem. (See
pbsnodes for details.)

4.3.3 Node Recovery
When a MOM gets behind on processing requests, pbs_server has a failsafe to allow for node
recovery in processing the request backlog. After three failures without having two consecutive
successes in servicing a request, pbs_server will mark the MOM as offline for five minutes to allow
the MOM extra time to process the backlog before it resumes its normal activity. If the MOM has
two consecutive successes in responding to network requests before the timeout, then it will come
back earlier.

Related Topics

l Chapter 4: Managing Nodes - page 152

Chapter 4: Managing Nodes

157 4.3 Changing Node State

4.4 Changing Node Power States 158

4.4 Changing Node Power States

Beginning with Torque 5.0.0, the pbsnodes -m command can modify the power state of nodes. Node
cannot go from one low-power state to another low-power state. They must be brought up to the
Running state and then moved to the new low-power state. The supported power states are:

State Description

Running l Physical machine is actively working
l Power conservation is on a per-device basis
l Processor power consumption controlled by P-states

Standby l System appears off
l Processor halted (OS executes a "halt" instruction)
l Processor maintains CPU and system cache state
l RAM refreshed to maintain memory state
l Machine in low-power mode
l Requires interrupt to exit state
l Lowest-latency sleep state - has no effect on software

Suspend l System appears off
l Processor and support chipset have no power
l OS maintains CPU, system cache, and support chipset state in memory
l RAM in slow refresh
l Machine in lowest-power state
l Usually requires specific interrupt (keyboard, mouse) to exit state
l Third lowest-latency sleep state - system must restore power to processor and support
chipset

Hibernate l System is off
l Physical machine state and memory saved to disk
l Requires restoration of power and machine state to exit state
l Second highest-latency sleep state - system performs faster boot using saved machine state
and copy of memory

Shutdown l Equivalent to shutdown now command as root

In order to wake nodes and bring them up to a running state:

l the nodes must support, and be configured to use, Wake-on-LAN (WOL).

l the pbsnodes command must report the node's MAC address correctly.

Chapter 4: Managing Nodes

To configure nodes to use Wake-on-LAN

1. Enable WOL in the BIOS for each node. If needed, contact your hardware manufacturer for
details.

2. Use the ethtool command to determine what types of WOL packets your hardware supports.
Torque uses the g packet. If the g packet is not listed, you cannot use WOL with Torque.

[root]# ethtool eth0
Settings for eth0:

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 2
Transceiver: internal
Auto-negotiation: on
MDI-X: off
Supports Wake-on: pumbg
Wake-on: p
Current message level: 0x00000007 (7)

drv probe link
Link detected: yes

This Ethernet interface supports the g WOL packet, but is currently set to use the p packet.

3. If your Ethernet interface supports the g packet, but is configured for a different packet, use
ethtool -s <interface> wol g to configure it to use g.

[root]# ethtool -s eth0 wol g
[root]# ethtool eth0
Settings for eth0:

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 2
Transceiver: internal

Chapter 4: Managing Nodes

159 4.4 Changing Node Power States

4.4 Changing Node Power States 160

Auto-negotiation: on
MDI-X: off
Supports Wake-on: pumbg
Wake-on: g
Current message level: 0x00000007 (7)

drv probe link
Link detected: yes

Now the power state of your nodes can be modified and they can be woken up from power-saving
states.

Related Topics

l A.8 pbsnodes - page 318

Chapter 4: Managing Nodes

4.5 Host Security

In this topic:

4.5.1 Enabling PAMwith Torque - page 161
4.5.2 Using PAMException Instructions - page 162
4.5.3 Legacy Torque PAMConfiguration - page 162

4.5.1 Enabling PAM with Torque
Torque is able to take advantage of the authentication services provided through Pluggable
Authentication Modules (PAM) to help administrators manage access to compute nodes by users.
The PAM module available in Torque is located in the PAM security directory. This module, when
used in conjunction with other PAM modules, restricts access to the compute node unless the user
has a job currently running on the node. The following configurations are examples only. For more
information about PAM, see the PAM (Pluggable Authentication Modules) documentation from
LinuxDocs.

Security Enhanced Linux (SELinux) must either be disabled or configured to properly work
with PAM.

To enable Torque PAM configure Torque using the --with-pam option. Using --with-pam is
sufficient but if your PAM security modules are not in the default /lib/security or
/lib64/security directory, you can specify the location using --with-pam=<DIR> where
<DIR> is the directory where you want the modules to be installed. When Torque is installed the
files pam_pbssimpleauth.la and pam_pbssimpleauth.so appear in /lib/security,
/lib64/security, or the directory designated on the configuration line.

PAM is very flexible and policies vary greatly from one site to another. The following example
restricts users trying to access a node using SSH. Administrators need to assess their own
installations and decide how to apply the Torque PAM restrictions.

In this example, after installing Torque with PAM enabled, you would add the following two lines to
/etc/pam.d/sshd:

account required pam_pbssimpleauth.so
account required pam_access.so

In /etc/security/access.conf make sure all users who access the compute node are added
to the configuration. This is an example which allows the users root, george, allen, and michael
access.

-:ALL EXCEPT root george allen michael torque:ALL

Chapter 4: Managing Nodes

161 4.5 Host Security

http://www.linuxdocs.org/HOWTOs/User-Authentication-HOWTO/x101.html

4.5 Host Security 162

With this configuration, if user george has a job currently running on the compute node, george can
use ssh to login to the node. If there are currently no jobs running, george is disconnected when
attempting to login.

Torque PAM is good at keeping users out who do not have jobs running on a compute node.
However, it does not have the ability to force a user to log out once they are in. To accomplish this
use epilogue or prologue scripts to force users off the system.

4.5.2 Using PAM Exception Instructions
PAM exception instructions enable you to configure exceptions to access restrictions. For example,
users may be restricted from logging into nodes on which they do not have a running job unless
they are a member of a group permitted to bypass that restriction.

To configure a bypass group:

1. Create the bypass group.

groupadd torque-pam-bypass

2. Add users to the bypass group.

usermod -G torque-pam-bypass jsmith

3. Configure group membership on remote hosts.

pdsh -w ibm[03,04,06,07,15] "usermod -G torque-pam-bypass jsmith"

4. Edit /etc/security/access.conf to add the group exception at the end of the file.

vim /etc/security/access.conf

#-:ALL EXCEPT root rmckay testuser torque:ALL
--- PAM exception workaround
-:ALL EXCEPT (torque-pam-bypass):ALL

5. Edit /etc/pam.d/sshd to configure PAM to allow users to login using SSH only when they
have job running.

vim /etc/pam.d/sshd

PAM exception method to allow a non-root pam_access group
account sufficient pam_access.so
account required pam_nologin.so
account required pam_pbssimpleauth.so

4.5.3 Legacy Torque PAM Configuration
There is an alternative PAM configuration for Torque that has been available since 2006. It can be
found in the contrib/pam_authuser directory of the source tree. Adaptive Computing does
not currently support this method but the instructions are given here for those who are currently
using it and for those who wish to use it.

Chapter 4: Managing Nodes

For systems requiring dedicated access to compute nodes (for example, users with sensitive data),
Torque prologue and epilogue scripts provide a vehicle to leverage the authentication provided by
linux-PAM modules. (See Prologue and Epilogue Scripts for more information.)

To allow only users with running jobs (and root) to access compute nodes

1. Untar contrib/pam_authuser.tar.gz (found in the src tar ball).

2. Compile pam_authuser.c with make and make install on every compute node.

3. Edit /etc/system-auth as described in README.pam_authuser, again on every compute
node.

4. Either make a tarball of the epilogue* and prologue* scripts (to preserve the symbolic link) and
untar it in the mom_priv directory, or just copy epilogue* and prologue* to mom_priv/.

The prologue* scripts are Perl scripts that add the user of the job to /etc/authuser. The
epilogue* scripts then remove the first occurrence of the user from /etc/authuser. File locking
is employed in all scripts to eliminate the chance of race conditions. There is also some commented
code in the epilogue* scripts, which, if uncommented, kills all processes owned by the user (using
pkill), provided that the user doesn't have another valid job on the same node.

prologue and epilogue scripts were added to the pam_authuser tarball in version 2.1 of
Torque.

Related Topics

l Chapter 4: Managing Nodes - page 152

Chapter 4: Managing Nodes

163 4.5 Host Security

4.6 Linux Cpuset Support 164

4.6 Linux Cpuset Support

In this topic:

4.6.1 Cpuset Overview - page 164
4.6.2 Cpuset Support - page 164
4.6.3 Configuring Cpuset - page 165
4.6.4 Cpuset Advantages/Disadvantages - page 165

4.6.1 Cpuset Overview
Linux kernel 2.6 Cpusets are logical, hierarchical groupings of CPUs and units of memory. Once
created, individual processes can be placed within a cpuset. The processes will only be allowed to
run/access the specified CPUs and memory. Cpusets are managed in a virtual file system mounted at
/dev/cpuset. New cpusets are created by simply making new directories. Cpusets gain CPUs and
memory units by simply writing the unit number to files within the cpuset.

As of Torque version 6.0, cpuset support (--enable-cpuset configure option) has been
deprecated and will receive no additional features. Adaptive Computing recommends
cgroups instead (--enable-cgroups). Cgroups support encompasses and expands upon
the cpusets functionality described in this section. See 2.27 Torque NUMA-Aware
Configuration - page 90 for details on configuring cgroup support, and 12.2 NUMA-Aware
Systems - page 230 for full documentation.

4.6.2 Cpuset Support

All nodes using cpusets must have the hwloc library and corresponding hwloc-devel package
installed. See Installing Torque Resource Manager for more information.

When started, pbs_mom will create an initial top-level cpuset at /dev/cpuset/torque. This
cpuset contains all CPUs and memory of the host machine. If this "torqueset" already exists, it will
be left unchanged to allow the administrator to override the default behavior. All subsequent
cpusets are created within the torqueset.

When a job is started, the jobset is created at /dev/cpuset/torque/$jobid and populated
with the CPUs listed in the exec_host job attribute. Also created are individual tasksets for
each CPU within the jobset. This happens before prologue, which allows it to be easily modified,
and it happens on all nodes.

The top-level batch script process is executed in the jobset. Tasks launched through the TM
interface (pbsdsh and PW's mpiexec) will be executed within the appropriate taskset.

On job exit, all tasksets and the jobset are deleted.

Chapter 4: Managing Nodes

4.6.3 Configuring Cpuset

To configure cpuset

1. As root, mount the virtual filesystem for cpusets:

mkdir /dev/cpuset
mount -t cpuset none /dev/cpuset

Do this for each MOM that is to use cpusets.

2. Because cpuset usage is a build-time option in Torque, you must add --enable-cpuset to
your configure options:

./configure --enable-cpuset

3. Use this configuration for the MOMs across your system.

4.6.4 Cpuset Advantages/Disadvantages
Presently, any job can request a single CPU and proceed to use everything available in the machine.
This is occasionally done to circumvent policy, but most often is simply an error on the part of the
user. Cpuset support will easily constrain the processes to not interfere with other jobs.

Jobs on larger NUMA systems may see a performance boost if jobs can be intelligently assigned to
specific CPUs. Jobs may perform better if striped across physical processors, or contained within the
fewest number of memory controllers.

TM tasks are constrained to a single core, thus a multi-threaded process could seriously suffer.

Related Topics

l Chapter 4: Managing Nodes - page 152

l 4.8 Geometry Request Configuration - page 167

Chapter 4: Managing Nodes

165 4.6 Linux Cpuset Support

4.7 Scheduling Cores 166

4.7 Scheduling Cores

In Torque 2.4 and later, you can request specific cores on a node at job submission by using
geometry requests. To use this feature, specify the procs_bitmap resource request of qsub-l
(see qsub) at job submission.

Cgroups is incompatible with (and supersedes) cpuset support (--enable-cpuset and --
enable-geometry-requests). Configuring with --enable-cgroups overrides these
other options. See 12.2 NUMA-Aware Systems - page 230 for more information about
cgroups and job resource requests.

Chapter 4: Managing Nodes

4.8 Geometry Request Configuration

A Linux kernel of 2.6 or later is required to use geometry requests, because this feature uses Linux
cpusets in its implementation. In order to use this feature, the cpuset directory has to be mounted.
For more information on how to mount the cpuset directory, see Linux Cpuset Support. If the
operating environment is suitable for geometry requests, configure Torque with the --enable-
geometry-requests option.

> ./configure --prefix=/home/john/torque --enable-geometry-requests

Torque is configured to install to /home/john/torque and to enable the geometry requests
feature.

The geometry request feature uses a subset of the cpusets feature. When you configure
Torque using --enable-cpuset and --enable-geometry-requests at the same
time, and use -l procs_bitmap=X, the job will get the requested cpuset. Otherwise, the
job is treated as if only --enable-cpuset was configured.

Cgroups is incompatible with (and supersedes) cpuset support (--enable-cpuset and --
enable-geometry-requests). Configuring with --enable-cgroups overrides these
other options.

Related Topics

l 4.7 Scheduling Cores - page 166

Chapter 4: Managing Nodes

167 4.8 Geometry Request Configuration

4.9 Geometry Request Usage 168

4.9 Geometry Request Usage

Once enabled, users can submit jobs with a geometry request by using the procs_
bitmap=<string> resource request. procs_bitmap requires a numerical string made up of
1's and 0's. A 0 in the bitmap means the job cannot run on the core that matches the 0's index in
the bitmap. The index is in reverse order of the number of cores available. If a job is submitted with
procs_bitmap=1011, then the job requests a node with four free cores, and uses only cores one,
two, and four.

The geometry request feature requires a node that has all cores free. A job with a geometry
request cannot run on a node that has cores that are busy, even if the node has more than
enough cores available to run the job.

qsub -l procs_bitmap=0011 ossl.sh

The job ossl.sh is submitted with a geometry request of 0011.

In the above example, the submitted job can run only on a node that has four cores. When a
suitable node is found, the job runs exclusively on cores one and two.

Related Topics

l 4.7 Scheduling Cores - page 166

Chapter 4: Managing Nodes

4.10 Geometry Request Considerations

As previously stated, jobs with geometry requests require a node with all of its cores available.
After the job starts running on the requested cores, the node cannot run other jobs, even if the
node has enough free cores to meet the requirements of the other jobs. Once the geometry
requesting job is done, the node is available to other jobs again.

Related Topics

l 4.7 Scheduling Cores - page 166

Chapter 4: Managing Nodes

169 4.10 Geometry Request Considerations

4.11 Scheduling Accelerator Hardware 170

4.11 Scheduling Accelerator Hardware

Torque works with accelerators (such as NVIDIA GPUs and Intel MICs) and can collect and report
metrics from them or submit workload to them. This feature requires the use of the Moab
scheduler. See Accelerators in the Moab Workload Manager Administrator Guide for information on
configuring accelerators in Torque.

Chapter 4: Managing Nodes

4.12 Node Resource Plug-in

There is now an API for creating a resource plug-in to allow the reporting of custom varattrs,
generic resources, generic metrics, and node features. Additionally, jobs can be made to report
custom resources through the same plug-in. The purpose of this plug-in is to allow some resource
integration to happen outside of the normal code release cycle and without having to be part of the
main codebase for Torque This should allow specific sites to implement things that are not of
general interest, as well as provide a tight integration option for resources that vary widely based
on hardware.

Torque's resource plug-in capability provides an API through which a Torque plug-in can add
arbitrary generic resources, generic metrics, varattrs, and features to a node. Additionally, Torque
plug-in can add arbitrary resource usage per job.

The API can be found in trq_plugin_api.h. To implement a plug-in, you must implement all of
the API functions, even if the function does nothing. An implementation that does nothing may be
found in contrib/resource_plugin.cpp. If you wish, you may simply add the desired
functionality to this file, build the library, and link it to the MOM at build time.

In this topic:

4.12.1 Plug-in Implementation Recommendations - page 171
4.12.2 Building the Plug-in - page 171
4.12.3 Testing the Plug-in - page 172

4.12.3.A Testing Basic Functionality - page 172

4.12.3.B Testing for Memory Leaks - page 173

4.12.4 Enabling the Plug-in - page 173

4.12.1 Plug-in Implementation Recommendations
Your plug-in must execute very quickly in order to avoid causing problems for the pbs_mom
daemon. The node resource portion of the plug-in has a 5 second time limit, and the job resource
usage portion has a 3 second time limit. The node resource portion executes each time the MOM
sends a status to pbs_server, and the job resource usage portion executes once per job at the same
time interval. The node resource and job resource portions block pbs_mom while they are
executing, so they should execute in a short, deterministic amount of time.

Remember, you are responsible for plug-ins, so please design well and test thoroughly.

4.12.2 Building the Plug-in
If you do not change the name of the .cpp file and wish to build it, execute the following:

export TRQ_HEADER_LOCATION=/usr/local/include/
g++ -fPIC -I $TRQ_HEADER_LOCATION resource_plugin.cpp -shared -o libresource_plugin.so

Chapter 4: Managing Nodes

171 4.12 Node Resource Plug-in

4.12 Node Resource Plug-in 172

NOTE: Change TRQ_HEADER_LOCATION if you configured torque with the --prefix option.

4.12.3 Testing the Plug-in
NOTE: You assume all responsibility for any plug-ins. This document is intended to assist you in
testing the plug-ins, but this list of suggested tests may not be comprehensive. We do not assume
responsibility if these suggested tests do not cover everything.

4.12.3.A Testing Basic Functionality
Once you've implemented and built your library, you can begin testing. For your convenience, a
simple test driver can be found in plugin_driver.cpp. You can build this executable and link it
against your library as shown below in order to manually verify the output:

export PLUGIN_LIB_PATH=/usr/local/lib
g++ plugin_driver.cpp -I $TRQ_HEADER_LOCATION -L $PLUGIN_LIB_PATH -lresource_plugin -o
driver

You can then execute the driver and manually inspect the output:

./driver

NOTE: Change PLUGIN_LIB_PATH if you have installed the plug-in somewhere other than
/usr/local/lib.

To illustrate output, a simple plug-in that reports:

l 2 broams of stormlight used, ignoring the random process ID found by the driver

l 1024 hbmem for GRES

l temperature of 75.2 for GMETRICS

l octave = 3.2.4 for VARATTRS

l haswell for features

will have the output:

$./driver
Your plugin reported the following for the random pid 7976:
stormlight = 2broams
Your plugin reports the following for this host:

GRES:
hbmem = 1024

GMETRICS:
temperature = 75.20

VARATTRS:
octave = 3.2.4

FEATURES: haswell

Chapter 4: Managing Nodes

4.12.3.B Testing for Memory Leaks
In order to prevent your compute nodes from being compromised for speed or even going down
due to out-of-memory conditions, you should run your plug-in under valgrind to test that it is
correctly managing memory.

Assuming you are executing the driver from the "Testing Basic Functionality" section, you can run:

valgrind --tool=memcheck --leak-check=full --log-file=plugin_valgrind_
output.txt ./driver

If you are not familiar with valgrind, a good primer can be found at The Valgrind Quick Start Guide.

We recommend that you fix all errors reported by valgrind.

4.12.4 Enabling the Plug-in
Once you've implemented, built, and thoroughly tested your plug-in (remember that our
suggestions may not address everything), you will want to enable it in Torque. Your plug-in can be
linked in at build time:

./configure <your other options> --with-resource-plugin=<path to your
resource plugin>

NOTE: You will want to make sure that the path you specify is in $LD_LIBRARY_PATH, or can
otherwise be found by pbs_mom when you start the daemon.

Once you build, you can then start the new MOM and be able to observe the plug-in's output using
pbsnodes, qstat -f, and in the accounting file.

Sample pbsnodes output:

<normal output>
gres:hbmem = 20
gmetric:temperature = 76.20
varattr:octave = 3.2.4
features = haswell

The keywords at the front let Moab know what each line means, so it can use them accordingly.

Sample accounting file entry:

<normal entry until resources used> resources_used.cput=0
resources_used.energy_used=0 resources_used.mem=452kb
resources_used.vmem=22372kb resources_used.walltime=00:05:00
resources_used.stormlight=2broams

Your plug-in resources reported will appear in the form:

resources_used.<name you supplied>=<value you supplied>

The above example includes the arbitrary resource stormlight and the value of 2broams.

Chapter 4: Managing Nodes

173 4.12 Node Resource Plug-in

http://valgrind.org/docs/manual/QuickStart.html

4.12 Node Resource Plug-in 174

Sample qstat -f output:

<normal qstat -f output>
resources_used.stormlight = 2broams

The resources used reported bythe plug-in will appear at the end of the qstat -f output in
the same format as in the accounting file.

Chapter 4: Managing Nodes

175

Chapter 5: Setting Server Policies

This section explains how to set up and configure your queue. This section also explains how to set
up Torque to run in high availability mode.

In this chapter:

5.1 Queue Configuration 176
5.2 Example Queue Configuration 177
5.3 Setting Queue Resource Controls with Resource Request Syntax 2.0 178
5.4 Setting a Default Queue 179
5.5 Mapping aQueue to Subset of Resources 180
5.6 Creating a Routing Queue 181
5.7 Server High Availability 183

5.7.1 Redundant server host machines 183
5.7.2 Enabling High Availability 184
5.7.3 Enhanced High Availability with Moab 185
5.7.4 How CommandsSelect the Correct Server Host 185
5.7.5 Job Names 186
5.7.6 Persistence of the pbs_server Process 186
5.7.7 High Availability of the NFS Server 186
5.7.8 Installing Torque in High AvailabilityMode 187
5.7.9 Installing Torque in High AvailabilityMode on HeadlessNodes 192
5.7.10 Example Setup of High Availability 197

5.8 Settingmin_threads andmax_threads 199

Chapter 5: Setting Server Policies

5.1 Queue Configuration

To initially define a queue, use the create subcommand of qmgr:

> qmgr -c "create queue batch queue_type=execution"

Once created, the queue must be configured to be operational. At a minimum, this includes setting
the options started and enabled.

> qmgr -c "set queue batch started=true"
> qmgr -c "set queue batch enabled=true"

Further configuration is possible using any combination of the following attributes.

For Boolean attributes, T, t, 1, Y, and y are all synonymous with "TRUE," and F, f, 0, N, and n all
mean "FALSE."

For queue_type, E and R are synonymous with "Execution" and "Routing" (respectively).

Related Topics

l Appendix N: Queue Attributes - page 508

l Appendix B: Server Parameters - page 395

l A.9 qalter - page 322 - command which can move jobs from one queue to another

Chapter 5: Setting Server Policies

176 5.1 Queue Configuration

5.2 Example Queue Configuration 177

5.2 Example Queue Configuration

The following series of qmgr commands will create and configure a queue named batch:

qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"

This queue will accept new jobs and, if not explicitly specified in the job, will assign a nodecount
of 1 and a walltime of 1 hour to each job.

See 5.3 Setting Queue Resource Controls with Resource Request Syntax 2.0 - page 178 for
more information about setting queue resource requirements and the use of -l and -L job
submission syntaxes.

Related Topics

l 5.1 Queue Configuration - page 176

Chapter 5: Setting Server Policies

5.3 Setting Queue Resource Controls with Resource
Request Syntax 2.0

Using the -L syntax, you can set default, minimum, and maximum values for lproces, memory, swap,
disk, sockets, numanode, cores and threads with resource request 2.0.

These can be set in the general format:

qmgr -c "set queue <queue_name> req_information_[default|min|max].
[lprocs|memory|swap|disk|sockets|numanode|core|thread]

Example 5-1: Jobs using -L syntax

qmgr -c "set queue q1 req_information_default.lprocs=2"
qmgr -c "set queue q1 req_information_minimum.memory=2gb"
qmgr -c "set queue q1 req_information_maximum.core=10

Regarding queue defaults and the newer -L NUMA-aware syntax: with only the newer req_
information_default.<attribute> configured on a queue, the queue will only
accept submissions with the -L syntax. The same holds true for resources_
default.<attribute> and -l submissions. Setting both on a queue (as in Example 5-2)
enables the queue to accept job submissions with either syntax.

Example 5-2: Jobs using -L or -l syntax

This example shows how to enable a queue to be able to accept both kinds of jobs and still be able
to enforce defaults.

qmgr -c "create queue batch"
qmgr -c "set queue batch queue_type = Execution"
qmgr -c "set queue batch resources_default.mem = 3gb"
qmgr -c "set queue batch enabled = True"
qmgr -c "set queue batch started = True"
qmgr -c "set queue batch req_information_default.memory = 3gb

In this example, jobs submitted that explicitly use the -L syntax will have the req_information_
default.memory setting applied. If the job does not explicitly use this syntax, then the resources_
default.mem setting will be applied.

Related Topics

l 5.1 Queue Configuration - page 176

Chapter 5: Setting Server Policies

178 5.3 Setting Queue Resource Controls with Resource Request Syntax 2.0

5.4 Setting a Default Queue 179

5.4 Setting a Default Queue

By default, a job must explicitly specify which queue it is to run in. To change this behavior, the
server parameter default_queue may be specified as in the following example:

qmgr -c "set server default_queue=batch"

Related Topics

l 5.1 Queue Configuration - page 176

Chapter 5: Setting Server Policies

5.5 Mapping a Queue to Subset of Resources

Torque does not currently provide a simple mechanism for mapping queues to nodes. However,
schedulers such as Moab and Maui can provide this functionality.

The simplest method is using default_resources.neednodes on an execution queue, setting
it to a particular node attribute. Maui/Moab will use this information to ensure that jobs in that
queue will be assigned nodes with that attribute. For example, suppose we have some nodes bought
with money from the chemistry department, and some nodes paid by the biology department.

TORQUE_HOME/server_priv/nodes:
node01 np=2 chem
node02 np=2 chem
node03 np=2 bio
node04 np=2 bio
qmgr:
set queue chem resources_default.neednodes=chem
set queue bio resources_default.neednodes=bio

This example does not preclude other queues from accessing those nodes. One solution is to
use some other generic attribute with all other nodes and queues.

More advanced configurations can be made with standing reservations and QoSs.

Related Topics

l 5.1 Queue Configuration - page 176

Chapter 5: Setting Server Policies

180 5.5 Mapping a Queue to Subset of Resources

5.6 Creating a Routing Queue 181

5.6 Creating a Routing Queue

A routing queue will steer a job to a destination queue based on job attributes and queue
constraints. It is set up by creating a queue of queue_type "Route" with a route_
destinations attribute set, as in the following example.

qmgr

routing queue
create queue route
set queue route queue_type = Route
set queue route route_destinations = reg_64
set queue route route_destinations += reg_32
set queue route route_destinations += reg
set queue route enabled = True
set queue route started = True

queue for jobs using 1-15 nodes
create queue reg
set queue reg queue_type = Execution
set queue reg resources_min.ncpus = 1
set queue reg resources_min.nodect = 1
set queue reg resources_default.ncpus = 1
set queue reg resources_default.nodes = 1
set queue reg enabled = True
set queue reg started = True

queue for jobs using 16-31 nodes
create queue reg_32
set queue reg_32 queue_type = Execution
set queue reg_32 resources_min.ncpus = 31
set queue reg_32 resources_min.nodes = 16
set queue reg_32 resources_default.walltime = 12:00:00
set queue reg_32 enabled = True
set queue reg_32 started = True

queue for jobs using 32+ nodes
create queue reg_64
set queue reg_64 queue_type = Execution
set queue reg_64 resources_min.ncpus = 63
set queue reg_64 resources_min.nodes = 32
set queue reg_64 resources_default.walltime = 06:00:00
set queue reg_64 enabled = True
set queue reg_64 started = True

have all jobs go through the routing queue
set server default_queue = route
set server resources_default.ncpus = 1
set server resources_default.walltime = 24:00:00
 ...

In this example, the compute nodes are dual processors and default walltimes are set according to
the number of processors/nodes of a job. Jobs with 32 nodes (63 processors) or more will be given
a default walltime of 6 hours. Also, jobs with 16-31 nodes (31-62 processors) will be given a default
walltime of 12 hours. All other jobs will have the server default walltime of 24 hours.

Chapter 5: Setting Server Policies

You should not use a Torque routing queue in conjunction with Moab remap classes to
route jobs to queues/nodes. You should select only one of the two methods.

The ordering of the route_destinations is important. In a routing queue, a job is assigned to the first
possible destination queue based on the resources_max, resources_min, acl_users, and
acl_groups attributes. In the preceding example, the attributes of a single processor job would
first be checked against the reg_64 queue, then the reg_32 queue, and finally the reg queue.

Adding the following settings to the earlier configuration elucidates the queue resource
requirements:

qmgr

set queue reg resources_max.ncpus = 30
set queue reg resources_max.nodect = 15
set queue reg_16 resources_max.ncpus = 62
set queue reg_16 resources_max.nodect = 31

Torque waits to apply the server and queue defaults until the job is assigned to its final execution
queue. Queue defaults override the server defaults. If a job does not have an attribute set, the
server and routing queue defaults are not applied when queue resource limits are checked.
Consequently, a job that requests 32 nodes (not ncpus=32) will not be checked against a min_
resource.ncpus limit. Also, for the preceding example, a job without any attributes set will be placed
in the reg_64 queue, since the server ncpus default will be applied after the job is assigned to an
execution queue.

Routine queue defaults are not applied to job attributes in versions 2.1.0 and before.

If the error message "qsub: Job rejected by all possible destinations" is
reported when submitting a job, it may be necessary to add queue location information, (i.e.,
in the routing queue's route_destinations attribute, change "batch" to
"batch@localhost").

Related Topics

l 5.1 Queue Configuration - page 176

l Appendix N: Queue Attributes - page 508

Chapter 5: Setting Server Policies

182 5.6 Creating a Routing Queue

5.7 Server High Availability 183

5.7 Server High Availability

Torque can run in a redundant or high availability mode. This means that there can be multiple
instances of the server running and waiting to take over processing in the event that the primary
server fails.

The high availability feature is available in the 2.3 and later versions of Torque.

In this topic:

5.7.1 Redundant server host machines - page 183
5.7.2 Enabling High Availability - page 184
5.7.3 Enhanced High Availability with Moab - page 185
5.7.4 How CommandsSelect the Correct Server Host - page 185
5.7.5 Job Names - page 186
5.7.6 Persistence of the pbs_server Process - page 186
5.7.7 High Availability of the NFS Server - page 186
5.7.8 Installing Torque in High AvailabilityMode - page 187
5.7.9 Installing Torque in High AvailabilityMode on HeadlessNodes - page 192
5.7.10 Example Setup of High Availability - page 197

5.7.1 Redundant server host machines
High availability enables Moab to continue running even if pbs_server is brought down. This is
done by running multiple copies of pbs_server, each of which has its TORQUE_HOME/server_
priv directory mounted on a shared file system.

Do not use symlinks when sharing the Torque home directory or server_priv directories.
A workaround for this is to use mount --rbind /path/to/share
/var/spool/torque. Also, it is highly recommended that you only share the server_
priv directory and not the entire TORQUE_HOME directory.

The server_name file (for all servers and compute nodes) must include the names of every pbs_
server host. The syntax of the server_name file is a comma-delimited list of host names.

For example:

host1,host2,host3

Chapter 5: Setting Server Policies

When configuring high availability, do not use $pbsserver in the pbs_mom configuration
file (TORQUE_HOME/mom_priv/config on the compute nodes) to specify the server host
names. You must use the TORQUE_HOME/server_name file.

All instances of pbs_server need to be started with the --ha command line option that allows
the servers to run at the same time. Only the first server to start will complete the full startup. Each
subsequent server to start will block very early upon startup when it tries to lock the TORQUE_
HOME/server_priv/server.lock file. When the server cannot obtain the lock, it will spin in
a loop and wait for the lock to clear. The sleep time between checks of the lock file is one second.

Notice that not only can the servers run on independent server hardware, there can also be
multiple instances of the pbs_server running on the same machine. This was not possible before,
as any server starting after the first would always write an error and quit when it could not obtain
the lock.

5.7.2 Enabling High Availability
To use high availability, you must start each instance of pbs_server with the --ha option.

Three server options help manage high availability. The server parameters are lock_file,
lock_file_update_time, and lock_file_check_time.

The lock_file option allows the administrator to change the location of the lock file (default
location: TORQUE_HOME/server_priv). If the lock_file option is used, the new location
must be on the shared partition so all servers have access.

The lock_file_update_time and lock_file_check_time parameters are used by the
servers to determine if the primary server is active. The primary pbs_server will update the lock
file based on the lock_file_update_time (default value of 3 seconds). All backup pbs_
servers will check the lock file as indicated by the lock_file_check_time parameter
(default value of 9 seconds). The lock_file_update_time must be less than the lock_
file_check_time. When a failure occurs, the backup pbs_server takes up to the lock_
file_check_time value to take over.

> qmgr -c "set server lock_file_check_time=5"

In the above example, after the primary pbs_server goes down, the backup pbs_server takes
up to 5 seconds to take over. It takes additional time for all MOMs to switch over to the new pbs_
server.

The clock on the primary and redundant servers must be synchronized in order for high
availability to work. Use a utility such as NTP to ensure your servers have a synchronized
time.

Do not use anything but a simple NFS fileshare that is not used by anything else (i.e., only
Moab can use the fileshare).

Chapter 5: Setting Server Policies

184 5.7 Server High Availability

5.7 Server High Availability 185

Do not use a general-purpose NAS, parallel file system, or company-wide shared
infrastructure to set up Moab high availability using "native" high availability.

5.7.3 Enhanced High Availability with Moab
When Torque is run with an external scheduler such as Moab, and the pbs_server is not running on
the same host as Moab, pbs_server needs to know where to find the scheduler. To do this, use the -
l option as demonstrated in the example below (the port is required and the default is 15004).

l Red Hat 6 or SUSE 11-based systems

> pbs_server -l <moabhost:port>

l Red Hat 7 or SUSE 12-based systems

Set the PBS_ARGS environment variable in the /etc/sysconfig/pbs_server file. Set
PBS_ARGS=-l <moabhost:port> where moabhost is the name of the alternate server
node and port is the port on which Moab on the alternate server node is listening (default
15004).

If Moab is running in HA mode, set the -l option for each redundant server.

l Red Hat 6 or SUSE 11-based systems

> pbs_server -l <moabhost1:port> -l <moabhost2:port>

l Red Hat 7 or SUSE 12-based systems

Set the PBS_ARGS environment variable in the /etc/sysconfig/pbs_server file to
PBS_ARGS=-l <moabhost:port> -l <moabhost2:port>.

If pbs_server and Moab run on the same host, use the --ha option as demonstrated in the example
below.

l Red Hat 6 or SUSE 11-based systems

> pbs_server --ha

l Red Hat 7 or SUSE 12-based systems

Set the PBS_ARGS environment variable in the /etc/sysconfig/pbs_server file
toPBS_ARGS=--ha.

The root user of each Moab host must be added to the operators and managers lists of the server.
This enables Moab to execute root level operations in Torque.

5.7.4 How Commands Select the Correct Server Host
The various commands that send messages to pbs_server usually have an option of specifying
the server name on the command line, or if none is specified will use the default server name. The

Chapter 5: Setting Server Policies

default server name comes either from the PBS_DEFAULT environment variable or from the
TORQUE_HOME/server_name.

PBS_DEFAULT overrides the value in the server_name file.

Whenever a Torque client command executes with no explicit server mentioned, it attempts to
connect to the first server name listed in PBS_DEFAULT or TORQUE_HOME/server_name. If
this fails, the command tries the next server name. If all servers in the list are unreachable, an error
is returned and the command fails.

Note that there is a period of time after the failure of the current server during which the new
server is starting up where it is unable to process commands. The new server must read the
existing configuration and job information from the disk, so the length of time that commands
cannot be received varies. Commands issued during this period of time might fail due to timeouts
expiring.

5.7.5 Job Names
Job names normally contain the name of the host machine where pbs_server is running. When job
names are constructed, only the server name in $PBS_DEFAULT or the first name from the server
specification list, TORQUE_HOME/server_name, is used in building the job name.

5.7.6 Persistence of the pbs_server Process
The system administrator must ensure that pbs_server continues to run on the server nodes. This
could be as simple as a cron job that counts the number of pbs_server's in the process table and
starts some more if needed.

5.7.7 High Availability of the NFS Server

Before installing a specific NFS HA solution please contact Adaptive Computing Support for a
detailed discussion on NFS HA type and implementation path.

One consideration of this implementation is that it depends on NFS file system also being
redundant. NFS can be set up as a redundant service. See the following.

l Setting Up A Highly Available NFS Server

l Sourceforge Linux NFS FAQ

l Red Hat Enterprise Linux 3: Reference Guide: Chapter 9: Network File System (NFS)

l Red Hat Enterprise Linux Deployment Guide: Chapter 18. Network File System (NFS)

l SUSE Linux Enterprise Administration Guide: Sharing File Systems with NFS

There are also other ways to set up a shared file system. See the following:

Chapter 5: Setting Server Policies

186 5.7 Server High Availability

http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://nfs.sourceforge.net/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/3/html/Reference_Guide/ch-nfs.html
https://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-nfs.html
https://www.suse.com/documentation/sles-12/book_sle_admin/data/cha_nfs.html

5.7 Server High Availability 187

l Red Hat Enterprise Linux: Chapter 1. High Availability Add-On Overview

5.7.8 Installing Torque in High Availability Mode
The following procedure demonstrates a Torque installation in high availability (HA) mode.

Requirements
l gcc (GCC) 4.1.2

l BASH shell

l Servers configured the following way:
o 2 main servers with identical architecture:

o server1— Primary server running Torque with a shared file system (this
example uses NFS)

o server2— Secondary server running with Torque with a shared file system
(this example uses NFS)

o fileServer— Shared file system (this example uses NFS)
o Compute nodes

To install Torque in HA mode

1. Stop all firewalls or update your firewall to allow traffic from Torque services.

l Red Hat 6 or SUSE 11-based systems

> service iptables stop
> chkconfig iptables off

l Red Hat 7 or SUSE 12-based systems

> systemctl stop firewalld
> systemctl disable firewalld

If you are unable to stop the firewall due to infrastructure restriction, open the following ports:

l 15001[tcp,udp]

l 15002[tcp,udp]

l 15003[tcp,udp]

2. Disable SELinux

> vi /etc/sysconfig/selinux
SELINUX=disabled

3. Update your main ~/.bashrc profile to ensure you are always referencing the applications to
be installed on all servers.

Chapter 5: Setting Server Policies

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/High_Availability_Add-On_Overview/ch.gfscs.cluster-overview-CSO.html

Torque
export TORQUE_HOME=/var/spool/torque

Library Path

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TORQUE_HOME}/lib

Update system paths
export PATH=${TORQUE_HOME}/bin:${TORQUE_HOME}/sbin:${PATH}

4. Verify server1 and server2 are resolvable via either DNS or looking for an entry in the
/etc/hosts file.

5. Configure the NFS Mounts by following these steps:

a. Create mount point folders on fileServer.

fileServer# mkdir -m 0755 /var/spool/torque
fileServer# mkdir -m 0750 /var/spool/torque/server_priv

b. Update /etc/exports on fileServer. The IP addresses should be that of server2.

/var/spool/torque/server_priv 192.168.0.0/255.255.255.0(rw,sync,no_root_squash)

c. Update the list of NFS exported file systems.

fileServer# exportfs -r

6. If the NFS daemons are not already running on fileServer, start them.

l Red Hat 6 or SUSE 11-based systems

> service rpcbind restart
> service nfs-server start
> service nfs-lock start
> service nfs-idmap start

l Red Hat 7 or SUSE 12-based systems

> systemctl restart rpcbind.service
> systemctl start nfs-server.service
> systemctl start nfs-lock.service
> systemctl start nfs-idmap.service

7. Mount the exported file systems on server1 by following these steps:

a. Create the directory reference and mount them.

server1# mkdir /var/spool/torque/server_priv

Repeat this process for server2.

b. Update /etc/fstab on server1 to ensure that NFS mount is performed on startup.

fileServer:/var/spool/torque/server_priv /var/spool/torque/server_priv nfs

Chapter 5: Setting Server Policies

188 5.7 Server High Availability

5.7 Server High Availability 189

rsize= 8192,wsize=8192,timeo=14,intr

Repeat this step for server2.

8. Install Torque by following these steps:

a. Download and extract Torque6.1.3 on server1.

server1# wget http://github.com/adaptivecomputing/torque/branches/6.1.3/torque-
6.1.3.tar.gz
server1# tar -xvzf torque-6.1.3.tar.gz

b. Navigate to the Torque directory and compile Torque on server1.

server1# configure
server1# make
server1# make install
server1# make packages

c. If the installation directory is shared on both head nodes, then run make install on
server1.

server1# make install

If the installation directory is not shared, repeat step 8a-b (downloading and installing
Torque) on server2.

9. Start trqauthd.

l Red Hat 6 or SUSE 11-based systems

server1# service trqauthd start

l Red Hat 7 or SUSE 12-based systems

server1# systemctl start trqauthd

10. Configure Torque for HA.

a. List the host names of all nodes that run pbs_server in the TORQUE_HOME/server_name
file. You must also include the host names of all nodes running pbs_server in the TORQUE_
HOME/server_name file of each MOM node. The syntax of TORQUE_HOME/server_
name is a comma-delimited list of host names.

server1,server2

b. Create a simple queue configuration for Torque job queues on server1.

server1# pbs_server -t create
server1# qmgr -c “set server scheduling=true”
server1# qmgr -c “create queue batch queue_type=execution”
server1# qmgr -c “set queue batch started=true”
server1# qmgr -c “set queue batch enabled=true”
server1# qmgr -c “set queue batch resources_default.nodes=1”

Chapter 5: Setting Server Policies

server1# qmgr -c “set queue batch resources_default.walltime=3600”
server1# qmgr -c “set server default_queue=batch”

Because server_priv/* is a shared drive, you do not need to repeat this step on
server2.

c. Add the root users of Torque to the Torque configuration as an operator and manager.

server1# qmgr -c “set server managers += root@server1”
server1# qmgr -c “set server managers += root@server2”
server1# qmgr -c “set server operators += root@server1”
server1# qmgr -c “set server operators += root@server2”

Because server_priv/* is a shared drive, you do not need to repeat this step on
Server 2.

d. You must update the lock file mechanism for Torque in order to determine which server is
the primary. To do so, use the lock_file_update_time and lock_file_check_
time parameters. The primary pbs_server will update the lock file based on the specified
lock_file_update_time (default value of 3 seconds). All backup pbs_servers will check
the lock file as indicated by the lock_file_check_time parameter (default value of 9
seconds). The lock_file_update_time must be less than the lock_file_check_
time. When a failure occurs, the backup pbs_server takes up to the lock_file_check_
time value to take over.

server1# qmgr -c “set server lock_file_check_time=5”
server1# qmgr -c “set server lock_file_update_time=3”

Because server_priv/* is a shared drive, you do not need to repeat this step on
server2.

e. List the servers running pbs_server in the Torqueacl_hosts file.

server1# qmgr -c “set server acl_hosts += server1”
server1# qmgr -c “set server acl_hosts += server2”

Because server_priv/* is a shared drive, you do not need to repeat this step on
server2.

f. Restart the running pbs_server in HA mode.

l Red Hat 6 or SUSE 11-based systems

service pbs_server stop

Chapter 5: Setting Server Policies

190 5.7 Server High Availability

5.7 Server High Availability 191

l Red Hat 7 or SUSE 12-based systems

systemctl stop pbs_server

g. Start the pbs_server on the secondary server.

l Red Hat 6 or SUSE 11-based systems

service pbs_server start

l Red Hat 7 or SUSE 12-based systems

systemctl start pbs_server

11. Check the status of Torque in HA mode.

server1# qmgr -c “p s”
server2# qmgr -c “p s”

The commands above returns all settings from the active Torque server from either node.

a. Drop one of the pbs_servers to verify that the secondary server picks up the request.

l Red Hat 6 or SUSE 11-based systems

service pbs_server stop

l Red Hat 7 or SUSE 12-based systems

systemctl stop pbs_server

b. Stop the pbs_server on server2 and restart pbs_server on server1 to verify that both
nodes can handle a request from the other.

12. Install a pbs_mom on the compute nodes.

a. Copy the install scripts to the compute nodes and install.

b. Navigate to the shared source directory of Torque and run the following:

node1 torque-package-mom-linux-x86_64.sh --install
node2 torque-package-clients-linux-x86_64.sh --install

Repeat this for each compute node. Verify that the /var/spool/torque/server_name
file shows all your compute nodes.

c. On server1 or server2, configure the nodes file to identify all available MOMs. To do so,
edit the /var/spool/torque/server_priv/nodes file.

node1 np=2
node2 np=2

Change the np flag to reflect number of available processors on that node.

d. Recycle the pbs_servers to verify that they pick up the MOM configuration.

Chapter 5: Setting Server Policies

l Red Hat 6 or SUSE 11-based systems

service pbs_server stop

l Red Hat 7 or SUSE 12-based systems

systemctl stop pbs_server

e. Start the pbs_mom on each execution node.

l Red Hat 6 or SUSE 11-based systems

service pbs_mom start

l Red Hat 7 or SUSE 12-based systems

systemctl start pbs_mom

5.7.9 Installing Torque in High Availability Mode on Headless Nodes
The following procedure demonstrates a Torque installation in high availability (HA) mode on
nodes with no local hard drive.

Requirements
l gcc (GCC) 4.1.2

l BASH shell

l Servers (these cannot be two VMs on the same hypervisor) configured the following way:
o 2 main servers with identical architecture

o server1— Primary server running Torque with a file system share (this
example uses NFS)

o server2— Secondary server running with Torque with a file system share
(this example uses NFS)

o Compute nodes
o fileServer— A shared file system server (this example uses NFS)

To install Torque in HA mode on a node with no local hard drive

1. Stop all firewalls or update your firewall to allow traffic from Torque services.

l Red Hat 6 or SUSE 11-based systems

> service iptables stop
> chkconfig iptables off

Chapter 5: Setting Server Policies

192 5.7 Server High Availability

5.7 Server High Availability 193

l Red Hat 7 or SUSE 12-based systems

> systemctl stop firewalld
> systemctl disable firewalld

If you are unable to stop the firewall due to infrastructure restriction, open the following ports:

l 15001[tcp,udp]

l 15002[tcp,udp]

l 15003[tcp,udp]

2. Disable SELinux

> vi /etc/sysconfig/selinux

SELINUX=disabled

3. Update your main ~/.bashrc profile to ensure you are always referencing the applications to
be installed on all servers.

Torque
export TORQUE_HOME=/var/spool/torque

Library Path

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TORQUE_HOME}/lib

Update system paths
export PATH=${TORQUE_HOME}/bin:${TORQUE_HOME}/sbin:${PATH}

4. Verify server1 and server2 are resolvable via either DNS or looking for an entry in the
/etc/hosts file.

5. Configure the NFS Mounts by following these steps:

a. Create mount point folders on fileServer.

fileServer# mkdir -m 0755 /var/spool/torque

b. Update /etc/exports on fileServer. The IP addresses should be that of server2.

/var/spool/torque/ 192.168.0.0/255.255.255.0(rw,sync,no_root_squash)

c. Update the list of NFS exported file systems.

fileServer# exportfs -r

6. If the NFS daemons are not already running on fileServer, start them.

l Red Hat 6 or SUSE 11-based systems

> service rpcbind restart
> service nfs-server start

Chapter 5: Setting Server Policies

> service nfs-lock start
> service nfs-idmap start

l Red Hat 7 or SUSE 12-based systems

> systemctl restart rpcbind.service
> systemctl start nfs-server.service
> systemctl start nfs-lock.service
> systemctl start nfs-idmap.service

7. Mount the exported file systems on server1 by following these steps:

a. Create the directory reference and mount them.

server1# mkdir /var/spool/torque

Repeat this process for server2.

b. Update /etc/fstab on server1 to ensure that NFS mount is performed on startup.

fileServer:/var/spool/torque/server_priv /var/spool/torque/server_priv nfs
rsize= 8192,wsize=8192,timeo=14,intr

Repeat this step for server2.

8. Install Torque by following these steps:

a. Download and extract Torque6.1.3 on server1.

server1# wget http://github.com/adaptivecomputing/torque/branches/6.1.3/torque-
6.1.3.tar.gz
server1# tar -xvzf torque-6.1.3.tar.gz

b. Navigate to the Torque directory and compile Torque with the HA flag on server1.

server1# configure --prefix=/var/spool/torque
server1# make
server1# make install
server1# make packages

c. If the installation directory is shared on both head nodes, then run make install on
server1.

server1# make install

If the installation directory is not shared, repeat step 8a-b (downloading and installing
Torque) on server2.

9. Start trqauthd.

l Red Hat 6 or SUSE 11-based systems

server1# service trqauthd start

Chapter 5: Setting Server Policies

194 5.7 Server High Availability

5.7 Server High Availability 195

l Red Hat 7 or SUSE 12-based systems

server1# systemctl start trqauthd

10. Configure Torque for HA.

a. List the host names of all nodes that run pbs_server in the TORQUE_HOME/server_
name file. You must also include the host names of all nodes running pbs_server in the
TORQUE_HOME/server_name file of each MOM node. The syntax of TORQUE_
HOME/server_name is a comma-delimited list of host names.

server1,server2

b. Create a simple queue configuration for Torque job queues on server1.

server1# pbs_server -t create
server1# qmgr -c “set server scheduling=true”
server1# qmgr -c “create queue batch queue_type=execution”
server1# qmgr -c “set queue batch started=true”
server1# qmgr -c “set queue batch enabled=true”
server1# qmgr -c “set queue batch resources_default.nodes=1”
server1# qmgr -c “set queue batch resources_default.walltime=3600”
server1# qmgr -c “set server default_queue=batch”

Because TORQUE_HOME is a shared drive, you do not need to repeat this step on
server2.

c. Add the root users of Torque to the Torque configuration as an operator and manager.

server1# qmgr -c “set server managers += root@server1”
server1# qmgr -c “set server managers += root@server2”
server1# qmgr -c “set server operators += root@server1”
server1# qmgr -c “set server operators += root@server2”

Because TORQUE_HOME is a shared drive, you do not need to repeat this step on
server2.

d. You must update the lock file mechanism for Torque in order to determine which server is
the primary. To do so, use the lock_file_update_time and lock_file_check_
time parameters. The primary pbs_server will update the lock file based on the specified
lock_file_update_time (default value of 3 seconds). All backup pbs_servers will check
the lock file as indicated by the lock_file_check_time parameter (default value of 9
seconds). The lock_file_update_time must be less than the lock_file_check_
time. When a failure occurs, the backup pbs_server takes up to the lock_file_check_
time value to take over.

server1# qmgr -c “set server lock_file_check_time=5”
server1# qmgr -c “set server lock_file_update_time=3”

Chapter 5: Setting Server Policies

Because TORQUE_HOME is a shared drive, you do not need to repeat this step on
server2.

e. List the servers running pbs_server in the Torqueacl_hosts file.

server1# qmgr -c “set server acl_hosts += server1”
server1# qmgr -c “set server acl_hosts += server2”

Because TORQUE_HOME is a shared drive, you do not need to repeat this step on
server2.

f. Restart the running pbs_server in HA mode.

l Red Hat 6 or SUSE 11-based systems

service pbs_server stop

l Red Hat 7 or SUSE 12-based systems

systemctl stop pbs_server

g. Start the pbs_server on the secondary server.

l Red Hat 6 or SUSE 11-based systems

service pbs_server start

l Red Hat 7 or SUSE 12-based systems

systemctl start pbs_server

11. Check the status of Torque in HA mode.

server1# qmgr -c “p s”
server2# qmgr -c “p s”

The commands above returns all settings from the active Torque server from either node.

a. Drop one of the pbs_servers to verify that the secondary server picks up the request.

l Red Hat 6 or SUSE 11-based systems

service pbs_server stop

l Red Hat 7 or SUSE 12-based systems

systemctl stop pbs_server

b. Stop the pbs_server on server2 and restart pbs_server on server1 to verify that both
nodes can handle a request from the other.

12. Install a pbs_mom on the compute nodes.

Chapter 5: Setting Server Policies

196 5.7 Server High Availability

5.7 Server High Availability 197

a. On server1 or server2, configure the nodes file to identify all available MOMs. To do so,
edit the / var/spool/torque/server_priv/nodes file.

node1 np=2
node2 np=2

Change the np flag to reflect number of available processors on that node.

b. Recycle the pbs_servers to verify that they pick up the MOM configuration.

l Red Hat 6 or SUSE 11-based systems

service pbs_server stop

l Red Hat 7 or SUSE 12-based systems

systemctl stop pbs_server

You can specify command line arguments for pbs_server using the PBS_ARGS
environment variable in the /etc/sysconfig/pbs_server file. Set PBS_
ARGS=--ha -l <host>:<port> where <host> is the name of the alternate
server node and <port> is the port on which pbs_server on the alternate server node
is listening (default 15004).

c. Start the pbs_mom on each execution node.

l Red Hat 6 or SUSE 11-based systems

service pbs_mom start

l Red Hat 7 or SUSE 12-based systems

systemctl start pbs_mom

5.7.10 Example Setup of High Availability
1. The machines running pbs_server must have access to a shared server_priv/ directory

(usually an NFS share on a MoM).

2. All MoMs must have the same content in their server_name file. This can be done manually
or via an NFS share. The server_name file contains a comma-delimited list of the hosts that
run pbs_server.

List of all servers running pbs_server
server1,server2

3. The machines running pbs_server must be listed in acl_hosts.

Chapter 5: Setting Server Policies

> qmgr -c "set server acl_hosts += server1"
> qmgr -c "set server acl_hosts += server2"

4. Start pbs_server with the --ha option.

l Red Hat 6 or SUSE 11-based systems

[root@server1]$ pbs_server --ha
[root@server2]$ pbs_server --ha

l Red Hat 7 or SUSE 12-based systems

[root@server1]$ systemctl start pbs_server
[root@server2]$ systemctl start pbs_server

Related Topics

l Chapter 5: Setting Server Policies - page 175

l 5.1 Queue Configuration - page 176

Chapter 5: Setting Server Policies

198 5.7 Server High Availability

5.8 Setting min_threads and max_threads 199

5.8 Setting min_threads and max_threads

There are two threadpools in Torque, one for background tasks and one for incoming requests
from the MOMs and through the API (client commands, Moab, and so forth). The min_threads and
max_threads parameters control the number of total threads used for both, not for each
individually. The incoming requests' threadpool has three-quarters of min_threads for its
minimum, and three-quarters of max_threads for its maximum, with the background pool
receiving the other one-quarter.

Additionally, pbs_server no longer allows incoming requests to pile up indefinitely. When the
threadpool is too busy for incoming requests, it indicates such, returning PBSE_SERVER_BUSY with
the accompanying message that "Pbs Server is currently too busy to service this request. Please
retry this request." The threshold for this message, if the request is from a manager, is that at least
two threads be available in the threadpool. If the request comes from a non-manager, 5% of the
threadpool must be available for the request to be serviced. Note that availability is calculated
based on the maximum threads and not based on the current number of threads allocated.

If an undesirably large number of requests are given a busy response, one option is to increase the
number of maximum threads for the threadpool. If the load on the server is already very high, then
this is probably not going to help, but if the CPU load is lower, then it may help. Remember that by
default the threadpool shrinks down once the extra threads are no longer needed. This is controlled
via the thread_idle_seconds server parameter.

Any change in the min_threads, max_threads, or thread_idle_seconds
parameters requires a restart of pbs_server to take effect.

Chapter 5: Setting Server Policies

200

Chapter 6: Integrating Schedulers for Torque

Selecting the cluster scheduler is an important decision and significantly affects cluster utilization,
responsiveness, availability, and intelligence. The default Torque scheduler, pbs_sched, is very
basic and will provide poor utilization of your cluster's resources. Other options, such as Maui
Scheduler or Moab Workload Manager, are highly recommended. If you are using Maui or Moab,
see Moab-Torque Integration Guide in the Moab Workload Manager Administrator Guide. If using
pbs_sched, simply start the pbs_sched daemon.

