
W H I T E PA P E R

Intelligent HPC Workload Management

Performance Gains in HPC Speed and Scalability

Operation Radical Ascent

W H I T E PA P E R

Operation Radical Ascent: Performance Gains in HPC Speed and Scalability

2

Table of contents

3 The Need in HPC
3 The Zen of Ascent
3 Initial Targets
4 Moving the Needle
5 Mutexing
5 Phase 1 Results
6 Raising the Bar
7 What’s Next for Ascent
8 Stacking Benefits
8 The Role of Ascent in Big Workflow
8 The View from Here

W H I T E PA P E R

3

Operation Radical Ascent: Performance Gains in HPC Speed and Scalability

Pakistan is known as the land of mountains. It is home to nearly
70 peaks above 7,000 meters (approximately 23,000 feet), and
attracted mountaineers and climbers from all over the world
seeking to ascend to the top of the country’s many mountains
and glaciers. Even with all the modern equipment available,
however, there are still hundreds of peaks that have not been
summited.

Today the world of High-Performance Computing is
experiencing similar obstacles as they attempt to scale
ever-mounting data workloads. There is a pressing need for
scheduling software that can surmount these mountains of
data. As a result of the convergence of HPC, cloud and big data,
organizations are jumping from hundreds of thousands of jobs
to possibly millions of jobs.

The Need in HPC
The exascale wave in today’s HPC market is creating a similar
inflection point, where familiar solutions are simply inadequate.
Modern supercomputers now have so many internal network
interconnects and coordinate so many calculations at such
a rate that the painted lanes and traffic lights of traditional
scheduling cannot keep up. Jobs sit idle when they should be
running; policy constraints are lost in the noise of hardware
failure at scale; data remains opaque and unanalyzed instead of
generating insight.

The exascale challenge is intensifying. A generation ago, most
HPC problems consumed modest amounts of data in a single
stage; many of today’s projects require Big Data processing in
complex workflows that are impossible to manage manually.
This “Big Workflow” phenomenon multiplies problems
at scale, raises the stakes for performance, and demands
groundbreaking sophistication. Schedulers used to place with
only CPU and RAM as major considerations; now workflow
demands smarter policy and more savvy choices based on data
locality and interdependent deadlines.

In 2013, Adaptive Computing recognized the opportunity
and challenge inherent in this situation and made a
strategic choice to invest in new scheduling technology.
Dubbed “Operation Radical Ascent,” the resulting initiative
aimed to marry the best thinking from earlier generations
of Moab with important changes to the fundamental
engine, forever changing scale and performance standards
for the industry.

The June 2014 release of Moab HPC Suite began the Ascent
vision for the first time in a big way. However, Operation
Radical Ascent is still in full swing, and the December 2014
release introduces more innovation in additional waves.

The Zen of Ascent
The first thing that the Ascent team at Adaptive Computing
did, when they were chartered, was to agree on guiding
imperatives:

n Formalized measurement and the scientific method

n Parallelized, distributed, cooperative designs

n Changes that make the biggest difference to customers in
real-world problem solving

n Better manufacturing process

n Reproducible results that are checked and rechecked to
prevent backsliding

Initial Targets
As a down payment on this philosophy, the Ascent team
brainstormed a series of formal metrics that they could collect,
that would quantify progress. The HPC industry has long used
LINPACK and similar benchmarks to assess the performance of
supercomputers in a formal way; why, they reasoned, should
we not have analogous numbers for the technology that runs
those supercomputers?

After considerable debate, the team identified a small set
of metrics as their initial focus. Each metric has a formal test
procedure and associated reference hardware (Appendix A).
What follows is just an informal summary:

ARTEC – Average Run-Time for Expensive Commands

On a large, busy cluster, how long does it take, on average,
to run a read-only command that performs significant
computation? A common symptom of an underpowered
scheduler is that a command like Moab’s “showstart,” that
predicts when a job is likely to start, may appear to hang
for seconds or even minutes, waiting for a chance to claim
attention. Performing well on this metric means that admins
and end users always have a responsive system.

ATS100K – Average Time to Submit 100,000 Jobs

Given a realistic distribution of job types and sizes, how long
does it take to submit 100k jobs? Experience told Adaptive
Computing that performance on this metric would be
challenged both by ingestion handling and by the overall
backlog/calculation load as the queue size grew. Performing
well on this metric means that a scheduler can handle both
usage spikes and very large queues with ease.

