
Moab Web Services
Administrator Guide 10.1.0.1

March 2025

Legal Notices

© 2015, 2025 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is
strictly prohibited without prior written consent from Adaptive Computing Enterprises, Inc.

This documentation and related software are provided under a license agreement
containing restrictions on use and disclosure and are protected by intellectual property
laws. Except as expressly permitted in your license agreement or allowed by law, you may
not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability,
is prohibited.

This documentation and related software may provide access to or information about
content, products, and services from third-parties. Adaptive Computing is not responsible
for and expressly disclaims all warranties of any kind with respect to third-party content,
products, and services unless otherwise set forth in an applicable agreement between you
and Adaptive Computing. Adaptive Computing will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services,
except as set forth in an applicable agreement between you and Adaptive Computing.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint,
Moab Cluster Manager, Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab
Access Portal, NODUS Cloud OS™, On-Demand Data Center™, and other Adaptive
Computing products are either registered trademarks or trademarks of Adaptive
Computing Enterprises, Inc. The Adaptive Computing logo and the Cluster Resources logo
are trademarks of Adaptive Computing Enterprises, Inc. All other company and product
names may be trademarks of their respective companies.

The information contained herein is subject to change without notice and is not warranted
to be error free. If you find any errors, please report them to us in writing.

Adaptive Computing Enterprises, Inc.
1100 5th Avenue South, Suite #201
Naples, FL 34102
+1 (239) 330-6093
www.adaptivecomputing.com

2

https://www.adaptivecomputing.com/

Contents

Moab Web Services Overview 10

Chapter 1: Moab Web Services Setup 12
1.1 ConfiguringMoabWeb Services 12

1.1.1 HomeDirectory 13
1.1.2 Configuration Files 13
1.1.3 LDAP Configuration Using /opt/mws/etc/mws-config.groovy 13
1.1.4 PAM (Pluggable AuthenticationModule) Configuration Using /opt/mws/etc/mws-config.groovy 17
1.1.5 OAuth Configuration Using /opt/mws/etc/mws-config.groovy 19

1.2 Setting upMWS Security 21
1.2.1 Securing the Connection with Moab 22
1.2.2 Securing the Connection with MongoDB 22
1.2.3 Securing Client Connections toMWS 23
1.2.4 Securing the LDAP Connection 27
1.2.5 Securing the Connection with theMessageQueue 29

1.3 Configuring Logging 30
1.3.1 Logging Introduction 30
1.3.2 Configuring an Event Log 31
1.3.3 Configuring an Audit Trail Log 33

1.4 Version and Build Information 34
1.4.1 Browser 35
1.4.2 REST Request 35
1.4.3MANIFEST.MF File 35

Chapter 2: Access Control 37
2.1 Application Accounts 37
2.2Managing Application Accounts 38
2.3 Listing Application Accounts 38
2.4 Creating an Application Account 39
2.5 Displaying an Application Account 39
2.6Modifying an Application Account 40
2.7 Resetting an Application Password 40
2.8 Deleting an Application Account 40

Chapter 3: About the API 41
3.1 RESTful Web Services 41
3.2 Data Format 42
3.3 Global URL Parameters 44

3

4

3.3.1 Parameters 44
3.3.2 API Version (api-version) 44
3.3.3 Pretty (pretty) 45
3.3.4 Field Selection (fields) 45
3.3.5 Field Exclusion (exclude-fields) 45
3.3.6 Sorting (sort) 46

3.4 Requesting Specific API Versions 47
3.5 Responses and Return Codes 47

3.5.1 Listing and Showing Resources 48
3.5.2 Creating Resources 48
3.5.3Modifying Resources 49
3.5.4 Deleting Resources 50
3.5.5Moab HPC Suite Response Headers 51

3.6 Error Messages 51
400 Bad Request 51
401 Unauthorized 52
403 Forbidden 52
404 Not Found 52
405Method Not Allowed 52
500 Internal Server Error 53

3.7 Pre- and Post-Processing Hooks 53
3.7.1 Configuring Hooks 53
3.7.2 Defining Hooks for a Resource 54
3.7.3 Before Hooks 55
3.7.4 After Hooks 56
3.7.5 Error Handling 56
3.7.6 Defining CommonHooks 57
3.7.7 Reference 57

3.8 Authentication 63
3.9 System Events 64

3.9.1 Events 64
3.9.2 Notification Conditions 65

Chapter 4: Resources 67
4.1 Access Control Lists (ACLs) 68

4.1.1 Getting ACLs 69
4.1.2 Creating or Updating ACLs 69
4.1.3 Deleting ACLs 70

4.2 Accounting Resources 72
4.2.1 Accounting Accounts 72
4.2.2 Accounting Allocations 76
4.2.3 Accounting Charge Rates 80

4.2.4 Accounting Funds 85
4.2.5 Accounting Liens 95
4.2.6 Accounting Organizations 99
4.2.7 Accounting Quotes 102
4.2.8 Accounting Transactions 107
4.2.9 Accounting Usage Records 111
4.2.10 Accounting Users 126

4.3 Credentials 130
4.3.1 Getting Credentials 132
4.3.2Modifying Credentials 141

4.4 Diagnostics 144
4.4.1 Get Version Information 145
4.4.2 Diagnose Authentication 145
4.4.3 Connection Health Information 146
4.4.4 Get License Information 150

4.5 Distinct 152
4.5.1 Get Distinct Values 152

4.6 Events 153
4.6.1 Getting Events 155
4.6.2 Creating Events 159

4.7 Fairshare 161
4.7.1 Getting Credential-Based Fairshare Interval Data 162

4.8 Job Arrays 166
4.8.1 Submitting Job Arrays 167

4.9 Jobs 169
4.9.1 SupportedMethods 169
4.9.2 Getting Job Information 170
4.9.3 Submitting Jobs 180
4.9.4Modifying Jobs 185
4.9.5 Deleting (Canceling) Jobs 190

4.10 Job Templates 191
4.10.1 Getting Job Templates 192

4.11 Metric Types 194
4.11.1 GettingMetric Types 194

4.12 Nodes 195
4.12.1 Getting Nodes 196
4.12.2Modifying Nodes 200

4.13 Notification Conditions 202
4.13.1 Getting Notification Conditions 203
4.13.2 Updating Notification Conditions 205

4.14 Notifications 207
4.14.1 Getting Notifications 208

5

6

4.14.2 Ignoring Notifications 211
4.14.3 Unignoring Notifications 212
4.14.4 Dismissing Notifications 213

4.15 Permissions 215
4.15.1 Getting Permissions 216
4.15.2 Creating Permissions 220
4.15.3 Deleting Permissions 221

4.16 Plugins 222
4.16.1 Getting Plugins 224
4.16.2 Creating Plugins 226
4.16.3Modifying Plugins 227
4.16.4 Deleting Plugins 228
4.16.5 Accessing PluginWeb Services 229

4.17 Plugin Types 231
4.17.1 Getting Plugin Types 231
4.17.2 Creating or Updating Plugin Types 233

4.18 Policies 236
4.18.1 Getting Policies 236
4.18.2Modifying Policies 238

4.19 Principals 240
4.19.1 Getting Principals 241
4.19.2 Creating Principals 243
4.19.3Modifying Principals 244
4.19.4 Deleting Principals 246

4.20 Priority 247
4.20.1 Getting Priorities 247
4.20.2Modifying Priorities 248

4.21 Reports 249
4.21.1 Getting Reports 251
4.21.2 Getting Samples for Reports 254
4.21.3 Creating Reports 256
4.21.4 Creating Samples 257
4.21.5 Deleting Reports 258

4.22 Reservations 259
4.22.1 Getting Reservations 260
4.22.2 Creating Reservations 262
4.22.3Modifying Reservations 264
4.22.4 Releasing Reservations 265

4.23 Resource Types 266
4.23.1 Getting Resource Types 267

4.24 Roles 267
4.24.1 Getting Roles 269

4.24.2 Creating Roles 272
4.24.3Modifying Roles 274
4.24.4 Deleting Roles 276

4.25 Standing Reservations 277
4.25.1 Getting Standing Reservations 278

4.26 Virtual Containers 280
4.26.1 Getting Virtual Containers 281
4.26.2 Creating Virtual Containers 282
4.26.3Modifying Virtual Containers 284
4.26.4 Destroying Virtual Containers 286

Chapter 5: Reporting Framework 288
5.1 Overview of Reporting Framework 288

5.1.1 Concepts 288
5.1.2 Capabilities 290

5.2 Example Report (CPU Utilization) 292
5.2.1 Creating a Report 292
5.2.2 Adding Samples 293
5.2.3 Consolidating Data 294
5.2.4 Retrieving Report Data 295
5.2.5 Possible Configurations 296

Chapter 6: About Moab Web Services Plugins 297
6.1 Plugin Overview 297

6.1.1 Plugin Introduction 298
6.1.2 Lifecycle States 300
6.1.3 Events 301
6.1.4 CustomWeb Services 302
6.1.5 Utility Services 302
6.1.6 Data Consolidation 303
6.1.7 Routing 305

6.2 Plugin Developer's Guide 305
6.2.1 Requirements 306
6.2.2 Dynamic Methods 307
6.2.3 Logging 308
6.2.4 i18nMessaging 309
6.2.5 Configuration 311
6.2.6 Configuration Constraints 312
6.2.7 Individual Datastore 323
6.2.8 ExposingWeb Services 325
6.2.9 Reporting State Data 327
6.2.10 Controlling Lifecycle 330

7

8

6.2.11 AccessingMWS REST Resources 331
6.2.12 Creating Events and Notifications 334
6.2.13 Handling Events 341
6.2.14 Handling Exceptions 344
6.2.15Managing SSLConnections 344
6.2.16 Utilizing Services or Custom 'Helper' Classes 346
6.2.17 Packaging Plugins 351
6.2.18 Example Plugin Types 359

6.3 MoabWorkloadManager ResourceManager Integration 360
6.3.1 ConfiguringMoabWorkloadManager 360
6.3.2 ResourceManager Queries 362

6.4 Plugin TypeManagement 365
6.4.1 Listing Plugin Types 366
6.4.2 Displaying Plugin Types 367
6.4.3 Plugin Type Documentation 367
6.4.4 Add or Update Plugin Types 367

6.5 Plugin Management 371
6.5.1 Listing Plugins 372
6.5.2 Creating a Plugin 372
6.5.3 Displaying a Plugin 374
6.5.4Modifying a Plugin 375
6.5.5 Deleting a Plugin 375
6.5.6Monitoring and Lifecycle Controls 375
6.5.7 Setting Default Plugin Configuration 378

6.6 Plugin Services 378
6.6.1 Job RM Service 379
6.6.2Moab HPC Suite REST Service 379
6.6.3 Node RM Service 381
6.6.4 Plugin Control Service 381
6.6.5 Plugin Datastore Service 383
6.6.6 Plugin Event Service 386
6.6.7 SSL Service 388

Chapter 7: Plugin Types 389
7.1 PowerManagement Plugin 389

7.1.1 Creating a PowerManagement Plugin 389
7.1.2 Configuration Parameters 390
7.1.3 Plugin Management 390
7.1.4Web Services Node Power (Secured) 391
7.1.5 Reload Node Configuration (Secured) 392
7.1.6 Node Configuration File 392
7.1.7 The Node Power andQuery Script 393

7.1.8 Troubleshooting 394

Chapter 8: References 397
8.1 Client Code Samples 397

8.1.1 Python Samples 397
8.1.2 curl Samples 400

8.2 MWS Configuration 400
8.3 Logging Configuration 408
8.4 Resources Reference 409

8.4.1 Fields: Access Control Lists (ACLs) 410
8.4.2 Accounting Resources 418
8.4.3 Fields: Credentials 489
8.4.4 Fields: Events 490
8.4.5 Fields: Job Arrays 497
8.4.6 Fields: Jobs 562
8.4.7 Fields: Job Templates 626
8.4.8 Fields: Metric Types 657
8.4.9 Fields: Nodes 658
8.4.10 Fields: Notification Conditions 690
8.4.11 Fields: Notifications 694
8.4.12 Fields: Plugins 696
8.4.13 Fields: Plugin Types 705
8.4.14 Fields: Policies 711
8.4.15 Fields: Principals 727
8.4.16 Fields: Priority 733
8.4.17 Fields: Report Datapoints 741
8.4.18 Fields: Reports 743
8.4.19 Fields: Reservations 751
8.4.20 Fields: Resource Types 795
8.4.21 Fields: Roles 796
8.4.22 Fields: Report Samples 800
8.4.23 Fields: Standing Reservations 801
8.4.24 Fields: User's Permissions 862
8.4.25 Fields: Virtual Containers 864

9

10

Moab Web Services Overview

Welcome to the Moab Web Services Administrator Guide 10.1.0.1
Moab Web Services (MWS) is a component of Moab HPC Suite that enables programmatic
interaction with Moab Workload Manager via a RESTful interface. MWS lets you create and
interact with Moab HPC Suite objects and properties such as jobs, nodes, virtual machines,
and reservations. MWS is the preferred method for those wanting to create custom user
interfaces for Moab HPC Suite.

MWS communicates with the Moab Workload Manager (Moab HPC Suite) server using the
same wire protocol as the Moab HPC Suite command-line interface. By publishing a
standard interface into Moab HPC Suite's intelligence, MWS significantly reduces the
amount of work required to integrate Moab HPC Suite into your solution.

If you are a Moab HPC Suite administrator, for conceptual information about Moab HPC
Suite, see the Moab Workload Manager Administrator Guide.

This guide assumes Moab Web Services (MWS) has already been installed. See the
Moab HPC Suite Installation and Configuration Guide for installation instructions,
including troubleshooting the installation.

The following sections will help you quickly get started using MWS:

l Chapter 1: Moab Web Services Setup: Contains instructions in order to get MWS
configured and secured correctly.

l Chapter 2: Access Control: Contains information describing how to manage access
control in MWS.

l Chapter 3: About the API: Describes how to use RESTful web services, explains the
JSON data format used for all communications with MWS, describes global URL
parameters used in MWS calls, and contains other helpful information for using the
Moab Web Services API.

l Chapter 4: Resources: Contains MWS resources and the HTTP methods defined on
them.

l Chapter 5: Reporting Framework: Provides an overview of the framework and the
concepts related to it and works through an example report (CPU Utilization) with
details regarding which web services to use and with what data.

l Chapter 6: About Moab Web Services Plugins: Describes MWS plugins, their use, and
their creation in Moab Web Services.

l Chapter 7: Plugin Types: Describes these plugin types - Power Management.

Moab Web Services Overview

l Chapter 8: References: Contains client code samples and information about
configuration settings; also provides field information for each MWS resource object.

Moab Web Services Overview

11

1.1 Configuring Moab Web Services 12

Chapter 1: Moab Web Services Setup

This chapter explains what you need to know in order to get MWS configured, and secured
correctly.

Before configuring MWS, confirm that all prerequisites were met and that MWS
installed correctly. See the Moab HPC Suite Installation and Configuration Guide for
prerequisites and installation instructions, including troubleshooting the installation.

In this chapter:

1.1 Configuring Moab Web Services
1.2 Setting up MWS Security
1.3 Configuring Logging
1.4 Version and Build Information

Related Topics

l Moab Web Services Overview

l Chapter 2: Access Control

1.1 Configuring Moab Web Services

This section describes the location of the MWS configuration files. It also shows some
examples of how to configure logging.

To see a full reference to all configuration and logging parameters available in MWS,
see 8.2 MWS Configuration.

In this section:

1.1.1 Home Directory
1.1.2 Configuration Files
1.1.3 LDAP Configuration Using /opt/mws/etc/mws-config.groovy

Chapter 1: Moab Web Services Setup

1.1.4 PAM (Pluggable Authentication Module) Configuration Using /opt/mws/etc/mws-
config.groovy

1.1.5 OAuth Configuration Using /opt/mws/etc/mws-config.groovy

MWS does not support LDAP and PAM authentication at the same time.

1.1.1 Home Directory
The MWS home directory contains configuration files, log files, and files that serve features
of MWS such as hooks and plugins. You should set the location of the MWS home directory
using the MWS_HOME property. If you do not set MWS_HOME as a Java property or as an
environment variable, then MWS will use /opt/mws as the default MWS_HOME.

For documentation clarity, the default '/opt/mws/' is used in the file names for the
MWS_HOME property.

1.1.2 Configuration Files
The primary configuration file is /opt/mws/etc/mws-config.groovy. If this file is
missing or contains errors, MWS will not start.

Configuration files can also be placed in the /opt/mws/etc/mws.d directory. Any
configuration files here get merged with /opt/mws/etc/mws-config.groovy. In
case of conflict, the configuration in /opt/mws/etc/mws.d takes precedence.

MWS logging is configured in /opt/mws/etc/logback.groovy. For details on
logging configuration, see 1.3 Configuring Logging.

1.1.3 LDAP Configuration Using /opt/mws/etc/mws-
config.groovy

The LDAP configuration provided below is for MWS to authenticate against a single
LDAP server. If you want to use LDAP to authenticate multiple servers, you must
create and use a custom PAM module.

In this topic:

Chapter 1: Moab Web Services Setup

13 1.1 Configuring Moab Web Services

1.1 Configuring Moab Web Services 14

1.1.3.A Using a Supported LDAP Directory Type
1.1.3.B Using an Unsupported LDAP Directory Type
1.1.3.C Overriding Attributes in a Supported LDAP Directory Type

1.1.3.A Using a Supported LDAP Directory Type
To configure an MWS connection to an LDAP server, add the following parameters to
/opt/mws/etc/mws-config.groovy:

Throughout the following examples in this topic, you will see dc=acme,dc=com.
'acme' is only used as an example to illustrate what you would use as your own
domain controller if your domain name was 'acme.com.' You should replace any
references to 'acme' with your own organization's domain name.

Parameter Description

ldap.server The hostname or IP address of the LDAP server.

ldap.port The port the LDAP server is listening on.

ldap.baseDNs A list of distinguished names that are the root entries for LDAP
searches.

ldap.bindUser The distinguished name of the bind user.

ldap.password The password of the ldap.bindUser.

ldap.directory.type The type of LDAP directory (e.g., Microsoft Active Directory). This
parameter can have the following values:

l Microsoft Active Directory
l OpenLDAP Using InetOrgPerson Schema
l OpenLDAP Using NIS Schema
l OpenLDAP Using Samba Schema

Sample configuration for OpenLDAP:

Sample OpenLDAP configuration

ldap.server = "192.168.0.5"
ldap.port = 389
ldap.baseDNs = ["dc=acme,dc=com"]

Chapter 1: Moab Web Services Setup

ldap.bindUser = "cn=Manager,dc=acme,dc=com"
ldap.password = "*****"
ldap.directory.type = "OpenLDAP Using InetOrgPerson Schema"

Sample configuration for Microsoft Active Directory:

Sample Active Directory configuration

ldap.server = "192.168.0.5"
ldap.port = 389
ldap.baseDNs = ["CN=Users,DC=acme,DC=com","OU=Europe,DC=acme,DC=com"]
ldap.bindUser = "cn=Administrator,cn=Users,DC=acme,DC=com"
ldap.password = "*****"
ldap.directory.type = "Microsoft Active Directory"

To configure a secure connection to the LDAP server, see 1.2.4 Securing the LDAP
Connection.

1.1.3.B Using an Unsupported LDAP Directory Type
If you are not using one of the supported directory types, you can explicitly configure MWS
to work with your LDAP schema by using the following parameters:

Parameter Description

ldap.user.objectClass The name of the class used for the LDAP user object, for
example:

l user
l person
l inetOrgPerson
l posixAccount

ldap.group.objectClass The name of the class used for the LDAP group object,
for example:

l group
l groupOfNames
l posixGroup

ldap.ou.objectClass The name of the class used for the LDAP organizational
unit object, for example:

l organizationalUnit

ldap.user.membership.attribute The attribute field in a user entry to use when loading
the user's groups (optional if

Chapter 1: Moab Web Services Setup

15 1.1 Configuring Moab Web Services

1.1 Configuring Moab Web Services 16

Parameter Description

ldap.group.membership.attribute is
defined), for example:

l memberOf

ldap.group.membership.attribute The attribute field in a group entry to use when loading
the group's members (optional if
ldap.user.membership.attribute is defined),
for example:

l member
l memberUid

ldap.user.name.attribute The attribute field to use when loading the username.
This field must uniquely identify a user, for example:

l sAMAccountName
l uid

For example:

Advanced Active Directory configuration

ldap.server = "myldaphostname"
ldap.port = 389
ldap.baseDNs = ["CN=Users,DC=acme,DC=com","OU=Europe,DC=acme,DC=com"]
ldap.bindUser = "cn=Administrator,cn=Users,DC=acme,DC=com"
ldap.password = "*****"
ldap.user.objectClass = "person"
ldap.group.objectClass = "group"
ldap.ou.objectClass = "organizationalUnit"
ldap.user.membership.attribute = "memberof"
ldap.group.membership.attribute = "member"
ldap.user.name.attribute = "sAMAccountName"

Here is a similar example for OpenLDAP. Note there is no user membership attribute in the
OpenLDAP InetOrgPerson schema and therefore
ldap.user.membership.attribute is set to null. This is allowable because the
ldap.group.membership.attribute is set.

Advanced OpenLDAP configuration

ldap.server = "myldaphostname"
ldap.port = 389
ldap.baseDNs = ["dc=acme,dc=com"]
ldap.bindUser = "cn=Manager,dc=acme,dc=com"
ldap.password = "*****"
ldap.user.objectClass = "inetOrgPerson"
ldap.group.objectClass = "groupOfNames"
ldap.ou.objectClass = "organizationalUnit"

Chapter 1: Moab Web Services Setup

ldap.user.membership.attribute = null
ldap.group.membership.attribute = "memberUid"
ldap.user.name.attribute = "uid"

1.1.3.C Overriding Attributes in a Supported LDAP Directory Type
You can also override attributes in supported directory types. For example, say you are
using OpenLDAP with an NIS Schema. The group objectClass for NIS defaults to
'groupOfNames', but you want to use 'groupOfUniqueNames' instead while retaining all
other defaults for NIS. You can do this by setting ldap.directory.type to 'OpenLDAP
Using NIS Schema' and overriding the ldap.group.objectClass attribute as follows:

Advanced OpenLDAP configuration

ldap.directory.type = "OpenLDAP Using NIS Schema"
ldap.group.objectClass = "groupOfUniqueNames"

The user class in your LDAP schema must have an attribute that uniquely identifies a
user (for example: 'uid' or 'sAMAccountName').

1.1.4 PAM (Pluggable Authentication Module) Configuration
Using /opt/mws/etc/mws-config.groovy
“PAM provides a way to develop programs that are independent of authentication scheme.
These programs need ‘authentication modules’ to be attached to them at run-time in order
to work. Which authentication module is to be attached is dependent upon the local system
setup and is at the discretion of the local system administrator.” The Linux Kernel Archives
(Linux-PAM) accessed October 26, 2016.

In this topic:

1.1.4.A Requirements for PAM
1.1.4.B Configuring MWS to Use PAM

1.1.4.A Requirements for PAM
To use PAM with MWS, the following are required:

l The PAM package must be installed, for example:

yum install pam

Chapter 1: Moab Web Services Setup

17 1.1 Configuring Moab Web Services

https://www.kernel.org/pub/linux/libs/pam/whatispam.html

1.1 Configuring Moab Web Services 18

l The /etc/pam.d directory must contain at least one PAM configuration file. For
example, here is the login configuration file from SLES:

#%PAM-1.0
auth requisite pam_nologin.so
auth [user_unknown=ignore success=ok ignore=ignore auth_err=die default=bad]
pam_securetty.so
auth include common-auth
account include common-account
password include common-password
session required pam_loginuid.so
session include common-session
#session optional pam_lastlog.so nowtmp showfailed
session optional pam_mail.so standard

1.1.4.B Configuring MWS to Use PAM
To configure an MWS connection to PAM, add the following parameter to
/opt/mws/etc/mws-config.groovy:

Parameter Description

pam.configuration.service The PAM service to authenticate against.

For example:

pam.configuration.service = "login"

You can configure only one authentication method in /opt/mws/etc/mws-
config.groovy: LDAP or PAM, but not both. If you have configured both LDAP
and PAM, MWS defaults to using LDAP.

If you need multiple authentication methods, you must add them to your local PAM
configuration. See your distribution documentation for details.

If you configure MWS to authenticate via PAM using local files or NIS, you need to
run Tomcat as root. This configuration is highly discouraged and is not supported by
Adaptive Computing. The recommended approach is to configure PAM and NSS to
authenticate against LDAP.

For more information about PAM, see the SUSE and Red Hat documentation.

Chapter 1: Moab Web Services Setup

https://doc.opensuse.org/
https://access.redhat.com/

1.1.5 OAuth Configuration Using /opt/mws/etc/mws-
config.groovy

OAuth is a security framework designed to simplify authentication in web technologies. In
the case of MWS, OAuth allows trusted client applications to securely delegate
authentication to MWS. Once MWS has authenticated a user by verifying the username and
password in LDAP, PAM, or NIS, MWS returns an access token to the client. The client then
presents this access token to MWS to access resources. OAuth is very flexible and allows
MWS to work in many different scenarios by use of grant types. For more information on
OAuth and grant types, see the OAuth documentation.

In this topic:

1.1.5.A OAuth Client Terminology
1.1.5.B Register Viewpoint as a Client in MWS
1.1.5.C Obtaining an Access Token from MWS for Viewpoint (Logging In)
1.1.5.D Sending the Access Token to MWS When Requesting Protected Resource

1.1.5.A OAuth Client Terminology
Resource Owner: The person accessing and manipulating data. For MWS, this would be
the person who logs into the client (the user).

Client: The application that wants to access a resource. For MWS, this is Viewpoint.

Protected Resource: The data for which protection is desired. For MWS, this would be
Moab itself, and interaction with Moab.

Access Token: Instead of user credentials, OAuth uses tokens to issue requests, and the
tokens get signed to indicate authorization.

1.1.5.B Register Viewpoint as a Client in MWS
Oauth is used with Viewpoint and requires client registration. Its client credentials are
used to validate that the client (viewpoint) is allowed to authenticate on behalf of a
resource owner. It involves giving the client its own credentials (username and password).
MWS will first authenticate the client using a client id (viewpoint) and client secret
(password), then will authenticate the resource owner.

If using Viewpoint, configure the following line in /opt/mws/etc/mws-
config.groovy:

viewpoint.clientSecret = "<ENTER-CLIENTSECRET-HERE>"

Replace <ENTER-CLIENTSECRET-HERE> with your client secret (password) for Viewpoint.

Chapter 1: Moab Web Services Setup

19 1.1 Configuring Moab Web Services

http://oauth.net/

1.1 Configuring Moab Web Services 20

1.1.5.C Obtaining an Access Token from MWS for Viewpoint (Logging
In)
Before the viewpoint client can access private data in MWS, it must obtain an access token
that grants access to the API. The token endpoint URL is only used to gain an access token
and log in a user.

Getting a viewpoint access token:

POST https://localhost:8080/mws/rest/oauth/token?api-version=3
Adding header:

"Content-Type: application/x-www-form-urlencoded"
Request body (String):
grant_type=password&client_id=viewpoint&client_secret=THE_CLIENT_
SECRET&username=RESOURCE_OWNER_USERNAME&password=RESOURCE_OWNER_PASSWORD

Example using curl:

curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -v -d 'grant_
type=password&client_id=viewpoint&client_
secret=pkyiW5JYQFN/jf95kuqH3LKtWtI/qJCD&username=moab-admin&password=changeme!'
'https://localhost:8080/mws/oauth/token'

Produces the following sample response:

* About to connect() to localhost port 8080 (#0)
* Trying 127.0.0.1... connected
* Connected to localhost (127.0.0.1) port 8080 (#0)
> POST /mws/oauth/token HTTP/1.1
> User-Agent: curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.14.0.0
zlib/1.2.3 libidn/1.18 libssh2/1.4.2
> Host: localhost:8080
> Accept: */*
> Content-Type: application/x-www-form-urlencoded
> Content-Length: 126
>
< HTTP/1.1 200 OK
< Server: Apache-Coyote/1.1
< Cache-Control: no-store
< Pragma: no-cache
< Set-Cookie: JSESSIONID=6CE8F9E7C454575FABCF3D156B153CFD; Path=/mws
< Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
< Date: Fri, 13 May 2024 18:16:42 GMT
<
* Connection #0 to host localhost left intact
* Closing connection #0
{"access_token":"b693eec0-6c93-4540-8b2f-1e170be08046","token_type":"bearer","expires_
in":43096,"scope":"read write"}

1.1.5.D Sending the Access Token to MWS When Requesting Protected
Resource
After the client obtains an access token, it will send the access token to MWS in an HTTP
authorization header for each rest call.

Chapter 1: Moab Web Services Setup

The client is responsible for handling user sessions with each access token, meaning
the client has to request a new access token when a new user logs in.

Requesting an MWS resource (getting list of all nodes for example):

GET https://localhost:8080/mws/rest/nodes?api-version=3&fields=name
Adding authorization header:

"Authorization: Bearer ACCESS_TOKEN"

Example using curl:

curl -X GET -H "Authorization: Bearer b693eec0-6c93-4540-8b2f-1e170be08046" -v
'https://localhost:8080/mws/rest/nodes?api-version=3&fields=name'

Produces the following sample response:

* About to connect() to localhost port 8080 (#0)
* Trying 127.0.0.1... connected
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET /mws/rest/nodes?api-version=3&fields=name HTTP/1.1
> User-Agent: curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.14.0.0
zlib/1.2.3 libidn/1.18 libssh2/1.4.2
> Host: localhost:8080
> Accept: */*
> Authorization: Bearer b693eec0-6c93-4540-8b2f-1e170be08046
>
< HTTP/1.1 200 OK
< Server: Apache-Coyote/1.1
< Content-Type: application/json;charset=UTF-8
< Pragma: no-cache
< Set-Cookie: JSESSIONID=6CE8F9E7C454575FABCF3D156B153CFD; Path=/mws
< Content-Type: application/json;charset=UTF-8
< Content-Language: en-US
< Transfer-Encoding: chunked
< Date: Fri, 13 May 2024 18:39:07 GMT
<
{"totalCount":3,"resultCount":3,"results":[{"name":"node1"},{"name":"node2"},
{"name":"node3"}]}

Related Topics

l 1.2 Setting up MWS Security

l 1.4 Version and Build Information

1.2 Setting up MWS Security

When running MWS in production environments, security is a major concern. This section
focuses on securing these connections with MWS:

Chapter 1: Moab Web Services Setup

21 1.2 Setting up MWS Security

1.2 Setting up MWS Security 22

l The connection between MWS and Moab Workload Manager. See 1.2.1 Securing the
Connection with Moab.

l The connection between MWS and MongoDB. See 1.2.2 Securing the Connection with
MongoDB.

l The connections between clients and MWS. See 1.2.3 Securing Client Connections to
MWS.

l The connection between MWS and LDAP. See 1.2.4 Securing the LDAP Connection.

l The connection with the message queue. See 1.2.5 Securing the Connection with the
Message Queue.

Related Topics

l 1.1 Configuring Moab Web Services

l 1.4 Version and Build Information

1.2.1 Securing the Connection with Moab

MWS communicates with Moab HPC Suite via the Moab Wire Protocol, which uses a direct
connection between the two applications. The communication over this connection uses a
shared secret key, which is discussed in the installation instructions. See the Moab HPC
Suite Installation and Configuration Guide. However, the communication is not encrypted
and is therefore susceptible to eavesdropping and replay attacks. For this reason, MWS is
supported only when running on the same machine as Moab HPC Suite. This ensures that
any connections between the two applications occur internally on the server and are not
exposed to external users.

1.2.2 Securing the Connection with MongoDB

By default, the connection between MWS and MongoDB is not authenticated. To enable
authentication, follow the instructions below. For further reading, see the MongoDB tutorial
Control Access to MongoDB Instances with Authentication.

To Enable an Authenticated Connection between MWS and MongoDB

1. Add an administrative user to the admin database.

2. Add an MWS user to the mws database.

Chapter 1: Moab Web Services Setup

https://docs.mongodb.org/manual/tutorial/enable-authentication/

3. To support MWS API version 2, add an MWS user with read-only rights to the moab
database.
Here is an example of how to create all the required users. The users in the moab
database are required only for MWS API version 2.

[root]# service mongod start
[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> use moab;
> db.addUser("moab_user", "secret2");
> db.addUser("mws_user", "secret3", true);
> use mws;
> db.addUser("mws_user", "secret3");
> exit;

The passwords used here (secret1, secret2, and secret3) are examples. Choose
your own passwords for these users.

4. Add the MWS user credentials (the ones you just created) to the
/opt/mws/etc/mws-config.groovy file, for example:

grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"

5. Enable authentication in the MongoDB configuration file (called
/etc/mongodb.conf on many Linux distributions). In that file, look for #auth =
true and uncomment it.

6. Restart MongoDB.

7. Restart Tomcat.

If authentication is enabled in MongoDB, but the MWS user was not properly created or
configured, MWS will not start. In this case, see the log file(s) for additional information.

1.2.3 Securing Client Connections to MWS

All connections to MWS, except those requesting the documentation or the main page, must
be authenticated properly. MWS uses a single-trusted-user authentication model, meaning
a single user exists that has access to all aspects of MWS. The username and password for
this user are configured with the auth.defaultUser properties in the configuration
file. For more information, see 8.2 MWS Configuration.

When using the MWS user interface in a browser, the user will be prompted for username
and password. For information on how to authenticate requests when not using a browser,
see 3.8 Authentication.

Chapter 1: Moab Web Services Setup

23 1.2 Setting up MWS Security

1.2 Setting up MWS Security 24

The username and password in the Basic Authentication header are encoded but not
encrypted. Therefore, we strongly recommend that MWS be run behind a proxy (like
Apache) with SSL enabled. The instructions below provide an example of how to do
this.

In this topic:

1.2.3.A Encrypting Client Connections Using Apache and SSL
1.2.3.B Encrypting Client Connections Using Tomcat and SSL

1.2.3.A Encrypting Client Connections Using Apache and SSL
This section shows how to encrypt client connections to MWS using Apache and SSL. These
instructions have been tested on CentOS with the 'Web Server' software set installed. The
same ideas are applicable to other operating systems, but the details might be different. As
shown in the diagram below, these instructions assume that Tomcat and Apache are
running on the same server:

To Encrypt Client Connections using Apache and SSL

1. Create a self-signed certificate. (If desired, see OpenSSL Documentation for more
information).

Chapter 1: Moab Web Services Setup

https://www.openssl.org/docs/manmaster/man1/req.html

Instead of creating a self-signed certificate, you can buy a certificate from a
certificate vendor. If you do, then the vendor will provide instructions on how to
configure Apache with your certificate.

2. Do the following.

a. Run these commands:

cd /etc/pki/tls/certs
cp -p make-dummy-cert make-dummy-cert.bak
cp -p localhost.crt localhost.crt.bak

b. Edit make-dummy-cert and replace the answers() function with code similar
to this:

answers() {
echo US
echo Utah
echo Provo
echo Adaptive Computing Enterprises, Inc.
echo Engineering
echo test1.adaptivecomputing.com
echo

}

c. Run this command:

./make-dummy-cert localhost.crt

3. Configure Apache to use the new certificate and to redirect MWS requests to Tomcat. To
do so, edit /etc/httpd/conf.d/ssl.conf. Do the following.

a. Comment out this line:

SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

b. Add these lines near the end, just above </VirtualHost>:

ProxyPass /mws https://127.0.0.1:8080/mws retry=5
ProxyPassReverse /mws https://127.0.0.1:8080/mws

4. Configure Apache to use SSL for all MWS requests. Add these lines to the end of
/etc/httpd/conf/httpd.conf:

RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (/mws.*) https://%{HTTP_HOST}%{REQUEST_URI}

5. Give Apache permission to connect to Tomcat:

setsebool -P httpd_can_network_connect 1

6. Turn on Apache:

Chapter 1: Moab Web Services Setup

25 1.2 Setting up MWS Security

1.2 Setting up MWS Security 26

chkconfig httpd on
service httpd start

7. Using system-config-firewall-tui, enable 'Secure WWW (HTTPS)' and
'WWW (HTTP)' as trusted services:

1.2.3.B Encrypting Client Connections Using Tomcat and SSL
This section shows how to encrypt client connections to MWS using Tomcat and SSL but
without requiring the use of Apache. These instructions have been tested on CentOS with
Tomcat 6.0.

To Encrypt Client Connections using Tomcat and SSL

1. First, you must generate a certificate. Do the following.

a. Use the keytool utility that is shipped with the Oracle Java Runtime Environment. As
the Tomcat user, run the following:

Chapter 1: Moab Web Services Setup

keytool -genkey -alias tomcat -keyalg RSA

b. Specify a password value of 'changeit'. This will create a .keystore file that contains
the new certificate in the user's home directory.

2. Enable the Tomcat SSL connector by doing the following.

a. Open the server.xml file, usually located in $CATALINA_HOME/conf/
($CATALINA_HOME represents the directory where Tomcat is installed).

b. Verify the SSL HTTP/1.1 Connector entry is enabled. To do so, locate the SSL
HTTP/1.1 Connector entry and uncomment it:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150"
scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" />

The code above enables SSL access on port 8443. The default for HTTPS is 443,
but just as Tomcat uses 8080 instead of 80 to avoid conflicts, 8443 is used
instead of 443.

c. Save the server.xml file.

d. Verify that server.xml is owned by the Tomcat user:

chown -R tomcat:tomcat server.xml

e. Next, modify the MWSweb.xml file. Add a security-constraint section to the
$CATALINA_HOME/webapps/mws/WEB-INF/web.xml file found in your
Tomcat directory:

<web-app>
…
<security-constraint>

<web-resource-collection>
<web-resource-name>MWS Secure URLs</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>
</web-app>

f. Now restart Tomcat.

1.2.4 Securing the LDAP Connection

All connections from MWS to the LDAP server should be secured with SSL or StartTLS to
ensure passwords and other sensitive information are encrypted as they pass to and from

Chapter 1: Moab Web Services Setup

27 1.2 Setting up MWS Security

1.2 Setting up MWS Security 28

the LDAP server. If the LDAP server does not support SSL or StartTLS, the rest of this
section is irrelevant.

In this topic:

1.2.4.A Determine Whether the LDAP Server's Certificate is Trusted
1.2.4.B Configure MWS to Connect to LDAP Server Using SSL or StartTLS

1.2.4.A Determine Whether the LDAP Server's Certificate is Trusted
If the LDAP server's X.509 certificate has been signed by a trusted certificate authority
such as Verisign, Thawte, GeoTrust, and so on, Java will trust the certificate automatically
and you won't need to add the certificate to Java's keystore. Consult your IT department to
determine whether the LDAP server certificate has been signed by a trusted certificate
authority. If the LDAP server certificate is signed by a trusted certificate authority, skip
ahead to the next section Configure MWS to Connect to LDAP Server Using SSL or StartTLS.
Otherwise, follow the instructions in 'Trusting Servers in Java' in the Moab HPC Suite
Installation and Configuration Guide to add the certificate to Java's keystore.

1.2.4.B Configure MWS to Connect to LDAP Server Using SSL or
StartTLS
This section shows how to encrypt client connections to MWS using Tomcat and SSL but
without requiring the use of Apache. These instructions have been tested on CentOS with
Tomcat 6.0.

SSL/TLS
To configure MWS to connect to LDAP using SSL/TLS

1. Update the ldap.port and ldap.security.type parameters in
/opt/mws/etc/mws-config.groovy:

ldap.port = 636
ldap.security.type = "SSL"

StartTLS
To configure MWS to connect to LDAP using StartTLS

1. Update the ldap.port and ldap.security.type parameters in
/opt/mws/etc/mws-config.groovy:

Chapter 1: Moab Web Services Setup

ldap.port = 389
ldap.security.type = "StartTLS"

The table below lists the possible values for ldap.security.type:

ldap.security.type Default
Port

Notes

None 389 This is the default if no security type is configured. All data is
sent in plain text.

SSL 636 Requires server certificate. All data is encrypted.

StartTLS 389 Starts as an insecure connection and is upgraded to an
SSL/TLS connection. Requires server certificate. After
upgrade all data is encrypted.

1.2.5 Securing the Connection with the Message Queue

MWS supports message queue security with AES. If the
moab.messageQueue.secretKey property is set, then all messages MWS publishes
on the message queue will be encrypted. Additionally, MWS can read messages from Moab
Workload Manager that are encrypted with the same key using the
MESSAGEQUEUESECRETKEY parameter. For more information, see 8.2 MWS
Configuration.

Encryption is done with AES in CBC mode where inputs are padded with PKCS5 padding.
Only 128-bit (16-byte) keys are supported. Keys should be encoded in Base64, for
example:

moab.messageQueue.secretKey = "1r6RvfqJa6voezy5wAx0hw==" //must be a Base64-encoded
128-bit key

Important: If MWS is configured to encrypt the message queue and Moab HPC Suite is
not (or vice versa) then the messages from Moab HPC Suite will be ignored.
Furthermore, all attempts to access the MWS service resource will fail.

Related Topics

l Chapter 4: Resources

l 4.6 Events

l 4.14 Notifications

Chapter 1: Moab Web Services Setup

29 1.2 Setting up MWS Security

http://en.wikipedia.org/wiki/Base64

1.3 Configuring Logging 30

l 4.13 Notification Conditions

l 6.2.12 Creating Events and Notifications

l 6.2 Plugin Developer's Guide

l 8.4.4 Fields: Events

l 6.6.6 Plugin Event Service

l 6.2.13 Handling Events

l 3.9 System Events

1.3 Configuring Logging

In this section:

1.3.1 Logging Introduction
1.3.2 Configuring an Event Log
1.3.3 Configuring an Audit Trail Log

1.3.1 Logging Introduction
Logging in MWS is handled by the Logback logging framework and is configured in the
/opt/mws/etc/logback.groovy file.

We highly recommend that you leave the JodaTimeConverter import and conversionRule in
the logback.groovy file as originally included. This converter provides improved
performance and support for the specification of time and date for Adaptive Computing's
'Standard Log Format' in the log files.