If you are installing Moab Cluster Manager, Torque and Moab were configured at installation
for interoperability and no further action is required.

Chapter 6: Integrating Schedulers for Torque

201

Chapter 7: Configuring Data Management

This chapter provides instructions to configure Torque for data management purposes. For
example, if you want to copy stdout and stderr files back to the submit host.

In this chapter:

7.1 SCP Setup 202
7.2 Generating SSH Key on Source Host 203
7.3 Copying Public SSH Key to Each Destination Host 204
7.4 Configuring the SSH Daemon on Each Destination Host 205
7.5 Validating Correct SSH Configuration 206
7.6 Enabling Bi-Directional SCP Access 207
7.7 Compiling Torque to Support SCP 208
7.8 Troubleshooting 209
7.9 NFS andOther Networked Filesystems 210
7.10 File stage-in/stage-out 211

Chapter 7: Configuring Data Management

7.1 SCP Setup

To use SCP-based data management, Torque must be authorized to migrate data to any of the
compute nodes. If this is not already enabled within the cluster, this can be achieved with the
process described below. This process enables uni-directional access for a particular user from a
source host to a destination host.

These directions were written using OpenSSH version 3.6 and may not transfer correctly to
older versions.

To set up Torque for SCP, follow the directions in each of the topics in this section.

Related Topics

l Chapter 7: Configuring Data Management - page 201

Chapter 7: Configuring Data Management

202 7.1 SCP Setup

http://www.openssh.org/

7.2 Generating SSH Key on Source Host 203

7.2 Generating SSH Key on Source Host

On the source host as the transfer user, execute the following:

> ssh-keygen -t rsa

This will prompt for a passphrase (optional) and create two files (id_rsa and id_rsa.pub)
inside ~/.ssh/.

Related Topics

l 7.1 SCP Setup - page 202

l 7.3 Copying Public SSH Key to Each Destination Host - page 204

Chapter 7: Configuring Data Management

7.3 Copying Public SSH Key to Each Destination Host

Transfer public key to each destination host as the transfer user:

Easy key copy:

ssh-copy-id [-i [identity_file]] [user@]machine

Manual steps to copy keys:

> scp ~/.ssh/id_rsa.pub destHost:~ (enter password)

Create an authorized_keys file on each destination host:

> ssh destHost (enter password)
> cat id_rsa.pub >> .ssh/authorized_keys

If the .ssh directory does not exist, create it with 700 privileges (mkdir .ssh; chmod 700
.ssh):

> chmod 700 .ssh/authorized_keys

Related Topics

l 7.2 Generating SSH Key on Source Host - page 203

l SCP Setup

Chapter 7: Configuring Data Management

204 7.3 Copying Public SSH Key to Each Destination Host

7.4 Configuring the SSH Daemon on Each Destination Host 205

7.4 Configuring the SSH Daemon on Each Destination
Host

Some configuration of the SSH daemon may be required on the destination host. (Because this is
not always the case, see Validating Correct SSH Configuration and test the changes made to this
point. If the tests fail, proceed with this step and then try testing again.) Typically, this is done by
editing the /etc/ssh/sshd_config file (root access needed). To verify correct configuration,
see that the following attributes are set (not commented):

RSAAuthentication yes
PubkeyAuthentication yes

If configuration changes were required, the SSH daemon will need to be restarted (root access
needed):

> /etc/init.d/sshd restart

Related Topics

l 7.1 SCP Setup - page 202

Chapter 7: Configuring Data Management

7.5 Validating Correct SSH Configuration

If all is properly configured, the following command issued on the source host should succeed and
not prompt for a password:

> scp destHost:/etc/motd /tmp

If this is your first time accessing destination from source, it may ask you if you want to add
the fingerprint to a file of known hosts. If you specify yes, this message should no longer
appear and should not interfere with scp copying via Torque. Also, it is important that the full
hostname appear in the known_hosts file. To do this, use the full hostname for destHost, as
in machine.domain.org instead of just machine.

Related Topics

l 7.1 SCP Setup - page 202

Chapter 7: Configuring Data Management

206 7.5 Validating Correct SSH Configuration

7.6 Enabling Bi-Directional SCP Access 207

7.6 Enabling Bi-Directional SCP Access

The preceding steps allow source access to destination without prompting for a password. The
reverse, however, is not true. Repeat the steps, but this time using the destination as the source, etc.
to enable bi-directional SCP access (i.e. source can send to destination and destination can send to
source without password prompts.)

Related Topics

l 7.1 SCP Setup - page 202

Chapter 7: Configuring Data Management

7.7 Compiling Torque to Support SCP

In Torque 2.1 and later, SCP is the default remote copy protocol. These instructions are only
necessary for earlier versions.

Torque must be re-configured (and then rebuilt) to use SCP by passing in the --with-scp flag to
the configure script:

> ./configure --prefix=xxx --with-scp
> make

If special SCP flags are required in your local setup, these can be specified using the $rcpcmd
parameter.

Related Topics

l 7.1 SCP Setup - page 202

Chapter 7: Configuring Data Management

208 7.7 Compiling Torque to Support SCP

7.8 Troubleshooting 209

7.8 Troubleshooting

If, after following all of the instructions in this section (see SCP Setup), Torque is still having
problems transferring data with SCP, set the PBSDEBUG environment variable and restart the pbs_
mom for details about copying. Also check the MOM log files for more details.

Related Topics

l 7.1 SCP Setup - page 202

Chapter 7: Configuring Data Management

7.9 NFS and Other Networked Filesystems

When a batch job starts, its stdin file (if specified) is copied from the submission directory on the
remote submission host to the TORQUE_HOME/spool directory (e.g.,
/var/spool/torque/spool on the execution host (or "mother superior").

When the job completes, the MOM copies the files back to the submission directory on the remote
submit host. The file copy happens using a remote copy facility such as rcp (default) or scp.

If a shared file system such as NFS, DFS, or AFS is available, a site can specify that the MOM should
take advantage of this by specifying the $usecp directive inside the MOM configuration file
(located in the TORQUE_HOME/mom_priv directory) using the following format:

$usecp <HOST>:<SRCDIR> <DSTDIR>

<HOST> can be specified with a leading wildcard ('*') character. The following example
demonstrates this directive:

mom_priv/config

/home is NFS mounted on all hosts
$usecp *:/home /home
submission hosts in domain fte.com should map '/data' directory on submit host to
'/usr/local/data' on compute host
$usecp *.fte.com:/data /usr/local/data

If, for any reason, the MOM daemon cannot copy the output or error files to the submission
directory, it copies them to TORQUE_HOME/undelivered on that host.

Related Topics

l Chapter 7: Configuring Data Management - page 201

Chapter 7: Configuring Data Management

210 7.9 NFS and Other Networked Filesystems

7.10 File stage-in/stage-out 211

7.10 File stage-in/stage-out

File staging requirements are specified using the stagein and stageout directives of the qsub
command. Stagein requests occur before the job starts execution, while stageout requests happen
after a job completes.

On completion of the job, all staged-in and staged-out files are removed from the execution system.
The file_list is in the form local_file@hostname:remote_file[,...] regardless
of the direction of the copy. The name local_file is the name of the file on the system where
the job executed. It may be an absolute path or relative to the home directory of the user. The
name remote_file is the destination name on the host specified by hostname. The name may be
absolute or relative to the user's home directory on the destination host. The use of wildcards in
the file name is not recommended.

The file names map to a remote copy program (rcp/scp/cp, depending on configuration) called on
the execution system in the following manner:

For stagein: rcp/scp hostname:remote_file local_file

For stageout: rcp/scp local_file hostname:remote_file

Examples

stage /home/john/input_source.txt from node13.fsc to /home/john/input_
destination.txt on master compute node
> qsub -l nodes=1,walltime=100 -W stagein=input_
source.txt@node13.fsc:/home/john/input_destination.txt

stage /home/bill/output_source.txt on master compute node to /tmp/output_
destination.txt on node15.fsc
> qsub -l nodes=1,walltime=100 -W stageout=/tmp/output_
source.txt@node15.fsc:/home/bill/output_destination.txt

$ fortune >xxx;echo cat xxx|qsub -W stagein=xxx@`hostname`:xxx
199.myhost.mydomain
$ cat STDIN*199
Anyone who has had a bull by the tail knows five or six more things
than someone who hasn't.
-- Mark Twain

Related Topics

l Chapter 7: Configuring Data Management - page 201

Chapter 7: Configuring Data Management

212

Chapter 8: MPI (Message Passing Interface) Support

A message passing library is used by parallel jobs to augment communication between the tasks
distributed across the cluster. Torque can run with any message passing library and provides
limited integration with some MPI libraries.

In this chapter:

8.1 MPICH 213
8.1.1MPIExecOverview 213
8.1.2MPIExec Troubleshooting 213
8.1.3 General MPI Troubleshooting 214

8.2 OpenMPI 215

Chapter 8: MPI (Message Passing Interface) Support

http://www.mcs.anl.gov/research/projects/mpi/

8.1 MPICH

One of the most popular MPI libraries is MPICH available from Argonne National Lab. If using this
release, you may want to consider also using the mpiexec tool for launching MPI applications.
Support for mpiexec has been integrated into Torque.

In this topic:

8.1.1MPIExecOverview - page 213
8.1.2MPIExec Troubleshooting - page 213
8.1.3 General MPI Troubleshooting - page 214

8.1.1 MPIExec Overview
mpiexec is a replacement program for the script mpirun, which is part of the mpich package. It is
used to initialize a parallel job from within a PBS batch or interactive environment. mpiexec uses
the task manager library of PBS to spawn copies of the executable on the nodes in a PBS allocation.

Reasons to use mpiexec rather than a script (mpirun) or an external daemon (mpd):

l Starting tasks with the task manager (TM) interface is much faster than invoking a separate
rsh * once for each process.

l Resources used by the spawned processes are accounted correctly with mpiexec, and
reported in the PBS logs, because all the processes of a parallel job remain under the control
of PBS, unlike when using mpirun-like scripts.

l Tasks that exceed their assigned limits of CPU time, wallclock time, memory usage, or disk
space are killed cleanly by PBS. It is quite hard for processes to escape control of the resource
manager when using mpiexec.

l You can use mpiexec to enforce a security policy. If all jobs are forced to spawn using mpiexec
and the PBS execution environment, it is not necessary to enable rsh or ssh access to the
compute nodes in the cluster.

For more information, see the mpiexec homepage.

8.1.2 MPIExec Troubleshooting
Although problems with mpiexec are rare, if issues do occur, the following steps may be useful:

l Determine current version using mpiexec --version and review the change log available
on the MPI homepage to determine if the reported issue has already been corrected.

l Send email to the mpiexec mailing list at mpiexec@osc.edu.

l Browse the mpiexec user list archives for similar problems and resolutions.

Chapter 8: MPI (Message Passing Interface) Support

213 8.1 MPICH

http://www.mpich.org/
http://www.anl.gov/
http://www.osc.edu/~djohnson/mpiexec/
http://www.osc.edu/~djohnson/mpiexec/
http://www.osc.edu/~djohnson/mpiexec/index.php#Changes
http://www.osc.edu/~djohnson/mpiexec/index.php
mailto:mpiexec@osc.edu
http://www.open-mpi.org/community/lists/users/

8.1 MPICH 214

l Read the FAQ contained in the README file and the mpiexec man pages contained within the
mpiexec distribution.

l Increase the logging of mpiexec operation with mpiexec --verbose (reports messages to
stderr).

l Increase logging of the master and slave resource manager execution daemons associated
with the job (with Torque, use $loglevel to 5 or higher in $TORQUEROOT/mom_
priv/config and look for 'tm' messages after associated join job messages).

l Use tracejob (included with Torque) or qtracejob (included with OSC's pbstools
package) to isolate failures within the cluster.

l If the message 'exec: Error: get_hosts: pbs_connect: Access from host
not allowed, or unknown host' appears, this indicates that mpiexec cannot
communicate with the pbs_server daemon. In most cases, this indicates that the
$TORQUEROOT/server_name file points to the wrong server or the node cannot resolve
the server's name. The qstat command can be run on the node to test this.

8.1.3 General MPI Troubleshooting
When using MPICH, some sites have issues with orphaned MPI child processes remaining on the
system after the master MPI process has been terminated. To address this, Torque epilogue scripts
can be created that properly clean up the orphaned processes (see Prologue and Epilogue Scripts).

Related Topics

l Chapter 8: MPI (Message Passing Interface) Support - page 212

l 3.25 Torque Process Tracking - page 150

Chapter 8: MPI (Message Passing Interface) Support

8.2 Open MPI

Open MPI is a new MPI implementation that combines technologies from multiple projects to create
the best possible library. It supports the TM interface for integration with Torque. More
information is available in the FAQ.

TM Aware
To make use of Moab's TM interface, MPI must be configured to be TM aware.

Use these guidelines:

1. If you have installed from source, you need to use "./configure --with-tm" when you configure
and make openmpi.

2. Run mpirun without the -machinefile. Moab will copy down the environment PATH and
Library path down to each sister MOM. If -machinefile is used, mpirun will bypass the TM
interface.

Example 8-1: Without TM aware

[jbooth@support-mpi1 ~]$ /usr/lib64/openmpi/bin/mpirun -np 4 -machinefile $PBS_
NODEFILE echo.sh
=============
support-mpi1
=============
/usr/lib64/openmpi/bin:/usr/lib64/openmpi/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/lib64/openmpi/lib:/usr/lib64/openmpi/lib

=============
support-mpi1
=============
/usr/lib64/openmpi/bin:/usr/lib64/openmpi/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/lib64/openmpi/lib:/usr/lib64/openmpi/lib

=============
support-mpi2
=============
/usr/lib64/openmpi/bin:/usr/lib64/openmpi/bin:/usr/lib64/qt-
3.3/bin:/usr/local/bin:/bin:/usr/bin

/usr/lib64/openmpi/lib:/usr/lib64/openmpi/lib:

=============
support-mpi2
=============
/usr/lib64/openmpi/bin:/usr/lib64/openmpi/bin:/usr/lib64/qt-
3.3/bin:/usr/local/bin:/bin:/usr/bin

/usr/lib64/openmpi/lib:/usr/lib64/openmpi/lib:

The paths, /opt/moab/bin and /opt/moab/sbin, were not passed down to the sister MOMs.

Chapter 8: MPI (Message Passing Interface) Support

215 8.2 Open MPI

http://www.open-mpi.org/
http://www.open-mpi.org/faq

8.2 Open MPI 216

Example 8-2: With TM aware

[jbooth@support-mpi1 ~]$ /usr/local/bin/mpirun -np 4 echo.sh
=============
support-mpi1
=============
/usr/local/bin:/usr/local/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/local/lib:/usr/local/lib

=============
support-mpi1
=============
/usr/local/bin:/usr/local/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/local/lib:/usr/local/lib

=============
support-mpi2
=============
/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/local/lib:/usr/local/lib:/usr/local/lib

=============
support-mpi2
=============
/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/opt/mo
ab/bin:/opt/moab/sbin:/home/jbooth/bin

/usr/local/lib:/usr/local/lib:/usr/local/lib

The paths, /opt/moab/bin and /opt/moab/sbin, were passed down to the sister MOMs.

Related Topics

l Chapter 8: MPI (Message Passing Interface) Support - page 212

l 3.25 Torque Process Tracking - page 150

Chapter 8: MPI (Message Passing Interface) Support

217

Chapter 9: Resources

In this chapter:

9.1 About Resources 218
9.1.1 Configuration 218
9.1.2 Utilization 219
9.1.3 Node States 219

Chapter 9: Resources

9.1 About Resources

A primary task of any resource manager is to monitor the state, health, configuration, and
utilization of managed resources. Torque is specifically designed to monitor compute hosts for use
in a batch environment. Torque is not designed to monitor non-compute host resources such as
software licenses, networks, file systems, and so forth, although these resources can be integrated
into the cluster using some scheduling systems.

With regard to monitoring compute nodes, Torque reports about a number of attributes broken
into three major categories

In this topic:

9.1.1 Configuration - page 218
9.1.2 Utilization - page 219
9.1.3 Node States - page 219

9.1.1 Configuration
Configuration includes both detected hardware configuration and specified batch attributes.

Attribute Description Details

Architecture
(arch)

operating sys-
tem of the
node

The value reported is a derivative of the operating system installed.

Node
Features
(properties)

arbitrary string
attributes asso-
ciated with the
node

No node features are specified by default. If required, they are set using the
nodes file located in the TORQUE_HOME/server_priv directory. They may
specify any string and are most commonly used to allow users to request cer-
tain subsets of nodes when submitting jobs.

Local Disk
(size)

configured
local disk

By default, local disk space is not monitored. If the MOM configuration size
[fs=<FS>] parameter is set, Torque will report, in kilobytes, configured disk
space within the specified directory.

Memory
(physmem)

local
memory/RAM

Local memory/RAM is monitored and reported in kilobytes.

Chapter 9: Resources

218 9.1 About Resources

9.1 About Resources 219

Attribute Description Details

Processors
(ncpus/np)

real/virtual pro-
cessors

The number of processors detected by Torque is reported via the ncpus
attribute. However, for scheduling purposes, other factors are taken into
account. In its default configuration, Torque operates in "dedicated" mode
with each node possessing a single virtual processor. In dedicated mode, each
job task will consume one virtual processor and Torque will accept workload
on each node until all virtual processors on that node are in use. While the
number of virtual processors per node defaults to 1, this may be configured
using the nodes file located in the TORQUE_HOME/server_priv directory.
An alternative to dedicated mode is "timeshared" mode. If Torque's time-
shared mode is enabled, Torque will accept additional workload on each
node until the node'smaxload limit is reached.

Swap (tot-
mem)

virtual
memory/Swap

Virtual memory/Swap is monitored and reported in kilobytes.

9.1.2 Utilization
Utilization includes information regarding the amount of node resources currently in use as well as
information about who or what is consuming it.

Attribute Description Details

Disk (size) local disk avail-
ability

By default, local disk space is not monitored. If the MOM configuration size
[fs=<FS>] parameter is set, Torque will report configured and currently avail-
able disk space within the specified directory in kilobytes.

Memory
(availmem)

real
memory/RAM

Available real memory/RAM is monitored and reported in kilobytes.

Network
(netload)

local network
adapter usage

Reports total number of bytes transferred in or out by the network adapter.

Processor
Utilization
(loadave)

node's cpu load
average

Reports the node's 1 minute bsd load average.

9.1.3 Node States
State information includes administrative status, general node health information, and general
usage status.

Chapter 9: Resources

Attribute Description Details

Idle Time
(idletime)

time since local key-
board/mouse activity has been
detected

Time in seconds since local keyboard/mouse activity has been
detected.

State
(state)

monitored/admin node state A node can be in one or more of the following states:

l busy - node is full and will not accept additional work
l down - node is failing to report, is detecting local
failures with node

l free - node is ready to accept additional work
l job-exclusive - all available virtual processors are
assigned to jobs

l job-sharing - node has been allocated to run multiple
shared jobs and will remain in this state until jobs are
complete

l offline - node has been instructed by an admin to no
longer accept work

l reserve - node has been reserved by the server
l time-shared - node always allows multiple jobs to run
concurrently

l unknown - node has not been detected

Chapter 9: Resources

220 9.1 About Resources

221

Chapter 10: Accounting Records

In this chapter:

10.1 About Accounting Records 222
10.1.1 Location 222
10.1.2 Record Types 222
10.1.3 Accounting Variables 223

Chapter 10: Accounting Records

10.1 About Accounting Records

In this topic:

10.1.1 Location - page 222
10.1.2 Record Types - page 222
10.1.3 Accounting Variables - page 223

10.1.1 Location
Torque maintains accounting records for batch jobs in the following directory:

$TORQUEROOT/server_priv/accounting/<TIMESTAMP>

$TORQUEROOT defaults to /var/spool/torque and <TIMESTAMP> is in the format:
YYYYMMDD.

These records include events, time stamps, and information on resources requested and used.

10.1.2 Record Types
Records for four different event types are produced and are described in the following table:

Record
marker

Record
type Description

A abort Job has been aborted by the server

C checkpoint Job has been checkpointed and held

D delete Job has been deleted

E exit Job has exited (either successfully or unsuccessfully)

Q queue Job has been submitted/queued

R rerun Attempt to rerun the job has been made

S start Attempt to start the job has been made (if the job fails to properly start, it may have
multiple job start records)

T restart Attempt to restart the job (from checkpoint) has been made (if the job fails to prop-
erly start, it may have multiple job start records)

Chapter 10: Accounting Records

222 10.1 About Accounting Records

10.1 About Accounting Records 223

10.1.3 Accounting Variables
The following table offers accounting variable descriptions. Descriptions for accounting variables
not indicated in the table, particularly those prefixed with Resources_List, are available at Job
Submission.

Jobs submitted with the -L request syntax will have the -L submission recorded in the
accounting log.

Variable Description

ctime Time job was created

etime Time job became eligible to run

qtime Time job was queued

start Time job started to run

A sample record in this file can look like the following:

08/26/2014 17:07:44;Q;11923.napali;queue=batch
08/26/2014 17:07:50;S;11923.napali;user=dbeer group=company jobname=STDIN queue=batch
ctime=1409094464 qtime=1409094464 etime=1409094464 start=1409094470 owner=dbeer@napali
exec_host=napali/0+napali/1+napali/2+napali/3+napali/4+napali/5+torque-devtest-
03/0+torque-devtest-03/1+torque-devtest-03/2+torque-devtest-03/3+torque-devtest-
03/4+torque-devtest-03/5 Resource_List.neednodes=2:ppn=6 Resource_List.nodect=2
Resource_List.nodes=2:ppn=6
08/26/2014 17:08:04;E;11923.napali;user=dbeer group=company jobname=STDIN queue=batch
ctime=1409094464 qtime=1409094464 etime=1409094464 start=1409094470 owner=dbeer@napali
exec_host=napali/0+napali/1+napali/2+napali/3+napali/4+napali/5+torque-devtest-
03/0+torque-devtest-03/1+torque-devtest-03/2+torque-devtest-03/3+torque-devtest-
03/4+torque-devtest-03/5 Resource_List.neednodes=2:ppn=6 Resource_List.nodect=2
Resource_List.nodes=2:ppn=6 session=11352 total_execution_slots=12 unique_node_count=2
end=1409094484 Exit_status=265 resources_used.cput=00:00:00 resources_used.mem=82700kb
resources_used.vmem=208960kb resources_used.walltime=00:00:14 Error_Path=/dev/pts/11
Output_Path=/dev/pts/11

The value of Resource_List.* is the amount of resources requested, and the value of
resources_used.* is the amount of resources actually used.

total_execution_slots and unique_node_count display additional information
regarding the job resource usage.

Chapter 10: Accounting Records

224

Chapter 11: Job Logging

New in Torque 2.5.3 is the ability to log job information for completed jobs. The information stored
in the log file is the same information produced with the command qstat -f. The log file data is
stored using an XML format. Data can be extracted from the log using the utility showjobs found
in the contrib/ directory of the Torque source tree. Custom scripts that can parse the XML data
can also be used.

In this chapter:

11.1 Job Log Location and Name 225
11.2 Enabling Job Logs 226

Chapter 11: Job Logging

11.1 Job Log Location and Name

When job logging is enabled (see Enabling Job Logs.), the job log is kept at TORQUE_HOME/job_
logs. The naming convention for the job log is the same as for the server log or MOM log. The log
name is created from the current year/month/day.

For example, if today's date is 26 October, 2010 the log file is named 20101026.

A new log file is created each new day that data is written to the log.

Related Topics

l 11.2 Enabling Job Logs - page 226

l Chapter 11: Job Logging - page 224

Chapter 11: Job Logging

225 11.1 Job Log Location and Name

11.2 Enabling Job Logs 226

11.2 Enabling Job Logs

There are five new server parameters used to enable job logging. These parameters control what
information is stored in the log and manage the log files.

Parameter Description

record_job_
info

This must be set to true in order for job logging to be enabled. If not set to true, the remaining
server parameters are ignored. Changing this parameter requires a restart of pbs_server to take
effect.

record_job_
script

If set to true, this adds the contents of the script executed by a job to the log.

job_log_file_
max_size

This specifies a soft limit (in kilobytes) for the job log's maximum size. The file size is checked
every five minutes and if the current day file size is greater than or equal to this value, it is rolled
from <filename> to <filename.1> and a new empty log is opened. If the current day file size
exceeds the maximum size a second time, the <filename.1> log file is rolled to <filename.2>, the cur-
rent log is rolled to <filename.1>, and a new empty log is opened. Each new log causes all other
logs to roll to an extension that is one greater than its current number. Any value less than 0 is
ignored by pbs_server (meaning the log will not be rolled).

job_log_file_
roll_depth

This sets the maximum number of new log files that are kept in a day if the job_log_file_
max_size parameter is set. For example, if the roll depth is set to 3, no file can roll higher than
<filename.3>. If a file is already at the specified depth, such as <filename.3>, the file is deleted so it
can be replaced by the incoming file roll, <filename.2>.

job_log_
keep_days

This maintains logs for the number of days designated. If set to 4, any log file older than 4 days
old is deleted.

Related Topics

l 11.1 Job Log Location and Name - page 225

l Chapter 11: Job Logging - page 224

Chapter 11: Job Logging

227

Chapter 12: NUMA and Torque

Torque supports two types of Non-Uniform Memory Architecture (NUMA) systems. This chapter
serves as a central information repository for the various configuration settings involved when
using either NUMA system configuration.

Torque cannot be configured for both NUMA types simultaneously.

In this chapter:

12.1 Supported NUMA Systems 229
12.2 NUMA-Aware Systems 230

12.2.1 About NUMA-Aware Systems 230
12.2.2 Installation and Configuration 231
12.2.3 Job Resource Requests 231
12.2.4 JobMonitoring 232
12.2.5Moab/Torque NUMA Configuration 232
12.2.6ConsiderationsWhenUpgrading Versions or Changing Hardware 232

12.3 NUMA Tutorials 233
12.4 NUMA Primer 234

12.4.1 Torque cgroup Hierarchy 234
12.4.2 cpuset Subsystem 235
12.4.3 cpuacct Subsystem 236
12.4.4memory Subsystem 236
12.4.5 Resource Request 2.0 236
12.4.6Single Resource RequestWith Two Tasks and Default settings 237
12.4.7Multiple lprocs 238
12.4.8 usecores 239
12.4.9 usethreads 239
12.4.10Multiple Resource Requests 240
12.4.11 place Directives 240
12.4.12 pbsnodes and Dedicated Resources 242

12.5 How NUMA Places Jobs 243
12.6 NUMA Discovery and Persistence 246

12.6.1 Initial Discovery 246
12.6.2 Job Placement Decisions 246
12.6.3 Persistence AcrossRestarts 246

12.7 -L NUMA Resource Request 249
12.7.1 Syntax 249

Chapter 12: NUMA and Torque

12.7.2 Allocation Options 249
12.8 pbsnodeswith NUMA-Awareness 258
12.9 NUMA-Support Systems 260

12.9.1 About NUMA-Supported Systems 260
12.9.2 Torque Installation and Configuration 260
12.9.3Moab/Torque NUMA Configuration 260

Chapter 12: NUMA and Torque

228

12.1 Supported NUMA Systems 229

12.1 Supported NUMA Systems

Torque supports these two NUMA system configurations:

l NUMA-Aware – Introduced with Torque version 6.0, this configuration supports multi-req
jobs and jobs that span hosts. Moab version 9.0 and later is also required.

l NUMA-Suppport – Introduced with Torque version 3.0, this configuration supports only a
single instance for pbs_mom that as treated as if there where were multiple nodes running in
the cluster. This configuration is only for large-scale SLES systems using SGI Altix and UV
hardware.

Chapter 12: NUMA and Torque

12.2 NUMA-Aware Systems

This topic serves as a central information repository for NUMA-aware systems. This topic provides
basic information and contains links to the various NUMA-aware topics found throughout the
documentation.

Support for NUMA-aware systems is available only with Torque Resource Manager 6.0 and
later and Moab Workload Manager 9.0 and later.

In this topic:

12.2.1 About NUMA-Aware Systems - page 230
12.2.2 Installation and Configuration - page 231
12.2.3 Job Resource Requests - page 231
12.2.4 JobMonitoring - page 232
12.2.5Moab/Torque NUMA Configuration - page 232
12.2.6 ConsiderationsWhenUpgrading Versions or Changing Hardware - page 232

12.2.1 About NUMA-Aware Systems
The NUMA-aware architecture is a hardware design which separates its cores into multiple clusters
where each cluster has its own local memory region and still allows cores from one cluster to access
all memory in the system. However, if a processor needs to use memory that is not its own memory
region, it will take longer to access that (remote) memory. For applications where performance is
crucial, preventing the need to access memory from other clusters is critical.

Torque uses cgroups to better manage cpu and memory accounting, memory enforcement, cpuset
management, and binding jobs to devices such as MICs and GPUs. Torque will try to place jobs
which request GPUs or MICs on NUMA nodes next to the GPU or MIC device to be used.

PCIe devices are similar to cores in that these devices will be closer to the memory of one NUMA
node than another. Examples of PCIe devices are GPUs, NICs, disks, etc.

The resources of a processor chip have a hierarchy. The largest unit is a socket. A socket can
contain one or more NUMA nodes with its cores and memory. A NUMA node will contain a set of
cores and threads and memory which is local to the NUMA node. A core may have 0 or more
threads.

l A socket refers to the physical location where a processor package plugs into a motherboard.
The processor that plugs into the motherboard is also known as a socket. The socket can
contain one or more NUMA nodes.

l A core is an individual execution unit within a processor that can independently execute a
software execution thread and maintains its execution state separate from the execution state
of any other cores within a processor.

Chapter 12: NUMA and Torque

230 12.2 NUMA-Aware Systems

12.2 NUMA-Aware Systems 231

l A thread refers to a hardware-based thread execution capability. For example, the Intel Xeon
7560 has eight cores, each of which has hardware that can effectively execute two software
execution threads simultaneously, yielding 16 threads.

The following image is a simple depiction of a NUMA-aware architecture. In this example, the
system has two NUMA nodes with four cores per NUMA node. The cores in each NUMA node have
access to their own memory region but they can also access the memory region of the other NUMA
node through the inter-connect.

If the cores from NUMA chip 0 need to get memory from NUMA chip 1 there will be a greater
latency to fetch the memory.

12.2.2 Installation and Configuration
Once Torque is first installed, you need to perform configuration steps.

See:

l 2.27 Torque NUMA-Aware Configuration - page 90

12.2.3 Job Resource Requests
NUMA-aware resources can be requested at the time of job submission using the qsub/msub -L
parameter. In addition, the req_infomation_max and req_information_min queue attributes let you
specify the maximum and minimum resource limits allowed for jobs submitted to a queue.

Jobs requesting resources with -L can be run via qrun without a hostlist.

See:

Chapter 12: NUMA and Torque

l 3.5 Requesting NUMA-Aware Resources - page 119

l 12.7 -L NUMA Resource Request - page 249

l Appendix N: Queue Attributes - page 508

12.2.4 Job Monitoring
When using NUMA-aware, job resources are tracked per task. qstat -f produces a new category
of information that begins with the " req_information" keyword. Following each "req_information
keyword" is another keyword giving information about how the job was allocated. When the job
has completed, the output will also include the per task resident memory used and per task cpu
time used.

See

l Monitoring NUMA Job Task Placement - page 129

12.2.5 Moab/Torque NUMA Configuration
Moab does not require special configuration to support this NUMA-aware system. However, there
are a few Moab-specific things that would be helpful to know and understand.

See

l Using NUMA with Moab in the Moab Workload Manager Administrator Guide

12.2.6 Considerations When Upgrading Versions or Changing
Hardware
After upgrading server software or updating the hardware for a compute node, you should start the
pbs_mom daemon with the -f flag to force the server to recognize the new configuration.

See

l Documentation for the A.4 pbs_mom - page 304 -f flag

Chapter 12: NUMA and Torque

232 12.2 NUMA-Aware Systems

12.3 NUMA Tutorials 233

12.3 NUMA Tutorials

This section contains links to tutorials and other documentation useful in understanding NUMA-
Aware systems.

Related Topics

l 12.2 NUMA-Aware Systems - page 230

Chapter 12: NUMA and Torque

12.4 NUMA Primer

Torque 6.0 provides users with two brand new major features. First, cgroups are now used to
manage each job. Second, resource request syntax has been updated, which gives users the ability to
request resources on a per task basis, have multiple asymmetric resource requests in the same job,
and control where jobs execute on cores and memory within NUMA hardware.

Control groups (cgroups) provide the ability to partition sets of tasks and their children into
hierarchical groups with specialized behavior. In RHEL 7, the default directory for cgroups became
/sys/fs/cgroup. The following examples use this standard.

If you are building with cgroups enabled, you must have boost version 1.41 or later.

In this topic:

12.4.1 Torque cgroup Hierarchy - page 234
12.4.2 cpuset Subsystem - page 235
12.4.3 cpuacct Subsystem - page 236
12.4.4memory Subsystem - page 236
12.4.5 Resource Request 2.0 - page 236
12.4.6 Single Resource RequestWith Two Tasks and Default settings - page 237
12.4.7Multiple lprocs - page 238
12.4.8 usecores - page 239
12.4.9 usethreads - page 239
12.4.10Multiple Resource Requests - page 240
12.4.11 place Directives - page 240
12.4.12 pbsnodes and Dedicated Resources - page 242

12.4.1 Torque cgroup Hierarchy
Torque 6.0 only uses the cpu, devices, cpuacct, cpuset, and memory subsystems. While cpu and
devices subsystems are required for Torque 6.0 they are not yet fully implemented. When pbs_mom
is initialized it creates a sub-directory named torque in each of the five subsystem directories. When
a job is started on the MOM a directory that is the full job id is created under each torque directory.
The following is an "ls -al" submission command example from the cpuset/torque hierarchy:

total 0
drwxr-xr-x 3 root root 0 Aug 28 13:36 .
drwxr-xr-x 4 root root 0 Aug 28 13:35 ..
drwx------ 4 root root 0 Aug 31 10:20 1301.hosta
-rw-r--r-- 1 root root 0 Aug 28 13:35 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 28 13:35 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 28 13:35 cgroup.procs
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.cpu_exclusive

Chapter 12: NUMA and Torque

234 12.4 NUMA Primer

12.4 NUMA Primer 235

-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.cpus
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.mem_exclusive
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.mem_hardwall
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.memory_migrate
-r--r--r-- 1 root root 0 Aug 28 13:35 cpuset.memory_pressure
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.memory_spread_page
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.memory_spread_slab
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.mems
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.sched_load_balance
-rw-r--r-- 1 root root 0 Aug 28 13:35 cpuset.sched_relax_domain_level
-rw-r--r-- 1 root root 0 Aug 28 13:35 notify_on_release
-rw-r--r-- 1 root root 0 Aug 28 13:35 tasks

Line 4 shows that the subdirectory is "1301.hosta". This is the cpuset cgroup for job "1301.hosta".
If you were to issue an ls command on the "1301.hosta" subdirectory in this example, you would
see the following:

total 0
drwx------ 4 root root 0 Aug 31 10:24 .
drwxr-xr-x 3 root root 0 Aug 31 10:22 ..
-rw-r--r-- 1 root root 0 Aug 31 10:24 cgroup.clone_children
--w--w--w- 1 root root 0 Aug 31 10:24 cgroup.event_control
-rw-r--r-- 1 root root 0 Aug 31 10:24 cgroup.procs
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.cpu_exclusive
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.cpus
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.mem_exclusive
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.mem_hardwall
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.memory_migrate
-r--r--r-- 1 root root 0 Aug 31 10:24 cpuset.memory_pressure
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.memory_spread_page
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.memory_spread_slab
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.mems
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.sched_load_balance
-rw-r--r-- 1 root root 0 Aug 31 10:24 cpuset.sched_relax_domain_level
-rw-r--r-- 1 root root 0 Aug 31 10:24 notify_on_release
drwx------ 2 root root 0 Aug 31 10:24 R0.t0
drwx------ 2 root root 0 Aug 31 10:24 R0.t1
-rw-r--r-- 1 root root 0 Aug 31 10:24 tasks
-rw-r--r-- 1 root root 0 Aug 28 13:35 tasks

For this job the -L resource request was:

qsub -L tasks=2:lprocs=2

This job has a single request and two tasks. The R0 represents request 0 and the t0 and t1
represent the two tasks. In this case, cpuset information would be set for each task in their
respective subdirectories. The cpu, cpuacct, memory and devices subsystems also utilize the same
subdirectory structure.

12.4.2 cpuset Subsystem
The Linux cpuset functionality was integrated into cgroups so that when Torque is configured with
the "--enable-cgroups" option, cpuset functionality is also included. When jobs are submitted using
the -L resource request syntax. Torque allocates a cpu set and memory set for each task in the job
request. Examples of how cpusets and memory sets are allocated will be shown in the examples at
the end of this primer.

Chapter 12: NUMA and Torque

12.4.3 cpuacct Subsystem
The cpuacct subsystem keeps track of cpu time used for a cgroup. Torque now uses the cpuacct data
to calculate cpu time used for a job. Also when using the -L resource request, cpu time per task is
also recorded. Another advantage of cgroups is that the accounting information of a job does not
disappear when the job process exits. So if pbs_mom goes down for any reason while running jobs
the cpu time and memory used can still be tracked when pbs_mom is restarted.

12.4.4 memory Subsystem
The memory subsytem keeps track of the maximum memory used by a cgroup and also can be used
to limit the maximum amount of resident memory a task can use or the maximum amount of swap
a task can use. The -L resource request syntax has a memory and a swap option. Following are
examples of how to request memory restrictions with the -L resource request.

qsub -L tasks=2:memory=300mb

Two tasks are created. The memory=300mb option restricts each task to a maximum of 300
megabytest of resident memory. If a task exceeds 300 mb, then the excess memory is sent to
swap.

qsub -L tasks=2:swap=1Gb

Two tasks are created. The swap limit for each task is set to 1 GB.

In order to be able to set swap and memory limits the Linux kernel must be built using the
options CONFIG_MEMCG=y, CONFIG_MEMCG_SWAP=y and CONFIG_MEMCG_SWAP_
ENABLED=y. For Red Hat 7-based systems, these options are set by default.

For SUSE 12-based systems, you will also need to modify the /etc/default/grub file. Do
the following:

1. Edit /etc/defult.grub.

2. Add the following inside of the GRUB_CMDLINE_LINUX_DEFAULT variable:

cgroup_enable=memory swapaccount=1

3. Run the following:

root# update-bootloader --refresh

4. Reboot your machine.

12.4.5 Resource Request 2.0
Following are several different types of -L resource requests. The examples show how to use the
syntax to be able to have resources allocated which can best fit your job needs.

Chapter 12: NUMA and Torque

236 12.4 NUMA Primer

12.4 NUMA Primer 237

12.4.6 Single Resource Request With Two Tasks and Default settings
qsub -L tasks=2:lprocs=1

After this job runs, the summarized qstat -f output is shown:

Job Id: 1306.hosta
Job_Name = bigmem.sh
Job_Owner = knielson@hosta
resources_used.cput = 00:00:01
resources_used.energy_used = 0
resources_used.mem = 1956984kb
resources_used.vmem = 2672652kb
resources_used.walltime = 00:00:10
job_state = C
. . .
exit_status = 0
submit_args = -L tasks=2:lprocs=1 ../scripts/bigmem.sh
. . .
req_information.task_count.0 = 2
req_information.lprocs.0 = 1
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = hosta:ppn=2
req_information.task_usage.0.task.0.cpu_list = 0
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.memory_used = 976816kb
req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 1
req_information.task_usage.0.task.0.host = hosta
req_information.task_usage.0.task.1.cpu_list = 4
req_information.task_usage.0.task.1.mem_list = 0
req_information.task_usage.0.task.1.memory_used = 976752kb
req_information.task_usage.0.task.1.cores = 0
req_information.task_usage.0.task.1.threads = 1
req_information.task_usage.0.task.1.host = hosta

resources_used is the same as in previous versions of Torque. In this job, 1 second of cpu time was
used. 1956984kb of resident memory was used, but with the new -L syntax there is a new set of
information which starts with req_information. This is the per task information of the job.

Output Description

req_information.task_count.0 = 2 Two tasks are requested for this resource request; named
tasks 0 and 1 respectively.

req_information.lprocs.0 = 1 One logical processor is requested per task. The lprocs value
becomes the number of processing units per task allocated
in the cpuset.

Chapter 12: NUMA and Torque

Output Description

req_information.thread_usage_policy.0 = allow-
threads

The processing unit allocation policy for the task. allow-
threads is the user-specified default policy. allowthreads
uses the first available core or thread. Processing units alloc-
ated in the cpuset are adjacent to each other unless other
processors are also allocated.

req_information.hostlist.0 = hosta:ppn=2 On hostname hosta, two processing units are necessary . A
single resource request can run on more than one host.

req_information.task_usage.0.task.0.cpu_list = 0 The task_usage keyword refers to the per task resource
usage. 0 is the processing unit assigned to this task. In req_
information.task_usage.0.cpu_list.1, the processing unit
assigned is 4. This particular hardware is a 4 core system
with hyper threading. So the core numbering is (0,4), (1,5),
(2,6) and (3.7). Because the thread_usage_policy is allow-
threads, the first two processing units are taken by default.

req_information.task_usage.0.task0.mem_list = 0 Memory location 0 is allocated to this task.

req_information.task_usage.0.task0.memory_used =
976816kb

The amount of resident memory used at task 0 is
976816kb.

req_information.task_usage.0.task0.cores = 0 This is the number of cores used by the task. In this case no
cores were used because the allowthreads policy uses only
threads and not discrete cores.

req_information.task_usage.0.task0.host = hosta The task was run on hostname hosta.

The information for req_information.task_usage.0.task.1 as opposed to task.0, means that the
information displayed is referring to what was performed on task 1, rather than task 0.

12.4.7 Multiple lprocs
qsub -L tasks=1:lprocs=2

Two logical processors are specified with one task. The output of this job is as follows:

req_information.task_count.0 = 1
req_information.lprocs.0 = 2
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = hosta:ppn=2
req_information.task_usage.0.task.0.cpu_list = 0,4
req_information.task_usage.0.task.0.mem_list = 0

Chapter 12: NUMA and Torque

238 12.4 NUMA Primer

12.4 NUMA Primer 239

req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 2
req_information.task_usage.0.task.0.host = hosta

The req_information for this syntax shows a cpu_list with two processing units. 0 and 4 are the first
two processing units available so they are in the cpu_list. Notice that now there are two threads
running.

12.4.8 usecores
The following example shows how a request to use cores changes the cpu_list allocation.

qsub -L tasks=1:lprocs=4:usecores

req_information.task_count.0 = 1
req_information.lprocs.0 = 4
req_information.thread_usage_policy.0 = usecores
req_information.hostlist.0 = hosta:ppn=4
req_information.task_usage.0.task.0.cpu_list = 0-3
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 4
req_information.task_usage.0.task.0.threads = 8
req_information.task_usage.0.task.0.host = hosta

Output Description

req_information.task_usage.0.task.0.cores =
4

Four cores are used for task 0.

req_information.task_usage.0.task.0.threads
= 8

When a core is requested, any threads for that core are no longer
available for use by another task. In this case, each core has two
threads. As a result, when one core is used two threads are also
used. In this case, 8 threads are used in total.

12.4.9 usethreads
qsub -L tasks=1:lprocs=4:usethreads

The output of this job is as follows:

req_information.task_count.0 = 1
req_information.lprocs.0 = 4
req_information.thread_usage_policy.0 = usecores
req_information.hostlist.0 = hosta:ppn=4
req_information.task_usage.0.task.0.cpu_list = 0,4,1,5
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 4
req_information.task_usage.0.task.0.host = hosta

Chapter 12: NUMA and Torque

Requesting usethreads gives adjacent processing units 0,4,1,5 and uses only 4 threads as indicated
by req_information.task_usage.0.task.0.threads = 4.

12.4.10 Multiple Resource Requests
The -L resource requests makes it easier to request asymmetric resources for a single job. For
example, you might have a job which needs several processors on a host to do work but only one
or two processors on another host. The -L syntax easily accommodates this.

qsub -L tasks=2:lprocs=6:usecores -L tasks=1:lprocs=1:place=socket

req_information.task_count.0 = 2
req_information.lprocs.0 = 6
req_information.thread_usage_policy.0 = usecores
req_information.hostlist.0 = hostb:ppn=12
req_information.task_usage.0.task.0.cpu_list = 0-5
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 6
req_information.task_usage.0.task.0.threads = 12
req_information.task_usage.0.task.0.host = hostb
req_information.task_usage.0.task.1.cpu_list = 6-11
req_information.task_usage.0.task.1.mem_list = 1
req_information.task_usage.0.task.1.cores = 6
req_information.task_usage.0.task.1.threads = 12
req_information.task_usage.0.task.1.host = hostb
req_information.task_count.1 = 1
req_information.lprocs.1 = 1
req_information.socket.1 = 1
req_information.thread_usage_policy.1 = allowthreads
req_information.hostlist.1 = hostb:ppn=1
req_information.task_usage.1.task.0.cpu_list = 0
req_information.task_usage.1.task.0.mem_list = 0
req_information.task_usage.1.task.0.cores = 1
req_information.task_usage.1.task.0.threads = 1
req_information.task_usage.1.task.0.host = hostb

Output Description

req_information.task_count.1=1 Only one task on request 1.

req_information.socket.1 = 1 One socket is requested and then allocated for use.

12.4.11 place Directives
The place directive takes one of five arguments: node, socket, numanode, core, and thread. The
node, core, and thread arguments do not take an assignment, however socket and numanode can be
assigned a number value requesting the number of sockets or numanodes per task. The use of
"place=core" or "place=thread" is the equivalent of using the usecores or usethreads syntax.

When processes share the same memory cache and are run on adjacent cores or threads, the
likelihood of swapping out a cache line is high. When memory needs to be fetched from primary

Chapter 12: NUMA and Torque

240 12.4 NUMA Primer

12.4 NUMA Primer 241

memory instead of the cache processing execution times are increased and become less predictable.
In these examples, Torque disables linearly allocating cores. To help ensure best performance by
avoiding the sharing of caches between processors, cores are spread as far apart as possible.

The following examples show the results of each directive:

place=socket

If a socket is not given a number, it defaults to the number 1.

qsub -L tasks=2:lprocs=2:place=socket

This request allocates two tasks with two logical processors each. Each task is placed on its own
socket.

req_information.task_count.0 = 2
req_information.lprocs.0 = 2
req_information.socket.0 = 1
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = hosta:ppn=4
req_information.task_usage.0.task.0.cpu_list = 0,3
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 2
req_information.task_usage.0.task.0.threads = 4
req_information.task_usage.0.task.0.host = hosta
req_information.task_usage.0.task.1.cpu_list = 6,9
req_information.task_usage.0.task.1.mem_list = 1
req_information.task_usage.0.task.1.cores = 2
req_information.task_usage.0.task.1.threads = 4
req_information.task_usage.0.task.1.host = hosta
cpuset_string = hosta:0,3,6,9
memset_string = hosta:0-1

For the last example the job was run on a dual socket host with 12 cores. Each core has two
threads for a total of 24 processing units. Each socket has 6 cores and 12 threads. The cores for
socket 0 are numbered 0, 1, 2, 3, 4, 5. The cores for socket 1 are numbered 6, 7, 8, 9, 10, 11. Task.0
uses cores 0 and 3 and task.1 uses cores 6 and 9.

place=numanode=2

qsub -L tasks=2:lprocs=2:place=numanode=2

This request allocates two numanodes, one for each task.

req_information.task_count.0 = 2
req_information.lprocs.0 = 2
req_information.numanode.0 = 2
req_information.thread_usage_policy.0 = allowthreads
req_information.hostlist.0 = hostb:ppn=2
req_information.task_usage.0.task.0.cpu_list = 0, 3
req_information.task_usage.0.task.0.mem_list = 0
req_information.task_usage.0.task.0.cores = 0
req_information.task_usage.0.task.0.threads = 0
req_information.task_usage.0.task.0.host = hostb
req_information.task_usage.0.task.1.cpu_list = 6, 9
req_information.task_usage.0.task.1.mem_list = 1
req_information.task_usage.0.task.1.cores = 2

Chapter 12: NUMA and Torque

req_information.task_usage.0.task.1.threads = 4
req_information.task_usage.0.task.1.host = hostb

12.4.12 pbsnodes and Dedicated Resources
When a resource is requested (core, numanode, socket, etc.), the entire resource is no longer
available for other jobs to use, and enters a dedicated state. Starting with Torque 6.0, pbsnodes
tracks total sockets, numanodes, cores and threads per node. pbsnodes also tracks dedicated
sockets, numanodes, cores, and threads. Following is and example of node output in pbsnodes for
Torque 6.0

state = free
power_state = Running
np = 12
ntype = cluster
status =
rectime=1441054213,macaddr=78:e3:b5:0a:c0:58,cpuclock=Fixed,varattr=,jobs=,state=fre
e...
mom_service_port = 15002
mom_manager_port = 15003
total_sockets = 2
total_numa_nodes = 2
total_cores = 12
total_threads = 12
dedicated_sockets = 0
dedicated_numa_nodes = 0
dedicated_cores = 0
dedicated_threads = 0

This node has a total of 2 sockets, 2 numanodes, 12 cores and 12 threads. The number of dedicated
sockets, numanodes, cores, and threads are set to 0 indicating there are currently no jobs running
on this nodes. If a job is run with a syntax of:

qsub -L tasks=2:lprocs=2

the number of dedicated threads becomes four.

Once a job is completed, dedicated_threads returns to 0.

Related Topics

l 12.3 NUMA Tutorials - page 233

Chapter 12: NUMA and Torque

242 12.4 NUMA Primer

12.5 How NUMA Places Jobs 243

12.5 How NUMA Places Jobs

This topic discusses how jobs are placed on their specific NUMA resources.

In this topic, placing is defined as determining where on the node the job will go.

Moab determines where to place a job on a node and pbs_server places that job inside the node.
pbs_server decides where to place the job based on the parameters specified by the job itself and
optimal locality.

The Placement Algorithm
The following diagram shows the decision making process for each request not using the "place="
syntax.

Whenever possible, jobs are given placement preference next to the GPUs that they will use. If the
job's tasks' memory and CPUs are available on the socket that has the GPUs, that job will be placed
at that location.

This placement fails if either there is no socket that contains all of the required resources, or
if jobs are and the GPUs are on socket - but all of the cores are used by another job.

Chapter 12: NUMA and Torque

For jobs using the "place=" syntax, the decision making algorithm is much simpler. When the place
is specified, it will become reserved and the job will be placed at that location.

Chapter 12: NUMA and Torque

244 12.5 How NUMA Places Jobs

12.5 How NUMA Places Jobs 245

For a job to occupy the user-requested place option, that option must be completely available
for use.

The following is an example of a job submitted using the -L option.

-L tasks=1:lprocs=2:sockets=2

This job placed on two sockets with one core reserved per socket.

The use of the word "core" is intentional. If a "place=socket" or "place=numanode" is
requested and the lprocs request is less that the number of cores inside the socket or NUMA
node, then the job is given only cores.

Once pbs_server has determined where each task should run, that decision is stored in attributes on
the job itself. The complete_req attribute stores where each task is allocated, and the mom reads
that information to create appropriate cgroups for the job and for the entire task. This information
is available to the user via qstat.

Related Topics

l 12.3 NUMA Tutorials - page 233

Chapter 12: NUMA and Torque

12.6 NUMA Discovery and Persistence

In this topic:

12.6.1 Initial Discovery - page 246
12.6.2 Job Placement Decisions - page 246
12.6.3 Persistence AcrossRestarts - page 246

12.6.1 Initial Discovery
First, The mom performs the initial discovery of the host's layout, including the number of sockets,
numa nodes, pci devices, cores, and threads. This is done using the hwloc library. Next, the mom
sends that information to pbs_server, which notes it. Last, pbs_server writes files with the node's
layout information locally. Following restarts, node information is gathered from these files.

12.6.2 Job Placement Decisions
Job placement decisions are done by pbs_server so that it immediately knows which NUMA
resources have been used by which job. As a result, the second a job starts or finishes the
information for available numa resources is updated and accurate. This information is then
communicated to the mom daemon.

For more information on how jobs are placed, see 12.5 How NUMA Places Jobs - page 243.

12.6.3 Persistence Across Restarts
To maintain correct usage information pbs_server writes files to a new directory in /server_
priv/node_usage. The files are written in JSON format. The following is a representation of what
these files look like:

Simple Node
"node" :
{
"socket" :
{
"os_index" : 0,
"numanode" :
{
"os_index" : 0,
"cores" : "0-5",
"threads" : "",
"mem" : 16435852

}
}

}

More Complicated Node

Chapter 12: NUMA and Torque

246 12.6 NUMA Discovery and Persistence

12.6 NUMA Discovery and Persistence 247

"node" :
{
"socket" :
{
"os_index" : 0,
"numanode" :
{
"os_index" : 0,
"cores" : "0-7",
"threads" : "",
"mem" : 16775316

},
"numanode" :
{
"os_index" : 1,
"cores" : "8-15",
"threads" : "",
"mem" : 16777216

}
},
"socket" :
{
"os_index" : 1,
"numanode" :
{
"os_index" : 2,
"cores" : "16-23",
"threads" : "",
"mem" : 8388608

},
"numanode" :
{
"os_index" : 3,
"cores" : "24-31",
"threads" : "",
"mem" : 8388608

}
}

}

When jobs are present, an allocation object will also be there to record what resources are being
used by the job. The allocation object will be beneath the numanode object, so it is possible to have
more than one per job. An example of an allocation object is shown below:

Allocation object

"allocation" :
{
"cores_only" : 0,
"cpus" : "0",
"exclusive" : 6,
"jobid" : "39.roshar",
"mem" : "0"

}

An example of a complete node usage file is shown below:

Node usage

{

Chapter 12: NUMA and Torque

"node" :
[
{
"socket" :
{
"numanodes" :
[
{
"numanode" :
{
"allocations" :
[
{
"allocation" :
{
"cores_only" : 0,
"cpus" : "0",
"exclusive" : 6,
"jobid" : "39.roshar",
"mem" : "0",

}
}

],
"cores" : "0-7",
"mem" : "16325348",
"os_index", : 0,
"threads" : ""

}
}

],
"os_index" : 0

}
}

]
}

Related Topics

l 12.3 NUMA Tutorials - page 233

Chapter 12: NUMA and Torque

248 12.6 NUMA Discovery and Persistence

12.7 -L NUMA Resource Request 249

12.7 -L NUMA Resource Request

The -L option is available in the qsub and msub commands to allow administrators the ability to
place jobs at the "task" or "OS process" level to get maximum efficiency out of the available
hardware.

Using the -L option requires a basic knowledge of the topologies of the available hardware where
jobs will run. You will need to know how many cores, numanodes, sockets, etc. are available on the
hosts within the cluster. The -L syntax is designed to allow for a wide variety of requests. However,
if requests do not match the available hardware, you may have unexpected results.

In addition, multiple, non-symmetric resource requests can be made for the same job using the -L
job submission syntax.

For example, the following command:

qsub -L tasks=4:lprocs=2:usecores:memory=500mb -L tasks=8:lprocs=4:memory=2gb

Creates two requests. The first request creates 4 tasks with two logical processors and 500 mb
of memory per task. The logical processors are placed on cores. The second request calls for 8
tasks with 4 logical processors and 2 gb of memory per task. Logical processors may be placed
on cores or threads since the default placement is allowthreads.

This topic provides the -L option syntax and a description of the allocation options.