W H I T E PA P E R

Operation Radical Ascent: Performance Gains in HPC Speed and Scalability

4

ATEMJS – Average Time to Exit Many Jobs Simultaneously

When a job exits, there is a brief period of intense
communication. On large clusters, we knew from experience
that sometimes many jobs would exit at approximately the same
time and that the overhead of passing status back and forth
could overwhelm the cluster for as long as a few minutes. We
also knew that communication on job-exit and communication
for job status were related, so improving this metric would likely
slash communication overhead for many other use cases.

SIT – Schedule Iteration Time

Given a moderately complex configuration, how long does
it take to re-analyze the entire queue in a large, busy cluster,
making new, re-optimized decisions about job placement? In
large clusters with complex policies, the industry often sees
times in minutes; the Ascent team wanted something much
faster.

SICU – Schedule Iteration CPU Utilization

During the period of time when a scheduler is re-analyzing
its queue, how efficiently does it use available processing
power to make decisions? An old-fashioned, serial scheduler
running on a box with eight cores might keep only one of
them busy; a scheduler that scales with hardware should
show a much broader, more savvy usage pattern.

These are not the only metrics that the Ascent team came up
with. In future releases, more will be described and reported.
Even in the June release, much time has been spent measuring
and tuning some additional dimensions. But these are the heart
of Ascent’s first focus, and the results show that they have paid
off handsomely.

Moving the Needle
Once the Ascent team had articulated its worldview and
had identified specific measurements that would reduce its
progress to crisp numbers, it was time to formulate a plan of
attack.

The general pattern was easy to guess: take baseline
measurements and look for places where code could be
rewritten or designs could be altered, such that things became
much faster and more scalable.

But where, exactly, should changes be made?

Adaptive Computing was not starting from scratch when
it launched Operation Radical Ascent. Certain aspects of
scheduling were well understood, and some foundational
metaphors and algorithms remained relevant. However,
Adaptive Computing also recognized the need to challenge

our thinking in fundamental ways. In Phase 1 of Ascent, the
work delivered in the June 2014 release, they were particularly
interested in the following new dimensions of the problem:

Parallelism

At the time Adaptive Computing launched Ascent,
the scheduling algorithms that kept massively parallel
supercomputers busy were, themselves, mostly serial. Moab
and its competitors had their roots in theoretical work first
productized in the 1980s and 1990s. At that time, computer
science mainly used parallelism for enormous matrix math
problems—not for multithreading the daemons that managed
that computation.

Adaptive Computing knew they could change this. Parts of
the decision-making at the heart of a scheduler are friendly to
parallelization. For example, identifying the subsets of a cluster
that might be available during the time range required for a
particular job is something that can be done for many different
jobs simultaneously. So is the calculation about which nodes
match a particular job’s theoretical hardware requirements,
before filtering through the lens of policy constraints.

If Adaptive Computing could solve many aspects of a problem
simultaneously, instead of doing each step in an inalterable
sequence, they knew that modern hardware would reward
them with significant improvements to both scale and
performance.

Caching

Additional improvements could be derived from remembering
the results of previous calculations, instead of repeating work
each time the scheduler had the same question—or from
operating from one copy of data while another copy was being
modified.

The Ascent team quickly identified places where caching could
pay big dividends. For example, Adaptive Computing found
that diagnostic commands such as “showstart” and “mdiag”
could often operate from a snapshot of the cluster’s state, while
other threads were modifying unrelated portions of Moab’s
object model. They also found that some of the computations
at the heart of the scheduling loop could be eliminated as
redundant if they remembered more intermediate work.

Communication

A major challenge in complex systems of all kinds is making
sure that information flows to the right places at the right times.
The Ascent team knew several aspects of communication were
particularly likely to be fertile fields for study: how “pbs_server” and
“pbs_mom” communicate in TORQUE, for example, or how Moab

W H I T E PA P E R

Operation Radical Ascent: Performance Gains in HPC Speed and Scalability

5

sends “pbs_server” newly submitted jobs. These sections of code
were attractive redesign possibilities because communication
could be streamlined while also making it parallel. Instead of
looping serially over large numbers of nodes that each needed
to send or receive information, performing the loop in parallel
fashion could create huge gains in performance or scale.

Mutexing
When multiple threads need to access the same shared
information and there is any possibility of that information
changing, software engineers often use a technique called
mutexing to guarantee that access is granted in an orderly fashion.

This guarantee is important, but it is also expensive because
other parts of a program can be blocked while they wait for a
scarce resource to become available. In addition to its speed
implications, mutexing can be painful because it introduces the
possibility of deadlocks and (when done wrong) seg faults.