The example below shows a minimal logging configuration that logs standard MWS
messages to /opt/mws/log/mws.log and exception stack traces to
/opt/mws/log/stacktrace.log. Note that this example is not configured to log
events or auditing, which are described in subsequent subsections.

appender("ROOTLOG", RollingFileAppender) {
file = '/opt/mws/log/mws.log'
rollingPolicy(FixedWindowRollingPolicy) {

fileNamePattern = "/opt/mws/log/mws.log.%i"
maxIndex = 10 // Retain only the 10 most recent log files, delete older logs

to save space
}
triggeringPolicy(SizeBasedTriggeringPolicy) {

maxFileSize = '100MB' // The maximum file size for a single log file
}

Chapter 1: Moab Web Services Setup

https://logback.qos.ch/

encoder(PatternLayoutEncoder) {
pattern = "%j\t%t\t%p\t%c\t0\t\t%m%n" // Configures the output format of each

log entry
}

}

appender("STACKTRACE", RollingFileAppender) {
file = '/opt/mws/log/stacktrace.log'
encoder(PatternLayoutEncoder) {

pattern = "%m%n"
}
rollingPolicy(FixedWindowRollingPolicy) {

fileNamePattern = "/opt/mws/log/stacktrace.log.%i"
}
triggeringPolicy(SizeBasedTriggeringPolicy) {

maxFileSize = '100MB'
}

}

root(ERROR, ['ROOTLOG']) // NOTE: This definition is a catch-all for any logger not
defined below

Alternatively, you can configure a console appender instead of a rolling file, as shown
below:

…
appender('ROOTLOG', ConsoleAppender) {

encoder(PatternLayoutEncoder) {
pattern = "%j\t%t\t%p\t%c\t0\t\t%m%n" // Configures the output format of each

log entry
}

}
…

1.3.2 Configuring an Event Log
Logging events to a separate log file requires that you make a few changes to the
configuration in the /opt/mws/etc/logback.groovy file so that events will be
logged to the events.log file, and all other MWS logging information will be sent to the
mws.log file.

Causing events.log to Roll Based on a Time Window
You can specify how often the events.log file rolls. The following example illustrates the
configuration changes you will need to make to /opt/mws/etc/mws-config.groovy
to cause the events.log file to roll based on a time window.

Note the following three examples:

l In this example, /opt/mws/etc/mws-config.groovy is configured so that
events.log rolls daily at midnight:

Daily rolling events.log configuration in mws-config.groovy

Chapter 1: Moab Web Services Setup

31 1.3 Configuring Logging

1.3 Configuring Logging 32

appender("EVENTS", RollingFileAppender) {

file = '/opt/mws/log/events.log'
encoder(PatternLayoutEncoder) {

pattern = "%m%n"
}
rollingPolicy(TimeBasedRollingPolicy) {

fileNamePattern = '/opt/mws/log/events.%d{yyyy-MM-dd}'
}

}
// Logs event information to the events log, not the rootLog
logger("com.ace.mws.events.EventFlatFileWriter", DEBUG, ["EVENTS"], false)

Note the RollingFileAppender and the TimeBasedRollingPolicy lines.
These lines configure MWS to write the event log to the events.log file. Rolled log
files will have a date appended to their name in this format: 'yyyy-MM-dd' (for
example, events.log.2025-02-28).

l If you want the event log file to roll at the beginning of each month, change the
fileNamePattern TimeBasedRollingPolicy date format to yyyy-MM. For
example:

Monthly event logs

appender("EVENTS", RollingFileAppender) {

file = '/opt/mws/log/events.log'
encoder(PatternLayoutEncoder) {

pattern = "%m%n"
}
rollingPolicy(TimeBasedRollingPolicy) {

fileNamePattern = '/opt/mws/log/events.%d{yyyy-MM}'
}

}
// Logs event information to the events log, not the rootLog
logger("com.ace.mws.events.EventFlatFileWriter", DEBUG, ["EVENTS"], false)

l If you want the event log file to roll at the beginning of each hour, change the date
format to yyyy-MM-dd_HH:00, for example:

Hourly event logs

appender("EVENTS", RollingFileAppender) {

file = '/opt/mws/log/events.log'
encoder(PatternLayoutEncoder) {

pattern = "%m%n"
}
rollingPolicy(TimeBasedRollingPolicy) {

fileNamePattern = '/opt/mws/log/events.%d{yyyy-MM-dd_HH:00}'
}

}
// Logs event information to the events log, not the rootLog
logger("com.ace.mws.events.EventFlatFileWriter", DEBUG, ["EVENTS"], false)

Configuring events.log to Roll Based on a File Size Threshold
You can also configure the events.log file to roll when the log size exceeds a specified
threshold. The following example illustrates the configuration changes you will need to

Chapter 1: Moab Web Services Setup

make to /opt/mws/etc/logback.groovy to cause the events.log file to roll on a
size threshold. (In this example, /opt/mws/etc/logback.groovy is configured so
that events.log rolls when its size exceeds 50 MB).

logback.groovy configuration that rolls events.log based on file size

appender("EVENTS", RollingFileAppender) {

file = '/opt/mws/log/events.log'
encoder(PatternLayoutEncoder) {

pattern = "%m%n"
}
rollingPolicy(FixedWindowRollingPolicy) {

fileNamePattern = "/opt/mws/log/stacktrace.log.%i"
maxIndex = 10

}
triggeringPolicy(SizeBasedTriggeringPolicy) {

maxFileSize = '50MB'
}

}
// Logs event information to the events log, not the rootLog
logger("com.ace.mws.events.EventFlatFileWriter", DEBUG, ["EVENTS"], false)

Note that maxFileSize is set to '50MB.' This means that when the events.log file
exceeds 50 MB, it will roll.

The name for the rolled log will be 'events.log.1'. When the new events.log file exceeds 50
MB, it will roll and be named 'events.log.1', while the old 'events.log.1' file will be renamed
'events.log.2'. This process will continue until the optional maxBackupIndex value is met.
In the example above, maxIndex is set to 10. This means that MWS will delete all except
the ten most recent events.log files. Using this feature helps prevent hard drives from
filling up.

Deleting Old Events
MWS will automatically delete events older than 30 days (by default). For more
information, including how to change this default, see
mws.events.expireAfterSeconds in 8.2 MWS Configuration.

1.3.3 Configuring an Audit Trail Log
Audit logging enables you to track changes to Permissions, Roles, and Principals:

logback.groovy configuration that enables audit logging

appender("AUDIT", RollingFileAppender) {

file = '/opt/mws/log/audit.log'
encoder(PatternLayoutEncoder) {

pattern = "%j\t\t\t%c{1}\t\t\t%m%n"
}
rollingPolicy(TimeBasedRollingPolicy) {

fileNamePattern = '/opt/mws/log/audit.%d{yyyy-MM-dd}'
}

}

Chapter 1: Moab Web Services Setup

33 1.3 Configuring Logging

1.4 Version and Build Information 34

// Logs audit information to the audit log, not the rootLog
logger("mws.audit", DEBUG, ["AUDIT"], false)

You can customize audit logging in ways you can customize event logging. For example, you
can specify how often the audit.log file rolls. You can also configure the audit.log
file to roll when the log size exceeds a specified threshold.

Follow the same steps indicated in the previous section on Configuring an Event Log
for instruction on customizing audit logging; customization processes are the same for
audit logging as for events logging.

audit.log File Format
The default location to which the audit trail log is written is
/opt/mws/log/audit.log. The log format is yyyy-MM-dd HH:mm:ss resource
username action data. The following table offers a description for attributes
included in the log format:

Parameter Description

resource The resource (permission, role, or principal) that changed.

username The user's user name.

action The type of change (create, update, or delete).

data Dependent on what changed.

Sample audit.log format:

Audit trail log format

2024-10-30 14:39:32,120 PRINCIPAL 'admin' updated resource named 'Engineering2' with
values:

"name": "Engineering3",
"attachedPrincipals": [{"name": "Engineering"}]

1.4 Version and Build Information

To get detailed version information about MWS, use one of the methods described in this
topic.

Chapter 1: Moab Web Services Setup

In this section:

1.4.1 Browser
1.4.2 REST Request
1.4.3 MANIFEST.MF File

1.4.1 Browser
Using a browser, visit the MWS home page (for example,
https://localhost:8080/mws/). At the bottom of the page is the MWS version
information. See the screenshot below:

1.4.2 REST Request
Using a REST client or other HTTP client software, send a GET request to the
rest/diag/about resource. Here is an example:

curl -u username:password https://localhost:8080/mws/rest/diag/about?api-version=3

This resource is also described under 4.4 Diagnostics.

1.4.3 MANIFEST.MF File
If MWS fails to start, version and build information can be found in the META-
INF/MANIFEST.MF file inside the MWS WAR file. The version properties begin with
Implementation. Below is a sample excerpt of a MANIFEST.MF file:

Chapter 1: Moab Web Services Setup

35 1.4 Version and Build Information

1.4 Version and Build Information 36

Implementation-Build: 26
Implementation-Build-Date: 2024-06-19_14-18-59
Implementation-Revision: 376079a5e5f552f2fe25e6070fd2e84c646a98fd

Name: Grails Application
Implementation-Title: mws
Implementation-Version: 10.0.0-rc2
Grails-Version: 2.0.3

Chapter 1: Moab Web Services Setup

37

Chapter 2: Access Control

In this chapter:

2.1 Application Accounts

2.2 Managing Application Accounts

2.3 Listing Application Accounts

2.4 Creating an Application Account

2.5 Displaying an Application Account

2.6 Modifying an Application Account

2.7 Resetting an Application Password

2.8 Deleting an Application Account

This chapter describes how to manage access control in MWS. Applications are the
consumers of MWS. They include applications that need the resources provided by MWS.

2.1 Application Accounts
An application account consists of four editable fields and resource-specific access control
settings:

Table 2-1: Field information

Field Required Default
Value

Value
Type

Maximum
Length

Description

Application
Name

Yes -- String 32 The name of the
application. Must start
with a letter and can
contain letters, digits,
underscores, periods,
hyphens, apostrophes,
and spaces.

Username Yes -- String 32 Used for authentication.
Must start with a letter
and can contain letters,
digits, underscores,
periods, and hyphens.

Chapter 2: Access Control

Field Required Default
Value

Value
Type

Maximum
Length

Description

Description No -- String 1000 The description of the
application.

Enabled -- true Boolean -- Controls whether the
application is allowed to
access MWS.

Access
Control
Settings

Yes All
Permissions

-- -- The permissions granted
to the application. This
is controlled by selecting
specific check boxes in a
grid.

An application account also contains an auto-generated password that is visible only when
creating the account or when resetting its password. Whenever an application sends a
REST request to MWS, it needs to pass its credentials (username and password) in a Basic
Authentication header. For more information, see 3.8 Authentication.

The Application Name is a human-friendly way to identify an application account, but
MWS does not use it during authentication (or at any other time, for that matter).

The Enabled field is set to true automatically when an application account is created. To
change the value of this field, see 2.6 Modifying an Application Account.

The permissions granted to an application account can be customized while creating or
modifying the account. For more information, see 2.4 Creating an Application Account and
2.6 Modifying an Application Account.

2.2 Managing Application Accounts
Application accounts are used to grant access to MWS. Every application with an
application account must be granted at least one access control permission to a resource in
MWS. To manage application accounts, see 2.3 Listing Application Accounts.

2.3 Listing Application Accounts
To list all applications accounts, browse to the MWS home page (for example,
https://servername/mws). Log in as the admin user, click Admin and then
Application Accounts.

Each column (except Password) can be sorted in ascending or descending order by
clicking on the column heading.

Chapter 2: Access Control

38

39

2.4 Creating an Application Account
To create an application account, go to the Application List page and click Add
Application. The 'Application Name' and 'Username' are required fields. For more
details, see Field information under 2.1 Application Accounts.

Access to specific resources and plugin custom web services is granted or revoked by
checking or unchecking the check boxes in the respective resources or plugin web services
access control sections. For each resource, access can be granted to a resource for each
method supported by MWS, including GET, POST, PUT, and DELETE. See below for an
example:

In this example, the application has access to all available methods for the Access
Control Lists and Accounts resources as well as to retrieve the Events resource
through the GET method but is denied the permission to create new events through the
POST method.

Access can also be granted to each plugin type's custom web service(s). When new plugin
types or plugin web services are added to MWS, applications must be updated with the
new access control settings. See below for an example:

In this example, the application has access to all the custom web services defined for the
Test plugin type. Note that though unsecured web services are listed, access to them
cannot be denied (for more information, see 6.2.8 Exposing Web Services).

2.5 Displaying an Application Account
To show information about an application account, go to the Application List page
and click the desired application name.

In addition to displaying the values for fields, grids are also displayed that represent the
application's access control permissions defined for resources and plugin custom web

Chapter 2: Access Control

services. Examples of the resources and the plugin web services access control displays
are shown below:

2.6 Modifying an Application Account
To modify an application account, go to the Application List page, click the desired
application name, and then click Edit. See 2.4 Creating an Application Account for more
information on available fields and access control settings.

2.7 Resetting an Application Password
To reset an application password, go to the Application List page and click the
Reset link for the desired application. Alternatively, go to the Display Application
page for the desired application and click the Reset link.

2.8 Deleting an Application Account
To delete an application account, go to the Application List page, click the desired
application name, and then click Delete. A confirmation message is shown. If the OK
button is clicked, the application account is deleted from the system and cannot be
recovered.

Related Topics

l Moab Web Services Overview

l 1.2 Setting up MWS Security

Chapter 2: Access Control

40

3.1 RESTful Web Services 41

Chapter 3: About the API

Moab Web Services provide a set of RESTful resources that can be used to create, read,
update, and delete various objects in the Moab Workload Manager. This section describes
how to use RESTful web services, explains the JSON data format used for all
communications with MWS, describes global URL parameters used in MWS calls, and
contains other helpful information for using the MWS API.

In this chapter:

3.1 RESTful Web Services
3.2 Data Format
3.3 Global URL Parameters
3.4 Requesting Specific API Versions
3.5 Responses and Return Codes
3.6 Error Messages
3.7 Pre- and Post-Processing Hooks
3.8 Authentication
3.9 System Events

Related Topics

l Chapter 4: Resources

l Chapter 6: About Moab Web Services Plugins

3.1 RESTful Web Services

In order to understand how to use MWS, it is first necessary to give a brief introduction to
REST. REST (Representational State Transfer) is a set of guidelines that utilizes the full
HTTP (Hypertext Transfer Protocol) specification along with endpoint URLs that describe
resources. The HTTP methods used in REST are comprised of the following:

Method Description

GET Query for a list or a single resource.

Chapter 3: About the API

Method Description

POST Creating a resource.

PUT Modifying a resource.

DELETE Deleting a resource.

In comparison to other architectures of web services that use a single HTTP method and
service endpoint to perform multiple types of operations (such as a POST operation to a
URL), REST utilizes all of the available HTTP methods and URLs that directly correlate to
resources. For example, RESTful web services for books in a library may expose many URL
endpoints and the HTTP methods available for each such as GET, POST, PUT, and DELETE.
The list below gives the methods, URLs, and descriptions for a sample set of services. The
number 1 represents a unique identifier for books in each case.

Method URL Description

GET /books Retrieves a list of all books in the library.

POST /books Creates a new book.

GET /books/1 Retrieves a single book.

PUT /books/1 Modifies a single book.

DELETE /books/1 Deletes a single book.

Note that in the cases of the POST and PUT operations, additional information may be
needed to describe the resource to be created or the fields that should be modified.

MWS provides RESTful web services for many resources. The methods and URLs available
are documented in Chapter 4: Resources.

3.2 Data Format

JSON (JavaScript Object Notation) is the data format used for all communication with MWS.
This format makes use of two main structures: collections of key/value pairs called objects
and ordered lists of values called arrays. Objects are defined by using curly braces ({}), and
arrays are defined by using square brackets ([]). A JSON object or array can contain

Chapter 3: About the API

42 3.2 Data Format

3.2 Data Format 43

several different types of values including numbers, booleans (true/false), strings, objects,
arrays, or the keyword 'null' representing no value. For example, a simple JSON object
might be defined as:

{
"number": 1,
"decimalNumber": 1.2,
"boolean": true,
"string": "Any string",
"dateString": "2024-05-23 17:32:02 UTC",
"object": {
"key": "value"

},
"array": [
"value1",
"value2"

],
"nullValue": null

}

Dates in MWS, for both input and output, use the pattern yyyy-MM-dd HH:mm:ss ZZZ.
For more details on that pattern, see Joda-Time DateTimeFormat. For a list of valid time
zone IDs, see Joda-Time Available Time Zones.

For more information on JSON, see json.org.

The data format of MWS is defined as follows:

l Input for a POST or PUT must be in JSON format. Set the Content-Type header to
application/json.

l Output is in JSON format and always consists of an object with zero or more
key/value pairs.

l The output can also be pretty-printed or formatted for human viewing by sending a
URL parameter. For more information, see 3.3 Global URL Parameters.

Chapter 3: About the API

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/timezones.html
http://www.json.org/

3.3 Global URL Parameters

In this section:

3.3.1 Parameters
3.3.2 API Version (api-version)
3.3.3 Pretty (pretty)
3.3.4 Field Selection (fields)
3.3.5 Field Exclusion (exclude-fields)
3.3.6 Sorting (sort)

3.3.1 Parameters

All URL parameters are optional.

Parameter Value Description

api-version Integer Requests a specific API version.

pretty true Controls pretty printing of output.

fields Comma-separated string Includes only specified fields in output.

exclude-fields Comma-separated string Excludes specified fields from output.

max Integer The maximum number of items to return.

offset Integer The index of the first item to return.

3.3.2 API Version (api-version)
See 3.4 Requesting Specific API Versions for information on this parameter and how it
should be used.

Chapter 3: About the API

44 3.3 Global URL Parameters

3.3 Global URL Parameters 45

3.3.3 Pretty (pretty)
By default, the output is easy for a machine to read but difficult for humans to read. The
pretty parameter formats the output so that it is easier to read.

3.3.4 Field Selection (fields)
The fields parameter will include only the specified fields in the output. For list queries,
the field selection acts on the objects in results and not on the totalCount or
results properties themselves.

The format of the fields parameter is a comma-separated list of properties that should
be included, as in id,state. Using periods, sub-objects can also be specified, and fields of
these objects can be included as well. This is done with the same syntax for both single
sub-objects and lists of sub-objects, as in
id,requirements.requiredNodeCountMinimum,blockReason.message.

Example 3-1: Example for a job query

Request

GET /rest/jobs?api-
version=3&fields=name,flags,requirements.taskCount,dates.createdDate

Response

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"dates": {"createdDate": "2024-10-17 01:11:54 UTC"},
"flags": ["GLOBALQUEUE"],
"name": "Moab.24",
"requirements": [{"taskCount": 1}]

}]
}

3.3.5 Field Exclusion (exclude-fields)
The exclude-fields parameter is the opposite of the fields parameter. All fields
will be included in the output except those that are specified. For list queries, the field
exclusion acts on the objects in results and not on the totalCount or results
properties themselves.

The format of the exclude-fields parameter is a comma-separated list of properties
that should be excluded from the output, as in id,state. Using periods, sub-objects can

Chapter 3: About the API

also be specified, and fields of these objects can be excluded as well. This is done with the
same syntax for both single sub-objects and lists of sub-objects, as in
id,requirements.requiredNodeCountMinimum,blockReason.message.

Example 3-2:

Suppose a query returns the following JSON:

Request with No Field Exclusion

GET /objects

Response

{
"id": "1",
"listOfStrings": [
"string1",
"string2"

],
"listOfObjects": [{
"item1": "value1",
"item2": "value2"

}],
"singleObject": {
"id": "obj1",
"field1": "value1"

}
}

The same query with exclude-fields would return the following output:

Request with No Field Exclusion

GET /objects?exclude-fields=id,listOfObjects.item2,singleObject.field1,listOfStrings

Response

{
"listOfObjects": [{"item1": "value1"}],
"singleObject": {"id": "obj1"}

}

3.3.6 Sorting (sort)
Events support sorting based on MongoDB syntax by using the sort parameter. To sort in
ascending order, specify a 1 for the sorting field. To sort in descending order, specify a -1.
Objects can also be sorted on nested fields by using dot notation to separate the sub-fields,
such as field.subfield1.subfield2.

Chapter 3: About the API

46 3.3 Global URL Parameters

http://docs.mongodb.org/manual/core/read#Querying-Sorting

3.4 Requesting Specific API Versions 47

3.4 Requesting Specific API Versions

Because of significant changes in the API introduced in a previous release, MWS possesses
a versioned API. The api-version URL parameter can be used to change the requested API
version for any call to MWS. The current valid API versions with their corresponding MWS
versions are shown in the table below:

API
Version

MWS
Version

Documentation Notes

2
(deprecated)

7.2.x 7.2.x documentation
on Moab Cloud HPC
Suite – 7.2
Documentation

As of the 8.0 release, API version 2 is
officially deprecated and will be removed
from MWS in a future release.

3 8.0 Contained within this
document

--

latest Latest Contained within this
document

When the latest API version is requested,
it resolves to the latest API version of
MWS, such as api-version=3 for MWS 8.0.

If no API version is specified, the request is rejected. An API version must be
specified with every call in MWS.

Chapter 4: Resources and Resources Reference contain information for the latest API
version. For documentation of previous API versions, see the table above.

Examples
GET https://localhost:8080/mws/rest/nodes?api-version=2
// Data returned uses API version 2

GET https://localhost:8080/mws/rest/nodes?api-version=latest
// Data returned uses API version 3

3.5 Responses and Return Codes

Various HTTP responses and return codes are generated from MWS operations. These are
documented below according to the operation that they are associated with.

Chapter 3: About the API

https://support.adaptivecomputing.com/moab-hpc-suite-documentation-2/moab-hpc-suite-7-2-documentation/
https://support.adaptivecomputing.com/moab-hpc-suite-documentation-2/moab-hpc-suite-7-2-documentation/
https://support.adaptivecomputing.com/moab-hpc-suite-documentation-2/moab-hpc-suite-7-2-documentation/

In this section:

3.5.1 Listing and Showing Resources
3.5.2 Creating Resources
3.5.3 Modifying Resources
3.5.4 Deleting Resources
3.5.5 Moab HPC Suite Response Headers

3.5.1 Listing and Showing Resources
For any successful list or show operation (GET), a 200 OK response code is always
returned. No additional headers beyond those typical of an HTTP response are given in the
response.

The body of this response consists of the results of the list or show operation. For a list
operation, the results are wrapped in metadata giving total and result counts. The result
count represents the number of resource records returned in the current request, and the
total count represents the number of all records available. These differ when querying or
the max and offset parameters are used. The following is an example of a list operation
response:

JSON List Response Body

{
"resultCount":1,
"totalCount":5,
"results":[
{
"id":"Moab.1",
…

}
]

}

For a show operation, the result is given as a single object:

JSON Show Response Body

{
"id":"Moab.1",
…

}

3.5.2 Creating Resources
A successful creation (POST) of a resource has two potential response codes:

Chapter 3: About the API

48 3.5 Responses and Return Codes

3.5 Responses and Return Codes 49

l If the resource was created immediately, a 201 Created response code is returned.

l If the resource is still being created, a 202 Accepted response code is returned.

In either case, a Location header is added to the response with the full URL that can be
used to get more information about the newly created resource or the task associated with
creating the resource (if a 202 is returned).

Additionally, the body of the response will contain the unique identifier of the newly
created resource or the unique identifier for the task associated with creating the resource
(if a 202 is returned).

For example, during creation or submission of a job, a 201 response code is returned with
the following response headers and body:

Job Creation Response Headers

HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
Location: /mws/rest/jobs/Moab.21
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 16
Date: Wed, 21 Dec 2024 23:04:47 GMT

Job Creation Response Body

{"id":"Moab.21"}

3.5.3 Modifying Resources
For any successful resource modification operation (PUT), a 200 OK or 202 Accepted
response code is returned. A 200 response code signifies that the modification was
immediately completed. No additional headers are returned in this case. A 202 response
code is used again to signify that the modification is not yet complete and additional actions
are taking place. In this case, a Location header is also returned with the full URL of the
resource describing the additional actions.

In the case of a 200 response code, the body of this response typically consists of an object
with a single messages property containing a list of statuses or results of the modification
(s). However, a few exceptions to this rule exist as documented in Chapter 4: Resources. In
the case of a 202 response code, the format is the same as for a 202 during a creation
operation, in that the body consists of an object with the unique identifier for the task
associated with the additional action(s).

For example, when modifying a job, several messages may be returned as follows with the
associated 200 response code:

Chapter 3: About the API

Job Modification Response Headers

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Moab-Status: Success
X-Moab-Code: 000
X-Moab-Message:
Content-Type: application/json;charset=utf-8
Content-Length: …
Date: Thu, 22 Dec 2024 16:49:43 GMT

JSON Modify Response Body

{
"messages":[
"gevent processed",
"variables successfully modified"

]
}

3.5.4 Deleting Resources
For any successful resource deletion operation (DELETE), a 200 OK or 202 Accepted
response code is returned. A 200 response code signifies that the deletion was
immediately completed. No additional headers are returned in this case. A 202 response
code is used again to signify that the deletion is not yet complete and additional actions are
taking place. In this case, a Location header is also returned with the full URL of the
resource describing the additional actions.

In the case of a 200 response code, the body of this response is empty. In the case of a 202
response code, the format is the same as for a 202 during a creation operation, in that the
body consists of an object with the unique identifier for the task associated with the
additional action(s).

For example, when deleting a job, a 200 response code is returned with an empty body as
shown below:

Job Deletion Response

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Moab-Status: Success
X-Moab-Code: 000
X-Moab-Message:
Content-Type: application/json;charset=utf-8
Content-Length: 0
Date: Thu, 22 Dec 2024 16:49:43 GMT

Chapter 3: About the API

50 3.5 Responses and Return Codes

3.6 Error Messages 51

3.5.5 Moab HPC Suite Response Headers
In addition to the typical HTTP headers and the Location header described above, several
headers are returned if the operations directly interact with Moab HPC Suite. These
headers are described in the following table:

Name Description

X-Moab-Status One of Success, Warning, or Failure. Describes the overall
status of the Moab HPC Suite request.

X-Moab-Code A three digit code specifying the exact error encountered, used only
in debugging.

X-Moab-Message An optional message returned by Moab HPC Suite during the
request.

3.6 Error Messages

Below is an explanation of what error message format to expect when an HTTP status code
other than 20x is returned. All error codes have a response code of 400 or greater.

In this section:

400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
405 Method Not Allowed
500 Internal Server Error

400 Bad Request
This response code is returned when the request itself is at fault, such as when trying to
modify a resource with an empty PUT request body or when trying to create a new
resource with invalid parameters. The response body is as follows:

{
"messages":[
"Message describing error",
"Possible prompt to take action"

Chapter 3: About the API

]
}

401 Unauthorized
This response code is returned when authentication credentials are not supplied or are
invalid. The response body is as follows:

{
"messages":[
"You must be authenticated to access this area"

]
}

403 Forbidden
This response code is returned when the credentials supplied are valid, but the
permissions granted are insufficient for the operation. This occurs when using application
accounts (see Chapter 2: Access Control) with limited access.

{
"messages":[
"You are not authorized to access this area"

]
}

404 Not Found
This response code is returned when the request specifies a resource that does not exist.
The response body is as follows:

{
"messages":[
"The resource with id 'uniqueId' was not found"

]
}

405 Method Not Allowed
This response code is returned when a resource does not support the specified HTTP
method as an operation. The response body is as follows:

{
"messages":[
"The specified HTTP method is not allowed for the requested resource"

]
}

Chapter 3: About the API

52 3.6 Error Messages

3.7 Pre- and Post-Processing Hooks 53

500 Internal Server Error
This indicates that there was an internal server error while performing the request, or that
an operation failed in an unexpected manner. These are the most serious errors returned
by MWS. If additional information is needed, the MWS log may contain further error data.
The response body is as follows:

{
"messages":[
"A problem occurred while processing the request",
"A message describing the error"

]
}

3.7 Pre- and Post-Processing Hooks

MWS provides functionality to intercept and modify data sent to and returned from web
services for all available resources. This is done by creating hooks in Groovy files located in
a sub-directory of the MWS_HOME directory (by default, /opt/mws/hooks).

See 3.7.7 Reference in this topic for the full reference for available hooks and
methods available to them.

In this section:

3.7.1 Configuring Hooks
3.7.2 Defining Hooks for a Resource
3.7.3 Before Hooks
3.7.4 After Hooks
3.7.5 Error Handling
3.7.6 Defining Common Hooks
3.7.7 Reference

3.7.1 Configuring Hooks
The directory of the hooks folder can be changed by providing a value for
mws.hooks.location in the configuration file. If the directory starts with a path
separator (i.e., /path/to/hooks), it will be treated as an absolute path. Otherwise, it will
be used relative to the location of the MWS home directory (for more information, see 1.1
Configuring Moab Web Services).

Chapter 3: About the API

For example, if the MWS home directory is set to /opt/mws, the hooks directory by
default would be in /opt/mws/hooks. Changing the mws.hooks.location property
to myhooks would result in the hooks directory being located at /opt/mws/myhooks.
Due to the default location of the MWS home directory, the default directory of the hooks
directory is /opt/mws/hooks.

On startup, if the hooks directory does not exist, it will be created with a simple
README.txt file with instructions on how to create hooks, the objects available, and the
hooks available. If the folder or file is unable to be created, a message will be printed on the
log with the full location of a README file, copied into a temporary directory.

3.7.2 Defining Hooks for a Resource
Hooks are defined for resources by creating groovy class files in the hooks directory (MWS_
HOME/hooks by default). Each groovy file must be named by the resource URL it is
associated with and end in '.groovy'. The following table shows some possible hook files
that can be created. Notice that the virtual machines hook file is abbreviated as vms, just as
the URL for virtual machines is /rest/vms. In most cases, the hook file names will exactly
match the URLs. However, in cases of nested URLs—such as with 'accounting/users'—the
hook file name must replace slashes with periods, for example:

Resource Hook Filename

Jobs jobs.groovy

Nodes nodes.groovy

Virtual Machines vms.groovy

Accounting Users accounting.users.groovy

Accounting Funds Reports
Statement

accounting.funds.reports.statement.groovy

Accounting Charge Rates accounting.charge-rates.groovy

url url.groovy

plugins.rm.groovy is a valid hook filename. It works for the following URL:
/rest/plugins/<pluginID or all>/rm/<query or action> (for
example, /rest/plugins/plugin1/rm/cluster-query).

A complete example of a hook file is as follows:

Chapter 3: About the API

54 3.7 Pre- and Post-Processing Hooks

3.7 Pre- and Post-Processing Hooks 55

Complete Hook File

// Example before hook
def beforeList = {
// Perform actions here
// Return true to allow the API call to execute normally
return true

}

def beforeShow = {
// Perform actions here
// Render messages to the user with a 405 Method Not Allowed
// HTTP response code
renderMessages("Custom message here", 405)
// Return false to stop normal execution of the API call
return false

}

// Example after hook
def afterList = { o ->
if (!isSuccess()) {
// Handle error here
return false

}
// Perform actions here
return o

}

You must convert all actions or queries that are separated by dashes to a camel case.
For example, the hooks called for 'cluster-query' should be beforeClusterQuery
and afterClusterQuery.

As the specific format for the hooks for before and after are different, each will be
explained separately.

3.7.3 Before Hooks
As shown above, before hooks require no arguments. They can directly act on several
properties, objects, and methods as described in 3.7.7 Reference. The return value is one of
the most important aspects of a before hook. If it is false, a renderMessages,
renderObject, renderList, render, or redirect method must first be called.
This signifies that the API call should be interrupted and the render or redirect action
specified within the hook is to be completed immediately.

A return value of true signifies that the API call should continue normally. Parameters,
session variables, request and response variables can all be modified within a before
hook.

Chapter 3: About the API

If no return value is explicitly given, the result of the last statement in the before
hook to be executed will be returned. This may cause unexpected behavior if the last
statement resolves to false.

For all methods available to before hooks as well as specific examples, see beforeSave
below.

3.7.4 After Hooks
After hooks are always passed one argument: the object or list that is to be rendered as
JSON. This can be modified as desired, but note that the object or list value is either a
JSONArray or JSONObject. Therefore, it cannot be accessed and modified as a typical
groovy Map.

Unlike before hooks, after hooks should not call the render* methods directly. This
method will automatically be called on the resulting object or list returned. The redirect
and render methods should also not be called at this point. Instead, if a custom object or
list is desired to be used, the serializeObject and serializeList methods are
available to create suitable results to return.

The return value of an after hook can be one of two possibilities:

l The potentially modified object or list passed as the first argument to the hook. In this
case, this value will override the output object or list unless it is null.

l Null or false. In this case, the original, unmodified object or list will be used in the
output.

The return value of the after hook, if not null or false,must be the modified object
passed into the hook or an object or list created with the serialize* methods.

For all methods available to after hooks as well as specific examples, see afterSave
below.

3.7.5 Error Handling
After hooks, unlike the before hooks, have the possibility of handling errors
encountered during the course of the request. Handling errors is as simple as adding a
one-line check to the hook as shown above or in the following code:

if (!isSuccess()) {
// Handle error
return false

}

Chapter 3: About the API

56 3.7 Pre- and Post-Processing Hooks

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html

3.7 Pre- and Post-Processing Hooks 57

We recommend that each after hook contain at least these lines of code to prevent
confusion on what the input object or list represents or should look like.

The isSuccess() function is false if and only if the HTTP response code is 400 or
higher, such as a 404 Not Found, 400 Bad Request, or 500 Internal Server Error and the
cause of the error state was not in the associated before hook. In other words, objects
and lists rendered in the before hook with any HTTP response code will never run the
associated after hook.

When handling errors, the passed in object will always contain a messages property
containing a list of strings describing the error(s) encountered.

3.7.6 Defining Common Hooks
Sometimes it is beneficial to create hooks that are executed for all calls of a certain type,
such as a beforeList hook that is executed during the course of listing any resource.
These are possible using an all.groovy file. The format of this file is exactly the same as
other hook files.

The order of execution is as follows:

1. Before common hook executed.

2. Before resource-specific hook executed.

3. Normal API call executed.

4. After resource-specific hook executed.

5. After common hook executed.

3.7.7 Reference
This topic gives specific examples and reference for implementing hooks in MWS.

Available Hooks
The following table lists the available hooks for each resource with their associated HTTP
method and description:

Name HTTP
Method

Description

beforeList GET Runs before an API call that lists resources (for example, GET
/rest/jobs).

Chapter 3: About the API

Name HTTP
Method

Description

afterList GET Runs after an API call that lists resources.

beforeShow GET Runs before an API call that returns a single resource (for
example, GET /rest/jobs/job.1).

afterShow GET Runs after an API call that returns a single resource.

beforeSave POST Runs before an API call that saves a new resource (for example,
POST /rest/jobs).

afterSave POST Runs after an API call that returns a single resource.

beforeUpdate PUT Runs before an API call that returns a single resource (for
example, PUT /rest/jobs/job.1).

afterUpdate PUT Runs after an API call that returns a single resource.

beforeDelete DELETE Runs before an API call that returns a single resource (for
example, DELETE /rest/jobs/job.1).

afterDelete DELETE Runs after an API call that returns a single resource.

If a resource does not support a certain operation, any hooks for that operation will
simply be ignored—such as beforeSave and afterSave hooks for the node resource,
where saving is not supported.

Available Properties
The following table lists the properties, objects, and methods available in all hooks. Note
that although it is possible to directly call the render* methods in the after hooks, it is
not recommended.

Name Type Description

params Map Contains all URL parameters as well as the body of
the request as parsed JSON.

request HttpServletRequest Contains properties of the HTTP request.

response HttpServletResponse Contains properties of the HTTP response, which

Chapter 3: About the API

58 3.7 Pre- and Post-Processing Hooks

http://docs.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletResponse.html

3.7 Pre- and Post-Processing Hooks 59

Name Type Description

can be modified directly.

session HttpSession Contains the session parameters, which can be
modified directly.

flash Map Temporary storage that stores objects within the
session for the next request only.

controllerName String The name of the controller responding to the
request. Only available in before hooks.

actionName String The name of the action to be run on the controller.
Only available in before hooks.

apiVersion String The API version for the current request (for
example, 1 for 7.0 and 7.1, 2 for 7.2).

The parsed JSON can be accessed in before hooks as a simple groovy Map with
params[controllerName].

In addition, several methods are available to the hooks. These are described in the
following sections.

Redirect
The redirect method can be used to redirect the request to another API call or an
arbitrary URL:

redirect(uri:'/rest/jobs') // uri is used for internal redirection within MWS
redirect(url:'https://adaptivecomputing.com') // url is used for external redirection
redirect(uri:'https://adaptivecomputing.com', params:[lang:'en']) // params may be
used for URL parameters

The redirect method will use the GET HTTP method for the resulting redirected
request.

See the redirect method's documentation for more information.

Rendering Objects, Lists, or Messages
There are several render* methods available to handle any case where objects or lists
are desired to be rendered directly from the hook without continuing to the API call. Three
different methods can be used depending on the desired output object type:

Chapter 3: About the API

http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpSession.html
http://grails.org/doc/latest/ref/Controllers/redirect.html

Render object

// Object that should be rendered as JSON
def objectToRender = …
// HTTP response code (bad request)
def responseCode = 400
// Render a simple object
renderObject(objectToRender)
// Render a simple object with a custom response code
renderObject(objectToRender, responseCode)

Render list

// List that should be rendered as JSON
def listToRender = …
// If the totalCount property differs from resultCount, use this value instead
def totalCount = …
// HTTP response code (bad request)
def responseCode = 400
// Render a simple list
// Dynamically adds "resultCount" and "totalCount" properties based on the size of
the input list
renderList(listToRender)
// Render a simple list with a custom "totalCount"
renderList(listToRender, totalCount)
// Render a simple list without changing the "totalCount" but with a custom response
code
renderList(listToRender, null, responseCode)
// Render a simple list with a custom "totalCount" and response code
renderList(listToRender, totalCount, responseCode)

Render message(s)

// Messages
def messageToRender = "Single message"
def messagesListToRender = ["Message 1", "Message 2"]
// HTTP response code (bad request)
def responseCode = 400
// Render messages as an object with a property of "messages" containing a list of the
messages passed in
renderMessages(messageToRender)
renderMessages(messageToRender, responseCode)
// Supports either a single String or list of Strings
renderMessages(messagesListToRender)
renderMessages(messagesListToRender, responseCode)

We do not recommend calling any of these methods from an after hook.

Render
Less commonly used, the render method is also available directly. This can be used to
render text directly, change the content-type of the output, and many other functions. See
the render method's documentation for more information.

Chapter 3: About the API

60 3.7 Pre- and Post-Processing Hooks

http://grails.org/doc/latest/ref/Controllers/render.html

3.7 Pre- and Post-Processing Hooks 61

We do not recommend calling this method from an after hook.

Serialize Objects
The serializeObject and serializeList methods can be used to convert a
custom object or list respectively into a format usable for returning in the after hooks.
Simply pass in the object or list and a serialized version will be returned from the method.

def afterShow = {
def objectToRender = …
def serializedObject = serializeObject(objectToRender)
return serializedObject

}

def afterShow = {
def listToRender = [...]
def serializedList = serializeList(listToRender)
return serializedList

}

Error Handling
Error handling is only available in after hooks by using the following check:

if (!isSuccess()) {
// Handle error
return … // False or modified object/list to render

}

Usage Examples
l Override an API call
The following hook would serve to override an entire API call, the list call in this case,
and return a messages list containing a single element of 'Action is not supported'
and an HTTP response code of 405 (Method Not Allowed):

def beforeList = {
renderMessages("Action is not supported", 405)
return false

}

To be even more specific and disallow the deletion of virtual machines, the following
can be used as the vms.groovy file:

def beforeDelete = {
renderMessages("Virtual Machine deletion is not allowed", 405)
return false

}

l Add an additional property during job creation

Chapter 3: About the API

To add an additional property to a job definition during creation, create a
beforeSave hook in the jobs.groovy file as follows:

def beforeSave = {
// params[controllerName] is equivalent to params["job"] or params.job
params[controllerName].user = "myuser"

}

This would cause the created job to have a user of myuser.

l Redirect based on URL parameter
To redirect an API call if a certain URL parameter exists, create a beforeSave hook
in the jobs.groovy file as follows:

def beforeSave = {
if (params.external) {

redirect(url:'https://example.com/create-job')
return false; // Stop API call

}
}

This would cause an API call of PUT /rest/jobs?external=1 to redirect to
GET https://example.com/create-job.

l Remove a property from getting a single job
To remove a property from the output of getting a single job, create an afterShow
hook in the jobs.groovy file as follows:

def afterShow = { o ->
o.discard("group")
return o

}

This will cause the resulting JSON to be missing the group property of the job
resource. Note again that these calls must use the JSONArray and JSONObject classes
as mentioned in After Hooks.

l Filter list items
To filter the items in a list nodes request based on user provided query parameter in
the URL, use the following in the nodes.groovy file. A sample request that would
activate the filter is https://localhost:8080/mws/rest/nodes?api-
version=3&filter-power=On.

def afterList = { o ->
// Do not filter if the user did not ask for it
if (!params['filter-power'])

return o
// o = {resultCount: x, totalCount: x, results:[...]}

// Using a built-in groovy method findAll to return all
// list items that return true from the block
def results = o.results.findAll { node ->

Chapter 3: About the API

62 3.7 Pre- and Post-Processing Hooks

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html

3.8 Authentication 63

// Includes the node only if the power equals the user input
return params['filter-power'].equalsIgnoreCase(node.power)

}

// Sets the results on the return object and updates the counts
o.element("results", results)
o.element("resultCount", results.size())
return o

}

To filter the items in a list nodes request based on values within the list itself, such as
variable values, use the following in the nodes.groovy file:

def afterList = { o ->
// o = {resultCount: x, totalCount: x, results:[...]}
// Using a built-in groovy method findAll to return all
// list items that return true from the block
def results = o.results.findAll { node ->

// Includes the node only if the variable "included" is set to
"true"

return node.variables?.included=="true"
}

// Sets the results on the return object and updates the counts
o.element("results", results)
o.element("resultCount", results.size())
return o

}

3.8 Authentication

MWS uses Basic Authentication for all REST API requests. This means that a username and
password must be provided for each call to resources.

There are two types of accounts that can be granted access: Users and Applications:

l For instructions on how to set the credentials for the default User account, see 1.2.3
Securing Client Connections to MWS.

l For instructions on how to manage Application accounts, see Chapter 2: Access
Control.