In this topic:

12.7.1 Syntax - page 249
12.7.2 Allocation Options - page 249

12.7.1 Syntax
-L tasks=#[:lprocs=#|all]

[:{usecores|usethreads|allowthreads}]
[:place={socket|numanode|core|thread}[=#]{node}][:memory=#][:swap=#]
[:maxtpn=#][:gpus=#[:<mode>]][:mics=#][:gres=<gres>]
[:feature=<feature>]
[[:{cpt|cgroup_per_task}]|[:{cph|cgroup_per_host}]]

12.7.2 Allocation Options
The following table identifies the various allocation options you can specify per task.

tasks=# specifies the number of job tasks for which the resource request is to be applied. It
is the only required element for the -L resource request. The remainder of the -L syntax
allocates resources per task.

Chapter 12: NUMA and Torque

Value Description

cpt,
cgroup_
per_task,
cph,
cgroup_
per_host

Specifies whether cgroups are created per-task or per-host. If submitting using msub, this
information is passed through to Torque; there is no affect to Moab operations.

This option lets you specify how cgroups are created during job submission. This option can
be used to override the Torque cgroup_per_task server parameter. If this option is not
specified, the server parameter value is used. See cgroup_per_task in the Torque 6.1.3
Administrator Guide for more information.

l :cpt, :cgroup_per_task – Job request will have one cgroup created per task; all the
processes on that host will be placed in the first task's cgroup.

l :cph, :cgroup_per_host – Job request will have one cgroup created per host; this is similar
to pre-6.0 cpuset implementations.

Some MPI implementations only launch one process through the TM API, and then fork
each subsequent process that should be launched on that host. If the job is set to have one

cgroup per task, this means that all of the processes on that host will be placed in the first
task's cgroup. Confirm that the cgroup_per_task Torque server parameter is set to FALSE
(default) or specify :cph or :cgroup_per_host at job submission.

If you know that your MPI will communicate each process launch to the mom individually,
then set the cgroup_per_task Torque server parameter is set to TRUE or specify :cpt or
:cgroup_per_task at job submission.

feature Specifies one or more node feature names used to qualify compute nodes for task resources; i.e., a
compute node must have all ("&") or and ("|") of the specified feature name(s) assigned or the
compute node's resources are ineligible for allocation to a job task.

:feature=bigmem
:feature='bmem&fio'
:feature='bmem|fio'

Chapter 12: NUMA and Torque

250 12.7 -L NUMA Resource Request

12.7 -L NUMA Resource Request 251

Value Description

gpus Specifies the quantity of GPU accelerators to allocate to a task, which requires placement at the
locality-level to which an accelerator is connected or higher. <MODE> can be exclusive_process,
exclusive_thread, or reseterr.

If you are using CUDA 8 or newer, the default of exclusive_thread is no longer
supported. If the server specifies an exclusive_thread setting, the MOM will substitute
an exclusive_processmode setting. We recommend that you set the default to
exclusive_process.

The task resource request must specify placement at the numanode- (AMD only), socket-, or node-
level. place=core and place=thread are invalid placement options when a task requests a
PCIe-based accelerator device, since allowing other tasks to use cores and threads on the same
NUMA chip or socket as the task with the PCIe device(s) would violate the consistent job execution
time principle since these other tasks would likely interfere with the data transfers between the
task's logical processors and its allocated accelerator(s).

:gpus=1

Allocates one GPU per task.

:gpus=2:exclusive_process:reseterr

Allocates two GPUs per task with exclusive access by process and resets error counters.

gres Specifies the quantity of a specific generic resource <gres> to allocate to a task. If a quantity is not
given, it defaults to one.

Specify multiple GRES by separating them with commas and enclosing all the GRES names,
their quantities, and the commas within single quotation marks.

:gres=matlab=1

Allocates one Matlab license per task.

:gres='dvd,blu=2'

Allocates one DVD drive and two Blu-ray drives per task, represented by the "dvd" and "blu"
generic resource names, respectively.

When scheduling, if a generic resource is node-locked, only compute nodes with the generic
resource are eligible for allocation to a job task. If a generic resource is floating, it does not
qualify or disqualify compute node resources from allocation to a job task.

Chapter 12: NUMA and Torque

Value Description

lprocs Specifies the quantity of "logical processors" required by a single task to which it will be pinned by
its control-group (cgroup).

The "place" value specifies the total number of physical cores/threads to which a single task
has exclusive access. The lprocs= keyword indicates the actual number of cores/threads to
which the task has exclusive access for the task's cgroup to pin to the task.

l When :lprocs is specified, and nothing is specified for #, the default is 1.
l When :lprocs=all is specified, all cores or threads in any compute node/server's
available resource locality placement specified by the "place" option is eligible for task
placement (the user has not specified a quantity, other than "give me all logical processors
within the resource locality or localities"), which allows a user application to take whatever
it can get and adapt to whatever it receives, which cannot exceed one node.

qsub -L tasks=1:lprocs=4

One task is created which allocates four logical processors to the task. When the job is
executed, the pbs_mom where the job is running will create a cpuset with four processors in
the set. Torque will make a best effort to allocate the four processors next to each other but
the placement is not guaranteed.

qsub -L tasks=1:lprocs=all:place=node

Places one task on a single node, and places all processing units in the cpuset of the task. The
"lprocs=all" parameter specifies that the task will use all cores and/or threads available on
the resource level requested.

maxtpn Specifies the maximum tasks per node; where "#" is the maximum tasks allocated per physical com-
pute node. This restricts a task type to no more than "#" tasks per compute node and allows it to
share a node with other task types or jobs. For example, a communication-intensive task may share
a compute node with computation-intensive tasks.

The number of nodes and tasks per node will not be known until the job is run.

qsub -L tasks=7:maxtpn=4

Allocates seven tasks but a maximum of four tasks can run on a single node.

Chapter 12: NUMA and Torque

252 12.7 -L NUMA Resource Request

12.7 -L NUMA Resource Request 253

Value Description

memory
"memory" is roughly equivalent to the mem request for the qsub/msub -l resource request.
However, with the -L qsub syntax, cgroups monitors the job memory usage and puts a
ceiling on resident memory for each task of the job.

Specifies the maximum resident memory allocated per task. Allowable suffixes are kb (kilobytes),
mb (megabytes), gb (gigabytes), tb (terabyte), pb (petabytes), and eb (exabyte). If a suffix is not
provided by the user, kb (kilobytes) is default. Either whole or decimal numbers are allowed.

If a task uses more resident memory than specified the excess memory is moved to swap.

qsub -L tasks=4:lprocs=2:usecores:memory=.5gb

Allocates four tasks with two logical processors each. Each task is given a limit of .5 gb of
resident memory.

qsub -L tasks=2:memory=3500

Allocates two tasks with 3500 kb (the suffix was not specified so kilobytes is assumed).

mics Specifies the quantity of Intel MIC accelerators to allocate to a task, which requires placement at the
locality-level to which a MIC is connected or higher.
The task resource request must specify placement at the NUMA chip- (makes sense for AMD only),
socket-, or node-level. place=core and place=thread are invalid placement options when a task
requests a PCIe-based accelerator device since allowing other tasks to use cores and threads on the
same NUMA chip or socket as the task with the PCIe device(s) would violate the consistent job
execution time principle since these other tasks would likely interfere with the data transfers
between the task's logical processors and its allocated accelerator(s).

Allocating resources for MICs operates in the exact same manner as for GPUs. See gpus.

:mics=1

Allocates on MIC per task.

:mics=2

Allocates two MICs per task.

Chapter 12: NUMA and Torque

Value Description

place Specifies placement of a single task on the hardware. Specifically, this designates what hardware
resource locality level and identifies the quantity of locality-level resources. Placement at a specific
locality level is always exclusive, meaning a job task has exclusive use of all logical processor and
physical memory resources at the specified level of resource locality, even if it does not use them.

Valid Options:

If a valid option is not specified, the usecores, usethreads, and allowthreads parameters are
used.

l socket[=#] – Refers to a socket within a compute node/server and specifies that each task
is placed at the socket level with exclusive use of all logical processors and memory
resources of the socket(s) allocated to a task. If a count is not specified, the default setting is
1.

qsub -L tasks=2:lprocs=4:place=socket

Two tasks are allocated with four logical processors each. Each task is placed on a
socket where it will have exclusive access to all of the cores and memory of the
socket. Although the socket may have more cores/threads than four, only four
cores/threads will be bound in a cpuset per task per socket as indicated by
"lprocs=4".

l numanode[=#] – Refers to the numanode within a socket and specifies that each task is
placed at the NUMA node level within a socket with exclusive use of all logical processor and
memory resources of the NUMA node(s) allocated to the task. If a count is not given, the
default value is 1. If a socket does not contain multiple numanodes, by default the socket
contains one numanode.
To illustrate the locality level to which this option refers, the following examples are
provided:

First, a Haswell-based Intel Xeon v3 processor with 10 or more cores is divided internally
into two separate "nodes", each with an equal quantity of cores and its own local memory
(referred to as a "numanode" in this topic).

Second, an AMD Opteron 6xxx processor is a "multi-chip module" that contains two
separate physical silicon chips each with its own local memory (referred to as a
"numanode" in this topic).

In both of the previous examples, a core in one "node" of the processor can access its own
local memory faster than it can access the remote memory of the other "node" in the
processor, which results in NUMA behavior.

qsub -L tasks=2:lprocs=4:place=numanode

Places a single task on a single numanode and the task has exclusive use of all the
logical processors and memory of the numanode.

qsub -L tasks=2:lprocs=4:place=numanode=2

Allocates two tasks with each task getting two numanodes each.

Chapter 12: NUMA and Torque

254 12.7 -L NUMA Resource Request

12.7 -L NUMA Resource Request 255

Value Description

l core[=#] – Refers to a core within a numanode or socket and specifies each task is placed at
the core level within the numanode or socket and has exclusive use of all logical processor
and memory resources of the core(s) allocated to the task. Whether a core has SMT/hyper-
threading enabled or not is irrelevant to this locality level. If a number of cores is not
specified, it will default to the number of lprocs specified.

The amount of cores specified must be greater than or equal to the number of
lprocs available, otherwise the job submission will be rejected.

qsub -L tasks=2:place=core=2

Two tasks with one logical processor each will be placed on two cores per task.

qsub -L tasks=2:lprocs=2:place=core

Two tasks are allocated with two logical processors per task. Each logical process
will be assigned to one core each (two cores total, the same as the number of
lprocs). Torque will attempt to place the logical processors on non-adjacent cores.

l thread[=#] – Specifies each task is placed at the thread level within a core and has exclusive
use of all logical processor and memory resources of the thread(s) allocated to a task.
This affinity level refers to threads within a core and is applicable only to nodes with SMT
or hyper-threading enabled. If a node does not have SMT or hyper-threading enabled,
Moab will consider the node ineligible when allocating resources for a task. If a specific
number of threads is not specified, it will default the number of lprocs specified.

qsub -L tasks=2:lprocs=4:place=thread

Allocates two tasks, each with four logical processors, which can be bound to any
thread. Torque will make a best effort to bind the threads on the same numanode
but placement is not guaranteed. Because the amount of threads is not specified,
Torque will place the number of lprocs requested.

l node – Specifies that each task is placed at the node level and has exclusive use of all the
resources of the node(s) allocated to a task. This locality level usually refers to a physical
compute node, blade, or server within a cluster.

qsub -L tasks=2:lprocs=all:place=node

Two tasks are allocated with one task per node, where the task has exclusive access
to all the resources on the node. The "lprocs=all" specification directs Torque to
create a cpuset with all of the processing units on the node. The "place=node"
specification also claims all of the memory for the node/server.

Chapter 12: NUMA and Torque

Value Description

swap Specifies the maximum allocated resident memory and swap space allowed per task.

Allowable suffixes are kb (kilobytes), mb (megabytes), gb (gigabytes), tb (terabyte), pb
(petabytes), and eb (exabyte). If a suffix is not given, kb (kilobytes) is assumed. Either whole or
decimal numbers are allowed.

If a task exceeds the specified limit, the task will be killed; the associated job will be terminated.

If the swap limit is unable to be set, the job will still be allowed to run. All other cgroup-
related failures will cause the job to be rejected.

When requesting swap, it is not required that you give a value for the :memory option.

l If using :swap without a specified :memory value, Torque will supply a memory value up to
the value of :swap; but not larger than available physical memory.

qsub -L tasks=4:lprocs=2:swap=4.5gb

Allocates four tasks with two logical processors each. Each task is given a
combined limit of 4.5 gb of resident memory and swap space. If a task exceeds the
limit, the task is terminated.

l If using :swap with a specified :memory value, Torque will only supply resident memory up
to the :memory value. The rest of the swap can only be supplied from the swap space.

The :memory value must be smaller than or equal to the :swap value.

qsub -L tasks=2:memory=3.5gb:swap=5gb

Allocates two tasks and each task has up to 3.5 gb of resident memory and a
maximum of 5 gb of swap. If a task exceed 3.5 gb of resident memory, the excess
will be moved to the swap space. However, if the task exceed 5 gb of total swap, the
task and job will be terminated.

tasks Specifies the quantity of job tasks for which the resource request describes the resources needed
by a single task.

l Distributed memory systems - A single task must run within a single compute
node/server; i.e., the task's resources must all come from the same compute node/server.

l Shared memory systems - A single task may run on multiple compute nodes; i.e., the task's
resources may come from multiple compute nodes.

This option is required for task-based resource allocation and placement.

qsub -L tasks=4

Creates four tasks, each with one logical process. The tasks can be run on a core or thread
(default allowthreads).

Chapter 12: NUMA and Torque

256 12.7 -L NUMA Resource Request

12.7 -L NUMA Resource Request 257

Value Description

usecores,
usethreads,
allow
threads

The usecores, usethreads, and allowthreads parameters are used to indicate whether the cgroup
pins cores, threads, or either to a task, respectively. If no logical processor definition is given, the
default is allowthreads for backward-compatible Moab scheduler and Torque resource manager
behavior.

In this context, "cores" means an AMD Opteron core, a hyperthread-disabled Intel Xeon core, or
thread 0 and only thread 0 of a hyperthread-enabled Intel Xeon core. The term "threads" refers to a
hyperthread-enabled Intel Xeon thread. Likewise, "either" refers to an AMD Opteron core, a
hyperthread-disabled Intel Xeon core, or any thread of a hyperthread-enabled Intel Xeon.

l :usecores – Denotes that the logical processor definition for a task resource request is a
physical core. This means if a core has hyper-threading enabled, the task will use only
thread 0 of the core.

qsub -L tasks=2:lprocs=2:usecores

Two tasks are allocated with two logical processors per task. The usecores
parameter indicates the processor types must be a core or thread 0 of a hyper-
threaded core.

l :usethreads – Specifies the logical processor definition for a task resource request is a
hardware-based thread or virtual core.

qsub -L tasks=2:lprocs=2:usethreads

Two tasks are allocated with two logical processors per task. The usethreads
parameter indicates that any type of hardware-based thread or virtual core can be
used.

l :allowthreads – Specifies that the logical processor definition for a task resource request
can be either a physical core (e.g. AMD Opteron), or hardware-based thread of a core
(hyperthread-enabled Intel Xeon).

qsub -L tasks=2:lprocs=2:allowthreads

Two tasks are allocated with two logical processors per task. The allowthreads
parameter indicates hardware threads or cores can be used.

Related Topics

l qsub in the Torque 6.1.3 Administrator Guide

l 3.5 Requesting NUMA-Aware Resources - page 119 in the Torque 6.1.3 Administrator Guide

Chapter 12: NUMA and Torque

12.8 pbsnodes with NUMA-Awareness

When Torque is configured with NUMA-awareness and configured with --enable-cgroups, the
number of total and the number of available sockets, numachips (numa nodes), cores, and threads
are returned when the status of nodes are queried by Moab (a call is made to pbsnodes).

The example output that follows shows a node with two sockets, four numachips, 16 cores and 32
threads. In this example, no jobs are currently running on this node; therefore, the available
resources are the same as the total resources.

torque-devtest-01
state = free
power_state = Running
np = 16
ntype = cluster
status =

rectime=1412732948,macaddr=00:26:6c:f4:66:a0,cpuclock=Fixed,varattr=,jobs=,state=free,
netload=17080856592,gres=,loadave=10.74,ncpus=16,physmem=49416100kb,availmem=50056608k
b,totmem=51480476kb,idletime=29,nusers=2,nsessions=3,sessions=8665
8671 1994,uname=Linux torque-devtest-01 2.6.32-358.el6.x86_64 #1 SMP
Fri Feb 22 00:31:26 UTC 2013 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
total_sockets = 2
total_numachips = 4
total_cores = 16
total_threads = 32
available_sockets = 2
available_numachips = 4
available_cores = 16
available_threads = 32

However, if a job requesting only a single core was started on this node, the pbsnodes output will
look like:

torque-devtest-01
state = free
power_state = Running
np = 16
ntype = cluster
jobs = 0/112.torque-devtest-01
status =

rectime=1412732948,macaddr=00:26:6c:f4:66:a0,cpuclock=Fixed,varattr=,jobs=,state=free,
netload=17080856592,gres=,loadave=10.74,ncpus=16,physmem=49416100kb,availmem=50056608k
b,totmem=51480476kb,idletime=29,nusers=2,nsessions=3,sessions=8665
8671 1994,uname=Linux torque-devtest-01 2.6.32-358.el6.x86_64 #1 SMP
Fri Feb 22 00:31:26 UTC 2013 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
total_sockets = 2
total_numachips = 4
total_cores = 16
total_threads = 32
available_sockets = 1
available_numachips = 3
available_cores = 15
available_threads = 30

Chapter 12: NUMA and Torque

258 12.8 pbsnodes with NUMA-Awareness

12.8 pbsnodes with NUMA-Awareness 259

In looking at the output for this example, you will see that even though only one core was
requested the available sockets, numachip, cores and threads were all reduced. This is because the
NUMA architecture is hierarchical: socket contains one or more numachips; a numachip contains
two or more cores; cores contain one or more threads (one thread in the case of non-threaded
cores). In order for a resource to be available, the entire resource must be free. When a job uses
one core, the use of that core consumes part of the associated socket, and numa chip resources. As a
result, the affected socket and numachip cannot be used when subsequent jobs request sockets and
numachips as resources. Also, because the job asked for one core, the number of threads for that
core are consumed. As a result, the number of threads available on the machine is reduced by the
number of threads in the core.

As another example, suppose a user makes an job request and they want to use a socket. The
pbsnodes output will look like:

torque-devtest-01
state = free
power_state = Running
np = 16
ntype = cluster
jobs = 113.torque-devtest-01
status =

rectime=1412732948,macaddr=00:26:6c:f4:66:a0,cpuclock=Fixed,varattr=,jobs=,state=free,
netload=17080856592,gres=,loadave=10.74,ncpus=16,physmem=49416100kb,availmem=50056608k
b,totmem=51480476kb,idletime=29,nusers=2,nsessions=3,sessions=8665
8671 1994,uname=Linux torque-devtest-01 2.6.32-358.el6.x86_64 #1 SMP
Fri Feb 22 00:31:26 UTC 2013 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
total_sockets = 2
total_numachips = 4
total_cores = 16
total_threads = 32
available_sockets = 1
available_numa_chips = 2
available_cores = 8
available_threads = 16

In looking at the output in this example, you will see that not only are the available sockets reduced
to one, but all of the numachips, cores, and threads associated with the socket are no longer
available. In other words, by requesting a job placement of "socket" all of the resources of the
socket are reserved and are no longer available to other jobs.

Chapter 12: NUMA and Torque

12.9 NUMA-Support Systems

This topic serves as a central information repository for NUMA-support systems. This topic
provides basic information and contains links to the various NUMA-aware topics found throughout
the documentation.

Support for NUMA-support systems is available only on large-scale SLES systems using SGI
Altix and UV hardware and requires Torque 3.0 or later.

In this topic:

12.9.1 About NUMA-Supported Systems - page 260
12.9.2 Torque Installation and Configuration - page 260
12.9.3Moab/Torque NUMA Configuration - page 260

12.9.1 About NUMA-Supported Systems
When Torque is enabled to run with NUMA support, there is only a single instance of pbs_mom
(MOM) that is run on the system. However, Torque will report that there are multiple nodes
running in the cluster. While pbs_mom and pbs_server both know there is only one instance of
pbs_mom, they manage the cluster as if there were multiple separate MOM nodes.

The mom.layout file is a virtual mapping between the system hardware configuration and how
the administrator wants Torque to view the system. Each line in mom.layout equates to a node in
the cluster and is referred to as a NUMA node.

12.9.2 Torque Installation and Configuration
To enable Torque for NUMA-support, you will need to add the --enable-numa-support
option during the configure portion of the installation. You will also need create the mom.layout file
and configure the server_priv/nodes file.

With SGI Altix systems, each node must be configured on its own partition, so Moab does not
schedule across Altix systems. Non-Altix nodes must be on a different partition than Altix
systems.

See 2.28 Torque NUMA-Support Configuration - page 93

12.9.3 Moab/Torque NUMA Configuration
Moab requires additional configuration to enable NUMA-support.

See: Moab-NUMA-Support Integration Guide in the Moab Workload Manager Administrator Guide.

Chapter 12: NUMA and Torque

260 12.9 NUMA-Support Systems

261

Chapter 13: Troubleshooting

There are a few general strategies that can be followed to determine the cause of unexpected
behavior. These are a few of the tools available to help determine where problems occur.

In this chapter:

13.1 Automatic Queue and Job Recovery 263
13.2 Host Resolution 264
13.3 Firewall Configuration 265
13.4 Torque Log Files 266

13.4.1 pbs_server and pbs_momLog Files 266
13.4.2 trqauthd Log Files 266

13.5 Using "tracejob" to Locate Job Failures 268
13.5.1 Overview 268
13.5.2 Syntax 268
13.5.3 Example 268

13.6 UsingGDB to Locate Job Failures 271
13.7 Other Diagnostic Options 272
13.8 Stuck Jobs 273
13.9 Frequently AskedQuestions (FAQ) 274

13.9.1 Cannot connect to server: error=15034 274
13.9.2 Deleting 'stuck' jobs 274
13.9.3Which user must run Torque? 275
13.9.4 Scheduler cannot run jobs - rc: 15003 275
13.9.5 PBS_Server: pbsd_init, Unable to read server database 275
13.9.6qsub will not allow the submission of jobs requestingmany processors 277
13.9.7 qsub reports 'Bad UID for job execution' 277
13.9.8Why doesmy job keep bouncing from running to queued? 278
13.9.9 How do I use PVMwith Torque? 278
13.9.10My build fails attempting to use the TCL library 278

13.9.11My job will not start, failing with themessage 'cannot send job tomom,state=PRERUN' 279
13.9.12 How do I determine what version of Torque I am using? 279

13.9.13How do I resolve autogen.sh errors that contain "error: possibly undefined
macro: AC_MSG_ERROR"? 279

13.9.14How do I resolve compile errors with libssl or libcrypto for Torque 4.0 on
Ubuntu 10.04? 279

13.9.15Why are there somany error messages in the client logs (trqauthd logs)
when I don't notice client commands failing? 280

Chapter 13: Troubleshooting

13.10 Compute Node Health Check 281
13.11 ConfiguringMOMs to Launch a Health Check 282
13.12 Creating the Health Check Script 283
13.13 Adjusting Node State Based on the Health CheckOutput 284
13.14 Example Health Check Script 285
13.15 Debugging 286

13.15.1 Diagnostic and DebugOptions 286
13.15.2 Torque Error Codes 287

Chapter 13: Troubleshooting

262

13.1 Automatic Queue and Job Recovery 263

13.1 Automatic Queue and Job Recovery

When pbs_server restarts and recovers a job but cannot find that job's queue, it will create a new
queue with the original name, but with a ghost_queue attribute (as seen in qmgr) and then add the
job to that queue. This will happen for each queue the server does not recognize. Ghost queues will
not accept new jobs, but will allow the jobs in it to run and be in a running state. If users attempt to
submit any new jobs to these queues, the user will get an error stating that the queue had an error
on recovery, and is in a ghost state. Once the admin reviews and corrects the queue's settings, the
admin may remove the ghost setting and then the queue will function normally.

See ghost_queue for more information.

Chapter 13: Troubleshooting

13.2 Host Resolution

The Torque server host must be able to perform both forward and reverse name lookup on itself
and on all compute nodes. Likewise, each compute node must be able to perform forward and
reverse name lookup on itself, the Torque server host, and all other compute nodes. In many cases,
name resolution is handled by configuring the node's /etc/hosts file although DNS and NIS
services may also be used. Commands such as nslookup or dig can be used to verify proper host
resolution.

Invalid host resolution may exhibit itself with compute nodes reporting as down within the
output of pbsnodes -a and with failure of the momctl -d3 command.

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

264 13.2 Host Resolution

13.3 Firewall Configuration 265

13.3 Firewall Configuration

Be sure that, if you have firewalls running on the server or node machines, you allow connections
on the appropriate ports for each machine. Torque pbs_mom daemons use UDP ports 1023 and
below if privileged ports are configured (privileged ports is the default). The pbs_server and pbs_
mom daemons use TCP and UDP ports 15001-15004 by default.

Firewall based issues are often associated with server to MOM communication failures and
messages such as 'premature end of message' in the log files.

Also, the tcpdump program can be used to verify the correct network packets are being sent.

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

13.4 Torque Log Files

In this topic:

13.4.1 pbs_server and pbs_momLog Files - page 266
13.4.2 trqauthd Log Files - page 266

13.4.1 pbs_server and pbs_mom Log Files
The pbs_server keeps a daily log of all activity in the TORQUE_HOME/server_logs directory.
The pbs_mom also keeps a daily log of all activity in the TORQUE_HOME/mom_logs/ directory.
These logs contain information on communication between server and MOM as well as information
on jobs as they enter the queue and as they are dispatched, run, and terminated. These logs can be
very helpful in determining general job failures. For MOM logs, the verbosity of the logging can be
adjusted by setting the $loglevel parameter in the mom_priv/config file. For server logs, the
verbosity of the logging can be adjusted by setting the server log_level attribute in qmgr.

For both pbs_mom and pbs_server daemons, the log verbosity level can also be adjusted by setting
the environment variable PBSLOGLEVEL to a value between 0 and 7. Further, to dynamically
change the log level of a running daemon, use the SIGUSR1 and SIGUSR2 signals to increase and
decrease the active loglevel by one. Signals are sent to a process using the kill command.

For example, kill -USR1 `pgrep pbs_mom` would raise the log level up by one.

The current loglevel for pbs_mom can be displayed with the command momctl -d3.

13.4.2 trqauthd Log Files
As of Torque 4.1.3, trqauthd logs its events in the TORQUE_HOME/client_logs directory. It
names the log files in the format <YYYYMMDD>, creating a new log daily as events occur.

You might see some peculiar behavior if you mount the client_logs directory for shared
access via network-attached storage.

When trqauthd first gets access on a particular day, it writes an "open" message to the day's
log file. It also writes a "close" message to the last log file it accessed prior to that, which is
usually the previous day's log file, but not always. For example, if it is Monday and no client
commands were executed over the weekend, trqauthd writes the "close" message to Friday's
file.

Since the various trqauthd binaries on the submit hosts (and potentially, the compute nodes)
each write an "open" and "close" message on the first access of a new day, you'll see multiple
(seemingly random) accesses when you have a shared log.

The trqauthd records the following events along with the date and time of the occurrence:

Chapter 13: Troubleshooting

266 13.4 Torque Log Files

13.4 Torque Log Files 267

l When trqauthd successfully starts. It logs the event with the IP address and port.

l When a user successfully authenticates with trqauthd.

l When a user fails to authenticate with trqauthd.

l When trqauthd encounters any unexpected errors.

Example 13-1: trqauthd logging sample

2012-10-05 15:05:51.8404 Log opened
2012-10-05 15:05:51.8405 Torque authd daemon started and listening on IP:port
101.0.1.0:12345
2012-10-10 14:48:05.5688 User hfrye at IP:port abc:12345 logged in

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

13.5 Using "tracejob" to Locate Job Failures

In this topic:

13.5.1 Overview - page 268
13.5.2 Syntax - page 268
13.5.3 Example - page 268

13.5.1 Overview
The tracejob utility extracts job status and job events from accounting records, MOM log files,
server log files, and scheduler log files. Using it can help identify where, how, a why a job failed.
This tool takes a job ID as a parameter as well as arguments to specify which logs to search, how
far into the past to search, and other conditions.

13.5.2 Syntax
tracejob [-a|s|l|m|q|v|z] [-c count] [-w size] [-p path] [-n <DAYS>] [-f filter_type]
<JOBID>

-p : path to PBS_SERVER_HOME
-w : number of columns of your terminal
-n : number of days in the past to look for job(s) [default 1]
-f : filter out types of log entries, multiple -f's can be specified
 error, system, admin, job, job_usage, security, sched, debug,
 debug2, or absolute numeric hex equivalent
-z : toggle filtering excessive messages
-c : what message count is considered excessive
-a : don't use accounting log files
-s : don't use server log files
-l : don't use scheduler log files
-m : don't use MOM log files
-q : quiet mode - hide all error messages
-v : verbose mode - show more error messages

13.5.3 Example
> tracejob -n 10 1131

Job: 1131.icluster.org

03/02/2005 17:58:28 S enqueuing into batch, state 1 hop 1
03/02/2005 17:58:28 S Job Queued at request of dev@icluster.org, owner =
 dev@icluster.org, job name = STDIN, queue = batch
03/02/2005 17:58:28 A queue=batch
03/02/2005 17:58:41 S Job Run at request of dev@icluster.org
03/02/2005 17:58:41 M evaluating limits for job
03/02/2005 17:58:41 M phase 2 of job launch successfully completed

Chapter 13: Troubleshooting

268 13.5 Using "tracejob" to Locate Job Failures

13.5 Using "tracejob" to Locate Job Failures 269

03/02/2005 17:58:41 M saving task (TMomFinalizeJob3)
03/02/2005 17:58:41 M job successfully started
03/02/2005 17:58:41 M job 1131.koa.icluster.org reported successful start on 1 node
(s)
03/02/2005 17:58:41 A user=dev group=dev jobname=STDIN queue=batch ctime=1109811508

qtime=1109811508 etime=1109811508 start=1109811521
 exec_host=icluster.org/0 Resource_List.neednodes=1 Resource_
List.nodect=1
 Resource_List.nodes=1 Resource_List.walltime=00:01:40
03/02/2005 18:02:11 M walltime 210 exceeded limit 100
03/02/2005 18:02:11 M kill_job
03/02/2005 18:02:11 M kill_job found a task to kill
03/02/2005 18:02:11 M sending signal 15 to task
03/02/2005 18:02:11 M kill_task: killing pid 14060 task 1 with sig 15
03/02/2005 18:02:11 M kill_task: killing pid 14061 task 1 with sig 15
03/02/2005 18:02:11 M kill_task: killing pid 14063 task 1 with sig 15
03/02/2005 18:02:11 M kill_job done
03/02/2005 18:04:11 M kill_job
03/02/2005 18:04:11 M kill_job found a task to kill
03/02/2005 18:04:11 M sending signal 15 to task
03/02/2005 18:06:27 M kill_job
03/02/2005 18:06:27 M kill_job done
03/02/2005 18:06:27 M performing job clean-up
03/02/2005 18:06:27 A user=dev group=dev jobname=STDIN queue=batch ctime=1109811508

 qtime=1109811508 etime=1109811508 start=1109811521
 exec_host=icluster.org/0 Resource_List.neednodes=1 Resource_
List.nodect=1

Resource_List.nodes=1 Resource_List.walltime=00:01:40
session=14060
 end=1109811987 Exit_status=265 resources_used.cput=00:00:00
 resources_used.mem=3544kb resources_used.vmem=10632kb

resources_used.walltime=00:07:46

...

The tracejob command operates by searching the pbs_server accounting records and the
pbs_server, MOM, and scheduler logs. To function properly, it must be run on a node and as a
user which can access these files. By default, these files are all accessible by the user root and
only available on the cluster management node. In particular, the files required by tracejob
are located in the following directories:

TORQUE_HOME/server_priv/accounting

TORQUE_HOME/server_logs

TORQUE_HOME/mom_logs

TORQUE_HOME/sched_logs

tracejob may only be used on systems where these files are made available. Non-root
users may be able to use this command if the permissions on these directories or files are
changed appropriately.

Chapter 13: Troubleshooting

The value of Resource_List.* is the amount of resources requested, and the value of
resources_used.* is the amount of resources actually used.

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

270 13.5 Using "tracejob" to Locate Job Failures

13.6 Using GDB to Locate Job Failures 271

13.6 Using GDB to Locate Job Failures

If either the pbs_mom or pbs_server fail unexpectedly (and the log files contain no information on
the failure) gdb can be used to determine whether or not the program is crashing. To start pbs_
mom or pbs_server under GDB export the environment variable PBSDEBUG=yes and start the
program (i.e., gdb pbs_mom and then issue the run subcommand at the gdb prompt).

GDB may run for some time until a failure occurs and at which point, a message will be printed to
the screen and a gdb prompt again made available. If this occurs, use the gdb where subcommand
to determine the exact location in the code. The information provided may be adequate to allow
local diagnosis and correction. If not, this output may be sent to the mailing list or to help for
further assistance.

See the PBSCOREDUMP parameter for enabling creation of core files (see Debugging).

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

http://www.gnu.org/software/gdb/
mailto:help@supercluster.org

13.7 Other Diagnostic Options

When PBSDEBUG is set, some client commands will print additional diagnostic information.

$ export PBSDEBUG=yes
$ cmd

To debug different kinds of problems, it can be useful to see where in the code time is being spent.
This is called profiling and there is a Linux utility "gprof" that will output a listing of routines and
the amount of time spent in these routines. This does require that the code be compiled with
special options to instrument the code and to produce a file, gmon.out, that will be written at the
end of program execution.

The following listing shows how to build Torque with profiling enabled. Notice that the output file
for pbs_mom will end up in the mom_priv directory because its startup code changes the default
directory to this location.

./configure "CFLAGS=-pg -lgcov -fPIC"
make -j5
make install
pbs_mom ... do some stuff for a while ...
momctl -s
cd /var/spool/torque/mom_priv
gprof -b `which pbs_mom` gmon.out |less
#

Another way to see areas where a program is spending most of its time is with the valgrind
program. The advantage of using valgrind is that the programs do not have to be specially compiled.

valgrind --tool=callgrind pbs_mom

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

272 13.7 Other Diagnostic Options

13.8 Stuck Jobs 273

13.8 Stuck Jobs

If a job gets stuck in Torque, try these suggestions to resolve the issue:

l Use the qdel command to cancel the job.

l Force the MOM to send an obituary of the job ID to the server.

> qsig -s 0 <JOBID>

l You can try clearing the stale jobs by using the momctl command on the compute nodes
where the jobs are still listed.

> momctl -c 58925 -h compute-5-20

l Setting the qmgr server setting mom_job_sync to True might help prevent jobs from
hanging.

> qmgr -c "set server mom_job_sync = True"

To check and see if this is already set, use:

> qmgr -c "p s"

l If the suggestions above cannot remove the stuck job, you can try qdel -p. However, since
the -p option purges all information generated by the job, this is not a recommended option
unless the above suggestions fail to remove the stuck job.

> qdel -p <JOBID>

l The last suggestion for removing stuck jobs from compute nodes is to restart the pbs_mom.

For additional troubleshooting, run a tracejob on one of the stuck jobs. You can then create an
online support ticket with the full server log for the time period displayed in the trace job.

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

http://www.adaptivecomputing.com/support

13.9 Frequently Asked Questions (FAQ)

In this topic:

13.9.1 Cannot connect to server: error=15034 - page 274
13.9.2 Deleting 'stuck' jobs - page 274
13.9.3Which user must run Torque? - page 275
13.9.4 Scheduler cannot run jobs - rc: 15003 - page 275
13.9.5 PBS_Server: pbsd_init, Unable to read server database - page 275
13.9.6 qsub will not allow the submission of jobs requestingmany processors - page 277
13.9.7 qsub reports 'Bad UID for job execution' - page 277
13.9.8Why doesmy job keep bouncing from running to queued? - page 278
13.9.9 How do I use PVMwith Torque? - page 278
13.9.10My build fails attempting to use the TCL library - page 278
13.9.11My job will not start, failing with themessage 'cannot send job tomom,

state=PRERUN' - page 279
13.9.12 How do I determine what version of Torque I am using? - page 279
13.9.13 How do I resolve autogen.sh errors that contain "error: possibly undefinedmacro:

AC_MSG_ERROR"? - page 279
13.9.14 How do I resolve compile errors with libssl or libcrypto for Torque 4.0 on Ubuntu

10.04? - page 279
13.9.15Why are there somany error messages in the client logs (trqauthd logs) when I don't

notice client commands failing? - page 280

13.9.1 Cannot connect to server: error=15034
This error occurs in Torque clients (or their APIs) because Torque cannot find the server_name
file and/or the PBS_DEFAULT environment variable is not set. The server_name file or PBS_
DEFAULT variable indicate the pbs_server's hostname that the client tools should communicate
with. The server_name file is usually located in Torque's local state directory. Make sure the file
exists, has proper permissions, and that the version of Torque you are running was built with the
proper directory settings. Alternatively you can set the PBS_DEFAULT environment variable. Restart
Torque daemons if you make changes to these settings.

13.9.2 Deleting 'stuck' jobs
To manually delete a "stale" job which has no process, and for which the mother superior is still
alive, sending a sig 0 with qsig will often cause MOM to realize the job is stale and issue the proper
JobObit notice. Failing that, use momctl -c to forcefully cause MOM to purge the job. The
following process should never be necessary:

Chapter 13: Troubleshooting

274 13.9 Frequently Asked Questions (FAQ)

13.9 Frequently Asked Questions (FAQ) 275

l Shut down the MOM on the mother superior node.

l Delete all files and directories related to the job from TORQUE_HOME/mom_priv/jobs.

l Restart the MOM on the mother superior node.

If the mother superior MOM has been lost and cannot be recovered (i.e. hardware or disk failure), a
job running on that node can be purged from the output of qstat using the qdel -p command or
can be removed manually using the following steps:

To remove job X

1. Shut down pbs_server.

> qterm

2. Remove job spool files.

> rm TORQUE_HOME/server_priv/jobs/X.SC TORQUE_HOME/server_priv/jobs/X.JB

3. Restart pbs_server

> pbs_server

13.9.3 Which user must run Torque?
Torque (pbs_server & pbs_mom) must be started by a user with root privileges.

13.9.4 Scheduler cannot run jobs - rc: 15003
For a scheduler, such as Moab or Maui, to control jobs with Torque, the scheduler needs to be run
by a user in the server operators/managers list (see qmgr). The default for the server
operators/managers list is root@localhost. For Torque to be used in a grid setting with Moab,
the scheduler needs to be run as root.

13.9.5 PBS_Server: pbsd_init, Unable to read server database
If this message is displayed upon starting pbs_server it means that the local database cannot be
read. This can be for several reasons. The most likely is a version mismatch. Most versions of
Torque can read each other's databases. However, there are a few incompatibilities between
OpenPBS and Torque. Because of enhancements to Torque, it cannot read the job database of an
OpenPBS server (job structure sizes have been altered to increase functionality). Also, a compiled in
32-bit mode cannot read a database generated by a 64-bit pbs_server and vice versa.

Chapter 13: Troubleshooting

To reconstruct a database (excluding the job database)

1. First, print out the old data with this command:

%> qmgr -c "p s"
#
Create queues and set their attributes.
#
#
Create and define queue batch
create queue batch
set queue batch queue_type = Execution
set queue batch acl_host_enable = False
set queue batch resources_max.nodect = 6
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch resources_available.nodect = 18
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server managers = griduser@oahu.icluster.org
set server managers += scott@*.icluster.org
set server managers += wightman@*.icluster.org
set server operators = griduser@oahu.icluster.org
set server operators += scott@*.icluster.org
set server operators += wightman@*.icluster.org
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server resources_available.nodect = 80
set server node_ping_rate = 300
set server node_check_rate = 600
set server tcp_timeout = 6

2. Copy this information somewhere.

3. Restart pbs_server with the following command:

> pbs_server -t create

4. When you are prompted to overwrite the previous database, enter y, then enter the data
exported by the qmgr command as in this example:

> cat data | qmgr

5. Restart pbs_server without the flags:

> qterm
> pbs_server

This will reinitialize the database to the current version.

Chapter 13: Troubleshooting

276 13.9 Frequently Asked Questions (FAQ)

13.9 Frequently Asked Questions (FAQ) 277

Reinitializing the server database will reset the next jobid to 1

13.9.6 qsub will not allow the submission of jobs requesting many
processors
Torque's definition of a node is context sensitive and can appear inconsistent. The qsub -l
nodes=<X> expression can at times indicate a request for X processors and other time be
interpreted as a request for X nodes. While qsub allows multiple interpretations of the keyword
nodes, aspects of the Torque server's logic are not so flexible. Consequently, if a job is using -l
nodes to specify processor count and the requested number of processors exceeds the available
number of physical nodes, the server daemon will reject the job.

To get around this issue, the server can be told it has an inflated number of nodes using the
resources_available attribute. To take effect, this attribute should be set on both the server
and the associated queue as in the example below. See resources_available for more
information.

> qmgr
Qmgr: set server resources_available.nodect=2048
Qmgr: set queue batch resources_available.nodect=2048

The pbs_server daemon will need to be restarted before these changes will take effect.

13.9.7 qsub reports 'Bad UID for job execution'
Submitting a job may fail with an error similar to the following:

[guest@login2]$ qsub test.job
qsub: submit error (Bad UID for job execution MSG=ruserok failed validating
guest/guest from login2)

This usually means that the host you are submitting the job from is not registered as a trusted
submission host within Torque. In the example above, the host login2 is not configured to be
trusted.

To check what hosts are trusted as submission hosts run the following on the Torque server host:

[root@torque-server-host]# qmgr -c "print server" | grep submit_hosts

If you do not see the host you submitted the job from, you can add it by doing the following:

[root@torque-server-host]# qmgr -c "set server submit_hosts += login2"

For more information see Configuring Job Submission Hosts.

Chapter 13: Troubleshooting

This error may also occur when using an identity and credential management system, such as
Centrify and the identity management system has cached user credentials. To resolve this issue,
flush the credential cache (for example, using Centrify's adflush command).

13.9.8 Why does my job keep bouncing from running to queued?
There are several reasons why a job will fail to start. Do you see any errors in the MOM logs? Be
sure to increase the loglevel on MOM if you don't see anything. Also be sure Torque is configured
with --enable-syslog and look in /var/log/messages (or wherever your syslog writes).

Also verify the following on all machines:

l DNS resolution works correctly with matching forward and reverse

l Time is synchronized across the head and compute nodes

l User accounts exist on all compute nodes

l User home directories can be mounted on all compute nodes

l Prologue scripts (if specified) exit with 0

If using a scheduler such as Moab or Maui, use a scheduler tool such as checkjob to identify job
start issues.

13.9.9 How do I use PVM with Torque?
l Start the master pvmd on a compute node and then add the slaves

l mpiexec can be used to launch slaves using rsh or ssh (use export PVM_
RSH=/usr/bin/ssh to use ssh)

Access can be managed by rsh/ssh without passwords between the batch nodes, but denying
it from anywhere else, including the interactive nodes. This can be done with xinetd and sshd
configuration (root is allowed to ssh everywhere). This way, the pvm daemons can be started
and killed from the job script.

The problem is that this setup allows the users to bypass the batch system by writing a job script
that uses rsh/ssh to launch processes on the batch nodes. If there are relatively few users and they
can more or less be trusted, this setup can work.

13.9.10 My build fails attempting to use the TCL library
Torque builds can fail on TCL dependencies even if a version of TCL is available on the system. TCL
is only utilized to support the xpbsmon client. If your site does not use this tool (most sites do not
use xpbsmon), you can work around this failure by rerunning configure with the --disable-
gui argument.

Chapter 13: Troubleshooting

278 13.9 Frequently Asked Questions (FAQ)

13.9 Frequently Asked Questions (FAQ) 279

13.9.11 My job will not start, failing with the message 'cannot send
job to mom, state=PRERUN'
If a node crashes or other major system failures occur, it is possible that a job may be stuck in a
corrupt state on a compute node. Torque 2.2.0 and higher automatically handle this when the mom_
job_sync parameter is set via qmgr (the default). For earlier versions of Torque, set this
parameter and restart the pbs_mom daemon.

This error can also occur if not enough free space is available on the partition that holds Torque.

13.9.12 How do I determine what version of Torque I am using?
There are times when you want to find out what version of Torque you are using. To do so, run
either of the following commands:

qstat --version

pbs_server --about

13.9.13 How do I resolve autogen.sh errors that contain "error:
possibly undefined macro: AC_MSG_ERROR"?
Verify the pkg-config package is installed.

13.9.14 How do I resolve compile errors with libssl or libcrypto for
Torque 4.0 on Ubuntu 10.04?
When compiling Torque 4.0 on Ubuntu 10.04 the following errors might occur:

libtool: link: gcc -Wall -pthread -g -D_LARGEFILE64_SOURCE -o .libs/trqauthd trq_auth_
daemon.o trq_main.o -ldl -lssl -lcrypto -L/home/adaptive/torques/torque-
4.0.0/src/lib/Libpbs/.libs /home/adaptive/torques/torque-
4.0.0/src/lib/Libpbs/.libs/libtorque.so -lpthread -lrt -pthread
/usr/bin/ld: cannot find -lssl
collect2: ld returned 1 exit status
make[3]: *** [trqauthd] Error 1

libtool: link: gcc -Wall -pthread -g -D_LARGEFILE64_SOURCE -o .libs/trqauthd trq_auth_
daemon.o trq_main.o -ldl -lssl -lcrypto -L/home/adaptive/torques/torque-
4.0.0/src/lib/Libpbs/.libs /home/adaptive/torques/torque-
4.0.0/src/lib/Libpbs/.libs/libtorque.so -lpthread -lrt -pthread
/usr/bin/ld: cannot find -lcrypto
collect2: ld returned 1 exit status
make[3]: *** [trqauthd] Error 1

To resolve the compile issue, use these commands:

Chapter 13: Troubleshooting

> cd /usr/lib
> ln -s /lib/libcrypto.so.0.9. libcrypto.so
> ln -s /lib/libssl.so.0.9.8 libssl.so

13.9.15 Why are there so many error messages in the client logs
(trqauthd logs) when I don't notice client commands failing?
If a client makes a connection to the server and the trqauthd connection for that client command is
authorized before the client's connection, the trqauthd connection is rejected. The connection is
retried, but if all retry attempts are rejected, trqauthd logs a message indicating a failure. Some
client commands then open a new connection to the server and try again. The client command fails
only if all its retries fail.

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

280 13.9 Frequently Asked Questions (FAQ)

13.10 Compute Node Health Check 281

13.10 Compute Node Health Check

Torque provides the ability to perform health checks on each compute node. If these checks fail, a
failure message can be associated with the node and routed to the scheduler. Schedulers (such as
Moab) can forward this information to administrators by way of scheduler triggers, make it
available through scheduler diagnostic commands, and automatically mark the node down until the
issue is resolved. See the RMMSGIGNORE parameter in Moab Parameters in the Moab Workload
Manager Administrator Guide for more information.

Additionally, Michael Jennings at LBNL has authored an open-source bash node health check script
project. It offers an easy way to perform some of the most common node health checking tasks,
such as verifying network and filesystem functionality. More information is available on the
project's page.

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

https://github.com/mej/nhc

13.11 Configuring MOMs to Launch a Health Check

The health check feature is configured via the mom_priv/config file using the parameters
described below:

Parameter Format Default Description

$node_
check_script

<STRING> N/A (Required) Specifies the fully qualified pathname of the health
check script to run

$node_
check_inter-
val

<INTEGER> 1 (Optional) Specifies the number of MOM intervals between health
checks (by default, each MOM interval is 45 seconds long - this is
controlled via the $status_update_time node parameter. The
integer may be followed by a list of event names (jobstart and
jobend are currently supported). See pbs_mom for more inform-
ation.

The node health check may be configured to run before
the prologue script by including the "jobstart" option.
However, the job environment variables are not in the
health check at that point.

Related Topics

l 13.10 Compute Node Health Check - page 281

Chapter 13: Troubleshooting

282 13.11 Configuring MOMs to Launch a Health Check

13.12 Creating the Health Check Script 283

13.12 Creating the Health Check Script

The health check script is executed directly by the pbs_mom daemon under the root user id. It must
be accessible from the compute node and may be a script or compile executable program. It may
make any needed system calls and execute any combination of system utilities but should not
execute resource manager client commands. Also, as of Torque 1.0.1, the pbs_mom daemon blocks
until the health check is completed and does not possess a built-in timeout. Consequently, it is
advisable to keep the launch script execution time short and verify that the script will not block
even under failure conditions.

By default, the script looks for the EVENT: keyword to indicate successes. If the script detects a
failure, it should return the keyword ERROR to stdout followed by an error message. When a
failure is detected, the ERROR keyword should be printed to stdout before any other data. The
message immediately following the ERROR keyword must all be contained on the same line. The
message is assigned to the node attribute 'message' of the associated node.

In order for the node health check script to log a positive run, it is necessary to include the
keyword EVENT: at the beginning of the message your script returns. Failure to do so may
result in unexpected outcomes.

Both the ERROR and EVENT: keywords are case insensitive.

Related Topics

l 13.10 Compute Node Health Check - page 281

Chapter 13: Troubleshooting

13.13 Adjusting Node State Based on the Health Check
Output

If the health check reports an error, the node attribute "message" is set to the error string returned.
Cluster schedulers can be configured to adjust a given node's state based on this information. For
example, by default, Moab sets a node's state to down if a node error message is detected. The node
health script continues to run at the configured interval (see Configuring MOMs to Launch a Health
Check for more information), and if it does not generate the error message again during one of its
later executions, Moab picks that up at the beginning of its next iteration and restores the node to
an online state.

Related Topics

l 13.10 Compute Node Health Check - page 281

Chapter 13: Troubleshooting

284 13.13 Adjusting Node State Based on the Health Check Output

13.14 Example Health Check Script 285

13.14 Example Health Check Script

As mentioned, the health check can be a shell script, PERL, Python, C-executable, or anything which
can be executed from the command line capable of setting STDOUT. The example below
demonstrates a very simple health check:

#!/bin/sh
/bin/mount | grep global
if [$? != "0"]
 then
 echo "ERROR cannot locate filesystem global"
fi

Related Topics

l 13.10 Compute Node Health Check - page 281

Chapter 13: Troubleshooting

13.15 Debugging

In this topic:

13.15.1 Diagnostic and DebugOptions - page 286
13.15.2 Torque Error Codes - page 287

13.15.1 Diagnostic and Debug Options
Torque supports a number of diagnostic and debug options including the following:

PBSDEBUG environment variable - If set to 'yes', this variable will prevent pbs_server, pbs_
mom, and/or pbs_sched from backgrounding themselves allowing direct launch under a debugger.
Also, some client commands will provide additional diagnostic information when this value is set.

PBSLOGLEVEL environment variable - Can be set to any value between 0 and 7 and specifies the
logging verbosity level (default = 0)

PBSCOREDUMP environment variable - If set, it will cause the offending pbs_mom or pbs_server
daemon to create a core file if a SIGSEGV, SIGILL, SIGFPE, SIGSYS, or SIGTRAP signal is received.

To enable core dump file creation in RHEL/CentOS 6 or SLES 11 systems, add the following
line to the /etc/init.d/pbs_mom and /etc/init.d/pbs_server scripts (or the
TORQUE_HOME/pbs_environment file):

export DAEMON_COREFILE_LIMIT=unlimited

For RHEL/CentOS 7 or SLES 12 systems using systemd, add this line to the
trqauthd.service, pbs_mom.service, and pbs_server.service unit files (in
/usr/lib/systemd/system/):

LimitCORE=infinity

Core dumps will be placed in the daemons' home directories as shown in the table below.

Daemon Path

trqauthd /var/spool/torque

pbs_server /var/spool/torque/server_priv

pbs_mom /var/spool/torque/mom_priv

NDEBUG #define - if set at build time, will cause additional low-level logging information to be
output to stdout for pbs_server and pbs_mom daemons.

Chapter 13: Troubleshooting

286 13.15 Debugging

13.15 Debugging 287

tracejob reporting tool - can be used to collect and report logging and accounting information for
specific jobs (See Using "tracejob" to Locate Job Failures) for more information.

PBSLOGLEVEL and PBSCOREDUMP must be added to the PBSHOME/pbs_environment
file, not just the current environment. To set these variables, add a line to the pbs_
environment file as either "variable=value" or just "variable". In the case of "variable=value",
the environment variable is set up as the value specified. In the case of "variable", the
environment variable is set based upon its value in the current environment.