A final emphasis of Ascent efforts, then, was to mutex
with great care and precision—doing enough to correctly

enable parallelism, but avoiding performance penalties and
guaranteeing robustness.

Phase 1 Results
The June 2014 release of Moab HPC Suite contained numerous
improvements and design changes introduced by the Ascent
team. Some of the headline achievements include:

Drastic Reduction in Command Latency (ARTEC)

Even on the largest and heavily burdened clusters, it should
now be possible to submit “expensive” read-only commands
and get an answer within a few seconds, no matter whether
the scheduler is busy or idle. A combination of cached data
and more efficient use of background threads makes this
possible.

Drastic Reduction in Schedule Iteration (SIT) (Figure 1)

The time it takes to process a full queue of jobs, making new
placement decisions, is now significantly less (between 3x and
6x faster according to benchmarks).

 Figure 1

 Figure 1

W H I T E PA P E R

Operation Radical Ascent: Performance Gains in HPC Speed and Scalability

6

Huge Improvement in Proc Usage (SICU) (Figure 2)

Moab now scales up with hardware—the more CPU
horsepower you dedicate to the scheduler, the faster it goes.
This is revealed by graphs like the following, which show Moab
making full use of multiple cores during its scheduling cycle.

Importantly, this means that the hardware specifications for
Moab can now be tailored to the needs of a specific cluster; a
beefier server will run much faster than an underpowered one.

Dramatic Gains in TORQUE and Moab+TORQUE
Communication (ATEMJS, ATS100K) (Figure 3)

Moab now communicates newly submitted jobs to TORQUE
using a more efficient API. Internally, TORQUE passes job
information at start time, during subsequent status reports, and
at job exit, in a way that is more robust and more efficient than
ever before. The following graph shows one communication task
that’s been optimized (smaller is better; scale is microseconds).

Gains on other communication tasks are similar; while mileage
will vary according to the makeup of a particular cluster, testing
reveals that much larger queues are now practical and much
more complex jobs flow with ease.

Raising the Bar
Adding Ascent design improvements to Moab represents a
major step forward in the scale and performance of scheduler
technology. Customers no longer need to grit their teeth at
sluggishness when they put 50,000 jobs in a queue. Exascale
scheduling is not just a pipe dream.

Of equal importance, Ascent establishes formal benchmarks
by which Moab and its competitors can be measured. When
evaluating choices, customers can ask for hard numbers from
Adaptive and collect similar data points for their other options as
well. Performance and scale become a science, not guesswork.

 Figure 2

 Figure 3

W H I T E PA P E R

Operation Radical Ascent: Performance Gains in HPC Speed and Scalability

7

What’s New for Ascent
The performance gains that Operation Radical Ascent
delivered in the June 2014 release are just the beginning.
The November 2014 release of Moab HPC Suite marks a
significant advancement in Adaptive’s Ascent vision and
contains numerous improvements introduced by the Ascent
team.

More Parallelization

In its previous version, Moab currently collected data from its
resource manager(s) as a discrete step in the scheduling loop,
right before it begins re-analyzing the queue. With Moab 8.1,
this data ingestion work has been redesigned to overlap with
other tasks, so that a slow resource manager has minimal effect
on Moab’s speed.

This improvement increases the decoupling between Moab
and TORQUE’s network communication so that Moab is less
dependent on TORQUE’S responsiveness. As a result, Moab will
never block users because TORQUE is being unresponsive due
to a failed node or workload spike.

In a typical HPC environment, this enhancement results in 2x
speed improvements and shortens the duration of the average
scheduling iteration in half. These enhancements apply to
TORQUE and all other resources managers. In addition, Moab
is now able to poll multiple resource managers simultaneously,
instead of one after the other.

Tighter Cooperation between Moab and TORQUE

Today, a significant amount of overhead in Moab-TORQUE
communication derives from the fact that each of these
applications has its own unique version of key structures. When
Moab sends a job to TORQUE, the structure has to be serialized
on one side, and de-serialized on the other.

Moab 8.1 introduces innovations that harmonize these key
structures to reduce overhead, and improve communication
between the HPC scheduler and the resource manager(s).

This release introduces new capabilities for TORQUE to reduce
check-ins with jobs with unchanged states by communicating
with Moab in batches instead of one-off messages. This
condensed status reporting reduces the network stress that
was previously occurring between Moab and TORQUE during
each scheduling iteration.

This condensed status reporting feature is optimized for HPC
environments that are running longer scheduling iterations
with jobs that run for days, weeks and even months. For certain
use cases, this feature will be able to deliver 2x speed and scale
improvements.