To use Basic Authentication, each client request must contain a header that looks like this:

Authorization: Basic YWRhcHRpdmU6YzNVU3R1bkU=

The string after the word Basic is the base64 encoding of username : password. In
the example above, YWRhcHRpdmU6YzNVU3R1bkU= is the base64 encoding of
adaptive:c3UStunE. For more details, see section 2 of RFC 2617.

Chapter 3: About the API

https://www.ietf.org/rfc/rfc2617.txt

The username and password in the Basic Authentication header are encoded but not
encrypted. Therefore, we strongly recommend that MWS be run behind a proxy (like
Apache) with SSL enabled. See the section 1.2.3.A Encrypting Client Connections
Using Apache and SSL for more information.

3.9 System Events

The broad category of system events can be broken down into two subcategories: events
and notification conditions.

In this section:

3.9.1 Events
3.9.2 Notification Conditions

3.9.1 Events
Events are created by many components in the system, but most events originate from
Moab Workload Manager and Moab Web Services. Events can be created via the MWS
interface or by being placed on the message queue. See 6.2.12 Creating Events and
Notifications for more information.

In a typical system, Moab HPC Suite will communicate events to MWS via a 'private'
message queue, and then MWS will replicate the events on the 'public' message queue, or
the message queue that is available to subscribers with the correct secret keys. In some
cases, such as those related to the MWS service lifecycle, MWS uses events to determine
activities or capabilities that are available.

A typical message on the message queue may look like the following (sent with a topic of
system.moab):

Sample message on message queue

{
"body" : {

"associatedObjects" : [
{

"id" : "Moab",
"type" : "scheduler"

}
],
"code" : 16777619,
"eventDate" : "2025-02-28T10:57:21.000-0700",

Chapter 3: About the API

64 3.9 System Events

3.9 System Events 65

"message" : "A scheduler iteration is ending.",
"origin" : "MSysMainLoop.c, MSysMainLoop, line 959"

},
"messageId" : "843269550",
"messageType" : "event",
"senderId" : "mwm@mwm-server",
"sentDate" : "2025-02-28T10:57:21.000-0700",
"ttl" : 3000

}

3.9.2 Notification Conditions
Notification Conditions are related to an event but differ in three distinct areas:

1. Notification conditions are a persistent condition of the system or a component rather
than a single occurrence:

l They are ongoing rather than reoccurring, which is why they are generated from
NotificationConditions.

l They may be observed many times, but the condition is always the same.

l A good test for this is if something 'is' wrong rather than something 'went' wrong.

2. Notification conditions can be acted on to result in a resolved state, meaning the admin
or user can and must take actions to 'fix' the condition or problem.

3. Notification conditions contain state information based on admin or user input, meaning
that they contain information about the condition (similar to events) but also contain the
'status' of the admin's view of the notification, whether it is currently open, dismissed,
or ignored.

In general, questions can be asked to ascertain whether an event or a notification condition
is the right fit for an occurrence.

These questions, along with some sample situations, are provided below:

l Is the occurrence the root cause of a potentially ongoing condition?
o A VM migration failed because the VM's state was unknown. The root cause
was that the state was unknown, not that the VM migration failed. Therefore,
VM migration failed would be an event, while the unknown state would be a
notification condition.

o A VM service provision fails because there are no hypervisors that satisfy the
requirements. This would be an event. Note that there may be a notification
related to this failure, such as a service template requires a feature that does
not exist on any hypervisors in the system but this would be distinctly detected
and managed from the provision failure event.

Chapter 3: About the API

o A request to MWS failed because the connection between Moab HPC Suite and
MongoDB was misconfigured. The failed request may be represented as an
event, but a notification condition should exist that the connection between
Moab HPC Suite and MongoDB was down.

l Can an admin or user affect the outcome of the occurrence?
o The outcome of a VM migration failing is in the past and cannot be changed by
the admin. However, the outcome of a future VM migration can be changed
when the admin resolves the root problem (such as VM state is unknown).

Related Topics

l 4.6 Events

l 4.14 Notifications

l 4.13 Notification Conditions

l 1.2.5 Securing the Connection with the Message Queue

l 6.2.12 Creating Events and Notifications (for plugin development only)

l 6.6.6 Plugin Event Service

Chapter 3: About the API

66 3.9 System Events

67

Chapter 4: Resources

The sections in this chapter show the MWS resources and the HTTP methods defined on
them. The prefix for these resources depends on how the mws.war file is deployed. A
typical prefix would be https://localhost:8080/mws. Using this example, one
absolute resource URI would be https://localhost:8080/mws/rest/jobs.

This section only contains documentation for the latest API version. See the table in
3.4 Requesting Specific API Versions for links to documentation for previous
versions.

In this chapter:

4.1 Access Control Lists (ACLs)
4.2 Accounting Resources
4.3 Credentials
4.4 Diagnostics
4.5 Distinct
4.6 Events
4.7 Fairshare
4.8 Job Arrays
4.9 Jobs
4.10 Job Templates
4.11 Metric Types
4.12 Nodes
4.13 Notification Conditions
4.14 Notifications
4.15 Permissions
4.16 Plugins
4.17 Plugin Types
4.18 Policies
4.19 Principals
4.20 Priority
4.21 Reports
4.22 Reservations
4.23 Resource Types

Chapter 4: Resources

4.24 Roles
4.25 Standing Reservations
4.26 Virtual Containers

Related Topics

l 8.4 Resources Reference

4.1 Access Control Lists (ACLs)

This topic describes behavior of the ACL Rules (Access Control List Rules) object in MWS. It
contains the URLs, request bodies, and responses delivered to and from MWS.

The Fields: Access Control Lists (ACLs) reference contains the type and description of
all fields in the ACL Rules object. It also contains details regarding which fields are
valid during PUT and POST actions.

Supported Methods

ACLs are not directly manipulated through a single URL but with sub-URLs of the
other objects such as Virtual Containers and Reservations.

Resource GET PUT POST DELETE

/rest/reservations/<rsvId>/acl-
rules/<aclId>

-- Create or
Update ACL

-- Delete
ACL

/rest/vcs/<vcId>/acl-rules/<aclId> -- Create or
Update ACL

-- Delete
ACL

In this section:

l Getting ACLs

l Creating or Updating ACLs
o Create or Update ACL

Chapter 4: Resources

68 4.1 Access Control Lists (ACLs)

4.1 Access Control Lists (ACLs) 69

l Deleting ACLs
o Delete ACL

4.1.1 Getting ACLs
Although ACL Rules cannot be retrieved directly using the GET method on any of the
acl-rules resources, ACL Rules are attached to supported objects when querying for
them. Each supported object contains a field named aclRules, which is a collection of the
ACL Rules defined on that object.

Supported Objects
The following is a list of objects that will return ACL Rules when queried:

l Reservations

l Standing Reservations

4.1.2 Creating or Updating ACLs
The HTTP PUT method is used to create or update ACL Rules. The request body can
contain one or more ACL Rules. If an ACL Rule with the same type and value
exists, then it will be overwritten.

Quick Reference
PUT https://localhost:8080/mws/rest/reservations/<rsvId>/acl-rules?api-version=3

4.1.2.A Create or Update ACL

URLs and Parameters
PUT https://localhost:8080/mws/rest/reservations/<rsvId>/acl-rules?api-version=3

Parameter Required Type Value Description

objectId Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
The request body below shows all the fields that are available for the PUT method, along
with some sample values:

Chapter 4: Resources

JSON Request Body

{"aclRules": [{
"affinity": "POSITIVE",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "USER",
"value": "ted"

}]}

Sample Response

This message might not match the message returned from Moab HPC Suite exactly
but is given as an example of the structure of the response.

JSON Request Body

{"messages":["Reservation 'rsv1' successfully modified"]}

Samples
Create or update multiple ACLs on a single object:

CPUT https://localhost:8080/mws/rest/reservations/system.21/acl-rules?api-version=3

{"aclRules": [
{
"affinity": "POSITIVE",
"comparator": "LESS_THAN_OR_EQUAL",
"type": "DURATION",
"value": "3600"

},
{
"affinity": "POSITIVE",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "USER",
"value": "ted"

}
]}

Restrictions
ACL Rules cannot be added to or updated on Standing Reservations.

4.1.3 Deleting ACLs
The HTTP DELETE method is used to remove ACL Rules.

Chapter 4: Resources

70 4.1 Access Control Lists (ACLs)

4.1 Access Control Lists (ACLs) 71

Quick Reference

ACL Rules cannot be removed from Standing Reservations.

DELETE https://localhost:8080/mws/rest/reservations/<rsvId>/acl-rules?api-
version=3/<aclId>

4.1.3.A Delete ACL

URLs and Parameters
DELETE https://localhost:8080/mws/rest/reservations/<objectId>/acl-rules?api-
version=3/<aclId>

Parameter Required Type Value Description

objectId Yes String -- The unique identifier of the object from which
to remove the ACL Rule.

aclId Yes String -- A string representing the ACL Rule, with the
format type:value.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

This message might not match the message returned from Moab exactly but is given
as an example of the structure of the response.

JSON Response

{"messages":["Successfully modified reservation 'rsv1'"]}

Restrictions
ACL Rules cannot be removed from Standing Reservations.

Related Topics

l 8.4.1 Fields: Access Control Lists (ACLs)

l Chapter 4: Resources

Chapter 4: Resources

4.2 Accounting Resources

In this section:

4.2.1 Accounting Accounts
4.2.2 Accounting Allocations
4.2.3 Accounting Charge Rates
4.2.4 Accounting Funds
4.2.5 Accounting Liens
4.2.6 Accounting Organizations
4.2.7 Accounting Quotes
4.2.8 Accounting Transactions
4.2.9 Accounting Usage Records
4.2.10 Accounting Users

4.2.1 Accounting Accounts

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

This section describes the services available through MWS for interacting with the
Account object in Moab Accounting Manager. It contains the URLs, request bodies, and
responses delivered to and from MWS as an intermediary for MAM.

The 8.4.2.1 Fields: Accounts reference contains the type and description of the default
fields for the Accounts object.

Supported Methods

Resource GET PUT POST DELETE

/rest/accounting/accounts Get All Accounts -- -- --

/rest/accounting/accounts/<id> Get Single Account -- -- --

In this topic:

Chapter 4: Resources

72 4.2 Accounting Resources

4.2 Accounting Resources 73

l Getting Accounts
o Get All Accounts
o Get Single Account

4.2.1.A Getting Accounts
The HTTP GET method is used to retrieve Accounts information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/accounts?api-version=3
GET https://localhost:8080/mws/rest/accounting/accounts/<id>?api-version=3

Get All Accounts
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/accounts?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Parameter Required Type Value Description Example

proxy-
user

Yes String -- Perform action
as defined
MAM user.

proxy-user=amy

query No JSON -- Results are
restricted to
those having
the specified
field values.
The query
parameter does
not support the
full Mongo
syntax. Besides
allowing
queries
specifying a
simple field
value (e.g.,
query=
{field:value}),
you can use
comparison

query=
{"organization":"sciences"}

Chapter 4: Resources

Parameter Required Type Value Description Example

operators of
the form:
query={field:
{op:value}}
where op can
be one of the
following:

l $eq - equal
to

l $gt -
greater
than

l $gte -
greater
than or
equal to

l $lt - less
than

l $lte - less
than or
equal to

l $ne - not
equal to

fields No String -- Comma-
separated list
of field names
to display.

fields=id,organization

sort No JSON -- Sort the
results. Use 1
for ascending
and -1 for
descending.
Should be used
in conjunction
with the fields
parameter.

sort={"organization":1}

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is false.

show-all=true

Chapter 4: Resources

74 4.2 Accounting Resources

4.2 Accounting Resources 75

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/accounts?api-version=3&proxy-
user=amy&fields=id,organization&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"organization": "sciences",
"id": "biology"

},
{

"organization": "sciences",
"id": "chemistry"

}
]

}

Get Single Account
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/accounts/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Value Description Example

id Yes String -- The unique identifier
of the object.

--

proxy-
user

Yes String -- Perform action as
defined MAM user.

proxy-user=amy

fields No String -- Comma-separated
list of field names to
display.

fields=id,organization

show-all No Boolean true
or
false

true shows all fields
including metadata
and hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/accounts/chemistry?api-version=3&proxy-
user=amy&pretty=true

Chapter 4: Resources

{
"id": "chemistry",
"active": true,
"organization": "",
"description": "Chemistry Dept",
"users": [

{
"id": "amy",
"active": true,
"admin": false

},
{

"id": "bob",
"active": true,
"admin": false

},
{

"id": "dave",
"active": true,
"admin": false

}
]

}

Related Topics

l 8.4.2.1 Fields: Accounts

l Chapter 4: Resources

4.2.2 Accounting Allocations

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

This section describes the services available through MWS for interacting with the
Allocation object in Moab Accounting Manager. It contains the URLs, request bodies,
and responses delivered to and from MWS as an intermediary for MAM.

The 8.4.2.2 Fields: Allocations reference contains the type and description of the
default fields for the Allocation object.

Chapter 4: Resources

76 4.2 Accounting Resources

4.2 Accounting Resources 77

Supported Methods

Resource GET PUT POST DELETE

/rest/accounting/allocations Get All
Allocations

-- -- --

/rest/accounting/allocations/<id> Get Single
Allocation

-- -- --

In this topic:

l Getting Allocations
o Get All Allocations
o Get Single Allocation

4.2.2.A Getting Allocations
The HTTP GET method is used to retrieve Allocation information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/allocations?api-version=3
GET https://localhost:8080/mws/rest/accounting/allocations/<id>?api-version=3

Get All Allocations
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/allocations?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Parameter Required Type Value Description Example

proxy-
user

Yes String -- Perform action as
defined MAM user.

proxy-user=amy

query No JSON -- Results are
restricted to those
having the specified
field values.
The query
parameter does not
support the full

query={"active":true}

Chapter 4: Resources

Parameter Required Type Value Description Example

Mongo syntax.
Besides allowing
queries specifying a
simple field value
(e.g., query=
{field:value}), you
can use comparison
operators of the
form: query={field:
{op:value}} where
op can be one of the
following:

l $eq - equal to
l $gt - greater

than
l $gte - greater

than or equal to
l $lt - less than
l $lte - less than

or equal to
l $ne - not equal

to

fields No String -- Comma-separated
list of field names to
display.

fields=id,fund,amount

sort No JSON -- Sort the results. Use
1 for ascending and -
1 for descending.
Should be used in
conjunction with the
fields parameter.

sort={"fund":1}

show-all No Boolean true
or
false

true shows all fields
including metadata
and hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/allocations?api-version=3&proxy-
user=amy&pretty=true

Chapter 4: Resources

78 4.2 Accounting Resources

4.2 Accounting Resources 79

{
"totalCount": 5,
"resultCount": 5,
"results": [

{
"id": 1,
"fund": 1,
"startTime": "2024-07-12 22:16:33 UTC",
"endTime": "infinity",
"amount": 50000000,
"creditLimit": 0,
"initialDeposit": 50000000,
"allocated": 50000000,
"active": true,
"description": ""

},
{

"id": 3,
"fund": 3,
"startTime": "2024-07-12 22:16:33 UTC",
"endTime": "infinity",
"amount": 0,
"creditLimit": 20000000,
"initialDeposit": 0,
"allocated": 0,
"active": true,
"description": ""

},
{

"id": 2,
"fund": 2,
"startTime": "2024-07-12 22:16:33 UTC",
"endTime": "infinity",
"amount": 30000000,
"creditLimit": 0,
"initialDeposit": 30000000,
"allocated": 30000000,
"active": true,
"description": ""

}
]

}

Get Single Allocation
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/allocations/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Value Description Example

id Yes String -- The unique identifier
of the object.

--

proxy- Yes String -- Perform action as proxy-user=amy

Chapter 4: Resources

Parameter Required Type Value Description Example

user defined MAM user.

fields No String -- Comma-separated
list of field names to
display.

fields=id,fund,amount

show-all No Boolean true
or
false

true shows all fields
including metadata
and hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/allocations/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"fund": 1,
"startTime": "2024-07-12 22:16:33 UTC",
"endTime": "infinity",
"amount": 50000000,
"creditLimit": 0,
"initialDeposit": 50000000,
"allocated": 50000000,
"active": true,

}

Related Topics

l 8.4.2.2 Fields: Allocations

l Chapter 4: Resources

4.2.3 Accounting Charge Rates

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

Chapter 4: Resources

80 4.2 Accounting Resources

4.2 Accounting Resources 81

This section describes the services available through MWS for interacting with the
ChargeRate object in Moab Accounting Manager. It contains the URLs, request bodies,
and responses delivered to and from MWS as an intermediary for MAM.

The 8.4.2.3 Fields: Charge Rates reference contains the type and description of the
default fields for the ChargeRates object.

Supported Methods

Resource GET PUT POST DELETE

/rest/accounting/charge-rates Get All Charge
Rates

-- -- --

/rest/accounting/charge-
rates/<name>/<value>

Get Single
Charge Rate

-- -- --

/rest/accounting/charge-
rates/<name>

Get Single
Charge Rate

-- -- --

In this topic:

l Getting Charge Rates
o Get All Charge Rates
o Get Single Charge Rate

4.2.3.A Getting Charge Rates
The HTTP GET method is used to retrieve ChargeRate information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/charge-rates?api-version=3
GET https://localhost:8080/mws/rest/accounting/charge-rates?api-version=3/<name>
[/<value>]

Get All Charge Rates
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/charge-rates?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Chapter 4: Resources

Parameter Required Type Value Description Example

proxy-
user

Yes String -- Perform
action as
defined MAM
user.

proxy-user=amy

query No JSON -- Results are
restricted to
those having
the specified
field values.
The query
parameter
does not
support the
full Mongo
syntax.
Besides
allowing
queries
specifying a
simple field
value (e.g.,
query=
{field:value}),
you can use
comparison
operators of
the form:
query={field:
{op:value}}
where op can
be one of the
following:

l $eq -
equal to

l $gt -
greater
than

l $gte -
greater
than or
equal to

l $lt - less
than

l $lte - less

query=
{"name":"QualityOfService"}

Chapter 4: Resources

82 4.2 Accounting Resources

4.2 Accounting Resources 83

Parameter Required Type Value Description Example

than or
equal to

l $ne - not
equal to

fields No String -- Comma-
separated list
of field names
to display.

fields=id,organization

sort No JSON -- Sort the
results. Use 1
for ascending
and -1 for
descending.
Should be
used in
conjunction
with the fields
parameter.

sort={"organization":1}

show-all No Boolean true
or
false

true shows all
fields
including
metadata and
hidden fields.
Default is
false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/charge-rates?api-version=3&proxy-
user=moab&pretty=true

{
"totalCount": 4,
"resultCount": 4,
"results": [

{
"name": "Processors",
"value": "",
"amount": "1/s",
"description": "1 credit per processor-second"

},
{

"name": "QualityOfService",
"value": "high",

Chapter 4: Resources

"amount": "*2",
"description": "Charge double for high QOS"

},
{

"name": "QualityOfService",
"value": "low",
"amount": "*.5",
"description": "Charge half for low QOS"

},
{

"name": "QualityOfService",
"value": "",
"amount": "*1",
"description": "No extra charge for \"normal\" QOSes"

}
]

}

Get Single Charge Rate

A regular charge rate is uniquely specified by both its name and its value. A default
charge rate has a null value and is uniquely specified by only its name.

URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/charge-rates?api-version=3/<name>
[/<value>]?proxy-user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Value Description Example

name Yes String -- The name of the
charge rate.

--

value No String -- The value of the
charge rate.

--

fields No String -- Comma-
separated list of
field names to
display.

fields=name,value,amount

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

Chapter 4: Resources

84 4.2 Accounting Resources

4.2 Accounting Resources 85

GET https://localhost:8080/mws/rest/accounting/charge-rates/QualityOfService/high?api-
version=3&proxy-user=moab&pretty=true

{
"name": "QualityOfService",
"value": "high",
"amount": "*2",
"description": "Charge double for high QOS"

}

Related Topics

l 8.4.2.3 Fields: Charge Rates

l Chapter 4: Resources

4.2.4 Accounting Funds

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

This section describes the services available through MWS for interacting with the Fund
object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

The 8.4.2.7 Fields: Funds, 8.4.2.4 Fields: Fund Balances, 8.4.2.6 Fields: Fund
Statements, and 8.4.2.5 Fields: Fund Statement Summary reference sections contain
the type and description of the default fields in the Fund object as well as related
objects and reports given in the URLs below.

Supported Methods

Resource GET PU
T

POS
T

DELET
E

/rest/accounting/funds Get All
Funds

-- -- --

/rest/accounting/funds/<id> Get
Single
Fund

-- -- --

Chapter 4: Resources

Resource GET PU
T

POS
T

DELET
E

/rest/accounting/funds/balances Get All
Fund
Balances

-- -- --

/rest/accounting/funds/reports/statement Get Fund
Stateme
nt

-- -- --

/rest/accounting/funds/reports/statement/sum
mary

Get Fund
Stateme
nt
Summary

-- -- --

In this topic:

l Getting Funds
o Get All Funds
o Get Single Fund
o Get All Fund Balances
o Get Fund Statement
o Get Fund Statement Summary

4.2.4.A Getting Funds
The HTTP GET method is used to retrieve Fund information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/funds?api-version=3
GET https://localhost:8080/mws/rest/accounting/funds/<id>?api-version=3
GET https://localhost:8080/mws/rest/accounting/funds/balances?api-version=3
GET https://localhost:8080/mws/rest/accounting/funds/reports/statement?api-version=3
GET https://localhost:8080/mws/rest/accounting/funds/reports/statement/summary?api-
version=3

Get All Funds
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/funds?api-version=3&proxy-user=<user>
[&active=true][&filter=<filter_options>[&filter-type=<filter_type>]][&query=<query_
conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-all=

Chapter 4: Resources

86 4.2 Accounting Resources

4.2 Accounting Resources 87

(true|false)]

Paramet
er

Require
d

Type Description Example

proxy-
user

Yes String Perform
action as
defined
MAM user.

proxy-user=amy

active No Boolea
n

Lists only
active or
non-active
allocations
of the fund.
The fund
amount
becomes the
sum of the
active/inacti
ve
allocations.

active=true

filter No JSON Query funds
based on
defined
MAM filter.

filter={"account":"chemistry"}

filter-
type

No String Query funds
based on
defined
MAM filter
type.

filter-type=NonExclusive

query No JSON Results are
restricted to
those having
the specified
field values.
The query
parameter
does not
support the
full Mongo
syntax.
Besides
allowing

query="priority":"2","allocation.active":"fa
lse"}

Chapter 4: Resources

Paramet
er

Require
d

Type Description Example

queries
specifying a
simple field
value (e.g.,
query=
{field:valu
e}), you can
use
comparison
operators of
the form:
query={field:
{op:value}}
where op
can be one
of the
following:

l $eq -
equal to

l $gt -
greater
than

l $gte -
greater
than or
equal to

l $lt - less
than

l $lte -
less
than or
equal to

l $ne -
not
equal to

fields No String Comma-
separated
list of field
names to
display.

fields=id,name,amount

sort No JSON Sort the sort={"id":1}

Chapter 4: Resources

88 4.2 Accounting Resources

4.2 Accounting Resources 89

Paramet
er

Require
d

Type Description Example

results. Use
1 for
ascending
and -1 for
descending.
Should be
used in
conjunction
with the
fields
parameter.

show-all No Boolea
n (true
or
false)

true shows
all fields
including
metadata
and hidden
fields.
Default is
false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/funds?api-version=3&proxy-
user=amy&fields=id,name,amount&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"id": 1,
"name": "biology",
"amount": 50000000

},
{

"id": 2,
"name": "chemistry",
"amount": 99727

}
]

}

Get Single Fund
URLs and Parameters

Chapter 4: Resources

GET https://localhost:8080/mws/rest/accounting/funds/<id>?api-version=3&proxy-
user=<user>[&active=(true|false)][&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Description Example

id Yes String The unique identifier of the
object.

--

proxy-
user

Yes String Perform action as defined
MAM user.

proxy-user=amy

active No Boolean Lists only active or non-active
allocations of the fund. The
fund amount becomes the
sum of the active/inactive
allocations.

active=true

fields No String Comma-separated list of field
names to display.

fields=id,name,amount

show-all No Boolean
(true or
false)

true shows all fields including
metadata and hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/funds/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"name": "biology",
"priority": 0,
"defaultDeposit": 50000000,
"description": "",
"amount": 50000000,
"allocated": 50000000,
"initialDeposit": 50000000,
"creditLimit": 0,
"allocations": [

{
"id": 1,
"startTime": "2024-04-03 16:57:53 UTC",
"endTime": "infinity",
"amount": 50000000,
"creditLimit": 0,
"initialDeposit": 50000000,
"allocated": 50000000,
"active": false,
"description": ""

Chapter 4: Resources

90 4.2 Accounting Resources

4.2 Accounting Resources 91

}
],
"fundConstraints": [{
"id": 1,
"name": "Account",
"value": "biology"

}]
}

Get All Fund Balances
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/funds/balances?api-version=3&proxy-
user=<user>[&filter=<filter_options>][&filter-type=<filter_type>]

Parameter Required Type Description Example

proxy-
user

Yes String Perform action as
defined MAM user.

proxy-user=amy

filter No JSON Query funds based
on defined MAM
filter.

filter=
{"account":"chemistry"}

filter-type No String Query funds based
on defined MAM
filter type.

filter-
type=NonExclusive

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

The fund balances resource is an aggregation of fund data. For more information, see the
8.4.2.4 Fields: Fund Balances reference section.

GET https://localhost:8080/mws/rest/accounting/funds/balances?api-version=3&proxy-
user=amy&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [
{
"id": 2,
"name": 1204,
"priority": 0,
"description": "R&D for Manufacturing",
"creationTime": "2025-02-02 09:34:42 UTC",
"amount": 9060000,
"deposited": 9060000,
"creditLimit": 0,
"reserved": 0,

Chapter 4: Resources

"allocations": [
{
"id": 2,
"amount": 9060000,
"creditLimit": 0,
"deposited": 9060000

}
],
"fundConstraints": [
{
"id": 2,
"name": "CostCenter",
"value": 1204

}
],
"balance": 9060000,
"available": 9060000,
"allocated": 9060000,
"used": 0,
"percentRemaining": 100,
"percentUsed": 0

},
{
"id": 5,
"name": "",
"priority": 0,
"description": "",
"creationTime": "2025-04-03 09:25:47 UTC",
"amount": 901290219001,
"deposited": 901290219021,
"creditLimit": 30,
"reserved": 84018308897.68,
"allocations": [
{
"id": 6,
"amount": 901290219001,
"creditLimit": 30,
"deposited": 901290219021

}
],
"fundConstraints": [],
"balance": 817271910103.32,
"available": 817271910133.32,
"allocated": 901290219051,
"used": 20,
"percentRemaining": 100,
"percentUsed": 0

}
]

}

Get Fund Statement
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/funds/reports/statement?api-
version=3&proxy-user=<user>[&filter=<filter_options>][&filter-type=<filter_type>]
[&start-time=<date_string>][&end-time=<date_string>][&context=<context>]

Chapter 4: Resources

92 4.2 Accounting Resources

4.2 Accounting Resources 93

Parameter Required Type Description Example

proxy-
user

Yes String Perform action as defined
MAM user.

proxy-user=amy

filter No JSON Query funds based on
defined MAM filter.

filter=
{"account":"chemistry"}

filter-type No String Query funds based on
defined MAM filter type.

filter-
type=NonExclusive

start-time No Date, -
infinity,
or now

Filter allocations and
transaction after a start time.

start-time=2025-04-03
15:24:39 UTC

end-time No Date, -
infinity,
or now

Filter allocations and
transactions before an end
time.

end-time=2025-04-03
15:24:39 UTC

context No hpc The context to use in Moab
Accounting Manager.

The context parameter
overrides the default
context set for MAM
using the mam.context
configuration
parameter. For more
information about this
parameter, see 8.2
MWS Configuration.

context=hpc

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

The fund statement report provides a snapshot of the current funds. For more information,
see 8.4.2.6 Fields: Fund Statements.

GET https://localhost:8080/mws/rest/accounting/funds/reports/statement?api-
version=3&proxy-user=amy&fields=startBalance,endBalance&pretty=true

{
"startBalance":1234.01,
"endBalance":1000

}

Chapter 4: Resources

Get Fund Statement Summary
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/funds/reports/statement/summary?api-
version=3&proxy-user=<user>[&filter=<filter_options>][&filter-type=<filter_type>]
[&start-time=<date_string>][&end-time=<date_string>]

Parameter Required Type Description Example

proxy-
user

Yes String Perform action as defined
MAM user.

proxy-user=amy

filter No JSON Query funds based on
defined MAM filter.

filter=
{"account":"chemistry"}

filter-type No String Query funds based on
defined MAM filter type.

filter-
type=NonExclusive

start-time No Date, -
infinity, or
now

Filter allocations and
transaction after a start
time.

start-time=2025-04-03
15:24:39 UTC

end-time No Date, -
infinity, or
now

Filter allocations and
transactions before an
end time.

end-time=2025-04-03
15:24:39 UTC

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

The fund statement summary is slightly different from the typical fund statement in that
the transactions are provided as summaries grouped by object and action. For more
information, see 8.4.2.5 Fields: Fund Statement Summary.

GET https://localhost:8080/mws/rest/accounting/funds/reports/statement/summary?api-
version=3&proxy-
user=amy&fields=totalCredits,totalDebits,transactions.action,transactions.amount,trans
actions.count&pretty=true

{
"totalCredits":200.02,
"totalDebits":-100,
"transactions":[{

"action":"Deposit",
"amount":200.02,
"count":2

}, {
"action":"Charge",
"amount":-100,
"count":1

}

Chapter 4: Resources

94 4.2 Accounting Resources

4.2 Accounting Resources 95

]
}

Related Topics

l 8.4.2.7 Fields: Funds

l Chapter 4: Resources

4.2.5 Accounting Liens

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

This section describes the services available through MWS for interacting with the Lien
object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

The 8.4.2.8 Fields: Liens reference contains the type and description of the default
fields for the Liens object.

Supported Methods

Resource GET PUT POST DELETE

/rest/accounting/liens Get All Liens -- -- --

/rest/accounting/liens/<id> Get Single Lien -- -- --

In this topic:

l Getting Liens
o Get All Liens
o Get Single Lien

4.2.5.A Getting Liens
The HTTP GET method is used to retrieve Lien information.

Chapter 4: Resources

Quick Reference
GET https://localhost:8080/mws/rest/accounting/liens?api-version=3
GET https://localhost:8080/mws/rest/accounting/liens/<id>?api-version=3

Get All Liens
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/liens?api-version=3&proxy-user=<user>
[&active=true][&filter=<filter_options>[&filter-type=<filter_type>]][&query=<query_
conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-all=
(true|false)]

Parameter Required Type Value Description Example

proxy-
user

Yes String -- Perform action
as defined MAM
user.

proxy-user=amy

active No Boolean -- Lists only active
or non-active
liens.

active=true

filter No JSON -- Query funds
based on defined
MAM filter.

filter=
{"account":"chemistry"}

filter-type No String -- Query funds
based on defined
MAM filter type.

filter-type=NonExclusive

query No JSON -- Results are
restricted to
those having the
specified field
values.
The query
parameter does
not support the
full Mongo
syntax. Besides
allowing queries
specifying a
simple field value
(e.g., query=
{field:value}),
you can use
comparison

query=
{"allocations.fund":2}

Chapter 4: Resources

96 4.2 Accounting Resources

4.2 Accounting Resources 97

Parameter Required Type Value Description Example

operators of the
form: query=
{field:{op:value}}
where op can be
one of the
following:

l $eq - equal
to

l $gt - greater
than

l $gte -
greater than
or equal to

l $lt - less
than

l $lte - less
than or
equal to

l $ne - not
equal to

fields No String -- Comma-
separated list of
field names to
display.

fields=id,instance,amount

sort No JSON -- Sort the results.
Use 1 for
ascending and -1
for descending.
Should be used
in conjunction
with the fields
parameter.

sort={"instance":1}

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

Chapter 4: Resources

GET https://localhost:8080/mws/rest/accounting/liens?api-version=3&proxy-
user=amy&filter={"account":"chemistry"}&fields=instance,amount&active=true&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"instance": "job.1",
"amount": 57600

},
{

"instance": "job.2",
"amount": 40762

}
]

}

Get Single Lien
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/liens/<id>?api-version=3&proxy-
user=<user>[&active=(true|false)][&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Value Description Example

id Yes String -- The unique
identifier of the
object.

--

proxy-
user

Yes String -- Perform action as
defined MAM user.

proxy-user=amy

active No Boolean -- Lists only active or
non-active liens.

active=true

fields No String -- Comma-separated
list of field names
to display.

fields=id,name,amount

show-all No Boolean true
or
false

true shows all fields
including metadata
and hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/liens/1?api-version=3&proxy-

Chapter 4: Resources

98 4.2 Accounting Resources

4.2 Accounting Resources 99

user=amy&pretty=true

{
"id": 1,
"instance": "job.1",
"usageRecord": 1,
"startTime": "2024-08-21 16:45:57 UTC",
"endTime": "2024-08-21 17:45:57 UTC",
"duration": 3600,
"description": "",
"amount": 57600,
"allocations": [{
"id": 2,
"fund": 2,
"amount": 57600

}]
}

Related Topics

l 8.4.2.8 Fields: Liens

l Chapter 4: Resources

4.2.6 Accounting Organizations

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

This section describes the services available through MWS for interacting with the
Organization object in Moab Accounting Manager. It contains the URLs, request bodies,
and responses delivered to and from MWS as an intermediary for MAM.

The 8.4.2.9 Fields: Organizations reference contains the type and description of the
default fields for the Organization object.

Supported Methods

Resource GET PUT POST DELETE

/rest/accounting/organizations Get All
Organizations

-- -- --

/rest/accounting/organizations/<id> Get Single -- -- --

Chapter 4: Resources

Resource GET PUT POST DELETE

Organization

In this topic:

l Getting Organizations
o Get All Organizations
o Get Single Organization

4.2.6.A Getting Organizations
The HTTP GET method is used to retrieve Organizations information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/organizations?api-version=3
GET https://localhost:8080/mws/rest/accounting/organizations/<id>?api-version=3

Get All Organizations
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/organizations?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Parameter Required Type Value Description Example

proxy-
user

Yes String -- Perform action as defined
MAM user.

proxy-user=amy

query No JSON -- Results are restricted to
those having the specified
field values.
The query parameter
does not support the full
Mongo syntax. Besides
allowing queries
specifying a simple field
value (e.g., query=
{field:value}), you can use
comparison operators of
the form: query={field:
{op:value}} where op can
be one of the following:

query=
{"deleted":false}

Chapter 4: Resources

100 4.2 Accounting Resources

4.2 Accounting Resources 101

Parameter Required Type Value Description Example

l $eq - equal to
l $gt - greater than
l $gte - greater than or

equal to
l $lt - less than
l $lte - less than or

equal to
l $ne - not equal to

fields No String -- Comma-separated list of
field names to display.

fields=id

sort No JSON -- Sort the results. Use 1 for
ascending and -1 for
descending. Should be
used in conjunction with
the fields parameter.

sort=
{"requestedId":-
1}

show-all No Boolean true
or
false

true shows all fields
including metadata and
hidden fields. Default is
false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/organizations?api-version=3&proxy-
user=moab&fields=id,description&sort={"id":1}&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"description": "Arts College",
"id": "arts"

},
{

"description": "Sciences College",
"id": "sciences"

}
]

}

Get Single Organization
URLs and Parameters

Chapter 4: Resources

GET https://localhost:8080/mws/rest/accounting/organizations/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Value Description Example

id Yes String -- The unique identifier of the
object.

--

fields No String -- Comma-separated list of field
names to display.

fields=id

show-all No Boolean true
or
false

true shows all fields including
metadata and hidden fields.
Default is false.

show-
all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/organizations/sciences?api-
version=3&proxy-user=moab&pretty=true

{
"description": "Sciences College",
"id": "sciences"

}

Related Topics

l 8.4.2.9 Fields: Organizations

l Chapter 4: Resources

4.2.7 Accounting Quotes

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

This section describes the services available through MWS for interacting with the Quote
object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

Chapter 4: Resources

102 4.2 Accounting Resources

4.2 Accounting Resources 103

The 8.4.2.10 Fields: Quotes reference contains the type and description of the default
fields for the Quotes object.

Supported Methods

Resource GET PUT POST DELETE

/rest/accounting/quotes Get All Quotes -- -- --

/rest/accounting/quotes/<id> Get Single Quote -- -- --

In this topic:

l Getting Quotes
o Get All Quotes
o Get Single Quote

4.2.7.A Getting Quotes
The HTTP GET method is used to retrieve Quote information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/quotes?api-version=3
GET https://localhost:8080/mws/rest/accounting/quotes/<id>?api-version=3

Get All Quotes
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/quotes?api-version=3&proxy-user=<user>
[&active=true][&filter=<filter_options>[&filter-type=<filter_type>]][&query=<query_
conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-all=
(true|false)]

Parameter Required Type Value Description Example

proxy-
user

Yes String -- Perform actions
as defined MAM
user.

proxy-user=amy

active No Boolean true
or
false

Lists only active
or non-active
quotes.

active=true

Chapter 4: Resources

Parameter Required Type Value Description Example

filter No JSON -- Query funds
based on defined
MAM filter.

filter=
{"account":"chemistry"}

filter-type No String -- Query funds
based on defined
MAM filter type.

filter-type=NonExclusive

query No JSON -- Results are
restricted to
those having the
specified field
values.
The query
parameter does
not support the
full Mongo
syntax. Besides
allowing queries
specifying a
simple field value
(e.g., query=
{field:value}),
you can use
comparison
operators of the
form: query=
{field:{op:value}}
where op can be
one of the
following:

l $eq - equal
to

l $gt - greater
than

l $gte -
greater than
or equal to

l $lt - less
than

l $lte - less
than or
equal to

l $ne - not
equal to

query=
{"instance":"job.1"}

Chapter 4: Resources

104 4.2 Accounting Resources

4.2 Accounting Resources 105

Parameter Required Type Value Description Example

fields No String -- Comma-
separated list of
field names to
display.

fields=id,instance,amount

sort No JSON -- Sort the results.
Use 1 for
ascending and -1
for descending.
Should be used
in conjunction
with the fields
parameter.

sort={"instance":1}

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/quotes?api-version=3&proxy-
user=amy&filter=
{"account":"chemistry"}&fields=usageRecord,amount&active=true&pretty=true

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"usageRecord": 1,
"amount": 57600

}]
}

Get Single Quote
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/quotes/<id>?api-version=3&proxy-
user=<user>[&active=(true|false)][&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Value Description Example

id Yes String -- The unique --

Chapter 4: Resources

Parameter Required Type Value Description Example

identifier of the
object.

proxy-
user

Yes String -- Perform action as
defined MAM user.

proxy-user=amy

active No Boolean true
or
false

Lists only active or
non-active quotes.

active=true

fields No String -- Comma-separated
list of field names
to display.

fields=id,name,amount

show-all No Boolean true
or
false

true shows all fields
including metadata
and hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/quotes/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"amount": 57600,
"pinned": true,
"instance": "",
"usageRecord": 1,
"startTime": "2024-08-21 16:45:57 UTC",
"endTime": "2024-08-21 17:57:57 UTC",
"duration": 3600,
"description": "",
"chargeRates": [{
"name": "Processors",
"value": "",
"amount": "1/s"

}]
}

Related Topics

l 8.4.2.10 Fields: Quotes

l Chapter 4: Resources

Chapter 4: Resources

106 4.2 Accounting Resources

4.2 Accounting Resources 107

4.2.8 Accounting Transactions

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

This section describes the services available through MWS for interacting with the
Transaction object in Moab Accounting Manager. It contains the URLs, request bodies,
and responses delivered to and from MWS as an intermediary for MAM.

The 8.4.2.11 Fields: Transactions reference contains the type and description of the
default fields for the Transaction object.

Supported Methods

Resource GET PUT POST DELETE

/rest/accounting/transactions Get All
Transactions

-- -- --

/rest/accounting/transactions/<id> Get Single
Transaction

-- -- --

In this topic:

l Getting Transactions
o Get All Transactions
o Get Single Transaction

4.2.8.A Getting Transactions
The HTTP GET method is used to retrieve Transaction information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/transactions?api-version=3
GET https://localhost:8080/mws/rest/accounting/transactions/<id>?api-version=3

Get All Transactions
URLs and Parameters

Chapter 4: Resources

GET https://localhost:8080/mws/rest/accounting/transactions?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Paramet
er

Requir
ed

Type Valu
e

Descriptio
n

Example

proxy-
user

Yes String -- Perform
action as
defined
MAM user.

proxy-user=amy

query No JSON -- Results are
restricted
to those
having the
specified
field values.
The query
parameter
does not
support the
full Mongo
syntax.
Besides
allowing
queries
specifying a
simple field
value (e.g.,
query=
{field:valu
e}), you
can use
comparison
operators
of the
form:
query=
{field:
{op:value}}
where op
can be one
of the
following:

l $eq -
equal
to

l $gt -

query=
{"action":"Charge","account":"chemi
stry"}

Chapter 4: Resources

108 4.2 Accounting Resources

4.2 Accounting Resources 109

Paramet
er

Requir
ed

Type Valu
e

Descriptio
n

Example

greate
r than

l $gte -
greate
r than
or
equal
to

l $lt -
less
than

l $lte -
less
than
or
equal
to

l $ne -
not
equal
to

fields No String -- Comma-
separated
list of field
names to
display.

fields=id

sort No JSON -- Sort the
results. Use
1 for
ascending
and -1 for
descending.
Should be
used in
conjunction
with the
fields
parameter.

sort={"id":1}

show-all No Boole
an

true
or
false

true shows
all fields
including
metadata

show-all=true

Chapter 4: Resources

Paramet
er

Requir
ed

Type Valu
e

Descriptio
n

Example

and hidden
fields.
Default is
false.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/transactions?api-version=3&proxy-
user=moab&query={"instance":"job.1"}&fields=object,action,instance,amount&pretty=true

{
"totalCount": 310,
"resultCount": 3,
"results": [

{
"object": "UsageRecord",
"action": "Reserve",
"instance": "job.1",
"amount": 57600

},
{

"object": "UsageRecord",
"action": "Charge",
"instance": "job.1",
"amount": 11520

},
{

"object": "UsageRecord",
"action": "Refund",
"instance": "job.1",
"amount": 11520

}
]

}

Get Single Transaction
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/transactions/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Value Description Example

id Yes String -- The unique identifier of the
object.