13.15.2 Torque Error Codes

Error code name Number Description

PBSE_FLOOR 15000 No error

PBSE_UNKJOBID 15001 Unknown job identifier

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 No permission

PBSE_MUNGE_NOT_FOUND 15009 "munge" executable not found; unable to authenticate

PBSE_BADHOST 15010 Access from host not allowed

PBSE_JOBEXIST 15011 Job already exists

PBSE_SYSTEM 15012 System error occurred

PBSE_INTERNAL 15013 Internal server error occurred

PBSE_REGROUTE 15014 Parent job of dependent in rte queue

Chapter 13: Troubleshooting

Error code name Number Description

PBSE_UNKSIG 15015 Unknown signal name

PBSE_BADATVAL 15016 Bad attribute value

PBSE_MODATRRUN 15017 Cannot modify attribute in run state

PBSE_BADSTATE 15018 Request invalid for job state

PBSE_UNKQUE 15020 Unknown queue name

PBSE_BADCRED 15021 Invalid credential in request

PBSE_EXPIRED 15022 Expired credential in request

PBSE_QUNOENB 15023 Queue not enabled

PBSE_QACESS 15024 No access permission for queue

PBSE_BADUSER 15025 Bad user - no password entry

PBSE_HOPCOUNT 15026 Max hop count exceeded

PBSE_QUEEXIST 15027 Queue already exists

PBSE_ATTRTYPE 15028 Incompatible queue attribute type

PBSE_QUEBUSY 15029 Queue busy (not empty)

PBSE_QUENBIG 15030 Queue name too long

PBSE_NOSUP 15031 Feature/function not supported

PBSE_QUENOEN 15032 Cannot enable queue,needs add def

PBSE_PROTOCOL 15033 Protocol (ASN.1) error

PBSE_BADATLST 15034 Bad attribute list structure

PBSE_NOCONNECTS 15035 No free connections

Chapter 13: Troubleshooting

288 13.15 Debugging

13.15 Debugging 289

Error code name Number Description

PBSE_NOSERVER 15036 No server to connect to

PBSE_UNKRESC 15037 Unknown resource

PBSE_EXCQRESC 15038 Job exceeds queue resource limits

PBSE_QUENODFLT 15039 No default queue defined

PBSE_NORERUN 15040 Job not rerunnable

PBSE_ROUTEREJ 15041 Route rejected by all destinations

PBSE_ROUTEEXPD 15042 Time in route queue expired

PBSE_MOMREJECT 15043 Request to MOM failed

PBSE_BADSCRIPT 15044 (qsub) Cannot access script file

PBSE_STAGEIN 15045 Stage-In of files failed

PBSE_RESCUNAV 15046 Resources temporarily unavailable

PBSE_BADGRP 15047 Bad group specified

PBSE_MAXQUED 15048 Max number of jobs in queue

PBSE_CKPBSY 15049 Checkpoint busy, may be retries

PBSE_EXLIMIT 15050 Limit exceeds allowable

PBSE_BADACCT 15051 Bad account attribute value

PBSE_ALRDYEXIT 15052 Job already in exit state

PBSE_NOCOPYFILE 15053 Job files not copied

PBSE_CLEANEDOUT 15054 Unknown job ID after clean init

PBSE_NOSYNCMSTR 15055 No master in sync set

Chapter 13: Troubleshooting

Error code name Number Description

PBSE_BADDEPEND 15056 Invalid dependency

PBSE_DUPLIST 15057 Duplicate entry in list

PBSE_DISPROTO 15058 Bad DIS based request protocol

PBSE_EXECTHERE 15059 Cannot execute there

PBSE_SISREJECT 15060 Sister rejected

PBSE_SISCOMM 15061 Sister could not communicate

PBSE_SVRDOWN 15062 Requirement rejected -server shutting down

PBSE_CKPSHORT 15063 Not all tasks could checkpoint

PBSE_UNKNODE 15064 Named node is not in the list

PBSE_UNKNODEATR 15065 Node-attribute not recognized

PBSE_NONODES 15066 Server has no node list

PBSE_NODENBIG 15067 Node name is too big

PBSE_NODEEXIST 15068 Node name already exists

PBSE_BADNDATVAL 15069 Bad node-attribute value

PBSE_MUTUALEX 15070 State values are mutually exclusive

PBSE_GMODERR 15071 Error(s) during global modification of nodes

PBSE_NORELYMOM 15072 Could not contact MOM

PBSE_NOTSNODE 15073 No time-shared nodes

PBSE_JOBTYPE 15074 Wrong job type

PBSE_BADACLHOST 15075 Bad ACL entry in host list

Chapter 13: Troubleshooting

290 13.15 Debugging

13.15 Debugging 291

Error code name Number Description

PBSE_MAXUSERQUED 15076 Maximum number of jobs already in queue for user

PBSE_BADDISALLOWTYPE 15077 Bad type in "disallowed_types" list

PBSE_NOINTERACTIVE 15078 Interactive jobs not allowed in queue

PBSE_NOBATCH 15079 Batch jobs not allowed in queue

PBSE_NORERUNABLE 15080 Rerunable jobs not allowed in queue

PBSE_NONONRERUNABLE 15081 Non-rerunable jobs not allowed in queue

PBSE_UNKARRAYID 15082 Unknown array ID

PBSE_BAD_ARRAY_REQ 15083 Bad job array request

PBSE_TIMEOUT 15084 Time out

PBSE_JOBNOTFOUND 15085 Job not found

PBSE_NOFAULTTOLERANT 15086 Fault tolerant jobs not allowed in queue

PBSE_NOFAULTINTOLERANT 15087 Only fault tolerant jobs allowed in queue

PBSE_NOJOBARRAYS 15088 Job arrays not allowed in queue

PBSE_RELAYED_TO_MOM 15089 Request was relayed to a MOM

PBSE_MEM_MALLOC 15090 Failed to allocate memory for memmgr

PBSE_MUTEX 15091 Failed to allocate controlling mutex (lock/unlock)

PBSE_TRHEADATTR 15092 Failed to set thread attributes

PBSE_THREAD 15093 Failed to create thread

PBSE_SELECT 15094 Failed to select socket

PBSE_SOCKET_FAULT 15095 Failed to get connection to socket

Chapter 13: Troubleshooting

Error code name Number Description

PBSE_SOCKET_WRITE 15096 Failed to write data to socket

PBSE_SOCKET_READ 15097 Failed to read data from socket

PBSE_SOCKET_CLOSE 15098 Socket closed

PBSE_SOCKET_LISTEN 15099 Failed to listen in on socket

PBSE_AUTH_INVALID 15100 Invalid auth type in request

PBSE_NOT_IMPLEMENTED 15101 Functionality not yet implemented

PBSE_QUENOTAVAILABLE 15102 Queue is not available

Related Topics

l Chapter 13: Troubleshooting - page 261

Chapter 13: Troubleshooting

292 13.15 Debugging

A.1 Torque Services 293

Appendix A: Commands Overview

In this topic:

A.1 Torque Services - page 293
A.2 Client Commands - page 293

A.1 Torque Services

Command Description

pbs_mom PBS batch execution mini-server. Runs on each Torque compute node.

pbs_server Batch system manager daemon. Runs on the Torque master node.

pbs_track Process launcher. Starts a new process and tells pbs_mom to track its lifecycle and resource
usage.

trqauthd Torque authorization daemon.

A.2 Client Commands

Command Description

momctl Manage/diagnose MOM (node execution) daemon

pbsdsh Launch tasks within a parallel job

pbsnodes View/modify batch status of compute nodes

qalter Modify queued batch jobs

qchkpt Checkpoint batch jobs

qdel Delete/cancel batch jobs

Appendix A: Commands Overview

Command Description

qgpumode Specifies new mode for GPU

qgpureset Reset the GPU

qhold Hold batch jobs

qmgr Manage policies and other batch configuration

qmove Move batch jobs

qorder Exchange order of two batch jobs in any queue

qrerun Rerun a batch job

qrls Release batch job holds

qrun Start a batch job

qsig Send a signal to a batch job

qstat View queues and jobs

qsub Submit jobs

qterm Shutdown pbs server daemon

tracejob Trace job actions and states recorded in Torque logs (see Using "tracejob" to Locate Job Failures)

Related Topics

l Appendix C: Node Manager (MOM) Configuration - page 422

l Appendix B: Server Parameters - page 395

Appendix A: Commands Overview

294 A.2 Client Commands

A.3 momctl 295

A.3 momctl

(PBS MOM Control)

A.3.1 Synopsis
momctl -c { <JOBID> | all }
momctl -C
momctl -d { <INTEGER> | <JOBID> }
momctl -f <FILE>
momctl -h <HOST>[,<HOST>]...
momctl -l
momctl -p <PORT_NUMBER>
momctl -q <ATTRIBUTE>
momctl -r { <FILE> | LOCAL:<FILE> }
momctl -s
momctl -u

A.3.2 Overview
The momctl command allows remote shutdown, reconfiguration, diagnostics, and querying of the
pbs_mom daemon.

A.3.3 Format

-c — Clear

Format { <JOBID> | all }

Default ---

Description Makes the MOM unaware of the job's
existence. It does not clean up any
processes associated with the job.

Example momctl -c 2 -h node1

-C — Cycle

Format ---

Appendix A: Commands Overview

-C — Cycle

Default ---

Description Cycle pbs_mom (force the MOM to send a status update to pbs_server).

Example momctl -C -h node1

Cycle pbs_mom on node1.

-d — Diagnose

Format { <INTEGER> | <JOBID> }

Default 0

Description Diagnose MOM(s).

(For more details, see Diagnose detail below.)

Example momctl -d 2 -h node1

Print level 2 and lower diagnostic information for the
MOM on node1.

-f — Host File

Format <FILE>

Default ---

Description A file containing only comma or whitespace (space, tab, or new line) delimited hostnames.

Example momctl -f hosts.txt -d 0

Print diagnose information for the MOMs running on the hosts specified in
hosts.txt.

Appendix A: Commands Overview

296 A.3 momctl

A.3 momctl 297

-h — Host List

Format <HOST>[,<HOST>]...

Default localhost

Description A comma separated list of hosts.

Example momctl -h node1,node2,node3 -d 0

Print diagnose information for the MOMs running on node1,
node2, and node3.

-l — Layout

Format ---

Default ---

Description Display the layout of the machine as it is understood by Torque.

Appendix A: Commands Overview

-l — Layout

Example [root@c04a numa]# momctl -l
Machine (50329748KB)
Socket 0 (33552532KB)
Chip 0 (16775316KB)
Core 0 (1 threads)
Core 1 (1 threads)
Core 2 (1 threads)
Core 3 (1 threads)
Core 4 (1 threads)
Core 5 (1 threads)
Core 6 (1 threads)
Core 7 (1 threads)
Chip 1 (16777216KB)
Core 8 (1 threads)
Core 9 (1 threads)
Core 10 (1 threads)
Core 11 (1 threads)
Core 12 (1 threads)
Core 13 (1 threads)
Core 14 (1 threads)
Core 15 (1 threads)

Socket 1 (16777216KB)
Chip 2 (8388608KB)
Core 16 (1 threads)
Core 17 (1 threads)
Core 18 (1 threads)
Core 19 (1 threads)
Core 20 (1 threads)
Core 21 (1 threads)
Core 22 (1 threads)
Core 23 (1 threads)
Chip 3 (8388608KB)
Core 24 (1 threads)
Core 25 (1 threads)
Core 26 (1 threads)
Core 27 (1 threads)
Core 28 (1 threads)
Core 29 (1 threads)
Core 30 (1 threads)
Core 31 (1 threads)

-p — Port

Format <PORT_NUMBER>

Default Torque's default port number.

Description The port number for the specified MOM(s).

Example momctl -p 5455 -h node1 -d 0

Request diagnose information over port
5455 on node1.

Appendix A: Commands Overview

298 A.3 momctl

A.3 momctl 299

-q — Query

Format <ATTRIBUTE>

Default ---

Description Query or set <ATTRIBUTE>, where <ATTRIBUTE> is a property listed by pbsnodes -a (see A.3.4
Query attributes - page 300 for a list of attributes). Can also be used to query or set pbs_mom
options (see A.3.5 Resources - page 301).

Example momctl -q physmem

Print the amount of physmem on localhost.

momctl -h node2 -q loglevel=7

Change the current MOM logging on node2 to level 7.

-r — Reconfigure

Format { <FILE> | LOCAL:<FILE> }

Default ---

Description Reconfigure MOM(s) with remote or local config file, <FILE>. This does not work if $remote_recon-
fig is not set to true when the MOM is started.

Example momctl -r /home/user1/new.config -h node1

Reconfigure MOM on node1 with /home/user1/new.cofig on node1.

-s — Shutdown

Format ---

Default ---

Description Have the MOM shut itself down gracefully (this includes reporting to server so that pbsnodes
marks the node down).

Appendix A: Commands Overview

-s — Shutdown

Example momctl -s

Shut down the pbs_mom process on localhost.

-u — Update

Format ---

Default ---

Description Update the hardware configuration on pbs_server with a layout from the MOM.

Example momctl -u

Update pbs_server hardware configuration.

A.3.4 Query attributes

Attribute Description

arch node hardware architecture

availmem available RAM

loadave 1 minute load average

ncpus number of CPUs available on the system

netload total number of bytes transferred over all network interfaces

nsessions number of sessions active

nusers number of users active

physmem configured RAM

sessions list of active sessions

Appendix A: Commands Overview

300 A.3 momctl

A.3 momctl 301

Attribute Description

totmem configured RAM plus configured swap

A.3.5 Resources
Resource Manager queries can be made with momctl -q options to retrieve and set pbs_mom
options. Any configured static resource may be retrieved with a request of the same name. These
are resource requests not otherwise documented in the PBS ERS.

Request Description

cycle Forces an immediate MOM cycle.

status_update_time Retrieve or set the $status_update_time parameter.

check_poll_time Retrieve or set the $check_poll_time parameter.

configversion Retrieve the config version.

jobstartblocktime Retrieve or set the $jobstartblocktime parameter.

enablemomrestart Retrieve or set the $enablemomrestart parameter.

loglevel Retrieve or set the $loglevel parameter.

down_on_error Retrieve or set the $down_on_error parameter.

diag0 - diag4 Retrieves varied diagnostic information.

rcpcmd Retrieve or set the $rcpcmd parameter.

version Retrieves the pbs_mom version.

A.3.6 Diagnose detail

Appendix A: Commands Overview

Level Description

0 Display the following information:

l Local hostname
l Expected server hostname
l Execution version
l MOM home directory
l MOM config file version (if specified)
l Duration MOM has been executing
l Duration since last request from pbs_server daemon
l Duration since last request to pbs_server daemon
l RM failure messages (if any)
l Log verbosity level
l Local job list

1 All information for level 0 plus the following:

l Interval between updates sent to server
l Number of initialization messages sent to pbs_server
daemon

l Number of initialization messages received from pbs_server
daemon

l Prolog/epilog alarm time
l List of trusted clients

2 All information from level 1 plus the following:

l PID
l Event alarm status

3 All information from level 2 plus the following:

l syslog enabled

Example A-1: MOM diagnostics

[root@node01]# momctl -d1

Host: node01/node01 Version: 6.1.1.1 PID: 30404
Server[0]: torque-server (10.2.15.70:15001)
Last Msg From Server: 1275 seconds (StatusJob)
Last Msg To Server: 42 seconds

HomeDirectory: /var/spool/torque/mom_priv
stdout/stderr spool directory: '/var/spool/torque/spool/' (15518495 blocks available)
MOM active: 260257 seconds
Check Poll Time: 45 seconds
Server Update Interval: 45 seconds
LogLevel: 7 (use SIGUSR1/SIGUSR2 to adjust)
Communication Model: TCP

Appendix A: Commands Overview

302 A.3 momctl

A.3 momctl 303

MemLocked: TRUE (mlock)
TCP Timeout: 300 seconds
Trusted Client List:
10.2.15.3:15003,10.2.15.5:15003,10.2.15.6:15003,10.2.15.70:0,10.2.15.204:15003,127.0.0
.1:0
Copy Command: /bin/scp -rpB
NOTE: no local jobs detected

diagnostics complete

Example A-2: System shutdown

> momctl -s -f /opt/clusterhostfile

shutdown request successful on node001
shutdown request successful on node002
shutdown request successful on node003
shutdown request successful on node004
shutdown request successful on node005
shutdown request successful on node006

Appendix A: Commands Overview

A.4 pbs_mom

Start a pbs batch execution mini-server.

A.4.1 Synopsis
pbs_mom [-a alarm] [-A alias] [-c config] [-C chkdirectory] [-d
directory] [-f] [-F] [-h help] [-H hostname] [-L logfile] [-M
MOMport] [-p|-r] [-P purge] [-R RMPport] [-S serverport] [-v] [-w] [-
x]

A.4.2 Description
The pbs_mom command is located within the TORQUE_HOME directory and starts the operation of
a batch Machine Oriented Mini-server (MOM) on the execution host. To ensure that the pbs_mom
command is not runnable by the general user community, the server will only execute if its real and
effective uid is zero.

The first function of pbs_mom is to place jobs into execution as directed by the server, establish
resource usage limits, monitor the job's usage, and notify the server when the job completes. If they
exist, pbs_mom will execute a prologue script before executing a job and an epilogue script after
executing the job.

The second function of pbs_mom is to respond to resource monitor requests. This was done by a
separate process in previous versions of PBS but has now been combined into one process. It
provides information about the status of running jobs, memory available, etc.

The last function of pbs_mom is to respond to task manager requests. This involves communicating
with running tasks over a TCP socket as well as communicating with other MOMs within a job
(a.k.a. a "sisterhood").

pbs_mom will record a diagnostic message in a log file for any error occurrence. The log files are
maintained in the mom_logs directory below the home directory of the server. If the log file
cannot be opened, the diagnostic message is written to the system console.

A.4.3 Options

Flag Name Description

-a alarm Specifies the alarm timeout in seconds for computing a resource. Every time a resource
request is processed, an alarm is set for the given amount of time. If the request has not
completed before the given time, an alarm signal is generated. The default is 5 seconds.

Appendix A: Commands Overview

304 A.4 pbs_mom

A.4 pbs_mom 305

Flag Name Description

-A alias Specifies this multimom's alias name. The alias name needs to be the same name used
in the mom.hierarchy file. It is only needed when running multiple MOMs on the
same machine. For more information, see Torque Multi-MOM.

-c config Specifies an alternative configuration file, see description below. If this is a relative file
name, it will be relative to TORQUE_HOME/mom_priv, (see the -d option). If the spe-
cified file cannot be opened, pbs_mom will abort. If the -c option is not supplied, pbs_
mom will attempt to open the default configuration file, TORQUE_HOME/mom_priv/-
config. If this file is not present, pbs_mom will log the fact and continue.

-C chkdirectory Specifies the path of the directory used to hold checkpoint files. (Currently this is only
valid on Cray systems.) The default directory is TORQUE_HOME/spool/checkpoint
(see the -d option). The directory specified with the -C option must be owned by root
and accessible (rwx) only by root to protect the security of the checkpoint files.

-d directory Specifies the path of the directory that is the home of the server's working files,
TORQUE_HOME. This option is typically used along with -M when debugging MOM. The
default directory is given by TORQUE_HOME, which is typically /var/spool/torque

-f force_
update

Forces the server to accept an update of the hardware on the node. Should be used the
first time pbs_mom is run after a hardware update on a node.

-F fork Do not fork.

This option is useful when running under systemd (Red Hat 7-based or SUSE
12-based systems).

-h help Displays the help/usage message.

-H hostname Sets the MOM's hostname. This can be useful on multi-homed networks.

-L logfile Specifies an absolute path name for use as the log file. If not specified, MOM will open a
file named for the current date in the TORQUE_HOME/mom_logs directory (see the -d
option).

-M port Specifies the port number on which the mini-server (MOM) will listen for batch
requests.

Appendix A: Commands Overview

Flag Name Description

-p poll Specifies the impact on jobs that were in execution when the mini-server shut down. On
any restart of MOM, the new mini-server will not be the parent of any running jobs,
MOM has lost control of her offspring (not a new situation for a mother). With the -p
option, MOM will allow the jobs to continue to run and monitor them indirectly via
polling. This flag is redundant in that this is the default behavior when starting the
server. The -p option is mutually exclusive with the -r and -q options.

-P purge Specifies the impact on jobs that were in execution when the mini-server shut down.
With the -P option, it is assumed that either the entire system has been restarted or the
MOM has been down so long that it can no longer guarantee that the pid of any run-
ning process is the same as the recorded job process pid of a recovering job. Unlike the -
p option, no attempt is made to try and preserve or recover running jobs. All jobs are ter-
minated and removed from the queue.

-q n/a Specifies the impact on that that were in execution when the mini-server shut down.
With the -q option, MOM will allow the processes belonging to jobs to continue to run,
but will not attempt to monitor them. The -q option is mutually exclusive with the -p
and -r options.

-r n/a Specifies the impact on jobs that were in execution when the mini-server shut down.
With the -r option, MOM will kill any processes belonging to jobs, mark the jobs as
terminated, and notify the batch server that owns the job. The -r option is mutually
exclusive with the -p and -q options.

Normally the mini-server is started from the system boot file without the -p or the -r
option. The mini-server will make no attempt to signal the former session of any job that
may have been running when the mini-server terminated. It is assumed that on reboot,
all processes have been killed. If the -r option is used following a reboot, process IDs
(pids) may be reused and MOM may kill a process that is not a batch session.

-R port Specifies the port number on which the mini-server (MOM) will listen for resource mon-
itor requests, task manager requests and inter-MOM messages. Both a UDP and a TCP
port of this number will be used.

-S server port pbs_server port to connect to.

-v version Displays version information and exits.

-w wait_for_
server

When started with -w, pbs_moms wait until they get their MOM hierarchy file from pbs_
server to send their first update, or until 10 minutes pass. This reduces network traffic
on startup and can bring up clusters faster.

-x n/a Disables the check for privileged port resource monitor connections. This is used mainly
for testing since the privileged port is the only mechanism used to prevent any ordinary
user from connecting.

Appendix A: Commands Overview

306 A.4 pbs_mom

A.4 pbs_mom 307

A.4.4 Configuration file
The configuration file, located at mom_priv/config by default, can be specified on the command
line at program start with the -c flag. The use of this file is to provide several types of run time
information to pbs_mom: static resource names and values, external resources provided by a
program to be run on request via a shell escape, and values to pass to internal set up functions at
initialization (and re-initialization).

See C.1 MOM Parameters - page 423 for a full list of pbs_mom parameters.

Each item type is on a single line with the component parts separated by white space. If the line
starts with a hash mark (pound sign, #), the line is considered to be a comment and is skipped.

Static Resources
For static resource names and values, the configuration file contains a list of resource names/values
pairs, one pair per line and separated by white space. An example of static resource names and
values could be the number of tape drives or printers of different types and could be specified by:

tape3480 4
tape3420 2
tapedat 1
hpm527dn 2
epsonc20590 1

Shell Commands
If the first character of the value is an exclamation mark (!), the entire rest of the line is saved to be
executed through the services of the system(3) standard library routine.

The shell escape provides a means for the resource monitor to yield arbitrary information to the
scheduler. Parameter substitution is done such that the value of any qualifier sent with the query, as
explained below, replaces a token with a percent sign (%) followed by the name of the qualifier.
For example, here is a configuration file line that gives a resource name of "escape":

escape !echo %xxx %yyy

If a query for "escape" is sent with no qualifiers, the command executed would be echo %xxx
%yyy.

If one qualifier is sent, escape[xxx=hi there], the command executed would be echo hi
there %yyy.

If two qualifiers are sent, escape[xxx=hi][yyy=there], the command executed would be
echo hi there.

If a qualifier is sent with no matching token in the command line, escape[zzz=snafu], an error
is reported.

A.4.5 Health check

Appendix A: Commands Overview

The health check script is executed directly by the pbs_mom daemon under the root user id. It must
be accessible from the compute node and may be a script or compiled executable program. It may
make any needed system calls and execute any combination of system utilities but should not
execute resource manager client commands. Also, the pbs_mom daemon blocks until the health
check is completed and does not possess a built-in timeout. Consequently, it is advisable to keep the
launch script execution time short and verify that the script will not block even under failure
conditions.

If the script detects a failure, it should return the ERROR keyword to stdout followed by an error
message. The message (up to 1024 characters) immediately following the ERROR string will be
assigned to the node attribute message of the associated node.

If the script detects a failure when run from "jobstart", then the job will be rejected. You can use
this behavior with an advanced scheduler, such as Moab Workload Manager, to cause the job to be
routed to another node. Torque currently ignores Error messages by default, but you can configure
an advanced scheduler to react appropriately.

If the $down_on_error MOM setting is enabled, the MOM will set itself to state down and report
to pbs_server. Additionally, the $down_on_error server attribute can be enabled, which has
the same effect but moves the decision to pbs_server. It is redundant to have MOM's $down_on_
error and pbs_server's down_on_error features enabled. Also see down_on_error (in Server
Parameters).

See 13.12 Creating the Health Check Script - page 283 for more information.

A.4.6 Files

File Description

TORQUE_HOME/server_name File containing the pbs_server hostname

TORQUE_HOME/mom_priv Directory for configuration files (/var/spool/torque/mom_priv by
default)

TORQUE_HOME/mom_logs Directory for log files recorded by the server

TORQUE_HOME/mom_priv/-
prologue

The administrative script to be run before job execution

TORQUE_HOME/mom_priv/e-
pilogue

The administrative script to be run after job execution

A.4.7 Signal handling
pbs_mom handles the following signals:

Appendix A: Commands Overview

308 A.4 pbs_mom

A.4 pbs_mom 309

Signal Description

SIGHUP Causes pbs_mom to re-read its configuration file, close and reopen the log file, and rein-
itialize resource structures.

SIGALRM The signal is used to limit the time taken by child processes, such as the prologue and epi-
logue. You can set the alarm timeout with the -a option. If a timeout occurs, it is logged in
the pbs_mom log file.

SIGINT and
SIGTERM

Results in pbs_mom exiting without terminating any running jobs. This is the action for the
following signals as well: SIGXCPU, SIGXFSZ, SIGCPULIM, and SIGSHUTDN.

SIGUSR1, SIGUSR2 Causes the MOM to increase and decrease logging levels, respectively.

SIGPIPE, SIGINFO Are ignored.

SIGBUS, SIGFPE,
SIGILL, SIGTRAP,
and SIGSYS

Cause a core dump if the PBSCOREDUMP environmental variable is defined.

All other signals have their default behavior installed.

A.4.8 Exit status
If the pbs_mom command fails to begin operation, the server exits with a value greater than zero.

Related Topics

l pbs_server(8B)

Non-Adaptive Computing topics
l pbs_scheduler_basl(8B)

l pbs_scheduler_tcl(8B)

l PBS External Reference Specification

l PBS Administrators Guide

Appendix A: Commands Overview

A.5 pbs_server

(PBS Server) pbs batch system manager

A.5.1 Synopsis
pbs_server [-a active] [-A acctfile] [-c] [-d config_path] [-f force
overwrite] [-F] [-H hostname] [--ha] [-l location] [-L logfile] [-n
don't send hierarchy] [-p port] [-S scheduler_port] [-t type] [-v] [-
-about] [--version]

A.5.2 Description
The pbs_server command starts the operation of a batch server on the local host. Typically, this
command will be in a local boot file such as /etc/rc.local. If the batch server is already in
execution, pbs_server will exit with an error. To ensure that the pbs_server command is not
runnable by the general user community, the server will only execute if its real and effective uid is
zero.

The server will record a diagnostic message in a log file for any error occurrence. The log files are
maintained in the server_logs directory below the home directory of the server. If the log file cannot
be opened, the diagnostic message is written to the system console.

As of Torque 4.0, the pbs_server is multi-threaded which leads to quicker response to client
commands, is more robust, and allows for higher job throughput.

A.5.3 Options

Option Name Description

-a active Specifies if scheduling is active or not. This sets the scheduling server attribute. If
the option argument is "true" ("True", "t", "T", or "1"), the server is active and the PBS
job scheduler will be called. If the argument is "false" ("False", "f", "F", or "0), the
server is idle, and the scheduler will not be called. Jobs would then need to be run
manually or via an external scheduler. If this option is not specified, the server will
retain the prior value of the scheduling attribute.

-A acctfile Specifies an absolute path name of the file to use as the accounting file. If not specified,
the file name will be the current date in the TORQUE_HOME/server_priv/ac-
counting directory.

Appendix A: Commands Overview

310 A.5 pbs_server

A.5 pbs_server 311

Option Name Description

-c wait_for_
moms

This directs pbs_server to send the MOM hierarchy only to MOMs that request it for
the first 10 minutes. After 10 minutes, it attempts to send the MOM hierarchy to
MOMs that haven't requested it already. This greatly reduces traffic on start up.

-d config_dir-
ectory

Specifies the path of the directory which is home to the server's configuration files,
PBS_HOME. A host may have multiple servers. Each server must have a different con-
figuration directory. The default configuration directory is given by the symbol
TORQUE_HOME which is typically var/spool/torque.

-f force over-
write

Forces an overwrite of the server database. This can be useful to bypass the yes/no
prompt when running something like pbs_server -t create and can ease install-
ation and configuration of Torque via scripts.

-F fork Do not fork.

This option is useful when running under systemd (Red Hat 7-based or SUSE
12-based systems).

--ha high_avail-
ability

Starts server in high availability mode (for details, see Server High Availability).

-H hostname Causes the server to start under a different hostname as obtained from gethostname
(2). Useful for servers with multiple network interfaces to support connections from cli-
ents over an interface that has a hostname assigned that differs from the one that is
returned by gethost name(2).

-l location Specifies where to find the scheduler (for example, Moab) when it does not reside on
the same host as Torque.

pbs_server -l <other_host>:<other_port>

-L logfile Specifies an absolute path name of the file to use as the log file. If not specified, the file
will be the current date in the PBS_HOME/server_logs directory.

-n no send This directs pbs_server to not send the hierarchy to all the MOMs on startup.
Instead, the hierarchy is only sent if a MOM requests it. This flag works only in con-
junction with the local MOM hierarchy feature. See 2.16 Setting Up the MOM Hier-
archy (Optional) - page 68.

-p port Specifies the port number on which the server will listen for batch requests. If mul-
tiple servers are running on a single host, each must have its own unique port num-
ber. This option is for use in testing with multiple batch systems on a single host.

Appendix A: Commands Overview

Option Name Description

-S scheduler_
port

Specifies the port number to which the server should connect when contacting the
scheduler. The argument scheduler_conn is of the same syntax as under the -M option.

-t type If the job is rerunnable or restartable, and -t create is specified, the server will
discard any existing configuration files, queues, and jobs, and initialize configuration
files to the default values. The server is idled.

If -t is not specified, the job states will remain the same.

A.5.4 Files

File Description

TORQUE_HOME/server_
priv

Default directory for configuration files, typically /var/spool/torque/server_
priv

TORQUE_HOME/server_
logs

Directory for log files recorded by the server

A.5.5 Signal handling
On receipt of the following signals, the server performs the defined action:

Action Description

SIGHUP The current server log and accounting log are closed and new log files opened. This allows for the
prior logs to be renamed and new logs started from the time of the signal. Usage example:

mv 20170816 20170816.old && kill -HUP $(pgrep pbs_server)

SIGINT Causes an orderly shutdown of pbs_server.

SIGUSR1,
SIGURS2

Causes server to increase and decrease logging levels, respectively.

SIGTERM Causes an orderly shutdown of pbs_server.

Appendix A: Commands Overview

312 A.5 pbs_server

A.5 pbs_server 313

Action Description

SIGSHUTDN On systems (Unicos) where SIGSHUTDN is defined, it also causes an orderly shutdown of the
server.

SIGPIPE This signal is ignored.

All other signals have their default behavior installed.

A.5.6 Exit status
If the server command fails to begin batch operation, the server exits with a value greater than
zero.

Related Topics

l pbs_mom(8B)

l pbsnodes(8B)

l qmgr(1B)

l qrun(8B)

l qsub(1B)

l qterm(8B)

Non-Adaptive Computing topics
l pbs_connect(3B)

l pbs_sched_basl(8B)

l pbs_sched_tcl(8B)

l qdisable(8B)

l qenable(8B)

l qstart(8B)

l qstop(8B)

l PBS External Reference Specification

Appendix A: Commands Overview

A.6 pbs_track

Starts a specified executable and directs pbs_mom to start monitoring its lifecycle and resource
usage.

A.6.1 Synopsis
pbs_track -j <JOBID> [-b] [-a] <executable> [args]

A.6.2 Description
The pbs_track command tells a pbs_mom daemon to monitor the lifecycle and resource usage
of the process that it launches using exec(). The pbs_mom is told about this new process via the
Task Manager API, using tm_adopt(). The process must also be associated with a job that
already exists on the pbs_mom.

By default, pbs_track will send its PID to Torque via tm_adopt(). It will then perform an
exec(), causing <executable> to run with the supplied arguments. pbs_track will not
return until the launched process has completed because it becomes the launched process.

This command can be considered related to the pbsdsh command which uses the tm_spawn()
API call. The pbsdsh command instructs a pbs_mom to launch and track a new process on behalf
of a job. When it is not desirable or possible for the pbs_mom to spawn processes for a job, pbs_
track can be used to allow an external entity to launch a process and include it as part of a job.

This command improves integration with Torque and SGI's MPT MPI implementation.

A.6.3 Options

Option Description

-a Adopt a process into a running job. The user must either own the process or have permission to adopt
it.

pbs_track -j 3 -a 12345

Adopts process 12345 into job 3.

-b Instead of having pbs_track send its PID to Torque, it will fork() first, send the child PID to
Torque, and then execute from the forked child. This essentially "backgrounds" pbs_track so that it
will return after the new process is launched.

-j
<JOBID>

Job ID the new process should be associated with.

Appendix A: Commands Overview

314 A.6 pbs_track

A.6 pbs_track 315

A.6.4 Operands
The pbs_track command accepts a path to a program/executable (<executable>) and,
optionally, one or more arguments to pass to that program.

A.6.5 Exit status
Because the pbs_track command becomes a new process (if used without -b), its exit status will
match that of the new process. If the -b option is used, the exit status will be zero if no errors
occurred before launching the new process.

If pbs_track fails, whether due to a bad argument or other error, the exit status will be set to a
non-zero value.

Related Topics

l pbsdsh(1B)

Non-Adaptive Computing topics
l tm_spawn(3B)

Appendix A: Commands Overview

A.7 pbsdsh

The pbsdsh command distributes tasks to nodes under pbs.

Some limitations exist in the way that pbsdsh can be used. Please note the following
situations are not currently supported:

l Running multiple instances of pbsdsh concurrently within a single job.

l Using the -o and -s options concurrently; although requesting these options together is
permitted, only the output from the first node is displayed rather than output from every
node in the chain.

A.7.1 Synopsis
pbsdsh [-c copies] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-n node] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-h nodename] [-o] [-v] program [args]

A.7.2 Description
Executes (spawns) a normal Unix program on one or more nodes under control of the Portable
Batch System, PBS. Pbsdsh uses the Task Manager API (see tm_spawn(3)) to distribute the program
on the allocated nodes.

When run without the -c or the -n option, pbsdsh will spawn the program on all nodes allocated
to the PBS job. The spawns take place concurrently – all execute at (about) the same time.

Users will find the PBS_TASKNUM, PBS_NODENUM, and the PBS_VNODENUM environmental
variables useful. They contain the TM task id, the node identifier, and the cpu (virtual node)
identifier.

Note that under particularly high workloads, the pbsdsh command may not function
properly.

A.7.3 Options

Option Name Description

-c copies The program is spawned on the first Copies nodes allocated. This option is mutually
exclusive with -n.

Appendix A: Commands Overview

316 A.7 pbsdsh

A.7 pbsdsh 317

Option Name Description

-h hostname The program is spawned on the node specified.

-n node The program is spawned on one node which is the n-th node allocated. This option is
mutually exclusive with -c.

-o --- Capture stdout of the spawned program. Normally stdout goes to the job's output.

-s --- If this option is given, the program is run in turn on each node, one after the other.

-u --- The program is run once on each node (unique). This ignores the number of allocated
processors on a given node.

-v --- Verbose output about error conditions and task exit status is produced.

A.7.4 Operands
The first operand, program, is the program to execute.

Additional operands are passed as arguments to the program.

A.7.5 Standard error
The pbsdsh command will write a diagnostic message to standard error for each error occurrence.

A.7.6 Exit status
Upon successful processing of all the operands presented to the command, the exit status will be a
value of zero.

If the pbsdsh command fails to process any operand, or fails to contact the MOM daemon on the
localhost the command exits with a value greater than zero.

Related Topics

l qsub(1B)

Non-Adaptive Computing topics
l tm_spawn(3B)

Appendix A: Commands Overview

A.8 pbsnodes

PBS node manipulation.

A.8.1 Synopsis
pbsnodes [-{a|x|xml|-xml}] [-q] [-s server] [node|:property]
pbsnodes -l [-q] [-s server] [state] [nodename|:property ...]
pbsnodes -m <running|standby|suspend|hibernate|shutdown> <host list>
pbsnodes [-{c|d|o|r}] [-q] [-s server] [-n -l] [-N "note"] [-A
"append note"] [node|:property]

A.8.2 Description
The pbsnodes command is used to mark nodes down, free or offline. It can also be used to list
nodes and their state. Node information is obtained by sending a request to the PBS job server. Sets
of nodes can be operated on at once by specifying a node property prefixed by a colon. (For more
information, see Node States.)

Nodes do not exist in a single state, but actually have a set of states. For example, a node can be
simultaneously "busy" and "offline". The "free" state is the absence of all other states and so is
never combined with other states.

In order to execute pbsnodes with other than the -a or -l options, the user must have PBS
Manager or Operator privilege.

A.8.3 NUMA-Awareness
When Torque is configured with NUMA-awareness and configured with --enable-groups, the
number of total and the number of available sockets, numachips (numa nodes), cores, and threads
are returned when the status of nodes are queried by Moab (a call is made to pbsnodes).

See 12.8 pbsnodes with NUMA-Awareness - page 258 for additional information and examples.

A.8.4 Options

Option Description

-a All attributes of a node or all nodes are listed. This is the default if no flag is given.

Appendix A: Commands Overview

318 A.8 pbsnodes

A.8 pbsnodes 319

Option Description

-A Append a note attribute to existing note attributes. The -N note option will overwrite exiting note
attributes. -A will append a new note attribute to the existing note attributes delimited by a ',' and a
space.

-c Clear OFFLINE from listed nodes.

-d Print MOM diagnosis on the listed nodes. Not yet implemented. Use momctl instead.

-l List node names and their state. If no state is specified, only nodes in the DOWN, OFFLINE, or
UNKNOWN states are listed. Specifying a state string acts as an output filter. Valid state strings are
"active", "all", "busy", "down", "free", "job-exclusive", "job-sharing", "offline", "reserve", "state-
unknown", "time-shared", and "up".

l Using all displays all nodes and their attributes.
l Using active displays all nodes which are job-exclusive, job-sharing, or busy.
l Using up displays all nodes in an "up state". Up states include job-exclusive, job-sharing,
reserve, free, busy and time-shared.

l All other strings display the nodes which are currently in the state indicated by the string.

-m Set the hosts in the specified host list to the requested power state. If a compute node does not
support the energy-saving power state you request, the command returns an error and leaves the
state unchanged.

In order for the command to wake a node from a low-power state, Wake-on-LAN (WOL) must be
enabled for the node.

In order for the command to wake a node from a low-power state, Wake-on-LAN must be
enabled for the node and it must support the gWOL packet. For more information, see
Changing Node Power States.

The allowable power states are:

l Running: The node is up and running.
l Standby: CPU is halted but still powered. Moderate power savings but low latency entering
and leaving this state.

l Suspend: Also known as Suspend-to-RAM. Machine state is saved to RAM. RAM is put into self-
refresh mode. Much more significant power savings with longer latency entering and leaving
state.

l Hibernate: Also known as Suspend-to-disk. Machine state is saved to disk and then powered
down. Significant power savings but very long latency entering and leaving state.

l Shutdown: Equivalent to shutdown now command as root.
The host list is a space-delimited list of node host names. See A.8.5 Examples - page 320.

-n Show the "note" attribute for nodes that are DOWN, OFFLINE, or UNKNOWN. This option requires -l.

Appendix A: Commands Overview

Option Description

-N Specify a "note" attribute. This allows an administrator to add an arbitrary annotation to the listed
nodes. To clear a note, use -N "" or -N n.

-o Add the OFFLINE state. This is different from being marked DOWN. OFFLINE prevents new jobs from
running on the specified nodes. This gives the administrator a tool to hold a node out of service
without changing anything else. The OFFLINE state will never be set or cleared automatically by pbs_
server; it is purely for the manager or operator.

-p Purge the node record from pbs_server. Not yet implemented.

-q Suppress all error messages.

-r Reset the listed nodes by clearing OFFLINE and adding DOWN state. pbs_server will ping the node
and, if they communicate correctly, free the node.

-s Specify the PBS server's hostname or IP address.

-x

-xml

--xml

Same as -a, but the output has an XML-like format.

A.8.5 Examples

Example A-3: host list

pbsnodes -m shutdown node01 node02 node03 node04

With this command, pbs_server tells the pbs_mom associated with nodes01-04 to shut down the
node.

The pbsnodes output shows the current power state of nodes. In this example, note that
pbsnodes returns the MAC addresses of the nodes.

pbsnodes
nuc1

state = free
power_state = Running
np = 4
ntype = cluster
status = rectime=1395765676,macaddr=0b:25:22:92:7b:26

,cpuclock=Fixed,varattr=,jobs=,state=free,netload=1242652020,gres=,loadave=0.16,ncpus=
6,physmem=16435852kb,availmem=24709056kb,totmem=33211016kb,idletime=4636,nusers=3,nses
sions=12,sessions=2758 998 1469 2708 2797 2845 2881 2946 4087 4154 4373
6385,uname=Linux bdaw 3.2.0-60-generic #91-Ubuntu SMP Wed Feb 19 03:54:44 UTC 2014
x86_64,opsys=linux

note = This is a node note

Appendix A: Commands Overview

320 A.8 pbsnodes

A.8 pbsnodes 321

mom_service_port = 15002
mom_manager_port = 15003

nuc2
state = free
power_state = Running
np = 4
ntype = cluster
status = rectime=1395765678,macaddr=2c:a8:6b:f4:b9:35

,cpuclock=OnDemand:800MHz,varattr=,jobs=,state=free,netload=12082362,gres=,loadave=0.0
0,ncpus=4,physmem=16300576kb,availmem=17561808kb,totmem=17861144kb,idletime=67538,nuse
rs=2,nsessions=7,sessions=2189 2193 2194 2220 2222 2248 2351,uname=Linux nuc2 2.6.32-
431.el6.x86_64 #1 SMP Fri Nov 22 03:15:09 UTC 2013 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003

Related Topics

l pbs_server(8B)

Non-Adaptive Computing topics
l PBS External Reference Specification

Appendix A: Commands Overview

A.9 qalter

Alter batch job.

A.9.1 Synopsis
qalter [-a date_time][-A account_string][-c interval][-e path_name]
[-h hold_list][-j join_list][-k keep_list][-l resource_list][-L numa_
list]
[-m mail_options][-M mail_list][-n][-N name][-o path_name]
[-p priority][-q][-r y|n][-S path_name_list][-t array_range][-u user_
list]
[-v variable_list][-W additional_attributes][-x exec_host]
job_identifier ...

A.9.2 Description
The qalter command modifies the attributes of the job or jobs specified by job_identifier
on the command line. Only those attributes listed as options on the command will be modified. If
any of the specified attributes cannot be modified for a job for any reason, none of that job's
attributes will be modified.

The qalter command accomplishes the modifications by sending a Modify Job batch request to
the batch server which owns each job.

A.9.3 Options

Option Name Description

-a date_time Replaces the time at which the job becomes eligible for execution. The date_time
argument syntax is:

[[[[CC]YY]MM]DD]hhmm[.SS]

If the month, MM, is not specified, it will default to the current month if the specified
day DD, is in the future. Otherwise, the month will be set to next month. Likewise, if
the day, DD, is not specified, it will default to today if the time hhmm is in the future.
Otherwise, the day will be set to tomorrow.

This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

-A account_
string

Replaces the account string associated with the job. This attribute cannot be altered
once the job has begun execution.

Appendix A: Commands Overview

322 A.9 qalter

A.9 qalter 323

Option Name Description

-c checkpoint_
interval

Replaces the interval at which the job will be checkpointed. If the job executes upon a
host which does not support checkpointing, this option will be ignored.

The interval argument is specified as:

l n – No checkpointing is to be performed.
l s – Checkpointing is to be performed only when the server executing the job
is shutdown.

l c – Checkpointing is to be performed at the default minimum cpu time for the
queue from which the job is executing.

l c=minutes – Checkpointing is performed at intervals of the specified amount of
time in minutes. Minutes are the number of minutes of CPU time used, not
necessarily clock time.

This value must be greater than zero. If the number is less than the default
checkpoint time, the default time will be used.

This attribute can be altered once the job has begun execution, but the new value
does not take effect unless the job is rerun.

-e path_name Replaces the path to be used for the standard error stream of the batch job. The path
argument is of the form:

[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_
name is the path name on that host in the syntax recognized by POSIX 1003.1. The
argument will be interpreted as follows:

l path_name – Where path_name is not an absolute path name, then the
qalter command will expand the path name relative to the current working
directory of the command. The command will supply the name of the host
upon which it is executing for the hostname component.

l hostname:path_name – Where path_name is not an absolute path name, then
the qalter command will not expand the path name. The execution server
will expand it relative to the home directory of the user on the system
specified by hostname.

This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

Appendix A: Commands Overview

Option Name Description

-h hold_list Updates the types of holds on the job. The hold_list argument is a string of one or
more of the following characters:

l u – Add the USER type hold.
l s – Add the SYSTEM type hold if the user has the appropriate level of
privilege. (Typically reserved to the batch administrator.)

l o – Add the OTHER (or OPERATOR) type hold if the user has the appropriate
level of privilege. (Typically reserved to the batch administrator and batch
operator.)

l n – Set to none and clear the hold types which could be applied with the
user's level of privilege. Repetition of characters is permitted, but "n" may not
appear in the same option argument with the other three characters.

This attribute can be altered once the job has begun execution, but the hold will not
take effect unless the job is rerun.

-j join Declares which standard streams of the job will be merged together. The join
argument value may be the characters "oe" orf"eo", or the single character "n".

An argument value of oe directs that the standard output and standard error streams
of the job will be merged, intermixed, and returned as the standard output. An
argument value of eo directs that the standard output and standard error streams of
the job will be merged, intermixed, and returned as the standard error.

A value of n directs that the two streams will be two separate files. This attribute can
be altered once the job has begun execution, but it will not take effect unless the job
is rerun.

If using either the -e or the -o option and the -j eo|oe option, the -j option
takes precedence and all standard error and output messages go to the
chosen output file.

Appendix A: Commands Overview

324 A.9 qalter

A.9 qalter 325

Option Name Description

-k keep Defines which if either of standard output or standard error of the job will be
retained on the execution host. If set for a stream, this option overrides the path
name for that stream.

The argument is either the single letter "e", "o", or "n", or one or more of the letters
"e" and "o" combined in either order.

l n – No streams are to be retained.
l e – The standard error stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name.esequence

where job_name is the name specified for the job, and sequence is the
sequence number component of the job identifier.

l o – The standard output stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name.osequence

where job_name is the name specified for the job, and sequence is the
sequence number component of the job identifier.

l eo – Both the standard output and standard error streams will be retained.
l oe – Both the standard output and standard error streams will be retained.

This attribute cannot be altered once the job has begun execution.

-l resource_
list

Modifies the list of resources that are required by the job. The resource_list argument
is in the following syntax:

resource_name[=[value]][,resource_name[=[value]],...]

For the complete list of resources that can be modified, see Requesting Resources.

If a requested modification to a resource would exceed the resource limits for jobs in
the current queue, the server will reject the request.

If the job is running, only certain resources can be altered. Which resources can be
altered in the run state is system dependent. A user may only lower the limit for those
resources.

-L NUMA_
resource_
list

Available with Torque 6.0 and later. This uses a different syntax than the -l
resource_list option.

Defines the NUMA-aware resource requests for NUMA hardware. This option will
work with non-NUMA hardware.

See 12.7 -L NUMA Resource Request - page 249 for the syntax and valid values.

Appendix A: Commands Overview

Option Name Description

-m mail_
options

Replaces the set of conditions under which the execution server will send a mail
message about the job. The mail_options argument is a string which consists of the
single character "n", or one or more of the characters "a", "b", and "e".

If the character "n" is specified, no mail will be sent.

For the letters "a", "b", and "e":

l a – Mail is sent when the job is aborted by the batch system.
l b – Mail is sent when the job begins execution.
l e – Mail is sent when the job ends.

-M user_list Replaces the list of users to whom mail is sent by the execution server when it sends
mail about the job.

The user_list argument is of the form:

user[@host][,user[@host],...]

-n node-
exclusive

Informs pbs_server that this job should not share nodes. Note that this needs to be
enforced by the scheduler and is not enforced by pbs_server.

-N name Renames the job. The name specified may be up to and including 15 characters in
length. It must consist of printable, nonwhite space characters with the first character
alphabetic.

-o path Replaces the path to be used for the standard output stream of the batch job. The
path argument is of the form:

[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_
name is the path name on that host in the syntax recognized by POSIX. The argument
will be interpreted as follows:

l path_name – Where path_name is not an absolute path name, then the
qalter command will expand the path name relative to the current working
directory of the command. The command will supply the name of the host
upon which it is executing for the hostname component.

l hostname:path_name – Where path_name is not an absolute path name, then
the qalter command will not expand the path name. The execution server
will expand it relative to the home directory of the user on the system
specified by hostname.

This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

Appendix A: Commands Overview

326 A.9 qalter

A.9 qalter 327

Option Name Description

-p priority Replaces the priority of the job. The priority argument must be an integer between -
1024 and +1023 inclusive.

This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

-q quick Use an asynchronous (non-blocking) alter call to the server.

-r [y/n] Declares whether the job is rerunable (see the qrerun command). The option
argument c is a single character. PBS recognizes the following characters: y and n. If
the argument is "y", the job is marked rerunable.

If the argument is "n", the job is marked as not rerunable.

-S path Declares the shell that interprets the job script.

The option argument path_list is in the form:

path[@host][,path[@host],...]

Only one path may be specified for any host named. Only one path may be specified
without the corresponding host name. The path selected will be the one with the host
name that matched the name of the execution host. If no matching host is found, then
the path specified (without a host) will be selected.

If the -S option is not specified, the option argument is the null string, or no entry
from the path_list is selected, the execution will use the login shell of the user on the
execution host.

This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimited list. Examples: -t 1-100 or -t
1,10,50-100

If an array range isn't specified, the command tries to operate on the entire array.
The command acts on the array (or specified range of the array) just as it would on
an individual job.

An optional "slot limit" can be specified to limit the amount of jobs that can run
concurrently in the job array. The default value is unlimited. The slot limit must be
the last thing specified in the array_request and is delimited from the array by a
percent sign (%).

qalter 15.napali[] -t %20

Here, the array 15.napali[] is configured to allow a maximum of 20 concurrently
running jobs.

Slot limits can be applied at job submit time with qsub, or can be set in a global
server parameter policy with max_slot_limit.

Appendix A: Commands Overview

Option Name Description

-u user_list Replaces the user name under which the job is to run on the execution system.

The user_list argument is of the form:

user[@host][,user[@host],...]

Only one user name may be given for per specified host. Only one of the user
specifications may be supplied without the corresponding host specification. That
user name will be used for execution on any host not named in the argument list.

This attribute cannot be altered once the job has begun execution.

-v variable_
list

Expands the list of environment variables that are exported to the job.

variable_list names environment variables from the qsub command
environment that are made available to the job when it executes. The variable_
list is a comma separated list of strings of the form variable or
variable=value. These variables and their values are passed to the job. See A.23.9
Environment variables - page 386 for more information on environment variables.

-W additional_
attributes

The -W option allows for the modification of additional job attributes.

Note if white space occurs anywhere within the option argument string or the equal
sign, "=", occurs within an attribute_value string, then the string must be enclosed
with either single or double quote marks.

To see the attributes PBS currently supports within the -W option, see -W additional_
attributes.

-x exec_host Modify the exec_host field of the job.

-W additional_attributes
The following table lists the attributes PBS currently supports with the -W option.

Appendix A: Commands Overview

328 A.9 qalter

A.9 qalter 329

Attribute Description

depend=dependency_
list

Redefines the dependencies between this and other jobs. The dependency_list is in the
form:

type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job ID according to type. If argument is
a count, it must be greater than 0. If it is a job ID and is not fully specified in the form:
seq_number.server.name, it will be expanded according to the default server rules.
If argument is null (the preceding colon need not be specified), the dependency of the
corresponding type is cleared (unset).

l synccount:count – This job is the first in a set of jobs to be executed at the same
time. Count is the number of additional jobs in the set.

l syncwith:jobid – This job is an additional member of a set of jobs to be executed
at the same time. In the above and following dependency types, jobid is the job
identifier of the first job in the set.

l after:jobid [:jobid...] – This job may be scheduled for execution at any point after
jobs jobid have started execution.

l afterok:jobid [:jobid...] – This job may be scheduled for execution only after jobs
jobid have terminated with no errors. See the csh warning under "Extended
Description".

l afternotok:jobid [:jobid...] – This job may be scheduled for execution only after
jobs jobid have terminated with errors. See the csh warning under "Extended
Description".

l afterany:jobid [:jobid...] – This job may be scheduled for execution after jobs jobid
have terminated, with or without errors.

l on:count – This job may be scheduled for execution after count dependencies on
other jobs have been satisfied. This dependency is used in conjunction with any
of the 'before' dependencies shown below. If job A has on:2, it will wait for two
jobs with 'before' dependencies on job A to be fulfilled before running.

l before:jobid [:jobid...] – When this job has begun execution, then jobs jobid... may
begin.

l beforeok:jobid [:jobid...] – If this job terminates execution without errors, then jobs
jobid... may begin. See the csh warning under "Extended Description".

l beforenotok:jobid [:jobid...] – If this job terminates execution with errors, then jobs
jobid... may begin. See the csh warning under "Extended Description".

l beforeany:jobid [:jobid...] – When this job terminates execution, jobs jobid... may
begin.
If any of the before forms are used, the job referenced by jobid must have been
submitted with a dependency type of on.

If any of the before forms are used, the jobs referenced by jobid must have the
same owner as the job being altered. Otherwise, the dependency will not take
effect.

Error processing of the existence, state, or condition of the job specified to qalter is a
deferred service, i.e. the check is performed after the job is queued. If an error is
detected, the job will be deleted by the server. Mail will be sent to the job submitter
stating the error.

Appendix A: Commands Overview

Attribute Description

group_list=g_list Alters the group name under which the job is to run on the execution system.

The g_list argument is of the form:

group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the group
specifications may be supplied without the corresponding host specification. That group
name will used for execution on any host not named in the argument list.

stagein=file_list

stageout=file_list

Alters which files are staged (copied) in before job start or staged out after the job
completes execution. The file_list is in the form:

local_file@hostname:remote_file[,...]

The name local_file is the name on the system where the job executes. It may be an
absolute path or a path relative to the home directory of the user. The name remote_file
is the destination name on the host specified by hostname. The name may be absolute or
relative to the user's home directory on the destination host.

A.9.4 Operands
The qalter command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

A.9.5 Standard error
Any error condition, either in processing the options or the operands, or any error received in reply
to the batch requests will result in an error message being written to standard error.

A.9.6 Exit status
Upon successful processing of all the operands presented to the qalter command, the exit status
will be a value of zero.

If the qalter command fails to process any operand, the command exits with a value greater than
zero.

A.9.7 Copyright
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003
Edition, Standard for Information Technology -- Portable Operating System Interface (POSIX), The
Open Group Base Specifications Issue 6, Copyright © 2001-2003 by the Institute of Electrical and
Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between this
version and the original IEEE and The Open Group Standard, the original IEEE and The Open Group

Appendix A: Commands Overview

330 A.9 qalter

A.9 qalter 331

Standard is the referee document. The original Standard can be obtained online at
http://www.unix.org/online.html.

Related Topics

l qdel

l qhold

l qrls

l qsub

Appendix A: Commands Overview

http://www.unix.org/online.html

A.10 qchkpt

Checkpoint pbs batch jobs.

A.10.1 Synopsis
qchkpt <JOBID>[<JOBID>] ...

A.10.2 Description
The qchkpt command requests that the PBS MOM generate a checkpoint file for a running job.

This is an extension to POSIX.2d.

The qchkpt command sends a Chkpt Job batch request to the server as described in the general
section.

A.10.3 Options
None.

A.10.4 Operands
The qchkpt command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

A.10.5 Examples
$ # request a checkpoint for job 3233
$ qchkpt 3233

A.10.6 Standard error
The qchkpt command will write a diagnostic message to standard error for each error occurrence.

A.10.7 Exit status
Upon successful processing of all the operands presented to the qchkpt command, the exit status
will be a value of zero.

Appendix A: Commands Overview

332 A.10 qchkpt

A.10 qchkpt 333

If the qchkpt command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l qhold(1B)

l qrls(1B)

l qsub(1B)

l qalter(1B)

Non-Adaptive Computing topics
l pbs_alterjob(3B)

l pbs_holdjob(3B),

l pbs_rlsjob(3B)

l pbs_job_attributes(7B)

l pbs_resources_unicos8(7B)

Appendix A: Commands Overview

A.11 qdel

(delete job)

A.11.1 Synopsis
qdel [{-a <asynchronous delete>|-b <secs>|-m <message>|-p <purge>|-t
<array_range>|-W <delay>}]
<JOBID>[<JOBID>]... | 'all' | 'ALL'

A.11.2 Description
The qdel command deletes jobs in the order in which their job identifiers are presented to the
command. A job is deleted by sending a Delete Job batch request to the batch server that owns the
job. A job that has been deleted is no longer subject to management by batch services.

A batch job may be deleted by its owner, the batch operator, or the batch administrator.

A batch job being deleted by a server will be sent a SIGTERM signal following by a SIGKILL signal.
The time delay between the two signals is an attribute of the execution queue from which the job
was run (set table by the administrator). This delay may be overridden by the -W option.

See the PBS ERS section 3.1.3.3, "Delete Job Request", for more information.

A.11.3 Options

Option Name Description

-a asynchronous
delete

Performs an asynchronous delete. The server responds to the user before con-
tacting the MOM. The option qdel -a all performs qdel all due to restric-
tions from being single-threaded.

