
W H I T E PA P E R

Intelligent HPC Workload Management

Game-Changer for HPC Scale and Performance

Operation Radical Ascent

W H I T E PA P E R

Operation Radical Ascent: Game-Changer for HPC Scale and Performance

2

Table of contents

3		 The Need in HPC
3		 The Zen of Ascent
3		 Initial Targets
4		 Moving the Needle
5		 Mutexing
5		 Phase 1 Results
6		 Raising the Bar
6		 What’s Next for Ascent
7		 The View from Here

W H I T E PA P E R

3

Operation Radical Ascent: Game-Changer for HPC Scale and Performance

By the time commercial aviation became a reality, the
automobile was thoroughly entrenched in the modern psyche.
Driver licenses, traffic lights and painted lanes to efficiently
route bumper-to-bumper cars were in everyday use. Policemen
and motorists both understood speeding tickets.

Yet air traffic control, despite some shared DNA, is quite
different from the systems that manage wheeled vehicles.

Why?

The answer lies in the complexity of air traffic, the speed with
which decisions must be made and communicated, and the
higher stakes for suboptimal choices. Airplanes cannot pull
over if they run out of fuel. They require certain sizes of runway.
They are more sensitive to weather. And they must think in
three dimensions, not two.

The Need in HPC
The exascale wave in today’s HPC market is creating a similar
inflection point, where familiar solutions are simply inadequate.
Modern supercomputers now have so many internal network
interconnects and coordinate so many calculations at such
a rate that the painted lanes and traffic lights of traditional
scheduling cannot keep up. Jobs sit idle when they should be
running; policy constraints are lost in the noise of hardware
failure at scale; data remains opaque and unanalyzed instead of
generating insight.

The exascale challenge is intensifying. A generation ago, most
HPC problems consumed modest amounts of data in a single
stage; many of today’s projects require Big Data processing in
complex workflows that are impossible to manage manually.
This “Big Workflow” phenomenon multiplies problems
at scale, raises the stakes for performance, and demands
groundbreaking sophistication. Schedulers used to place with
only CPU and RAM as major considerations; now workflow
demands smarter policy and more savvy choices based on data
locality and interdependent deadlines.

In 2013, Adaptive Computing recognized the opportunity and
challenge inherent in this situation and made a strategic choice
to invest in new scheduling technology. Dubbed “Operation
Radical Ascent,” the resulting initiative aimed to marry the best
thinking from earlier generations of Moab with important
changes to the fundamental engine, forever changing scale
and performance standards for the industry.

The June 2014 release of Moab HPC Suite delivers on the
Ascent vision for the first time in a big way. However, Operation
Radical Ascent is still in full swing; subsequent releases are
slated to introduce more innovation in additional waves.
The final result should be as game-changing to HPC and Big
Workflow problems as air traffic control was to modern airports.

The Zen of Ascent
The first thing that the Ascent team at Adaptive Computing
did, when they were chartered, was to agree on guiding
imperatives:

n Formalized measurement and the scientific method

n Parallelized, distributed, cooperative designs

n �Changes that make the biggest difference to customers in
real-world problem solving

n Better manufacturing process

n �Reproducible results that are checked and rechecked to
prevent backsliding

Initial Targets
As a down payment on this philosophy, the Ascent team
brainstormed a series of formal metrics that they could collect,
that would quantify progress. The HPC industry has long used
LINPACK and similar benchmarks to assess the performance of
supercomputers in a formal way; why, they reasoned, should
we not have analogous numbers for the technology that runs
those supercomputers?

W H I T E PA P E R

Operation Radical Ascent: Game-Changer for HPC Scale and Performance

4

After considerable debate, the team identified a small set
of metrics as their initial focus. Each metric has a formal test
procedure and associated reference hardware (Appendix A).
What follows is just an informal summary:

ARTEC – Average Run-Time for Expensive Commands

On a large, busy cluster, how long does it take, on average,
to run a read-only command that performs significant
computation? A common symptom of an underpowered
scheduler is that a command like Moab’s “showstart,” that
predicts when a job is likely to start, may appear to hang
for seconds or even minutes, waiting for a chance to claim
attention. Performing well on this metric means that admins
and end users always have a responsive system.

 ATS100K – Average Time to Submit 100,000 Jobs

Given a realistic distribution of job types and sizes, how long
does it take to submit 100k jobs? Experience told Adaptive
Computing that performance on this metric would be
challenged both by ingestion handling and by the overall
backlog/calculation load as the queue size grew. Performing
well on this metric means that a scheduler can handle both
usage spikes and very large queues with ease.

ATEMJS – Average Time to Exit Many Jobs Simultaneously

When a job exits, there is a brief period of intense
communication. On large clusters, we knew from experience
that sometimes many jobs would exit at approximately the
same time and that the overhead of passing status back
and forth could overwhelm the cluster for as long as a few
minutes. We also knew that communication on job-exit and
communication for job status were related, so improving this
metric would likely slash communication overhead for many
other use cases.