--

fields No String -- Comma-separated list of field fields=id

Chapter 4: Resources

110 4.2 Accounting Resources

4.2 Accounting Resources 111

Parameter Required Type Value Description Example

names to display.

show-all No Boolean true
or
false

true shows all fields including
metadata and hidden fields.
Default is false.

show-
all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/transactions/1?api-version=3&proxy-
user=moab&pretty=true

{
"id": 1,
"object": "Organization",
"action": "Create",
"actor": "scottmo",
"key": "sciences",
"child": "",
"count": 1,
"instance": "",
"amount": "",
"delta": "",
"user": "",
"account": "",
"machine": "",
"fund": "",
"allocation": "",
"usageRecord": "",
"duration": "",
"description": ""

}

Related Topics

l 8.4.2.11 Fields: Transactions

l Chapter 4: Resources

4.2.9 Accounting Usage Records

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

Chapter 4: Resources

This section describes the services available through MWS for interacting with the Usage
Record object in Moab Accounting Manager. It contains the URLs, request bodies, and
responses delivered to and from MWS as an intermediary for MAM.

The 8.4.2.12 Fields: Usage Records reference section contains the type and
description of all fields in the Usage Record object.

Supported Methods

Resource GET PUT POST DELETE

/rest/accounting/usage-
records

Get All
Usage
Records

-- -- --

/rest/accounting/usage-
records/<id>

Get Single
Usage Record

-- -- --

/rest/accounting/usage-
records/quote

-- -- Obtain a Quote
For Resource
Usage

--

In this topic:

l Getting Usage Records
o Get All Usage Records
o Get Single Usage Record
o Obtain a Quote For Resource Usage

4.2.9.A Getting Usage Records
The HTTP GET method is used to retrieve Usage Record information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/usage-records?api-version=3
GET https://localhost:8080/mws/rest/accounting/usage-records/<id>?api-version=3
POST https://localhost:8080/mws/rest/accounting/usage-records/quote?api-version=3

Get All Usage Records
URLs and Parameters

Chapter 4: Resources

112 4.2 Accounting Resources

4.2 Accounting Resources 113

GET https://localhost:8080/mws/rest/accounting/usage-records?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Param
eter

Requi
red

Typ
e

Val
ue

Descrip
tion

Example

proxy-
user

Yes Strin
g

-- Perform
action as
defined
MAM
user.

proxy-user=amy

query No JSON -- Results
are
restricte
d to
those
having
the
specified
field
values.
The
query
paramet
er does
not
support
the full
Mongo
syntax.
Besides
allowing
queries
specifyin
g a
simple
field
value
(e.g.,
query=
{field:val
ue}), you
can
extract a
partial
value

query=
{"account":"chemistry"}query="variables":"fo
o":"bar"}}query={"end
Time":{$gt:"2025-03-01 00:00:00 UTC"}}
query={"licenses":{"matlab":{$gte:1}}}

Chapter 4: Resources

Param
eter

Requi
red

Typ
e

Val
ue

Descrip
tion

Example

from a
complex
field
using the
form:
query=
{field:
{part:val
ue}} or
you can
use
comparis
on
operator
s of the
form:
query=
{field:
{op:valu
e}}
where
op can
be one of
the
followin
g:

l $eq
-
equ
al to

l $gt -
grea
ter
than

l $gte
-
grea
ter
than
or
equ
al to

l $lt -
less
than

Chapter 4: Resources

114 4.2 Accounting Resources

4.2 Accounting Resources 115

Param
eter

Requi
red

Typ
e

Val
ue

Descrip
tion

Example

l $lte
-
less
than
or
equ
al to

l $ne
-
not
equ
al to

fields No Strin
g

-- Comma-
separate
d list of
field
names to
display.
Partial
values
can be
requeste
d for
complex
(multi-
valued)
attribute
s in the
form:
attribut
e_name
{part_
name}.

fields=id,instance,charge,user,account,license
matlab}

sort No JSON -- Sort the
results.
Use 1 for
ascendin
g and -1
for
descendi
ng.
Should
be used
in

sort={"user":1}

Chapter 4: Resources

Param
eter

Requi
red

Typ
e

Val
ue

Descrip
tion

Example

conjuncti
on with
the fields
paramet
er.

show-
all

No Bool
ean

tru
e
or
fals
e

true
shows all
fields
including
metadata
and
hidden
fields.
Default
is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/usage-records?api-version=3&proxy-
user=amy&fields=id,instance,charge,user,account&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"id": 1,
"instance": "job.1",
"charge": 31,
"user": "amy",
"account": "chemistry"

},
{

"id": 2,
"instance": "job.2",
"charge": 30,
"user": "amy",
"account": "biology"

}
}

Get Single Usage Record
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/usage-records/<id>?api-version=3&proxy-

Chapter 4: Resources

116 4.2 Accounting Resources

4.2 Accounting Resources 117

user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Paramet
er

Requir
ed

Type Val
ue

Descripti
on

Example

id Yes String -- The
unique
identifier
of the
object.

code

proxy-
user

Yes String -- Perform
action as
defined
MAM user.

proxy-user=amy

fields No String -- Comma-
separated
list of field
names to
display.
Partial
values can
be
requested
for
complex
(multi-
valued)
attributes
in the
form:
attribute_
name
{part_
name}.

fields=id,instance,charge,user,account,l
icenses{matlab}

show-all No Boole
an

true
or
false

true
shows all
fields
including
metadata
and
hidden
fields.
Default is
false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

Sample Response

GET https://localhost:8080/mws/rest/accounting/usage-records/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"type": "Job",
"instance": "job.1",
"charge": 31,
"stage": "Charge",
"user": "amy",
"group": "faculty",
"account": "chemistry",
"organization": "sciences",
"qualityOfService": "",
"machine": "colony",
"nodes": "",
"processors": 16,
"memory": "",
"disk": "",
"network": "",
"duration": 720,
"startTime": "",
"endTime": "",
"description": ""

}

Obtain a Quote For Resource Usage
URLs and Parameters

POST https://localhost:8080/mws/rest/accounting/usage-records/quote?api-
version=3&object-type=<object>&proxy-user=<user>&charge-duration=<seconds>

Paramet
er

Requir
ed

Type Val
ue

Descripti
on

Example

proxy-
user

Yes String -- Perform
action as
defined
MAM
user.

proxy-user=amy

charge-
duration

Yes Integer -- The quote
duration
of the job
in
seconds.

charge-duration=6400

object-
type

Yes String -- The
object to
quote. It

object-type=job

Chapter 4: Resources

118 4.2 Accounting Resources

4.2 Accounting Resources 119

Paramet
er

Requir
ed

Type Val
ue

Descripti
on

Example

can be job
or service.

itemize No Boolean true
or
false

Returns
the
composite
charge
informati
on in the
response
data.

itemize=true

rate No JSONAr
ray

-- Uses the
specified
charge
rates in
the quote.
The
specified
rates
override
the
standard
and quote
rates. If
the
guarantee
field is set
to true,
these
charge
rates will
be saved
and used
when this
quote is
reference
d in a
charge
action.

rate=
[{"type":"VBR","name":"Memory","ra
te":1},
{"type":"VBR","name":"Processors","
rate":1}]

guarante
e

No Boolean true
or
false

Guarantee
s the
quote and

guarantee=true

Chapter 4: Resources

Paramet
er

Requir
ed

Type Val
ue

Descripti
on

Example

returns a
quote ID
to secure
the
current
charge
rates.
This
results in
the
creation
of a quote
record
and a
permanen
t usage
record.
This
paramete
r is
mutually
exclusive
with the
cost-only
paramete
r.

grace-
duration

No Integer -- The
guarantee
d quote
grace
period in
seconds.
If the
quote
duration
is
specified
but not
the quote
end time,
the quote
endtime
will be
calculated
as the

grace-duration=6400

Chapter 4: Resources

120 4.2 Accounting Resources

4.2 Accounting Resources 121

Paramet
er

Requir
ed

Type Val
ue

Descripti
on

Example

quote
start time
plus the
quote
duration
plus the
grace
duration.

cost-only No Integer -- Returns
the cost,
ignoring
all
balance
and
validity
checks.
This
paramete
r is
mutually
exclusive
with the
guarantee
paramete
r.

cost-only=true

descripti
on

No String -- The
guarantee
d quote
descriptio
n.

description="ABC Coupon Rate"

start-
time

No Date -- The
guarantee
d quote
start time
in the
format
yyyy-MM-
dd
HH:mm:ss
z, -
Infinity,
Infinity,

start-time="2025-04-09 13:49:40
UTC"

Chapter 4: Resources

Paramet
er

Requir
ed

Type Val
ue

Descripti
on

Example

or Now.

end-time No Date -- The
guarantee
d quote
end time
in the
format
yyyy-MM-
dd
HH:mm:ss
z, -
Infinity,
Infinity,
or Now.

end-time="2025-04-09 14:49:40
UTC"

See 3.3 Global URL Parameters for available URL parameters.

Request Body

The request body below shows all of the fields in a job that could affect the quote:

POST https://localhost:8080/mws/rest/accounting/usage-records/quote?api-
version=3&object-type=job&charge-duration=300

{
"id": "Moab.1",
"user": "amy",
"group": "group",
"rmName": "machine1",
"templateList": [
"genericVm"
],
"account": "biology",
"qosRequested": "QOS1",
"variables": {
"imageName": "centos.6-stateless",
"topLevelServiceId": "myService.1",
"serviceId": "vmService.1",
"vmid": "VmService.1",
"pmid": "VmService.1"

},
"requirements": [
{

"requiredProcessorsPerTask": 2,
"genericResources": {

"gold": 100,
"os": 500

},
"requiredNodeCountMinimum": 1,
"requiredMemoryPerTask": 1024,

Chapter 4: Resources

122 4.2 Accounting Resources

4.2 Accounting Resources 123

"requiredClass": "batch"
}
]

}

The request body below shows all of the fields in a service that affect the quote in a default
MAM installation:

POST https://localhost:8080/mws/rest/accounting/usage-records/quote?api-
version=3&object-type=service&charge-duration=300

{
"name":"service.1",
"user": "amy",
"account": "chemistry"
"attributes":{

"moab":{
"job":{

"resources":{
"procs":1,
"mem":2048,
"OS":500,
"gold":100

},
"variables":{

"Var1": 1524
},
"image":"centos.6-stateless",
"template":"genericVM",

}
}

}
}

Sample Response

l If the quote is not guaranteed:

JSON response

{
"instance": "Moab.1",
"amount": 600

}

l If the quote is guaranteed:

JSON response

{
"id": 1,
"usageRecord": 2,
"instance": "Moab.1",
"amount": 600

}

l If the quote is guaranteed and itemized:

Chapter 4: Resources

JSON response

{
"details": [

{
"name": "Processors",
"value": "2",
"duration": 300,
"rate": 1,
"scalingFactor": 1,
"amount": 600,
"details": "2 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 300

[Duration]"
},

{
"name": "Memory",
"value": "1024",
"duration": 300,
"rate": 1,
"scalingFactor": 1,
"amount": 307200,
"details": "1024 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 300 [Duration]"

}
],
"id": 20,
"instance": "Moab.1",
"usageRecord": 20,
"amount": 307800

}

l If the quote is on a service:

JSON response

{
"services": [

{
"details": [

{
"name": "Processors",
"value": "22",
"duration": 30,
"rate": 1,
"scalingFactor": 1,
"amount": 660,
"details": "22 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 30

[Duration]"
},

{
"name": "Memory",
"value": "32343242",
"duration": 30,
"rate": 1,
"scalingFactor": 1,
"amount": 970297260,
"details": "32343242 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 30

[Duration]"
}

],

Chapter 4: Resources

124 4.2 Accounting Resources

4.2 Accounting Resources 125

"id": 120,
"instance": "myVmWorkflow",
"usageRecord": 157,
"amount": 970297920

},
{

"details": [{
"name": "Storage",
"value": "2500",
"duration": 30,
"rate": 1.157E-7,
"scalingFactor": 1,
"amount": 0,
"details": "2500 [Storage] * 1.157e-07 [ChargeRate{VBR}{Storage}] * 30

[Duration]"
}],
"id": 122,
"instance": "myExtraStorageWorkflow",
"usageRecord": 159,
"amount": 0

},
{

"details": [
{

"name": "Processors",
"value": "0",
"duration": 30,
"rate": 1,
"scalingFactor": 1,
"amount": 0,
"details": "0 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 30

[Duration]"
},

{
"name": "Memory",
"value": "0",
"duration": 30,
"rate": 1,
"scalingFactor": 1,
"amount": 0,
"details": "0 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 30 [Duration]"

}
],
"id": 123,
"instance": "myPmWorkflow",
"usageRecord": 160,
"amount": 0

}
],
"amount": 970297920

}

Related Topics

l 8.4.2.12 Fields: Usage Records

l Chapter 4: Resources

Chapter 4: Resources

4.2.10 Accounting Users

The resource and services described in this topic are deprecated and may be
removed in a future release. Use the comparable resource and services in MAM
Web Services instead.

This section describes the services available through MWS for interacting with the User
object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

The 8.4.2.13 Fields: Users reference contains the type and description of all fields in
the User object.

Supported Methods

Resource GET PUT POST DELETE

rest/accounting/users Get All Users -- -- --

rest/accounting/users/<id> Get Single User -- -- --

In this topic:

l Getting Users
o Get All Users
o Get Single User

4.2.10.A Getting Users
The HTTP GET method is used to retrieve User information.

Quick Reference
GET https://localhost:8080/mws/rest/accounting/users?api-version=3
GET https://localhost:8080/mws/rest/accounting/users/<id>?api-version=3

Get All Users
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/users?api-version=3&proxy-user=<user>
[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-
all=(true|false)]

Chapter 4: Resources

126 4.2 Accounting Resources

4.2 Accounting Resources 127

Parameter Required Type Value Description Example

proxy-
user

Yes String -- Perform action
as defined
MAM user.

proxy-user=amy

query No JSON -- Results are
restricted to
those having
the specified
field values.
The query
parameter
does not
support the
full Mongo
syntax. Besides
allowing
queries
specifying a
simple field
value (e.g.,
query=
{field:value}),
you can use
comparison
operators of
the form:
query={field:
{op:value}}
where op can
be one of the
following:

l $eq -
equal to

l $gt -
greater
than

l $gte -
greater
than or
equal to

l $lt - less
than

l $lte - less
than or
equal to

query={"active":true}

Chapter 4: Resources

Parameter Required Type Value Description Example

l $ne - not
equal to

fields No String -- Comma-
separated list
of field names
to display.

fields=name,defaultAccount

sort No JSON -- Sort the
results. Use 1
for ascending
and -1 for
descending.
Should be used
in conjunction
with the fields
parameter.

sort={"defaultAccount":1}

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/users?api-version=3&proxy-
user=moab&query={"active":true}&pretty=true

{
"totalCount": 6,
"resultCount": 4,
"results": [

{
"active": true,
"commonName": "",
"phoneNumber": "",
"emailAddress": "",
"defaultAccount": "",
"description": "Accounting Admin",
"id": "scottmo"

},
{

"active": true,
"commonName": "Amy Miller",
"phoneNumber": "(801) 717-3700",
"emailAddress": "amy@hpc.com",
"defaultAccount": "chemistry",
"description": "",

Chapter 4: Resources

128 4.2 Accounting Resources

4.2 Accounting Resources 129

"id": "amy"
},

{
"active": true,
"commonName": "Robert Taylor",
"phoneNumber": "(801) 717-3700",
"emailAddress": "bob@hpc.com",
"defaultAccount": "biology",
"description": "",
"id": "bob"

},
{

"active": true,
"commonName": "David Jones",
"phoneNumber": "(801) 717-3700",
"emailAddress": "dave@hpc.com",
"defaultAccount": "film",
"description": "",
"id": "dave"

}
]

}

Get Single User
URLs and Parameters

GET https://localhost:8080/mws/rest/accounting/users/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Value Description Example

id Yes String -- The unique
identifier of
the object.

--

fields No String -- Comma-
separated list
of field names
to display.

fields=name,defaultAccount

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is false.

show-all=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

GET https://localhost:8080/mws/rest/accounting/users/amy?api-version=3&proxy-
user=moab&pretty=true

Chapter 4: Resources

{
"active": true,
"commonName": "Amy Miller",
"phoneNumber": "(801) 717-3700",
"emailAddress": "amy@hpc.com",
"defaultAccount": "chemistry",
"description": "",
"id": "amy"

}

Related Topics

l 8.4.2.13 Fields: Users

l Chapter 4: Resources

4.3 Credentials

This section describes behavior of the Credential object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The supported methods table below requires each resource to be accessed with a
URL parameter of api-version=3. For more information, see 3.4 Requesting
Specific API Versions.

The 8.4.3 Fields: Credentials reference contains the type and description of all fields
in the Credential object.

Supported Methods

Resource GET PUT POST DELETE

/rest/credentials/accounts Get All
Account
Credentials

Get Single
Account
Credential

Modify
Account
Credentials

-- --

/rest/credentials/classes Get All Class
Credentials

Get Single

Modify
Class
Credentials

-- --

Chapter 4: Resources

130 4.3 Credentials

4.3 Credentials 131

Resource GET PUT POST DELETE

Class
Credential

/rest/credentials/groups Get All Group
Credentials

Get Single
Group
Credential

Modify
Group
Credentials

-- --

/rest/credentials/qoses Get All QoS
Credentials

Get Single
QoS
Credential

Modify QoS
Credentials

-- --

/rest/credentials/users Get All User
Credentials

Get Single
User
Credential

Modify User
Credentials

-- --

/rest/credentials/belongs-
to

Get
Credentials
to Which the
User Belongs

-- -- --

In this section:

l 4.3.1 Getting Credentials
o 4.3.1.A Get All Account Credentials
o 4.3.1.B Get Single Account Credential
o 4.3.1.C Get All Class Credentials
o 4.3.1.D Get Single Class Credential
o 4.3.1.E Get All Group Credentials
o 4.3.1.F Get Single Group Credential
o 4.3.1.G Get All QoS Credentials

Chapter 4: Resources

o 4.3.1.H Get Single QoS Credential
o 4.3.1.I Get All User Credentials
o 4.3.1.J Get Single User Credential
o 4.3.1.K Get Credentials to Which the User Belongs

l 4.3.2 Modifying Credentials
o 4.3.2.A Modify Account Credentials
o 4.3.2.B Modify Class Credentials
o 4.3.2.C Modify Group Credentials
o 4.3.2.D Modify QoS Credentials
o 4.3.2.E Modify User Credentials

4.3.1 Getting Credentials
The HTTP GET method is used to retrieve Resource Type information.

Quick Reference
GET https://localhost:8080/mws/rest/credentials/accounts[/<name>]?api-version=3
GET https://localhost:8080/mws/rest/credentials/classes[/<name>]?api-version=3
GET https://localhost:8080/mws/rest/credentials/groups[/<name>]?api-version=3
GET https://localhost:8080/mws/rest/credentials/qoses[/<name>]?api-version=3
GET https://localhost:8080/mws/rest/credentials/users[/<name>]?api-version=3

4.3.1.A Get All Account Credentials

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/accounts?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/accounts?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{

Chapter 4: Resources

132 4.3 Credentials

4.3 Credentials 133

"name": "Administration",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"reservation": "system.1",
"variables": {}

}

]
}

4.3.1.B Get Single Account Credential

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/accounts/<name>?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/accounts/Administration?api-version=3

{
"name": "Administration",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",

Chapter 4: Resources

"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"reservation": "system.1",
"user_access_list": ["adaptive"],
"variables": {}

}

4.3.1.C Get All Class Credentials

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/classes?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/classes?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{
"name": "highprio",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"reservation": "system.1",
"variables": {}

}
]

Chapter 4: Resources

134 4.3 Credentials

4.3 Credentials 135

}

4.3.1.D Get Single Class Credential

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/classes/<name>?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/classes/highprio?api-version=3

{
"name": "highprio",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"reservation": "system.1",
"variables": {},
"user_access_list": ["adaptive"]

}

4.3.1.E Get All Group Credentials

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/groups/<name>?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

Sample Response
GET https://localhost:8080/mws/rest/credentials/groups?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{

"name": "students",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"reservation": "system.1",
"variables": {}

}

4.3.1.F Get Single Group Credential

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/groups/<name>?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/groups/students?api-version=3

{
"name": "students",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],

Chapter 4: Resources

136 4.3 Credentials

4.3 Credentials 137

"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"reservation": "system.1",
"variables": {},
"user_access_list": ["adaptive"]

}

4.3.1.G Get All QoS Credentials

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/qoses?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/qoses?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{
"name": "special",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",

Chapter 4: Resources

"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"reservation": "system.1",
"variables": {},
"flags": [

"DEADLINE",
"RESERVEALWAYS",
"DEDICATED"

]
"queue_time_weight": 30,
"expansion_factor_weight": 40,
"quality_of_service_priority": 20

}

]
}

4.3.1.H Get Single QoS Credential

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/qoses/<name>?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/qoses/special?api-version=3

{
"name": "special",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"reservation": "system.1",
"variables": {},
"user_access_list": ["adaptive"]

Chapter 4: Resources

138 4.3 Credentials

4.3 Credentials 139

"flags": [
"DEADLINE",
"RESERVEALWAYS",
"DEDICATED"
]
"queue_time_weight": 30,
"expansion_factor_weight": 40,
"quality_of_service_priority": 20

}

4.3.1.I Get All User Credentials

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/users?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/users?api-version=3

{

{
"totalCount": 1,
"resultCount": 1,
"results": [
{
"name": "root",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"email": "root@root.com",
"variables": {}

}

]
}

Chapter 4: Resources

4.3.1.J Get Single User Credential

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/users/<name>?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/credentials/users/root?api-version=3

{
"name": "root",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": "42",
"max_jobs": "523",
"max_processors": "4",
"max_processor_seconds": "525",
"max_nodes": "75",
"email": "root@root.com",
"variables": {}

}

4.3.1.K Get Credentials to Which the User Belongs
Returns the groups, accounts, classes, and qualities of service to which the current user
has access.

URLs and Parameters
GET https://localhost:8080/mws/rest/credentials/belongs-to?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
{

Chapter 4: Resources

140 4.3 Credentials

4.3 Credentials 141

"account_access_list": [
"Test",
"Research",
"Engineering"

],
"class_access_list": [
"batch3",
"batch2",
"batch"

],
"group_access_list": [
"hgranger"

],
"qos_access_list": [
"high",
"medium",
"low"

]
}

4.3.2 Modifying Credentials
The HTTP PUT method is used to modify credentials.

Quick Reference
PUT https://localhost:8080/mws/rest/credentials/accounts/<name>?api-version=3[&change-
mode=<add|remove|set>]
PUT https://localhost:8080/mws/rest/credentials/classes/<name>?api-version=3[&change-
mode=<add|remove|set>]
PUT https://localhost:8080/mws/rest/credentials/groups/<name>?api-version=3[&change-
mode=<add|remove|set>]
PUT https://localhost:8080/mws/rest/credentials/qoses/<name>?api-version=3[&change-
mode=<add|remove|set>]
PUT https://localhost:8080/mws/rest/credentials/users/<name>?api-version=3[&change-
mode=<add|remove|set>]

URL Parameters
URL parameters for modifying a credential.

Credentials
Parameter

Required Type Value Description

change-mode No String set
(default)
add
remove

If set, replace existing list with the
given one.
If add, add the given field(s) to the
existing list.
If remove, remove the given field(s)
from the existing list.

Chapter 4: Resources

Moab Workload Manager will automatically add SHARED and the value of default_
partition to the partition_access_list.

4.3.2.A Modify Account Credentials

URLs and Parameters
PUT https://localhost:8080/mws/rest/credentials/accounts/<name>?api-version=3[&change-
mode=<add|remove|set>]

See 3.3 Global URL Parameters for available URL parameters.

Sample Body
PUT https://localhost:8080/mws/rest/credentials/accounts/biology?api-version=3&change-
mode=add

{
"qos_access_list": [
"qos3",
"qos4"

],
"max_job_duration_in_seconds": 234

}

4.3.2.B Modify Class Credentials

URLs and Parameters
PUT https://localhost:8080/mws/rest/credentials/classes/<name>?api-version=3[&change-
mode=<add|remove|set>]

See 3.3 Global URL Parameters for available URL parameters.

Sample Body
PUT https://localhost:8080/mws/rest/credentials/classes/highprio?api-version=3

{
"max_idle_jobs": "50",
"max_jobs": "300"

}

Chapter 4: Resources

142 4.3 Credentials

4.3 Credentials 143

4.3.2.C Modify Group Credentials

URLs and Parameters
PUT https://localhost:8080/mws/rest/credentials/groups/<name>?api-version=3[&change-
mode=<add|remove|set>]

See 3.3 Global URL Parameters for available URL parameters.

Sample Body
PUT https://localhost:8080/mws/rest/credentials/groups/students?api-version=3&change-
mode=set

{
"reservation": "system.2",
"user_access_list": ["tom"]

}

4.3.2.D Modify QoS Credentials

URLs and Parameters
PUT https://localhost:8080/mws/rest/credentials/qoses/<name>?api-version=3[&change-
mode=<add|remove|set>]

See 3.3 Global URL Parameters for available URL parameters.

Sample Body
PUT https://localhost:8080/mws/rest/credentials/qoses/special?api-version=3

{
"max_processors": "5",
"max_processor_seconds": "500"

}

4.3.2.E Modify User Credentials

URLs and Parameters
PUT https://localhost:8080/mws/rest/credentials/users/<name>?api-version=3[&change-
mode=<add|remove|set>]

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

Sample Body
PUT https://localhost:8080/mws/rest/credentials/users/tom?api-version=3

{
"email": "tom@root.com"

}

Related Topics

l 8.4.3 Fields: Credentials

4.4 Diagnostics

This section describes additional REST calls that are available for performing diagnostics
on MWS.

Supported Methods

Resource GET PUT POST DELETE

/rest/diag/about Get Version
Information

-- -- --

/rest/diag/auth Diagnose
Authentication

-- -- --

/rest/diag/health/summary Get Health Summary -- -- --

/rest/diag/health/detail Get Health Detail -- -- --

/rest/diag/licenses Get License
Information

-- -- --

In this section:

l Get Version Information

l Diagnose Authentication

l Connection Health Information
o Get Health Summary
o Get Health Detail

Chapter 4: Resources

144 4.4 Diagnostics

4.4 Diagnostics 145

l Get License Information

4.4.1 Get Version Information
The HTTP GET method is used to retrieve version and build information.

Quick Reference
GET https://localhost:8080/mws/rest/diag/about?api-version=3

URLs and Parameters
GET https://localhost:8080/mws/rest/diag/about?api-version=3

Sample Response
The response contains the application suite, version, build date, and revision:

{
"suite": "HPC",
"version": "10.2.2",
"buildDate": "2025.03.15_13.12.45",
"revision": "302238e24e327f4aa45ab4c91834216a7fc19d63"

}

4.4.2 Diagnose Authentication
The HTTP GET method is used to test for proper authentication. This resource is designed
to be used as a simple validation of credentials and gives no output besides the response
code.

Quick Reference
GET https://localhost:8080/mws/rest/diag/auth?api-version=3

URLs and Parameters
GET https://localhost:8080/mws/rest/diag/auth?api-version=3

Sample Response

A successful result is indicated by the 200 response code while a failure is indicated
by a 401 response code.

{}

Chapter 4: Resources

4.4.3 Connection Health Information
The HTTP GET method is used to retrieve health or status information for connections to
external systems or software. There are two available resources for health, one that
returns simple summary information and another that returns detailed information.

Quick Reference
GET https://localhost:8080/mws/rest/diag/health/summary?api-version=3
GET https://localhost:8080/mws/rest/diag/health/detail?api-version=3

4.4.3.A Get Health Summary

URLs and Parameters
GET https://localhost:8080/mws/rest/diag/health/summary?api-version=3

If the MongoDB connection is down, authenticated resources are not available. While
this resource does not possess much detail beyond that of simple connection
information, it is still useful as it does not require authentication and therefore can be
used to determine connection problems with MongoDB.

Sample Response
The response contains the connection health for Moab Workload Manager (MWM), Moab
Accounting Manager (MAM), MongoDB, LDAP, ZeroMQ, PAM, and the Insight database. A
true response value indicates that the connection is healthy and available, and a false
response indicates that the connection is currently down. Likewise, the
mongoConnected property for Moab HPC Suite signifies the state of the Moab HPC Suite
to MongoDB connection. The possible values of this state are UP, DOWN, NOT_
CONFIGURED (when the MongoDB server is not configured in Moab HPC Suite), NOT_
SUPPORTED (when Moab HPC Suite is not compiled with MongoDB support), and
UNKNOWN (when MWS cannot communicate with Moab HPC Suite).

{
"mam": {"connected": true},
"mongo": {"connected": true},
"mwm": {
"connected": true,
"mongoConnected": "UP",
"zmqConnected": true,
"zmqInsightConnected": true

},
"ldap": {"connected": true},
"pam": {"connected": false},
"zmq": {"connected": true},
"insight": {"connected": true},

Chapter 4: Resources

146 4.4 Diagnostics

4.4 Diagnostics 147

"plugins": {"connected": true}
}

4.4.3.B Get Health Detail

URLs and Parameters
GET https://localhost:8080/mws/rest/diag/health/detail?api-version=3

If the MongoDB connection is down, authenticated resources such as this are not
available. In this case, using the Get Health Summary instead may be required.

Sample Response
The response contains the connection health and information for Moab Workload Manager
(MWM), Moab Accounting Manager (MAM), MongoDB, LDAP, ZeroMQ, PAM, and the Insight
database. A "connected": true response value indicates that the connection is
healthy and available, and a false response indicates that the connection is currently
down. Likewise, the mongoConnected property for Moab HPC Suite signifies the state of
the Moab HPC Suite to MongoDB connection. The possible values of this state are UP, DOWN,
NOT_CONFIGURED (when the MongoDB server is not configured in Moab HPC Suite),
NOT_SUPPORTED (when Moab HPC Suite is not compiled with MongoDB support), and
UNKNOWN (when MWS cannot communicate with Moab HPC Suite). A message is also
present for all down connections except Moab HPC Suite to MongoDB giving a reason for
the error state.

{
"mam": {
"connected": true,
"adminUser": "mam",
"host": "localhost",
"port": 7112,
"version": "x.x.x",
"message": null

},
"mongo": {
"connected": true,
"host": "127.0.0.1",
"port": 27017,
"replicaSet": null,
"databaseName": "mws",
"username": null,
"version": "x.x.x",
"message": null

},
"mwm": {
"connected": true,
"adminUser": "root",
"host": "10.2.185.228",
"port": 42559,

Chapter 4: Resources

"version": "x.x.x",
"licensedFeatures": [
"grid",
"green",
"elasticcomputing",
"groupsharing",
"advancedrm",
"workflow",
"accounting"

],
"state": "RUNNING",
"mongo": {
"connected": "UP",
"credentialsSet": true,
"host": "localhost",
"port": 27017

},
"zmq": {
"connected": true,
"encryptionStatus": "ON",
"port": 5570>

},
"zmqInsight": {
"connected": true,
"encryptionStatus": "ON",
"host": "*",
"port": 5574,
"reliabilityPort": 5575,
"endpoint": "localhost:5568",
"storeDir": "/opt/moab/spool/insight_store/",
"storeSize": 1024

},
"message": null

},
"ldap": {
"connected": true,
"message": null,
"server": "openldapnis.ac",
"port": 389,
"baseDNs": ["dc=testldap,dc=ac"],
"bindUser": "cn=admin,dc=testldap,dc=ac",
"directoryType": "OpenLDAP Using InetOrgPerson Schema",
"securityType": "NONE",
"userObjectClass": "inetOrgPerson",
"groupObjectClass": "groupOfNames",
"ouObjectClass": "organizationalUnit",
"userMembershipAttribute": null,
"groupMembershipAttribute": "member",
"userNameAttribute": "uid"

},
"pam": {
"connected": false,
"authenticationModule": null,
"message": "PAM is not configured. Please check the MWS configuration."

},
"zmq": {
"connected": true,
"version": "4.1.4",
"message": null,
"mwmSubscriber": {
"connected": true,
"address": "10.2.185.228",

Chapter 4: Resources

148 4.4 Diagnostics

4.4 Diagnostics 149

"port": 5570,
"message": null

},
"mwsSubscriber": {
"connected": true,
"address": "localhost",
"port": 5564,
"message": null

},
"publisher": {
"connected": true,
"address": "*",
"port": 5564,
"message": null

}
},
"insight": {
"connected": true,
"version": "x.x.x",
"changeset": "d115caa4f85b150f5a2a819c66a8e49ade0841c0",
"host": "10.2.185.228",
"port": 5568,
"message": null,
"moabMongoConnection": {
"connected": true,
"databaseName": "moab",
"host": "127.0.0.1",
"message": null,
"port": 27017,
"username": "insight_user"

},
"insightMongoConnection": {
"connected": true,
"databaseName": "insight",
"host": "127.0.0.1",
"message": null,
"port": 27017,
"username": "insight_user"

},
"insightKafkaConnection": {
"batchSize": 200,
"bootstrapServers": "localhost:9092",
"bufferMemory": "33554432",
"connected": true,
"enabled": false,
"lingerMilliseconds": 1,
"maximumBlockMilliseconds": 60000,
"message": null,
"topic": "insight"

}
},
"plugins": {
"connected": true,
"message": null

}
}

Chapter 4: Resources

4.4.4 Get License Information
The HTTP GET method is used to retrieve license information from Moab Workload
Manager.

Quick Reference
GET https://localhost:8080/mws/rest/diag/licenses?api-version=3

URLs and Parameters
GET https://localhost:8080/mws/rest/diag/licenses?api-version=3

Sample Response
The response contains the name of the licensed host, the path to the license file on that
host, the license expiration date, the number of processors, sockets, and virtual machines
licensed, and the list of features in the license. If Moab reports any license errors, they will
appear in the errors array.

{
"expirationDate": "2025-01-15 18:21:00 UTC",
"host": "localhost",
"path": "/opt/moab/etc/moab.lic",
"processors": 2000000,
"sockets": 0,
"features": [

{
"name": "grid",
"description": "Unify management of multiple clusters",
"expirationDate": "2025-01-15 18:21:00 UTC",
"enabled": true

},
{

"name": "green",
"description": "Workload-aware power optimization management",
"expirationDate": "2025-01-15 18:21:00 UTC",
"enabled": true

},
{

"name": "provision",
"description": "Provisioning of Operating Systems",
"expirationDate": null,
"enabled": false

},
{

"name": "elasticcomputing",
"description": "Elastically add to or remove resources from a cluster /

dynamically provision the OS",
"expirationDate": "2025-01-15 18:21:00 UTC",
"enabled": true

},
{

"name": "groupsharing",
"description": "Policy management for groups to use and share the cluster",

Chapter 4: Resources

150 4.4 Diagnostics

4.4 Diagnostics 151

"expirationDate": "2025-01-15 18:21:00 UTC",
"enabled": true

},
{

"name": "advancedrm",
"description": "Policies and capabilities that control resources",
"expirationDate": "2025-01-15 18:21:00 UTC",
"enabled": true

},
{

"name": "workflow",
"description": "Automate both end-to-end workload and system processes",
"expirationDate": "2025-01-15 18:21:00 UTC",
"enabled": true

},
{

"name": "accounting",
"description": "Accounting management for usage tracking and charging",
"expirationDate": "2025-01-15 18:21:00 UTC",
"enabled": true

},
{

"name": "passthrough",
"description": "Pass-through RM monitoring mode limitation.",
"expirationDate": null,
"enabled": false

}
],
"errors": ["WARNING - OS provisioning requires 'provision' in license"],
"elasticUsage": {
"dailyProcessorSeconds": 46740,
"monthlyProcessorSeconds": 837808,
"quarterlyProcessorSeconds": 837808,
"yearlyProcessorSeconds": 837808,
"maximumDailyProcessorSeconds": 0,
"maximumMonthlyProcessorSeconds": 0,
"maximumQuarterlyProcessorSeconds": 0,
"maximumYearlyProcessorSeconds": 0,
"elasticUsageByQOS": [

{
"name": "HIGH",
"dailyProcessorSeconds": 0,
"monthlyProcessorSeconds": 0,
"quarterlyProcessorSeconds": 0,
"yearlyProcessorSeconds": 0,
"maximumDailyProcessorSeconds": 3600,
"maximumMonthlyProcessorSeconds": 0,
"maximumQuarterlyProcessorSeconds": 0,
"maximumYearlyProcessorSeconds": 0

},
{

"name": "MEDIUM",
"dailyProcessorSeconds": 0,
"monthlyProcessorSeconds": 0,
"quarterlyProcessorSeconds": 0,
"yearlyProcessorSeconds": 0,
"maximumDailyProcessorSeconds": 0,
"maximumMonthlyProcessorSeconds": 0,
"maximumQuarterlyProcessorSeconds": 0,
"maximumYearlyProcessorSeconds": 0

},
{

Chapter 4: Resources

"name": "LOW",
"dailyProcessorSeconds": 11683.43,
"monthlyProcessorSeconds": 742860,
"quarterlyProcessorSeconds": 742860,
"yearlyProcessorSeconds": 742860,
"maximumDailyProcessorSeconds": 0,
"maximumMonthlyProcessorSeconds": 0,
"maximumQuarterlyProcessorSeconds": 0,
"maximumYearlyProcessorSeconds": 0

}
]

}
}

4.5 Distinct

The Distinct resource enables clients to retrieve distinct (unique) values from another
MWS resource. For example, a client can request the list of all featuresReported
across all nodes like this:

GET https://localhost:8080/mws/rest/distinct/nodes/featuresReported/?api-version=3

Supported Methods

Resource GET PUT POST DELETE

/rest/distinct/<resource>/<field> Get Distinct
Values

-- -- --

In this topic:

l Get Distinct Values

4.5.1 Get Distinct Values
The HTTP GET method is used to retrieve distinct values from another MWS resource.

URLs and Parameters
GET https://localhost:8080/mws/rest/distinct/<resource>/<field>?api-version=3

Parameter Required Type Value Example

resource Yes String The MWS resource to
query.

nodes

Chapter 4: Resources

152 4.5 Distinct

4.6 Events 153

Parameter Required Type Value Example

field Yes String The field for which to
return the distinct
values.

featuresReported

query No JSON Determines the subset
of objects from which to
retrieve the distinct
values.

query=
{"states.powerState":
"On"}

The Distinct resource has no access control of its own. Rather, it depends on the
access control of the MWS resource being queried. For example, for a client to run a
query like /rest/distinct/nodes/featuresReported, it must have GET
rights on the Nodes resource. For more information, see Chapter 2: Access Control.

Example

Example 4-1: Get all featuresReported across all nodes

https://localhost:8080/mws/rest/distinct/nodes/featuresReported?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": ["vlan1"]

}

4.6 Events

This section describes the URLs, request bodies, and responses delivered to and from MWS
for handling events.

The Event API was introduced with API version 3. The supported methods table
below requires each resource to be accessed with a URL parameter of api-
version=3 in order to behave as documented. For more information, see 3.4
Requesting Specific API Versions.

The 8.4.4 Fields: Events reference contains the type and description of all fields in the
Event object. It also contains details regarding which fields are valid during POST
actions.

Chapter 4: Resources

Important Changes
l The following fields have been renamed in API version 3:

Name in version 1 & 2 Name in version 3

eventTime eventDate

sourceComponent origin

errorMessage.message message

relatedObjects associatedObjects

l The following fields have been removed in API version 3:

MWS will no longer report these fields, even if there are existing events in the
database with these fields.

o eventCategory

o status

o facility

o initiatedBy

o primaryObject (primary objects are now reported in
associatedObjects)

o errorMessage.originator

o errorMessage.errorCode

o details

l The following fields were introduced in API version 3 (see Fields: Events):
o arguments

o code

Supported Methods

Resource GET PUT POST DELETE

/rest/events Get All Events -- Create Event --

/rest/events/<id> Get Single Event -- -- --

Chapter 4: Resources

154 4.6 Events

4.6 Events 155

In this section:

l Getting Events
o Get All Events
o Get Single Event

l Creating Events
o Create Event

4.6.1 Getting Events
The HTTP GET method is used to retrieve Event information. Queries for all objects and a
single object are available.

Quick Reference
GET https://localhost:8080/mws/rest/events?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET https://localhost:8080/mws/rest/events/<id>?api-version=3

4.6.1.A Get All Events

URLs and Parameters
GET https://localhost:8080/mws/rest/events?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Parameter Required Type Value Example

query No JSON Query for specific results.
It is possible to query
events by one or more
fields based on MongoDB
query syntax.

query=
{"severity":"ERROR"}

sort No JSON Sort the results. Use 1 for
ascending and -1 for
descending.

sort={"id":-1}

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Sample Response
GET https://localhost:8080/mws/rest/events?api-version=3

{
"totalCount":2,
"resultCount":2,
"results":[

{
"arguments":[

],
"associatedObjects":[

{
"type":"VM",
"id":"vm1"

}
],
"code":234881023,
"eventDate":"2024-06-10 17:13:31 UTC",
"eventType":"VM Provision",
"message":null,
"origin":"CSA Plugin",
"severity":"INFO",
"id":"51b6093bc4aa708a5bebb6ae"

},
{

"arguments":[
"51b608ddc4aa708a5bebb684"

],
"associatedObjects":[

{
"type":"Service",
"id":"51b608ddc4aa708a5bebb684"

}
],
"code":33554944,
"eventDate":"2024-06-10 17:11:59 UTC",
"eventType":"Service Create",
"message":"The service '51b608ddc4aa708a5bebb684' was created",
"origin":"MWS/ServiceEvents/CREATE_1ID",
"severity":"INFO",
"id":"51b608dfc4aa708a5bebb686"

}
]

}

Querying Events
It is possible to query events by one or more fields based on MongoDB query syntax. The
following contains examples of simple and complex event queries and event queries by
date.