-b seconds Defines the maximum number of seconds qdel will block attempting to contact pbs_
server. If pbs_server is down, or for a variety of communication failures, qdel will
continually retry connecting to pbs_server for job submission.

This value overrides the CLIENTRETRY parameter in torque.cfg. This is a non-
portable Torque extension. Portability-minded users can use the PBS_
CLIENTRETRY environmental variable. A negative value is interpreted as infinity.
The default is 0.

Appendix A: Commands Overview

334 A.11 qdel

A.11 qdel 335

Option Name Description

-p purge Forcibly purges the job from the server. This should only be used if a running job
will not exit because its allocated nodes are unreachable. The admin should make
every attempt at resolving the problem on the nodes. If a job's mother superior
recovers after purging the job, any epilogue scripts may still run. This option is only
available to a batch operator or the batch administrator.

-t array_range The array_range argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimited list (examples: -t 1-100 or -t
1,10,50-100). The command acts on the array (or specified range of the array) just
as it would on an individual job.

When deleting a range of jobs, you must include the subscript notation
after the job ID (for example, "qdel -t 1-3 98432[]").

-m message Specify a comment to be included in the email. The argument message specifies the
comment to send. This option is only available to a batch operator or the batch
administrator.

-W delay Specifies the wait delay between the sending of the SIGTERM and SIGKILL signals.
The argument is the length of time in seconds of the delay.

A.11.4 Operands
The qdel command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

or

all

A.11.5 Examples
Delete a job array
$ qdel 1234[]

Delete one job from an array
$ qdel 1234[1]

Delete all jobs, including job arrays
$ qdel all

Delete selected jobs from an array
$ qdel -t 2-4,6,8-10 64[]

Appendix A: Commands Overview

There is not an option that allows you to delete all job arrays without deleting jobs.

A.11.6 Standard error
The qdel command will write a diagnostic messages to standard error for each error occurrence.

A.11.7 Exit status
Upon successful processing of all the operands presented to the qdel command, the exit status will
be a value of zero.

If the qdel command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l qsub(1B)

l qsig(1B)

Non-Adaptive Computing topics
l pbs_deljob(3B)

Appendix A: Commands Overview

336 A.11 qdel

A.12 qgpumode 337

A.12 qgpumode

This command is deprecated, use the nvidia-smi utility instead. See
https://developer.nvidia.com/nvidia-system-management-interface and
http://developer.download.nvidia.com/compute/cuda/6_0/rel/gdk/nvidia-smi.331.38.pdf
for more information.

(GPU mode)

A.12.1 Synopsis
qgpumode -H host -g gpuid -m mode

A.12.2 Description
The qgpumode command specifies the mode for the GPU. This command triggers an immediate
update of the pbs_server.

For additional information about options for configuring GPUs, see NVIDIA GPUs in the Moab
Workload Manager Administrator Guide.

A.12.3 Options

Option Description

-H Specifies the host where the GPU is located.

-g Specifies the ID of the GPU. This varies depending on the version of the Nvidia driver used. For driver
260.x, it is 0, 1, and so on. For driver 270.x, it is the PCI bus address, i.e., 0:5:0.

Appendix A: Commands Overview

https://developer.nvidia.com/nvidia-system-management-interface
http://developer.download.nvidia.com/compute/cuda/6_0/rel/gdk/nvidia-smi.331.38.pdf

Option Description

-m Specifies the new mode for the GPU:

l 0 (Default/Shared): Default/shared compute mode. Multiple threads can use
cudaSetDevice() with this device.

l 1 (Exclusive Thread): Compute-exclusive-thread mode. Only one thread in one process is
able to use cudaSetDevice() with this device.

Support for Exclusive Thread was discontinued with CUDA 8, in favor of
Exclusive Process.

l 2 (Prohibited): Compute-prohibited mode. No threads can use cudaSetDevice() with this
device.

l 3 (Exclusive Process): Compute-exclusive-process mode. Many threads in one process are
able to use cudaSetDevice() with this device.

qgpumode -H node01 -g 0 -m 1

This puts the first GPU on node01 into mode 1 (exclusive)

qgpumode -H node01 -g 0 -m 0

This puts the first GPU on node01 into mode 0 (shared)

Related Topics

l qgpureset

Appendix A: Commands Overview

338 A.12 qgpumode

A.13 qgpureset 339

A.13 qgpureset

(reset GPU)

A.13.1 Synopsis
qgpureset -H host -g gpuid -p -v

A.13.2 Description
The qgpureset command resets the GPU.

A.13.3 Options

Option Description

-g Specifies the ID of the GPU. This varies depending on the version of the Nvidia driver used. For driver
260.x, it is 0, 1, and so on. For driver 270.x, it is the PCI bus address, i.e., 0:5:0.

-H Specifies the host where the GPU is located.

-p Specifies to reset the GPU's permanent ECC error count.

-v Specifies to reset the GPU's volatile ECC error count.

Related Topics

l qgpumode

Appendix A: Commands Overview

A.14 qhold

(hold job)

A.14.1 Synopsis
qhold [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

A.14.2 Description
The qhold command requests that the server place one or more holds on a job. A job that has a
hold is not eligible for execution. There are three supported holds: USER, OTHER (also known as
operator), and SYSTEM.

A user may place a USER hold upon any job the user owns. An "operator", who is a user with
"operator privilege," may place ether an USER or an OTHER hold on any job. The batch
administrator may place any hold on any job.

If no -h option is given, the USER hold will be applied to the jobs described by the job_identifier
operand list.

If the job identified by job_identifier is in the queued, held, or waiting states, then the hold type is
added to the job. The job is then placed into held state if it resides in an execution queue.

If the job is in running state, then the following additional action is taken to interrupt the execution
of the job. If checkpoint/restart is supported by the host system, requesting a hold on a running job
will (1) cause the job to be checkpointed, (2) the resources assigned to the job will be released, and
(3) the job is placed in the held state in the execution queue.

If checkpoint/restart is not supported, qhold will only set the requested hold attribute. This will
have no effect unless the job is rerun with the qrerun command.

A.14.3 Options

Option Name Description

-h hold_
list

The hold_list argument is a string consisting of one or more of the letters "u", "o", or "s" in
any combination. The hold type associated with each letter is:

l u – USER
l o – OTHER
l s – SYSTEM

Appendix A: Commands Overview

340 A.14 qhold

A.14 qhold 341

Option Name Description

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id ranges
can be combined in a comma delimited list (examples: -t 1-100 or -t 1,10,50-100) .

If an array range isn't specified, the command tries to operate on the entire array. The
command acts on the array (or specified range of the array) just as it would on an
individual job.

A.14.4 Operands
The qhold command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

A.14.5 Example
> qhold -h u 3233 place user hold on job 3233

A.14.6 Standard error
The qhold command will write a diagnostic message to standard error for each error occurrence.

A.14.7 Exit status
Upon successful processing of all the operands presented to the qhold command, the exit status
will be a value of zero.

If the qhold command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l qrls(1B)

l qalter(1B)

l qsub(1B)

Non-Adaptive Computing topics
l pbs_alterjob(3B)

l pbs_holdjob(3B)

Appendix A: Commands Overview

l pbs_rlsjob(3B)

l pbs_job_attributes(7B)

l pbs_resources_unicos8(7B)

Appendix A: Commands Overview

342 A.14 qhold

A.15 qmgr 343

A.15 qmgr

(PBS Queue Manager) PBS batch system manager.

A.15.1 Synopsis
qmgr [-a] [-c command] [-e] [-n] [-z] [server...]

A.15.2 Description
The qmgr command provides an administrator interface to query and configure batch system
parameters (see Server Parameters).

The command reads directives from standard input. The syntax of each directive is checked and the
appropriate request is sent to the batch server or servers.

The list or print subcommands of qmgr can be executed by general users. Creating or deleting a
queue requires PBS Manager privilege. Setting or unsetting server or queue attributes requires PBS
Operator or Manager privilege.

By default, the user root is the only PBS Operator and Manager. To allow other users to be
privileged, the server attributes operators and managers will need to be set (i.e., as root, issue
'qmgr -c 'set server managers += <USER1>@<HOST>'). See Torque/PBS
Integration Guide - RM Access Control in the Moab Workload Manager Administrator Guide.

If qmgr is invoked without the -c option and standard output is connected to a terminal, qmgr will
write a prompt to standard output and read a directive from standard input.

Commands can be abbreviated to their minimum unambiguous form. A command is terminated by a
new line character or a semicolon, ";", character. Multiple commands may be entered on a single
line. A command may extend across lines by escaping the new line character with a back-slash "\".

Comments begin with the "#" character and continue to end of the line. Comments and blank lines
are ignored by qmgr.

A.15.3 Options

Option Name Description

-a --- Abort qmgr on any syntax errors or any requests rejected by a server.

-c command Execute a single command and exit qmgr.

Appendix A: Commands Overview

Option Name Description

-e --- Echo all commands to standard output.

-n --- No commands are executed, syntax checking only is performed.

-z --- No errors are written to standard error.

A.15.4 Operands
The server operands identify the name of the batch server to which the administrator requests are
sent. Each server conforms to the following syntax:

host_name[:port]

where host_name is the network name of the host on which the server is running and port is
the port number to which to connect. If port is not specified, the default port number is used.

If server is not specified, the administrator requests are sent to the local server.

A.15.5 Standard input
The qmgr command reads standard input for directives until end of file is reached, or the exit or
quit directive is read.

A.15.6 Standard output
If Standard Output is connected to a terminal, a command prompt will be written to standard
output when qmgr is ready to read a directive.

If the -e option is specified, qmgr will echo the directives read from standard input to standard
output.

A.15.7 Standard error
If the -z option is not specified, the qmgr command will write a diagnostic message to standard
error for each error occurrence.

A.15.8 Directive syntax
A qmgr directive is one of the following forms:

command server [names] [attr OP value[,attr OP value,...]]
command queue [names] [attr OP value[,attr OP value,...]]
command node [names] [attr OP value[,attr OP value,...]]

Appendix A: Commands Overview

344 A.15 qmgr

A.15 qmgr 345

where command is the command to perform on an object.

Commands are:

Command Description

active Sets the active objects. If the active objects are specified, and the name is not given in a qmgr cmd
the active object names will be used.

create Is to create a new object, applies to queues and nodes.

delete Is to destroy an existing object, applies to queues and nodes.

set Is to define or alter attribute values of the object.

unset Is to clear the value of attributes of the object.

This form does not accept an OP and value, only the attribute name.

list Is to list the current attributes and associated values of the object.

print Is to print all the queue and server attributes in a format that will be usable as input to the qmgr
command.

names Is a list of one or more names of specific objects The name list is in the form:

[name][@server][,queue_name[@server]...]

with no intervening white space. The name of an object is declared when the object is first
created. If the name is @server, then all the objects of specified type at the server will be
affected.

attr Specifies the name of an attribute of the object which is to be set or modified. If the attribute is
one which consist of a set of resources, then the attribute is specified in the form:

attribute_name.resource_name

OP Operation to be performed with the attribute and its value:

l "=" – set the value of the attribute. If the attribute has an existing value, the current value
is replaced with the new value.

l "+=" – increase the current value of the attribute by the amount in the new value.
l "-=" – decrease the current value of the attribute by the amount in the new value.

value The value to assign to an attribute. If the value includes white space, commas or other special
characters, such as the "#" character, the value string must be enclosed in quote marks (").

The following are examples of qmgr directives:

Appendix A: Commands Overview

create queue fast priority=10,queue_type=e,enabled = true,max_running=0
set queue fast max_running +=2
create queue little
set queue little resources_max.mem=8mw,resources_max.cput=10
unset queue fast max_running
set node state = "down,offline"
active server s1,s2,s3
list queue @server1
set queue max_running = 10 - uses active queues

A.15.9 Exit status
Upon successful processing of all the operands presented to the qmgr command, the exit status will
be a value of zero.

If the qmgr command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l pbs_server(8B)

Non-Adaptive Computing topics
l pbs_queue_attributes (7B)

l pbs_server_attributes (7B)

l qstart (8B), qstop (8B)

l qenable (8B), qdisable (8)

l PBS External Reference Specification

Appendix A: Commands Overview

346 A.15 qmgr

A.16 qmove 347

A.16 qmove

Move PBS batch jobs.

A.16.1 Synopsis
qmove destination jobId [jobId ...]

A.16.2 Description
To move a job is to remove the job from the queue in which it resides and instantiate the job in
another queue. The qmove command issues a Move Job batch request to the batch server that
currently owns each job specified by jobId.

A job in the Running, Transiting, or Exiting state cannot be moved.

A.16.3 Operands
The first operand, the new destination, is one of the following:

queue

@server

queue@server

If the destination operand describes only a queue, then qmove will move jobs into the queue
of the specified name at the job's current server. If the destination operand describes only a
batch server, then qmove will move jobs into the default queue at that batch server. If the
destination operand describes both a queue and a batch server, then qmove will move the jobs
into the specified queue at the specified server.

All following operands are jobIds which specify the jobs to be moved to the new destination.
The qmove command accepts one or more jobId operands of the form: sequenceNumber
[.serverName][@server]

A.16.4 Standard error
The qmove command will write a diagnostic message to standard error for each error occurrence.

A.16.5 Exit status
Upon successful processing of all the operands presented to the qmove command, the exit status
will be a value of zero.

Appendix A: Commands Overview

If the qmove command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l qsub

Non-Adaptive Computing topics
l pbs_movejob(3B)

Appendix A: Commands Overview

348 A.16 qmove

A.17 qorder 349

A.17 qorder

Exchange order of two PBS batch jobs in any queue.

A.17.1 Synopsis
qorder job1_identifier job2_identifier

A.17.2 Description
To order two jobs is to exchange the jobs' positions in the queue(s) in which the jobs reside. The
two jobs must be located on the same server. No attribute of the job, such as priority, is changed.
The impact of changing the order in the queue(s) is dependent on local job schedule policy. For
information about your local job schedule policy, contact your systems administrator.

A job in the running state cannot be reordered.

A.17.3 Operands
Both operands are job_identifiers that specify the jobs to be exchanged. The qorder
command accepts two job_identifier operands of the following form:
sequence_number[.server_name][@server]

The two jobs must be in the same location, so the server specification for the two jobs must agree.

A.17.4 Standard error
The qorder command will write diagnostic messages to standard error for each error occurrence.

A.17.5 Exit status
Upon successful processing of all the operands presented to the qorder command, the exit status
will be a value of zero.

If the qorder command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l qsub

l qmove

Appendix A: Commands Overview

Non-Adaptive Computing topics
l pbs_orderjob(3B)

l pbs_movejob(3B)

Appendix A: Commands Overview

350 A.17 qorder

A.18 qrerun 351

A.18 qrerun

(Rerun a batch job)

A.18.1 Synopsis
qrerun [{-f}] <JOBID>[<JOBID>] ...

A.18.2 Description
The qrerun command directs that the specified jobs are to be rerun if possible. To rerun a job is
to terminate the session leader of the job and return the job to the queued state in the execution
queue in which the job currently resides.

If a job is marked as not rerunable then the rerun request will fail for that job. If the mini-server
running the job is down, or it rejects the request, the Rerun Job batch request will return a failure
unless -f is used.

Using -f violates IEEE Batch Processing Services Standard and should be handled with great care. It
should only be used under exceptional circumstances. The best practice is to fix the problem mini-
server host and let qrerun run normally. The nodes may need manual cleaning (see the -r option
on the qsub and qalter commands).

A.18.3 Options

Option Description

-f Force a rerun on a job

qrerun -f 15406

The qrerun all command is meant to be run if all of the compute nodes go down. If the
machines have actually crashed, then we know that all of the jobs need to be restarted. The
behavior if you don't run this would depend on how you bring up the pbs_mom daemons, but
by default would be to cancel all of the jobs.

Running the command makes it so that all jobs are requeued without attempting to contact
the moms on which they should be running.

A.18.4 Operands

Appendix A: Commands Overview

The qrerun command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

A.18.5 Standard error
The qrerun command will write a diagnostic message to standard error for each error occurrence.

A.18.6 Exit status
Upon successful processing of all the operands presented to the qrerun command, the exit status
will be a value of zero.

If the qrerun command fails to process any operand, the command exits with a value greater than
zero.

A.18.7 Examples
> qrerun 3233

(Job 3233 will be re-run.)

Related Topics

l qsub(1B)

l qalter(1B)

Non-Adaptive Computing topics
l pbs_alterjob(3B)

l pbs_rerunjob(3B)

Appendix A: Commands Overview

352 A.18 qrerun

A.19 qrls 353

A.19 qrls

(Release hold on PBS batch jobs)

A.19.1 Synopsis
qrls [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

A.19.2 Description
The qrls command removes or releases holds which exist on batch jobs.

A job may have one or more types of holds which make the job ineligible for execution. The types
of holds are USER, OTHER, and SYSTEM. The different types of holds may require that the user
issuing the qrls command have special privileges. A user may always remove a USER hold on their
own jobs, but only privileged users can remove OTHER or SYSTEM holds. An attempt to release a
hold for which the user does not have the correct privilege is an error and no holds will be released
for that job.

If no -h option is specified, the USER hold will be released.

If the job has no execution_time pending, the job will change to the queued state. If an execution_
time is still pending, the job will change to the waiting state.

If you run qrls on an array subjob, pbs_server will correct the slot limit holds for the array to
which it belongs.

A.19.3 Options

Command Name Description

-h hold_
list

Defines the types of hold to be released from the jobs. The hold_list option argument
is a string consisting of one or more of the letters "u", "o", and "s" in any combination.
The hold type associated with each letter is:

l u – USER
l o – OTHER
l s – SYSTEM

Appendix A: Commands Overview

Command Name Description

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimited list. Examples: -t 1-100 or -t 1,10,50-
100

If an array range isn't specified, the command tries to operate on the entire array.
The command acts on the array (or specified range of the array) just as it would on
an individual job.

A.19.4 Operands
The qrls command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

A.19.5 Examples
> qrls -h u 3233 release user hold on job 3233

A.19.6 Standard error
The qrls command will write a diagnostic message to standard error for each error occurrence.

A.19.7 Exit status
Upon successful processing of all the operands presented to the qrls command, the exit status will
be a value of zero.

If the qrls command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l qsub(1B)

l qalter(1B)

l qhold(1B)

Non-Adaptive Computing topics
l pbs_alterjob(3B)

l pbs_holdjob(3B)

Appendix A: Commands Overview

354 A.19 qrls

A.19 qrls 355

l pbs_rlsjob(3B)

Appendix A: Commands Overview

A.20 qrun

(Run a batch job)

A.20.1 Synopsis
qrun [{-H <HOST>|-a}] <JOBID>[<JOBID>] ...

A.20.2 Overview
The qrun command runs a job.

A.20.3 Format

-a

Format ---

Default ---

Description Run the job(s) asynchronously.

Example qrun -a 15406

-H

Format <STRING> Host Identifier

Default ---

Description Specifies the host within the cluster on which the job(s) are to be run. The host argument is the
name of a host that is a member of the cluster of hosts managed by the server. If the option is not
specified, the server will select the "worst possible" host on which to execute the job.

Example qrun -H hostname 15406

A.20.4 Command details

Appendix A: Commands Overview

356 A.20 qrun

A.20 qrun 357

The qrun command is used to force a batch server to initiate the execution of a batch job. The job
is run regardless of scheduling position or resource requirements.

In order to execute qrun, the user must have PBS Operation or Manager privileges.

A.20.5 Examples
> qrun 3233

(Run job 3233.)

Appendix A: Commands Overview

A.21 qsig

(Signal a job)

A.21.1 Synopsis
qsig [{-s <SIGNAL>}] <JOBID>[<JOBID>] ...
[-a]

A.21.2 Description
The qsig command requests that a signal be sent to executing batch jobs. The signal is sent to the
session leader of the job. If the -s option is not specified, SIGTERM is sent. The request to signal a
batch job will be rejected if:

l The user is not authorized to signal the job.

l The job is not in the running state.

l The requested signal is not supported by the system upon which the job is executing.

The qsig command sends a Signal Job batch request to the server which owns the job.

A.21.3 Options

Option Name Description

-a asynchronously Makes the command run asynchronously.

Appendix A: Commands Overview

358 A.21 qsig

A.21 qsig 359

Option Name Description

-s signal Declares which signal is sent to the job.

The signal argument is either a signal name, e.g. SIGKILL, the signal name without
the SIG prefix, e.g. KILL, or an unsigned signal number, e.g. 9. The signal name
SIGNULL is allowed; the server will send the signal 0 to the job which will have no
effect on the job, but will cause an obituary to be sent if the job is no longer
executing. Not all signal names will be recognized by qsig. If it doesn't recognize
the signal name, try issuing the signal number instead.

Two special signal names, "suspend" and "resume", are used to suspend and
resume jobs. Cray systems use the Cray-specific suspend()/resume() calls.

On non-Cray system, suspend causes a SIGTSTP to be sent to all processes in the
job's top task, wait 5 seconds, and then send a SIGSTOP to all processes in all tasks
on all nodes in the job. This differs from Torque 2.0.0 which did not have the
ability to propagate signals to sister nodes. Resume sends a SIGCONT to all
processes in all tasks on all nodes.

When suspended, a job continues to occupy system resources but is not executing
and is not charged for walltime. The job will be listed in the "S" state. Manager or
operator privilege is required to suspend or resume a job.

Interactive jobs may not resume properly because the top-level shell will
background the suspended child process.

A.21.4 Operands
The qsig command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

A.21.5 Examples
> qsig -s SIGKILL 3233 send a SIGKILL to job 3233
> qsig -s KILL 3233 send a SIGKILL to job 3233
> qsig -s 9 3233 send a SIGKILL to job 3233

A.21.6 Standard error
The qsig command will write a diagnostic message to standard error for each error occurrence.

A.21.7 Exit status
Upon successful processing of all the operands presented to the qsig command, the exit status will
be a value of zero.

Appendix A: Commands Overview

If the qsig command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l qsub(1B)

Non-Adaptive Computing topics
l pbs_sigjob(3B)

l pbs_resources_*(7B) where * is system type

l PBS ERS

Appendix A: Commands Overview

360 A.21 qsig

A.22 qstat 361

A.22 qstat

Show status of PBS batch jobs.

A.22.1 Synopsis
qstat [-c] [-C] [-f [-1]] [-W site_specific] [job_identifier... |
destination...] [time]
qstat [-a|-i|-r|-e|--xml] [-c] [-n [-1]] [-s] [-G|-M] [-R] [-u user_
list]
[job_identifier... | destination...]
qstat -Q [-f [-1]] [-c] [-W site_specific] [destination...]
qstat -q [-c] [-G|-M] [destination...]
qstat -B [-c] [-f [-1]] [-W site_specific] [server_name...]
qstat -t [-c] [-C]

Description

The qstat command is used to request the status of jobs, queues, or a batch server. The requested
status is written to standard out.

When requesting job status, synopsis format 1 or 2, qstat will output information about each job_
identifier or all jobs at each destination. Jobs for which the user does not have status privilege are
not displayed.

When requesting queue or server status, synopsis format 3 through 5, qstat will output
information about each destination.

You can configure Torque with CFLAGS='DTXT' to change the alignment of text in qstat
output. This noticeably improves qstat -r output.

A.22.2 Options

Option Description

-a All jobs are displayed in the alternative format (see Standard output). If the operand is a
destination id, all jobs at that destination are displayed. If the operand is a job ID, inform-
ation about that job is displayed.

-B Specifies that the request is for batch server status and that the operands are the names
of servers.

Appendix A: Commands Overview

Option Description

-c Completed jobs are not displayed in the output. If desired, you can set the PBS_QSTAT_
NO_COMPLETE environment variable to cause all qstat requests to not show completed
jobs by default.

-C Specifies that Torque will provide only a condensed output (job name, resources used,
queue, state, and job owner) for jobs that have not changed recently. See job_full_report_
time - page 404. Jobs that have recently changed will continue to send a full output.

-e If the operand is a job ID or not specified, only jobs in executable queues are displayed.
Setting the PBS_QSTAT_EXECONLY environment variable will also enable this option.

-f Specifies that a full status display be written to standard out. The [time] value is the
amount of walltime, in seconds, remaining for the job. [time] does not account for wall-
time multipliers.

-G Show size information in giga-bytes.

-i Job status is displayed in the alternative format. For a destination id operand, statuses
for jobs at that destination which are not running are displayed. This includes jobs which
are queued, held or waiting. If an operand is a job ID, status for that job is displayed
regardless of its state.

-1 In combination with -n, the -1 option puts all of the nodes on the same line as the job ID.
In combination with -f, attributes are not folded to fit in a terminal window. This is inten-
ded to ease the parsing of the qstat output.

-M Show size information, disk or memory in mega-words. A word is considered to be 8
bytes.

-n In addition to the basic information, nodes allocated to a job are listed.

-q Specifies that the request is for queue status which should be shown in the alternative
format.

-Q Specifies that the request is for queue status and that the operands are destination iden-
tifiers.

-r If an operand is a job ID, status for that job is displayed. For a destination id operand,
statuses for jobs at that destination which are running are displayed; this includes jobs
which are suspended. Note that if there is no walltime given for a job, then elapsed time
does not display.

Appendix A: Commands Overview

362 A.22 qstat

A.22 qstat 363

Option Description

-R In addition to other information, disk reservation information is shown. Not applicable to
all systems.

-s In addition to the basic information, any comment provided by the batch administrator
or scheduler is shown.

-t Normal qstat output displays a summary of the array instead of the entire array, job
for job. qstat -t expands the output to display the entire array. Note that arrays are
now named with brackets following the array name; for example:

dbeer@napali:~/dev/torque/array_changes$ echo sleep 20 | qsub -t
0-299 189[].napali

Individual jobs in the array are now also noted using square brackets instead of dashes;
for example, here is part of the output of qstat -t for the preceding array:

189[299].napali STDIN[299] dbeer 0 Q batch

-u Job status is displayed in the alternative format. If an operand is a job ID, status for that
job is displayed. For a destination id operand, statuses for jobs at that destination which
are owned by the user(s) listed in user_list are displayed. The syntax of the user_list is:

user_name[@host][,user_name[@host],...]

Host names may be wild carded on the left end, e.g. "*.nasa.gov". User_name without a
"@host" is equivalent to "user_name@*", that is at any host.

--xml Same as -a, but the output has an XML-like format.

A.22.3 Operands
If neither the -Q nor the -B option is given, the operands on the qstat command must be either job
identifiers or destinations identifiers.

If the operand is a job identifier, it must be in the following form:

sequence_number[.server_name][@server]

where sequence_number.server_name is the job identifier assigned at submittal time (see
qsub). If the .server_name is omitted, the name of the default server will be used. If @server is
supplied, the request will be for the job identifier currently at that Server.

If the operand is a destination identifier, it is one of the following three forms:

l queue

l @server

l queue@server

Appendix A: Commands Overview

If queue is specified, the request is for status of all jobs in that queue at the default server. If the
@server form is given, the request is for status of all jobs at that server. If a full destination
identifier, queue@server, is given, the request is for status of all jobs in the named queue at the
named server.

If the -Q option is given, the operands are destination identifiers as specified above. If queue is
specified, the status of that queue at the default server will be given. If queue@server is specified,
the status of the named queue at the named server will be given. If @server is specified, the status
of all queues at the named server will be given. If no destination is specified, the status of all queues
at the default server will be given.

If the -B option is given, the operand is the name of a server.

A.22.4 Standard output

Displaying job status
If job status is being displayed in the default format and the -f option is not specified, the following
items are displayed on a single line, in the specified order, separated by white space:

l the job identifier assigned by PBS.

l the job name given by the submitter.

l the job owner.

l the CPU time used.

l the job state:

Item Description

C Job is completed after having run.

E Job is exiting after having run.

H Job is held.

Q Job is queued, eligible to run or routed.

R Job is running.

T Job is being moved to new location.

W Job is waiting for its execution time (-a option) to be reached.

S (Unicos only) Job is suspended.

Appendix A: Commands Overview

364 A.22 qstat

A.22 qstat 365

l the queue in which the job resides.

If job status is being displayed and the -f option is specified, the output will depend on whether
qstat was compiled to use a Tcl interpreter. See Configuration for details. If Tcl is not being used,
full display for each job consists of the header line:

Job Id: job identifier

Followed by one line per job attribute of the form:

attribute_name = value

If any of the options -a, -i, -r, -u, -n, -s, -G, or -M are provided, the alternative display format for jobs
is used. The following items are displayed on a single line, in the specified order, separated by white
space:

l the job identifier assigned by PBS

l the job owner

l the queue in which the job currently resides

l the job name given by the submitter

l the session id (if the job is running)

l the number of nodes requested by the job (not the number of nodes in use)

l the number of CPUs or tasks requested by the job

l the amount of memory requested by the job

l either the CPU time, if specified, or wall time requested by the job, (hh:mm)

l the job's current state

l the amount of CPU time or wall time used by the job (hh:mm)

When any of the above options or the -r option is used to request an alternative display format, a
column with the requested memory for the job is displayed. If more than one type of memory is
requested for the job, either through server or queue parameters or command line, only one value
can be displayed. The value displayed depends on the order the memory types are evaluated with
the last type evaluated being the value displayed. The order of evaluation is dmem, mem, pmem,
pvmem, vmem.

If the -R option is provided, the line contains:

l the job identifier assigned by PBS

l the job owner

l the queue in which the job currently resides

l the number of nodes requested by the job

l the number of CPUs or tasks requested by the job

l the amount of memory requested by the job

Appendix A: Commands Overview

l either the CPU time or wall time requested by the job

l the job's current state

l the amount of CPU time or wall time used by the job

l the amount of SRFS space requested on the big file system

l the amount of SRFS space requested on the fast file system

l the amount of space requested on the parallel I/O file system

The last three fields may not contain useful information at all sites or on all systems

Displaying queue status
If queue status is being displayed and the -f option was not specified, the following items are
displayed on a single line, in the specified order, separated by white space:

l the queue name

l the maximum number of jobs that may be run in the queue concurrently

l the total number of jobs in the queue

l the enable or disabled status of the queue

l the started or stopped status of the queue

l for each job state, the name of the state and the number of jobs in the queue in that state

l the type of queue, execution or routing

If queue status is being displayed and the -f option is specified, the output will depend on whether
qstat was compiled to use a Tcl interpreter. See the configuration section for details. If Tcl is not
being used, the full display for each queue consists of the header line:

Queue: queue_name

Followed by one line per queue attribute of the form:

attribute_name = value

If the -q option is specified, queue information is displayed in the alternative format: The following
information is displayed on a single line:

l the queue name

l the maximum amount of memory a job in the queue may request

l the maximum amount of CPU time a job in the queue may request

l the maximum amount of wall time a job in the queue may request

l the maximum amount of nodes a job in the queue may request

l the number of jobs in the queue in the running state

l the number of jobs in the queue in the queued state

Appendix A: Commands Overview

366 A.22 qstat

A.22 qstat 367

l the maximum number (limit) of jobs that may be run in the queue concurrently

l the state of the queue given by a pair of letters:
o either the letter E if the queue is Enabled or D if Disabled

and

o either the letter R if the queue is Running (started) or S if Stopped.

Displaying server status
If batch server status is being displayed and the -f option is not specified, the following items are
displayed on a single line, in the specified order, separated by white space:

l the server name

l the maximum number of jobs that the server may run concurrently

l the total number of jobs currently managed by the server

l the status of the server

l for each job state, the name of the state and the number of jobs in the server in that state

If server status is being displayed and the -f option is specified, the output will depend on whether
qstat was compiled to use a Tcl interpreter. See the configuration section for details. If Tcl is not
being used, the full display for the server consists of the header line:

Server: server name

Followed by one line per server attribute of the form:

attribute_name = value

A.22.5 Standard error
The qstat command will write a diagnostic message to standard error for each error occurrence.

A.22.6 Configuration
If qstat is compiled with an option to include a Tcl interpreter, using the -f flag to get a full
display causes a check to be made for a script file to use to output the requested information. The
first location checked is $HOME/.qstatrc. If this does not exist, the next location checked is
administrator configured. If one of these is found, a Tcl interpreter is started and the script file is
passed to it along with three global variables. The command line arguments are split into two
variable named flags and operands . The status information is passed in a variable named objects .
All of these variables are Tcl lists. The flags list contains the name of the command (usually
"qstat") as its first element. Any other elements are command line option flags with any options
they use, presented in the order given on the command line. They are broken up individually so
that if two flags are given together on the command line, they are separated in the list. For example,
if the user typed:

Appendix A: Commands Overview

qstat -QfWbigdisplay

the flags list would contain

qstat -Q -f -W bigdisplay

The operands list contains all other command line arguments following the flags. There will always
be at least one element in operands because if no operands are typed by the user, the default
destination or server name is used. The objects list contains all the information retrieved from the
server(s) so the Tcl interpreter can run once to format the entire output. This list has the same
number of elements as the operands list. Each element is another list with two elements.

The first element is a string giving the type of objects to be found in the second. The string can take
the values "server", "queue", "job" or "error".

The second element will be a list in which each element is a single batch status object of the type
given by the string discussed above. In the case of "error", the list will be empty. Each object is
again a list. The first element is the name of the object. The second is a list of attributes.

The third element will be the object text.

All three of these object elements correspond with fields in the structure batch_status which is
described in detail for each type of object by the man pages for pbs_statjob(3), pbs_statque(3), and
pbs_statserver(3). Each attribute in the second element list whose elements correspond with the
attrl structure. Each will be a list with two elements. The first will be the attribute name and the
second will be the attribute value.

A.22.7 Exit status
Upon successful processing of all the operands presented to the qstat command, the exit status
will be a value of zero.

If the qstat command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

l qalter(1B)

l qsub(1B)

Non-Adaptive Computing topics
l pbs_alterjob(3B)

l pbs_statjob(3B)

l pbs_statque(3B)

l pbs_statserver(3B)

l pbs_submit(3B)

Appendix A: Commands Overview

368 A.22 qstat

A.22 qstat 369

l pbs_job_attributes(7B)

l pbs_queue_attributes(7B)

l pbs_server_attributes(7B)

l qmgr query_other_jobs parameter (allow non-admin users to see other users' jobs

l pbs_resources_*(7B) where * is system type

l PBS ERS

Appendix A: Commands Overview

A.23 qsub

Submit PBS job.

A.23.1 Synopsis
qsub [-a date_time][-A account_string][-b secs][-c checkpoint_
options][-C directive_prefix][-d path][-D path][-e path][-f][-F][-h]
[-i idle_slot_limit][-I][-j join][-k keep][-K kill_delay][-l
resource_list][-L NUMA_resource_list][-m mail_options][-M user_list]
[-n node_exclusive][-N name][-o path][-p priority][-P user[:group]][-
q destination] [-r][-S path_to_shell(s)][-t array_request] [-T
script] [-u userlist] [-v variable_list][-V][-w path][-W additional_
attributes][-x][-X][-z][script]

A.23.2 Description
To create a job is to submit an executable script to a batch server. The batch server will be the
default server unless the -q option is specified. The command parses a script prior to the actual
script execution; it does not execute a script itself. All script-writing rules remain in effect, including
the "#!" at the head of the file (see discussion of PBS_DEFAULT under Environment variables).
Typically, the script is a shell script that will be executed by a command shell such as sh or csh.

Options on the qsub command allow the specification of attributes that affect the behavior of the
job.

The qsub command will pass certain environment variables in the Variable_List attribute of
the job. These variables will be available to the job. The value for the following variables will be
taken from the environment of the qsub command: HOME, LANG, LOGNAME, PATH, MAIL, SHELL,
and TZ. These values will be assigned to a new name, which is the current name prefixed with the
string "PBS_O_". For example, the job will have access to an environment variable named PBS_O_
HOME that has the value of the variable HOME in the qsub command environment.

In addition to the above, the following environment variables will be available to the batch job:

Variable Description

PBS_ARRAYID Each member of a job array is assigned a unique identifier (see -t option).

PBS_
ENVIRONMENT

Set to PBS_BATCH to indicate the job is a batch job, or to PBS_INTERACTIVE to indicate the job
is a PBS interactive job (see qsub option).

PBS_GPUFILE The name of the file containing the list of assigned GPUs. For more information about how to
set up Torque with GPUS, see Accelerators in the Moab Workload Manager Administrator Guide.

Appendix A: Commands Overview

370 A.23 qsub

A.23 qsub 371

Variable Description

PBS_JOBID The job identifier assigned to the job by the batch system. It can be used in the stdout and
stderr paths. Torque replaces $PBS_JOBID with the job's jobid (for example, #PBS -o
/tmp/$PBS_JOBID.output).

PBS_JOBNAME The job name supplied by the user.

PBS_NODEFILE The name of the file contains the list of nodes assigned to the job (for parallel and cluster sys-
tems).

PBS_O_HOST The name of the host upon which the qsub command is running.

PBS_O_QUEUE The name of the original queue to which the job was submitted.

PBS_O_
WORKDIR

The absolute path of the current working directory of the qsub command.

PBS_QUEUE The name of the queue from which the job is executed.

PBS_SERVER The hostname of the pbs_server that qsub submits the job to.

A.23.3 Options

Option Argument Description

-a date_time Declares the time after which the job is eligible for execution.

The date_time argument is in the form:

[[[[CC]YY]MM]DD]hhmm[.SS]

where CC is the first two digits of the year (the century), YY is the second two digits
of the year, MM is the two digits for the month, DD is the day of the month, hh is the
hour, mm is the minute, and the optional SS is the seconds.

If the month (MM) is not specified, it will default to the current month if the
specified day (DD) is in the future. Otherwise, the month will be set to next month.
Likewise, if the day (DD) is not specified, it will default to today if the time (hhmm)
is in the future. Otherwise, the day will be set to tomorrow.

For example, if you submit a job at 11:15 am with a time of -a 1110, the job will be
eligible to run at 11:10 am tomorrow.

Appendix A: Commands Overview

Option Argument Description

-A account_
string

Defines the account string associated with the job. The account_string is an
undefined string of characters and is interpreted by the server that executes the
job. See section 2.7.1 of the PBS External Reference Specification (included in the
Torque download tarball in docs/v2_2_ers.pdf).

-b seconds Defines the maximum number of seconds qsub will block attempting to contact pbs_
server. If pbs_server is down, or for a variety of communication failures, qsub will
continually retry connecting to pbs_server for job submission.

This value overrides the CLIENTRETRY parameter in torque.cfg. This is a non-
portable Torque extension. Portability-minded users can use the PBS_CLIENTRETRY
environmental variable. A negative value is interpreted as infinity. The default is 0.

-c checkpoint_
options

Defines the options that will apply to the job. If the job executes upon a host that
does not support checkpoint, these options will be ignored.

Valid checkpoint options are:

l none – No checkpointing is to be performed.
l enabled – Specify that checkpointing is allowed but must be explicitly
invoked by either the qhold or qchkpt commands.

l shutdown – Specify that checkpointing is to be done on a job at pbs_mom
shutdown.

l periodic – Specify that periodic checkpointing is enabled. The default
interval is 10 minutes and can be changed by the $checkpoint_interval
option in the MOM config file or by specifying an interval when the job is
submitted

l interval=minutes – Checkpointing is to be performed at an interval of
minutes, which is the integer number of minutes of wall time used by the
job. This value must be greater than zero.

l depth=number – Specify a number (depth) of checkpoint images to be kept
in the checkpoint directory.

l dir=path – Specify a checkpoint directory (default is
/var/spool/torque/checkpoint).

-C directive_pre-
fix

Defines the prefix that declares a directive to the qsub command within the script
file. (See the paragraph on script directives under Extended description.)

If the -C option is presented with a directive_prefix argument that is the null string,
qsub will not scan the script file for directives.

-d path Defines the working directory path to be used for the job. If the -d option is not spe-
cified, the default working directory is the home directory. This option sets the envir-
onment variable PBS_O_INITDIR.

Appendix A: Commands Overview

372 A.23 qsub

A.23 qsub 373

Option Argument Description

-D path Defines the root directory to be used for the job. This option sets the environment
variable PBS_O_ROOTDIR.

-e path Defines the path to be used for the standard error stream of the batch job. The
path argument is of the form:

[hostname:]path_name

where hostname is the name of a host to which the file will be returned, and
path_name is the path name on that host in the syntax recognized by POSIX.

When specifying a directory for the location you need to include a trailing
slash.

The argument will be interpreted as follows:

l path_name – where path_name is not an absolute path name, then the
qsub command will expand the path name relative to the current working
directory of the command. The command will supply the name of the host
upon which it is executing for the hostname component.

l hostname:path_name – where path_name is not an absolute path name,
then the qsub command will not expand the path name relative to the
current working directory of the command. On delivery of the standard
error, the path name will be expanded relative to the user's home directory
on the hostname system.

l path_name – where path_name specifies an absolute path name, then the
qsub will supply the name of the host on which it is executing for the
hostname.

l hostname:path_name – where path_name specifies an absolute path name,
the path will be used as specified.

If the -e option is not specified, the default file name for the standard error stream
will be used. The default name has the following form:

l job_name.esequence_number – where job_name is the name of the job (see
the -N name option) and sequence_number is the job number assigned
when the job is submitted.

-f --- Job is made fault tolerant. Jobs running on multiple nodes are periodically polled by
mother superior. If one of the nodes fails to report, the job is canceled by mother
superior and a failure is reported. If a job is fault tolerant, it will not be canceled
based on failed polling (no matter how many nodes fail to report). This may be
desirable if transient network failures are causing large jobs not to complete, where
ignoring one failed polling attempt can be corrected at the next polling attempt.

If Torque is compiled with PBS_NO_POSIX_VIOLATION (there is no config
option for this), you have to use -W fault_tolerant=true to mark the
job as fault tolerant.

Appendix A: Commands Overview

Option Argument Description

-F --- Specifies the arguments that will be passed to the job script when the script is
launched. The accepted syntax is:

qsub -F "myarg1 myarg2 myarg3=myarg3value" myscript2.sh

Quotation marks are required. qsub will fail with an error message if the
argument following -F is not a quoted value. The pbs_mom server will pass
the quoted value as arguments to the job script when it launches the script.

-h --- Specifies that a user hold be applied to the job at submission time.

-i idle_slot_limit Sets an idle slot limit for the job array being submitted. If this parameter is set for a
non-array job, it will be rejected. Additionally, if the user requests an idle slot limit
that exceeds the server parameter's default, the job will be rejected. See also the
idle_slot_limit server parameter.

$ qsub -t 0-99 -i 10 script.sh

The submitted array will only instantiate 10 idle jobs; instead of all 100 jobs
at submission time.

-I --- Declares that the job is to be run "interactively". The job will be queued and sched-
uled as any PBS batch job, but when executed, the standard input, output, and
error streams of the job are connected through qsub to the terminal session in
which qsub is running. Interactive jobs are forced to not rerunable. See Extended
description for additional information of interactive jobs.

-j join Declares if the standard error stream of the job will be merged with the standard
output stream of the job.

An option argument value of oe directs that the two streams will be merged,
intermixed, as standard output. An option argument value of eo directs that the two
streams will be merged, intermixed, as standard error.

If the join argument is n or the option is not specified, the two streams will be two
separate files.

If using either the -e or the -o option and the -j eo|oe option, the -j
option takes precedence and all standard error and output messages go to
the chosen output file.

Appendix A: Commands Overview

374 A.23 qsub

A.23 qsub 375

Option Argument Description

-k keep Defines which (if either) of standard output or standard error will be retained on
the execution host. If set for a stream, this option overrides the path name for that
stream. If not set, neither stream is retained on the execution host.

The argument is either the single letter "e" or "o", or the letters "e" and "o"
combined in either order. Or the argument is the letter "n".

l e – The standard error stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name.esequence

where job_name is the name specified for the job, and sequence is the
sequence number component of the job identifier.

l o – The standard output stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name.osequence

where job_name is the name specified for the job, and sequence is the
sequence number component of the job identifier.

l eo – Both the standard output and standard error streams will be retained.
l oe – Both the standard output and standard error streams will be retained.
l n – Neither stream is retained.

-K kill_delay When set on a job, overrides server and queue kill_delay settings. The kill_delay
value is a positive integer. The default is 0. Seekill_delay - page 407 for more
information.

Appendix A: Commands Overview

Option Argument Description

-l resource_list Defines the resources that are required by the job and establishes a limit to the
amount of resource that can be consumed. See 3.4 Requesting Resources - page
109 for more information.

If not set for a generally available resource, such as CPU time, the limit is infinite.
The resource_list argument is of the form:

resource_name[=[value]][,resource_name[=[value]],...]

In this situation, you should request the more inclusive resource first. For
example, a request for procs should come before a gres request.

In Torque 3.0.2 or later, qsub supports the mapping of -l gpus=X to -l
gres=gpus:X. This allows users who are using NUMA systems to make requests
such as -l ncpus=20:gpus=5 indicating they are not concerned with the GPUs in
relation to the NUMA nodes they request, they only want a total of 20 cores and 5
GPUs.

If multiple -l options are specified for the same resource, only the last resource list
is submitted. For example, with qsub -l nodes=1:ppn=1 -l nodes=1:ppn=2,
the request for 1 node and 1 process per node will be ignored, and the request for
1 node and 2 processes per node will be submitted to the server.

-l supports some Moab-only extensions. See 3.4 Requesting Resources -
page 109 for more information on native Torque resources. qsub -W x= is
recommended instead (supports more options). See -W for more
information.

For information on specifying multiple types of resources for allocation, see Multi-
Req Support in the Moab Workload Manager Administrator Guide.

-L NUMA_
resource_list Available with Torque 6.0 and later. This uses a different syntax than the -l

resource_list option.

Defines the NUMA-aware resource requests for NUMA hardware. This option will
work with non-NUMA hardware.

See 12.7 -L NUMA Resource Request - page 249 for the syntax and valid values.

Appendix A: Commands Overview

376 A.23 qsub

A.23 qsub 377

Option Argument Description

-m mail_options Defines the set of conditions under which the execution server will send a mail
message about the job. The mail_options argument is a string that consists of either
the single character "n" or "p", or one or more of the characters "a", "b", "e", and "f".

If the character "n" is specified, no normal mail is sent. Mail for job cancels and
other events outside of normal job processing are still sent.

If the character "p" is specified, mail will never be sent for the job.

For the characters "a", "b", "e" and "f":

l a – Mail is sent when the job is aborted by the batch system.
l b – Mail is sent when the job begins execution.
l e – Mail is sent when the job terminates.
l f – Mail is sent when the job terminates with a non-zero exit code.

If the -m option is not specified, mail will be sent if the job is aborted.

-M user_list Declares the list of users to whom mail is sent by the execution server when it sends
mail about the job.

The user_list argument is of the form:

user[@host][,user[@host],...]

If unset, the list defaults to the submitting user at the qsub host, i.e. the job owner.

-n node_exclus-
ive

Allows a user to specify an exclusive-node access/allocation request for the job. This
will set node_exclusive = True in the output of qstat -f <job ID>.

For Moab, the following options are equivalent to "-n":

> qsub -l naccesspolicy=singlejob jobscript.sh
OR
> qsub -W x=naccesspolicy:singlejob jobscript.sh

By default, this only applies for cpusets, and only for compatible schedulers (see 4.6
Linux Cpuset Support - page 164).

For systems that use Moab and have cgroups enabled, the recommended manner
for assigning all cores is to use NUMA syntax: "-L
tasks=<count>:lprocs=all:place=node".

With cgroups, the ("-l") syntax (lowercase L) will, by default, restrict to the
number of cores requested, or to the resources_default.procs value (i.e., 1
core, typically). In order to override this behavior and have Moab assign all the
cores on a node while using "-l...singlejob" and/or "-n" (in other words,
without "-L ...lprocs=all..."), you must also set RMCFG[<torque>]
FLAGS=MigrateAllJobAttributes in moab.cfg.

Appendix A: Commands Overview

Option Argument Description

-N name Declares a name for the job. The name specified may be an unlimited number of
characters in length. It must consist of printable, nonwhite space characters with
the first character alphabetic.

If the -N option is not specified, the job name will be the base name of the job script
file specified on the command line. If no script file name was specified and the
script was read from the standard input, then the job name will be set to STDIN.

-o path Defines the path to be used for the standard output stream of the batch job. The
path argument is of the form:

[hostname:]path_name

where hostname is the name of a host to which the file will be returned, and
path_name is the path name on that host in the syntax recognized by POSIX.

When specifying a directory for the location you need to include a trailing
slash.

The argument will be interpreted as follows:

l path_name – where path_name is not an absolute path name, then the
qsub command will expand the path name relative to the current working
directory of the command. The command will supply the name of the host
upon which it is executing for the hostname component.

l hostname:path_name – where path_name is not an absolute path name,
then the qsub command will not expand the path name relative to the
current working directory of the command. On delivery of the standard
output, the path name will be expanded relative to the user's home
directory on the hostname system.

l path_name – where path_name specifies an absolute path name, then the
qsub will supply the name of the host on which it is executing for the
hostname.

l hostname:path_namewhere path_name specifies an absolute path name, the
path will be used as specified.

If the -o option is not specified, the default file name for the standard output
stream will be used. The default name has the following form:

l job_name.osequence_number – where job_name is the name of the job (see
the -N name option) and sequence_number is the job number assigned
when the job is submitted.

-p priority Defines the priority of the job. The priority argument must be a integer between -
1024 and +1023 inclusive. The default is no priority, which is equivalent to a pri-
ority of zero.

Appendix A: Commands Overview

378 A.23 qsub

A.23 qsub 379

Option Argument Description

-P user[:group] Allows a root user or manager to submit a job as another user. Torque treats proxy
jobs as though the jobs were submitted by the supplied username. This feature is
available in Torque 2.4.7 and later, however, Torque 2.4.7 does not have the ability
to supply the [:group] option; it is available in Torque 2.4.8 and later.

-q destination Defines the destination of the job. The destination names a queue, a server, or a
queue at a server.

The qsub command will submit the script to the server defined by the destination
argument. If the destination is a routing queue, the job may be routed by the server
to a new destination.

If the -q option is not specified, the qsub command will submit the script to the
default server. (See Environment variables and the PBS ERS section 2.7.4, "Default
Server".)

If the -q option is specified, it is in one of the following three forms:

l queue
l @server
l queue@server

If the destination argument names a queue and does not name a server, the job will
be submitted to the named queue at the default server.

If the destination argument names a server and does not name a queue, the job will
be submitted to the default queue at the named server.

If the destination argument names both a queue and a server, the job will be
submitted to the named queue at the named server.

-r y/n Declares whether the job is rerunable (see the qrerun command). The option
argument is a single character, either y or n.

If the argument is "y", the job is rerunable. If the argument is "n", the job is not
rerunable. The default value is y, rerunable.

-S path_list Declares the path to the desired shell for this job.

qsub script.sh -S /bin/tcsh

If the shell path is different on different compute nodes, use the following syntax:

path[@host][,path[@host],...]
qsub script.sh -S /bin/tcsh@node1,/usr/bin/tcsh@node2

Only one path may be specified for any host named. Only one path may be specified
without the corresponding host name. The path selected will be the one with the
host name that matched the name of the execution host. If no matching host is
found, then the path specified without a host will be selected, if present.

If the -S option is not specified, the option argument is the null string, or no entry
from the path_list is selected, the execution will use the user's login shell on the
execution host.

Appendix A: Commands Overview

Option Argument Description

-t array_
request

Specifies the task ids of a job array. Single task arrays are allowed.

The array_request argument is an integer id or a range of integers. Multiple ids or
id ranges can be combined in a comma delimited list. Examples: -t 1-100 or -t
1,10,50-100

An optional slot limit can be specified to limit the amount of jobs that can run
concurrently in the job array. The default value is unlimited. The slot limit must be
the last thing specified in the array_request and is delimited from the array by a
percent sign (%).

qsub script.sh -t 0-299%5

This sets the slot limit to 5. Only 5 jobs from this array can run at the same time.

You can use qalter to modify slot limits on an array. The server parameter max_slot_
limit can be used to set a global slot limit policy.

-T script Specifies a prologue or epilogue script for the job. The full name of the scripts are
prologue.<script_name> or epilogue.<script_name>, but you only specify
the <script_name> portion when using the -T option. For example, qsub -T
prescript specifies the prologue.prescript script file.

-u
This option is deprecated and will not work as previously documented. Use
-P.

-v variable_list Expands the list of environment variables that are exported to the job.

In addition to the variables described in the "Description" section above,
variable_list names environment variables from the qsub command
environment that are made available to the job when it executes. The variable_list is
a comma separated list of strings of the form variable or variable=value.
These variables and their values are passed to the job. Note that -v has a higher
precedence than -V, so identically named variables specified via -v will provide the
final value for an environment variable in the job.

-V --- Declares that all environment variables in the qsub commands environment are to
be exported to the batch job.

-w path Defines the working directory path to be used for the job. If the -w option is not spe-
cified, the default working directory is the current directory. This option sets the
environment variable PBS_O_WORKDIR.

Appendix A: Commands Overview

380 A.23 qsub

A.23 qsub 381

Option Argument Description

-W additional_
attributes Use "-W x=" as pass-through for scheduler-only job extensions. See

Resource Manager Extensions in the Moab Workload ManagerAdministrator
Guide for a list of scheduler-only job extensions.

For legacy purposes, qsub -l will continue to support some scheduler-only
job extensions. However, when in doubt, use "-W x=".

The -W option allows for the specification of additional job attributes. The general
syntax of -W is in the form:

-W attr_name=attr_value.

You can use multiple -W options with this syntax:

-W attr_name1=attr_value1 -W attr_name2=attr_value2.

If white space occurs anywhere within the option argument string or the
equal sign, "=", occurs within an attribute_value string, then the string must
be enclosed with either single or double quote marks.

PBS currently supports the following attributes within the -W option:

l depend=dependency_list – Defines the dependency between this and other
jobs. The dependency_list is in the form:
type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job ID according to type. If
argument is a count, it must be greater than 0. If it is a job ID and not fully
specified in the form seq_number.server.name, it will be expanded
according to the default server rules that apply to job IDs on most
commands. If argument is null (the preceding colon need not be specified),
the dependency of the corresponding type is cleared (unset). For more
information, see depend=dependency_list valid dependencies.

l group_list=g_list – Defines the group name under which the job is to run on
the execution system. The g_list argument is of the form:
group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the
group specifications may be supplied without the corresponding host
specification. That group name will used for execution on any host not
named in the argument list. If not set, the group_list defaults to the primary
group of the user under which the job will be run.

l interactive=true – If the interactive attribute is specified, the job is an
interactive job. The qsub option is an alternative method of specifying this
attribute.

l job_radix=<int> – To be used with parallel jobs. It directs the Mother
Superior of the job to create a distribution radix of size <int> between
sisters. See Managing Multi-Node Jobs.

l stagein=file_list
l stageout=file_list – Specifies which files are staged (copied) in before job
start or staged out after the job completes execution. On completion of the

Appendix A: Commands Overview

Option Argument Description

job, all staged-in and staged-out files are removed from the execution
system. The file_list is in the form:
local_file@hostname:remote_file[,...]

regardless of the direction of the copy. The name local_file is the name of the
file on the system where the job executed. It may be an absolute path or
relative to the home directory of the user. The name remote_file is the
destination name on the host specified by hostname. The name may be
absolute or relative to the user's home directory on the destination host.
The use of wildcards in the file name is not recommended. The file names
map to a remote copy program (rcp) call on the execution system in the
follow manner:

o For stagein: rcp hostname:remote_file local_file

o For stageout: rcp local_file hostname:remote_file

Data staging examples:

-W stagein=/tmp/input.txt@headnode:/home/user/input.txt

-W
stageout=/tmp/output.txt@headnode:/home/user/output.txt

If Torque has been compiled with wordexp support, then variables can be
used in the specified paths. Currently only $PBS_JOBID, $HOME, and
$TMPDIR are supported for stagein.

l umask=XXX – Sets umask used to create stdout and stderr spool files in pbs_
mom spool directory. Values starting with 0 are treated as octal values,
otherwise the value is treated as a decimal umask value.