Enhanced Accounting Capabilities

Moab 8.1 introduces the ability to select one of three new
alternate accounting modes that avoids the blocking lien
enforcement in the default strict allocation mode. By selecting
a higher throughput accounting mode such as fast-allocation,
Moab can schedule job surges at the same pace as it does
when not using accounting.

The accounting mode allows a site to specify what level of
accounting (e.g. showback or chargeback) and usage level
enforcement is needed for their notion of accounting. The
accounting mode modifies the way in which Moab interacts
with Moab Accounting Manager during the various stages of
the job or reservation lifetime (e.g. job submission, job start, job
completion, etc.). The accounting mode can be one of usage-
tracking, notional-charging, fast-allocation or strict-allocation.

The following table describes the valid values for the
accounting mode.

Value Description

Strict-allocation Use this mode if you wish to strictly enforce allocation limits. Under this mode, holds (called
liens) will be placed against allocations in order to prevent multiple jobs from starting up on
the same funds. Jobs and reservations may be prevented from running if the end-users do
not have sufficient funds. This is the default.

Fast-allocation Use this mode if you wish to debit allocations, but need higher throughput by eliminating
the lien and quote operations of strict-allocation mode. Under this mode, jobs and
reservations check a cached account balance, and may be prevented from running after the
balance has become zero or negative.

Notional-charging Use this mode if you wish to calculate and record charges for workload usage, but not keep
track of fund balances or allocation limits.

Usage-tracking Use this mode if you wish to record workload usage details, but not to calculate a charge
nor keep track of fund balances or allocation limits.

W H I T E PA P E R

Operation Radical Ascent: Performance Gains in HPC Speed and Scalability

When using one of the new alternative modes (usage-tracking,
notional-charging or fast-allocation), scheduling overhead due
to accounting can be reduced from a few tenths of a second
per job, to less than a few thousands of a second per job.
Depending on your existing scheduling overhead due to Moab
and TORQUE policies, using one of the higher throughput
modes has the potential of doubling job throughput on a
sustained basis and improving peak job throughput by an
order of magnitude. This is achieved by handling charges in
the background in a separate thread and the elimination of the
blocking lien in the strict-allocation accounting mode.

Stacking Benefits
When enabling the extra parallelization and the tighter
cooperation, Adaptive Computing has found that things
perform even better than simply adding the benefits for
each. For some workloads Moab iterations could be up to 5X
faster than using neither of the new features.

The Role of Ascent in Big Workflow
Adding Ascent design improvements to Moab represents
a major step forward in the scale and performance of
scheduler technology. It puts exascale scheduling within
reach and strengthens the foundation to realize the potential
of the next generation of HPC.

The massive performance gains made by Ascent are critical
to Adaptive Computing executing its Big Workflow vision.
In order to deliver accelerated insights and shorten the time
to discovery, Moab must be able to streamline the workflow
and schedule computing jobs across multiple platforms,
environments and locations rapidly, accurately and cost-
effectively. Operation Radical Ascent plays a critical role in
making this innovation possible.

Adaptive Computing will continue to innovate around its
Ascent Initiative to drive further improvements in speed and
scaling.

The View from Here
With a decade of expertise in high performance computing,
cloud, big data and data center automation, Adaptive
Computing has a rich history of advancing research and
accelerating insights through its Moab scheduling and
optimization software. Operation Radical Ascent represents
the company’s latest effort to provide the HPC market with
the most capable, efficient, scalable and robust scheduler
available.

Talk to an Adaptive Computing sales representative about
how you can leverage Ascent-enabled Moab in your
environment today.

Contact a solutions advisor by phone or email,
or visit our website today
North America, Latin America +1 (801) 717.3700
Europe, Middle East, Africa +44 (0) 1483 243578
Asia, Pacific, Japan, India +65 6597-7053
Email: solutions@adaptivecomputing.com
www.adaptivecomputing.com

Corporate Headquarters
1712 S. East Bay Blvd.
Suite 300
Provo, Utah 84606

Let’s talk...Set up a Demonstration...and Test in your Environment
An Adaptive Computing solutions advisor can guide you to the products and services that will best meet your needs and will work with
you to set up a live, online demonstration designed specifically for your organization.

©2014 Adaptive Computing Enterprises, Inc. All rights reserved. Adaptive Computing and Moab are registered trademarks of Adaptive Computing Enterprises, Inc. All third-party
trademarks are the property of their respective owners.

	_GoBack