SIT – Schedule Iteration Time

Given a moderately complex configuration, how long does
it take to re-analyze the entire queue in a large, busy cluster,
making new, re-optimized decisions about job placement? In
large clusters with complex policies, the industry often sees
times in minutes; the Ascent team wanted something much
faster.

SICU – Schedule Iteration CPU Utilization

During the period of time when a scheduler is re-analyzing
its queue, how efficiently does it use available processing
power to make decisions? An old-fashioned, serial scheduler
running on a box with eight cores might keep only one of
them busy; a scheduler that scales with hardware should
show a much broader, more savvy usage pattern.

These are not the only metrics that the Ascent team came up
with. In future releases, more will be described and reported.
Even in this release, much time has been spent measuring and
tuning some additional dimensions. But these are the heart of
Ascent’s first focus, and the results show that they have paid off
handsomely.

Moving the Needle
Once the Ascent team had articulated its worldview and
had identified specific measurements that would reduce its
progress to crisp numbers, it was time to formulate a plan of
attack.

The general pattern was easy to guess: take baseline
measurements and look for places where code could be
rewritten or designs could be altered, such that things became
much faster and more scalable.

But where, exactly, should changes be made?

As with the automobile-to-air-traffic inflection, Adaptive
Computing was not starting from scratch when it launched
Operation Radical Ascent. Certain aspects of scheduling were
well understood, and some foundational metaphors and
algorithms remained relevant. However, Adaptive Computing
also recognized the need to challenge our thinking in
fundamental ways. In Phase 1 of Ascent, the work delivered in
the June 2014 release, they were particularly interested in the
following new dimensions of the problem:

Parallelism

At the time Adaptive Computing launched Ascent,
the scheduling algorithms that kept massively parallel
supercomputers busy were, themselves, mostly serial. Moab
and its competitors had their roots in theoretical work first
productized in the 1980’s and 1990s. At that time, computer
science mainly used parallelism for enormous matrix math
problems—not for multithreading the daemons that managed
that computation.

Adaptive Computing knew they could change this. Parts of
the decision-making at the heart of a scheduler are friendly
to parallelization. For example, identifying the subsets of a
cluster that might be available during the time range required
for a particular job is something that can be done for many
different jobs simultaneously. So is the calculation about
which nodes match a particular job’s theoretical hardware
requirements, before filtering through the lens of policy
constraints.

If Adaptive Computing could solve many aspects of a problem
simultaneously, instead of doing each step in an inalterable
sequence, they knew that modern hardware would reward
them with significant improvements to both scale and

W H I T E PA P E R

Operation Radical Ascent: Game-Changer for HPC Scale and Performance

5

performance. This is the analog to air traffic control thinking
in three dimensions, while terrestrial traffic limits itself to two.

Caching

Additional improvements could be derived from remembering
the results of previous calculations, instead of repeating work each
time the scheduler had the same question—or from operating
from one copy of data while another copy was being modified.

The Ascent team quickly identified places where caching could
pay big dividends. For example, Adaptive Computing found
that diagnostic commands such as “showstart” and “mdiag”
could often operate from a snapshot of the cluster’s state, while
other threads were modifying unrelated portions of Moab’s
object model. They also found that some of the computations
at the heart of the scheduling loop could be eliminated as
redundant if they remembered more intermediate work.

Communication

A major challenge in complex systems of all kinds is making
sure that information flows to the right places at the right
times. In air traffic control, quantum leaps in communication
were enabled by radar and radio; Adaptive Computing needed
analogous improvements in HPC.

Several aspects of communication, they knew, were particularly
likely to be fertile fields for study: how “pbs_server” and
“pbs_mom” communicate in TORQUE, for example, or how
Moab sends “pbs_server” newly submitted jobs. These
sections of code were attractive redesign possibilities because
communication could be streamlined while also making it
parallel. Instead of looping serially over large numbers of nodes
that each needed to send or receive information, performing
the loop in parallel fashion could create huge gains in
performance or scale.

Mutexing
When multiple threads need to access the same shared
information and there is any possibility of that information

changing, software engineers often use a technique called
mutexing to guarantee that access is granted in an orderly
fashion.

This guarantee is important, but it is also expensive because
other parts of a program can be blocked while they wait for a
scarce resource to become available. In addition to its speed
implications, mutexing can be painful because it introduces the
possibility of deadlocks and (when done wrong) seg faults.

A final emphasis of Ascent efforts, then, was to mutex
with great care and precision—doing enough to correctly
enable parallelism, but avoiding performance penalties and
guaranteeing robustness.

Phase 1 Results
The June 2014 release of Moab HPC Suite contains numerous
improvements and design changes introduced by the Ascent
team. Some of the headline achievements include:

Drastic Reduction in Command Latency (ARTEC)

Even on the largest and heavily burdened clusters, it should
now be possible to submit “expensive” read-only commands
and get an answer within a few seconds, no matter whether
the scheduler is busy or idle. A combination of cached data
and more efficient use of background threads makes this
possible.

Drastic Reduction in ScheduleIteration (SIT)

The time it takes to process a full queue of jobs, making new
placement decisions, is now significantly less (between 3x and
6x faster according to benchmarks).