-x --- By default, if you submit an interactive job with a script, the script will be parsed for
PBS directives but the rest of the script will be ignored since it's an interactive job.
The -x option allows the script to be executed in the interactive job and then the
job completes. For example:

script.sh
#!/bin/bash
ls
---end script---
qsub -I script.sh
qsub: waiting for job 5.napali to start
dbeer@napali:#
<displays the contents of the directory, because of the ls
command>
qsub: job 5.napali completed

-X --- Enables X11 forwarding. The DISPLAY environment variable must be set.

-z --- Directs that the qsub command is not to write the job identifier assigned to the job
to the commands standard output.

Appendix A: Commands Overview

382 A.23 qsub

A.23 qsub 383

depend=dependency_list valid dependencies

For job dependencies to work correctly, you must set the keep_completed server parameter.

Dependency Description

synccount:count This job is the first in a set of jobs to be executed at the same
time. Count is the number of additional jobs in the set.

syncwith:jobid This job is an additional member of a set of jobs to be
executed at the same time. In the above and following depend-
ency types, jobid is the job identifier of the first job in the set.

after:jobid[:jobid...] This job may be scheduled for execution at any point after
jobs jobid have started execution.

afterok:jobid[:jobid...] This job may be scheduled for execution only after jobs jobid
have terminated with no errors. See the csh warning under
Extended description.

afternotok:jobid[:jobid...] This job may be scheduled for execution only after jobs jobid
have terminated with errors. See the csh warning under
Extended description.

afterany:jobid[:jobid...] This job may be scheduled for execution after jobs jobid have
terminated, with or without errors.

on:count This job may be scheduled for execution after count depend-
encies on other jobs have been satisfied. This form is used in
conjunction with one of the "before" forms (see below).

before:jobid[:jobid...] When this job has begun execution, then jobs jobid... may
begin.

beforeok:jobid[:jobid...] If this job terminates execution without errors, then jobs
jobid... may begin. See the csh warning under Extended
description.

beforenotok:jobid[:jobid...] If this job terminates execution with errors, then jobs jobid...
may begin. See the csh warning under Extended description.

Appendix A: Commands Overview

Dependency Description

beforeany:jobid[:jobid...] When this job terminates execution, jobs jobid... may begin.

If any of the before forms are used, the jobs referenced by
jobid must have been submitted with a dependency type of
on.

If any of the before forms are used, the jobs referenced by
jobid must have the same owner as the job being submitted.
Otherwise, the dependency is ignored.

Array dependencies make a job depend on an array or part of an array. If no count is given, then the entire
array is assumed. For examples, see Dependency examples.

afterstartarray:arrayid[count] After this many jobs have started from arrayid, this job may
start.

afterokarray:arrayid[count] This job may be scheduled for execution only after jobs in
arrayid have terminated with no errors.

afternotokarray:arrayid[count] This job may be scheduled for execution only after jobs in
arrayid have terminated with errors.

afteranyarray:arrayid[count] This job may be scheduled for execution after jobs in arrayid
have terminated, with or without errors.

beforestartarray:arrayid[count] Before this many jobs have started from arrayid, this job may
start.

beforeokarray:arrayid[count] If this job terminates execution without errors, then jobs in
arrayid may begin.

beforenotokarray:arrayid[count] If this job terminates execution with errors, then jobs in
arrayid may begin.

beforeanyarray:arrayid[count] When this job terminates execution, jobs in arrayid may
begin.

If any of the before forms are used, the jobs referenced by
arrayid must have been submitted with a dependency type of
on.

If any of the before forms are used, the jobs referenced by
arrayid must have the same owner as the job being
submitted. Otherwise, the dependency is ignored.

Appendix A: Commands Overview

384 A.23 qsub

A.23 qsub 385

Dependency Description

Error processing of the existence, state, or condition of the job on which the newly submitted job is a
deferred service, i.e. the check is performed after the job is queued. If an error is detected, the new job will
be deleted by the server. Mail will be sent to the job submitter stating the error.

Jobs can depend on single job dependencies and array dependencies at the same time.

afterok:jobid
[:jobid...],afterokarray:arrayid
[count]

This job may be scheduled for execution only after jobs jobid
and jobs in arrayid have terminated with no errors.

Dependency examples

qsub -W depend=afterok:123.big.iron.com /tmp/script

qsub -W depend=before:234.hunk1.com:235.hunk1.com

/tmp/script

qsub script.sh -W depend=afterokarray:427[]

(This assumes every job in array 427 has to finish successfully for the dependency to be satisfied.)

qsub script.sh -W depend=afterokarray:427[][5]

(This means that 5 of the jobs in array 427 have to successfully finish in order for the dependency
to be satisfied.)

qsub script.sh -W depend=afterok:360976,afterokarray:360977[]

(Job 360976 and all jobs in array 360977 have to successfully finish for the dependency to be
satisfied.)

A.23.4 Operands
The qsub command accepts a script operand that is the path to the script of the job. If the path is
relative, it will be expanded relative to the working directory of the qsub command.

If the script operand is not provided or the operand is the single character "-", the qsub command
reads the script from standard input. When the script is being read from Standard Input, qsub will
copy the file to a temporary file. This temporary file is passed to the library interface routine pbs_
submit. The temporary file is removed by qsub after pbs_submit returns or upon the receipt of a
signal that would cause qsub to terminate.

Appendix A: Commands Overview

A.23.5 Standard input
The qsub command reads the script for the job from standard input if the script operand is missing
or is the single character "-".

A.23.6 Input files
The script file is read by the qsub command. qsub acts upon any directives found in the script.

When the job is created, a copy of the script file is made and that copy cannot be modified.

A.23.7 Standard output
Unless the -z option is set, the job identifier assigned to the job will be written to standard output if
the job is successfully created.

A.23.8 Standard error
The qsub command will write a diagnostic message to standard error for each error occurrence.

A.23.9 Environment variables
The values of some or all of the variables in the qsub commands environment are exported with
the job (see the -v and -V options).

The environment variable PBS_DEFAULT defines the name of the default server. Typically, it
corresponds to the system name of the host on which the server is running. If PBS_DEFAULT is not
set, the default is defined by an administrator established file.

The environment variable PBS_DPREFIX determines the prefix string which identifies directives in
the script.

The environment variable PBS_CLIENTRETRY defines the maximum number of seconds qsub will
block (see the -b option). Despite the name, currently qsub is the only client that supports this
option.

A.23.10 torque.cfg
The torque.cfg file, located in PBS_SERVER_HOME (/var/spool/torque by default)
controls the behavior of the qsub command. This file contains a list of parameters and values
separated by whitespace. See Appendix K: "torque.cfg" Configuration File - page 485 for more
information on these parameters.

Appendix A: Commands Overview

386 A.23 qsub

A.23 qsub 387

A.23.11 Extended description

Script Processing:
A job script may consist of PBS directives, comments and executable statements. A PBS directive
provides a way of specifying job attributes in addition to the command line options. For example:

:
#PBS -N Job_name
#PBS -l walltime=10:30,mem=320kb
#PBS -m be
#
step1 arg1 arg2
step2 arg3 arg4

The qsub command scans the lines of the script file for directives. An initial line in the script that
begins with the characters "#!" or the character ":" will be ignored and scanning will start with the
next line. Scanning will continue until the first executable line, that is a line that is not blank, not a
directive line, nor a line whose first nonwhite space character is "#". If directives occur on
subsequent lines, they will be ignored.

A line in the script file will be processed as a directive to qsub if and only if the string of characters
starting with the first nonwhite space character on the line and of the same length as the directive
prefix matches the directive prefix.

The remainder of the directive line consists of the options to qsub in the same syntax as they
appear on the command line. The option character is to be preceded with the "-" character.

If an option is present in both a directive and on the command line, that option and its argument, if
any, will be ignored in the directive. The command line takes precedence.

If an option is present in a directive and not on the command line, that option and its argument, if
any, will be processed as if it had occurred on the command line.

The directive prefix string will be determined in order of preference from:

l The value of the -C option argument if the option is specified on the command line.

l The value of the environment variable PBS_DPREFIX if it is defined.

l The four character string #PBS.

If the -C option is found in a directive in the script file, it will be ignored.

C-Shell .logout File:
The following warning applies for users of the c-shell, csh. If the job is executed under the csh and a
.logout file exists in the home directory in which the job executes, the exit status of the job is
that of the .logout script, not the job script. This may impact any inter-job dependencies. To
preserve the job exit status, either remove the .logout file or place the following line as the first
line in the .logout file:

set EXITVAL = $status

Appendix A: Commands Overview

and the following line as the last executable line in .logout:

exit $EXITVAL

Interactive Jobs:
If the qsub option is specified on the command line or in a script directive, or if the "interactive" job
attribute declared true via the -W option, -W interactive=true, either on the command line
or in a script directive, the job is an interactive job. The script will be processed for directives, but
will not be included with the job. When the job begins execution, all input to the job is from the
terminal session in which qsub is running.

When an interactive job is submitted, the qsub command will not terminate when the job is
submitted. qsub will remain running until the job terminates, is aborted, or the user interrupts
qsub with an SIGINT (the control-C key). If qsub is interrupted prior to job start, it will query if
the user wishes to exit. If the user response "yes", qsub exits and the job is aborted.

One the interactive job has started execution, input to and output from the job pass through qsub.
Keyboard generated interrupts are passed to the job. Lines entered that begin with the tilde (~)
character and contain special sequences are escaped by qsub. The recognized escape sequences
are:

Sequence Description

~. qsub terminates execution. The batch job is also terminated.

~susp Suspend the qsub program if running under the C shell. "susp" is the suspend character (usually
CNTL-Z).

~asusp Suspend the input half of qsub (terminal to job), but allow output to continue to be displayed.
Only works under the C shell. "asusp" is the auxiliary suspend character, usually CNTL-Y.

A.23.12 Exit status
Upon successful processing, the qsub exit status will be a value of zero.

If the qsub command fails, the command exits with a value greater than zero.

Related Topics

l qalter(1B)

l qdel(1B)

l qhold(1B)

l qrls(1B)

Appendix A: Commands Overview

388 A.23 qsub

A.23 qsub 389

l qsig(1B)

l qstat(1B)

l pbs_server(8B)

Non-Adaptive Computing topics
l pbs_connect(3B)

l pbs_job_attributes(7B)

l pbs_queue_attributes(7B)

l pbs_resources_irix5(7B)

l pbs_resources_sp2(7B)

l pbs_resources_sunos4(7B)

l pbs_resources_unicos8(7B)

l pbs_server_attributes(7B)

l qselect(1B)

l qmove(1B)

l qmsg(1B)

l qrerun(1B)

Appendix A: Commands Overview

A.24 qterm

Terminate processing by a PBS batch server.

A.24.1 Synopsis
qterm [-l] [-t type] [server...]

A.24.2 Description
The qterm command terminates a batch server. When a server receives a terminate command, the
server will go into the "Terminating" state. No new jobs will be allowed to be started into execution
or enqueued into the server. The impact on jobs currently being run by the server depends

In order to execute qterm, the user must have PBS Operation or Manager privileges.

A.24.3 Options

Option Name Description

-l local Terminate processing only if the active server is local to where qterm is being executed.

-t type Specifies the type of shut down. The types are:

l quick – This is the default action if the -t option is not specified. This option is
used when you wish that running jobs be left running when the server shuts
down. The server will cleanly shutdown and can be restarted when desired. Upon
restart of the server, jobs that continue to run are shown as running; jobs that
terminated during the server's absence will be placed into the exiting state.

The immediate and delay types are deprecated.

A.24.4 Operands
The server operand specifies which servers are to shut down. If no servers are given, then the
default server will be terminated.

A.24.5 Standard error
The qterm command will write a diagnostic message to standard error for each error occurrence.

Appendix A: Commands Overview

390 A.24 qterm

A.24 qterm 391

A.24.6 Exit status
Upon successful processing of all the operands presented to the qterm command, the exit status
will be a value of zero.

If the qterm command fails to process any operand, the command exits with a value greater than
zero.

Related Topics

Non-Adaptive Computing topics
pbs_server(8B)

qmgr(8B)

pbs_resources_aix4(7B)

pbs_resources_irix5(7B)

pbs_resources_sp2(7B)

pbs_resources_sunos4(7B)

pbs_resources_unicos8(7B)

Appendix A: Commands Overview

A.25 trqauthd

(Torque authorization daemon)

A.25.1 Synopsis
trqauthd -d

trqauthd -D

trqauthd -F

trqauthd --logfile_dir

trqauthd -n

A.25.2 Description
The trqauthd daemon, introduced in Torque 4.0.0, replaced the pbs_iff authentication
process. When users connect to pbs_server by calling one of the Torque utilities or by using the
Torque APIs, the new user connection must be authorized by a trusted entity which runs as root.
The advantage of trqauthd's doing this rather than pbs_iff is that trqauthd is resident,
meaning you do not need to be loaded every time a connection is made; multi-threaded; scalable;
and more easily adapted to new functionality than pbs_iff.

Beginning in Torque 4.2.6, trqauthd can remember the currently active pbs_server host,
enhancing high availability functionality. Previously, trqauthd tried to connect to each host in the
TORQUE_HOME/<server_name> file until it could successfully connect. Because it now
remembers the active server, it tries to connect to that server first. If it fails to connect, it will go
through the <server_name> file and try to connect to a host where an active pbs_server is
running.

Beginning in Torque 6.1.0, you have the option when starting trqauthd to disable trqauthd from
logging anything. In addition, the -F (don't fork) option is available when running under systemd.

If you run trqauthd before starting pbs_server, you will receive a warning that no servers are
available. To avoid this message, start pbs_server before running trqauthd.

A.25.3 Options

-d — Terminate

Format ---

Appendix A: Commands Overview

392 A.25 trqauthd

A.25 trqauthd 393

-d — Terminate

Default ---

Description Terminate trqauthd.

Example trqauthd -d

-D — Debug

Format ---

Default ---

Description Run trqauthd in debug mode.

Example trqauthd -D

-F — Fork

Format ---

Default ---

Description Prevents the system from forking. Useful when running under systemd (Red Hat 7-based or SUSE
12-based systems).

Example trqauthd -F

--logfile_dir — Specify log file directory

Format =<path>

Default ---

Description Specifies custom directory for trqauthd log file.

Example trqauthd --logfile_dir=/logs

Appendix A: Commands Overview

-n — No Logging

Format ---

Default ---

Description Disables trqauthd from logging anything.

Example trqauthd -n

Appendix A: Commands Overview

394 A.25 trqauthd

395

Appendix B: Server Parameters

Torque server parameters are specified using the qmgr command. The set subcommand is used to
modify the server object. For example:

> qmgr -c 'set server default_queue=batch'

Parameters

acl_group_hosts

acl_host_enable

acl_hosts

acl_logic_or

acl_user_hosts

allow_node_submit

allow_proxy_user

auto_node_np

automatic_requeue_exit_
code

cgroup_per_task

checkpoint_defaults

clone_batch_delay

clone_batch_size

copy_on_rerun

cray_enabled

default_gpu_mode

default_queue

disable_automatic_requeue

disable_server_id_check

display_job_server_suffix

dont_write_nodes_file

down_on_error

email_batch_seconds

exit_code_canceled_job

ghost_array_recovery

gres_modifiers

idle_slot_limit

interactive_jobs_can_
roam

job_exclusive_on_use

job_force_cancel_time

job_full_report_time

job_log_file_max_size

job_log_file_roll_depth

job_log_keep_days

job_nanny

job_start_timeout

job_stat_rate

job_suffix_alias

job_sync_timeout

keep_completed

kill_delay

legacy_vmem

lock_file

lock_file_check_time

lock_file_update_time

log_events

log_file_max_size

log_file_roll_depth

log_keep_days

log_level

mail_body_fmt

mail_domain

mail_from

mail_subject_fmt

managers

max_job_array_size

max_slot_limit

max_threads

max_user_queuable

max_user_run

min_threads

moab_array_
compatible

mom_job_sync

next_job_number

node_check_rate

node_pack

node_ping_rate

node_submit_exceptions

no_mail_force

np_default

operators

pass_cpuclock

poll_jobs

query_other_jobs

record_job_info

record_job_script

resources_available

scheduling

sendmail_path

submit_hosts

tcp_incoming_timeout

tcp_timeout

thread_idle_seconds

timeout_for_job_delete

timeout_for_job_
requeue

use_jobs_subdirs

acl_group_hosts

Format group@host[.group@host]...

Default ---

Appendix B: Server Parameters

acl_group_hosts

Description Users who are members of the specified groups will be able to submit jobs from these otherwise
untrusted hosts. Users who aren't members of the specified groups will not be able to submit jobs
unless they are specified in acl_user_hosts.

acl_host_enable

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, hosts not in the pbs_server nodes file must be added to the acl_hosts list
in order to get access to pbs_server.

acl_hosts

Format <HOST>[,<HOST>]... or <HOST>[range] or <HOST*> where the asterisk (*) can appear any-
where in the host name

Default Not set.

Description Specifies a list of hosts that can have access to pbs_server when acl_host_enable is set to
TRUE. This does not enable a node to submit jobs. To enable a node to submit jobs use submit_
hosts.

Hosts that are in the TORQUE_HOME/server_priv/nodes file do not need to be added
to this list.

Qmgr: set queue batch acl_hosts="hostA,hostB"
Qmgr: set queue batch acl_hosts+=hostC
Qmgr: set server acl_hosts="hostA,hostB"
Qmgr: set server acl_hosts+=hostC

In version 2.5 and later, the wildcard (*) character can appear anywhere in the host name,
and ranges are supported; these specifications also work for managers and operators.

Qmgr: set server acl_hosts = "galaxy*.tom.org"
Qmgr: set server acl_hosts += "galaxy[0-50].tom.org"

acl_logic_or

Format <BOOLEAN>

Appendix B: Server Parameters

396

397

acl_logic_or

Default FALSE

Description When set to TRUE, the user and group queue ACLs are logically ORed. When set to FALSE, they are
ANDed.

acl_user_hosts

Format group@host[.group@host]...

Default ---

Description The specified users are allowed to submit jobs from otherwise untrusted hosts. By setting this para-
meter, other users at these hosts will not be allowed to submit jobs unless they are members of
specified groups in acl_group_hosts.

allow_node_submit

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, allows all hosts in the PBSHOME/server_priv/nodes file (MOM nodes) to
submit jobs to pbs_server.

To only allow qsub from a subset of all MOMs, use submit_hosts.

allow_proxy_user

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that users can proxy from one user to another. Proxy requests will be
either validated by ruserok() or by the scheduler.

auto_node_np

Format <BOOLEAN>

Appendix B: Server Parameters

auto_node_np

Default DISABLED

Description When set to TRUE, automatically configures a node's np (number of processors) value based on
the ncpus value from the status update. Requires full manager privilege to set or alter.

automatic_requeue_exit_code

Format <LONG>

Default ---

Description This is an exit code, defined by the admin, that tells pbs_server to requeue the job instead of
considering it as completed. This allows the user to add some additional checks that the job can
run meaningfully, and if not, then the job script exits with the specified code to be requeued.

cgroup_per_task

Format <BOOLEAN>

Default FALSE

Description When set to FALSE, jobs submitted with the -L syntax will have one cgroup created per host
unless they specify otherwise at submission time. This behavior is similar to the pre-6.0 cpuset
implementation.

When set to TRUE, jobs submitted with the -L syntax will have one cgroup created per task unless
they specify otherwise at submission time.

Some MPI implementations are not compatible with using one cgroup per task.

See -L NUMA Resource Request for more information.

checkpoint_defaults

Format <STRING>

Default ---

Appendix B: Server Parameters

398

399

checkpoint_defaults

Description Specifies for a queue the default checkpoint values for a job that does not have checkpointing
specified. The checkpoint_defaults parameter only takes effect on execution queues.

set queue batch checkpoint_defaults="enabled, periodic, interval=5"

clone_batch_delay

Format <INTEGER>

Default 1

Description Specifies the delay (in seconds) between clone batches (see clone_batch_size).

clone_batch_size

Format <INTEGER>

Default 256

Description Job arrays are created in batches of size X. X jobs are created, and after the clone_batch_delay,
X more are created. This repeats until all are created.

copy_on_rerun

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, Torque will copy the output and error files over to the user-specified directory
when the grerun command is executed (i.e. a job preemption). Output and error files are only
created when a job is in running state before the preemption occurs.

pbs_server and pbs_mom need to be on the same version.

When you change the value, you must perform a pbs_server restart for the change to
effect.

Appendix B: Server Parameters

cray_enabled

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that this instance of pbs_server has Cray hardware that reports to
it. See Installation Notes for Moab and Torque for Cray in the Moab Workload
ManagerAdministrator Guide.

default_gpu_mode

Format <STRING>

Default exclusive_thread

Description Determines what GPU mode will be used for jobs that request GPUs but do not request a GPU
mode. Valid entries are exclusive_thread, exclusive, exclusive_process, default, and
shared.

If you are using CUDA 8 or newer, the default of exclusive_thread is no longer
supported. If the server specifies an exclusive_thread setting, the MOM will substitute
an exclusive_processmode setting. We recommend that you set the default to
exclusive_process.

If you upgrade your CUDA library, you must rebuild Torque.

default_queue

Format <STRING>

Default ---

Description Indicates the queue to assign to a job if no queue is explicitly specified by the submitter.

disable_automatic_requeue

Format <BOOLEAN>

Default FALSE

Appendix B: Server Parameters

400

401

disable_automatic_requeue

Description Normally, if a job cannot start due to a transient error, the MOM returns a special exit code to the
server so that the job is requeued instead of completed. When this parameter is set, the special
exit code is ignored and the job is completed.

disable_server_id_check

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, makes it so the user for the job doesn't have to exist on the server. The user
must still exist on all the compute nodes or the job will fail when it tries to execute.

If you have disable_server_id_check set to TRUE, a user could request a group to
which they do not belong. Setting VALIDATEGROUP to TRUE in the torque.cfg file

prevents such a scenario (see "torque.cfg" Configuration File).

display_job_server_suffix

Format <BOOLEAN>

Default TRUE

Description When set to TRUE, Torque will display both the job ID and the host name. When set to FALSE, only
the job ID will be displayed.

If set to FALSE, the environment variable NO_SERVER_SUFFIXmust be set to TRUE for
pbs_track to work as expected.

display_job_server_suffix should not be set unless the server has no queued jobs.
If it is set while the server has queued jobs, it will cause problems correctly identifying job
IDs with all existing jobs.

dont_write_nodes_file

Format <BOOLEAN>

Default FALSE

Appendix B: Server Parameters

dont_write_nodes_file

Description When set to TRUE, the nodes file cannot be overwritten for any reason; qmgr commands to edit
nodes will be rejected.

down_on_error

Format <BOOLEAN>

Default TRUE

Description When set to TRUE, pbs_server will mark nodes that report an error from their node health
check as down and unavailable to run jobs. See A.4.5 Health check - page 307 for more
information.

email_batch_seconds

Format <INTEGER>

Default 0

Description If set to a number greater than 0, emails will be sent in a batch every specified number of seconds,
per addressee. For example, if this is set to 300, then each user will only receive emails every 5
minutes in the most frequent scenario. The addressee would then receive one email that contains
all of the information which would've been sent out individually before. If it is unset or set to 0,
then emails will be sent for every email event.

exit_code_canceled_job

Format <INTEGER>

Default ---

Description When set, the exit code provided by the user is given to any job that is canceled, regardless of the
job's state at the time of cancellation.

ghost_array_recovery

Format <BOOLEAN>

Appendix B: Server Parameters

402

403

ghost_array_recovery

Default TRUE

Description When TRUE, array subjobs will be recovered regardless of whether the .AR file was correctly
recovered. This prevents the loss of running and queued jobs. However, it may no longer enforce a
per-job slot limit or handle array dependencies correctly, as some historical information will be
lost. When FALSE, array subjobs will not be recovered if the .AR file is invalid or non-existent.

gres_modifiers

Format Comma-separated list of user IDs

Default ---

Description List of users granted permission to modify the gres resource of their own running jobs. Note that
users do not need special permission to modify the gres resource of their own queued jobs.

idle_slot_limit

Format <INTEGER>

Default 300

Description Sets a default idle slot limit that will be applied to all arrays submitted after it is set.

The idle slot limit is the maximum number of sub jobs from an array that will be instantiated at
once. For example, if this is set to 2, and an array with 1000 sub jobs is submitted, then only two
will ever be idle (queued) at a time. Whenever an idle sub job runs or is deleted, then a new sub
job will be instantiated until the array no longer has remaining sub jobs.

If this parameter is set, and user during job submission (using qsub -i) requests an idle slot
limit that exceeds this setting, that array will be rejected. See also the qsub -i option.

Example qmgr -c 'set server idle_slot_limit = 50'

interactive_jobs_can_roam

Format <BOOLEAN>

Default FALSE

Appendix B: Server Parameters

interactive_jobs_can_roam

Description By default, interactive jobs run from the login node that they submitted from. When TRUE, inter-
active jobs may run on login nodes other than the one where the jobs were submitted from. See
Installation Notes for Moab and Torque for Cray in the Moab Workload Manager Administrator
Guide.

With interactive_jobs_can_roam enabled, jobs will only go to nodes with the
alps_login property set in the nodes file.

job_exclusive_on_use

Format <BOOLEAN>

Default FALSE

Description When job_exclusive_on_use is set to TRUE, pbsnodes will show job-exclusive on a node when
there's at least one of its processors running a job. This differs with the default behavior which is
to show job-exclusive on a node when all of its processors are running a job.

Example set server job_exclusive_on_use=TRUE

job_force_cancel_time

Format <INTEGER>

Default Disabled

Description If a job has been deleted and is still in the system after x seconds, the job will be purged from the
system. This is mostly useful when a job is running on a large number of nodes and one node goes
down. The job cannot be deleted because the MOM cannot be contacted. The qdel fails and none
of the other nodes can be reused. This parameter can used to remedy such situations.

job_full_report_time

Format <INTEGER>

Default 300

Description Sets the time in seconds that a job should be fully reported after any kind of change to the job,
even if condensed output was requested.

Appendix B: Server Parameters

404

405

job_log_file_max_size

Format <INTEGER>

Default ---

Description This specifies a soft limit (in kilobytes) for the job log's maximum size. The file size is checked
every five minutes and if the current day file size is greater than or equal to this value, it is rolled
from <filename> to <filename.1> and a new empty log is opened. If the current day file size
exceeds the maximum size a second time, the <filename.1> log file is rolled to <filename.2>,
the current log is rolled to <filename.1>, and a new empty log is opened. Each new log causes
all other logs to roll to an extension that is one greater than its current number. Any value less
than 0 is ignored by pbs_server (meaning the log will not be rolled).

job_log_file_roll_depth

Format <INTEGER>

Default ---

Description This sets the maximum number of new log files that are kept in a day if the job_log_file_max_
size parameter is set. For example, if the roll depth is set to 3, no file can roll higher than <file-
name.3>. If a file is already at the specified depth, such as <filename.3>, the file is deleted so it
can be replaced by the incoming file roll, <filename.2>.

job_log_keep_days

Format <INTEGER>

Default ---

Description This maintains logs for the number of days designated. If set to 4, any log file older than 4 days old
is deleted.

job_nanny

Format <BOOLEAN>

Default FALSE

Appendix B: Server Parameters

job_nanny

Description When set to TRUE, enables the experimental "job deletion nanny" feature. All job cancels will cre-
ate a repeating task that will resend KILL signals if the initial job cancel failed. Further job cancels
will be rejected with the message "job cancel in progress." This is useful for temporary failures
with a job's execution node during a job delete request.

job_start_timeout

Format <INTEGER>

Default ---

Description Specifies the pbs_server to pbs_mom TCP socket timeout in seconds that is used when the pbs_
server sends a job start to the pbs_mom. It is useful when the MOM has extra overhead involved
in starting jobs. If not specified, then the tcp_timeout parameter is used.

job_stat_rate

Format <INTEGER>

Default 300 (30 in Torque 1.2.0p5 and earlier)

Description If the mother superior has not sent an update by the specified time, at the specified time, pbs_
server requests an update on job status from the mother superior.

job_suffix_alias

Format <STRING>

Default ---

Description Allows the job suffix to be defined by the user.

job_suffix_alias should not be set unless the server has no queued jobs. If it is set
while the server has queued jobs, it will cause problems correctly identifying job IDs with
all existing jobs.

Appendix B: Server Parameters

406

407

job_suffix_alias

Example qmgr -c 'set server job_suffix_alias = biology'

When a job is submitted after this, its jobid will have .biology on the end:
14.napali.biology. If display_job_server_suffix is set to false, it would be named
14.biology.

job_sync_timeout

Format <INTEGER>

Default 60

Description When a stray job is reported on multiple nodes, the server sends a kill signal to one node at a time.
This timeout determines how long the server waits between kills if the job is still being reported
on any nodes.

keep_completed

Format <INTEGER>

Default 300

Description The amount of time (in seconds) a job will be kept in the queue after it has entered the completed
state. keep_completedmust be set for job dependencies to work.

For more information, see Keeping Completed Jobs.

kill_delay

Format <INTEGER>

Default If using qdel, 2 seconds

If using qrerun, 0 (no wait)

Appendix B: Server Parameters

kill_delay

Description Specifies the number of seconds between sending a SIGTERM and a SIGKILL to a job you want to
cancel. It is possible that the job script, and any child processes it spawns, can receive several
SIGTERM signals before the SIGKILL signal is received.

All MOMs must be configured with $exec_with_exec true in order for kill_delay to
work, even when relying on default kill_delay settings.

If kill_delay is set for a queue, the queue setting overrides the server setting. See
kill_delay in Appendix N: Queue Attributes - page 508.

Example qmgr -c "set server kill_delay=30"

legacy_vmem

Format <BOOLEAN>

Default FALSE

Description When set to true, the vmem request will be the amount of memory requested for each node of the
job. When it is unset or false, vmem will be the amount of memory for the entire job and will be
divided accordingly

lock_file

Format <STRING>

Default torque/server_priv/server.lock

Description Specifies the name and location of the lock file used to determine which high availability server
should be active.

If a full path is specified, it is used verbatim by Torque. If a relative path is specified, Torque will
prefix it with torque/server_priv.

lock_file_check_time

Format <INTEGER>

Appendix B: Server Parameters

408

409

lock_file_check_time

Default 9

Description Specifies how often (in seconds) a high availability server will check to see if it should become act-
ive.

lock_file_update_time

Format <INTEGER>

Default 3

Description Specifies how often (in seconds) the thread will update the lock file.

log_events

Format Bitmap

Default ---

Descrip-
tion

By default, the server logs all events. To customize this, perform Boolean OR operations on the
binary representation of each of the following bitmaps (or "enablement bits") to put into effect,
then convert the end result to decimal and assign it to log_events:

#define PBSEVENT_ERROR 0x0001 /* internal errors */
#define PBSEVENT_SYSTEM 0x0002 /* system (server) events */
#define PBSEVENT_ADMIN 0x0004 /* admin events */
#define PBSEVENT_JOB 0x0008 /* job related events */
#define PBSEVENT_JOB_USAGE 0x0010 /* End of Job accounting */
#define PBSEVENT_SECURITY 0x0020 /* security violation events */
#define PBSEVENT_SCHED 0x0040 /* scheduler events */
#define PBSEVENT_DEBUG 0x0080 /* common debug messages */
#define PBSEVENT_DEBUG2 0x0100 /* less needed debug messages */
#define PBSEVENT_CLIENTAUTH 0X0200 /* TRQAUTHD login events */
#define PBSEVENT_SYSLOG 0x0400 /* pass this event to the syslog as well (if
defined) */
#define PBSEVENT_FORCE 0x8000 /* set to force a message */

For example, if you want to log only internal error, system/server, job-related, and job-usage
events, set log_events to 27 (1 (0x01) + 2 (0x02) + 8 (0x08) + 16 (0x10)) in qmgr:

Qmgr: set server log_events = 27

Appendix B: Server Parameters

log_file_max_size

Format <INTEGER>

Default 0

Description Specifies a soft limit, in kilobytes, for the server's log file. The file size is checked every 5 minutes,
and if the current day file size is greater than or equal to this value then it will be rolled from X
to X.1 and a new empty log will be opened. Any value less than or equal to 0 will be ignored by
pbs_server (the log will not be rolled).

log_file_roll_depth

Format <INTEGER>

Default 1

Description If log_file_max_size is set, controls how deep the current day log files will be rolled before
they are deleted.

log_keep_days

Format <INTEGER>

Default 0

Description Specifies how long (in days) a server or MOM log should be kept.

log_level

Format <INTEGER>

Default 0

Description Specifies the pbs_server logging verbosity. Maximum value is 7.

mail_body_fmt

Format A printf-like format string

Appendix B: Server Parameters

410

411

mail_body_fmt

Default PBS Job Id: %i Job Name: %j Exec host: %h %m %d

Description Override the default format for the body of outgoing mail messages. A number of printf-like
format specifiers and escape sequences can be used:

l \n – new line
l \t – tab
l \\ – backslash
l \' – single quote
l \" – double quote
l %d – details concerning the message
l %h – PBS host name
l %i – PBS job identifier
l %j – PBS job name
l %m – long reason for message
l %o – job owner
l %q – job's queue
l %r – short reason for message
l %R – resources requested summary
l %u – resources used summary
l %w – working directory
l %% – a single %

Example %o job owner dbeer@nalthis
%R resources requested summary walltime=600 nodes=2:ppn=6
%u resources used summary cput=600 vmem=1043246kb mem=1003241kb
%w working directory /home/dbeer/hemalurgy/

mail_domain

Format <STRING>

Default ---

Description Override the default domain for outgoing mail messages. If set, emails will be addressed to
<user>@<hostdomain>. If unset, the job's Job_Owner attribute will be used. If set to never,
Torque will never send emails.

Appendix B: Server Parameters

mail_from

Format <STRING>

Default adm

Description Specify the name of the sender when Torque sends emails.

mail_subject_fmt

Format A printf-like format string

Default PBS JOB %i

Description Override the default format for the subject of outgoing mail messages. A number of printf-like
format specifiers and escape sequences can be used:

l \n – new line
l \t – tab
l \\ – backslash
l \' – single quote
l \" – double quote
l %d – details concerning the message
l %h – PBS host name
l %i – PBS job identifier
l %j – PBS job name
l %m – long reason for message
l %o – job owner
l %q – job's queue
l %r – short reason for message
l %R – resources requested summary
l %u – resources used summary
l %w – working directory
l %% – a single %

Example %o job owner dbeer@nalthis
%R resources requested summary walltime=600 nodes=2:ppn=6
%u resources used summary cput=600 vmem=1043246kb mem=1003241kb
%w working directory /home/dbeer/hemalurgy/

Appendix B: Server Parameters

412

413

managers

Format <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default root@localhost

Description List of users granted batch administrator privileges. The host, sub-domain, or domain name may
be wildcarded by the use of an asterisk character (*). Requires full manager privilege to set or
alter.

max_job_array_size

Format <INTEGER>

Default Unlimited

Description Sets the maximum number of jobs that can be in a single job array.

max_slot_limit

Format <INTEGER>

Default Unlimited

Description This is the maximum number of jobs that can run concurrently in any job array. Slot limits can be
applied at submission time with qsub, or it can be modified with qalter.

qmgr -c 'set server max_slot_limit=10'

No array can request a slot limit greater than 10. Any array that does not request a slot limit
receives a slot limit of 10. Using the example above, slot requests greater than 10 are rejected with
the message: "Requested slot limit is too large, limit is 10."

max_user_run

Format <INTEGER>

Default Unlimited

Description This limits the maximum number of jobs a user can have running for the given server.

Appendix B: Server Parameters

max_user_run

Example qmgr -c "set server max_user_run=5"

max_threads

Format <INTEGER>

Default min_threads * 20

Description This is the maximum number of threads that should exist in the thread pool at any time. See Set-
ting min_threads and max_threads for more information.

max_user_queuable

Format <INTEGER>

Default Unlimited

Description When set, max_user_queuable places a system-wide limit on the amount of jobs that an
individual user can queue.

qmgr -c 'set server max_user_queuable=500'

min_threads

Format <INTEGER>

Default (2 * the number of procs listed in /proc/cpuinfo) + 1. If Torque is unable to read
/proc/cpuinfo, the default is 10.

Description This is the minimum number of threads that should exist in the thread pool at any time. See Set-
ting min_threads and max_threads for more information.

moab_array_compatible

Format <BOOLEAN>

Default TRUE

Appendix B: Server Parameters

414

415

moab_array_compatible

Description This parameter places a hold on jobs that exceed the slot limit in a job array. When one of the
active jobs is completed or deleted, one of the held jobs goes to a queued state.

mom_job_sync

Format <BOOLEAN>

Default TRUE

Description When set to TRUE, specifies that the pbs_server will synchronize its view of the job queue and
resource allocation with compute nodes as they come online. If a job exists on a compute node, it
will be automatically cleaned up and purged. (Enabled by default in Torque 2.2.0 and higher.)

Jobs that are no longer reported by the mother superior are automatically purged by pbs_
server. Jobs that pbs_server instructs the MOM to cancel have their processes killed in
addition to being deleted (instead of leaving them running as in versions of Torque prior to 4.1.1).

next_job_number

Format <INTEGER>

Default ---

Description Specifies the ID number of the next job. If you set your job number too low and Torque repeats a
job number that it has already used, the job will fail. Before setting next_job_number to a number
lower than any number that Torque has already used, you must clear out your .e and .o files.

If you use Moab Workload Manager (and have configured it to synchronize job IDs with
Torque), then Moab will generate the job ID and next_job_number will have no effect on
the job ID. See Resource Manager Configuration in the Moab Workload Manager
Administrator Guide for more information.

node_check_rate

Format <INTEGER>

Default 600

Description Specifies the minimum duration (in seconds) that a node can fail to send a status update before
being marked down by the pbs_server daemon.

Appendix B: Server Parameters

node_pack

Description Deprecated.

node_ping_rate

Format <INTEGER>

Default 300

Description Specifies the maximum interval (in seconds) between successive "pings" sent from the pbs_
server daemon to the pbs_mom daemon to determine node/daemon health.

node_submit_exceptions

Format String

Default ---

Description When set in conjunction with allow_node_submit, these nodes will not be allowed to submit
jobs.

no_mail_force

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, eliminates all e-mails when mail_options (see qsub) is set to "n". The job
owner won't receive e-mails when a job is deleted by a different user or a job failure occurs. If no_
mail_force is unset or is FALSE, then the job owner receives e-mails when a job is deleted by a
different user or a job failure occurs.

np_default

Format <INTEGER>

Default ---

Appendix B: Server Parameters

416

417

np_default

Description Allows the administrator to unify the number of processors (np) on all nodes. The value can be
dynamically changed. A value of 0 tells pbs_server to use the value of np found in the nodes file.
The maximum value is 32767.

np_default sets a minimum number of np per node. Nodes with less than the np_
default get additional execution slots.

operators

Format <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default root@localhost

Description List of users granted batch operator privileges. Requires full manager privilege to set or alter.

pass_cpuclock

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, the pbs_server daemon passes the option and its value to the pbs_mom daemons
for direct implementation by the daemons, making the CPU frequency adjustable as part of a
resource request by a job submission.

If set to FALSE, the pbs_server daemon creates and passes a PBS_CPUCLOCK job environment
variable to the pbs_mom daemons that contains the value of the cpuclock attribute used as part
of a resource request by a job submission. The CPU frequencies on the MOMs are not adjusted.
The environment variable is for use by prologue and epilogue scripts, enabling administrators to
log and research when users are making cpuclock requests, as well as researchers and
developers to perform CPU clock frequency changes using a method outside of that employed by
the Torque pbs_mom daemons.

poll_jobs

Format <BOOLEAN>

Default TRUE (FALSE in Torque 1.2.0p5 and earlier)

Appendix B: Server Parameters

poll_jobs

Description If set to TRUE, pbs_server will poll job info from MOMs over time and will not block on handling
requests which require this job information.

If set to FALSE, no polling will occur and if requested job information is stale, pbs_servermay
block while it attempts to update this information. For large systems, this value should be set to
TRUE.

query_other_jobs

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies whether or not non-admin users may view jobs they do not own.

record_job_info

Format <BOOLEAN>

Default FALSE

Description This must be set to TRUE in order for job logging to be enabled.

record_job_script

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, this adds the contents of the script executed by a job to the log.

For record_job_script to take effect, record_job_infomust be set
to TRUE.

resources_available

Format <STRING>

Appendix B: Server Parameters

418

419

resources_available

Default ---

Description Allows overriding of detected resource quantities (see Assigning Queue Resource Limits). pbs_
servermust be restarted for changes to take effect. Also, resources_available is constrained
by the smaller of queue.resources_available and server.resources_available.

scheduling

Format <BOOLEAN>

Default ---

Description Allows pbs_server to be scheduled. When FALSE, pbs_server is a resource manager that
works on its own. When TRUE, Torque allows a scheduler, such as Moab or Maui, to dictate what
pbs_server should do.

sendmail_path

Format <STRING>

Default /usr/lib/sendmail or the path set with the configure --with-sendmail configure
option.

Description Sets the path to the sendmail executable. If this attribute is set, it will override either the path dis-
covered by Torque during the build or the path explicitly set with the configure --with-
sendmail=<path> configure option during the build.

submit_hosts

Format <HOSTNAME>[,<HOSTNAME>]...

Default Not set.

Description Hosts in this list are able to submit jobs. This applies to any node whether within the cluster or
outside of the cluster.

If acl_host_enable is set to TRUE and the host is not in the PBSHOME/server_priv/nodes
file, then the host must also be in the acl_hosts list.

To allow qsub from all compute nodes instead of just a subset of nodes, use allow_node_
submit.

Appendix B: Server Parameters

tcp_incoming_timeout

Format <INTEGER>

Default 600

Description Specifies the timeout for incoming TCP connections to pbs_server. Functions exactly the same as
tcp_timeout, but governs incoming connections while tcp_timeout governs only outgoing
connections (or connections initiated by pbs_server).

If you use Moab Workload Manager, prevent communication errors by giving tcp_
incoming_timeout at least twice the value of the Moab RMPOLLINTERVAL. See
RMPOLLINTERVAL in the Moab Workload Manager Administrator Guide for more
information.

tcp_timeout

Format <INTEGER>

Default 300

Description Specifies the timeout for idle outbound TCP connections. If no communication is received by the
server on the connection after the timeout, the server closes the connection. There is an exception
for connections made to the server on port 15001 (default); timeout events are ignored on the
server for such connections established by a client utility or scheduler. Responsibility rests with
the client to close the connection first (See Large Cluster Considerations for additional
information.).

Use tcp_incoming_timeout to specify the timeout for idle inbound TCP connections.

thread_idle_seconds

Format <INTEGER>

Default 300

Description This is the number of seconds a thread can be idle in the thread pool before it is deleted. If
threads should not be deleted, set to -1. Torque will always maintain at least min_threads num-
ber of threads, even if all are idle.

Appendix B: Server Parameters

420

421

timeout_for_job_delete

Format <INTEGER> (seconds)

Default 120

Description The specific timeout used when deleting jobs because the node they are executing on is being
deleted.

timeout_for_job_requeue

Format <INTEGER> (seconds)

Default 120

Description The specific timeout used when requeuing jobs because the node they are executing on is being
deleted.

use_jobs_subdirs

Format <BOOLEAN>

Default Not set (FALSE).

Description Lets an administrator direct the way pbs_server will store its job-related files. Improves the
handling of large number of jobs.

l When use_jobs_subdirs is unset (or set to FALSE), job and job array files will be
stored directly under $PBS_HOME/server_priv/jobs and $PBS_HOME/server_
priv/arrays.

l When use_jobs_subdirs is set to TRUE, job and job array files will be distributed over
10 subdirectories under their respective parent directories. This method helps to keep a
smaller number of files in a given directory.

This setting does not automatically move existing job and job array files into the
respective subdirectories. If you choose to use this setting (TRUE), you must first

o set use_jobs_subdirs to TRUE,
o shut down the Torque server daemon,
o in the contrib directory, run the use_jobs_subdirs_setup python script

with -m option,
o start the Torque server daemon.

> qmgr -c 'set use_jobs_subdirs=TRUE'

Appendix B: Server Parameters

422

Appendix C: Node Manager (MOM) Configuration

Under Torque, MOM configuration is accomplished using the mom_priv/config file located in
the PBS directory on each execution server. You must create this file and insert any desired lines in
a text editor (blank lines are allowed). When you modify the mom_priv/config file, you must
restart pbs_mom.

The following examples demonstrate two methods of modifying the mom_priv/config file:

> echo "\$loglevel 3" > /var/spool/torque/mom_priv/config

> vim /var/spool/torque/mom_priv/config
...
$loglevel 3

In this chapter:

C.1 MOMParameters 423
C.2 Node Features andGeneric Consumable Resource Specification 447

Related Topics

l Appendix A: Commands Overview - page 293

l Appendix G: Prologue and Epilogue Scripts - page 467

l pbs_mom Options

Appendix C: Node Manager (MOM) Configuration

C.1 MOM Parameters

These parameters go in the mom_priv/config file. They control various behaviors for the
MOMs.

arch

$attempt_to_make_
dir

$check_poll_time

$clienthost

$configversion

$cputmult

$cray_check_rur

$cuda_visible_
devices

$down_on_error

$enablemomrestart

$exec_with_exec

$ext_pwd_retry

$force_overwrite

$ideal_load

$igncput

$ignmem

$ignvmem

$ignwalltime

$job_exit_wait_time

$job_output_file_umask

$job_starter

$job_starter_run_privileged

$jobdirectory_sticky

$log_directory

$log_file_max_size

$log_file_roll_depth

$log_file_suffix

$log_keep_days

$logevent

$loglevel

$max_conn_timeout_micro_
sec

$max_join_job_wait_time

$max_load

$max_physical_memory

$max_swap_memory

$memory_pressure_
duration

$memory_pressure_
threshold

$mom_hierarchy_retry_time

$mom_host

$node_check_interval

$node_check_on_job_end

$node_check_on_job_start

$node_check_on_job_start

$nodefile_suffix

$nospool_dir_list

opsys

$pbsclient

$pbsserver

$presetup_prologue

$prologalarm

$rcpcmd

$reduce_prolog_checks

$reject_job_submission

$remote_checkpoint_dirs

$remote_reconfig

$resend_join_job_wait_
time

$restricted

size[fs=<FS>]

$source_login_batch

$source_login_interactive

$spool_as_final_name

$status_update_time

$thread_unlink_calls

$timeout

$tmpdir

$use_smt

$usecp

$varattr

$wallmult

$xauthpath

arch

Format <STRING>

Description Specifies the architecture of the local machine. This information is used by the scheduler only.

Example arch ia64

$attempt_to_make_dir

Format <BOOLEAN>

Appendix C: Node Manager (MOM) Configuration

423 C.1 MOM Parameters

C.1 MOM Parameters 424

$attempt_to_make_dir

Default FALSE

Description When set to TRUE, specifies that you want Torque to attempt to create the output directories for
jobs if they do not already exist.

Torque uses this parameter to make the directory as the user and not as root. Torque will
create the directory (or directories) ONLY if the user has permissions to do so.

Example $attempt_to_make_dir true

$check_poll_time

Format <STRING>

Default 45

Description Amount of time (in seconds) between checking running jobs, polling jobs, and trying to resend obit-
uaries for jobs that haven't sent successfully.

Example $check_poll_time 90

$clienthost

Format <STRING>

Description Specifies the machine running pbs_server.

This parameter is deprecated. Use
$pbsserver.

Example $clienthost
node01.teracluster.org

$configversion

Format <STRING>

Appendix C: Node Manager (MOM) Configuration

$configversion

Description Specifies the version of the config file data.

Example $configversion 113

$cputmult

Format <FLOAT>

Description CPU time multiplier.

If set to 0.0, MOM level cputime enforcement is
disabled.

Example $cputmult 2.2

$cray_check_rur

Format <BOOLEAN>

Default TRUE

Description When set to FALSE, login MOMs (Cray only) will not look at the energy resource information used
for each job. Bypassing Resource Utilization Reporting (RUR) checking may improve performance.

Example $cray_check_rur false

$cuda_visible_devices

Format <BOOLEAN>

Default TRUE

This is disabled by default when cgroups are enabled, because it becomes repetitive at
that time. If you still wish to have the environment variable with cgroups enabled, then
you need to set this parameter to TRUE.

Appendix C: Node Manager (MOM) Configuration

425 C.1 MOM Parameters

C.1 MOM Parameters 426

$cuda_visible_devices

Description When set to TRUE, the MOM will set the CUDA_VISIBLE_DEVICES environment variable for jobs
using NVIDIA GPUs. If set to FALSE, the MOM will not set CUDA_VISIBLE_DEVICES for any jobs.

For CUDA < 7, $CUDA_VISIBLE_DEVICES is set to the absolute indices of the GPUs your
job will use, so if you are using GPUs 2 and 3, then the variable will be set to 2,3. If you are
using CUDA >= 7.0, then it will be set to the relative index, starting from 0, so if you are
using GPUs 2 and 3, the variable will be set to 0,1. This is necessary because of a change in
the CUDA implementation that came out in version 7.

Example $cuda_visible_devices true

$down_on_error

Format <BOOLEAN>

Default TRUE

Description Causes the MOM to report itself as state "down" to pbs_server in the event of a failed health
check. See A.4.5 Health check - page 307 for more information.

Example $down_on_error true

$enablemomrestart

Format <BOOLEAN>

Description Enables automatic restarts of the MOM. If enabled, the MOM will check if its binary has been
updated and restart itself at a safe point when no jobs are running; thus making upgrades easier.
The check is made by comparing the mtime of the pbs_mom executable. Command-line args, the
process name, and the PATH env variable are preserved across restarts. It is recommended that
this not be enabled in the config file, but enabled when desired with momctl (see A.3.5
Resources - page 301 for more information.)

Example $enablemomrestart true

Appendix C: Node Manager (MOM) Configuration

$exec_with_exec

Format <BOOLEAN>

Default FALSE

Description pbs_mom uses the exec command to start the job script rather than the Torque default method,
which is to pass the script's contents as the input to the shell. This means that if you trap signals in
the job script, they will be trapped for the job. Using the default method, you would need to con-
figure the shell to also trap the signals.

Example $exec_with_exec true

$ext_pwd_retry

Format <INTEGER>

Default 3

Description (Available in Torque 2.5.10, 3.0.4, and later.) Specifies the number of times to retry checking the
password. Useful in cases where external password validation is used, such as with LDAP.

Example $ext_pwd_retry = 5

$force_overwrite

Format <BOOLEAN>

Description (Available in Torque 6.0.3 and later.) When set to true, forces the output files to be overwritten each
time a job is started.

Example $force_overwrite true

$ideal_load

Format <FLOAT>

Description Ideal processor load.

Appendix C: Node Manager (MOM) Configuration

427 C.1 MOM Parameters

C.1 MOM Parameters 428

$ideal_load

Example $ideal_load
4.0

$igncput

Format <BOOLEAN>

Default FALSE

Description Ignores limit violation pertaining to CPU time.

Example $igncput true

$ignmem

Format <BOOLEAN>

Default FALSE

Description Ignores limit violations pertaining to physical memory.

Example $ignmem true

$ignvmem

Format <BOOLEAN>

Default FALSE

Description Ignore limit violations pertaining to virtual memory.

Example $ignvmem true

Appendix C: Node Manager (MOM) Configuration

$ignwalltime

Format <BOOLEAN>

Default FALSE

Description Ignore walltime (do not enable MOM based walltime limit enforcement).

Example $ignwalltime true

$job_exit_wait_time

Format <INTEGER>

Default 600

Description This is the timeout (in seconds) to clean up parallel jobs after one of the sister nodes for the par-
allel job goes down or is otherwise unresponsive. The MOM sends out all of its kill job requests to
sisters and marks the time. Additionally, the job is placed in the substate JOB_SUBSTATE_EXIT_
WAIT. The MOM then periodically checks jobs in this state and if they are in this state for more
than the specified time, death is assumed and the job gets cleaned up. Default is 600 seconds (10
minutes).

Example $job_exit_wait_time 300

$job_output_file_umask

Format <STRING>

Description Uses the specified umask when creating job output and error files. Values can be specified in base
8, 10, or 16; leading 0 implies octal and leading 0x or 0X hexadecimal. A value of "userdefault" will
use the user's default umask. This parameter is in version 2.3.0 and later.

Example $job_output_file_umask 027

$job_starter

Format <STRING>

Appendix C: Node Manager (MOM) Configuration

429 C.1 MOM Parameters

C.1 MOM Parameters 430

$job_starter

Description Specifies the fully qualified pathname of the job starter. If this parameter is specified, instead of
executing the job command and job arguments directly, the MOM will execute the job starter,
passing the job command and job arguments to it as its arguments. The job starter can be used to
launch jobs within a desired environment.

Example $job_starter /var/torque/mom_priv/job_starter.sh
> cat /var/torque/mom_priv/job_starter.sh
#!/bin/bash
export FOOHOME=/home/foo
ulimit -n 314
$*

$job_starter_run_privileged

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that you want Torque to execute the $job_starter script with elev-
ated privileges.

Example $job_starter_run_privileged true

$jobdirectory_sticky

Format <BOOLEAN>

Default FALSE

Description When this option is set (TRUE), the job directory on the MOM can have a sticky bit set.

Example $jobdirectory_sticky true

$log_directory

Format <STRING>

Appendix C: Node Manager (MOM) Configuration

$log_directory

Default TORQUE_HOME/mom_logs/

Description Changes the log directory. TORQUE_HOME default is /var/spool/torque/ but can be changed
in the ./configure script. The value is a string and should be the full path to the desired MOM
log directory.

Example $log_directory /opt/torque/mom_logs/

$log_file_max_size

Format <INTEGER>

Description Soft limit for log file size in kilobytes. Checked every 5 minutes. If the log file is found to be greater
than or equal to log_file_max_size the current log file will be moved from X to X.1 and a new empty
file will be opened.

Example $log_file_max_size = 100

$log_file_roll_depth

Format <INTEGER>

Description Specifies how many times a log fill will be rolled before it is deleted.

Example $log_file_roll_depth = 7

$log_file_suffix

Format <STRING>

Description Optional suffix to append to log file names. If %h is the suffix, pbs_mom appends the hostname for
where the log files are stored if it knows it, otherwise it will append the hostname where the MOM
is running.

Example $log_file_suffix %h = 20100223.mybox
$log_file_suffix foo = 20100223.foo

Appendix C: Node Manager (MOM) Configuration

431 C.1 MOM Parameters

C.1 MOM Parameters 432

$log_keep_days

Format <INTEGER>

Description Specifies how many days to keep log files. pbs_mom deletes log files older than the specified num-
ber of days. If not specified, pbs_mom won't delete log files based on their age.

Example $log_keep_days 10

$logevent

Format <INTEGER>

Description Creates an event mask enumerating which log events will be recorded in the MOM logs. By default
all events are logged.

These are the events which can be chosen:

ERROR 0x0001 internal errors
SYSTEM 0x0002 system (server) & (trqauthd) events
ADMIN 0x0004 admin events
JOB 0x0008 job related events
JOB_USAGE 0x0010 End of Job accounting
SECURITY 0x0020 security violation events
SCHED 0x0040 scheduler events
DEBUG 0x0080 common debug messages
DEBUG2 0x0100 less needed debug messages
CLIENTAUTH 0X0200 TRQAUTHD login events
SYSLOG 0x0400 pass this event to the syslog as well

The listed events are shown here with hexidecimal values; however, a decimal value must
be used when setting $logevent.