Simple queries:

Chapter 4: Resources

156 4.6 Events

http://docs.mongodb.org/manual/reference/operator/

4.6 Events 157

l To see only events that are of type "Service Create":

https://localhost:8080/mws/rest/events?api-version=3&query={"eventType":"Service
Create"}

l To see only events of type "Service Create" with the severity of "INFO":

https://localhost:8080/mws/rest/events?api-version=3&query={"eventType":"Service
Create","severity":"INFO"}

l To see only events with a code of 33554946:

https://localhost:8080/mws/rest/events?api-version=3&query={code:33554946}

More complex queries:

l You can query on embedded JSON objects within the event JSON. For example, to see
events associated with service 51b608ddc4aa708a5bebb684:

https://localhost:8080/mws/rest/events?api-version=3&query=
{"associatedObjects.id":"51b608ddc4aa708a5bebb684"}

l To see only events that are NOT associated with service
51b608ddc4aa708a5bebb684:

https://localhost:8080/mws/rest/events?api-version=3&query=
{"associatedObjects.id":{"$ne":"51b608ddc4aa708a5bebb684"}}

l When the field values of the desired events are a finite set, you can use the $in
operator. For example, to see events that have a severity of either WARN or ERROR:

https://localhost:8080/mws/rest/events?api-version=3&query={"severity":{"$in":
["ERROR","WARN"]}}

Querying events by date:

l To see events created before January 27, 2025 at 12:08 A.M. UTC:

https://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$lt":"2025-01-27 12:08:00 UTC"}}

l To see events created before or on January 27, 2025 at 12:08 A.M. UTC:

https://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$lte":"2025-01-27 12:08:00 UTC"}}

l To see all events created after January 27, 2025 at 12:04 A.M. UTC:

https://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$gt":"2025-01-27 12:04:00 UTC"}}

l To see all events created after or on January 27, 2025 at 12:04 A.M. UTC:

https://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":

Chapter 4: Resources

{"$gte":"2025-01-27 12:04:00 UTC"}}

l To see events created between 12:04 A.M. and 12:08 A.M. UTC inclusive:

https://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$gte":"2025-01-27 12:04:00 UTC","$lte":"2025-01-27 12:08:00 UTC"}}

l To see events created between 12:04 A.M. and 12:08 A.M. UTC inclusive that have a
severity of ERROR:

https://localhost:8080/mws/rest/events?api-version=3&query=
{"severity":"ERROR","eventDate":{"$gte":"2025-01-27 12:04:00 UTC","$lte":"2025-
01-27 12:08:00 UTC"}}

Sorting
See the sorting section of 3.3 Global URL Parameters.

Limiting the Number of Results
l If you want to limit the number of results of events, you can use the max parameter.
For example, to see only 10 "VM Provision" events:

https://localhost:8080/mws/rest/events?api-version=3&query={"eventType":"VM
Provision"}&sort={"eventDate":1}&max=10

l To see "VM Provision" events 51-60 when sorted by eventDate in descending order,
you can combine max with offset, as follows:

https://localhost:8080/mws/rest/events?api-version=3&query={"eventType":"VM
Provision"}&sort={"eventDate":-1}&max=10&offset=50

4.6.1.B Get Single Event

URLs and Parameters
GET https://localhost:8080/mws/rest/events/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/events/51b608dfc4aa708a5bebb686?api-version=3

Chapter 4: Resources

158 4.6 Events

4.6 Events 159

{
"arguments": ["51b608ddc4aa708a5bebb684"],
"associatedObjects": [{
"type": "Service",
"id": "51b608ddc4aa708a5bebb684"

}],
"code": 33554944,
"eventDate": "2024-06-10 17:11:59 UTC",
"eventType": "Service Create",
"message": "The service '51b608ddc4aa708a5bebb684' was created",
"origin": "MWS/ServiceEvents/CREATE_1ID",
"severity": "INFO",
"id": "51b608dfc4aa708a5bebb686"

}

4.6.2 Creating Events
The HTTP POST method is used to create an Event.

Quick Reference
POST https://localhost:8080/mws/rest/events?api-version=3

4.6.2.A Create Event

URLs and Parameters
POST https://localhost:8080/mws/rest/events?api-version=3

Request Body
POST https://localhost:8080/mws/rest/events?api-version=3 Content-
Type:application/json

{
"arguments": ["vm1"],
"associatedObjects": [{
"type": "VM",
"id": "vm1"

}],
"code": 234881023,
"eventDate": "2024-06-10 17:13:31 UTC",
"eventType": "VM Provision",
"message": "The virtual machine \"vm1\" was provisioned",
"origin": "CSA Plugin",
"severity": "INFO"

}

Chapter 4: Resources

Sample Response
If the request was successful, the response will be an object with an id property
containing the ID of the newly created events. On failure, the response is an error message.

JSON response

{"arguments":["vm1"],"associatedObjects":[{"_
id":"vm1","id":"vm1","type":"VM","version":0}],"code":234881023,"eventDate":"2024-06-
10 17:13:31 UTC","eventType":"VM
Provision","id":"51b62046c4aa708a5bebc018","message":"The virtual machine vm1 was
provisioned","origin":"CSA Plugin","severity":"INFO","version":0}

Below is an example of events.log output for a successful event request:

2024-06-10T11:13:31.000-06:00 severity="INFO" code="0x0dffffff" type="VM Provision"
origin="CSA Plugin" associatedObject.0.type="VM" associatedObject.0.id="vm1"
arguments=["vm1"] message="The virtual machine \"vm1\" was provisioned"

Note that " (double quote) characters in the input have been replaced by \"
characters in the output. (For other character restrictions, see Restrictions below).

Restrictions
Special characters—such as newline, carriage return, and " (double quote) characters—
are encoded in the output of events.log to make events.log easy to parse with
scripts and third party tools. For example, if the input XML contains:

<ErrorMessage>RM says, "Cannot provision vm21"</ErrorMessage>

Then the following will be output to events.log:

error.message="RM says, \"Cannot provision vm21\""

(Notice that " has been replaced with \").

This table contains the most common encodings. (For more information, see escape
sequences for Java Strings).

Character Escape Sequence

" (double quote) \"

\ (backslash) \\

newline \n

carriage return \r

Chapter 4: Resources

160 4.6 Events

http://docs.oracle.com/javase/tutorial/java/data/characters.html
http://docs.oracle.com/javase/tutorial/java/data/characters.html

4.7 Fairshare 161

Character Escape Sequence

tab \t

Other restrictions include: origin, eventType, associatedObject.id, and
associatedObject.type cannot contain single quotes (') or double quotes (").

Related Topics

l 4.14 Notifications

l 8.4.11 Fields: Notifications

l 4.13 Notification Conditions

l 8.4.10 Fields: Notification Conditions

l 8.4.4 Fields: Events

l 3.9 System Events

l 6.2.12 Creating Events and Notifications

l 6.6.6 Plugin Event Service

l 6.2.13 Handling Events

l 1.2.5 Securing the Connection with the Message Queue

4.7 Fairshare

This section describes behavior of the Fairshare object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The supported methods table below requires each resource to be accessed with a
URL parameter of api-version=3. For more information, see 3.4 Requesting
Specific API Versions.

Supported Methods

Resource GET PU
T

POS
T

DELET
E

/rest/policies/fairshare Get All -- -- --

Chapter 4: Resources

Resource GET PU
T

POS
T

DELET
E

Fairshar
e
Interval
Data

/rest/policies/fairshare/<credentialType> Get all
Fairshar
e
Interval
Data for
a Single
Credenti
al Type

-- -- --

/rest/policies/fairshare/<credentialType>/<n
ame>

Get all
Fairshar
e
Interval
Data for
a Single
Credenti
al

-- -- --

In this section:

l Getting Credential-Based Fairshare Interval Data
o Get All Fairshare Interval Data
o Get all Fairshare Interval Data for a Single Credential Type
o Get all Fairshare Interval Data for a Single Credential

4.7.1 Getting Credential-Based Fairshare Interval Data
The HTTP GET method is used to retrieve Policies information.

Quick Reference
GET https://localhost:8080/mws/rest/policies/fairshare/credentials?api-version=3
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/accounts?api-
version=3
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/classes?api-
version=3
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/groups?api-
version=3
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/qoses?api-version=3

Chapter 4: Resources

162 4.7 Fairshare

4.7 Fairshare 163

GET https://localhost:8080/mws/rest/policies/fairshare/credentials/users?api-version=3
GET
https://localhost:8080/mws/rest/policies/fairshare/credentials/accounts/<name>?api-
version=3
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/classes/<name>?api-
version=3
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/groups/<name>?api-
version=3
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/qoses/<name>?api-
version=3
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/users/<name>?api-
version=3

4.7.1.A Get All Fairshare Interval Data

URLs and Parameters
GET https://localhost:8080/mws/rest/policies/fairshare/credentials?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/policies/fairshare/credentials?api-version=3

{
"totalCount": 4,
"resultCount": 4,
"results": [
{
"name": "jbethune",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,
0

],
"credential_type": "USER"

},
{
"name": "jfoote",
"target_type": null,
"target": null,
"interval_data": [
2104.16,
2377.06,
2240.1,
2550

],
"credential_type": "GROUP"

},
{
"name": "NOGROUP",
"target_type": null,
"target": null,
"interval_data": [
0,

Chapter 4: Resources

0,
0,
0

],
"credential_type": "GROUP"

},
{
"name": "DEFAULT",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,
0

],
"credential_type": "ACCOUNT"

},
{
"name": "Administration",
"target_type": null,
"target": null,
"interval_data": [
5256.28,
6247.05,
6048.27,
6948.67

],
"credential_type": "ACCOUNT"

}
]

}

4.7.1.B Get all Fairshare Interval Data for a Single Credential Type

URLs and Parameters
GET
https://localhost:8080/mws/rest/policies/fairshare/credentials/<accounts|classes|group
s|qoses|users>?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Responses
GET https://localhost:8080/mws/rest/policies/fairshare/credentials/accounts?api-
version=3

{
"totalCount": 6,
"resultCount": 6,
"results": [
{
"name": "jbethune",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,

Chapter 4: Resources

164 4.7 Fairshare

4.7 Fairshare 165

0
],
"credential_type": "ACCOUNT"

},
{
"name": "Administration",
"target_type": null,
"target": null,
"interval_data": [
5256.28,
6247.05,
6048.27,
6948.67

],
"credential_type": "ACCOUNT"

},
{
"name": "Shared",
"target_type": null,
"target": null,
"interval_data": [
4261.38,
4951.09,
4480.2,
5000.54

],
"credential_type": "ACCOUNT"

},
{
"name": "Engineering",
"target_type": null,
"target": null,
"interval_data": [
15034.64,
17245.93,
15008.67,
17085

],
"credential_type": "ACCOUNT"

},
{
"name": "Test",
"target_type": null,
"target": null,
"interval_data": [
1808.08,
1873.96,
1568.07,
1757.33

],
"credential_type": "ACCOUNT"

},
{
"name": "Research",
"target_type": null,
"target": null,
"interval_data": [
47606.8,
52861.83,
46370.07,
52785

],
"credential_type": "ACCOUNT"

}
]

}

Chapter 4: Resources

4.7.1.C Get all Fairshare Interval Data for a Single Credential

URLs and Parameters
GET
https://localhost:8080/mws/rest/policies/fairshare/credentials/<accounts|classes|group
s|qoses|users>/<name>?api-version=3

Parameter Required Type Value Description

name Yes String -- The unique name of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET
https://localhost:8080/mws/rest/policies/fairshare/credentials/accounts/DEFAULT?api-
version=3

{
"name": "DEFAULT",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,
0

],
"credential_type": "ACCOUNT"

}

Related Topics

l 4.18 Policies

4.8 Job Arrays

This section describes behavior of the Job Array object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Job Arrays reference section contains the type and description of all fields
in the Job Array object.

Chapter 4: Resources

166 4.8 Job Arrays

4.8 Job Arrays 167

Supported Methods

Resource GET PUT POST DELETE

/rest/job-arrays -- -- Submit Job Array --

In this section:

l Submitting Job Arrays
o Submit Job Array

4.8.1 Submitting Job Arrays
The HTTP POST method is used to submit Job Arrays.

Quick Reference
POST https://localhost:8080/mws/rest/job-arrays?api-version=3[&proxy-user=<username>]

While the Job Array resource only gives access to create job arrays, job arrays are
retrieved using the operations in Getting Job Information.

Restrictions
All restrictions present for Submitting Jobs are present for job arrays. In addition, job
arrays are only supported if the ENABLEJOBARRAYS parameter is set to TRUE in the
moab.cfg file. For example:

ENABLEJOBARRAYS TRUE

4.8.1.A Submit Job Array

URLs and Parameters
POST https://localhost:8080/mws/rest/job-arrays?api-version=3[&proxy-user=<username>]

Parameter Required Type Value Description

proxy-user No String -- Perform this action as this user.

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

Request Body
To submit a job array, only two fields are required: jobPrototype and one of
indexValues or indexRanges. Both index ranges and values can be specified if
desired.

The request body below shows all the fields that are available during job array submission,
although the jobPrototype shown is a simple example and does not utilize all fields of a
job submission.

The jobPrototype field has the same properties as a typical job submission.
Consequently the api-version of the job array will apply to the jobPrototype like it
does when you submit jobs, so the api-version in the call must match the api-version
of the job. Examples of this can be seen in Submitting Jobs.

JSON request body

{
"name": "myarray",
"indexRanges": [{
"startIndex": 11,
"endIndex": 25,
"increment": 2

}],
"indexValues": [2, 4, 6, 8, 10],
"slotLimit": 2,
"cancellationPolicy": {
"firstJob": "FAILURE",
"anyJob": "SUCCESS"

},
"jobPrototype": {
"commandFile": "/tmp/test.sh",
"initialWorkingDirectory": "/tmp",
"requirements": [{"taskCount": 4}]

}
}

Sample Response
The response of this task is the same as submitting a job (see Submit Job).

Related Topics

l 8.4.5 Fields: Job Arrays

l 4.9 Jobs

l 4.10 Job Templates

Chapter 4: Resources

168 4.8 Job Arrays

4.9 Jobs 169

4.9 Jobs

This section describes behavior of the Job object in MWS. It contains the URLs, request
bodies, and responses delivered to and from MWS.

The supported methods table below requires each resource to be accessed with a
URL parameter of api-version=3 in order to behave as documented. For more
information, see 3.4 Requesting Specific API Versions.

The 8.4.6 Fields: Jobs reference contains the type and description of all fields in the
Job object. It also contains details regarding which fields are valid during PUT and
POST actions.

4.9.1 Supported Methods

Resource GET PUT POST DELET
E

/rest/jobs Get All
Jobs

-- Submi
t Job

--

/rest/jobs/<name> Get Single
Job

Get Job
Priority
Informatio
n

Get Job
Analysis
Informatio
n

Generic
Resources

Modify
Job
Attribute
s

-- Cancel
Job

/rest/jobs/<name>/<modifyActio
n>

-- Perform
Actions
on Job

-- --

In this section:

Chapter 4: Resources

l Getting Job Information
o Get All Jobs
o Get Single Job
o Get Job Priority Information
o Get Job Analysis Information

l Submitting Jobs
o Submit Job

l Modifying Jobs
o Modify Job Attributes
o Generic Resources
o Perform Actions on Job

l Deleting (Canceling) Jobs
o Cancel Job

4.9.2 Getting Job Information
The HTTP GET method is used to retrieve Job information. You can also append the
command with priority-analysis=true or node-analysis=true to get priority or eligibility
information about the job.

Quick Reference
GET https://localhost:8080/mws/rest/jobs/<name>?api-version=3

4.9.2.A Get All Jobs

URLs and Parameters
GET https://localhost:8080/mws/rest/jobs?api-version=3

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query by one or more
fields based on MongoDB query
syntax.

query=
{"isActive":true}

Chapter 4: Resources

170 4.9 Jobs

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

4.9 Jobs 171

Parameter Required Type Description Example

sort No JSON Sort the results. Use 1 for ascending
and -1 for descending.

sort={"name":-
1}

See 3.3 Global URL Parameters for available URL parameters.

How to Get All Jobs
GET https://localhost:8080/mws/rest/jobs?api-version=3&fields=name,flags&max=3

{
"totalCount": 8,
"resultCount": 3,
"results": [

{
"flags": ["GLOBALQUEUE"],
"name": "Moab.1"

},
{

"flags": ["GLOBALQUEUE"],
"name": "Moab.2"

},
{

"flags": ["GLOBALQUEUE"],
"name": "Moab.4"

}
]

}

How to Get a Subset of Jobs
Get active jobs

https://localhost:8080/mws/rest/jobs?api-version=3&query={"isActive":true}

Get completed jobs

https://localhost:8080/mws/rest/jobs?api-version=3&query={"isActive":false}

Get jobs owned by a particular user

https://localhost:8080/mws/rest/jobs?api-version=3&query={"credentials.user":"fred"}

Known Issues
Some jobs are not returned if DisplayFlags UseBlocking is set in the moab.cfg
file.

Chapter 4: Resources

4.9.2.B Get Single Job

URLs and Parameters
GET https://localhost:8080/mws/rest/jobs/<name>?api-version=3

Parameter Required Type Value Description

name Yes String -- The name of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"arrayIndex": null,
"arrayMasterName": null,
"attributes": [],
"blocks": >

{
"category": "jobBlock">
"createdDate": "2024-06-22 19:08:30 UTC",
"message": null,
"partition": null,
"type": null

}
]>
"bypassCount": 0,
"cancelCount": 0,
"commandFile": "/tmp/test.sh",
"commandLineArguments": null,
"completionCode": null,
"cpuTime": 0,
"credentials": {

"account": null,
"group": "adaptive",
"jobClass": null,
"qos": "NONE",
"qosRequested": null,
"user": "adaptive"

},
"customName": null,
"dates": {

"completedDate": null,
"createdDate": "2024-10-11 17:58:16 UTC",
"deadlineDate": "2037-10-24 12:26:40 UTC",
"dispatchedDate": null,
"earliestRequestedStartDate": null,
"earliestStartDate": "2024-10-11 17:58:18 UTC",
"eligibleDate": "2024-10-11 17:59:19 UTC",
"lastCanceledDate": null,
"lastChargedDate": null,
"lastPreemptedDate": null,

Chapter 4: Resources

172 4.9 Jobs

4.9 Jobs 173

"lastUpdatedDate": "2024-10-11 17:59:19 UTC",
"startDate": null,
"submitDate": "2024-10-11 17:58:16 UTC",
"terminationDate": "2037-10-24 12:26:40 UTC"

},
"deferCount": 0,
"dependencies": [],
"description": null,
"duration": 8639999,
"durationActive": 0,
"durationMinimum": 0,
"durationQueued": 31,
"durationRemaining": 0,
"durationSuspended": 0,
"emailNotifyAddresses": [],
"emailNotifyTypes": [],
"environmentRequested": false,
"environmentVariables": {},
"epilogScript": null,
"flags": [

"GLOBALQUEUE"
],
"holdDate": null,
"holdReason": null,
"holds": [],
"initialWorkingDirectory": "/tmp",
"isActive": true,
"jobGroup": null,
"masterNode": null,
"memorySecondsDedicated": 0,
"memorySecondsUtilized": 0,
"messages": [],
"migrateCount": 0,
"minimumPreemptTime": 0,
"mwmName": "Moab",
"name": "Moab.15",
"nodesExcluded": [],
"nodesRequested": [],
"nodesRequestedPolicy": null,
"partitionAccessList": [

"torque"
],
"partitionAccessListRequested": [

"mws",
"torque",
"SHARED"

],
"partitionAccessListScheduler": [

"mws",
"torque",
"SHARED"

],
"preemptCount": 0,
"priorities": {

"run": 0,
"start": 1,
"system": 0,
"user": 0

},
"processorSecondsDedicated": 0,
"processorSecondsLimit": 0,
"processorSecondsUtilized": 0,

Chapter 4: Resources

"prologScript": null,
"queueStatus": "blocked",
"rank": 0,
"rejectPolicies": [],
"requirements": [

{
"architecture": null,
"attributes": {

"matlab": [
{

"comparator": "<=",
"displayValue": null,
"restriction": "must",
"value": "7.1"

>
],
"soffice": [

{
"comparator": "%=",
"displayValue": null,
"restriction": "must",
"value": "3.1"

}
]

},
"dedicateAllProcessors": true,
"features": [],
"featuresExcluded": [],
"featuresExcludedMode": "AND",
"featuresRequested": [],
"featuresRequestedMode": "AND",
"index": 0,
"metrics": {},
"nodeAccessPolicy": null,
"nodeAllocationPolicy": null,
"nodeCount": 0,
"nodeSet": null,
"nodes": [],
"operatingSystem": null,
"reservation": null,
"resourcesPerTask": {

"disk": {
"dedicated": 0,
"utilized": null

},
"memory": {

"dedicated": 0,
"utilized": 0

},
"processors": {

"dedicated": 1,
"utilized": 0

},
"swap": {

"dedicated": 0,
"utilized": null

}
},
"taskCount": 4,
"tasksPerNode": 0,
"totalDedicatedProcessors": 1

}

Chapter 4: Resources

174 4.9 Jobs

4.9 Jobs 175

],
"reservationRequested": null,
"resourceFailPolicy": null,
"resourceManagerExtension": null,
"resourceManagers": [

{
"isDestination": false,
"isSource": true,
"jobName": "Moab.15",
"name": "internal"

}
],
"shellName": "/bin/bash",
"standardErrorFilePath": null,
"standardOutputFilePath": null,
"startCount": 0,
"states": {

"state": "Idle",
"stateExpected": "Idle",
"stateLastUpdatedDate": null,
"subState": null

},
"submitCommandFile": "/home/ace/jobscript.sh",
"submitHost": "0:0:0:0:0:0:0:1",
"systemJobType": null,
"templates": [

{
"name": "DEFAULT"

}
],
"triggers": [],
"variables": {},
"virtualContainers": []

}

Job Arrays
l If a job is the master of a job array, the response will have some additional fields set
as shown in the following example. The name field is chosen by the Moab HPC Suite,
and the customName field comes from the Fields: Job Arrays name field.

Job array master

{
"name": "Moab.5",
"customName": "myarray",
"flags": [
"ARRAYMASTER",
"GLOBALQUEUE",
"CANCELONFIRSTFAILURE",
"CANCELONANYSUCCESS"

]
}

l If a job is a subjob of an array, the response will have other fields set as shown in the
following example:

Chapter 4: Resources

Array subjob

{
"name": "Moab.5[21]",
"customName": "myarray",
"arrayIndex": 21,
"arrayMasterName": "Moab.5",
"flags": [
"ARRAYJOB",
"GLOBALQUEUE",
"CANCELONFIRSTFAILURE",
"CANCELONANYSUCCESS"

]
}

4.9.2.C Get Job Priority Information
The priority-analysis parameter is used to get job priority information.

URLs and Parameters
GET https://localhost:8080/mws/rest/jobs/<name>?api-version=3&priority-analysis=true

Parameter Required Type Value Description

name Yes String -- The name of the job.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{

priorities: {
start: 36,
system: 0,
components: {

service: {
weight: 2,
queuetime: {

weight: 1,
value: 33

},
xfactor: {

weight: 0,
value: 1.559722

},
deadline: {

weight: 0,
value: 0

},
policyviolation: {

weight: 0,
value: 0

Chapter 4: Resources

176 4.9 Jobs

4.9 Jobs 177

},
userprior: {

weight: 3,
value: -5

},
startcount: {

weight: 0,
value: 0

},
bypass: {

weight: 0,
value: 0

}
},
target: {

weight: 1,
queuetime: {

weight: 0,
value: 0

},
xfactor: {

weight: 0,
value: 0

}
},
credential: {

weight: 1,
user: {

weight: 0,
value: 0

},
group: {

weight: 0,
value: 0

},
account: {

weight: 0,
value: 0

},
qos: {

weight: 0,
value: 0

}
},
attribute: {

weight: 1,
attribute: {

weight: 0,
value: 0

},
gres: {

weight: 0,
value: 0

},
jobid: {

weight: 0,
value: 0

},
jobname: {

weight: 0,
value: 0

},
state: {

weight: 0,
value: 0

}
},

Chapter 4: Resources

fairshare: {
weight: 1,
user: {

weight: 0,
value: 0

},
group: {

weight: 0,
value: 0

},
account: {

weight: 0,
value: 0

},
qos: {

weight: 0,
value: 0

},
guser: {

weight: 0,
value: 0

},
ggroup: {

weight: 0,
value: 0

},
gaccount: {

weight: 0,
value: 0

},
userwcacc: {

weight: 0,
value: 0

},
jobsperuser: {

weight: 0,
value: 0

},
jobsrunningperuser: {

weight: 0,
value: 0

},
procsperuser: {

weight: 0,
value: 0

},
psperuser: {

weight: 0,
value: 0

}
},
resource: {

weight: 1,
node: {

weight: 0,
value: 0

},
proc: {

weight: 0,
value: 1

},
memory: {

weight: 0,
value: 0

},
swap: {

weight: 0,

Chapter 4: Resources

178 4.9 Jobs

4.9 Jobs 179

value: 0
},
disk: {

weight: 0,
value: 0

},
procsecond: {

weight: 0,
value: 3600

},
procequivalent: {

weight: 0,
value: 1

},
walltime: {

weight: 0,
value: 3600

}
},
usage: {

weight: 1,
consumed: {

weight: 0,
value: 0

},
remaining: {

weight: 0,
value: 0

},
percentconsumed: {

weight: 0,
value: 0

},
executiontime: {

weight: 0,
value: 0

}
}

}
}

}

4.9.2.D Get Job Analysis Information
The job-analysis parameter is used to get an analysis of the job's eligibility to run on the
nodes managed by Moab.

URLs and Parameters
GET https://localhost:8080/mws/rest/jobs/<name>?api-version=3&job-analysis=true

Parameter Required Type Value Description

name Yes String -- Name of the job.

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

Sample Response
JSON response

{
"name": "37",
"warnings": [
"job cannot run (job has hold in place)",
"job cannot run (insufficient available procs: 0 available)"

],
"nodes": [{
"name": "node01",
"message": "node01 rejected: State (Busy)"

}]
}

4.9.3 Submitting Jobs
The HTTP POST method is used to submit Jobs.

Quick Reference
POST https://localhost:8080/mws/rest/jobs?api-version=3[&proxy-user=<username>]

Restrictions
No more than one virtual container can be specified in the request. The virtual container
must already exist.

The credentials.user and credentials.group properties are used to submit a
job as the specified user belonging to the specified group.

Job variables have the following restrictions:

l Variable names cannot contain equals (=), semicolon (;), colon (:), plus (+), question
mark (?), caret (^), backslash (\), or white space.

l Variable values cannot contain semicolon (;), colon (:), plus (+), or caret (^).

When submitting jobs, the only supported hold type is User.

The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the
moab.cfg file, for example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.9.3.A Submit Job

URLs and Parameters
POST https://localhost:8080/mws/rest/jobs?api-version=3[&proxy-user=<username>]

Chapter 4: Resources

180 4.9 Jobs

4.9 Jobs 181

Parameter Required Type Value Description

proxy-user No String -- Perform the action as this user.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
JSON request body (specified host list)

{
"attributes": [
"attr1",
"attr2"

],
"commandFile": "/tmp/test.sh",
"commandScript": "c2xlZXAgNjAK",
"commandLineArguments": "\"a b c\"",
"credentials": {
"account": "account",
"group": "group",
"jobClass": "BATCH",
"qosRequested": "QOS1",
"user": "saadmin"

},
"customName": "custom_name_for_job",
"dates": {
"earliestRequestedStartDate": "2024-11-08 13:18:47 UTC",
"deadlineDate": "2024-02-17 14:00:00 UTC"

},
"dependencies": [

{
"type": "set",
"name": "vc1.varA"

},
{

"type": "set",
"name": "vc2.varB"

},
{

"type": "set",
"name": "vc3.varC"

}
],
"duration": 600,
"emailNotifyAddresses": [
"user3@ac.com",
"user4@ac.com"

],
"emailNotifyTypes": [
"JobStart",
"JobEnd"

],
"environmentRequested": true,
"environmentVariables": {
"var1": "val1",
"var2": "val2"

},

Chapter 4: Resources

"epilogScript": "/tmp/epilog.sh",
"flags": [
"RESTARTABLE",
"SUSPENDABLE"

],
"holds": ["User"],
"initialWorkingDirectory": "/tmp",
"jobGroup": "job_group",
"nodesExcluded": [
{"name": "node07"},
{"name": "node08"}

],
"nodesRequested": [
{"name": "node01"},
{"name": "node02"}

],
"nodesRequestedPolicy": "SUBSET",
"partitionAccessListRequested": [
"p1",
"p2"

],
"priorities": {"user": -5},
"prologScript": "/tmp/prolog.sh",
"requirements": [{
"architecture": "x86_64",
"attributes":{
"matlab": [

{
"restriction":"must",
"comparator": "<=",
"value": "7.1"

}
],
"soffice": [

{
"restriction":"must",
"comparator": "%=",
"value": "3.1"

}
]

},
"featuresRequested": [
"a",
"b",
"c"

],
"featuresRequestedMode": "OR",
"featuresExcluded": [
"d",
"e",
"f"

],
"featuresExcludedMode": "AND",
"nodeAccessPolicy": "SINGLEJOB",
"nodeAllocationPolicy": "PRIORITY",
"nodeCount": 6,
"nodeSet":"FIRSTOF:FEATURE:vlan2",
"operatingSystem": "linux",
"resourcesPerTask": {
"disk": {"dedicated": 1024},
"memory": {"dedicated": 512},
"processors": {"dedicated": 2},

Chapter 4: Resources

182 4.9 Jobs

4.9 Jobs 183

"swap": {"dedicated": 4096},
"matlab": {"dedicated": 6},
"intellij": {"dedicated": 2}
"gpus": {"dedicated": 2}

},
"taskCount": 4,
"tasksPerNode": 14

}],
"reservationRequested": {"name": "rsv.1"},
"resourceFailPolicy": "RETRY",
"resourceManagerExtension": "x=PROC=4",
"shellName": "/bin/bash",
"standardErrorFilePath": "/tmp/error",
"standardOutputFilePath": "/tmp/out",
"templates": [
{"name": "template1"},
{"name": "template2"}

],
"variables": {
"var1": "val1",
"var2": "val2"

},
"virtualContainers": [{"name": "vc1"}]

}

Sample Response
The response of this task is one of three possibilities:

l An object with a single messages property containing a list of error messages on
failure:

{"messages":["Could not create job - invalid requirements"]}

l An object with a name property containing the name of the newly created job:

{"name":"Moab.1"}

l An object with a name property and a virtualContainers list containing the
name of the newly created virtual container:

{ "name": "Moab.1", "virtualContainers": [{"name": "vc1"}] }

The virtual container will only be reported when a new virtual container has
been created by Moab HPC Suite for the job.

Examples of Job Submission
This section includes some sample job submission requests.

Example 4-2: Submit job to run on node2 and node3

POST https://localhost:8080/mws/rest/jobs?api-version=3

Chapter 4: Resources

{
"commandFile": "/tmp/test.sh",
"credentials": {
"group": "adaptive",
"user": "adaptive"

},
"initialWorkingDirectory": "/tmp",
"nodesRequested": [
{"name": "node2"},
{"name": "node3"}

]
}

Example 4-3: Submit job that requires 20 processors

POST https://localhost:8080/mws/rest/jobs?api-version=3

{
"commandFile": "/tmp/test.sh",
"credentials": {
"group": "adaptive",
"user": "adaptive"

},
"initialWorkingDirectory": "/tmp",
"requirements": [{"taskCount": 20}]

}

Example 4-4: Submit job to run after a certain time

POST https://localhost:8080/mws/rest/jobs?api-version=3

{
"commandFile": "/tmp/test.sh",
"credentials": {
"group": "adaptive",
"user": "adaptive"

},
"dates": {"earliestRequestedStartDate": "2024-10-11 18:36:35 UTC"},
"initialWorkingDirectory": "/tmp",
"requirements": [{"taskCount": 20}]

}

Example 4-5: Submit job based onmsub

Given this msub command:

msub -l nodes=3:ppn=2,walltime=1:00:00,pmem=100 script2.pbs.cmd

Here is an equivalent MWS request:

POST https://localhost:8080/mws/rest/jobs?api-version=3

{
"duration": 3600,
"commandFile": "/home/adaptive/script2.pbs.cmd",

Chapter 4: Resources

184 4.9 Jobs

4.9 Jobs 185

"credentials": {
"group": "adaptive",
"user": "adaptive"

},
"initialWorkingDirectory": "/home/adaptive",
"requirements": [{
"resourcesPerTask": {"memory": {"dedicated": 100}},
"taskCount": 6,
"tasksPerNode": 2

}]
}

To emulate what msub does, make commandFile an absolute path, and add
credentials.user, credentials.group, and
initialWorkingDirectory. As shown above, nodes=3:ppn=2 is equivalent
to setting taskCount to 6 and tasksPerNode to 2.

Example 4-6: Submit a job array (for information on how to submit a job array, see Submitting Job Arrays)

4.9.4 Modifying Jobs
The HTTP PUT method is used to modify Jobs.

Quick Reference
PUT https://localhost:8080/mws/rest/jobs/<name>[/<modifyAction>]?api-version=3[&proxy-
user=<username>]

Restrictions
The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the
moab.cfg file, for example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.9.4.A Modify Job Attributes

URLs and Parameters
PUT https://localhost:8080/mws/rest/jobs/<name>?api-version=3[&proxy-user=<username>]
[&change-mode=set]

Parameter Required Type Value Description

name Yes String -- The name of the object.

proxy-user No String -- Perform the action as this user.

Chapter 4: Resources

See 3.3 Global URL Parameters for available URL parameters.

Additional URL Parameters

Parameter Required Value Description

change-
mode

No set
(default)
add
remove

If set, replace all fields with the fields specified.
If add, add the specified fields to existing fields.
If remove, remove the specified fields from
existing fields.

Request Body
The request body below shows all the fields that are available when modifying a job, along
with some sample values:

JSON request body

{
"credentials": {
"account": "account",
"jobClass": "BATCH",
"qosRequested": "QOS1"

},
"customName": "custom_name_for_job",
"dates": {"earliestRequestedStartDate": "2024-11-08 13:18:47 UTC"},
"duration": 600,
"flags": [
"RESTARTABLE",
"SUSPENDABLE"

],
"holds": ["User"],
"messages": [
{"message": "Message one"},
{"message": "Message two"}

],
"nodesRequested": [
{"name": "n015"},
{"name": "n016"},
{"name": "n017"},
{"name": "n018"}

],
"partitionAccessListRequested": [
"p1",
"p2"

],
"priorities": {
"system": 3,
"user": -5

},
"requirements": [{
"features": [
"vlan1",
"vlan2"

],

Chapter 4: Resources

186 4.9 Jobs

4.9 Jobs 187

"resourcesPerTask": {
"matlab": {"dedicated": 1},
"tape": {"dedicated": 2}

}
}],
"reservationRequested": {"name": "rsv.1"},
"variables": {
"var1": "val1",
"var2": "val2"

}
}

Sample Response

These messages might not match the messages returned from Moab HPC Suite
exactly but are given as an example of the structure of the response.

Not all messages are shown for the above request body.

JSON response

{"messages": [
"Account modified successfully",
"Messages modified successfully",
"Variables modified successfully"

]}

Restrictions
Old messages are not removed from jobs; only new messages are added.

Job variables have the restrictions documented in the section Submitting Jobs.

Although the client can modify features and resourcesPerTask, Moab only
considers these elements when they appear in the first element of the requirements
array. If the requirements array contains two or more elements, all elements but the first
are silently ignored.

4.9.4.B Generic Resources
Jobs can require configurable, site-specific consumable resources called generic resources.
For example, some jobs may require a matlab license. Only one job at a time can legally
consume this license. Matlab is not a standard resource and may only be available on some
sites. Nevertheless Moab HPC Suite allows this to be configured and tracked as is explained
in 'Managing Consumable Generic Resources' in the Moab Workload Manager
Administrator Guide.

Chapter 4: Resources

You must specify generic resources in the requirements.resourcesPerTask
portion of the JSON document. Any resource in requirements.resourcesPerTask
that is not a standard resource is considered a generic resource. Standard resources
include disk, memory, processors, and swap. Assume a job has the following in
requirements.resourcesPerTask:

{
"resourcesPerTask":{
"processors":{
"dedicated":4,
"utilized":0

},
"memory":{
"dedicated":2048,
"utilized":0

},
"disk":{
"dedicated":4096,
"utilized":0

},
"swap":{
"dedicated":1024,
"utilized":0

},
"tape":{
"dedicated":1,
"utilized":0

},
"matlab":{
"dedicated":2,
"utilized":0

}
}

}

The standard resources the job requires are:

l 4 processors

l 2048 MB of memory

l 4096 MB of disk

l 1024 MB of swap

The generic resources the job requires are:

l 1 tape

l 2 matlab

To modify a job so that it requires 1 matlab license, run the following:

PUT https://localhost:8080/mws/rest/jobs/Moab.2?api-version=3
{
"requirements":[
{
"resourcesPerTask":{
"matlab":{
"dedicated":1

}

Chapter 4: Resources

188 4.9 Jobs

4.9 Jobs 189

}
}

]
}

4.9.4.C Perform Actions on Job

URLs and Parameters
PUT https://localhost:8080/mws/rest/jobs/<name>/<modifyAction>?api-version=3[&proxy-
user=<username>]

Parameter Required Type Value Description

name Yes String -- The name of the object.

modifyAction Yes String cancel
checkpoint
execute
hold
requeue
rerun
resume
suspend
unhold

If cancel, attempts to cancel the job
(equivalent to deleting a job).
If checkpoint, attempts to checkpoint
the job. Note that the OS must support
checkpointing for this to work.
If execute, executes the job (if
possible).
If hold, attempts to hold the job using
the holds set in the request body.
If requeue, attempts to requeue the
job.
If rerun, attempts to rerun the job.
If resume, attempts to resume the job.
If suspend, attempts to suspend the
job.
If unhold, attempts to release the
holds set in the request body.

proxy-user No String -- Perform the action as this user.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
Request bodies are only required for holding or unholding jobs. All other actions do not
require request bodies of any kind.

JSON request body to add holds to a job

Chapter 4: Resources

{"holds": ["User"]}

JSON request body to remove holds from a job

{"holds": ["User"]}

If no holds are specified when unholding a job, all holds will be removed. This is
equivalent to specifying holds as a list with a single element of All.

Sample Response

This message might not match the message returned from Moab HPC Suite exactly
but is given as an example of the structure of the response.

JSON response

{"messages": ["Job modified successfully"]}

4.9.5 Deleting (Canceling) Jobs
The HTTP DELETE method is used to cancel Jobs.

Quick Reference
DELETE https://localhost:8080/mws/rest/jobs/<name>?api-version=3[&proxy-
user=<username>]

Restrictions
The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the
moab.cfg file, for example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.9.5.A Cancel Job

URLs and Parameters
DELETE https://localhost:8080/mws/rest/jobs/<name>?api-version=3[&proxy-
user=<username>][&where={"state": "IDLE"}]

Chapter 4: Resources

190 4.9 Jobs

4.10 Job Templates 191

Parameter Required Type Value Description

name Yes String -- The name of the object.

proxy-
user

No String -- Perform the action as this user.

where No JSON -- Cancel the job only if the where condition is
satisfied.
For example: To cancel the job only if it is idle,
use where={"state": "IDLE"}

The only supported where condition is
"state".

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response for successful DELETE

{}

Additional information about the DELETE can be found in the HTTP response header
X-MWS-Message.

Related Topics

l 8.4.6 Fields: Jobs

l 4.8 Job Arrays

l 4.10 Job Templates

4.10 Job Templates

This section describes behavior of the Job Template object in MWS. It contains the
URLs, request bodies, and responses delivered to and from MWS.

Chapter 4: Resources

The 8.4.7 Fields: Job Templates reference section contains the type and description of
all fields in the Job Template object. It also contains details regarding which fields
are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/job-templates Get All Job Templates -- -- --

/rest/job-templates/<id> Get Single Job Template -- -- --

In this section:

l Getting Job Templates
o Get All Job Templates
o Get Single Job Template

4.10.1 Getting Job Templates
The HTTP GET method is used to retrieve Job Template information. Queries for all
objects and a single object are available.

Quick Reference
GET https://localhost:8080/mws/rest/job-templates/<id>?api-version=3

4.10.1.A Get All Job Templates

URLs and Parameters
GET https://localhost:8080/mws/rest/job-templates?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/job-templates?api-version=3&fields=id

{
"totalCount": 14,
"resultCount": 14,

Chapter 4: Resources

192 4.10 Job Templates

4.10 Job Templates 193

"results": [
{"id": "DEFAULT"},
{"id": "genericVM"},
{"id": "genericVM-setup"},
{"id": "genericVM-destroy"},
{"id": "genericVM-migrate"},
{"id": "genericPM"},
{"id": "genericPM-setup"},
{"id": "genericPM-destroy"},
{"id": "OSStorage"},
{"id": "OSStorage-setup"},
{"id": "OSStorage-destroy"},
{"id": "extraStorage"},
{"id": "extraStorage-setup"},
{"id": "extraStorage-destroy"}

]
}

4.10.1.B Get Single Job Template

URLs and Parameters
GET https://localhost:8080/mws/rest/job-templates/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"account": "account",
"args": "arg1 arg2",
"commandFile": "/tmp/script",
"description": "description",
"genericSystemJob": true,
"id": "genericVM",
"inheritResources": false,
"jobDependencies": [{
"name": "genericVM-setup",
"type": "JOBSUCCESSFULCOMPLETE"

}],
"jobTemplateFlags": ["SELECT"],
"jobTemplateRequirements": [{
"architecture": "x86_64",
"diskRequirement": 500,
"genericResources": {"tape": 3},
"nodeAccessPolicy": "SINGLEJOB",
"operatingSystem": "Ubuntu 10.04.3",
"requiredDiskPerTask": 200,

Chapter 4: Resources

"requiredFeatures": ["dvd"],
"requiredMemoryPerTask": 1024,
"requiredProcessorsPerTask": 2,
"requiredSwapPerTask": 512,
"taskCount": 4

}],
"priority": 20,
"qos": "qos",
"queue": "queue",
"durationRequested": 600,
"select": true,
"trigger": null,
"version": 0,

}

Related Topics

l 8.4.7 Fields: Job Templates

l 4.9 Jobs

l 4.8 Job Arrays

4.11 Metric Types

This section describes behavior of the Metric Type object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The 8.4.8 Fields: Metric Types reference section contains the type and description of
all fields in the Metric Type object.