Huge Improvement in Proc Usage (SICU)

Moab now scales up with hardware—the more CPU
horsepower you dedicate to the scheduler, the faster it goes.
This is revealed by graphs like the following, which show
Moab making full use of multiple cores during its scheduling
cycle:

W H I T E PA P E R

Operation Radical Ascent: Game-Changer for HPC Scale and Performance

6

Importantly, this means that the hardware specifications for
Moab can now be tailored to the needs of a specific cluster; a
beefier server will run much faster than an underpowered one.

Dramatic Gains in TORQUE and Moab+TORQUE
Communication (ATEMJS, ATS100K)

Moab now communicates newly submitted jobs to TORQUE
using a more efficient API. Internally, TORQUE passes job
information at start time, during subsequent status reports, and
at job exit, in a way that is more robust and more efficient than
ever before. The following graph shows one communication
task that’s been optimized (smaller is better; scale is
microseconds):

Gains on other communication tasks are similar; while mileage
will vary according to the makeup of a particular cluster, testing
reveals that much larger queues are now practical and much
more complex jobs flow with ease.

Raising the Bar
Adding Ascent design improvements to Moab represents a
major step forward in the scale and performance of scheduler
technology. Customers no longer need to grit their teeth at
sluggishness when they put 50,000 jobs in a queue. Exascale
scheduling is not just a pipe dream.

Of equal importance, Ascent establishes formal benchmarks
by which Moab and its competitors can be measured. When
evaluating choices, customers can ask for hard numbers
from Adaptive and collect similar data points for their other
options as well. Performance and scale become a science, not
guesswork.

What’s Next for Ascent
The performance gains that Operation Radical Ascent delivers
in the June 2014 release are just the beginning. Many future
changes are well underway, and some of them are multiplicative
rather than additive in their effect. Here’s a sneak peak:

More Parallelization

Moab currently collects data from its resource manager(s) as
a discrete step in the scheduling loop, right before it begins
re-analyzing the queue. This data ingestion work can be
redesigned to overlap with other tasks, so that a slow resource
manager has minimal effect on Moab’s speed.

Smart Aggregates

Many of the nodes in a cluster are similar or identical for the
purposes of certain algorithms inside Moab. Yet, today, Moab
iterates over these identical nodes one at a time, computing
the same answer for each one. Short-circuiting such loops with
logic that recognizes that the next thousand nodes all look
alike could drastically speed some computations.

Tighter Cooperation between Moab and TORQUE

Today, a significant amount of overhead in Moab-TORQUE
communication derives from the fact that each of these
applications has its own unique version of key structures. When
Moab sends a job to TORQUE, the structure has to be serialized
on one side, and de-serialized on the other. Harmonizing key
structures would reduce overhead, as would communicating in
batches instead of one-off messages. Where “pbs_server” and
Moab are on the same machine, shared memory might be a
further enhancement with huge upside.

Optimized File I/O

Independent of the Ascent work, the June 2014 release of
Moab HPC Suite includes important enhancements for data
staging. A future release could optimize how Moab and
TORQUE use the file system in various ways: taking into account
the characteristics of a parallel file system, for example, or
altering how check-pointing and other persistence happens.
This has the potential to drastically improve startup time, make
checkpointing cheap, and add even more sophistication to
data staging. That will pay off as Big Workflow thinking begins
to permeate the HPC and Big Data marketplace.

W H I T E PA P E R

Operation Radical Ascent: Game-Changer for HPC Scale and Performance

Smarter Communication

In late 2013, Adaptive released the first version of its
technology stack to use a high-speed message queue. The
June 2014 release builds on this pioneering effort, making
the message queue the backbone for the new Insight
component.

Communication inside of TORQUE, and between Moab
and TORQUE, could be further optimized and hardened by
building on this message queue technology.

The View from Here
The HPC market needs something far more capable, more
efficient, more scalable and more robust than schedulers
have offered in the past. This is true because of exascale
complexity and because Big Data demands it.

Fortunately, Ascent delivers. As the “radical” in its name
implies, Operation Radical Ascent isn’t about business
as usual; it’s about thinking faster, better and in more
dimensions than ever before.

Talk to Adaptive sales about how you can test drive an
Ascent-enabled Moab today.

Contact a solutions advisor by phone or email,
or visit our website today
North America, Latin America +1 (801) 717.3700
Europe, Middle East, Africa 	 +44 (0) 1483 243578
Asia, Pacific, Japan, India 	 +65 6597-7053
Email: solutions@adaptivecomputing.com
www.adaptivecomputing.com

Corporate Headquarters
1712 S. East Bay Blvd.
Suite 300
Provo, Utah 84606

Let’s talk...Set up a Demonstration...and Test in your Environment
An Adaptive Computing solutions advisor can guide you to the products and services that will best meet your needs and will work with
you to set up a live, online demonstration designed specifically for your organization.

©2014 Adaptive Computing Enterprises, Inc. All rights reserved. Adaptive Computing and Moab are registered trademarks of Adaptive Computing Enterprises, Inc. All third-party
trademarks are the property of their respective owners.