Example $logevent 1039

Log ERROR, SYSTEM, ADMIN, JOB and SYSLOG events. This has a hexidecimal value of 0x40F.

$loglevel

Format <INTEGER>

Description Specifies the verbosity of logging with higher numbers specifying more verbose logging. Values
may range between 0 and 7.

Example $loglevel 4

Appendix C: Node Manager (MOM) Configuration

$max_conn_timeout_micro_sec

Format <INTEGER>

Default 10000

Description Specifies how long (in microseconds) pbs_mom should wait for a connection to be made. Default
value is 10,000 (.01 sec).

Example $max_conn_timeout_micro_sec 30000

Sets the connection timeout on the MOM to .03 seconds.

$max_join_job_wait_time

Format <INTEGER>

Default 600

Description The interval to wait (in seconds) for jobs stuck in a prerun state before deleting them from the
MOMs and requeueing them on the server. Default is 600 seconds (10 minutes).

If a MOM is completely idle, it can take as long as the next MOM-to-server update time to
requeue a failed job.

Example $max_join_job_wait_time 300

$max_load

Format <FLOAT>

Description Maximum processor load.

Example $max_load 4.0

$max_physical_memory

Format <INTEGER> <unit>

Appendix C: Node Manager (MOM) Configuration

433 C.1 MOM Parameters

C.1 MOM Parameters 434

$max_physical_memory

Description Restrict the amount of memory available to jobs on this node to the specified amount, which may
not exceed the amount of memory on the machine and must be greater than 0. Default is to use all
available memory on the host.

When cgroups are enabled, this limits the whole of the machine and doesn't specifically
limit each socket or NUMA node. If you have 2 NUMA nodes and 32 GB of memory, but you
limit the machine to 30, it won't force a job requesting 16 GB to span NUMA nodes, but
once that jobs starts, there would only be 14 GB remaining in use for jobs.

If you are using this setting, availmem (as reported in pbsnodes) is no longer accurate, as
we do not know what portion of used memory and swap are by jobs and what portion are
from the operating system. Since availmem is no longer accurate, you need to set
NODEAVAILABILITYPOLICY to DEDICATED if you are using Moab or Maui.

Example $max_physical_memory 30gb

$max_swap_memory

Format <INTEGER> <unit>

Description Restrict the amount of swap available to jobs on this node to the specified amount, which may not
exceed the amount of swap on the machine and must be greater than 0. If you wish to disallow
swap, this must be set to a very low value instead of 0. Default is to use all available memory on
the host.

If you are using this setting, availmem (as reported in pbsnodes) is no longer accurate, as
we do not know what portion of used memory and swap are by jobs and what portion are
from the operating system. Since availmem is no longer accurate, you need to set
NODEAVAILABILITYPOLICY to DEDICATED if you are using Moab or Maui.

Example $max_swap_memory 5gb

$memory_pressure_duration

Format <INTEGER>

Description (Applicable in version 3.0 and later.) Memory pressure duration sets a limit to the number of times
the value of memory_pressure_threshold can be exceeded before a process is terminated. This can
only be used with $memory_pressure_threshold.

Appendix C: Node Manager (MOM) Configuration

$memory_pressure_duration

Example $memory_pressure_duration 5

$memory_pressure_threshold

Format <INTEGER>

Description (Applicable in version 3.0 and later.) The memory_pressure of a cpuset provides a simple per-cpuset
running average of the rate that the processes in a cpuset are attempting to free up in-use
memory on the nodes of the cpuset to satisfy additional memory requests. The memory_pressure_
threshold is an integer number used to compare against the reclaim rate provided by the
memory_pressure file. If the threshold is exceeded and memory_pressure_duration is set, then the
process terminates after exceeding the threshold by the number of times set in memory_pressure_
duration. If memory_pressure duration is not set, then a warning is logged and the process
continues. Memory_pressure_threshold is only valid with memory_pressure enabled in the root
cpuset.

To enable, log in as the super user and execute the command echo 1 >>
/dev/cpuset/memory_pressure_enabled. See the cpuset man page for more information
concerning memory pressure.

Example $memory_pressure_threshold 1000

$mom_hierarchy_retry_time

Format <SECONDS>

Default 90

Description Specifies the amount of time (in seconds) that a MOM waits to retry a node in the hierarchy path
after a failed connection to that node.

Example $mom_hierarchy_retry_time 30

$mom_host

Format <STRING>

Description Sets the local hostname as used by pbs_mom.

Appendix C: Node Manager (MOM) Configuration

435 C.1 MOM Parameters

C.1 MOM Parameters 436

$mom_host

Example $mom_host node42

$node_check_script

Format <STRING>

Description Specifies the fully qualified pathname of the health check script to run (see Compute Node Health
Check for more information).

Example $node_check_script /opt/batch_tools/nodecheck.pl

$node_check_interval

Format <STRING>

Description Specifies the number of MOM intervals between subsequent executions of the health check
specified by $node_check_script. This value defaults to 1 indicating the check is run every MOM
interval (see 13.10 Compute Node Health Check - page 281 for more information). The interval
number can be followed by a comma-separated list of events that will initiate a health check.

$node_check_interval has two special strings that can be set:

l jobstart – makes the node health script run when a job is started (before the prologue
script).

l jobend – makes the node health script run after each job has completed on a node (after
the epilogue script).

The node health check may be configured to run before or after the job with the "jobstart"
and/or "jobend" options. However, the job environment variables do not get passed to
node health check script, so it has no access to those variables at any time.

Using "jobstart" and/or "jobend" options is deprecated and may be removed in a future
release. To initiate health checks at job start and job end, set the $node_check_on_job_start
and/or $node_check_on_job_end parameters.

Example $node_check_interval 5,jobstart

Execute the health check every 5 MOM intervals and when a job starts.

Appendix C: Node Manager (MOM) Configuration

$node_check_on_job_end

Format <BOOLEAN>

Description If set to true, initiates a health check when a job ends.

Example $node_check_on_job_end=false

$node_check_on_job_start

Format <BOOLEAN>

Description If set to true, initiates a health check when a job starts.

Example $node_check_on_job_start=true

$nodefile_suffix

Format <STRING>

Description Specifies the suffix to append to a host names to denote the data channel network adapter in a
multi-homed compute node.

Example $nodefile_suffix i

With the suffix of "i" and the control channel adapter with the name node01, the data
channel would have a hostname of node01i.

$nospool_dir_list

Format <STRING>

Appendix C: Node Manager (MOM) Configuration

437 C.1 MOM Parameters

C.1 MOM Parameters 438

$nospool_dir_list

Description If this is configured, the job's output is spooled in the working directory of the job or the specified
output directory.

Specify the list in full paths, delimited by commas. If the job's working directory (or specified
output directory) is in one of the paths in the list (or a subdirectory of one of the paths in the list),
the job is spooled directly to the output location. $nospool_dir_list * is accepted.

The user that submits the job must have write permission on the folder where the job is written,
and read permission on the folder where the file is spooled.

Alternatively, you can use the $spool_as_final_name parameter to force the job to spool directly to
the final output.

This should generally be used only when the job can run on the same machine as where
the output file goes, or if there is a shared filesystem. If not, this parameter can slow down
the system or fail to create the output file.

Example $nospool_dir_list /home/mike/jobs/,/var/tmp/spool/

opsys

Format <STRING>

Description Specifies the operating system of the local machine. This information is used by the scheduler only.

Example opsys RHEL3

$pbsclient

Format <STRING>

Description Specifies machines which the MOM daemon will trust to run resource manager commands via
momctl. This may include machines where monitors, schedulers, or admins require the use of this
command.

Example $pbsclient node01.teracluster.org

Appendix C: Node Manager (MOM) Configuration

$pbsserver

Format <STRING>

Description Specifies the machine running pbs_server.

This parameter replaces the deprecated parameter
$clienthost.

Example $pbsserver node01.teracluster.org

$presetup_prologue

Format <STRING>

Description A full path to the presetup prologue for all jobs on this node. If set, this script executes before any
setup for the job occurs (such as becoming the user, creating the output files, or changing
directories). As a result, no output from this script will appear in the job's output.

Example $presetup_prologue /opt/kerberos_integration.sh

$prologalarm

Format <INTEGER>

Description Specifies maximum duration (in seconds) which the MOM will wait for the job prologue or job epi-
logue to complete. The default value is 300 seconds (5 minutes). When running parallel jobs, this
is also the maximum time a sister node will wait for a job to start.

Example $prologalarm 60

$rcpcmd

Format <STRING>

Description Specifies the full path and optional additional command line args to use to perform remote copies.

Appendix C: Node Manager (MOM) Configuration

439 C.1 MOM Parameters

C.1 MOM Parameters 440

$rcpcmd

Example $rcpcmd /usr/local/bin/scp -i /etc/sshauth.dat

$reduce_prolog_checks

Format <BOOLEAN>

Description If enabled, Torque will only check if the file is a regular file and is executable, instead of the nor-
mal checks listed on the prologue and epilogue page. Default is FALSE.

Example $reduce_prolog_checks true

$reject_job_submission

Format <BOOLEAN>

Description If set to TRUE, jobs will be rejected and the user will receive the message, "Jobs cannot be run on
mom %s." Default is FALSE.

Example $reject_job_submission true

$remote_checkpoint_dirs

Format <STRING>

Description Specifies which server checkpoint directories are remotely mounted. It tells the MOM which dir-
ectories are shared with the server. Using remote checkpoint directories eliminates the need to
copy the checkpoint files back and forth between the MOM and the server. All entries must be on
the same line, separated by a space.

Example $remote_checkpoint_dirs /checkpointFiles /bigStorage /fast

This informs the MOM that the /checkpointFiles, /bigStorage, and /fast
directories are remotely mounted checkpoint directories.

Appendix C: Node Manager (MOM) Configuration

$remote_reconfig

Format <STRING>

Description Enables the ability to remotely reconfigure pbs_mom with a new config file. Default is disabled.
Enable by setting to true, yes, or 1. For more information on how to reconfigure MOMs, see
momctl-r.

Example $remote_reconfig true

$resend_join_job_wait_time

Format <INTEGER>

Description This is the timeout for the Mother Superior to re-send the join job request if it didn't get a reply
from all the sister MOMs. The resend happens only once. Default is 5 minutes.

Example $resend_join_job_wait_time 120

$restricted

Format <STRING>

Description Specifies hosts which can be trusted to access MOM services as non-root. By default, no hosts are
trusted to access MOM services as non-root.

Example $restricted *.teracluster.org

size[fs=<FS>]

Format N/A

Description Specifies that the available and configured disk space in the <FS> filesystem is to be reported to
the pbs_server and scheduler.

To request disk space on a per job basis, specify the file resource as in qsub -l
nodes=1,file=1000kb.

Unlike most MOM config options, the size parameter is not preceded by a "$" character.

Appendix C: Node Manager (MOM) Configuration

441 C.1 MOM Parameters

C.1 MOM Parameters 442

size[fs=<FS>]

Example size[fs=/localscratch]

The available and configured disk space in the /localscratch filesystem will be reported.

$source_login_batch

Format <BOOLEAN>

Description Specifies whether or not MOM will source environment setup files, such as /etc/profile, for
batch jobs. Parameter accepts true, false, yes, no, 1 and 0. Default is TRUE. This parameter is in ver-
sion 2.3.1 and later.

Example $source_login_batch False

MOM will bypass the sourcing of /etc/profile, etc. type files.

$source_login_interactive

Format <BOOLEAN>

Description Specifies whether or not MOM will source environment setup files, such as /etc/profile, for
interactive jobs. Parameter accepts true, false, yes, no, 1 and 0. Default is TRUE. This parameter is in
version 2.3.1 and later.

Example $source_login_interactive False

MOM will bypass the sourcing of /etc/profile, etc. type files.

$spool_as_final_name

Format <BOOLEAN>

Description This makes the job write directly to its output destination instead of a spool directory. This allows
users easier access to the file if they want to watch the jobs output as it runs.

Example $spool_as_final_name true

Appendix C: Node Manager (MOM) Configuration

$status_update_time

Format <INTEGER>

Description Specifies the number of seconds between subsequent MOM-to-server update reports. Default is
45 seconds.

Example $status_update_time 120

MOM will send server update reports every 120 seconds.

$thread_unlink_calls

Format <BOOLEAN>

Description Threads calls to unlink when deleting a job. Default is false. If it is set to TRUE, pbs_mom will use a
thread to delete the job's files.

Example $thread_unlink_calls true

$timeout

Format <INTEGER>

Description Specifies the number of seconds before a TCP connection on the MOM will timeout. Default is 300
seconds.

Example $timeout 120

A TCP connection will wait up to 120 seconds before timing out.

For 3.x and earlier, MOM-to-MOM communication will allow up to 120 seconds before
timing out.

$tmpdir

Format <STRING>

Description Specifies a directory to create job-specific scratch space.

Appendix C: Node Manager (MOM) Configuration

443 C.1 MOM Parameters

C.1 MOM Parameters 444

$tmpdir

Example $tmpdir /localscratch

$use_smt

Format <BOOLEAN>

Default TRUE

Description Indicates that the user would like to use SMT. If set, each logical core inside of a physical core will
be used as a normal core for cpusets. This parameter is on by default.

$use_smt is deprecated. Please use the -L NUMA Resource Request syntax to control
whether or not threads or cores are used.

If you use SMT, you will need to set the np attribute so that each logical processor is
counted.

Example $use_smt false

$usecp

Format <HOST>:<SRCDIR> <DSTDIR>

Description Specifies which directories should be staged (see NFS and Other Networked Filesystems)

Example $usecp *.fte.com:/data /usr/local/data

Submission hosts in domain fte.com will map /data directory on submit host to
/usr/local/data on compute host

$varattr

Format <INTEGER> <STRING>

Appendix C: Node Manager (MOM) Configuration

$varattr

Description Provides a way to keep track of dynamic attributes on nodes.

<INTEGER> is how many seconds should go by between calls to the script to update the dynamic
values. If set to -1, the script is read only one time. If set to less than $status_update_time, the script
will run only after the server gets the update. Should preferably be set to a multiple of $status_
update_time.

<STRING> is the script path. This script should check for whatever dynamic attributes are desired,
and then output lines in this format:

name=value

Include any arguments after the script's full path. These features are visible in the output of
pbsnodes-a

varattr=Matlab=7.1;Octave=1.0.

For information about using $varattr to request dynamic features in Moab, see REQATTR in the
Moab Workload Manager Administrator Guide.

Example $varattr 25 /usr/local/scripts/nodeProperties.pl arg1 arg2 arg3

$wallmult

Format <FLOAT>

Description Sets a factor to adjust walltime usage by multiplying a default job time to a common reference
system. It modifies real walltime on a per-MOM basis (MOM configuration parameters). The factor
is used for walltime calculations and limits in the same way that cputmult is used for cpu time.

If set to 0.0, MOM level walltime enforcement is disabled.

Example $wallmult 2.2

$xauthpath

Format <STRING>

Description Specifies the path to the xauth binary to enable X11 forwarding.

Example $xauthpath /opt/bin/xauth

Appendix C: Node Manager (MOM) Configuration

445 C.1 MOM Parameters

C.1 MOM Parameters 446

Related Topics

l Appendix C: Node Manager (MOM) Configuration - page 422

Appendix C: Node Manager (MOM) Configuration

C.2 Node Features and Generic Consumable Resource
Specification

Node features (a.k.a. "node properties") are opaque labels which can be applied to a node. They are
not consumable and cannot be associated with a value. (Use generic resources described below for
these purposes). Node features are configured within the nodes file on the pbs_server head
node. This file can be used to specify an arbitrary number of node features.

Additionally, per node consumable generic resources may be specified using the format "<ATTR>
<VAL>" with no leading dollar ("$") character. When specified, this information is routed to the
scheduler and can be used in scheduling decisions. For example, to indicate that a given host has
two tape drives and one node-locked matlab license available for batch jobs, the following could be
specified:

mom_priv/config:

$clienthost 241.13.153.7
tape 2
matlab 1

Dynamic consumable resource information can be routed in by specifying a path preceded by an
exclamation point. (!) as in the example below. If the resource value is configured in this manner,
the specified file will be periodically executed to load the effective resource value.

mom_priv/config:

$clienthost 241.13.153.7
tape !/opt/rm/gettapecount.pl
matlab !/opt/tools/getlicensecount.pl

Related Topics

l Appendix C: Node Manager (MOM) Configuration - page 422

Appendix C: Node Manager (MOM) Configuration

447 C.2 Node Features and Generic Consumable Resource Specification

448

Appendix D: Diagnostics and Error Codes

Torque has a diagnostic script to assist you in giving Torque Support the files they need to support
issues. It should be run by a user that has access to run all Torque commands and access to all
Torque directories (this is usually root).

The script (contrib/diag/tdiag.sh) is available in Torque 2.3.8, Torque 2.4.3, and later. The
script grabs the node file, server and MOM log files, and captures the output of qmgr -c 'p s'.
These are put in a tar file.

The script also has the following options (this can be shown in the command line by entering
./tdiag.sh -h):

USAGE: ./torque_diag [-d DATE] [-h] [-o OUTPUT_FILE] [-t TORQUE_HOME]

l DATE should be in the format YYYYmmdd. For example, " 20091130" would be the date for
November 30th, 2009. If no date is specified, today's date is used.

l OUTPUT_FILE is the optional name of the output file. The default output file is torque_
diag<today's_date>.tar.gz. TORQUE_HOME should be the path to your Torque
directory. If no directory is specified, /var/spool/torque is the default.

Table D-1: Torque error codes

Error code name Number Description

PBSE_FLOOR 15000 No error

PBSE_UNKJOBID 15001 Unknown job ID error

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Cannot set attribute, read only or insufficient permission

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 Unauthorized Request

PBSE_IFF_NOT_FOUND 15008 trqauthd unable to authenticate

PBSE_MUNGE_NOT_FOUND 15009 Munge executable not found, unable to authenticate

Appendix D: Diagnostics and Error Codes

Error code name Number Description

PBSE_BADHOST 15010 Access from host not allowed, or unknown host

PBSE_JOBEXIST 15011 Job with requested ID already exists

PBSE_SYSTEM 15012 System error

PBSE_INTERNAL 15013 PBS server internal error

PBSE_REGROUTE 15014 Dependent parent job currently in routing queue

PBSE_UNKSIG 15015 Unknown/illegal signal name

PBSE_BADATVAL 15016 Illegal attribute or resource value for

PBSE_MODATRRUN 15017 Cannot modify attribute while job running

PBSE_BADSTATE 15018 Request invalid for state of job

PBSE_UNKQUE 15020 Unknown queue

PBSE_BADCRED 15021 Invalid credential

PBSE_EXPIRED 15022 Expired credential

PBSE_QUNOENB 15023 Queue is not enabled

PBSE_QACESS 15024 Access to queue is denied

PBSE_BADUSER 15025 Bad UID for job execution

PBSE_HOPCOUNT 15026 Job routing over too many hops

PBSE_QUEEXIST 15027 Queue already exists

PBSE_ATTRTYPE 15028 Incompatible type

PBSE_QUEBUSY 15029 Cannot delete busy queue

Appendix D: Diagnostics and Error Codes

449

450

Error code name Number Description

PBSE_QUENBIG 15030 Queue name too long

PBSE_NOSUP 15031 No support for requested service

PBSE_QUENOEN 15032 Cannot enable queue, incomplete definition

PBSE_PROTOCOL 15033 Batch protocol error

PBSE_BADATLST 15034 Bad attribute list structure

PBSE_NOCONNECTS 15035 No free connections

PBSE_NOSERVER 15036 No server specified

PBSE_UNKRESC 15037 Unknown resource type

PBSE_EXCQRESC 15038 Job exceeds queue resource limits

PBSE_QUENODFLT 15039 No default queue specified

PBSE_NORERUN 15040 Job is not rerunnable

PBSE_ROUTEREJ 15041 Job rejected by all possible destinations (check syntax, queue
resources, …)

PBSE_ROUTEEXPD 15042 Time in Route Queue Expired

PBSE_MOMREJECT 15043 Execution server rejected request

PBSE_BADSCRIPT 15044 (qsub) cannot access script file

PBSE_STAGEIN 15045 Stage-in of files failed

PBSE_RESCUNAV 15046 Resource temporarily unavailable

PBSE_BADGRP 15047 Bad GID for job execution

PBSE_MAXQUED 15048 Maximum number of jobs already in queue

Appendix D: Diagnostics and Error Codes

Error code name Number Description

PBSE_CKPBSY 15049 Checkpoint busy, may retry

PBSE_EXLIMIT 15050 Resource limit exceeds allowable

PBSE_BADACCT 15051 Invalid Account

PBSE_ALRDYEXIT 15052 Job already in exit state

PBSE_NOCOPYFILE 15053 Job files not copied

PBSE_CLEANEDOUT 15054 Unknown job ID after clean init

PBSE_NOSYNCMSTR 15055 No master found for sync job set

PBSE_BADDEPEND 15056 Invalid Job Dependency

PBSE_DUPLIST 15057 Duplicate entry in list

PBSE_DISPROTO 15058 Bad DIS based Request Protocol

PBSE_EXECTHERE 15059 Cannot execute at specified host because of checkpoint or
stagein files

PBSE_SISREJECT 15060 Sister rejected

PBSE_SISCOMM 15061 Sister could not communicate

PBSE_SVRDOWN 15062 Request not allowed: Server shutting down

PBSE_CKPSHORT 15063 Not all tasks could checkpoint

PBSE_UNKNODE 15064 Unknown node

PBSE_UNKNODEATR 15065 Unknown node-attribute

PBSE_NONODES 15066 Server has no node list

PBSE_NODENBIG 15067 Node name is too big

Appendix D: Diagnostics and Error Codes

451

452

Error code name Number Description

PBSE_NODEEXIST 15068 Node name already exists

PBSE_BADNDATVAL 15069 Illegal value for

PBSE_MUTUALEX 15070 Mutually exclusive values for

PBSE_GMODERR 15071 Modification failed for

PBSE_NORELYMOM 15072 Server could not connect to MOM

PBSE_NOTSNODE 15073 No time-share node available

PBSE_JOBTYPE 15074 Wrong job type

PBSE_BADACLHOST 15075 Bad ACL entry in host list

PBSE_MAXUSERQUED 15076 Maximum number of jobs already in queue for user

PBSE_BADDISALLOWTYPE 15077 Bad type in disallowed_types list

PBSE_NOINTERACTIVE 15078 Queue does not allow interactive jobs

PBSE_NOBATCH 15079 Queue does not allow batch jobs

PBSE_NORERUNABLE 15080 Queue does not allow rerunable jobs

PBSE_NONONRERUNABLE 15081 Queue does not allow nonrerunable jobs

PBSE_UNKARRAYID 15082 Unknown Array ID

PBSE_BAD_ARRAY_REQ 15083 Bad Job Array Request

PBSE_BAD_ARRAY_DATA 15084 Bad data reading job array from file

PBSE_TIMEOUT 15085 Time out

PBSE_JOBNOTFOUND 15086 Job not found

Appendix D: Diagnostics and Error Codes

Error code name Number Description

PBSE_NOFAULTTOLERANT 15087 Queue does not allow fault tolerant jobs

PBSE_NOFAULTINTOLERANT 15088 Queue does not allow fault intolerant jobs

PBSE_NOJOBARRAYS 15089 Queue does not allow job arrays

PBSE_RELAYED_TO_MOM 15090 Request was relayed to a MOM

PBSE_MEM_MALLOC 15091 Error allocating memory - out of memory

PBSE_MUTEX 15092 Error allocating controling mutex (lock/unlock)

PBSE_THREADATTR 15093 Error setting thread attributes

PBSE_THREAD 15094 Error creating thread

PBSE_SELECT 15095 Error in socket select

PBSE_SOCKET_FAULT 15096 Unable to get connection to socket

PBSE_SOCKET_WRITE 15097 Error writing data to socket

PBSE_SOCKET_READ 15098 Error reading data from socket

PBSE_SOCKET_CLOSE 15099 Socket close detected

PBSE_SOCKET_LISTEN 15100 Error listening on socket

PBSE_AUTH_INVALID 15101 Invalid auth type in request

PBSE_NOT_IMPLEMENTED 15102 This functionality is not yet implemented

PBSE_QUENOTAVAILABLE 15103 Queue is currently not available

PBSE_TMPDIFFOWNER 15104 tmpdir owned by another user

PBSE_TMPNOTDIR 15105 tmpdir exists but is not a directory

Appendix D: Diagnostics and Error Codes

453

454

Error code name Number Description

PBSE_TMPNONAME 15106 tmpdir cannot be named for job

PBSE_CANTOPENSOCKET 15107 Cannot open demux sockets

PBSE_CANTCONTACTSISTERS 15108 Cannot send join job to all sisters

PBSE_CANTCREATETMPDIR 15109 Cannot create tmpdir for job

PBSE_BADMOMSTATE 15110 Mom is down, cannot run job

PBSE_SOCKET_INFORMATION 15111 Socket information is not accessible

PBSE_SOCKET_DATA 15112 Data on socket does not process correctly

PBSE_CLIENT_INVALID 15113 Client is not allowed/trusted

PBSE_PREMATURE_EOF 15114 Premature End of File

PBSE_CAN_NOT_SAVE_FILE 15115 Error saving file

PBSE_CAN_NOT_OPEN_FILE 15116 Error opening file

PBSE_CAN_NOT_WRITE_FILE 15117 Error writing file

PBSE_JOB_FILE_CORRUPT 15118 Job file corrupt

PBSE_JOB_RERUN 15119 Job cannot be rerun

PBSE_CONNECT 15120 Cannot establish connection

PBSE_JOBWORKDELAY 15121 Job function must be temporarily delayed

PBSE_BAD_PARAMETER 15122 Parameter of function was invalid

PBSE_CONTINUE 15123 Continue processing on job. (Not an error)

PBSE_JOBSUBSTATE 15124 Current sub state does not allow trasaction.

Appendix D: Diagnostics and Error Codes

Error code name Number Description

PBSE_CAN_NOT_MOVE_FILE 15125 Error moving file

PBSE_JOB_RECYCLED 15126 Job is being recycled

PBSE_JOB_ALREADY_IN_QUEUE 15127 Job is already in destination queue.

PBSE_INVALID_MUTEX 15128 Mutex is NULL or otherwise invalid

PBSE_MUTEX_ALREADY_
LOCKED

15129 The mutex is already locked by this object

PBSE_MUTEX_ALREADY_
UNLOCKED

15130 The mutex has already been unlocked by this object

PBSE_INVALID_SYNTAX 15131 Command syntax invalid

PBSE_NODE_DOWN 15132 A node is down. Check the MOM and host

PBSE_SERVER_NOT_FOUND 15133 Could not connect to batch server

PBSE_SERVER_BUSY 15134 Server busy. Currently no available threads

Appendix D: Diagnostics and Error Codes

455

E.1 Considerations Before Upgrading 456

Appendix E: Preparing to Upgrade

In this chapter:

E.1 Considerations Before Upgrading 456
E.1.1 Considerations 456
E.1.2 To Upgrade 457
E.1.3 Rolling Upgrade 457

E.1 Considerations Before Upgrading

Torque is flexible in regards to how it can be upgraded. In most cases, a Torque "shutdown"
followed by a configure, make, make install procedure as documented in this guide is all that is
required (see Installing Torque Resource Manager). This process will preserve existing
configuration and in most cases, existing workload.

In this topic:

E.1.1 Considerations - page 456
E.1.2 To Upgrade - page 457
E.1.3 Rolling Upgrade - page 457

E.1.1 Considerations
A few considerations are included below:

l If upgrading from OpenPBS, PBSPro, or Torque 1.0.3 or earlier, queued jobs whether active
or idle will be lost. In such situations, job queues should be completely drained of all jobs.

l If not using the pbs_mom -r or -p flag (see pbs_mom Options), running jobs may be lost. In
such cases, running jobs should be allowed to be completed or should be requeued before
upgrading Torque.

l The server and the MOMs must run at the same major version, and the pbs_mom version
should never exceed the pbs_server version, even down to the patch level. Problems can
arise when running the MOM at a higher version. Most such combinations do not get tested,
and unexpected failures and job losses may occur.

l When upgrading from early versions of Torque (pre-4.0) and Moab, you may encounter a
problem where Moab core files are regularly created in /opt/moab. This can be caused by
old Torque library files used by Moab that try to authorize with the old Torque pbs_iff

Appendix E: Preparing to Upgrade

authorization daemon. You can resolve the problem by removing the old version library files
from /usr/local/lib.

E.1.2 To Upgrade
1. Build new release (do not install).

2. Stop all Torque daemons (see qterm and momctl -s).

3. Install new Torque (use make install).

4. Start all Torque daemons.

E.1.3 Rolling Upgrade
If you are upgrading to a new point release of your current version (for example, from 4.2.2 to
4.2.3) and not to a new major release from your current version (for example, from 4.1 to 4.2), you
can use the following procedure to upgrade Torque without taking your nodes offline.

Because Torque version 4.1.4 changed the way that pbs_server communicates with the MOMs,
it is not recommended that you perform a rolling upgrade of Torque from version 4.1.3 to
4.1.4.

To perform a rolling upgrade in Torque

1. Enable the pbs_mom flag on the MOMs you want to upgrade. The enablemomrestart
option causes a MOM to check if its binary has been updated and restart itself at a safe point
when no jobs are running. You can enable this in the MOM configuration file, but it is
recommended that you use momctl instead.

> momctl -q enablemomrestart=1 -h :ALL

The enablemomrestart flag is enabled on all nodes.

2. Replace the pbs_mom binary, located in /usr/local/bin by default. pbs_mom will continue
to run uninterrupted because the pbs_mom binary has already been loaded in RAM.

> torque-package-mom-linux-x86_64.sh --install

The next time pbs_mom is in an idle state, it will check for changes in the binary. If pbs_mom
detects that the binary on disk has changed, it will restart automatically, causing the new pbs_
mom version to load.

After the pbs_mom restarts on each node, the enablemomrestart parameter will be set
back to false (0) for that node.

Appendix E: Preparing to Upgrade

457 E.1 Considerations Before Upgrading

E.1 Considerations Before Upgrading 458

If you have cluster with high utilization, you may find that the nodes never enter an idle state
so pbs_mom never restarts. When this occurs, you must manually take the nodes offline and
wait for the running jobs to complete before restarting pbs_mom. To set the node to an
offline state, which will allow running jobs to complete but will not allow any new jobs to be
scheduled on that node, use pbsnodes -o <nodeName>. After the new MOM has started,
you must make the node active again by running pbsnodes -c <nodeName>.

Appendix E: Preparing to Upgrade

459

Appendix F: Large Cluster Considerations

Torque has enhanced much of the communication found in the original OpenPBS project. This has
resulted in a number of key advantages including support for:

l larger clusters.

l more jobs.

l larger jobs.

l larger messages.

In most cases, enhancements made apply to all systems and no tuning is required. However, some
changes have been made configurable to allow site specific modification. The configurable
communication parameters are: node_check_rate, node_ping_rate, and tcp_timeout.

In this chapter:

F.1 Scalability Guidelines 460
F.2 End-User CommandCaching 461
F.3 Moab and Torque Configuration for Large Clusters 463
F.4 Starting Torque in Large Environments 464
F.5 Other Considerations 465

F.5.1 job_stat_rate 465
F.5.2 poll_jobs 465
F.5.3 Scheduler Settings 465
F.5.4 File System 465
F.5.5 Network ARP Cache 466

Appendix F: Large Cluster Considerations

F.1 Scalability Guidelines

In very large clusters (in excess of 1,000 nodes), it may be advisable to tune a number of
communication layer timeouts. By default, PBS MOM daemons timeout on inter-MOM messages
after 60 seconds. In Torque 1.1.0p5 and higher, this can be adjusted by setting the timeout
parameter in the mom_priv/config file (see, Node Manager (MOM) Configuration). If 15059
errors (cannot receive message from sisters) are seen in the MOM logs, it may be necessary to
increase this value.

Client-to-server communication timeouts are specified via the tcp_timeout server option using
the qmgr command.

On some systems, ulimit values may prevent large jobs from running. In particular, the open
file descriptor limit (i.e., ulimit -n) should be set to at least the maximum job size in
procs + 20. Further, there may be value in setting the fs.file-max in sysctl.conf to a
high value, such as:

/etc/sysctl.conf:
fs.file-max = 65536

Related Topics

l Appendix F: Large Cluster Considerations - page 459

Appendix F: Large Cluster Considerations

460 F.1 Scalability Guidelines

F.2 End-User Command Caching 461

F.2 End-User Command Caching

qstat
In a large system, users may tend to place excessive load on the system by manual or automated
use of resource manager end user client commands. A simple way of reducing this load is through
the use of client command wrappers which cache data. The example script below will cache the
output of the command 'qstat -f' for 60 seconds and report this info to end users.

#!/bin/sh

USAGE: qstat $@

CMDPATH=/usr/local/bin/qstat
CACHETIME=60
TMPFILE=/tmp/qstat.f.tmp

if ["$1" != "-f"] ; then
 #echo "direct check (arg1=$1) "
 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-n "$2"] ; then
 #echo "direct check (arg2=$2)"
 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-f $TMPFILE] ; then
 TMPFILEMTIME=`stat -c %Z $TMPFILE`
else
 TMPFILEMTIME=0
fi

NOW=`date +%s`

AGE=$(($NOW - $TMPFILEMTIME))

#echo AGE=$AGE

for i in 1 2 3;do
 if ["$AGE" -gt $CACHETIME] ; then
 #echo "cache is stale "

 if [-f $TMPFILE.1] ; then
 #echo someone else is updating cache

 sleep 5

 NOW=`date +%s`

 TMPFILEMTIME=`stat -c %Z $TMPFILE`

AGE=$(($NOW - $TMPFILEMTIME))
 else

Appendix F: Large Cluster Considerations

 break;
 fi
 fi
done

if [-f $TMPFILE.1] ; then
 #echo someone else is hung

 rm $TMPFILE.1
fi

if ["$AGE" -gt $CACHETIME] ; then
 #echo updating cache

 $CMDPATH -f > $TMPFILE.1

mv $TMPFILE.1 $TMPFILE

fi

#echo "using cache"

cat $TMPFILE

exit 0

The above script can easily be modified to cache any command and any combination of arguments
by changing one or more of the following attributes:

l script name

l value of $CMDPATH

l value of $CACHETIME

l value of $TMPFILE

For example, to cache the command pbsnodes -a, make the following changes:

l Move original pbsnodes command to pbsnodes.orig.

l Save the script as 'pbsnodes'.

l Change $CMDPATH to pbsnodes.orig.

l Change $TMPFILE to /tmp/pbsnodes.a.tmp.

Related Topics

l Appendix F: Large Cluster Considerations - page 459

Appendix F: Large Cluster Considerations

462 F.2 End-User Command Caching

F.3 Moab and Torque Configuration for Large Clusters 463

F.3 Moab and Torque Configuration for Large Clusters

There are a few basic configurations for Moab and Torque that can potentially improve
performance on large clusters.

Moab configuration
In the moab.cfg file, add:

1. RMPOLLINTERVAL 30,30 - This sets the minimum and maximum poll interval to 30 seconds.

2. RMCFG[<name>] FLAGS=ASYNCSTART - This tells Moab not to block until it receives a
confirmation that the job starts.

3. RMCFG[<name>] FLAGS=ASYNCDELETE - This tells Moab not to block until it receives a
confirmation that the job was deleted.

Torque configuration

1. Follow the Starting Torque in large environments recommendations.

2. Increase job_start_timeout on pbs_server. The default is 300 (5 minutes), but for
large clusters the value should be changed to something like 600 (10 minutes). Sites running
very large parallel jobs might want to set this value even higher.

3. Use a node health check script on all MOM nodes. This helps prevent jobs from being scheduled
on bad nodes and is especially helpful for large parallel jobs.

4. Make sure that ulimit -n (maximum file descriptors) is set to unlimited, or a very large
number, and not the default.

5. For clusters with a high job throughput it is recommended that the server parameter max_
threads be increased from the default. The default is (2 * number of cores + 1) * 10.

6. Versions 5.1.3, 6.0.2, and later: if you have the server send emails, set email_batch_
seconds appropriately. Setting this parameter will prevent pbs_server from forking too
frequently and increase the server's performance. See email_batch_seconds for more information
on this server parameter.

Related Topics

l Appendix F: Large Cluster Considerations - page 459

Appendix F: Large Cluster Considerations

F.4 Starting Torque in Large Environments

If running Torque in a large environment, use these tips to help Torque start up faster.

Fastest possible start up

1. Create a MOM hierarchy, even if your environment has a one-level MOM hierarchy (meaning all
MOMs report directly to pbs_server), and copy the file to the mom_priv directory on the
MOMs. See 2.16 Setting Up the MOM Hierarchy (Optional) - page 68 for more information.

2. Start pbs_server with the -n option. This specifies that pbs_server won't send the hierarchy
to the MOMs unless a MOM requests it. See -n for more information.

3. Start the MOMs normally.

If no daemons are running

1. Start pbs_server with the -c option.

2. Start pbs_mom without the -w option.

If MOMs are running and just restarting pbs_server

1. Start pbs_server without the -c option.

If restarting a MOM or all MOMs

1. Start pbs_mom without the -w option. Starting it with -w causes the MOMs to appear to be
down.

Related Topics

l Appendix F: Large Cluster Considerations - page 459

Appendix F: Large Cluster Considerations

464 F.4 Starting Torque in Large Environments

F.5 Other Considerations 465

F.5 Other Considerations

In this topic:

F.5.1 job_stat_rate - page 465
F.5.2 poll_jobs - page 465
F.5.3 Scheduler Settings - page 465
F.5.5 Network ARP Cache - page 466

F.5.1 job_stat_rate
In a large system, there may be many users, many jobs, and many requests for information. To
speed up response time for users and for programs using the API the job_stat_rate can be
used to tweak when the pbs_server daemon will query MOMs for job information. By increasing this
number, a system will not be constantly querying job information and causing other commands to
block.

F.5.2 poll_jobs
The poll_jobs parameter allows a site to configure how the pbs_server daemon will poll for job
information. When set to TRUE, the pbs_server will poll job information in the background and
not block on user requests. When set to FALSE, the pbs_server may block on user requests
when it has stale job information data. Large clusters should set this parameter to TRUE.

F.5.3 Scheduler Settings
If using Moab, there are a number of parameters which can be set on the scheduler which may
improve Torque performance. In an environment containing a large number of short-running jobs,
the JOBAGGREGATIONTIME parameter (see Moab Parameters in the Moab Workload Manager
Administrator Guide) can be set to reduce the number of workload and resource queries performed
by the scheduler. This parameter allows sites with bursty job submissions to process job events in
groups decreasing total job scheduling cycles and allowing the scheduler to make more intelligent
choices by aggregating job submissions and choosing between the jobs. If the pbs_server
daemon is heavily loaded and PBS API timeout errors (i.e. "Premature end of message") are
reported within the scheduler, the TIMEOUT attribute of the RMCFG parameter may be set with a
value of between 30 and 90 seconds.

F.5.4 File System
Torque can be configured to disable file system blocking until data is physically written to the disk
by using the --disable-filesync argument with configure. While having filesync enabled is

Appendix F: Large Cluster Considerations

more reliable, it may lead to server delays for sites with either a larger number of nodes, or a large
number of jobs. Filesync is enabled by default.

F.5.5 Network ARP Cache
For networks with more than 512 nodes it is mandatory to increase the kernel's internal ARP cache
size. For a network of ~1000 nodes, we use these values in /etc/sysctl.conf on all nodes and
servers:

/etc/sysctl.conf

Don't allow the arp table to become bigger than this
net.ipv4.neigh.default.gc_thresh3 = 4096
Tell the gc when to become aggressive with arp table cleaning.
Adjust this based on size of the LAN.
net.ipv4.neigh.default.gc_thresh2 = 2048
Adjust where the gc will leave arp table alone
net.ipv4.neigh.default.gc_thresh1 = 1024
Adjust to arp table gc to clean-up more often
net.ipv4.neigh.default.gc_interval = 3600
ARP cache entry timeout
net.ipv4.neigh.default.gc_stale_time = 3600

(The exact syntax to set the ARP cache size may vary according to OS version.) Use sysctl -p to
reload this file.

An alternative approach is to have a static /etc/ethers file with all hostnames and MAC
addresses and load this by arp -f /etc/ethers. However, maintaining this approach is quite
cumbersome when nodes get new MAC addresses (due to repairs, for example).

Related Topics

l Appendix F: Large Cluster Considerations - page 459

Appendix F: Large Cluster Considerations

466 F.5 Other Considerations

467

Appendix G: Prologue and Epilogue Scripts

Torque provides administrators the ability to run scripts before and/or after each job executes.
With such a script, a site can prepare systems, perform node health checks, prepend and append
text to output and error log files, cleanup systems, and so forth.

In this chapter:

G.1 MOMPrologue and Epilogue Scripts 468
G.2 Script Order of Execution 470
G.3 Script Environment 471

G.3.1 Prologue Environment 471
G.3.2 Epilogue Environment 472
G.3.3 Environment Variables 472
G.3.4 Standard Input 474

G.4 Per Job Prologue and Epilogue Scripts 475
G.5 Prologue and Epilogue Scripts TimeOut 476
G.6 Prologue Error Processing 477

Appendix G: Prologue and Epilogue Scripts

G.1 MOM Prologue and Epilogue Scripts

The following table shows which MOM runs which script. All scripts must be in the TORQUE_
HOME/mom_priv/ directory and be available on every compute node. The "Mother Superior" is
the pbs_mom on the first node allocated for a job. While it is technically a sister node, it is not a
"Sister" for the purposes of the following table.

The initial working directory for each script is TORQUE_HOME/mom_priv/.

Script Execution location Script
Location

Execute
as

File per-
missions

Prologue Scripts

presetup.prologue Mother Superior 8th argu-
ment

root Readable and execut-
able by root and
NOT writable by any-
one but root (e.g., -
r-x-----)

prologue Mother Superior 8th argu-
ment

root Readable and execut-
able by root and
NOT writable by any-
one but root (e.g., -
r-x-----)

prologue.parallel Sister --- root Readable and execut-
able by root and
NOT writable by any-
one but root (e.g., -
r-x-----)

prologue.user Mother Superior --- user Readable and execut-
able by root and
other (e.g., -r-x---
r-x)

prologue.user.parallel Sister --- user Readable and execut-
able by root and
other (e.g., -r-x---
r-x)

Epilogue Scripts

Appendix G: Prologue and Epilogue Scripts

468 G.1 MOM Prologue and Epilogue Scripts

G.1 MOM Prologue and Epilogue Scripts 469

Script Execution location Script
Location

Execute
as

File per-
missions

epilogue Mother Superior 11th argu-
ment

root Readable and execut-
able by root and
NOT writable by any-
one but root (e.g., -
r-x-----)

epilogue.parallel Sister --- root Readable and execut-
able by root and
NOT writable by any-
one but root (e.g., -
r-x-----)

epilogue.precancel Mother Superior

This script runs after a job
cancel request is received
from pbs_server and before a
kill signal is sent to the job
process.

--- user Readable and execut-
able by root and
other (e.g., -r-x---
r-x)

epilogue.user Mother Superior --- user Readable and execut-
able by root and
other (e.g., -r-x---
r-x)

epilogue.user.parallel Sister --- user Readable and execut-
able by root and
other (e.g., -r-x---
r-x)

epilogue.parallel is available in version 2.1 and later.

Appendix G: Prologue and Epilogue Scripts

G.2 Script Order of Execution

When jobs start, the order of script execution is prologue followed by prologue.user. On job
exit, the order of execution is epilogue.user followed by epilogue unless a job is canceled. In
that case, epilogue.precancel is executed first. epilogue.parallel is executed only on
the Sister nodes when the job is completed.

The epilogue and prologue scripts are controlled by the system administrator. However,
beginning in Torque version 2.4 a user epilogue and prologue script can be used on a
per job basis. (See Per Job Prologue and Epilogue Scripts for more information.)

The node health check may be configured to run before or after the job with the "jobstart"
and/or "jobend" options. However, the job environment variables do not get passed to node
health check script, so it has no access to those variables at any time.

Root squashing is now supported for epilogue and prologue scripts.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 467

Appendix G: Prologue and Epilogue Scripts

470 G.2 Script Order of Execution

G.3 Script Environment 471

G.3 Script Environment

The prologue and epilogue scripts can be very simple. On most systems, the script must
declare the execution shell using the #!<SHELL> syntax (for example, "#!/bin/sh"). In addition,
the script may want to process context sensitive arguments passed by Torque to the script.

In this topic:

G.3.1 Prologue Environment - page 471
G.3.2 Epilogue Environment - page 472
G.3.3 Environment Variables - page 472

G.3.3.A qsub - page 473

G.3.3.B msub -E - page 473

G.3.4 Standard Input - page 474

G.3.1 Prologue Environment
The following arguments are passed to the presetup.prologue, prologue,
prologue.user, and prologue.parallel scripts:

Argument Description

argv[1] Job id.

argv[2] Job execution user name.

argv[3] Job execution group name.

argv[4] Job name (Torque 1.2.0p4 and higher only).

argv[5] List of requested resource limits (Torque 1.2.0p4 and higher only).

argv[6] Job execution queue (Torque 1.2.0p4 and higher only).

argv[7] Job account (Torque 1.2.0p4 and higher only).

argv[8] Job script location.

argv[9] Comma-separated list of each host in the job. For example, if a job is using 10 cores on each of
roshar, nalthis, elantris, and scadrial, this argument will have the value:
roshar,nalthis,elantris,scadrial. Defined only for presetup.prologue.

Appendix G: Prologue and Epilogue Scripts

G.3.2 Epilogue Environment
Torque supplies the following arguments to the epilogue, epilogue.user,
epilogue.precancel, and epilogue.parallel scripts:

Argument Description

argv[1] job id

argv[2] job execution user name

argv[3] job execution group name

argv[4] job name

argv[5] session id

argv[6] list of requested resource limits

argv[7] list of resources used by job

argv[8] job execution queue

argv[9] job account

argv[10] job exit code

argv[11] job script location

The epilogue.precancel script is run after a job cancel request is received by the MOM and
before any signals are sent to job processes. If this script exists, it is run whether the canceled job
was active or idle.

The cancel job command (qdel) will take as long to return as the epilogue.precancel
script takes to run. For example, if the script runs for 5 minutes, it takes 5 minutes for qdel
to return.

G.3.3 Environment Variables
For all scripts, the environment passed to the script is empty. When submitting a job through qsub
or msub -E Torque defines variables.

Appendix G: Prologue and Epilogue Scripts

472 G.3 Script Environment

G.3 Script Environment 473

G.3.3.A qsub
When submitting a job through qsub, Torque defines the following variables.

Variable Description

$PBS_MSHOST Mother superior's hostname

$PBS_RESOURCE_
NODES

-l nodes request made to the job, if any

$PBS_O_WORKDIR Job's working directory

$PBS_NODENUM Node index for the job of the node where this prologue or epilogue is executing

$PBS_NUM_
NODES

Number of nodes requested for the job (1 if no -l nodes request was made)

$PBS_NP Number of execution slots used for the job

For example, -l nodes=2:ppn=4 will have $PBS_NP defined as 8.

$PBS_NUM_PPN ppn request, if one was made

If more than one was made, it will be the first one. For example: -l nodes=2:ppn=3+4:ppn=2
will have this variable set to 3.

$PBS_NODEFILE Path to the job's nodefile

G.3.3.B msub -E
If you submit the job using msub -E, these Moab environment variables are available:

l MOAB_CLASS

l MOAB_GROUP

l MOAB_JOBARRAYINDEX

l MOAB_JOBARRAYRANGE

l MOAB_JOBID

l MOAB_JOBNAME

l MOAB_MACHINE

l MOAB_NODECOUNT

Appendix G: Prologue and Epilogue Scripts

l MOAB_NODELIST

l MOAB_PARTITION

l MOAB_PROCCOUNT

l MOAB_QOS

l MOAB_TASKMAP

l MOAB_USER

See msub in the Moab Workload Manager Administrator Guide for more information.

G.3.4 Standard Input
Standard input for both scripts is connected to a system dependent file. Currently, for all systems
this is /dev/null.

Except for epilogue scripts of an interactive job, prologue.parallel, epilogue.precancel,
and epilogue.parallel, the standard output and error are connected to output and error files
associated with the job.

For an interactive job, since the pseudo terminal connection is released after the job completes, the
standard input and error point to /dev/null.

For prologue.parallel and epilogue.parallel, the user will need to redirect stdout
and stderr manually.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 467

Appendix G: Prologue and Epilogue Scripts

474 G.3 Script Environment

G.4 Per Job Prologue and Epilogue Scripts 475

G.4 Per Job Prologue and Epilogue Scripts

Torque supports per job prologue and epilogue scripts when using the qsub -l option. The syntax
is:

qsub -l prologue=<prologue_script_path> epilogue=<epilogue_script_
path> <script>.

The path can be either relative (from the directory where the job is submitted) or absolute. The
files must be owned by the user with at least execute and read privileges, and the permissions must
not be writeable by group or other.

/home/usertom/dev/

-r-x------ 1 usertom usertom 24 2009-11-09 16:11 prologue_script.sh
-r-x------ 1 usertom usertom 24 2009-11-09 16:11 epilogue_script.sh

Example G-1:

$ qsub -l prologue=/home/usertom/dev/prologue_
script.sh,epilogue=/home/usertom/dev/epilogue_script.sh job14.pl

This job submission executes the prologue script first. When the prologue script is complete,
job14.pl runs. When job14.pl completes, the epilogue script is executed.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 467

Appendix G: Prologue and Epilogue Scripts

G.5 Prologue and Epilogue Scripts Time Out

Torque takes preventative measures against prologue and epilogue scripts by placing an alarm
around the scripts execution. By default, Torque sets the alarm to go off after 5 minutes of
execution. If the script exceeds this time, it will be terminated and the node will be marked down.
This timeout can be adjusted by setting the $prologalarm parameter in the mom_
priv/config file.

While Torque is executing the epilogue, epilogue.user, or epilogue.precancel
scripts, the job will be in the E (exiting) state.

If an epilogue.parallel script cannot open the .OU or .ER files, an error is logged but the
script is continued.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 467

Appendix G: Prologue and Epilogue Scripts

476 G.5 Prologue and Epilogue Scripts Time Out

G.6 Prologue Error Processing 477

G.6 Prologue Error Processing

If the prologue script executes successfully, it should exit with a zero status. Otherwise, the script
should return the appropriate error code as defined in the table below. The pbs_mom will report
the script's exit status to pbs_server which will in turn take the associated action. The following
table describes each exit code for the prologue scripts and the action taken.

Error Description Action

-4 The script timed out Job will be requeued

-3 The wait(2) call returned an error Job will be requeued

-2 Input file could not be opened Job will be requeued

-1 Permission error

(script is not owned by root, or is writable by others)

Job will be requeued

0 Successful completion Job will run

1 Abort exit code Job will be aborted

>1 other Job will be requeued

Example G-2:

Following are example prologue and epilogue scripts that write the arguments passed to them in
the job's standard out file:

prologue

Script #!/bin/sh
echo "Prologue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo ""

exit 0

stdout Prologue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1

Appendix G: Prologue and Epilogue Scripts

epilogue

Script #!/bin/sh
echo "Epilogue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo "Job Name: $4"
echo "Session ID: $5"
echo "Resource List: $6"
echo "Resources Used: $7"
echo "Queue Name: $8"
echo "Account String: $9"
echo ""

exit 0

stdout Epilogue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1
Job Name: script.sh
Session ID: 28244
Resource List: neednodes=node01,nodes=1,walltime=00:01:00
Resources Used: cput=00:00:00,mem=0kb,vmem=0kb,walltime=00:00:07
Queue Name: batch
Account String:

Example G-3:

The Ohio Supercomputer Center contributed the following scripts:

"prologue creates a unique temporary directory on each node assigned to a job before the job
begins to run, and epilogue deletes that directory after the job completes.

Having a separate temporary directory on each node is probably not as good as having a
good, high performance parallel filesystem.

prologue

#!/bin/sh
Create TMPDIR on all the nodes
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
prologue gets 3 arguments:
1 -- jobid
2 -- userid
3 -- grpid
#
jobid=$1
user=$2

Appendix G: Prologue and Epilogue Scripts

478 G.6 Prologue Error Processing

G.6 Prologue Error Processing 479

group=$3
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i mkdir -m 700 $tmp \&\& chown $user.$group $tmp
done
exit 0

epilogue

#!/bin/sh
Clear out TMPDIR
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
epilogue gets 9 arguments:
1 -- jobid
2 -- userid
3 -- grpid
4 -- job name
5 -- sessionid
6 -- resource limits
7 -- resources used
8 -- queue
9 -- account
#
jobid=$1
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i rm -rf $tmp
done
exit 0

prologue, prologue.user, and prologue.parallel scripts can have dramatic effects
on job scheduling if written improperly.

Related Topics

l Appendix G: Prologue and Epilogue Scripts - page 467

Appendix G: Prologue and Epilogue Scripts

H.1 Configuring Multiple Servers to Run on the Same Node 480

Appendix H: Running Multiple Torque Servers and
MOMs on the Same Node

In this chapter:

H.1 ConfiguringMultiple Servers to Run on the SameNode 480
H.1.1 Configuring the First Torque 480
H.1.2 Configuring the Second Torque 480
H.1.3 Bringing the First Torque Server online 481
H.1.4 Bringing the Second Torque Server Online 481

H.1 Configuring Multiple Servers to Run on the Same
Node

Torque can be configured to allow multiple servers and MOMs to run on the same node. This
example will show how to configure, compile and install two different Torque servers and MOMs on
the same node.

In this topic:

H.1.1 Configuring the First Torque - page 480
H.1.2 Configuring the Second Torque - page 480
H.1.3 Bringing the First Torque Server online - page 481
H.1.4 Bringing the Second Torque Server Online - page 481

H.1.1 Configuring the First Torque
./configure --with-server-home=/usr/spool/torque1 --bindir=/usr/spool/torque1/bin --
sbindir=/usr/spool/torque1/sbin

Then make and make install will place the first Torque into /usr/spool/torque1 with the
executables in their corresponding directories.

H.1.2 Configuring the Second Torque
./configure --with-server-home=/usr/spool/torque2 --bindir=/usr/spool/torque2/bin --
sbindir=/usr/spool/torque2/sbin

Appendix H: Running Multiple Torque Servers and MOMs on the Same Node

Then make and make install will place the second Torque into /usr/spool/torque2 with the
executables in their corresponding directories.

H.1.3 Bringing the First Torque Server online
Each command, including pbs_server and pbs_mom, takes parameters indicating which servers
and ports to connect to or listen on (when appropriate). Each of these is documented in their
corresponding man pages.

In this example the first Torque server will accept batch requests on port 35000 and communicate
with the MOMs on port 35001. The first Torque MOM will try to connect to the server on port
35000 and it will listen for requests from the server on port 35001. (Each of these command
arguments is discussed in further details on the corresponding man page. In particular, -t
create is only used the first time a server is run.)

> pbs_server -p 35000 -M 35001 -t create
> pbs_mom -S 35000 -M 35001

Afterwards, when using a client command to make a batch request it is necessary to specify the
server name and server port (35000):

> pbsnodes -a -s node01:35000

Submitting jobs can be accomplished using the -q option ([queue][@host[:port]]):

> qsub -q @node01:35000 /tmp/script.pbs

H.1.4 Bringing the Second Torque Server Online
In this example the second Torque server will accept batch requests on port 36000, communicate
with the MOMS on port 36001, and communicate via TCP on port 36002. The second Torque MOM
will try to connect to the server on port 36000, it will listen for requests from the server on port
36001 and will communicate via TCP on port 36002.