Supported Methods

Resource GET PUT POST DELETE

/rest/metric-types Get All Metric Types -- -- --

In this section:

l Getting Metric Types
o Get All Metric Types

4.11.1 Getting Metric Types
The HTTP GET method is used to retrieve Metric Type information.

Chapter 4: Resources

194 4.11 Metric Types

4.12 Nodes 195

Quick Reference
GET https://localhost:8080/mws/rest/metric-types?api-version=3

4.11.1.A Get All Metric Types

URLs and Parameters
GET https://localhost:8080/mws/rest/metric-types?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/metric-types?api-version=3&fields=id

{
"totalCount": 9,
"resultCount": 9,
"results": [
{"id": "vmcount"},
{"id": "watts"},
{"id": "pwatts"},
{"id": "temp"},
{"id": "cpu"},
{"id": "mem"},
{"id": "io"},
{"id": "ccores"},
{"id": "threads"}

]
}

Related Topics

l 8.4.8 Fields: Metric Types

4.12 Nodes

This section describes behavior of the Node object in MWS. It contains the URLs, request
bodies, and responses delivered to and from MWS.

The supported methods table below requires each resource to be accessed with a
URL parameter of api-version=3 in order to behave as documented. For more
information, see 3.4 Requesting Specific API Versions.

Chapter 4: Resources

The 8.4.9 Fields: Nodes reference contains the type and description of all fields in the
Node object. It also contains details regarding which fields are valid during PUT and
POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/nodes Get All Nodes -- -- --

/rest/nodes/<name> Get Single Node Modify Node -- --

In this section:

l Getting Nodes
o Get All Nodes
o Get Single Node

l Modifying Nodes
o Modify Node

4.12.1 Getting Nodes
The HTTP GET method is used to retrieve Node information.

Quick Reference
GET https://localhost:8080/mws/rest/nodes/<name>?api-version=3

4.12.1.A Get All Nodes

URLs and Parameters
GET https://localhost:8080/mws/rest/nodes?api-version=3

Parameter Required Type Description Example

query No JSON Queries for specific results. It
is possible to query by one
or more fields based on
MongoDB query syntax.

query=
{"type":"compute"}

Chapter 4: Resources

196 4.12 Nodes

http://docs.mongodb.org/manual/reference/operator/

4.12 Nodes 197

Parameter Required Type Description Example

sort No JSON Sort the results. Use 1 for
ascending and -1 for
descending.

sort={"name":-1}

See 3.3 Global URL Parameters for available URL parameters.

This query will not return the DEFAULT or GLOBAL nodes from Moab HPC Suite.
However, the Get Single Node task can be used to retrieve them individually if
desired.

Sample Response
GET https://localhost:8080/mws/rest/nodes?api-version=3&fields=name

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"name": "node1"},
{"name": "node2"},
{"name": "node3"}

]
}

4.12.1.B Get Single Node

URLs and Parameters
GET https://localhost:8080/mws/rest/nodes/<name>?api-version=3

Parameter Required Type Value Description

name Yes String -- The name of the object.

See 3.3 Global URL Parameters for available URL parameters.

The attributes field is only applicable in API version 2 and later.

Sample Response
JSON response

Chapter 4: Resources

{
"name": "l26.csa",
"architecture": null,
"classes": ["class1"],
"attributes": {
"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

},
"vcenter-vcenter-adaptive data center-compute nodes": {
"value": null,
"displayValue": null

}
},
"featuresCustom": ["feature1", "feature2"],

Chapter 4: Resources

198 4.12 Nodes

4.12 Nodes 199

"featuresReported": ["vcenter-vcenter-adaptive data center-compute nodes"],
"index": 26,
"ipAddress": "10.0.8.76",
"lastUpdatedDate": "2024-05-24 20:18:11 UTC",
"partition": "mws",
"processorSpeed": null,
"profilingEnabled": false,
"rack": null,
"resourceManagerMessages": {
"torque": null,
"mws": null

},
"slot": null,
"type": "compute",
"messages": [{
"count": 11,
"createdDate": "2024-10-24 04:06:04 UTC",
"expireDate": "2037-10-24 12:26:40 UTC",
"message": "This is a message"

}],
"metrics": {
"vmcount": 0,
"cpuUtilization": 0.275,
"cpuLoad": 0.01115

},
"variables": {
"VCENTER_DATASTORE_LOCAL1": "datastore-415",
"VCENTER_DATASTORE_REMOTE1": "datastore-448"

},
"states": {
"powerState": "On",
"powerStateExpected": null,
"state": "Idle",
"stateExpected": "Idle",
"stateLastUpdatedDate": "2024-05-24 09:33:45 UTC",
"subState": null,
"subStateLast": null,
"subStateLastUpdatedDate": null

},
"operatingSystem": "linux"
"resources": {
"processors": {
"configured": 4,
"real": 4,
"dedicated": 0,
"available": 4,
"utilized": -1

},
"memory": {
"configured": 10239,
"real": 10239,
"dedicated": 0,
"available": 9227,
"utilized": 0

},
"disk": {
"configured": 0,
"real": 0,
"dedicated": 0,
"available": 0,
"utilized": 0

},

Chapter 4: Resources

"swap": {
"configured": 0,
"real": 0,
"dedicated": 0,
"available": 0,
"utilized": 0

}
},
"resourceManagers": [{
"name": "mws",
"isMaster": true,
"stateReported": "Active"

}],
"jobs": [],
"reservations": [

{
"name": "system.5",
"type": "user"

},
{

"name": "system.17",
"type": "user"

}
],
"virtualContainers": [],
"triggers": []

}

4.12.2 Modifying Nodes
The HTTP PUT method is used to modify Nodes.

Quick Reference
PUT https://localhost:8080/mws/rest/nodes/<name>?api-version=3[&proxy-user=<username>]

Restrictions
The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the
moab.cfg file, for example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.12.2.A Modify Node

URLs and Parameters
PUT https://localhost:8080/mws/rest/nodes/<name>?api-version=3[&proxy-user=<username>]
[&change-mode=set]

Chapter 4: Resources

200 4.12 Nodes

4.12 Nodes 201

Parameter Required Type Value Description

name Yes String -- The name of the object.

proxy-user No String -- Perform the action as this user.

See 3.3 Global URL Parameters for available URL parameters.

Additional URL Parameters

Parameter Required Value Description

change-
mode

No set
(default)
add
remove

If set, replace all features with the features
specified.
If add, add the specified features to existing features.
If remove, remove the specified features from
existing features.

Request Body
The request body below shows all the fields that are available when modifying a node,
along with some sample values:

Sample JSON request body to modify a node

{
"featuresCustom": ["feature1", "feature2"],
"messages": [
{"message": "Message one"},
{"message": "Message two"}

],
"metrics": {"pwatts": 211},
"operatingSystem": "centos7.9",
"partition": "part1",
"states": {
"powerState": "On",
"state": "Running"

},
"variables": {
"key": "value",
"arbitrary text key": "more value"

}
}

Sample Response

This message might not match the message returned from Moab HPC Suite exactly
but is given as an example of the structure of the response.

Chapter 4: Resources

JSON response

{"messages":[
"Successfully modified os to 'linux'",
"Successfully powered node off"

]}

Related Topics

l 8.4.9 Fields: Nodes

4.13 Notification Conditions

This section describes behavior of the Notification Conditions object in MWS. It
contains the URLs, request bodies, and responses delivered to and from MWS.

The Notification Conditions API was introduced with API version 3, and is not
available with older API versions. The supported methods table below requires each
resource to be accessed with a URL parameter of api-version=3. For more
information, see 3.4 Requesting Specific API Versions.

The 8.4.10 Fields: Notification Conditions reference contains the type and description
of all fields in the Notification Conditions object.

Supported Methods

Resource GET PUT POST DELETE

/rest/notification-
conditions

Get All
Notification
Conditions

Update
Notification
Condition

-- --

/rest/notification-
conditions/<id>

Get Single
Notification
Condition

-- -- --

In this section:

Chapter 4: Resources

202 4.13 Notification Conditions

4.13 Notification Conditions 203

l Getting Notification Conditions
o Get All Notification Conditions
o Get Single Notification Condition

l Updating Notification Conditions
o Update Notification Condition

4.13.1 Getting Notification Conditions
The HTTP GET method is used to retrieve Notification Condition information.

Quick Reference
GET https://localhost:8080/mws/rest/notification-conditions?api-version=3
GET https://localhost:8080/mws/rest/notification-conditions/<id>?api-version=3

4.13.1.A Get All Notification Conditions

URLs and Parameters
GET https://localhost:8080/mws/rest/notification-conditions?api-version=3[&query=
{"escalationLevel":"ADMIN"}][&sort={"observedDate":-1}]

Parameter Required Type Description Example

query No JSON Query for specific results.
It is possible to query
notifications by one or
more fields based on
MongoDB query syntax.

query=
{"escalationLevel":"ADMIN"}

sort No JSON Sort the results. Use 1 for
ascending and -1 for
descending.

sort={"observedDate":-1}

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/notification-conditions?api-version=3&query=
{"escalationLevel":"ADMIN"}&sort={"observedDate":-1}

{

Chapter 4: Resources

http://docs.mongodb.org/manual/reference/operator/

"totalCount": 2,
"resultCount": 2,
"results": [

{
"createdDate": "2024-09-10 23:13:33 UTC",
"details": {

"pluginType": "NodeUtilizationReport",
"pluginId": "node-report"

},
"escalationLevel": "ADMIN",
"expirationDate": null,
"expirationDuration": null,
"message": "The node 'testnode' has not been updated since the last poll,

which is likely due to a misconfiguration.",
"objectId": "testnode",
"objectType": "Node",
"observedDate": "2024-09-10 23:13:33 UTC",
"origin": "MWS/plugins/NodeUtilizationReport/node-report",
"id": "522fa79de4b0cafeaec6f83e"

},
{

"createdDate": "2024-09-11 17:19:35 UTC",
"details": {

"pluginType": "VCenter",
"pluginId": "vcenter42"

},
"escalationLevel": "ADMIN",
"expirationDate": null,
"expirationDuration": null,
"message": "The node 'node1' does not have vcenter tools installed,

therefore the state is unknown and migrations may not work correctly",
"objectId": null,
"objectType": "System",
"observedDate": "2024-09-11 17:19:35 UTC",
"origin": "MWS/plugins/VCenter/vcenter42",
"id": "5230a627e4b0d51bef490e86"

}
]

}

4.13.1.B Get Single Notification Condition

URLs and Parameters
GET https://localhost:8080/mws/rest/notification-conditions/<id>?api-version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

204 4.13 Notification Conditions

4.13 Notification Conditions 205

Sample Response
GET https://localhost:8080/mws/rest/notification-
conditions/521a1f18e4b0e3f9031f47f5?api-version=3

{
"createdDate": "2024-09-10 23:13:33 UTC",
"details": {

"pluginType": "NodeUtilizationReport",
"pluginId": "node-report"

},
"escalationLevel": "ADMIN",
"expirationDate": null,
"expirationDuration": null,
"message": "The node 'testnode' has not been updated since the last poll, which is

likely due to a misconfiguration.",
"objectId": "testnode",
"objectType": "Node",
"observedDate": "2024-09-10 23:13:33 UTC",
"origin": "MWS/plugins/NodeUtilizationReport/node-report",
"id": "522fa79de4b0cafeaec6f83e"

}

4.13.2 Updating Notification Conditions
The HTTP PUT method is used to update Notification Condition information. The
PUT operation is idempotent, meaning that is used for both creating new notification
conditions and updating existing ones. If the escalationLevel, origin, message,
objectType, and objectId fields match an existing notification condition, it will be
updated. Otherwise, a new condition will be created.

Quick Reference
PUT https://localhost:8080/mws/rest/notification-conditions?api-version=3

4.13.2.A Update Notification Condition

URLs and Parameters
PUT https://localhost:8080/mws/rest/notification-conditions?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Request Body
The request body below shows some fields that are available when updating a notification
condition, along with some sample values:

Sample JSON request body to update a notification condition

Chapter 4: Resources

{
"details": {

"pluginType": "NodeTester",
"pluginId": "my-tester1"

},
"escalationLevel": "ADMIN",
"expirationDuration": 30,
"message": "Node 'node2' is powered off, please check your hardware.",
"objectId": "node2",
"objectType": "Node",
"origin": "NodeTester/my-tester1/Test.groovy:141"

}

Sample Response
JSON response

{
"createdDate": "2024-09-10 23:13:33 UTC",
"details": {

"pluginType": "NodeTester",
"pluginId": "my-tester1"

},
"escalationLevel": "ADMIN",
"expirationDate": "2024-09-10 23:14:03 UTC",
"expirationDuration": 30,
"observedDate": "2024-09-10 23:13:33 UTC",
"message": "Node 'node2' is powered off, please check your hardware.",
"objectId": "node2",
"objectType": "Node",
"origin": "NodeTester/my-tester1/Test.groovy:141",
"id": "5230a627e4b0d51bef490e86"

}

Related Topics

l 4.6 Events

l 8.4.4 Fields: Events

l 4.14 Notifications

l 8.4.11 Fields: Notifications

l 8.4.10 Fields: Notification Conditions

l 6.2.12 Creating Events and Notifications

l 6.6.6 Plugin Event Service

l 6.2.13 Handling Events

Chapter 4: Resources

206 4.13 Notification Conditions

4.14 Notifications 207

l 3.9 System Events

l 1.2.5 Securing the Connection with the Message Queue

4.14 Notifications

This section describes behavior of the Notifications object in MWS. It contains the
URLs, request bodies, and responses delivered to and from MWS.

The Notifications API was introduced with API version 3, and is not available with
older API versions. The supported methods table below requires each resource to
be accessed with a URL parameter of api-version=3. For more information, see
3.4 Requesting Specific API Versions.

The 8.4.11 Fields: Notifications reference contains the type and description of all
fields in the Notifications object.

Supported Methods

Resource GET PUT POS
T

DELET
E

/rest/notifications/ Get All
Notificatio
ns

-- -- --

/rest/notifications/<id> Get Single
Notificatio
n

-- -- --

/rest/notifications/ignore -- Ignore All
Notificatio
ns

-- --

/rest/notifications/<id>/ignor
e

-- Ignore
Single
Notificatio
n

-- --

/rest/notifications/unignore -- Unignore
All
Notificatio

-- --

Chapter 4: Resources

Resource GET PUT POS
T

DELET
E

ns

/rest/notifications/<id>/unign
ore

-- Unignore
Single
Notificatio
n

-- --

/rest/notifications/dismiss -- Dismiss All
Notificatio
ns

-- --

/rest/notifications/<id>/dismi
ss

-- Dismiss
Single
Notificatio
n

-- --

In this section:

l Getting Notifications
o Get All Notifications
o Get Single Notification

l Ignoring Notifications
o Ignore All Notifications
o Ignore Single Notification

l Unignoring Notifications
o Unignore All Notifications
o Unignore Single Notification

l Dismissing Notifications
o Dismiss All Notifications
o Dismiss Single Notification

4.14.1 Getting Notifications
The HTTP GET method is used to retrieve Notification information.

Chapter 4: Resources

208 4.14 Notifications

4.14 Notifications 209

Quick Reference
GET https://localhost:8080/mws/rest/notifications?api-version=3
GET https://localhost:8080/mws/rest/notifications/<id>?api-version=3

4.14.1.A Get All Notifications

URLs and Parameters
GET https://localhost:8080/mws/rest/notifications?api-version=3[&proxy-
user=<username>][&query={"ignoredDate":null,"dismissedDate":null}][&sort=
{"observedDate":-1}]

Param
eter

Requi
red

Ty
pe

Description Example

proxy-
user

No Stri
ng

Perform the action as this user.

Notifications cannot be
created directly. Instead,
they are automatically
created for the current
user or proxy-user
specified in the request
from non-expired
notification conditions
(see 4.13 Notification
Conditions). This is true
no matter the query
specified.

--

query No JSO
N

Query for specific results.
It is possible to query
notifications by one or more
fields based on MongoDB query
syntax. However, typically you
will want to query on
{"ignoredDate":null,"dismissed
Date":null}.

query=
{"ignoredDate":null,"dismissed
Date":null}

sort No JSO
N

Sort the results. Use 1 for
ascending and -1 for
descending.

sort={"observedDate":-1}

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Sample Response
GET https://localhost:8080/mws/rest/notifications?api-version=3&proxy-
user=<username>&query={"ignoredDate":null,"dismissedDate":null}][&sort=
{"observedDate":-1}

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"conditionId": "521bdea1e4b019cd33e29c86",
"createdDate": "2024-08-26 23:02:56 UTC",
"details": {},
"dismissedDate": null,
"ignoredDate": null,
"message": "A health check failed for the 'ZeroMQ Message Queue'

connection, please see the MWS health details page for more information.",
"objectId": "zmq",
"objectType": "Health",
"observedDate": "2024-09-05 17:57:00 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d62f"

},
{

"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2024-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": null,
"ignoredDate": null,
"message": "A health check failed for the 'LDAP' connection, please see

the MWS health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2024-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}
]

}

4.14.1.B Get Single Notification

URLs and Parameters
GET https://localhost:8080/mws/rest/notifications/<id>?api-version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

210 4.14 Notifications

4.14 Notifications 211

Sample Response
GET https://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d?api-
version=3

{
"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2024-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": null,
"ignoredDate": null,
"message": "A health check failed for the 'LDAP' connection, please see the MWS

health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2024-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}

4.14.2 Ignoring Notifications
The HTTP PUT method is used to ignore Notifications.

Quick Reference
PUT https://localhost:8080/mws/rest/notifications/ignore?api-version=3
PUT https://localhost:8080/mws/rest/notifications/<id>/ignore?api-version=3

4.14.2.A Ignore All Notifications

URLs and Parameters
PUT https://localhost:8080/mws/rest/notifications/ignore?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{"messages":["Updated 10 Notification objects"]}

Chapter 4: Resources

4.14.2.B Ignore Single Notification

URLs and Parameters
PUT https://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/ignore?api-
version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
PUT https://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/ignore?api-
version=3

{
"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2024-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": null,
"ignoredDate": "2024-09-17 15:34:36 UTC",
"message": "A health check failed for the 'LDAP' connection, please see the MWS

health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2024-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}

4.14.3 Unignoring Notifications
The HTTP PUT method is used to unignore Notifications.

Quick Reference
PUT https://localhost:8080/mws/rest/notifications/unignore?api-version=3
PUT https://localhost:8080/mws/rest/notifications/<id>/unignore?api-version=3

4.14.3.A Unignore All Notifications

URLs and Parameters
PUT https://localhost:8080/mws/rest/notifications/unignore?api-version=3

Chapter 4: Resources

212 4.14 Notifications

4.14 Notifications 213

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{"messages":["Updated 10 Notification objects"]}

4.14.3.B Unignore Single Notification

PUT
https://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/unignore?api-
version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
PUT
https://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/unignore?api-
version=3

{
"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2024-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": "null",
"ignoredDate": null,
"message": "A health check failed for the 'LDAP' connection, please see the MWS

health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2024-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}

4.14.4 Dismissing Notifications
The HTTP PUT method is used to dismiss Notifications.

Chapter 4: Resources

Quick Reference
PUT https://localhost:8080/mws/rest/notifications/dismiss?api-version=3
PUT https://localhost:8080/mws/rest/notifications/<id>/dismiss?api-version=3

4.14.4.A Dismiss All Notifications

URLs and Parameters
PUT https://localhost:8080/mws/rest/notifications/dismiss?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{"messages":["Updated 10 Notification objects"]}

4.14.4.B Dismiss Single Notification

URLs and Parameters
PUT
https://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/dismiss?api-
version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
PUT
https://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/dismiss?api-
version=3

{
"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2024-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": "2024-09-17 15:34:36 UTC",
"ignoredDate": null,
"message": "A health check failed for the 'LDAP' connection, please see the MWS

health details page for more information.",

Chapter 4: Resources

214 4.14 Notifications

4.15 Permissions 215

"objectId": "ldap",
"objectType": "Health",
"observedDate": "2024-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}

Related Topics

l 4.6 Events

l 8.4.4 Fields: Events

l 8.4.11 Fields: Notifications

l 6.2.12 Creating Events and Notifications

l 6.6.6 Plugin Event Service

l 6.2.13 Handling Events

l 3.9 System Events

l 1.2.5 Securing the Connection with the Message Queue

4.15 Permissions

This section describes behavior of the Permissions object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The 8.4.24 Fields: User's Permissions reference section contains the type and
description of fields that all Permissions have in common.

Supported Methods

Resource GET PUT POST DELETE

/rest/permissions Get All
Permission
s

-- Create
Single
Permissio
n

--

/rest/permissions/<id> Get Single
Permission

-- -- Delete
Single
Permissio

Chapter 4: Resources

Resource GET PUT POST DELETE

n

/rest/permissions/users/<i
d>

Get a
User's
Permission
s

-- -- --

/rest/permissions/users Get a
Current
User's
Permission
s

-- -- --

In this section:

l Getting Permissions
o Get All Permissions
o Get Single Permission
o Get a User's Permissions
o Get a Current User's Permissions

l Creating Permissions
o Create Single Permission

l Deleting Permissions
o Delete Single Permission

4.15.1 Getting Permissions
The HTTP GET method is used to retrieve Permission information. You can query all
objects or a single object.

Quick Reference
GET https://localhost:8080/mws/rest/permissions?api-version=3
GET https://localhost:8080/mws/rest/permissions/<id>?api-version=3

Chapter 4: Resources

216 4.15 Permissions

4.15 Permissions 217

4.15.1.A Get All Permissions

URLs and Parameters
GET https://localhost:8080/mws/rest/permissions?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query
permissions by one or more
fields based on MongoDB
query syntax.

query=
{"type":"CUSTOM"}

sort No JSON Sort the results. Use 1 for
ascending and -1 for
descending.

sort={"name":-1}

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/permissions?api-
version=3&fields=resource,action,description

{
"totalCount": 1,
"resultCount": 1,
"results": [{

"resource" : "chart",
"action" : "read",
"description" : "The permission to view all charts."
}]

}

Sorting and Querying
See the sorting and querying sections of 3.3 Global URL Parameters.

4.15.1.B Get Single Permission

URLs and Parameters
GET https://localhost:8080/mws/rest/permissions/<id>?api-version=3

Chapter 4: Resources

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Parameter Required Type Value Description

id Yes String -- The unique identifier of the permission.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/permissions/<id>?api-version=3

{
"action" : "create",
"administrator": null,
"description" : "The permission to create all charts.",
"id" : "50296335e4b0011b0f8394ec",
"label" : "Create Chart",
"resource" : "chart",
"resourceFilter" : null,
"type" : "custom",
"scope" : "NONE",
"version" : 0

}

For permissions with type "domain", scope must be GLOBAL. All other permissions
should have scope NONE.

4.15.1.C Get a User's Permissions

URLs and Parameters
GET https://localhost:8080/mws/rest/permissions/users/<name>?api-version=3

Parameter Required Type Value Description

name Yes String -- The name of the user.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/permissions/users/bob?api-version=3

[
{
"action": "read",
"administrator": null,

Chapter 4: Resources

218 4.15 Permissions

4.15 Permissions 219

"description": "The permission to read all charts",
"id": "5033b842e4b09cc61bedb818",
"label": "",
"resource": "chart",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

},
{
"action": "read",
"administrator": null,
"description": "The permission to read all pages",
"id": "5033b8a5e4b09cc61bedb82d",
"label": "",
"resource": "page",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

},
{
"action": "update",
"administrator": null,
"description": "The permission to update all pages",
"id": "5033b8a5e4b09cc61bedb82f",
"label": "",
"resource": "page",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

}
]

4.15.1.D Get a Current User's Permissions

URLs and Parameters
GET https://localhost/mws/rest/permissions/users/?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost/mws/rest/permissions/users/?api-version=3

[
{
"action": "read",
"administrator": null,
"description": "The permission to read all charts",
"id": "5033b842e4b09cc61bedb818",
"label": "",
"resource": "chart",
"resourceFilter": null,

Chapter 4: Resources

"type": "custom",
"scope": "NONE",
"version": 1

},
{
"action": "read",
"administrator": null,
"description": "The permission to read all pages",
"id": "5033b8a5e4b09cc61bedb82d",
"label": "",
"resource": "page",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

},
{
"action": "update",
"administrator": null,
"description": "The permission to update all pages",
"id": "5033b8a5e4b09cc61bedb82f",
"label": "",
"resource": "page",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

}
]

4.15.2 Creating Permissions
The HTTP POST method is used to create Permissions.

Quick Reference
POST https://localhost:8080/mws/rest/permissions?api-version=3

4.15.2.A Create Single Permission

URLs and Parameters
POST https://localhost:8080/mws/rest/permissions?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

220 4.15 Permissions

4.15 Permissions 221

Request Body

The resource, action, and type are required on each permission.

Api permissions are permissions with the type 'api' and are the only permissions
enforced by MWS.

Api permissions must map to a valid resource. For example, "services" is valid
because there is a resource /mws/rest/services.

Api permissions must have create, read, update, or delete as the action.

The following is an example request body to create a permission:

POST https://localhost:8080/mws/rest/permissions?api-version=3

{
"resource" : "Chart",
"action" : "read",
"administrator" : null,
"type" : "custom",
"scope" : "NONE",
"label" : "Read all charts",
"description" : "The permissions to view all charts."

}

Sample Response
If the request was successful, the response body is the new permission that was created
exactly as shown in Get Single Permission. On failure, the response is an error message.

4.15.3 Deleting Permissions
The HTTP DELETE method is used to delete Permissions.

Quick Reference
DELETE https://localhost:8080/mws/rest/permissions/<id>?api-version=3

4.15.3.A Delete Single Permission

URLs and Parameters
DELETE https://localhost:8080/mws/rest/permission/<id>?api-version=3

Chapter 4: Resources

Parameter Required Type Value Description

id Yes String -- The unique identifier of the permission.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{}

Related Topics

l 8.4.24 Fields: User's Permissions

4.16 Plugins

This section describes behavior of the Plugins object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The 8.4.12 Fields: Plugins reference contains the type and description of all fields in
the Plugin object. It also contains details regarding which fields are valid during
PUT and POST actions.

Supported Methods

Resource GET PUT POST DELET
E

/rest/plugins Get All
Plugins

-- Create
Plugin

--

/rest/plugins/reporting-
jobs/<jobName>?api-version=3

Get All
Plugins
Reporti
ng
Object

-- -- --

/rest/plugins/reporting-
nodes/<nodeName>?api-version=3

Get All -- -- --

Chapter 4: Resources

222 4.16 Plugins

4.16 Plugins 223

Resource GET PUT POST DELET
E

Plugins
Reporti
ng
Object

/rest/plugins/<id> Get
Single
Plugin

Modify
Plugin

-- Delete
Plugin

/rest/plugins/<id>/poll -- -- Trigge
r
Plugin
Poll

--

/rest/plugins/<id>/services/<serviceN
ame>

Access
a
Plugin
Web
Service

Access
a
Plugin
Web
Servic
e

Access
a
Plugin
Web
Servic
e

Access
a
Plugin
Web
Servic
e

In this section:

l Getting Plugins
o Get All Plugins
o Get All Plugins Reporting Object
o Get Single Plugin

l Creating Plugins
o Create Plugin

l Modifying Plugins
o Modify Plugin
o Trigger Plugin Poll

l Deleting Plugins
o Delete Plugin

l Accessing Plugin Web Services
o Access a Plugin Web Service

Chapter 4: Resources

4.16.1 Getting Plugins
The HTTP GET method is used to retrieve Plugin information. Queries for all objects, a
single object, and query by reported object are available.

Quick Reference
GET https://localhost:8080/mws/rest/plugins?api-version=3
GET https://localhost:8080/mws/rest/plugins/<id>?api-version=3
GET https://localhost:8080/mws/rest/plugins/reporting-jobs/<jobName>?api-version=3
GET https://localhost:8080/mws/rest/plugins/reporting-nodes/<nodeName>?api-version=3

4.16.1.A Get All Plugins

URLs and Parameters
GET https://localhost:8080/mws/rest/plugins?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/plugins?api-version=3&fields=id

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"id": "plugin1"},
{"id": "plugin2"},
{"id": "plugin3"}

]
}

4.16.1.B Get All Plugins Reporting Object

URLs and Parameters
GET https://localhost:8080/mws/rest/plugins/reporting-jobs/<jobName>?api-version=3
GET https://localhost:8080/mws/rest/plugins/reporting-nodes/<nodeName>?api-version=3

Parameter Required Type Value Description

jobName Yes String -- The name of the job to query by.

nodeName Yes String -- The name of the node to query by.

Chapter 4: Resources

224 4.16 Plugins

4.16 Plugins 225

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
This built-in query returns the same information as Get All Plugins but filters the items to
only plugins that are currently reporting the specified job or node (see 6.2.9 Reporting
State Data). The list is sorted ascending by the precedence field. In other words, the
most authoritative plugin for the report is listed first. For more information, see 6.1.6 Data
Consolidation.

GET https://localhost:8080/mws/rest/plugins/reporting-nodes/node1?api-
version=3&fields=id

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"id": "plugin1"},
{"id": "plugin2"},
{"id": "plugin3"}

]
}

4.16.1.C Get Single Plugin

URLs and Parameters
GET https://localhost:8080/mws/rest/plugins/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"id":"plugin1",
"pluginType":"Native",
"pollInterval":30,
"autoStart":true,
"config":{
"getJobs":"exec:///opt/moab/tools/workload.query.pl"

},
"state":"STARTED",
"nextPollDate":"2024-12-02 17:28:52 UTC",

Chapter 4: Resources

"lastPollDate":"2024-12-02 17:28:22 UTC"
}

4.16.2 Creating Plugins
The HTTP POST method is used to create Plugins.

Quick Reference
POST https://localhost:8080/mws/rest/plugins?api-version=3

4.16.2.A Create Plugin

URLs and Parameters
POST https://localhost:8080/mws/rest/plugins?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Request Body
When creating a plugin, the id and pluginType fields are required. The request body
below shows all fields that are available when creating a plugin, along with some sample
values:

JSON request body

{
"id":"plugin1",
"pluginType":"Native",
"pollInterval":30,
"autoStart":true,
"config":{
"getJobs":"exec:///opt/moab/tools/workload.query.pl"

}
}

Sample Response
JSON response for successful POST

{"id": "plugin1"}

Restrictions
While it is possible to create a plugin with arbitrary nested configuration, such as:

Chapter 4: Resources

226 4.16 Plugins

4.16 Plugins 227

…
"config":{
"nestedObject":{
"property1":"value1",
"property2":"value2"

},
"nestedList:["listItem1", "listItem2"]

}

It is not recommended, because the user interface (see 6.5 Plugin Management) does not
support editing or viewing any configuration data values other than strings.

4.16.3 Modifying Plugins
The HTTP PUT method is used to modify Plugins. Additionally, the POST method can be
used to trigger an immediate poll of a Plugin.

Quick Reference
PUT https://localhost:8080/mws/rest/plugins/<id>?api-version=3
POST https://localhost:8080/mws/rest/plugins/<id>/poll?api-version=3

4.16.3.A Modify Plugin

URLs and Parameters
PUT https://localhost:8080/mws/rest/plugins/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
The request body below shows all the fields that are available when modifying a Plugin,
along with some sample values:

JSON request body for plugin modification

{
"state":"STARTED",
"pollInterval":30,
"autoStart":true,
"config":{
"getJobs":"exec:///opt/moab/tools/workload.query.pl"

},

Chapter 4: Resources

"state":"STARTED"
}

Sample Response
JSON response

{"messages":["Plugin plugin1 updated", "Started Plugin 'plugin1'"]}

4.16.3.B Trigger Plugin Poll

URLs and Parameters
POST https://localhost:8080/mws/rest/plugins/<id>/poll?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Trigger Poll
This resource call will trigger an immediate poll of the specified plugin. It is equivalent to
the same operation on 6.5.6 Monitoring and Lifecycle Controls.

Request Body
No request body is required.

Sample Response
JSON response

{"messages":["Polled Plugin with ID 'myPlugin'"]}

4.16.4 Deleting Plugins
The HTTP DELETE method is used to delete Plugins.

Quick Reference
DELETE https://localhost:8080/mws/rest/plugins/<id>?api-version=3

Chapter 4: Resources

228 4.16 Plugins

4.16 Plugins 229

4.16.4.A Delete Plugin

URLs and Parameters
DELETE https://localhost:8080/mws/rest/plugins/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response for successful DELETE

{}

Additional information about a successful DELETE can be found in the HTTP response
header X-MWS-Message.

JSON response for an unsuccessful DELETE

{"messages":["Plugin plugin1 could not be deleted", "Error message describing the
problem"]}

4.16.5 Accessing Plugin Web Services
All HTTP methods can be used to access Plugin Web Services. However, some
services only support specific methods. Check the specific plugin type documentation for
more information.

Quick Reference
GET https://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
POST https://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
PUT https://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
DELETE https://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3

Chapter 4: Resources

4.16.5.A Access a Plugin Web Service

URLs and Parameters
GET https://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
POST https://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
PUT https://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
DELETE https://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

objectId No String -- An arbitrary ID parameter that will be passed
to the web service.

serviceName Yes String -- The name of the web service, either in
CamelCase or hyphenated.

See 3.3 Global URL Parameters for available URL parameters.

Web Service IDs
Translation is done to map CamelCase web service names to hyphenated names in the URL.
For example, a web service method named notifyEvent on a plugin with a name of
notifications can be called with the following URLs:

// CamelCase
/rest/plugins/notifications/services/notifyEvent

// Hyphenated
/rest/plugins/notifications/services/notify-event

HTTP Method and Request Body
Because plugin custom web services do not need to distinguish which HTTP method is used
(see 6.1.4 CustomWeb Services), we recommend using GET and POST when making
requests to access web services unless documented otherwise. The request body and
output may vary for each web service called. See 4.17 Plugin Types for the requested
plugin for available web services, request parameters, and expected output.

Chapter 4: Resources

230 4.16 Plugins

http://en.wikipedia.org/wiki/Camel_case

4.17 Plugin Types 231

Related Topics

l 8.4.12 Fields: Plugins

l 4.17 Plugin Types

4.17 Plugin Types

This section describes behavior of the Plugin Type object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The 8.4.13 Fields: Plugin Types reference section contains the type and description of
all fields in the Plugin Type object. It also contains details regarding which fields
are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/plugin-
types

Get All
Plugin Types

Creating or Updating
Plugin Types

-- --

/rest/plugin-
types/<id>

Get Single
Plugin Type

-- -- --

In this section:

l Getting Plugin Types
o Get All Plugin Types
o Get Single Plugin Type

l Creating or Updating Plugin Types
o Update Plugin Type (File)
o Update Plugin Type (JAR)

4.17.1 Getting Plugin Types
The HTTP GET method is used to retrieve Plugin Type information. Queries for all
objects and a single object are available.

Chapter 4: Resources

Quick Reference
GET https://localhost:8080/mws/rest/plugin-types/<id>?api-version=3

4.17.1.A Get All Plugin Types

URLs and Parameters
GET https://localhost:8080/mws/rest/plugin-types?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/plugin-types?api-version=3&fields=id

{
"totalCount": 2,
"resultCount": 2,
"results": [
{"id": "vCenter"},
{"id": "Native"}

]
}

4.17.1.B Get Single Plugin Type

URLs and Parameters
GET https://localhost:8080/mws/rest/plugin-types/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"author": "Adaptive Computing Enterprises, Inc.",
"commonsVersion": "0.9.3 > *",
"description": "Polls a VMware® vCenter™ Server for information on the hypervisors

and virtual machines it manages.",
"documentationLink": "",

Chapter 4: Resources

232 4.17 Plugin Types

4.17 Plugin Types 233

"email": "",
"eventComponent": 1,
"realizedEventComponent": 513,
"id": "VCenter",
"initialPlugins": { },
"instances": [
{"id":"vcenter"}

],
"issueManagementLink": "",
"license": "APACHE",
"mwsVersion": "10.1.2 > *",
"pollMethod": true,
"scmLink": "",
"title": "VCenter",
"version": "1.0",
"webServices": [],
"website": "https://www.adaptivecomputing.com"

}

4.17.2 Creating or Updating Plugin Types
The HTTP PUT method is used to create or update Plugin Types. The Content-Type
HTTP header is used to determine if the request contains a single class file as plaintext or
the binary data of a JAR file. Each request is explained in the following sections.

Quick Reference
PUT https://localhost:8080/mws/rest/plugin-types?api-version=3[&reload-plugins=false]

There is a known issue with dynamically updating plugin types with typed field
injection. For more information, see 6.4.4 Add or Update Plugin Types.

4.17.2.A Update Plugin Type (File)

URLs and Parameters
PUT https://localhost:8080/mws/rest/plugin-types?api-version=3[&reload-plugins=false]

Parameter Required Type Value Description

reload-
plugins

No String true or
false

Reloads all plugins of this type on successful
update. Defaults to true.

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

Request Body
This function is idempotent, meaning it will create the Plugin Type if it does not exist or
update it if it does. The request body is the actual contents of the class file to upload. This
web service is an exception to most as it requires a content type of application/x-
groovy or text/plain.

If the application/x-groovy or text/plain content types are not used in
the request, it will be interpreted as JSON, resulting in a failure.

Plaintext upload

package test

import com.adaptc.mws.plugins.*

class UploadPlugin {
static author = "Adaptive Computing"
static description = "A sample plugin class"
String id

public void configure() throws InvalidPluginConfigurationException {
def myConfig = config
def errors = []
if (!myConfig.arbitraryKey)

errors << "Missing arbitraryKey!"
if (errors)

throw new InvalidPluginConfigurationException(errors)
}

public def customService(Map params) {
return params

}
}

If using the curl library to perform plugin type uploading, the equivalent of the
command-line option --data-binary must be used to send the request body.
Otherwise compilation errors may be encountered when uploading the plugin type.

Sample Response
The response of this task is the same as the Get All Plugin Types task. The reason that the
return of this task is a list is to accommodate the possibility of uploading multiple plugin
types in a single JAR file as explained in the next section.

Chapter 4: Resources

234 4.17 Plugin Types

http://curl.haxx.se/

4.17 Plugin Types 235

4.17.2.B Update Plugin Type (JAR)

URLs and Parameters
PUT https://localhost:8080/mws/rest/plugin-types?api-version=3&jar-
filename=<filename.jar>[&reload-plugins=false]

Parameter Required Type Value Description

jar-
filename

Yes String -- The filename of the JAR file that is being
uploaded.

reload-
plugins

No String true or
false

Reloads all plugins of this type on successful
update. Defaults to true.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
This function is idempotent, meaning it will create the Plugin Types if they do not exist
or update them if they do. The request body is the binary contents of the JAR file to upload.
This web service is an exception to most as it requires a content type of
application/x-jar.

If the application/x-jar content type is not used in the request, it will be
interpreted as JSON, resulting in a failure.

If using the curl library to perform plugin type uploading, the equivalent of the
command-line option --data-binary must be used to send the request body.
Otherwise compilation errors may be encountered when uploading the plugin type.

Sample Response
The response of this task is the same as the Get All Plugin Types task. Note that when using
a JAR file, multiple plugin types can be uploaded in the same request.

Related Topics

l 8.4.13 Fields: Plugin Types

l 4.16 Plugins

Chapter 4: Resources

http://curl.haxx.se/

4.18 Policies

This section describes behavior of the Policies object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The 8.4.14 Fields: Policies reference section contains the type and description of
fields of all Policies.

Supported Policies

Name ID

Fairshare fairshare

Node Allocation node-allocation

Supported Methods

Resource GET PUT POST DELETE

/rest/policies Get All Policies -- -- --

/rest/policies/<id> Get Single Policy Modify Policy -- --

In this section:

l Getting Policies
o Get All Policies
o Get Single Policy

l Modifying Policies
o Modify Policy

4.18.1 Getting Policies
The HTTP GET method is used to retrieve Policies information.

Quick Reference
GET https://localhost:8080/mws/rest/policies?api-version=3

Chapter 4: Resources

236 4.18 Policies

4.18 Policies 237

4.18.1.A Get All Policies

URLs and Parameters
GET https://localhost:8080/mws/rest/policies?api-version=3

Paramet
er

Requir
ed

Ty
pe

Descripti
on

Example

query No JSO
N

Query for
specific
results.

query=
{"state":"DISABLED","conflicted":"
false"}

sort No JSO
N

Sort the
results.
Use 1 for
ascending
and -1
for
descendin
g.

sort={"id":-1}

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET http://localhost:8080/mws/rest/policies?api-version=3&fields=id,state,conflicted

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"conflicted": false,
"state": "DISABLED",
"id": "node-allocation"
}]
}

4.18.1.B Get Single Policy

URLs and Parameters
GET https://localhost:8080/mws/rest/policies/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

Chapter 4: Resources

See 3.3 Global URL Parameters for available URL parameters.

Sample Responses
Fairshare

{
"conflicted": false,
"decayFactor": 0.44,
"depth": 4,
"description": "Control job feasibility and priority decisions based on system

utilization targets for users, groups, accounts, classes, and QoS levels.",
"intervalSeconds": 600,
"name": "Fairshare",
"potentialConflicts": [],
"priority": 16,
"state": "ENABLED",
"tags": [],
"types": [],
"usageMetric": "DEDICATED_PROCESSOR_SECONDS_DELIVERED",
"version": 3,
"id": "fairshare"

}

Node Allocation

{
"conflicted": false,
"description": "Controls how nodes are selected for workload placement.",
"id": "node-allocation",
"name": "Node Allocation",
"potentialConflicts": [],
"priority": 3,
"state": "DISABLED",
"tags": [],
"types": [],
"version": 0,
"nodeAllocationAlgorithm": "CustomPriority",
"customPriorityFunction": "-100*GMETRIC[vmcount]"

}

4.18.2 Modifying Policies
The HTTP PUT method is used to modify Policies.

Quick Reference
PUT https://localhost:8080/mws/rest/policies/<id>?api-version=3

Chapter 4: Resources

238 4.18 Policies

4.18 Policies 239

4.18.2.A Modify Policy

URLs and Parameters
PUT https://localhost:8080/mws/rest/policies/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
In general, the fields shown in the Fields: Policies reference section are not available for
modification. However, the state field can be modified to a valid PolicyState. All
other fields listed in the specific policy type sections can be modified unless documented
otherwise.

l The request body below shows all the fields that are available when modifying a
Fairshare Policy, along with some sample values:

JSON request body for Fairshare Policy

{
"decayFactor": 0.44,
"depth": 4,
"intervalSeconds": 600,
"usageMetric": "DEDICATED_PROCESSOR_SECONDS_DELIVERED",

}

l The request body below shows all the fields that are available when modifying a
Node Allocation Policy, along with some sample values:

JSON request body for Node Allocation Policy

{
"nodeAllocationAlgorithm" : "CustomPriority",
"customPriorityFunction" : "-100*GMETRIC[vmcount]"

}

Sample Response
JSON response

{
"messages": ["Policy node-allocation updated"]

}

Chapter 4: Resources

Restrictions
All policies:

l Fields cannot be modified while the policy is disabled. Enable the policy to modify the
field.

Fairshare:

l Updating the usageMetric field will clear all credential-based fairshare interval
data.

Related Topics

l 8.4.14 Fields: Policies

l 4.7 Fairshare

4.19 Principals

This section describes behavior of the Principal object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The 8.4.15 Fields: Principals reference contains the type and description of all fields
in the Principal object. It also contains details regarding which fields are valid
during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/principals Get All
Principals

-- Create
Single
Principal

--

/rest/principals/<id> Get Single
Principal

Modify
Single
Principal

-- Delete
Single
Principal

/rest/principals/<name> Get Single
Principal

Modify
Single
Principal

-- Delete
Single
Principal

In this section:

Chapter 4: Resources

240 4.19 Principals

4.19 Principals 241

l Getting Principals
o Get All Principals
o Get Single Principal

l Creating Principals
o Create Single Principal

l Modifying Principals
o Modify Single Principal

l Deleting Principals
o Delete Single Principal

4.19.1 Getting Principals
The HTTP GET method is used to retrieve Principal information. You can query all
objects or a single object.

Quick Reference
GET https://localhost:8080/mws/rest/principals?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET https://localhost:8080/mws/rest/principals/<id>?api-version=3
GET https://localhost:8080/mws/rest/principals/<name>?api-version=3

4.19.1.A Get All Principals

URLs and Parameters
GET https://localhost:8080/mws/rest/principals?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query principals by
one or more fields based on
MongoDB query syntax.

query=
{"name":"Acme
Principal"}

sort No JSON Sort the results. Use 1 for ascending
and -1 for descending.

sort=
{"name":-1}

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

http://docs.mongodb.org/manual/reference/operator/

Sample Response
GET https://localhost:8080/mws/rest/principals?api-version=3&fields=name,group

{
"totalCount": 2,
"resultCount": 2,
"results": [
{
"groups": [{
"name": "CN=Engineering,CN=Users,DC=corp,DC=hpc,DC=dev",
"type": "LDAPGROUP"

}],
"name": "Engineering-Principal"

},
{
"groups": [{
"name": "CN=Marketing,CN=Users,DC=corp,DC=hpc,DC=dev",
"type": "LDAPGROUP"

}],
"name": "Marketing-Principal"

}
]

}

Sorting and Querying
See the sorting and querying sections of 3.3 Global URL Parameters.

4.19.1.B Get Single Principal

URLs and Parameters
GET https://localhost:8080/mws/rest/principals/<id>?api-version=3
GET https://localhost:8080/mws/rest/principals/<name>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the principal.

name Yes String -- The name of the principal.

You must specify either id or name, but you do not have to specify both.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/principals/principal8?api-version=3

Chapter 4: Resources

242 4.19 Principals

4.19 Principals 243

{
"attachedRoles": [{

"description": "This is a role for normal users in the Acme BU Group.",
"id": "5033b8eae4b09cc61bedb895",
"name": "Acme-User-Role",
"permissions": [

{
"action": "read",
"administrator": null,
"description": "The permission to read all nodes",
"id": "5033b842e4b09cc61bedb818",
"label": "",
"resource": "nodes",
"resourceFilter": null,
"type": "api",
"version": 1

},
],
"version": 2

}],
"description": "Principal 8",
"groups": [{

"name": "CN=Engineering,CN=Users,DC=corp,DC=hpc,DC=dev",
"type": "LDAPGROUP"

}],
"id": "5033d33fe4b018b28745fecd",
"name": "principal8",
"users": [

{
"name": "jhammon",
"type": "LDAP"

},
{
"name": "bjones",
"type": "LDAP"

}
],

"version": 0
}

4.19.2 Creating Principals
The HTTP POST method is used to submit Principals.

Quick Reference
POST https://localhost:8080/mws/rest/principals?api-version=3

4.19.2.A Create Single Principal

URLs and Parameters
POST https://localhost:8080/mws/rest/principals?api-version=3

Chapter 4: Resources

See 3.3 Global URL Parameters for available URL parameters.

Request Body

The name field is required and must contain only letters, digits, periods, dashes, and
underscores.

The attachedRoles field expects an array of Role IDs or names.

The following is an example request body to create a principal:

POST https://localhost:8080/mws/rest/principals?api-version=3

{
"name" : "Acme-Principal",
"attachedRoles" : [{"name":"Acme-User-Role"}],
"description" : "A cool principal",
"groups" : [{"name": "CN=Engineering,CN=Users,DC=corp,DC=hpc,DC=dev",

"type":"LDAPGROUP"}],
"users" : [{

"name" : "john",
"type" : "LDAP"

}]
}

Sample Response
If the request was successful, the response body is the new principal that was created,
exactly as shown in Get Single Principal. On failure, the response is an error message.

4.19.3 Modifying Principals
The HTTP PUT method is used to modify Principals.

Quick Reference
PUT https://localhost:8080/mws/rest/principals/<id>?api-version=3
PUT https://localhost:8080/mws/rest/principals/<name>?api-version=3

4.19.3.A Modify Single Principal

URLs and Parameters
PUT https://localhost:8080/mws/rest/principals/<id>?api-version=3
PUT https://localhost:8080/mws/rest/principals/<name>?api-version=3

Chapter 4: Resources

244 4.19 Principals

4.19 Principals 245

Parameter Required Type Value Description

id Yes String -- The unique identifier of the Principal.

name Yes String -- The name of the Principal.

The name field must contain only
letters, digits, periods, dashes, and
underscores.

change-
mode

Yes String add
remove
set
(default)

If add, add the given objects (ldapGroups,
ldapOUs, etc.) to the objects that already
exist.
If remove, delete the given objects from the
objects that already exist.
If set, add the given objects (ldapGroups,
ldapOUs, etc.) and remove the objects that
already exist.

See 3.3 Global URL Parameters for available URL parameters.

You must specify either id or name, but you do not have to specify both.

The attachedRoles field expects an array of Role IDs or names.

Example Request
PUT https://locahost/mws/rest/principals/Acme-Principal?api-version=3

{

"groups" : [{
"name" : "CN=Marketing,CN=Users,DC=mycompany,DC=com",
"type" : "LDAPGROUP"

},{
"name" : "CN=Sales,CN=Users,DC=mycompany,DC=com",
"type" : "LDAPGROUP"

}],
"users" : [{

"name" : "jhammon",
"type" : "LDAP"

}]
}

The version field contains the current version of the database entry. This field
cannot be updated directly. However, if version is included in the modify request, it
will be used to verify that another client did not update the object between the time
that the data was retrieved and the modify request was delivered.

Chapter 4: Resources

Sample Response
If the request was successful, the response body is the modified principal as shown in Get
Single Principal. On failure, the response is an error message.

4.19.4 Deleting Principals
The HTTP DELETE method is used to delete Principals.

Quick Reference
DELETE https://localhost:8080/mws/rest/principals/<id>?api-version=3
DELETE https://localhost:8080/mws/rest/principals/<name>?api-version=3

4.19.4.A Delete Single Principal

URLs and Parameters
DELETE https://localhost:8080/mws/rest/principals/<id>?api-version=3
DELETE https://localhost:8080/mws/rest/principals/<name>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the principal.

name Yes String -- The name of the principal.

See 3.3 Global URL Parameters for available URL parameters.

You must specify either id or name, but you do not have to specify both.

Sample Response
JSON response

{}

Related Topics

l 8.4.15 Fields: Principals

Chapter 4: Resources

246 4.19 Principals

4.20 Priority 247

4.20 Priority

This section describes behavior of the priority object in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

Supported Methods

Resource GET PUT POST DELETE

/rest/priority Get All Priorities Modify Priorities -- --

In this section:

l Getting Priorities
o Get All Priorities

l Modifying Priorities
o Modify Priorities

4.20.1 Getting Priorities
The HTTP GET method is used to retrieve priority information.

Quick Reference
GET https://localhost:8080/mws/rest/priority?api-version=3

4.20.1.A Get All Priorities

URLs and Parameters
GET https://localhost:8080/mws/rest/priority?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response

{
"service": {
"weight": 1,
"queue_time": 1,
"x_factor": 0,
"policy_violation": 0,
"bypass": 0

Chapter 4: Resources

},
"target": {
"weight": 1,
"queue_time": 0,
"x_factor": 0

},
"credential": {
"weight": 1,
"user_credential": 0,
"group_credential": 0,
"account_credential": 0,
"class_credential": 0,
"qos_credential": 0

},
"attribute": {
"weight": 1,
"attribute": 0,
"state": 0

},
"fairshare": {
"weight": 1,
"user_credential": 1000,
"group_credential": 0,
"account_credential": 0,
"class_credential": 0,
"qos_credential": 0,
"jobs_per_user": 0,
"processor_seconds_per_user": 0,
"processors_per_user": 0

},
"resource": {
"weight": 1,
"node": 0,
"disk": 0,
"memory": 0,
"swap": 0,
"processor_equivalent_seconds": 0,
"walltime": 0

},
"usage": {
"weight": 1,
"consumed": 0,
"remaining": 0,
"percentage_consumed": 0

}
}

4.20.2 Modifying Priorities
The HTTP PUT method is used to update priority information.

Quick Reference
PUT https://localhost:8080/mws/rest/priority?api-version=3

Chapter 4: Resources

248 4.20 Priority

4.21 Reports 249

4.20.2.A Modify Priorities

URLs and Parameters
PUT https://localhost:8080/mws/rest/priority?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Body
PUT https://localhost:8080/mws/rest/priority?api-version=3

{
"service": {
"weight": 2,
"queue_time": 2,
"x_factor": 1,
"policy_violation": 1,
"bypass": 1

}
}

4.21 Reports

This section describes behavior of the reporting framework in MWS. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Reports, 8.4.22 Fields: Report Samples, and 8.4.17 Fields: Report
Datapoints reference sections contain the type and description of all fields in the
Report, Sample, and Datapoint objects. They also contain details regarding
which fields are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/reports Get All
Reports (No
Data)

-- Create
Report

Delete
Report

/rest/reports/<name> Get Single
Report (With
Data)

-- -- --

/rest/reports/<id> Get Single -- -- --

Chapter 4: Resources

Resource GET PUT POST DELETE

Report (With
Data)

/rest/reports/<name>/datapoints Get
Datapoints
for Single
Report

-- -- --

/rest/reports/<id>/datapoints Get
Datapoints
for Single
Report

-- -- --

/rest/reports/<name>/samples Get Samples
for Report

-- Create
Samples
for
Report

--

/rest/reports/<id>/samples Get Samples
for Report

-- Create
Samples
for
Report

--

In this section:

l Getting Reports
o Get All Reports (No Data)
o Get Single Report (With Data)
o Get Datapoints for Single Report

l Getting Samples for Reports
o Get Samples for Report

l Creating Reports
o Create Report

l Creating Samples
o Create Samples for Report

l Deleting Reports
o Delete Report

Chapter 4: Resources

250 4.21 Reports

4.21 Reports 251

4.21.1 Getting Reports
The HTTP GET method is used to retrieve Report information. Queries for all reports with
no attached data and a single report with associated data are available.

Quick Reference
GET https://localhost:8080/mws/rest/reports?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET https://localhost:8080/mws/rest/reports/<id>?api-version=3
GET https://localhost:8080/mws/rest/reports/<name>?api-version=3

4.21.1.A Get All Reports (No Data)

URLs and Parameters
GET https://localhost:8080/mws/rest/reports?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query reports
by one or more fields based on
MongoDB query syntax.

query=
{"reportSize":4}

sort No JSON Sort the results. Use 1 for
ascending and -1 for
descending.

sort={"name":-1}

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"id": "3efe5c670be86ba8560397ff",
"name": "cpu-util"

…
}]

}

Chapter 4: Resources

http://docs.mongodb.org/manual/reference/operator/

Samples
GET https://localhost:8080/mws/rest/reports?api-version=3&fields=id,name

{
"totalCount": 3,
"resultCount": 3,
"results": [

{
"id": "3efe5c670be86ba8560397ff",
"name": "cpu-util"

},
{

"id": "3efe5c670be86ba856039800",
"name": "cpu-temp"

},
{

"id": "3efe5c670be86ba856039801",
"name": "cpu-load"

}
]

}

4.21.1.B Get Single Report (With Data)

URLs and Parameters
GET https://localhost:8080/mws/rest/reports/<id>?api-version=3
GET https://localhost:8080/mws/rest/reports/<name>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the report.

name Yes String -- The name of the report.

Only one of id or name are required.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
In the example below, the first datapoint has a null data element, which means that the
minimumSampleSize configured for the report was not met when consolidating the
datapoint. The second datapoint contains actual data.

JSON response

Chapter 4: Resources

252 4.21 Reports

4.21 Reports 253

{
"consolidationFunction": "average",
"datapointDuration": 15,
"datapoints": [

{
"endDate": "2024-12-02 17:28:22 UTC",
"startDate": "2024-12-02 17:28:22 UTC",
"firstSampleDate": null,
"lastSampleDate": null,
"data": null

},
{

"endDate": "2024-12-02 17:28:23 UTC",
"startDate": "2024-12-02 17:28:37 UTC",
"firstSampleDate": "2024-12-02 17:28:23 UTC",
"lastSampleDate": "2024-12-02 17:28:30 UTC",
"data": {
"utilization": 99.89,
"time": 27.433333333333337

}
}

],
"description": "Example of CPU utilization reporting",
"id": "3efe5c670be86ba8560397ff",
"keepSamples": false,
"minimumSampleSize": 1,
"name": "cpu-util",
"reportSize": 2

}

4.21.1.C Get Datapoints for Single Report

URLs and Parameters
GET https://localhost:8080/mws/rest/reports/<id>/datapoints?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET https://localhost:8080/mws/rest/reports/<name>/datapoints?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Parameter Required Type Description Example

id Yes String The unique identifier of the
report.

--

name Yes String The name of the report. --

query No JSON Queries for specific results. query=
{"reportSize":4}

sort No JSON Sort the results. Use 1 for
ascending and -1 for
descending.

sort={"name":-1}

Chapter 4: Resources

Only one of id or name are required.

It is possible to query reports by one or more fields based on MongoDB query syntax.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
This function is exactly the same as Get Single Report (With Data). No report
metadata (i.e., description, minimumSampleSize, etc.) is returned.

JSON response

{
"resultCount":1,
"totalCount":1,
"results":[

{
"endDate": "2024-12-02 17:28:22 UTC",
"startDate": "2024-12-02 17:28:22 UTC",
"firstSampleDate": null,
"lastSampleDate": null,
"data": null

},
{

"endDate": "2024-12-02 17:28:37 UTC",
"startDate": "2024-12-02 17:28:37 UTC",
"firstSampleDate": "2024-12-02 17:28:23 UTC",
"lastSampleDate": "2024-12-02 17:28:23 UTC",
"data": {
"utilization": 99.89,
"time": 27.433333333333337

}
}

]
}

4.21.2 Getting Samples for Reports
The HTTP GET method is used to retrieve Sample information.

Quick Reference
GET https://localhost:8080/mws/rest/reports/<id>/samples?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET https://localhost:8080/mws/rest/reports/<name>/samples?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Chapter 4: Resources

254 4.21 Reports

http://docs.mongodb.org/manual/reference/operator/

4.21 Reports 255

4.21.2.A Get Samples for Report

URLs and Parameters
GET https://localhost:8080/mws/rest/reports/<id>/samples?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET https://localhost:8080/mws/rest/reports/<name>/samples?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Parameter Required Type Description Example

id Yes String The unique identifier of the
report.

--

name Yes String The name of the report. --

query No JSON Queries for specific results. query=
{"reportSize":4}

sort No JSON Sort the results. Use 1 for
ascending and -1 for
descending.

sort={"name":-1}

Only one of id or name are required.

It is possible to query reports by one or more fields based on MongoDB query syntax.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"totalCount": 1,
"resultCount": 1,
"results": [{

"timestamp": "2024-12-02 17:28:37 UTC"
"data":{

"cpu1":2.3,
"cpu2":1.2,
"cpu3":0.0,
"cpu4":12.1

},
…

}]
}

Chapter 4: Resources

http://docs.mongodb.org/manual/reference/operator/

4.21.3 Creating Reports
The HTTP POST method is used to create Reports. Operations are available to create
reports with or without historical datapoints.

Quick Reference
POST https://localhost:8080/mws/rest/reports?api-version=3

4.21.3.A Create Report

URLs and Parameters
POST https://localhost:8080/mws/rest/reports?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Request Body
To create a report, several fields are required as documented in Fields: Reports.

The request body below shows all the fields that are available during report creation:

JSON request body

{
"name":"cpu-util",
"description":"An example report on cpu utilization",
"consolidationFunction":"average",
"datapointDuration":15,
"minimumSampleSize":1,
"reportSize":2,
"keepSamples":true,
"reportDocumentSize":1024,
"datapoints":[

{
"startDate":"2024-12-01 19:16:57 UTC",
"endDate":"2024-12-01 19:16:57 UTC",
"data":{

"time":30,
"util":99.98

}
}

]
}

Sample Response
{

"messages":["Report cpu-util created"],
"id":"3efe5c670be86ba8560397ff",
"name":"cpu-util"

Chapter 4: Resources

256 4.21 Reports

4.21 Reports 257

}

Samples
POST https://localhost:8080/mws/rest/reports?api-version=3 (Minimal report without
datapoints)

{
"name":"cpu-util",
"datapointDuration":15,
"reportSize":2

}

4.21.4 Creating Samples
The HTTP POST method is used to create samples for Reports.

Quick Reference
POST https://localhost:8080/mws/rest/reports?api-version=3

4.21.4.A Create Samples for Report

URLs and Parameters
POST https://localhost:8080/mws/rest/reports/<id>/samples?api-version=3
POST https://localhost:8080/mws/rest/reports/<name>/samples?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the report.

name Yes String -- The name of the report.

Only one of id or name are required.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
To create samples for a report, simply send data and an optional timestamp to the URL
above. The request body below shows all the fields that are available during sample
creation. Note that the data field can contain arbitrary JSON.

Chapter 4: Resources

JSON request body

{
"timestamp":"2024-12-01 19:16:57 UTC",
"agent":"my agent",
"data":{

"cpu1":2.3,
"cpu2":1.2,
"cpu3":0.0,
"cpu4":12.1

}
}

Sample Response
{"messages":["1 sample(s) created for report cpu-util"]}

4.21.5 Deleting Reports
The HTTP DELETE method is used to delete Reports.

Quick Reference
DELETE https://localhost:8080/mws/rest/reports/<id>?api-version=3
DELETE https://localhost:8080/mws/rest/reports/<name>?api-version=3

4.21.5.A Delete Report

URLs and Parameters
DELETE https://localhost:8080/mws/rest/reports/<id>?api-version=3
DELETE https://localhost:8080/mws/rest/reports/<name>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the report.

name Yes String -- The name of the report.

Only one of id or name are required.

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

258 4.21 Reports

4.22 Reservations 259

Sample Response
JSON response

{"messages":["Report cpu-util deleted"]}

Related Topics

l 8.4.18 Fields: Reports

4.22 Reservations

This section describes behavior of the Reservations object in MWS. It contains the
URLs, request bodies, and responses delivered to and from MWS.

The 8.4.19 Fields: Reservations reference contains the type and description of all
fields in the Reservations object. It also contains details regarding which fields
are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/reservations Get All
Reservatio
ns

-- Create
Reservati
on

--

/rest/reservations/<i
d>

Get Single
Reservatio
n

Modify
Reservati
on

-- Release
Reservati
on

In this section:

l Getting Reservations
o Get All Reservations
o Get Single Reservation

l Creating Reservations
o Create Reservation

Chapter 4: Resources

l Modifying Reservations
o Modify Reservation

l Releasing Reservations
o Release Reservation

4.22.1 Getting Reservations
The HTTP GET method is used to retrieve Reservation information. Queries for all
objects and a single object are available.

Quick Reference
GET https://localhost:8080/mws/rest/reservations/<id>?api-version=3

Restrictions
Only admin or user reservations are returned with this call.

4.22.1.A Get All Reservations

URLs and Parameters
GET https://localhost:8080/mws/rest/reservations?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/reservations?api-version=3&fields=id

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"id": "system.1"},
{"id": "system.2"},
{"id": "system.3"}

]
}

Chapter 4: Resources

260 4.22 Reservations

4.22 Reservations 261

4.22.1.B Get Single Reservation

URLs and Parameters
GET https://localhost:8080/mws/rest/reservations/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"accountingAccount": "",
"accountingGroup": "",
"accountingQOS": "",
"accountingUser": "root",
"aclRules": [{
"affinity": "NEUTRAL",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "RESERVATION_ID",
"value": "system.43"

}],
"allocatedNodeCount": 1,
"allocatedProcessorCount": 8,
"allocatedTaskCount": 1,
"allocatedNodes": [

{"id":"node001"}
],
"comments": "",
"creationDate": null,
"duration": 200000000,
"endDate": "2025-03-17 16:49:10 UTC",
"excludeJobs": [
"job1",
"job2"

],
"expireDate": null,
"flags": [
"REQFULL",
"ISACTIVE",
"ISCLOSED"

],
"globalId": "",
"hostListExpression": "",
"id": "system.43",
"idPrefix": "",
"isActive": true,
"label": "",
"maxTasks": 0,
"messages": [],

Chapter 4: Resources

"owner": {
"name": "adaptive",
"type": "USER"

},
"partitionId": "switchB",
"profile": "",
"requirements": {
"architecture": "",
"featureList": [
"feature1",
"feature2"

],
"featureMode": "",
"memory": 0,
"nodeCount": 0,
"nodeIds": ["node001:1"],
"os": "",
"taskCount": 1

},
"reservationGroup": "",
"resources": {"PROCS": 0},
"startDate": "2024-11-14 20:15:50 UTC",
"statistics": {
"blockedProcessorSeconds": 0,
"reservedProcessorSeconds": 2660

},
"subType": "Other",
"taskCount": 0,
"trigger": null,
"triggerIds": [],
"uniqueIndex": "",
"variables": {}

}

4.22.2 Creating Reservations
The HTTP POST method is used to create Reservations.

Quick Reference
POST https://localhost:8080/mws/rest/reservations?api-version=3

4.22.2.A Create Reservation

URLs and Parameters
POST https://localhost:8080/mws/rest/reservations?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Chapter 4: Resources

262 4.22 Reservations

4.22 Reservations 263

Request Body
The request body below shows all the fields that are available when creating a
Reservation, along with some sample values:

JSON request body

{
"accountingAccount": "",
"accountingGroup": "",
"accountingQOS": "",
"accountingUser": "root",
"aclRules": [{
"affinity": "POSITIVE",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "GROUP",
"value": "staff"

}],
"comments": "",
"duration": 200000000,
"endDate": "2025-03-17 16:49:10 UTC",
"excludeJobs": [
"job1",
"job2"

],
"flags": [
"SPACEFLEX",
"ACLOVERLAP",
"SINGLEUSE"

],
"hostListExpression": "",
"idPrefix": "",
"label": "myreservation",
"owner": {
"name": "adaptive",
"type": "USER"

},
"partitionId": "",
"profile": "",
"requirements": {
"architecture": "",
"featureList": [
"feature1",
"feature2"

],
"memory": 0,
"os": "",
"taskCount": 1

},
"reservationGroup": "",
"resources": {
"PROCS": 2,
"MEM": 1024,
"DISK": 1024,
"SWAP": 1024,
"other1": 17,
"other2": 42

},
"startDate": "2024-11-14 20:15:50 UTC",
"subType": "Other",
"trigger": {

Chapter 4: Resources

"eventType":"START",
"actionType":"EXEC",
"action":"date"

},
"variables": {
"var1": "val1",
"var2": "val2"

}
}

This example is to create a reservation if no conflicting reservations are found (this is the
equivalent to mrsvctl -c -h node01 -E):

JSON request body

{
"flags": [
"DEDICATEDRESOURCE"

],
"hostListExpression": "node01"

}

Sample Response
JSON Response for successful POST

{"id": "system.44"}

4.22.3 Modifying Reservations
The HTTP PUT method is used to modify Reservations.

Quick Reference
PUT https://localhost:8080/mws/rest/reservations/<id>?api-version=3&change-
mode=<add|remove|set>

4.22.3.A Modify Reservation

URLs and Parameters
PUT https://localhost:8080/mws/rest/reservations/<id>?api-version=3&change-
mode=<add|remove|set>

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

Chapter 4: Resources

264 4.22 Reservations

4.22 Reservations 265

Parameter Required Type Value Description

change-
mode

Yes String add
remove
set

If add, add the given variables to the variables
that already exist.
If remove, delete the given variables from the
variables that already exist.
If set, replace all existing variables with the
given variables.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
The request body below shows all the fields that are available when modifying a
Reservation, along with some sample values:

JSON request body for reservation modify

{
"variables": {
"var1": "val1",
"var2": "val2"

}
}

Sample Response

This message might not match the message returned from Moab HPC Suite exactly
but is given as an example of the structure of the response.

JSON response

{"messages":["reservation 'system.43' attribute 'Variable' changed."]}

Restrictions
You can change the ACL Rules on a reservation but not using this resource. See 4.1.2.A
Create or Update ACL.

4.22.4 Releasing Reservations
The HTTP DELETE method is used to release Reservations.

Chapter 4: Resources

Quick Reference
DELETE https://localhost:8080/mws/rest/reservations/<id>?api-version=3

4.22.4.A Release Reservation

URLs and Parameters
DELETE https://localhost:8080/mws/rest/reservations/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON Response for successful DELETE

{}

Related Topics

l 8.4.19 Fields: Reservations

4.23 Resource Types

This section describes behavior of the Resource Type object in MWS. It contains the
URLs, request bodies, and responses delivered to and from MWS.

The 8.4.20 Fields: Resource Types reference contains the type and description of all
fields in the Resource Type object.

Supported Methods

Resource GET PUT POST DELETE

/rest/resource-types Get All Resource Types -- -- --

In this section:

Chapter 4: Resources

266 4.23 Resource Types

4.24 Roles 267

l Getting Resource Types
o Get All Resource Types

4.23.1 Getting Resource Types
The HTTP GET method is used to retrieve Resource Type information.

Quick Reference
GET https://localhost:8080/mws/rest/resource-types?api-version=3

4.23.1.A Get All Resource Types

URLs and Parameters
GET https://localhost:8080/mws/rest/resource-types?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/resource-types?api-version=3&fields=id

{
"totalCount": 1,
"resultCount": 1,
"results": [
{"id": "throttle_migrate"}

]
}

Related Topics

l 8.4.20 Fields: Resource Types

4.24 Roles

This section describes behavior of the Role resource in MWS. The role resource is used to
control access to MWS resources based on the proxy-user. Each role is attached to a
principal and contains a list of proxy-user permissions that the group can use in MWS. This
section describes the URLs, request bodies, and responses delivered to and from MWS.

Chapter 4: Resources

The 8.4.21 Fields: Roles reference section contains the type and description of all
fields in the Role object. It also contains details regarding which fields are valid
during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/roles Get All Roles

Get Default
Permissions on
Default Roles

-- Create
Single
Role

--

/rest/roles/<id> Get Single Role Modify
Single Role

Reset Role
Permissions

-- Deleting
Roles

/rest/roles/<name> Get Single Role Modify
Single Role

Reset Role
Permissions

-- Delete
Single
Role

In this section:

l Getting Roles
o Get All Roles
o Get Default Permissions on Default Roles
o Get Single Role

l Creating Roles
o Create Single Role

l Modifying Roles
o Modify Single Role
o Reset Role Permissions

l Deleting Roles
o Delete Single Role

Chapter 4: Resources

268 4.24 Roles

4.24 Roles 269

4.24.1 Getting Roles
The HTTP GET method is used to retrieve Role information. You can query all objects or a
single object.

Quick Reference
GET https://localhost:8080/mws/rest/roles?api-version=3[&query={"field":"value"}&sort=
{"field":<1|-1>}]
GET https://localhost:8080/mws/rest/roles/<id>?api-version=3
GET https://localhost:8080/mws/rest/roles/<name>?api-version=3

4.24.1.A Get All Roles

URLs and Parameters
GET https://localhost:8080/mws/rest/roles?api-version=3[&query={"field":"value"}&sort=
{"field":<1|-1>}]

Parameter Required Type Value Description Example

query No JSON -- Queries for specific
results.
It is possible to query
roles by one or more
fields based on
MongoDB query syntax.

query=
{"name":"Acme-
User-Role"}

sort No JSON -- Sort the results. Use 1
for ascending and -1 for
descending.

sort={"name":-
1}

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/roles?api-version=3&fields=id,name

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"id": "4fa197e68ca30fc605dd1cf0",
"name": "Acme-User-Role"

}]
}

Chapter 4: Resources

http://docs.mongodb.org/manual/reference/operator/

Sorting and Querying
See the sorting and querying sections of 3.3 Global URL Parameters.

4.24.1.B Get Default Permissions on Default Roles
The defaults parameter is used to list the default permissions that are attached to the
default roles.

URLs and Parameters
GET https://localhost:8080/mws/rest/roles?api-version=3&defaults=true

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"name": "HPCUser",
"description": "Basic user, with permission to create and manage their own

jobs",
"scope": "GLOBAL",
"permissions": [

{
"action": "read",
"administrator": false,
"description": "Read nodes",
"fieldPath": "*",
"id": "5612b526e4b0b5b9bc0db341",
"label": "read-nodes",
"resource": "nodes",
"resourceFilter": null,
"scope": "GLOBAL",
"type": "domain",
"version": 0

},
{

"action": "create",
"administrator": false,
"description": "Create jobs",
"fieldPath": null,
"id": "5612b526e4b0b5b9bc0db345",
"label": "create-jobs",
"resource": "jobs",
"resourceFilter": null,
"scope": "GLOBAL",
"type": "domain",
"version": 0

},
...

]
},

{
"name": "HPCAdmin",

Chapter 4: Resources

270 4.24 Roles

4.24 Roles 271

"description": "Administrative user, with privileges for all features and jobs",
"scope": "GLOBAL",
"permissions": [

{
"action": "read",
"administrator": false,
"description": "Read nodes",
"fieldPath": "*",
"id": "5612b526e4b0b5b9bc0db341",
"label": "read-nodes",
"resource": "nodes",
"resourceFilter": null,
"scope": "GLOBAL",
"type": "domain",
"version": 0

},
...

]
}

]
}

4.24.1.C Get Single Role

URLs and Parameters
GET https://localhost:8080/mws/rest/roles/<id>?api-version=3
GET https://localhost:8080/mws/rest/roles/<name>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the Role.

name Yes String -- The name of the Role.

You must specify either id or name, but you do not have to specify both.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/roles/Acme-User-Role?api-version=3

{
"description" : "This is a role for normal users in the Acme BU Group.",
"id" : "5022e695e4b073f54e47c28d",
"name" : "Acme-User-Role",
"permissions" : [{

"action" : "create",
"administrator" : null,
"description" : "The permission to create all charts.",
"id" : "5022e695e4b073f54e47c28e",

Chapter 4: Resources

"label" : "Create Chart",
"resource" : "chart",
"resourceFilter" : null,
"type" : "custom",
"scope" : "GLOBAL",
"version" : 0

}, {
"action" : "read",
"administrator" : null,
"description" : "The permission to view all charts.",
"id" : "5022e695e4b073f54e47c28f",
"label" : "View Chart",
"resource" : "chart",
"resourceFilter" : null,
"type" : "custom",
"scope" : "GLOBAL",
"version" : 0

}, {
"action" : "update",
"administrator" : null,
"description" : "The permission to modify the africa chart.",
"id" : "5022e695e4b073f54e47c290",
"label" : "Modify Africa Chart",
"resource" : "chart",
"resourceFilter" : {

"name" : "africa"
},
"type" : "custom",
"scope" : "GLOBAL",
"version" : 0

}, {
"action" : "read",
"administrator" : null,
"description" : "The permissions to view John's services.",
"id" : "5022e695e4b073f54e47c291",
"label" : "Read John's services",
"resource" : "services",
"resourceFilter" : {

"user":"john"
},
"type" : "api",
"scope" : "GLOBAL",
"version" : 0

}],
"version" : 2

}

4.24.2 Creating Roles
The HTTP POST method is used to submit Roles.

Quick Reference
POST https://localhost:8080/mws/rest/roles?api-version=3

Chapter 4: Resources

272 4.24 Roles

4.24 Roles 273

4.24.2.A Create Single Role

URLs and Parameters
POST https://localhost:8080/mws/rest/roles?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Request Body

The name field is required and must contain only letters, digits, periods, dashes, and
underscores.

The following is an example of a request body to create a role:

POST https://localhost:8080/mws/rest/roles?api-version=3

{
"name" : "Acme-User-Role",
"description" : "This is a role for normal users in the Acme BU Group.",
"permissions" :
[

{
"id" : "4fa197e68ca30fc605dd1cf0"
},
{
"id" : "4fa197e68ca30fc605dd1df2"
}

]
}

Sample Response
If the request was successful, the response body is the new role that was created, exactly
as shown in section 4.24.1.C Get Single Role. On failure, the response is an error message.

Samples
The permissions field only expects an array of permission IDs, as shown in the
following example:

Example payload of role with 2 permissions

{
"name" : "Acme-User-Role",
"description" : "This is a role for normal users in the Acme BU Group.",
"permissions" :
[

{
"id" : "4fa197e68ca30fc605dd1cf0"
}

Chapter 4: Resources

]
}

4.24.3 Modifying Roles
The HTTP PUT method is used to modify Roles.

Quick Reference
PUT https://localhost:8080/mws/rest/roles/<id>?api-version=3
PUT https://localhost:8080/mws/rest/roles/<name>?api-version=3

4.24.3.A Modify Single Role

URLs and Parameters
PUT https://localhost:8080/mws/rest/roles/<id>?api-version=3
PUT https://localhost:8080/mws/rest/roles/<name>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the
Role.

name Yes String -- The name of the Role.

The name field must
contain only letters,
digits, periods, dashes,
and underscores.

change-mode No String add
remove
set
(default)

If add, adds the given
permissions to the
permissions that already
exist.
If remove, deletes the given
permissions from the
permissions that already
exist.
If set, adds the given
permissions and deletes the
permissions that already
exist.

Chapter 4: Resources

274 4.24 Roles

4.24 Roles 275

You must specify either id or name, but you do not have to specify both.

See 3.3 Global URL Parameters for available URL parameters.

Example Request
PUT https://locahost/mws/rest/role/Acme-User-Role?change-mode=add?api-version=3

{
"permissions":[{"id":"4fa197e68ca30fc605dd1cf0"}]

}

Sample Response
If the request was successful, the response body is the modified role as shown in section
4.24.1.C Get Single Role. On failure, the response is an error message.

4.24.3.B Reset Role Permissions
The reset-permissions parameter is used to reset the permissions on a role to match the
permissions of one of the default roles.

URLs and Parameters
PUT https://localhost:8080/mws/rest/roles/<role>?api-version=3&reset-
permissions=<default-role>

Parameter Required Type Value Description

role Yes String --- The role to be modified.

default-
role

Yes String --- The name of the default role whose permissions
will be applied to the <role>.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
JSON request body (required)

{}

Sample Response
{

Chapter 4: Resources

"description": "Basic user, with permission to create and manage their own jobs",
"id": "5612b526e4b0b5b9bc0db389",
"name": "HPCUser",
"permissions": [

{
"action": "read",
"administrator": false,
"description": "Read nodes",
"fieldPath": "*",
"id": "5612b526e4b0b5b9bc0db341",
"label": "read-nodes",
"resource": "nodes",
"resourceFilter": null,
"scope": "GLOBAL",
"type": "domain",
"version": 0

},
{

"action": "create",
"administrator": false,
"description": "Create jobs",
"fieldPath": null,
"id": "5612b526e4b0b5b9bc0db345",
"label": "create-jobs",
"resource": "jobs",
"resourceFilter": null,
"scope": "GLOBAL",
"type": "domain",
"version": 0

},
...

],
"scope": "GLOBAL",
"version": 2

}

4.24.4 Deleting Roles
The HTTP DELETE method is used to delete Roles.

Quick Reference
DELETE https://localhost:8080/mws/rest/roles/<id>?api-version=3
DELETE https://localhost:8080/mws/rest/roles/<name>?api-version=3

4.24.4.A Delete Single Role

URLs and Parameters
DELETE https://localhost:8080/mws/rest/roles/<id>?api-version=3
DELETE https://localhost:8080/mws/rest/roles/<name>?api-version=3

Chapter 4: Resources

276 4.24 Roles

4.25 Standing Reservations 277

Parameter Required Type Value Description

id Yes String -- The unique identifier of the Role.

name Yes String -- The name of the Role.

You must specify either id or name, but you do not have to specify both.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{}

Related Topics

l 8.4.21 Fields: Roles

4.25 Standing Reservations

This section describes behavior of the Standing Reservation object in MWS. It
contains the URLs, request bodies, and responses delivered to and from MWS.

The 8.4.23 Fields: Standing Reservations reference section contains the type and
description of all fields in the Standing Reservation object. It also contains
details regarding which fields are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/standing-
reservations

Get All Standing
Reservations

-- -- --

/rest/standing-
reservations/<id>

Get Single Standing
Reservation

-- -- --

In this section:

Chapter 4: Resources

l Getting Standing Reservations
o Get All Standing Reservations
o Get Single Standing Reservation

4.25.1 Getting Standing Reservations
The HTTP GET method is used to retrieve Standing Reservation information.
Queries for all objects and a single object are available.

Quick Reference
GET https://localhost:8080/mws/rest/standing-reservations/<id>?api-version=3

4.25.1.A Get All Standing Reservations

URLs and Parameters
GET https://localhost:8080/mws/rest/standing-reservations?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/standing-reservations?api-version=3&fields=id

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"id": "sr1"},
{"id": "sr2"},
{"id": "sr3"}

]
}

4.25.1.B Get Single Standing Reservation

URLs and Parameters
GET https://localhost:8080/mws/rest/standing-reservations/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

Chapter 4: Resources

278 4.25 Standing Reservations

4.25 Standing Reservations 279

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"access": "DEDICATED",
"accounts": ["account1"],
"aclRules": [{
"affinity": "POSITIVE",
"comparator": "EQUAL",
"type": "USER",
"value": "adaptive",

}],
"chargeAccount": "account2",
"chargeUser": "user2",
"classes": ["class1"],
"clusters": ["cluster1"],
"comment": "comment",
"days": ["Monday"],
"depth": 2,
"disabled": false,
"endOffset": 86415,
"flags": ["ALLOWJOBOVERLAP"],
"groups": ["group1"],
"hosts": ["host1"],
"id": "fast",
"jobAttributes": ["TEMPLATESAPPLIED"],
"maxJob": 2,
"maxTime": 0,
"messages": ["message1"],
"nodeFeatures": ["feature1"],
"os": "Ubuntu 10.04.3",
"owner": {
"name": "root",
"type": "USER"

},
"partition": "ALL",
"period": "DAY",
"procLimit": {
"qualifier": "<=",
"value": 5

},
"psLimit": {
"qualifier": "<=",
"value": 60

},
"qoses": ["qos1"],
"reservationAccessList": [],
"reservationGroup": "group2",
"resources": {
"PROCS": -1,
"tapes": 1

},
"rollbackOffset": 43200,
"startOffset": 347040,
"taskCount": 0,
"tasksPerNode": 0,
"timeLimit": -1,

Chapter 4: Resources

"triggers": [],
"type": "type1",
"users": ["user1"]

}

Related Topics

l 8.4.23 Fields: Standing Reservations

4.26 Virtual Containers

This section describes behavior of the Virtual Container object in MWS. It contains
the URLs, request bodies, and responses delivered to and from MWS.

The 8.4.25 Fields: Virtual Containers reference section contains the type and
description of all fields in the Virtual Container object. It also contains details
regarding which fields are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/vcs Get All
Virtual
Containers

-- Create
Virtual
Container

--

/rest/vcs/<id> Get Single
Virtual
Container

Modifying
Virtual
Containers

-- Destroy
Virtual
Container

In this section:

l Getting Virtual Containers
o Get All Virtual Containers
o Get Single Virtual Container

l Creating Virtual Containers
o Create Virtual Container

l Modifying Virtual Containers
o Modify Virtual Container

Chapter 4: Resources

280 4.26 Virtual Containers

4.26 Virtual Containers 281

l Destroying Virtual Containers
o Destroy Virtual Container

4.26.1 Getting Virtual Containers
The HTTP GET method is used to retrieve Virtual Container information. Queries for
all objects and a single object are available.

Quick Reference
GET https://localhost:8080/mws/rest/vcs/<id>?api-version=3

4.26.1.A Get All Virtual Containers

URLs and Parameters
GET https://localhost:8080/mws/rest/vcs?api-version=3

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
GET https://localhost:8080/mws/rest/vcs?api-version=3&fields=id

{
"totalCount": 5,
"resultCount": 5,
"results": [
{"id": "vc3"},
{"id": "vc1"},
{"id": "vc4"},
{"id": "vc5"},
{"id": "vc2"}

]
}

4.26.1.B Get Single Virtual Container

URLs and Parameters
GET https://localhost:8080/mws/rest/vcs/<id>?api-version=3

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

Chapter 4: Resources

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response

{
"aclRules": [{
"affinity": "POSITIVE",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "USER",
"value": "root"

}],
"createDate": "2024-11-15 14:01:40 UTC",
"creator": "root",
"description": "vc2",
"flags": ["DESTROYWHENEMPTY"],
"id": "vc2",
"jobs": [
{"id":"Moab.1"}

],
"nodes": [
{"id":"node1"}

],
"owner": {
"name": "root",
"type": "USER"

},
"reservations": [
{"id":"system.1"}

],
"variables": {
"a": "b",
"c": "d"

},
"virtualContainers": [
{"id":"vc3"}

]
}

4.26.2 Creating Virtual Containers
The HTTP POST method is used to create Virtual Containers.

Quick Reference
POST https://localhost:8080/mws/rest/vcs?api-version=3[&proxy-user=<username>]

Restrictions
The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the
moab.cfg file, for example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

Chapter 4: Resources

282 4.26 Virtual Containers

4.26 Virtual Containers 283

4.26.2.A Create Virtual Container

URLs and Parameters
POST https://localhost:8080/mws/rest/vcs?api-version=3[&proxy-user=<username>]

Parameter Required Type Value Description

proxy-user No String -- Perform the action as this user.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
The request body below shows all the fields that are available when creating a Virtual
Container, along with some sample values:

JSON request body

{
"description": "ted's vc",
"owner": {
"name": "ted",
"type": "USER"

},
"requiredStartDate": "2024-11-08 13:18:47 MST",
"flags": ["HOLDJOBS"],
"virtualContainers": [
{"id": "vc93"},
{"id": "vc94"}

],
}

Sample Response
JSON response for successful POST

{"id": "vc8"}

Restrictions
When creating a Virtual Container, the creator field is set to the value of
proxy-user (if set) or owner.name (if set). However, setting the creator field works
only if you set ENABLEPROXY=TRUE in the moab.cfg file. For example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

You can set the creator field (as shown above), but you can never change it.