> pbs_server -p 36000 -M 36001 -R 36002 -t create
> pbs_mom -S 36000 -M 36001 -R 36002

Afterward, when using a client command to make a batch request it is necessary to specify the
server name and server port (36002):

> pbsnodes -a -s node01:36000
> qsub -q @node01:36000 /tmp/script.pbs

Appendix H: Running Multiple Torque Servers and MOMs on the Same Node

481 H.1 Configuring Multiple Servers to Run on the Same Node

482

Appendix I: Security Overview

The authorization model for Torque changed in version 4.0.0 from pbs_iff to a daemon called
trqauthd. The job of the trqauthd daemon is the same as pbs_iff. The difference is that
trqauthd is a resident daemon whereas pbs_iff is invoked by each client command. pbs_iff
is not scalable and is prone to failure under even small loads. trqauthd is very scalable and
creates the possibility for better security measures in the future.

trqauthd Authorization Theory
The key to security of trqauthd is the assumption that any host which has been added to the
Torque cluster has been secured by the administrator. trqauthd does not do authentication, just
authorization of users. Given that the host system is secure the following is the procedure by which
trqauthd authorizes users to pbs_server.

1. Client utility makes a connection to pbs_server on a dynamic port.

2. Client utility sends a request to trqauthd with the user name and port.

3. trqauthd verifies the user ID and then sends a request to pbs_server on a privileged port
with the user ID and dynamic port to authorize the connection.

4. trqauthd reports results of the server to client utility.

trqauthd uses Unix domain sockets for communication from the client utility. Unix domain
sockets have the ability to verify that a user is who they say they are by using security features that
are part of the file system.

Appendix I: Security Overview

483

Appendix J: Job Submission Filter ("qsub Wrapper")

When a "submit filter" exists, Torque will send the command file (or contents of STDIN if piped to
qsub) to that script/executable and allow it to evaluate the submitted request based on specific
site policies. The resulting file is then handed back to qsub and processing continues. Submit filters
can check user jobs for correctness based on site policies. They can also modify user jobs as they
are submitted. Some examples of what a submit filter might evaluate and check for are:

l Memory Request - Verify that the job requests memory and rejects if it does not.

l Job event notifications - Check if the job does one of the following and rejects it if it:
o explicitly requests no notification.
o requests notifications but does not provide an email address.

l Walltime specified - Verify that the walltime is specified.

l Global Walltime Limit - Verify that the walltime is below the global max walltime.

l Test Walltime Limit - If the job is a test job, this check rejects the job it if it requests a
walltime longer than the testing maximum.

The script below reads the original submission request from STDIN and shows how you could
insert parameters into a job submit request:

#!/bin/sh
add default memory constraints to all requests
that did not specify it in user's script or on command line
echo "#PBS -l mem=16MB"
while read i
do
echo $i
done

The same command line arguments passed to qsub will be passed to the submit filter and in the
same order. Exit status of -1 will cause qsub to reject the submission with a message stating that it
failed due to administrative policies.

The submit filter must be executable and must be available on each of the nodes where users may
submit jobs. Because the submit filter is likely to run multiple times for each job submission, all
operations in the submit filter must be idempotent, i.e., they must produce the same results if called
more than once with the same input parameters.

By default, the submit filter must be located at /usr/local/sbin/torque_submitfilter.
At run time, if the file does not exist at this new preferred path then qsub will fall back to the old
hard-coded path. The submit filter location can be customized by setting the SUBMITFILTER
parameter inside the file (see "torque.cfg" Configuration File), as in the following example:

torque.cfg:

SUBMITFILTER /opt/torque/submit.pl
...

Appendix J: Job Submission Filter ("qsub Wrapper")

Initial development courtesy of Oak Ridge National Laboratories.

Appendix J: Job Submission Filter ("qsub Wrapper")

484

485

Appendix K: "torque.cfg" Configuration File

Administrators can configure the torque.cfg file (located in PBS_SERVER_HOME
(/var/spool/torque by default)) to alter the behavior of the qsub command on specific host
machines where the file resides. This file contains a list of parameters and values separated by
whitespace. This only affects qsub, and only on each specific host with the file.

Configuration Parameters

CLIENTRETRY

DEFAULTCKPT

FAULT_TOLERANT_BY_
DEFAULT

HOST_NAME_SUFFIX

INTERACTIVE_PORT_
RANGE

QSUBHOST

QSUBSENDUID

QSUBSLEEP

RERUNNABLEBYDEFAULT

SERVERHOST

SUBMITFILTER

TRQ_IFNAME

VALIDATEGROUP

VALIDATEPATH

CLIENTRETRY

Format <INT>

Default 0

Description Seconds between retry attempts to talk to pbs_server.

Example CLIENTRETRY 10

Torque waits 10 seconds after a failed attempt before it attempts to talk to
pbs_server again.

DEFAULTCKPT

For mat One of None, Enabled, Shutdown, Periodic, Interval=minutes, depth=number, or
dir=path

Default None

Description Default value for job's checkpoint attribute. For a description of all possible values, see qsub

This default setting can be overridden at job submission with the qsub -c option.

Appendix K: "torque.cfg" Configuration File

DEFAULTCKPT

Example DEFAULTCKPT Shutdown

By default, Torque checkpoints at pbs_mom shutdown.

FAULT_TOLERANT_BY_DEFAULT

Format <BOOLEAN>

Default FALSE

Description Sets all jobs to fault tolerant by default. (See qsub -f for more information on fault tol-
erance.)

Example FAULT_TOLERANT_BY_DEFAULT TRUE

Jobs are fault tolerant by default. They will not be canceled based on failed polling, no
matter how many nodes fail to report.

HOST_NAME_SUFFIX

Format <STRING>

Default ---

Description Specifies a hostname suffix. When qsub submits a job, it also submits the username of the sub-
mitter and the name of the host from which the user submitted the job. Torque appends the value
of HOST_NAME_SUFFIX to the hostname. This is useful for multi-homed systems that may have
more than one name for a host.

Example HOST_NAME_SUFFIX -ib

When a job is submitted, the -ib suffix is appended to the host name.

INTERACTIVE_PORT_RANGE

Format <INTEGER>-<INTEGER>

Default ---

Appendix K: "torque.cfg" Configuration File

486

487

INTERACTIVE_PORT_RANGE

Description Sets a range of ports for interactive jobs. The minimum port must be greater than 1024, and the
maximum port must be greater than the minimum port, or else the setting will be ignored.

Example INTERACTIVE_PORT_RANGE 20000-20100

Force all interactive listening ports on this host to be between 20000 and 20100, inclusive.

QSUBHOST

Format <HOSTNAME>

Default ---

Description The hostname given as the argument of this option will be used as the PBS_O_HOST variable for
job submissions. By default, PBS_O_HOST is the hostname of the submission host. This option
allows administrators to override the default hostname and substitute a new name.

Example QSUBHOST host1

The default hostname associated with a job is host1.

QSUBSENDUID

Format N/A

Default ---

Description Integer for job's PBS_O_UID variable. Specifying the parameter name anywhere in the config file
enables the feature. Removing the parameter name disables the feature.

Example QSUBSENDUID

Torque assigns a unique ID to a job when it is submitted by qsub.

QSUBSLEEP

Format <INT>

Appendix K: "torque.cfg" Configuration File

QSUBSLEEP

Default 0

Description Specifies time, in seconds, to sleep between a user's submitting and Torque's starting a qsub com-
mand. Used to prevent users from overwhelming the scheduler.

Example QSUBSLEEP 2

When a job is submitted with qsub, it will sleep for 2 seconds.

RERUNNABLEBYDEFAULT

Format <BOOLEAN>

Default TRUE

Description Specifies if a job is re-runnable by default. Setting this to false causes the re-runnable attrib-
ute value to be false unless the users specifies otherwise with the qsub -r option. (New in
Torque 2.4.)

Example RERUNNABLEBYDEFAULT FALSE

By default, qsub jobs cannot be rerun.

SERVERHOST

Format <STRING>

Default localhost

Description If set, the qsub command will open a connection to the host specified by the SERVERHOST string.

Example SERVERHOST orion15

The server will open socket connections and and communicate using serverhost orion15.

SUBMITFILTER

Format <STRING>

Appendix K: "torque.cfg" Configuration File

488

489

SUBMITFILTER

Default /usr/local/sbin/torque_submitfilter

Description Specifies the location of the submit filter (see Job Submission Filter ("qsub Wrapper") used to pre-
process job submission.

Example SUBMITFILTER /usr/local/sbin/torque_submitfilter

The location of the submit filter is specified as /usr/local/sbin/torque_
submitfilter.

TRQ_IFNAME

Format <STRING>

Default null

Description Allows you to specify a specific network interface to use for outbound Torque requests. The string
is the name of a network interface, such as eth0 or eth1, depending on which interface you want to
use.

Example TRQ_IFNAME eth1

Outbound Torque requests are handled by eth1.

VALIDATEGROUP

Format <BOOLEAN>

Default FALSE

Description Validate submit user's group on qsub commands. For Torque builds released after 2/8/2011,
VALIDATEGROUP also checks any groups requested in group_list at the submit host. Set
VALIDATEGROUP to "TRUE" if you set disable_server_id_check to TRUE.

Example VALIDATEGROUP TRUE

qsub verifies the submitter's group ID.

Appendix K: "torque.cfg" Configuration File

VALIDATEPATH

Format <BOOLEAN>

Default TRUE

Description Validate local existence of -d and/or -w working directories.

Example VALIDATEPATH FALSE

qsub does not validate the path.

Appendix K: "torque.cfg" Configuration File

490

491

Appendix L: Torque Quick Start

In this chapter:

L.1 TorqueQuick Start Guide 492
L.1.1 Initial Installation 492
L.1.2 Initialize/Configure Torque on the Server (pbs_server) 493
L.1.3 Install Torque on the Compute Nodes 493
L.1.4 Configure Torque on the Compute Nodes 494
L.1.5 Configure DataManagement on the Compute Nodes 494
L.1.6 Update Torque Server Configuration 494
L.1.7 Start the pbs_momDaemons on Compute Nodes 494
L.1.8 Verify Correct Torque Installation 495
L.1.9 Enable the Scheduler 495
L.1.10 Startup/Shutdown Service Script for Torque/Moab (OPTIONAL) 495

Appendix L: Torque Quick Start

L.1 Torque Quick Start Guide

In this topic:

L.1.1 Initial Installation - page 492
L.1.2 Initialize/Configure Torque on the Server (pbs_server) - page 493
L.1.3 Install Torque on the Compute Nodes - page 493
L.1.4 Configure Torque on the Compute Nodes - page 494
L.1.5 Configure DataManagement on the Compute Nodes - page 494
L.1.6 Update Torque Server Configuration - page 494
L.1.7 Start the pbs_momDaemons on Compute Nodes - page 494
L.1.8 Verify Correct Torque Installation - page 495
L.1.9 Enable the Scheduler - page 495
L.1.10 Startup/Shutdown Service Script for Torque/Moab (OPTIONAL) - page 495

L.1.1 Initial Installation
Torque is now hosted at https://github.com under the adaptivecomputing organization. To
download source, you will need to use the git utility. For example:

[root]# git clone https://github.com/adaptivecomputing.com/torque.git -b 6.1.3 6.1.3

To download a different version, replace each 6.1.3 with the desired version. After downloading a
copy of the repository, you can list the current branches by typing git branch -a from within
the directory of the branch you cloned.

If you're checking source out from git, read the README.building-40 file in the
repository.

Extract and build the distribution on the machine that will act as the "Torque server" - the machine
that will monitor and control all compute nodes by running the pbs_server daemon. See the
example below:

> tar -xzvf torque.tar.gz
> cd torque
> ./configure
> make
> make install

OSX 10.4 users need to change the #define __TDARWIN in src/include/pbs_config.h
to #define __TDARWIN_8.

Appendix L: Torque Quick Start

492 L.1 Torque Quick Start Guide

https://github.com/
https://help.github.com/articles/set-up-git

L.1 Torque Quick Start Guide 493

After installation, verify you have PATH environment variables configured for
/usr/local/bin/ and /usr/local/sbin/. Client commands are installed to
/usr/local/bin and server binaries are installed to /usr/local/sbin.

In this document, TORQUE_HOME corresponds to where Torque stores its configuration files.
The default is /var/spool/torque.

L.1.2 Initialize/Configure Torque on the Server (pbs_server)
l Once installation on the Torque server is complete, configure the pbs_server daemon by
executing the command torque.setup <USER> found packaged with the distribution
source code, where <USER> is a username that will act as the Torque admin. This script will
set up a basic batch queue to get you started. If you experience problems, make sure that the
most recent Torque executables are being executed, or that the executables are in your
current PATH.

If you are upgrading from Torque 2.5.9, run pbs_server -u before running
torque.setup.

[root]# pbs_server -u

l If doing this step manually, be certain to run the command pbs_server -t create to
create the new batch database. If this step is not taken, the pbs_server daemon will be unable
to start.

l Proper server configuration can be verified by following the steps listed in 2.25 Testing
Server Configuration - page 87.

L.1.3 Install Torque on the Compute Nodes
To configure a compute node do the following on each machine (see page 19, Section 3.2.1 of PBS
Administrator's Manual for full details):

l Create the self-extracting, distributable packages with make packages (See the INSTALL file
for additional options and features of the distributable packages) and use the parallel shell
command from your cluster management suite to copy and execute the package on all nodes
(i.e. xCAT users might do prcp torque-package-linux-i686.sh main:/tmp/;
psh main /tmp/torque-package-linux-i686.sh --install). Optionally,
distribute and install the clients package.

Appendix L: Torque Quick Start

L.1.4 Configure Torque on the Compute Nodes
l For each compute host, you must configure the MOM daemon to trust the pbs_server
host. The recommended method for doing this is to create the TORQUE_HOME/server_
name file with the server hostname in it. Alternatively, you may add a $pbsserver line to
the TORQUE_HOME/mom_priv/config file. (Versions older than 2.0.0p5 require this
method).

l Additional config parameters may be added to TORQUE_HOME/mom_priv/config (see
Appendix C: Node Manager (MOM) Configuration - page 422 for details).

l See 2.8 Specifying Compute Nodes - page 41 for more information about configuring pbs_
server to identify compute nodes.

L.1.5 Configure Data Management on the Compute Nodes
Data management allows jobs' data to be staged in/out or to and from the server and compute
nodes.

l For shared filesystems (i.e., NFS, DFS, AFS, etc.) use the $usecp parameter in the mom_
priv/config files to specify how to map a user's home directory.

(Example: $usecp gridmaster.tmx.com:/home /home)

l For local, non-shared filesystems, rcp or scp must be configured to allow direct copy without
prompting for passwords (key authentication, etc.)

L.1.6 Update Torque Server Configuration
On the Torque server, append the list of newly configured compute nodes to the TORQUE_
HOME/server_priv/nodes file:

server_priv/nodes

computenode001.cluster.org
computenode002.cluster.org
computenode003.cluster.org

L.1.7 Start the pbs_mom Daemons on Compute Nodes
l Next start the pbs_mom daemon on each compute node by running the pbs_mom executable.

Run the trqauthd daemon to run client commands (see Configuring trqauthd for Client Commands).
This enables running client commands.

Appendix L: Torque Quick Start

494 L.1 Torque Quick Start Guide

L.1 Torque Quick Start Guide 495

L.1.8 Verify Correct Torque Installation
The pbs_server daemon was started on the Torque server when the torque.setup file was
executed or when it was manually configured. It must now be restarted so it can reload the updated
configuration changes.

shutdown server
> qterm # shutdown server

start server
> pbs_server

verify all queues are properly configured
> qstat -q

view additional server configuration
> qmgr -c 'p s'

verify all nodes are correctly reporting
> pbsnodes -a

submit a basic job
>echo "sleep 30" | qsub

verify jobs display
> qstat

At this point, the job will not start because there is no scheduler running. The scheduler is enabled
in the next step below.

L.1.9 Enable the Scheduler
Selecting the cluster scheduler is an important decision and significantly affects cluster utilization,
responsiveness, availability, and intelligence. The default Torque scheduler, pbs_sched, is very basic
and will provide poor utilization of your cluster's resources. Other options, such as Maui Scheduler
or Moab Workload Manager are highly recommended. If using Maui/Moab, see Moab-Torque
Integration Guide in the Moab Workload Manager Administrator Guide. If using pbs_sched, start
this daemon now.

If you are installing ClusterSuite, Torque and Moab were configured at installation for
interoperability and no further action is required.

L.1.10 Startup/Shutdown Service Script for Torque/Moab
(OPTIONAL)
Optional startup/shutdown service scripts are provided as an example of how to run Torque as an
OS service that starts at bootup. The scripts are located in the contrib/init.d/ directory of the

Appendix L: Torque Quick Start

Torque tarball you downloaded. In order to use the script you must:

l Determine which init.d script suits your platform the best.

l Modify the script to point to Torque's install location. This should only be necessary if you
used a non-default install location for Torque (by using the --prefix option of
./configure).

l Place the script in the /etc/init.d/ directory.

l Use a tool like chkconfig to activate the start-up scripts or make symbolic links (S99moab
and K15moab, for example) in desired runtimes (/etc/rc.d/rc3.d/ on Red Hat, etc.).

Related Topics

l 2.13 Advanced Configuration - page 54

Appendix L: Torque Quick Start

496 L.1 Torque Quick Start Guide

497

Appendix M: BLCR Acceptance Tests

This section contains a description of the testing done to verify the functionality of the BLCR
implementation.

In this chapter:

M.1 Test Environment 498
M.2 Test 1 - BasicOperation 499

M.2.1 Introduction 499
M.2.2 Test Steps 499
M.2.3 Possible Failures 499
M.2.4 Successful Results 499

M.3 Test 2 - Persistence of Checkpoint Images 502
M.3.1 Introduction 502
M.3.2 Test Steps 502
M.3.3 Possible Failures 502
M.3.4 Successful Results 502

M.4 Test 3 - Restart After Checkpoint 504
M.4.1 Introduction 504
M.4.2 Test Steps 504
M.4.3 Successful Results 504

M.5 Test 4 - Multiple Checkpoint/Restart 505
M.5.1 Introduction 505
M.5.2 Test Steps 505

M.6 Test 5 - Periodic Checkpoint 506
M.6.1 Introduction 506
M.6.2 Test Steps 506
M.6.3 Successful Results 506

M.7 Test 6 - Restart fromPrevious Image 507
M.7.1 Introduction 507
M.7.2 Test Steps 507
M.7.3 Successful Results 507

Appendix M: BLCR Acceptance Tests

M.1 Test Environment

All these tests assume the following test program and shell script, test.sh.

#include
int main(int argc, char *argv[])
{
int i;

 for (i=0; i<100; i++)
{

 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}
#!/bin/bash

/home/test/test

Related Topics

l Appendix M: BLCR Acceptance Tests - page 497

Appendix M: BLCR Acceptance Tests

498 M.1 Test Environment

M.2 Test 1 - Basic Operation 499

M.2 Test 1 - Basic Operation

In this topic:

M.2.1 Introduction - page 499
M.2.2 Test Steps - page 499
M.2.3 Possible Failures - page 499
M.2.4 Successful Results - page 499

M.2.1 Introduction
This test determines if the proper environment has been established.

M.2.2 Test Steps
Submit a test job and the issue a hold on the job.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999

M.2.3 Possible Failures
Normally the result of qhold is nothing. If an error message is produced saying that qhold is not
a supported feature then one of the following configuration errors might be present.

l The Torque images may have not be configured with --enable-blcr

l BLCR support may not be installed into the kernel with insmod.

l The config script in mom_priv may not exist with $checkpoint_script defined.

l The config script in mom_priv may not exist with $restart_script defined.

l The config script in mom_priv may not exist with $checkpoint_run_exe defined.

l The scripts referenced in the config file may not exist.

l The scripts referenced in the config file may not have the correct permissions.

M.2.4 Successful Results
If no configuration was done to specify a specific directory location for the checkpoint file, the
default location is off of the Torque directory, which in my case is
/var/spool/torque/checkpoint.

Appendix M: BLCR Acceptance Tests

Otherwise, go to the specified directory for the checkpoint image files. This was done by either
specifying an option on job submission, i.e. -c dir=/home/test or by setting an attribute on
the execution queue. This is done with the command qmgr -c 'set queue batch
checkpoint_dir=/home/test'.

Doing a directory listing shows the following.

find /var/spool/torque/checkpoint
/var/spool/torque/checkpoint
/var/spool/torque/checkpoint/999.xxx.yyy.CK
/var/spool/torque/checkpoint/999.xxx.yyy.CK/ckpt.999.xxx.yyy.1205266630
find /var/spool/torque/checkpoint |xargs ls -l
-r-------- 1 root root 543779 2008-03-11 14:17
/var/spool/torque/checkpoint/999.xxx.yyy.CK/ckpt.999.xxx.yyy.1205266630

/var/spool/torque/checkpoint:
total 4
drwxr-xr-x 2 root root 4096 2008-03-11 14:17 999.xxx.yyy.CK

/var/spool/torque/checkpoint/999.xxx.yyy.CK:
total 536
-r-------- 1 root root 543779 2008-03-11 14:17 ckpt.999.xxx.yyy.1205266630

Doing a qstat -f command should show the job in a held state, job_state = H. Note that the
attribute checkpoint_name is set to the name of the file seen above.

If a checkpoint directory has been specified, there will also be an attribute checkpoint_dir in the
output of qstat -f.

$ qstat -f
Job Id: 999.xxx.yyy
 Job_Name = test.sh
 Job_Owner = test@xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:06
 job_state = H
 queue = batch
 server = xxx.yyy
 Checkpoint = u
 ctime = Tue Mar 11 14:17:04 2008
 Error_Path = xxx.yyy:/home/test/test.sh.e999
 exec_host = test/0
 Hold_Types = u
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Tue Mar 11 14:17:10 2008
 Output_Path = xxx.yyy:/home/test/test.sh.o999
 Priority = 0
 qtime = Tue Mar 11 14:17:04 2008
 Rerunable = True
 Resource_List.neednodes = 1
 Resource_List.nodect = 1
 Resource_List.nodes = 1
 Resource_List.walltime = 01:00:00

Appendix M: BLCR Acceptance Tests

500 M.2 Test 1 - Basic Operation

M.2 Test 1 - Basic Operation 501

 session_id = 9402 substate = 20
 Variable_List = PBS_O_HOME=/home/test,PBS_O_LANG=en_US.UTF-8,
 PBS_O_LOGNAME=test,
 PBS_O_PATH=/usr/local/perltests/bin:/home/test/bin:/usr/local/s
bin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games,
 PBS_O_SHELL=/bin/bash,PBS_SERVER=xxx.yyy,
 PBS_O_HOST=xxx.yyy,PBS_O_WORKDIR=/home/test,
 PBS_O_QUEUE=batch
 euser = test
 egroup = test
 hashname = 999.xxx.yyy
 queue_rank = 3
 queue_type = E comment = Job started on Tue Mar 11 at 14:17
 exit_status = 271
 submit_args = test.sh
 start_time = Tue Mar 11 14:17:04 2008
 start_count = 1
 checkpoint_dir = /var/spool/torque/checkpoint/999.xxx.yyy.CK
 checkpoint_name = ckpt.999.xxx.yyy.1205266630

The value of Resource_List.* is the amount of resources requested.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 497

Appendix M: BLCR Acceptance Tests

M.3 Test 2 - Persistence of Checkpoint Images

In this topic:

M.3.1 Introduction - page 502
M.3.2 Test Steps - page 502
M.3.3 Possible Failures - page 502
M.3.4 Successful Results - page 502

M.3.1 Introduction
This test determines if the checkpoint files remain in the default directory after the job is removed
from the Torque queue.

Note that this behavior was requested by a customer but in fact may not be the right thing to do as
it leaves the checkpoint files on the execution node. These will gradually build up over time on the
node being limited only by disk space. The right thing would seem to be that the checkpoint files
are copied to the user's home directory after the job is purged from the execution node.

M.3.2 Test Steps
Assuming the steps of Test 1 (see Test 1 - Basic Operation), delete the job and then wait until the
job leaves the queue after the completed job hold time. Then look at the contents of the default
checkpoint directory to see if the files are still there.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999
> qdel 999
> sleep 100
> qstat
>
> find /var/spool/torque/checkpoint
... files ...

M.3.3 Possible Failures
The files are not there, did Test 1 actually pass?

M.3.4 Successful Results
The files are there.

Appendix M: BLCR Acceptance Tests

502 M.3 Test 2 - Persistence of Checkpoint Images

M.3 Test 2 - Persistence of Checkpoint Images 503

Related Topics

l Appendix M: BLCR Acceptance Tests - page 497

Appendix M: BLCR Acceptance Tests

M.4 Test 3 - Restart After Checkpoint

In this topic:

M.4.1 Introduction - page 504
M.4.2 Test Steps - page 504
M.4.3 Successful Results - page 504

M.4.1 Introduction
This test determines if the job can be restarted after a checkpoint hold.

M.4.2 Test Steps
Assuming the steps of Test 1 (see Test 1 - Basic Operation), issue a qrls command. Have another
window open into the /var/spool/torque/spool directory and tail the job.

M.4.3 Successful Results
After the qrls, the job's output should resume.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 497

Appendix M: BLCR Acceptance Tests

504 M.4 Test 3 - Restart After Checkpoint

M.5 Test 4 - Multiple Checkpoint/Restart 505

M.5 Test 4 - Multiple Checkpoint/Restart

In this topic:

M.5.1 Introduction - page 505
M.5.2 Test Steps - page 505

M.5.1 Introduction
This test determines if the checkpoint/restart cycle can be repeated multiple times.

M.5.2 Test Steps
Start a job and then while tailing the job output, do multiple qhold/qrls operations.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999
> qrls 999
> qhold 999
> qrls 999
> qhold 999
> qrls 999

Successful results.

After each qrls, the job's output should resume. Also tried while true; do qrls 999;
qhold 999; done and this seemed to work as well.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 497

Appendix M: BLCR Acceptance Tests

M.6 Test 5 - Periodic Checkpoint

In this topic:

M.6.1 Introduction - page 506
M.6.2 Test Steps - page 506
M.6.3 Successful Results - page 506

M.6.1 Introduction
This test determines if automatic periodic checkpoint will work.

M.6.2 Test Steps
Start the job with the option -c enabled,periodic,interval=1 and look in the checkpoint
directory for checkpoint images to be generated about every minute.

> qsub -c enabled,periodic,interval=1 test.sh
999.xxx.yyy

M.6.3 Successful Results
After each qrls, the job's output should resume. Also tried "while true; do qrls 999; qhold 999;
done" and this seemed to work as well.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 497

Appendix M: BLCR Acceptance Tests

506 M.6 Test 5 - Periodic Checkpoint

M.7 Test 6 - Restart from Previous Image 507

M.7 Test 6 - Restart from Previous Image

In this topic:

M.7.1 Introduction - page 507
M.7.2 Test Steps - page 507
M.7.3 Successful Results - page 507

M.7.1 Introduction
This test determines if the job can be restarted from a previous checkpoint image.

M.7.2 Test Steps
Start the job with the option -c enabled,periodic,interval=1 and look in the checkpoint
directory for checkpoint images to be generated about every minute. Do a qhold on the job to
stop it. Change the attribute checkpoint_name with the qalter command. Then do a qrls to
restart the job.

> qsub -c enabled,periodic,interval=1 test.sh
999.xxx.yyy
> qhold 999
> qalter -W checkpoint_name=ckpt.999.xxx.yyy.1234567
> qrls 999

M.7.3 Successful Results
The job output file should be truncated back and the count should resume at an earlier number.

Related Topics

l Appendix M: BLCR Acceptance Tests - page 497

Appendix M: BLCR Acceptance Tests

508

Appendix N: Queue Attributes

This appendix provides information on the different queue attributes.

In this chapter:

N.1 Queue Attribute Reference 509
N.1.1 Attributes 509
N.1.2 Assigning Queue Resource Limits 519

Appendix N: Queue Attributes

N.1 Queue Attribute Reference

In addition to information on the different queue attributes, this appendix lists some queue
resource limits. See N.1.2 Assigning Queue Resource Limits - page 519.

For Boolean attributes, T, t, 1, Y, and y are all synonymous with "TRUE," and F, f, 0, N, and n
all mean "FALSE."

In this topic:

N.1.1 Attributes - page 509
N.1.2 Assigning Queue Resource Limits - page 519

N.1.1 Attributes

acl_groups

acl_group_enable

acl_group_sloppy

acl_hosts

acl_host_enable

acl_logic_or

acl_users

acl_user_enable

disallowed_types

enabled

features_required

ghost_queue

keep_completed

kill_delay

max_queuable

max_running

max_user_queuable

max_user_run

priority

queue_type

req_information_max

req_information_min

required_login_property

resources_available

resources_default

resources_max

resources_min

route_destinations

started

acl_groups

Format <GROUP>[@<HOST>][+<USER>[@<HOST>]]...

Default ---

Description Specifies the list of groups which may submit jobs to the queue. If acl_group_enable is set to true,
only users with a primary group listed in acl_groups may utilize the queue.

If the PBSACLUSEGROUPLIST variable is set in the pbs_server environment, acl_groups
checks against all groups of which the job user is a member.

Appendix N: Queue Attributes

509 N.1 Queue Attribute Reference

N.1 Queue Attribute Reference 510

acl_groups

Example > qmgr -c "set queue batch acl_groups=staff"
> qmgr -c "set queue batch acl_groups+=ops@h1"
> qmgr -c "set queue batch acl_groups+=staff@h1"

Used in conjunction with acl_group_enable.

acl_group_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains Torque to only allow jobs submitted from groups specified by the acl_groups
parameter.

Example qmgr -c "set queue batch acl_group_enable=true"

acl_group_sloppy

Format <BOOLEAN>

Default FALSE

Description If TRUE, acl_groups will be checked against all groups of which the job users is a member.

Example ---

acl_hosts

Format <HOST>[+<HOST>]...

Default ---

Description Specifies the list of hosts that may submit jobs to the queue.

Appendix N: Queue Attributes

acl_hosts

Example qmgr -c "set queue batch acl_hosts=h1+h1+h1"

Used in conjunction with acl_host_enable.

acl_host_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains Torque to only allow jobs submitted from hosts specified by the acl_hosts
parameter.

Example qmgr -c "set queue batch acl_host_enable=true"

acl_logic_or

Format <BOOLEAN>

Default FALSE

Description If TRUE, user and group acls are logically OR'd together, meaning that either acl may be met to
allow access. If FALSE or unset, then both acls are AND'd, meaning that both acls must be satisfied.

Example qmgr -c "set queue batch acl_logic_or=true"

acl_users

Format <USER>[@<HOST>][+<USER>[@<HOST>]]...

Default ---

Description Specifies the list of users who may submit jobs to the queue. If acl_user_enable is set to TRUE,
only users listed in acl_users may use the queue.

Appendix N: Queue Attributes

511 N.1 Queue Attribute Reference

N.1 Queue Attribute Reference 512

acl_users

Example > qmgr -c "set queue batch acl_users=john"
> qmgr -c "set queue batch acl_users+=steve@h1"
> qmgr -c "set queue batch acl_users+=stevek@h1"

Used in conjunction with acl_user_enable.

acl_user_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains Torque to only allow jobs submitted from users specified by the acl_users
parameter.

Example qmgr -c "set queue batch acl_user_enable=true"

disallowed_types

Format <type>[+<type>]...

Default ---

Description Specifies classes of jobs that are not allowed to be submitted to this queue. Valid types are inter-
active, batch, rerunable, nonrerunable, fault_tolerant (as of version 2.4.0 and later), fault_intol-
erant (as of version 2.4.0 and later), and job_array (as of version 2.4.1 and later).

Example qmgr -c "set queue batch disallowed_types = interactive"
qmgr -c "set queue batch disallowed_types += job_array"

enabled

Format <BOOLEAN>

Default FALSE

Description Specifies whether the queue accepts new job submissions.

Appendix N: Queue Attributes

enabled

Example qmgr -c "set queue batch enabled=true"

features_required

Format feature1[,feature2[,feature3...]]

Default ---

Description Specifies that all jobs in this queue will require these features in addition to any they may have
requested. A feature is a synonym for a property.

Example qmgr -c 's q batch features_required=fast'

ghost_queue

Format <BOOLEAN>

Default FALSE

Description Intended for automatic, internal recovery (by the server) only. If set to TRUE, the queue rejects
new jobs, but permits the server to recognize the ones currently queued and/or running. Unset
this attribute in order to approve a queue and restore it to normal operation. See 13.1 Automatic
Queue and Job Recovery - page 263 for more information regarding this process.

Example qmgr -c "unset queue batch ghost_queue"

keep_completed

Format <INTEGER>

Default 0

Description Specifies the number of seconds jobs should be held in the Completed state after exiting. For more
information, see Keeping Completed Jobs.

Example qmgr -c "set queue batch keep_completed=120"

Appendix N: Queue Attributes

513 N.1 Queue Attribute Reference

N.1 Queue Attribute Reference 514

kill_delay

Format <INTEGER>

Default 2

Description Specifies the number of seconds between sending a SIGTERM and a SIGKILL to a job in a specific
queue that you want to cancel. It is possible that the job script, and any child processes it spawns,
can receive several SIGTERM signals before the SIGKILL signal is received.

All MOMs must be configured with $exec_with_exec true in order for kill_delay to
work, even when relying on default kill_delay settings.

This setting overrides the server setting. See kill_delay in Appendix B: Server Parameters -
page 395.

Example qmgr -c "set queue batch kill_delay=30"

max_queuable

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs allowed in the queue at any given time (includes idle, run-
ning, and blocked jobs).

Example qmgr -c "set queue batch max_queuable=20"

max_running

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs in the queue allowed to run at any given time.

Example qmgr -c "set queue batch max_running=20"

Appendix N: Queue Attributes

max_user_queuable

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs, per user, allowed in the queue at any given time (includes
idle, running, and blocked jobs). Version 2.1.3 and greater.

Example qmgr -c "set queue batch max_user_queuable=20"

max_user_run

Format <INTEGER>

Default unlimited

Description This limits the maximum number of jobs a user can have running from the given queue.

Example qmgr -c "set queue batch max_user_run=10"

priority

Format <INTEGER>

Default 0

Description Specifies the priority value associated with the queue.

Example qmgr -c "set queue batch priority=20"

queue_type

Format One of e, execution, r, or route (see Creating a Routing Queue)

Default ---

Appendix N: Queue Attributes

515 N.1 Queue Attribute Reference

N.1 Queue Attribute Reference 516

queue_type

Description Specifies the queue type.

This value must be explicitly set for all queues.

Example qmgr -c "set queue batch queue_type=execution"

req_information_max

Format <STRING>

Default ---

Description Specifies the maximum resource limits allowed for jobs submitted to a queue.

These limits apply only to the qsub -L job submission option.

Valid values are lprocs, node, socket, numachip, core, thread, memory, swap, and disk.

If a maximum core count is specified, jobs with usecores must have lprocs<= the maximum
core count; jobs without usecores are rejected.

If a maximum thread count is specified, lprocs must be <= the maximum thread count.

Example qmgr -c "set queue batch req_information_max.lprocs=8"

req_information_min

Format <STRING>

Default ---

Appendix N: Queue Attributes

req_information_min

Description Specifies the minimum resource limits allowed for jobs submitted to a queue.

These limits apply only to the qsub -L job submission option.

Valid values are lprocs, node, socket, numachip, core, thread, memory, swap, and disk.

If a minimum core count is specified, jobs with usecores must have lprocs>= the minimum
core count; jobs without usecores are rejected.

If a minimum thread count is specified, lprocs must be >= the minimum thread count.

Example qmgr -c "set queue batch req_information_min.lprocs=2"

required_login_property

Format <STRING>

Default ---

Description Adds the specified login property as a requirement for all jobs in this queue.

Example qmgr -c 's q <queuename> required_login_property=INDUSTRIAL'

resources_available

Format <STRING>

Default ---

Description Specifies to cumulative resources available to all jobs running in the queue. See qsub will not allow
the submission of jobs requesting many processors for more information.

Example qmgr -c "set queue batch resources_available.nodect=20"

You must restart pbs_server for changes to take effect.

Also, resources_available is constrained by the smallest of queue.resources_available and
server.resources_available.

Appendix N: Queue Attributes

517 N.1 Queue Attribute Reference

N.1 Queue Attribute Reference 518

resources_default

Format <STRING>

Default ---

Description Specifies default resource requirements for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_default.walltime=3600"

See 5.3 Setting Queue Resource Controls with Resource Request Syntax 2.0 - page 178 for
more information about setting queue resource requirements and the use of -l and -L
job submission syntaxes.

resources_max

Format <STRING>

Default ---

Description Specifies the maximum resource limits for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_max.nodect=16"

resources_min

Format <STRING>

Default ---

Description Specifies the minimum resource limits for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_min.nodect=2"

route_destinations

Format <queue>[@<host>]

Appendix N: Queue Attributes

route_destinations

Default ---

Description Specifies the potential destination queues for jobs submitted to the associated routing queue.

This attribute is only valid for routing queues (see Creating a Routing Queue).

Example > qmgr -c "set queue route route_destinations=fast"
> qmgr -c "set queue route route_destinations+=slow"
> qmgr -c "set queue route route_destinations+=medium@hostname"

To set multiple queue specifications, use multiple commands:

> qmgr -c 's s route_destinations=batch'
> qmgr -c 's s route_destinations+=long'
> qmgr -c 's s route_destinations+=short'

started

Format <BOOLEAN>

Default FALSE

Description Specifies whether jobs in the queue are allowed to execute.

Example qmgr -c "set queue batch started=true"

N.1.2 Assigning Queue Resource Limits
Administrators can use resources limits to help direct what kind of jobs go to different queues.
There are four queue attributes where resource limits can be set: resources_available,
resources_default, resources_max, and resources_min. The list of supported
resources that can be limited with these attributes are arch, mem, ncpus, nodect, nodes, pmem,
procct, pvmem, vmem, and walltime.

Resource Format Description

arch string Specifies the administrator defined system architecture required.

Appendix N: Queue Attributes

519 N.1 Queue Attribute Reference

N.1 Queue Attribute Reference 520

Resource Format Description

mem size Amount of physical memory used by the job. (Ignored on Darwin, Digital Unix,
Free BSD, HPUX 11, IRIX, NetBSD, and SunOS. Also ignored on Linux if number
of nodes is not 1. Not implemented on AIX and HPUX 10.)

ncpus integer Sets the number of processors in one task where a task cannot span nodes.

You cannot request both ncpus and nodes in the same queue.

nodect integer Sets the number of nodes available. By default, Torque will set the number of
nodes available to the number of nodes listed in the TORQUE_HOME/server_
priv/nodes file. nodect can be set to be greater than or less than that number.
Generally, it is used to set the node count higher than the number of physical
nodes in the cluster.

nodes integer Specifies the number of nodes.

pmem size Specifies the maximum amount of physical memory to be used by any single
process of the job. (Ignored on Fujitsu. Not implemented on Digital Unix and
HPUX.)

procct integer Sets limits on the total number of execution slots (procs) allocated to a job. The
number of procs is calculated by summing the products of all node and ppn
entries for a job.

For example qsub -l nodes=2:ppn=2+3:ppn=4 job.sh would yield a
procct of 16. 2*2 (2:ppn=2) + 3*4 (3:ppn=4).

pvmem size Amount of virtual memory used by any single process in a job.

vmem size Amount of virtual memory used by all concurrent processes in the job.

walltime seconds, or
[[HH:]MM:]SS

Amount of real time during which a job can be in a running state.

size

The size format specifies the maximum amount in terms of bytes or words. It is expressed in the
form integer[suffix]. The suffix is a multiplier defined in the following table ("b" means bytes
[the default] and "w" means words). The size of a word is calculated on the execution server as its
word size.

Appendix N: Queue Attributes

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

Related Topics

l 5.1 Queue Configuration - page 176

Appendix N: Queue Attributes

521 N.1 Queue Attribute Reference

	 Welcome
	Chapter 1: Introduction
	1.1 Torque Administrator Guide Overview
	1.2 Getting Started
	1.2.1 What is a Resource Manager?
	1.2.2 What are Batch Systems?
	1.2.3 Basic Job Flow

	Chapter 2: Installation and Configuration
	2.1 Torque Installation Overview
	2.2 Basic Server Configuration
	2.2.1 Server Configuration File (serverdb)
	2.2.2 ./torque.setup
	2.2.3 pbs_server -t create
	2.2.4 Setting Up the Environment for pbs_server and pbs_mom

	2.3 Torque Architecture
	2.4 Installing Torque Resource Manager
	2.4.1 Requirements
	2.4.2 Open Necessary Ports
	2.4.3 Install Dependencies, Packages, or Clients
	2.4.4 Install Torque Server
	2.4.5 Install Torque MOMs
	2.4.6 Install Torque Clients
	2.4.7 Configure Data Management

	2.5 Compute Nodes
	2.6 Enabling Torque as a Service
	2.7 Initializing/Configuring Torque on the Server (pbs_server)
	2.8 Specifying Compute Nodes
	2.9 Configuring Torque on Compute Nodes
	2.10 Configuring Ports
	2.10.1 Configuring Torque Communication Ports
	2.10.2 Changing Default Ports

	2.11 Configuring trqauthd for Client Commands
	2.12 Finalizing Configurations
	2.13 Advanced Configuration
	2.14 Customizing the Install
	2.14.1 HAVE_WORDEXP

	2.15 Server Configuration
	2.15.1 Server Configuration Overview
	2.15.2 Name Service Configuration
	2.15.3 Configuring Job Submission Hosts
	2.15.4 Configuring Torque on a Multi-Homed Server
	2.15.5 Architecture Specific Notes
	2.15.6 Specifying Non-Root Administrators
	2.15.7 Setting Up Email
	2.15.8 Using MUNGE Authentication

	2.16 Setting Up the MOM Hierarchy (Optional)
	2.16.1 MOM Hierarchy Example
	2.16.2 Setting Up the MOM Hierarchy
	2.16.3 Putting the MOM Hierarchy on the MOMs

	2.17 Opening Ports in a Firewall
	2.17.1 Red Hat 6-Based Systems
	2.17.2 Red Hat 7-Based Systems
	2.17.3 SUSE 11-Based Systems
	2.17.4 SUSE 12-Based Systems

	2.18 Port Reference
	2.19 Manual Setup of Initial Server Configuration
	2.20 Server Node File Configuration
	2.21 Basic Node Specification
	2.22 Specifying Virtual Processor Count for a Node
	2.23 Specifying GPU Count for a Node
	2.24 Specifying Node Features (Node Properties)
	2.25 Testing Server Configuration
	2.26 Configuring Torque for NUMA Systems
	2.27 Torque NUMA-Aware Configuration
	2.27.1 About cgroups
	2.27.2 Prerequisites
	2.27.3 Installation Instructions
	2.27.4 Multiple cgroup Directory Configuration

	2.28 Torque NUMA-Support Configuration
	2.28.1 Configure Torque for NUMA-Support
	2.28.2 Create the mom.layout File
	2.28.3 Configure the server_priv/nodes File
	2.28.4 Limit Memory Resources (Optional)

	2.29 Torque Multi-MOM
	2.30 Multi-MOM Configuration
	2.30.1 Configure server_priv/nodes
	2.30.2 Edit the /etc/hosts File
	2.30.3 Start pbs_mom with Multi-MOM Options

	2.31 Stopping pbs_mom in Multi-MOM Mode

	Chapter 3: Submitting and Managing Jobs
	3.1 Job Submission
	3.2 Multiple Job Submission
	3.2.1 Submitting Job Arrays
	3.2.2 Slot Limit

	3.3 Managing Multi-Node Jobs
	3.4 Requesting Resources
	3.4.1 Native Torque Resources
	3.4.2 Interpreting Resource Requests
	3.4.3 Interpreting Node Requests
	3.4.4 Moab Job Extensions

	3.5 Requesting NUMA-Aware Resources
	3.6 Requesting Generic Resources
	3.7 Requesting Floating Resources
	3.8 Requesting Other Resources
	3.9 Exported Batch Environment Variables
	3.10 Enabling Trusted Submit Hosts
	3.11 Example Submit Scripts
	3.12 Job Files
	3.13 Monitoring Jobs
	3.14 Canceling Jobs
	3.15 Job Preemption
	3.16 Keeping Completed Jobs
	3.17 Job Checkpoint and Restart
	3.18 Introduction to BLCR
	3.19 Configuration Files and Scripts
	3.20 Starting a Checkpointable Job
	3.21 Checkpointing a Job
	3.22 Restarting a Job
	3.22.1 Restarting a Job in the Held State
	3.22.2 Restarting a Job in the Completed State

	3.23 Acceptance Tests
	3.24 Job Exit Status
	3.25 Torque Process Tracking
	3.25.1 Default Process Tracking
	3.25.2 Task Manager API
	3.25.3 Process Tracking with Cgroups/Cpusets

	Chapter 4: Managing Nodes
	4.1 Adding Nodes
	4.2 Node Properties
	4.2.1 Run-time Node Changes
	4.2.2 Manual Node Changes
	4.2.3 Adding Memory to a Node

	4.3 Changing Node State
	4.3.1 Marking Jobs Offline
	4.3.2 Listing Node States
	4.3.3 Node Recovery

	4.4 Changing Node Power States
	4.5 Host Security
	4.5.1 Enabling PAM with Torque
	4.5.2 Using PAM Exception Instructions
	4.5.3 Legacy Torque PAM Configuration

	4.6 Linux Cpuset Support
	4.6.1 Cpuset Overview
	4.6.2 Cpuset Support
	4.6.3 Configuring Cpuset
	4.6.4 Cpuset Advantages/Disadvantages

	4.7 Scheduling Cores
	4.8 Geometry Request Configuration
	4.9 Geometry Request Usage
	4.10 Geometry Request Considerations
	4.11 Scheduling Accelerator Hardware
	4.12 Node Resource Plug-in
	4.12.1 Plug-in Implementation Recommendations
	4.12.2 Building the Plug-in
	4.12.3 Testing the Plug-in
	4.12.4 Enabling the Plug-in

	Chapter 5: Setting Server Policies
	5.1 Queue Configuration
	5.2 Example Queue Configuration
	5.3 Setting Queue Resource Controls with Resource Request Syntax 2.0
	5.4 Setting a Default Queue
	5.5 Mapping a Queue to Subset of Resources
	5.6 Creating a Routing Queue
	5.7 Server High Availability
	5.7.1 Redundant server host machines
	5.7.2 Enabling High Availability
	5.7.3 Enhanced High Availability with Moab
	5.7.4 How Commands Select the Correct Server Host
	5.7.5 Job Names
	5.7.6 Persistence of the pbs_server Process
	5.7.7 High Availability of the NFS Server
	5.7.8 Installing Torque in High Availability Mode
	5.7.9 Installing Torque in High Availability Mode on Headless Nodes
	5.7.10 Example Setup of High Availability

	5.8 Setting min_threads and max_threads

	Chapter 6: Integrating Schedulers for Torque
	Chapter 7: Configuring Data Management
	7.1 SCP Setup
	7.2 Generating SSH Key on Source Host
	7.3 Copying Public SSH Key to Each Destination Host
	7.4 Configuring the SSH Daemon on Each Destination Host
	7.5 Validating Correct SSH Configuration
	7.6 Enabling Bi-Directional SCP Access
	7.7 Compiling Torque to Support SCP
	7.8 Troubleshooting
	7.9 NFS and Other Networked Filesystems
	7.10 File stage-in/stage-out

	Chapter 8: MPI (Message Passing Interface) Support
	8.1 MPICH
	8.1.1 MPIExec Overview
	8.1.2 MPIExec Troubleshooting
	8.1.3 General MPI Troubleshooting

	8.2 Open MPI

	Chapter 9: Resources
	9.1 About Resources
	9.1.1 Configuration
	9.1.2 Utilization
	9.1.3 Node States

	Chapter 10: Accounting Records
	10.1 About Accounting Records
	10.1.1 Location
	10.1.2 Record Types
	10.1.3 Accounting Variables

	Chapter 11: Job Logging
	11.1 Job Log Location and Name
	11.2 Enabling Job Logs

	Chapter 12: NUMA and Torque
	12.1 Supported NUMA Systems
	12.2 NUMA-Aware Systems
	12.2.1 About NUMA-Aware Systems
	12.2.2 Installation and Configuration
	12.2.3 Job Resource Requests
	12.2.4 Job Monitoring
	12.2.5 Moab/Torque NUMA Configuration
	12.2.6 Considerations When Upgrading Versions or Changing Hardware

	12.3 NUMA Tutorials
	12.4 NUMA Primer
	12.4.1 Torque cgroup Hierarchy
	12.4.2 cpuset Subsystem
	12.4.3 cpuacct Subsystem
	12.4.4 memory Subsystem
	12.4.5 Resource Request 2.0
	12.4.6 Single Resource Request With Two Tasks and Default settings
	12.4.7 Multiple lprocs
	12.4.8 usecores
	12.4.9 usethreads
	12.4.10 Multiple Resource Requests
	12.4.11 place Directives
	12.4.12 pbsnodes and Dedicated Resources

	12.5 How NUMA Places Jobs
	12.6 NUMA Discovery and Persistence
	12.6.1 Initial Discovery
	12.6.2 Job Placement Decisions
	12.6.3 Persistence Across Restarts

	12.7 -L NUMA Resource Request
	12.7.1 Syntax
	12.7.2 Allocation Options

	12.8 pbsnodes with NUMA-Awareness
	12.9 NUMA-Support Systems
	12.9.1 About NUMA-Supported Systems
	12.9.2 Torque Installation and Configuration
	12.9.3 Moab/Torque NUMA Configuration

	Chapter 13: Troubleshooting
	13.1 Automatic Queue and Job Recovery
	13.2 Host Resolution
	13.3 Firewall Configuration
	13.4 Torque Log Files
	13.4.1 pbs_server and pbs_mom Log Files
	13.4.2 trqauthd Log Files

	13.5 Using tracejob to Locate Job Failures
	13.5.1 Overview
	13.5.2 Syntax
	13.5.3 Example

	13.6 Using GDB to Locate Job Failures
	13.7 Other Diagnostic Options
	13.8 Stuck Jobs
	13.9 Frequently Asked Questions (FAQ)
	13.9.1 Cannot connect to server: error=15034
	13.9.2 Deleting 'stuck' jobs
	13.9.3 Which user must run Torque?
	13.9.4 Scheduler cannot run jobs - rc: 15003
	13.9.5 PBS_Server: pbsd_init, Unable to read server database
	13.9.6 qsub will not allow the submission of jobs requesting many processors
	13.9.7 qsub reports 'Bad UID for job execution'
	13.9.8 Why does my job keep bouncing from running to queued?
	13.9.9 How do I use PVM with Torque?
	13.9.10 My build fails attempting to use the TCL library
	13.9.11 My job will not start, failing with the message 'cannot send job to mom, state=PRERUN'
	13.9.12 How do I determine what version of Torque I am using?
	13.9.13 How do I resolve autogen.sh errors that contain error: possibly undefined macro: AC_MSG_ERROR?
	13.9.14 How do I resolve compile errors with libssl or libcrypto for Torque 4.0 on Ubuntu 10.04?
	13.9.15 Why are there so many error messages in the client logs (trqauthd logs) when I don't notice client commands failing?

	13.10 Compute Node Health Check
	13.11 Configuring MOMs to Launch a Health Check
	13.12 Creating the Health Check Script
	13.13 Adjusting Node State Based on the Health Check Output
	13.14 Example Health Check Script
	13.15 Debugging
	13.15.1 Diagnostic and Debug Options
	13.15.2 Torque Error Codes

	Appendix A: Commands Overview
	A.1 Torque Services
	A.2 Client Commands
	A.3 momctl
	A.4 pbs_mom
	A.5 pbs_server
	A.6 pbs_track
	A.7 pbsdsh
	A.8 pbsnodes
	A.9 qalter
	A.10 qchkpt
	A.11 qdel
	A.12 qgpumode
	A.13 qgpureset
	A.14 qhold
	A.15 qmgr
	A.16 qmove
	A.17 qorder
	A.18 qrerun
	A.19 qrls
	A.20 qrun
	A.21 qsig
	A.22 qstat
	A.23 qsub
	A.24 qterm
	A.25 trqauthd

	Appendix B: Server Parameters
	Appendix C: Node Manager (MOM) Configuration
	C.1 MOM Parameters
	C.2 Node Features and Generic Consumable Resource Specification

	Appendix D: Diagnostics and Error Codes
	Appendix E: Preparing to Upgrade
	E.1 Considerations Before Upgrading
	E.1.1 Considerations
	E.1.2 To Upgrade
	E.1.3 Rolling Upgrade

	Appendix F: Large Cluster Considerations
	F.1 Scalability Guidelines
	F.2 End-User Command Caching
	F.3 Moab and Torque Configuration for Large Clusters
	F.4 Starting Torque in Large Environments
	F.5 Other Considerations
	F.5.1 job_stat_rate
	F.5.2 poll_jobs
	F.5.3 Scheduler Settings
	F.5.4 File System
	F.5.5 Network ARP Cache

	Appendix G: Prologue and Epilogue Scripts
	G.1 MOM Prologue and Epilogue Scripts
	G.2 Script Order of Execution
	G.3 Script Environment
	G.3.1 Prologue Environment
	G.3.2 Epilogue Environment
	G.3.3 Environment Variables
	G.3.4 Standard Input

	G.4 Per Job Prologue and Epilogue Scripts
	G.5 Prologue and Epilogue Scripts Time Out
	G.6 Prologue Error Processing

	Appendix H: Running Multiple Torque Servers and MOMs on the Same Node
	H.1 Configuring Multiple Servers to Run on the Same Node
	H.1.1 Configuring the First Torque
	H.1.2 Configuring the Second Torque
	H.1.3 Bringing the First Torque Server online
	H.1.4 Bringing the Second Torque Server Online

	Appendix I: Security Overview
	Appendix J: Job Submission Filter (qsub Wrapper)
	Appendix K: torque.cfg Configuration File
	Appendix L: Torque Quick Start
	L.1 Torque Quick Start Guide
	L.1.1 Initial Installation
	L.1.2 Initialize/Configure Torque on the Server (pbs_server)
	L.1.3 Install Torque on the Compute Nodes
	L.1.4 Configure Torque on the Compute Nodes
	L.1.5 Configure Data Management on the Compute Nodes
	L.1.6 Update Torque Server Configuration
	L.1.7 Start the pbs_mom Daemons on Compute Nodes
	L.1.8 Verify Correct Torque Installation
	L.1.9 Enable the Scheduler
	L.1.10 Startup/Shutdown Service Script for Torque/Moab (OPTIONAL)

	Appendix M: BLCR Acceptance Tests
	M.1 Test Environment
	M.2 Test 1 - Basic Operation
	M.2.1 Introduction
	M.2.2 Test Steps
	M.2.3 Possible Failures
	M.2.4 Successful Results

	M.3 Test 2 - Persistence of Checkpoint Images
	M.3.1 Introduction
	M.3.2 Test Steps
	M.3.3 Possible Failures
	M.3.4 Successful Results

	M.4 Test 3 - Restart After Checkpoint
	M.4.1 Introduction
	M.4.2 Test Steps
	M.4.3 Successful Results

	M.5 Test 4 - Multiple Checkpoint/Restart
	M.5.1 Introduction
	M.5.2 Test Steps

	M.6 Test 5 - Periodic Checkpoint
	M.6.1 Introduction
	M.6.2 Test Steps
	M.6.3 Successful Results

	M.7 Test 6 - Restart from Previous Image
	M.7.1 Introduction
	M.7.2 Test Steps
	M.7.3 Successful Results

	Appendix N: Queue Attributes
	N.1 Queue Attribute Reference
	N.1.1 Attributes
	N.1.2 Assigning Queue Resource Limits