Chapter 4: Resources

4.26.3 Modifying Virtual Containers
The HTTP PUT method is used to modify Virtual Containers.

Quick Reference
PUT https://localhost:8080/mws/rest/vcs/<id>?api-version=3&change-
mode=<add|remove|set>[&proxy-user=<username>]

Restrictions
The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the
moab.cfg file, for example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.26.3.A Modify Virtual Container

URLs and Parameters
PUT https://localhost:8080/mws/rest/vcs/<id>?api-version=3&change-
mode=<add|remove|set>[&proxy-user=<username>]

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

change-
mode

Yes String add
remove
set

If add, add the given objects (jobs, VMs, etc.)
to the objects that already exist.
If remove, modify the attributes of the virtual
container itself and not the associated objects.
If set, perform the action as this user.

proxy-
user

No String -- Perform the action as this user.

See 3.3 Global URL Parameters for available URL parameters.

Request Body
Here are three examples of Virtual Container updates: add objects, remove objects, and
update attributes. In each case, the examples below show all the fields that are available,
along with some sample values:

Add objects with /rest/vcs/vc1?change-mode=add

Chapter 4: Resources

284 4.26 Virtual Containers

4.26 Virtual Containers 285

{
"jobs": [
{"id": "Moab.37"},
{"id": "Moab.38"}

],
"nodes": [
{"id": "node1"},
{"id": "node2"}

],
"reservations": [
{"id": "system.48"},
{"id": "system.49"}

],
"virtualContainers": [
{"id": "vc93"},
{"id": "vc94"}

]
}

Remove objects with /rest/vcs/vc1?change-mode=remove

{
"jobs": [
{"id": "Moab.37"},
{"id": "Moab.38"}

],
"nodes": [
{"id": "node1"},
{"id": "node2"}

],
"reservations": [
{"id": "system.48"},
{"id": "system.49"}

],
"virtualContainers": [
{"id": "vc93"},
{"id": "vc94"}

]
}

Modify VC attributes with /rest/vcs/vc1?change-mode=set

{
"description": "This is a new description.",
"flags": ["HOLDJOBS"],
"owner": {
"name": "ted",
"type": "USER"

},
"variables": {
"a": "b",
"c": "d"

}
}

Chapter 4: Resources

Sample Responses

These messages might not match the messages returned from Moab HPC Suite
exactly but they are given as examples of the structure of the responses.

JSON response for adding objects

{
"messages":[
"job '147' added to VC 'vc3'",
"job 'Moab.1' added to VC 'vc3'"

]
}

JSON response for removing objects

{
"messages":[
"job '147' removed from VC 'vc3'",
"job 'Moab.1' removed from VC 'vc3'"

]
}

JSON response for updating attributes

{"messages":["VC 'vc3' successfully modified"]}

Restrictions
The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the
moab.cfg file, for example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.26.4 Destroying Virtual Containers
The HTTP GET method is used to retrieve <name> information.

Quick Reference
DELETE https://localhost:8080/mws/rest/vcs/<id>?api-version=3[&proxy-user=<username>]

Restrictions
The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the
moab.cfg file, for example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

Chapter 4: Resources

286 4.26 Virtual Containers

4.26 Virtual Containers 287

4.26.4.A Destroy Virtual Container

URLs and Parameters
DELETE https://localhost:8080/mws/rest/vcs/<id>?api-version=3&[&proxy-user=<username>]

Parameter Required Type Value Description

id Yes String -- The unique identifier of the object.

proxy-user No String -- Perform the action as this user.

See 3.3 Global URL Parameters for available URL parameters.

Sample Response
JSON response for successful DELETE

{}

Related Topics

l 8.4.25 Fields: Virtual Containers

Chapter 4: Resources

5.1 Overview of Reporting Framework 288

Chapter 5: Reporting Framework

The MWS reporting framework described in this topic is deprecated and may be
removed in a future release. Use the Apache Spark reporting framework instead.

The reporting framework is a set of tools to make time-based reports from numerical data.
The following sections will (1) provide an overview of the framework and the concepts
related to it, and (2) work through an example report (CPU Utilization) with details
regarding which web services to use and with what data.

The REST API reference is located in the Report resource section (see 4.21 Reports).

In this chapter:

5.1 Overview of Reporting Framework
5.2 Example Report (CPU Utilization)

5.1 Overview of Reporting Framework

In this section:

5.1.1 Concepts
5.1.2 Capabilities

5.1.1 Concepts
The reporting framework uses 3 core concepts - reports, datapoints, and samples:

l Reports (see 8.4.18 Fields: Reports): A report is a time-based view of numerical data.

l Report Datapoints (see 8.4.17 Fields: Report Datapoints): A datapoint is a
consolidated set of data for a certain time period.

l Report Samples (see 8.4.22 Fields: Report Samples): A sample is a snapshot of a
certain set of data at a particular point in time.

To illustrate, consider the memory utilization of a virtual machine. At any given point in
time, you can get the memory utilization by using your operating system's performance
utilities (top for Linux, Task Manager for Windows):

Chapter 5: Reporting Framework

2400/12040MB

By recording the memory utilization and time constantly for 1 minute, you could gather the
following data:

Time Memory Utilization

3:53:55 PM 2400/12040 MB

3:54:13 PM 2410/12040 MB

3:54:27 PM 2406/12040 MB

3:54:39 PM 2402/12040 MB

3:54:50 PM 2409/12040 MB

Each of the rows in the table above represent a sample of data. By averaging the rows we
can consolidate them into one or more datapoints:

Start Time End Time Memory Utilization

3:53:30 PM 3:54:00 PM 2400/12040 MB

3:54:00 PM 3:54:30 PM 2408/12040 MB

3:54:30 PM 3:55:00 PM 2406/12040 MB

Note that each datapoint covers exactly the same amount of time, and averages all
samples within that period of time.

A report, then, is simply a list of datapoints with some additional configuration
information:

Field Value

Name Memory Utilization Report

Datapoint Duration 30 seconds

Report Size 3 datapoints

Datapoints:

Chapter 5: Reporting Framework

289 5.1 Overview of Reporting Framework

5.1 Overview of Reporting Framework 290

Start Time End Time Memory Utilization

3:53:30 PM 3:54:00 PM 2400/12040 MB

3:54:00 PM 3:54:30 PM 2408/12040 MB

3:54:30 PM 3:55:00 PM 2406/12040 MB

5.1.2 Capabilities
While storing simple information like memory utilization is nice, the reporting framework is
built to automatically handle much more complex information.

Consolidating Samples
Samples are JSON documents that are pushed into the report using the Samples API (see
4.21.4 Creating Samples). Samples are then stored until the consolidation operation creates
a datapoint out of them. The table below shows how different data types are handled in
this operation:

Type Consolidation Function Handling

Numbers Numerical data is averaged.

Strings Strings are aggregated into an array.

Objects The consolidation function recursively consolidates sub-objects.

Lists Lists are combined into a single flat list containing all elements.

Mixed If samples have different types of data for the same field, the values are aggregated
into an array.

Null These values will be ignored unless all values for a sample field are set to null,
resulting in a null result.

If the mixed data types contains at least one number, it will be treated as numerical
data. The non-numerical data will be ignored and the result will be averaged.

Below is an example of how the consolidation function works:

Chapter 5: Reporting Framework

l Samples:

Time NumberEx StringEx ListEx MixedEx MixedNumberEx

3:53:55
PM

2400 "str1" ["elem1"] "str1" "str1"

3:54:13
PM

2410 "str2" ["elem2",
"elem3"]

["elem1"] ["elem1"]

3:54:27
PM

2405 "str3" ["elem4"] null 5

l Resulting Datapoint after consolidation:

Time NumberEx StringEx ListEx MixedEx MixedNumberEx

3:55:00
PM

2405 ["str1",
"str2",
"str3"]

["elem1",
"elem2",
"elem3",
"elem4"]

["str1",
"elem1"]

5

Minimum Number of Samples
If your dataset is highly variable (i.e., values contained in samples are not very close
together), converting a single sample into a datapoint may provide misleading information.
It may be better to have a datapoint with an "Unknown" value. This can be accomplished by
setting the minimum number of samples for a datapoint in the report.

The minimumSampleSize field in the Reports reference section (see 4.21 Reports)
explains that if the specified size of samples is not met when the consolidation function is
performed, the datapoint is considered "null" and no data is available for it. When this
occurs, the sample data is discarded and the data field of the datapoint is set to "null".

For information on how to set this option, see the REST API Report Resource section in 4.21
Reports.

Report Size
Reports have a predetermined number of datapoints, or size, which sets a limit on the
amount of data that can be stored. After the report size has been reached, as newly created
datapoints are pushed into the report, the oldest datapoints will automatically be deleted.
This is to aid in managing the storage capacity of the server hosting MWS.

Chapter 5: Reporting Framework

291 5.1 Overview of Reporting Framework

5.2 Example Report (CPU Utilization) 292

On report creation, a Mongo collection will be initialized that is the configured report
document size multiplied by the report size. Be careful in setting a large report size
or report document size as this may quickly allocate the entire disk. See the
reportDocumentSize and reportSize fields in 8.4.18 Fields: Reports for more
information.

Related Topics

l 5.2 Example Report (CPU Utilization)

5.2 Example Report (CPU Utilization)

To understand how the behavior and usage of the reporting framework, a sample report
covering CPU Utilization will be shown in this section. It will not cover how to gather or
display data for reports but will cover some basic operations that are available with MWS
to facilitate reporting.

In this section:

5.2.1 Creating a Report
5.2.2 Adding Samples
5.2.3 Consolidating Data
5.2.4 Retrieving Report Data
5.2.5 Possible Configurations

5.2.1 Creating a Report
Before any data is sent to MWS, a report must first be created. A JSON request body with
an HTTP method of POST must be used to do this.

POST /rest/reports

{
"name":"cpu-util",
"description":"An example report for cpu utilization",
"consolidationFunction":"average",
"datapointDuration":600,
"reportSize":288

}

Chapter 5: Reporting Framework

This will result in a report being created that can then be retrieved by sending a GET
request to /rest/reports/cpu-util. The datapointDuration of 600 signifies
that the datapoint consolidation should occur once every 10 minutes, while the
reportSize (i.e., number of the datapoints) shows that the report will retain up to 2
days' worth of the latest datapoints.

GET /rest/reports/cpu-util

{
"consolidationFunction": "average",
"datapointDuration": 600,
"datapoints": [],
"description": "An example report for cpu utilization",
"id": "aef6f6a3a0bz7bf6449537c9d",
"keepSamples": false,
"minimumSampleSize": 1,
"name": "cpu-util",
"reportSize": 288,
"version": 0

}

Note that an id has been automatically generated and that no datapoints are associated
with the report.

5.2.2 Adding Samples
Until samples are added and associated with the report, datapoint consolidation will
generate datapoints with a data field equal to null. Once samples are added, however,
they will be averaged and inserted into the next datapoint.

Create samples for the cpu-util by sending a POST request as follows:

POST /rest/reports/cpu-util/samples

[
{
"agent": "cpu-monitor",
"timestamp":"2025-01-01 12:00:00 UTC",
"data": {
"minutes1": 0.5,
"minutes5": 0,
"minutes15": 0

}
},
{
"agent": "cpu-monitor",
"timestamp":"2025-01-01 12:01:00 UTC",
"data": {
"minutes1": 1,
"minutes5": 0.5,
"minutes15": 0.05

}
},

Chapter 5: Reporting Framework

293 5.2 Example Report (CPU Utilization)

5.2 Example Report (CPU Utilization) 294

{
"agent": "cpu-monitor",
"timestamp":"2025-01-01 12:02:00 UTC",
"data": {
"minutes1": 1,
"minutes5": 0.5,
"minutes15": 0.1

}
},
{
"agent": "cpu-monitor",
"timestamp":"2025-01-01 12:03:00 UTC",
"data": {
"minutes1": 0.75,
"minutes5": 1,
"minutes15": 0.25

}
},
{
"agent": "cpu-monitor",
"timestamp":"2025-01-01 12:04:00 UTC",
"data": {
"minutes1": 0,
"minutes5": 1,
"minutes15": 0.85

}
}

]

This sample data contains average load for the last 1, 5, and 15 minute intervals. The
samples were recorded at one-minute intervals starting at noon on January 1st, 2025.

5.2.3 Consolidating Data
A consolidation function must run to generate datapoints from the given samples. This
scheduled consolidation will occur at intervals of datapointDuration seconds. For
each field in the data object in samples, all values will be averaged.

If non-numeric values are included, the following strategies will be followed:

1. All fields that contain a single numeric value in any included sample will be averaged
and the non-numeric or null values will be ignored.

2. All fields that contain a list will be consolidated into a single, flat list.

3. All fields that contain only non-numeric or null values will be consolidated into a single,
flat list.

If no historical datapoints are provided in the creation of a report as in this example, the
next consolidation will be scheduled for the current time plus the datapointDuration.
In this example, the scheduled consolidation is at 10 minutes from the creation date. If
historical datapoints are included in the report creation, the latest datapoint's endDate
plus the datapointDuration will be used as the scheduled time. If this date was in the

Chapter 5: Reporting Framework

past, the next scheduled consolidation will occur at the appropriate interval from the last
endDate.

5.2.4 Retrieving Report Data
To retrieve the consolidated datapoints, simply perform a GET request on the report once
again. Alternatively, the GET for a report's datapoints can be used (see the section Get
Datapoints for Single Report).

GET /rest/reports/cpu-util

{
"consolidationFunction": "average",
"datapointDuration": 600,
"datapoints": [

{
"firstSampleDate": null,
"lastSampleDate": null,
"data": null,
"startDate": "2025-01-01 11:49:00 UTC",
"endDate": "2025-01-01 11:59:00 UTC"

},
{

"firstSampleDate": "2025-01-01 12:00:00 UTC",
"lastSampleDate": "2025-01-01 12:04:00 UTC",
"data": {

"minutes1": 0.65,
"minutes15": 0.25,
"minutes5": 0.6

},
"startDate": "2025-01-01 11:59:00 UTC",
"endDate": "2025-01-01 12:09:00 UTC"

}
],
"description": "An example report for cpu utilization",
"id": "aef6f6a3a0bz7bf6449537c9d",
"keepSamples": false,
"minimumSampleSize": 1,
"name": "cpu-util",
"reportSize": 288,
"version": 0

}

Note that of the two datapoints above, only the second actually contains data, while the
other is set to null. Only samples lying within the datapoint's duration, or from the
startDate to the endDate, are included in the consolidation. Therefore the first
datapoint, which covered the 10 minute period just before the samples' recorded
timestamps, contained no data. The second, which covers the 10 minute period matching
that of the samples, contains the averaged sample data. This data could be used to display
consolidated report data in a custom interface.

Chapter 5: Reporting Framework

295 5.2 Example Report (CPU Utilization)

5.2 Example Report (CPU Utilization) 296

5.2.5 Possible Configurations
Configuration options can be changed to affect the process of report generation. These are
documented in 8.4.18 Fields: Reports and 8.4.22 Fields: Report Samples.

Related Topics

l 5.1 Overview of Reporting Framework

Chapter 5: Reporting Framework

6.1 Plugin Overview 297

Chapter 6: About Moab Web Services Plugins

This chapter describes MWS plugins, their use, and their creation in Moab Workload
Manager.

The sections in this chapter provide you with the following information:

l An introduction to the concept of MWS plugins (see 6.1.1 Plugin Introduction).

l A description of the plugin lifecycle (see 6.1.2 Lifecycle States).

l How plugin utility services can be used (see 6.1.5 Utility Services).

l How data report collisions between plugins are consolidated (see 6.1.6 Data
Consolidation).

l How calls from Moab HPC Suite are routed to MWS plugins (see 6.1.7 Routing).

l How to expose web services from a plugin (see 6.2.8 Exposing Web Services).

l How plugins are driven by events (see 6.2.13 Handling Events).

In this chapter:

6.1 Plugin Overview
6.2 Plugin Developer's Guide
6.3 Moab Workload Manager Resource Manager Integration
6.4 Plugin Type Management
6.5 Plugin Management
6.6 Plugin Services

Related Topics

l 1.1 Configuring Moab Web Services

6.1 Plugin Overview

This section provides an overview of the plugin layer in web services.

In this section:

Chapter 6: About Moab Web Services Plugins

6.1.1 Plugin Introduction
6.1.2 Lifecycle States
6.1.3 Events
6.1.4 CustomWeb Services
6.1.5 Utility Services
6.1.6 Data Consolidation
6.1.7 Routing

6.1.1 Plugin Introduction

Moab Web Services plugins provide a highly extensible interface to interact with Moab HPC
Suite, MWS, and external resources. Plugins can perform some of the same functions as
Moab HPC Suite resource managers (RMs), while also providing many other features not
available to RMs. This section will discuss the main features of plugins, some basic
terminology, and how MWS plugins can interact with Moab HPC Suite.

Features
Plugins can:

l Be created, modified, and deleted without restarting Moab Workload Manager or
MWS.

l Be defined in Groovy and uploaded to MWS without restarting.

l Have individual data storage space and configuration.

l Access MWS configuration and RESTful web services.

l Log to a standard location configured in MWS.

l Be polled at a regular interval (configured on a per-plugin basis).

l Be informed of important system events.

l Be individually stopped, started, paused, and resumed.

l Expose secured and unsecured custom web services for external use.

l Be manipulated via a full RESTful API (for more information, see Chapter 4:
Resources).

l Be manipulated via a full user interface in a browser.

Chapter 6: About Moab Web Services Plugins

298 6.1 Plugin Overview

6.1 Plugin Overview 299

Terminology
There are two distinct terms in the plugin layer: plugin types and plugins (instances).

Term Description

plugin
types

Plugin types can be considered plugin templates with built-in logic. In object-
oriented programming languages, this relates to the concept of a class. They
possess certain abilities, or methods, that can be called by MWS to query or
update information about certain resources. They also can define methods that
will be exposed to external clients as web services. They do not contain any
configuration or current data but they are often tied to a type of component,
such as components that communicate with Moab HPC Suite's WIKI Protocol, or
those that are built on a certain product.
They can define several types of methods:

l Instance methods that return information about the current plugin,
such as getState. (While these are defined in the plugin type, the plugin
type itself does not have a state.)

l The poll event method that is called at a configured interval.
l Lifecycle event methods of plugins created from the plugin type,

such as beforeStart and afterStart.
l RM event methods that are called by Moab HPC Suite when certain

events occur.
l Web service methods that expose custom functionality as public web

services.

Some examples of plugin types include the Native and vCenter plugin types.

plugins
(instances)

Plugins (also called plugin instances) are created from plugin types. They
contain current data or configuration and use the plugin type methods to
interact with resources.

Interactions with Moab HPC Suite as a Resource Manager
The plugin layer in MWS is integrated with Moab Workload Manager via the Native
Resource Manager (RM) interface. When utilizing plugins, MWS is configured as a RM in
Moab HPC Suite, as explained in the next section. Events from Moab HPC Suite are pushed
through the RM interface to MWS, which is then pushed to each plugin in turn. The
relationship between MWS, Moab HPC Suite, and plugins is shown in the following image:

Chapter 6: About Moab Web Services Plugins

For more information, see 6.1.6 Data Consolidation and 6.2.9 Reporting State Data.

6.1.2 Lifecycle States

During the course of a plugin's use, the state of the plugin can change many times. Plugins
have four possible states: Stopped, Started, Paused, and Errored. For the
descriptions of each state, see 8.4.12 Fields: Plugins. The flow of a plugin through the states
is shown in the following image:

Chapter 6: About Moab Web Services Plugins

300 6.1 Plugin Overview

6.1 Plugin Overview 301

See 6.2.13 Handling Events for information about the events that occur during
lifecycle state changes.

Related Topics

l 6.1.1 Plugin Introduction

6.1.3 Events

Plugins use an event-based model, meaning that methods are called on the plugin when
certain criteria are met or situations arise. Events currently exist for polling, lifecycle state
changes, and RM events from Moab HPC Suite. For more information, see 6.2.13 Handling
Events.

Related Topics

l 6.2.13 Handling Events

l 6.1.1 Plugin Introduction

Chapter 6: About Moab Web Services Plugins

6.1.4 Custom Web Services

Although the events interface typically serves most cases, there are some instances where
an event is not supported that is desired. This is especially true when an external resource
is the source of the event. To address these issues, plugins can expose custom web services
to external resources. These web services can be named freely and do anything they want
within the plugin framework.

For example, suppose a resource needs to notify a plugin that provisioning of a virtual
machine has been completed. Instead of having the plugin poll the resource to verify that
the provisioning was finished, the plugin could expose a custom web service to handle
notification from the resource itself.

Sample custom web service

def vmProvisionFinished(Map params) {
// Handle event
return [messages:["Event successfully processed"]]

}

Additionally, plugin types can define web services that are unsecured, meaning that a user
or application account is not required to access it. A full explanation of the syntax and
creation of custom secured and unsecured web services can be seen on 6.2.8 Exposing
Web Services.

For information how resources can access plugin web services, see the section Accessing
Plugin Web Services.

Related Topics

l 6.1.1 Plugin Introduction

6.1.5 Utility Services

Several features of plugins are only available by utilizing bundled services. These include:

l Accessing the individual datastore (see 6.2.7 Individual Datastore).

l Reporting state data to Moab HPC Suite through the Resource Manager interface (see
6.2.9 Reporting State Data).

l Manipulating other plugins and controlling their lifecycle (see 6.2.10 Controlling
Lifecycle).

l Accessing REST resources from MWS (6.2.11 Accessing MWS REST Resources).

Chapter 6: About Moab Web Services Plugins

302 6.1 Plugin Overview

6.1 Plugin Overview 303

It may also be necessary or desired to create additional utility services when creating new
plugin types. The easiest way to do this is to create a utility service that is called by
convention a translator (see 6.2.16.B Using Translators), because it can typically 'translate'
from a specific resource or API to data that can be used by the plugin type.

Finally, custom components (see 6.2.16.C Registering Custom Components) can be used to
fulfill use cases not covered by bundled services or custom translators.

Related Topics

l 6.1.1 Plugin Introduction

6.1.6 Data Consolidation

At times, plugins can report differing or even contradictory data for nodes, virtual
machines, and jobs. This is called a data 'collision'. The act of resolving these collisions is
called 'Consolidation'. Plugins also have the concept of 'precedence', where the plugins with
the lowest precedence value are considered more authoritative than the greater
precedence values plugins. For example, a plugin with a precedence value of 1 has a
higher precedence and is considered more authoritative than a plugin with a precedence
value of 5. If no precedence is provided when creating plugins, the plugin is automatically
assigned to the lowest precedence, or 1 greater than the highest precedence value. The
precedence value cannot be less than 1.

When data from one plugin 'collides' with another, the data from the highest precedence
plugin will be considered the authoritative source for information. If multiple sets of data
(reports) are provided by the same plugin, the latest set of data will take precedence.
Additionally, MWS supports the concept of treating node and virtual machine data with
state information optimistically, pessimistically, or neither. This is
configured using the plugins.stateConsolidationPolicy configuration property
in the MWS configuration file. If this property is set to optimistic and any plugin
reports the state for a node as 'Up', the consolidated state will be 'Up'. Inversely, if the
property is set to pessimistic and any plugin reports the state as Down', the
consolidated state will be 'Down'. If it is set to null (neither), consolidation will occur for
the state field just as with any other field, with higher precedence and later reports being
considered authoritative.

Chapter 6: About Moab Web Services Plugins

When MWS is upgraded to a version that supports plugin precedence from an older
version, existing plugins will not have the precedence field set. The admin should
assign precedence to each plugin manually through the API (see the section
Modifying Plugins) or through the user interface (see 6.5.4 Modifying a Plugin) to
ensure that the consolidation will occur as expected. By default, data from a plugin
without a precedence defaults to a precedence of 1, or the highest precedence.

Consolidation Examples
Suppose two plugins exist, pluginA and pluginB. Plugin 'A' has a precedence of 1, and
plugin 'B' has a precedence of 2, meaning that plugin 'A' is more authoritative. These
plugins both report data for a node with an ID of node1. However, each reports a different
node power state. Plugin 'A' reports the power as ON, while plugin 'B' reports the power as
OFF. The data collision that occurs due to these two contradictory reports is resolved by
the precedence of the plugins. Since plugin A has a higher precedence (lower number), it is
considered authoritative and the node will be reported as ON.

Now suppose that the plugins also report differing node state for node1. In this case, the
node state would depend on the plugins.stateConsolidationPolicy property.
The different combinations of report values compared to the state consolidation policy and
the final reported state are shown in the table below:

Plugin 'A' Node
State

Plugin 'B' Node
State

State Consolidation
Policy

Consolidated Node
State

ON OFF null (neither) ON

OFF ON null (neither) OFF

ON OFF optimistic ON

OFF ON optimistic ON

ON OFF pessimistic OFF

OFF ON pessimistic OFF

In general, we recommend that no two plugins report the same resource or that they
report different properties of the same resource. For example, if plugin 'A' only modified
the power state and plugin 'B' only modified the available disk resource, these two plugins
would work in harmony to provide a consistent view of the node resource.

For more information, see 6.2.9 Reporting State Data and 6.3 Moab Workload Manager
Resource Manager Integration.

Chapter 6: About Moab Web Services Plugins

304 6.1 Plugin Overview

6.2 Plugin Developer's Guide 305

Related Topics

l 6.1.1 Plugin Introduction

6.1.7 Routing

Interfaces may change significantly in future releases.

Because MWS is configured as a Resource Manager (RM) in Moab Workload Manager,
events are sometimes triggered by Moab through the RM interface. These actions could be
migrating a virtual machine, starting a job, submitting a job, modifying a node, and so forth.
The decisions regarding which plugins are affected and notified is termed routing.

Currently all plugins receive all commands from Moab HPC Suite. This means that each
plugin will receive the command to start a job if sent from Moab HPC Suite, even if that
plugin does not handle the job. This means that plugins must ensure they handle actions or
commands only for resources that they report or handle.

Related Topics

l 6.1.1 Plugin Introduction

6.2 Plugin Developer's Guide

Plugin types comprise the methods by which Moab HPC Suite can communicate with
resource managers or other external components. They define all operations that can be
performed for a 'type' or 'class' of plugins, therefore the name 'plugin type'.

Several plugin types are provided with MWS, but it is easy to create additional plugin types
and add their functionality to web services. This involves using Groovy, which is based on
the Java programming language. This section describes the general guidelines and specifics
of implementing new plugin types.

API Classes and Interfaces
There are several packages and classes available to assist in creating plugin types. These
can all be found in the API documentation.

In this section:

Chapter 6: About Moab Web Services Plugins

http://groovy-lang.org/
http://en.wikipedia.org/wiki/Java_(programming_language)
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/

6.2.1 Requirements
6.2.2 Dynamic Methods
6.2.3 Logging
6.2.4 i18n Messaging
6.2.5 Configuration
6.2.6 Configuration Constraints
6.2.7 Individual Datastore
6.2.8 Exposing Web Services
6.2.9 Reporting State Data
6.2.10 Controlling Lifecycle
6.2.11 Accessing MWS REST Resources
6.2.12 Creating Events and Notifications
6.2.13 Handling Events
6.2.14 Handling Exceptions
6.2.15 Managing SSL Connections
6.2.16 Utilizing Services or Custom 'Helper' Classes
6.2.17 Packaging Plugins
6.2.18 Example Plugin Types

Related Topics

l Chapter 6: About Moab Web Services Plugins

6.2.1 Requirements

This section discusses the requirements to create a basic functional plugin. The
com.adaptc.mws.plugins package contains the abstract class AbstractPlugin that
should form the basis of any new plugin type. However, this class need not be extended to
create a functional plugin type.

Only two requirements must be fulfilled for this:

1. The class name must end in Plugin.

2. There must exist id field getter and setter methods:

* public String getId();
* public void setId(String id);

Chapter 6: About Moab Web Services Plugins

306 6.2 Plugin Developer's Guide

https://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/AbstractPlugin.java

6.2 Plugin Developer's Guide 307

The id field can be stored in whichever way desired as long as the getter and setter are
available as shown above but will most likely be implemented as follows:

class BasicPlugin {
String id

}

In this case, String id will be expanded by the Groovy compiler to the full getter and
setter method definitions given above. In other words, no explicit method definitions are
actually needed. Note that the BasicPlugin shown above is able to be uploaded as a
plugin type to MWS but does not actually do anything.

It must also be noted that the AbstractPlugin class already implements an id field.
Therefore, a plugin type that extends this class does not need to define the field as shown
in the following example:

import com.adaptc.mws.plugins.AbstractPlugin

class BasicPlugin extends AbstractPlugin {
// No ID field is needed since it exists in AbstractPlugin

}

6.2.2 Dynamic Methods

Interfaces may change significantly in future releases.

Several methods are dynamically inserted onto each plugin. These methods do not need to
be included in the plugin class, and will be overwritten if included. Additionally, a logger is
inserted into each plugin as discussed in the next section.

The inserted methods are shown below (full definitions can be found in AbstractPlugin and
AbstractPluginInfo):

l public void start() throws PluginStartException; (equivalent to
the start method in 6.6.4 Plugin Control Service)

l public void stop() throws PluginStopException; (equivalent to the
stop method in 6.6.4 Plugin Control Service)

l public Log getLog(); (see 6.2.3 Logging)

l public ConfigObject getAppConfig(); (see 6.2.5 Configuration)

l public String message(Map parameters); (see 6.2.4 i18n Messaging)
l public String getPluginType();

l public PluginState getState();

l public Integer getPollInterval();

Chapter 6: About Moab Web Services Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/AbstractPlugin.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/AbstractPluginInfo.java

l public Boolean getAutoStart();

l public Map<String, Object> getConfig(); (see 6.2.5 Configuration)

Many of these methods are provided for convenience and are discussed in the linked pages
or the following sections.

6.2.3 Logging

Logging in plugin types uses the Apache Commons Logging and log4j libraries. Each plugin
is injected with a method called getLog that can be used to access the configured logger.
It returns an instance of org.apache.commons.logging.Log. Examples of using the logger are
shown below.

The logger can be used to register messages to the MWS log at several levels (in order of
severity):

1. trace

2. debug

3. info

4. warn

5. error

6. fatal

Each of these levels is available as a method on the logger, for example:

public void poll() {
getLog().debug("getLog() is equivalent to just using 'log' in Groovy")
log.debug("This is a debug message and is used for debugging purposes only")
log.info("This is a informational message")
log.warn("This is a warning")
log.error("This is an error message")

}

Logger Name
Each logger in the MWS logging configuration has a name. In the case of plugins, it is
comprised of the full class name, including the package, prepended by 'plugins.'. For
example, a plugin class of example.LoggingPlugin will have access to a logger configured as
plugins.example.LoggingPlugin.

Logging Configuration
The logging configuration is done through the MWS configuration file. For more
information on configuring loggers, see 1.1 Configuring Moab Web Services. A good

Chapter 6: About Moab Web Services Plugins

308 6.2 Plugin Developer's Guide

http://commons.apache.org/proper/commons-logging/
http://logging.apache.org/log4j/2.x/
http://commons.apache.org/proper/commons-logging/apidocs/org/apache/commons/logging/Log.html

6.2 Plugin Developer's Guide 309

configuration for developing plugin types may be to add "plugins" at the debug level. Be
sure to set the log level threshold down for the desired appender.

log4j = {
…
// Appender configuration
...
debug "plugins"

}

6.2.4 i18n Messaging

Plugins, translators, and custom components all have access to i18n messages.

Utilizing messages requires the two following steps:

1. Including a file (or multiple files) that ends in messages.properties in the plugin
JAR file.

2. Using the message method on a plugin type, translator, or custom component.

Including Messages in Plugin JAR File
Messages are defined using property files. These can be named anything as long as they
end with messages.properties and must be placed at the root or top level of the
plugin JAR file. If they are present, they will be loaded automatically. Multiple property files
can be used within a single plugin JAR file.

Each property file consists of an arbitrary amount of lines that define a message property
(also called a code) with letters, numbers, and periods, associated with a human-readable
message that can span multiple lines, have quotes, or contain arguments. These are
demonstrated in the following example:

first.message.code=This is the first message
second.message=This message can span multiple lines, \\
and will not show the linebreaks when retrieved

message.with.arguments=This message has arguments: first - {0}, second - {1}, third -
{2}, etc.
message.with.quotes=This message uses single quotes around ''this phrase''.

We recommend to namespace the messages by using the property definitions and multiple
property files if necessary. For example, suppose a plugin JAR existed that actually
contained two plugin types: Message1Plugin and Message2Plugin. The first
suggestion is to namespace the messages for each plugin by the property definition, such
as the following:

message1Plugin.first.message=This is a message for Message1Plugin
message2Plugin.first.message=This is a message for Message2Plugin

Chapter 6: About Moab Web Services Plugins

http://en.wikipedia.org/wiki/Internationalization_and_localization

These messages could be stored in a file named messages.properties in the root of
the plugin JAR file. If there are many messages contained for each plugin type, it may be
necessary to split each plugin type's messages into a separate file, such as message1-
messages.properties and message2-messages.properties. Note that it is
essential that each property file ends with messages.properties so that it is
registered correctly.

It is important that no two message codes are identical within a single plugin JAR file,
even if they are defined in separate property files. If this is done, a conflict will exist
with the messages and behavior is undefined.

Using the Message Method
Each plugin, translator, and custom component is injected with a method named message.
This method takes a Map as its parameter, which can contain one or several of the
following properties:

Parameter Type Description

code String The message property definition
(everything before the equals sign in the
property file for a single message), for
example, first.message.code.

args List<Object> A list of arguments to insert into the
message.

default String A default message to be used when the
message code cannot be resolved.

error org.springframework.context.
MessageSourceResolvable

An object that represents a hierarchy of
message codes. This is typically used to
display errors.

The most utilized parameters are code and args, as these combined provide great
flexibility in generating messages. If a message cannot be resolved, or in other words the
message definition does not exist, the code will simply be returned as the resolved
message. Below are several examples of messages resolved using the property files given
above. While these are contained in the polling method, the message can be used
anywhere within a plugin type.

package example
import com.adaptc.mws.plugins.AbstractPlugin

class MessagingPlugin extends AbstractPlugin {
def poll() {

Chapter 6: About Moab Web Services Plugins

310 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 311

assert message(code:"first.message.code")=="This is the first message"
assert message(code:"message.with.arguments", args:[

"1st", 2, true
])=="This message has arguments: first - 1st, second - 2, third

- true, etc."
assert message(code:"message.with.quotes")=="This message uses single

quotes around 'this phrase'."
assert message(code:"invalid.message.code")=="invalid.message.code"

}
}

6.2.5 Configuration

Plugin types can access two different kinds of configuration: an individual plugin's
configuration, and the global MWS application configuration.

Individual Plugin Configuration
The individual plugin configuration is separate for each instance of a plugin. This can be
used to store current configuration information such as access information for linked
resources. It should not be used to store cached information or non-configuration related
data. The individual datastore should be used instead for these cases (for more
information, see 6.2.7 Individual Datastore).

It is accessed by using the getConfig method discussed in 6.2.2 Dynamic Methods:

public void poll() {
def configFromMethod = getConfig()
// OR an even simpler method…
def configFromMethod = config

}

A common case is to retrieve the configuration in the configure method, verify that it
matches predetermined criteria, and utilize it perform initial setup of the plugin (e.g.,
initialize libraries needed to communicate with external resources). For example, to verify
that the configuration contains the keys 'username' and 'password', the following code can
be used:

public void configure() throws InvalidPluginConfigurationException {
def myConfig = config
// This checks to make sure the key exists in the configuration Map and that the

value is not empty or null
if (!myConfig.containsKey("username") || !myConfig.username)

throw new InvalidPluginConfigurationException("The username configuration
parameter must be provided")
if (!myConfig.containsKey("password") || !myConfig.password)
throw new InvalidPluginConfigurationException("The password configuration

parameter must be provided")
}

Chapter 6: About Moab Web Services Plugins

Access MWS Configuration
The MWS application configuration can also be accessed in plugin types. This configuration
is global for the entire application and can be modified by the admin as shown in 1.1
Configuring Moab Web Services.

It is accessed by using the getAppConfig method discussed in 6.2.2 Dynamic Methods.
This is demonstrated below:

public void poll() {
// Retrieve the current MWS_HOME location
def mwsHome = appConfig.mws.home.location
// OR an even simpler method…
def mwsHome = getAppConfig().mws.home.location

}

Any of the properties shown in 8.2 MWS Configuration can be accessed. Custom properties
can also be registered and accessed:

mws-config.groovy

plugins.custom.property = "This is my custom property"

CustomAppPropertyPlugin

public void poll() {
assert appConfig.plugins.custom.property=="This is my custom property"

}

6.2.6 Configuration Constraints

Plugin types can optionally define validation constraints for the polling interval and plugin
configuration. These parameters are then checked against the defined constraints during
the creation of a new plugin. If the validation fails, meaning the configuration provided does
not pass the constraints defined by the plugin type, the plugin will fail to be created with
error messages based on the parameters and constraints defined.

Defining Constraints
To define constraints for a plugin type and therefore for all plugins created using it, use the
following syntax:

import com.adaptc.mws.plugins.*
class ConstrainedPlugin extends AbstractPlugin {

static constraints = {
// Set plugin's default polling interval
pollInterval defaultValue:60
// The "myParam" configuration parameter is automatically required and

cannot be blank

Chapter 6: About Moab Web Services Plugins

312 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 313

myParam blank:false
// The "myEnum" configuration parameter is not required and must set to

one of the values in the list
myEnum required:false, inList:["val1", "val2", "val3]
// Insert additional constraints here…

}
}

In the table below, all available constraints are shown, as well as the expected value type,
an example, the default message code, and the message suffix. The message columns are
described in greater detail in the Messaging section below.

Constr
aint

Def
aul
t
Val
ue

Ty
pe

Exam
ple
Value

Default Message
Code

Message Suffix Description

blank -- Boo
lea
n

true default.blank.message blank If false, the
parameter
(if present)
cannot be a
blank string.

creditC
ard

-- Boo
lea
n

true default.invalid.creditC
ard.message

creditCard.invali
d

If true, uses
org.apache.c
ommons.
validator.Cre
ditCard
Validator to
determine if
the
parameter
(if present)
is a valid
credit card
number.

default
Value

-- Obj
ect
or
Clo
sur
e

60 -- -- If the
parameter is
not present,
it will be set
to this
default
value. Does
not return
any error
messages.
See Default
Value below

Chapter 6: About Moab Web Services Plugins

Constr
aint

Def
aul
t
Val
ue

Ty
pe

Exam
ple
Value

Default Message
Code

Message Suffix Description

for more
information.

email -- Boo
lea
n

true default.invalid.email.
message

email.invalid If true, the
parameter
(if present)
must be a
valid email
address.

inList -- List ["firs
t",
"secon
d"]

default.not.inlist.mess
age

not.inList The
parameter
(if present)
must be set
to one of the
values
specified.

matche
s

-- Stri
ng

"[a-z]
[A-
Z]+"

default.doesnt.match.
message

matches.invalid The
parameter
(if present)
must match
the specified
regular
expression.

max -- Inte
ger

10 default.invalid.max.me
ssage

max.exceeded The
parameter
(if present)
must not be
greater than
the defined
value.

*maxSi
ze

-- Inte
ger

10 default.invalid.max.siz
e.message

maxSize.exceede
d

The
parameter's
(if present)
size must
not be
greater than
the defined
value.

Chapter 6: About Moab Web Services Plugins

314 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 315

Constr
aint

Def
aul
t
Val
ue

Ty
pe

Exam
ple
Value

Default Message
Code

Message Suffix Description

min -- Inte
ger

1 default.invalid.min.me
ssage

min.notmet The
parameter
(if present)
must not be
less than the
defined
value.

*minSi
ze

-- Inte
ger

1 default.invalid.min.siz
e.message

minSize.notmet The
parameter's
(if present)
size must
not be less
than the
defined
value.

notEqu
al

-- Obj
ect

"Invali
d
Value"

default.not.equal.mess
age

notEqual The
parameter
(if present)
must not be
set to the
defined
value.

nullabl
e

tru
e

Boo
lea
n

false default.null.message nullable If true, the
parameter
(if present)
must be
non-null
value. See
required for
how to
enforce the
parameter
to be
present.

passwo
rd

-- Boo
lea
n

true -- -- If true, the
parameter
(if present)

Chapter 6: About Moab Web Services Plugins

Constr
aint

Def
aul
t
Val
ue

Ty
pe

Exam
ple
Value

Default Message
Code

Message Suffix Description

is hidden
from the
user both on
input and
display
when
managing
plugin
configuratio
n. It is not,
however,
hidden in
the REST
API. Does
not return
any error
messages.

range -- Ran
ge

1..10 default.invalid.range.
message

range.toosmall/r
ange.toobig

Uses a
groovy
range to
validate that
the value is
within a
specified
range.

requir
ed

tru
e

Boo
lea
n

false default.required.mess
age

required If true, the
parameter
must be
present and
non-null for
the plugin to
be created
successfully.
Implies the
nullable:fals
e constraint.

scale -- Inte
ger

2 -- -- Only valid
for Double
parameters.

Chapter 6: About Moab Web Services Plugins

316 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 317

Constr
aint

Def
aul
t
Val
ue

Ty
pe

Exam
ple
Value

Default Message
Code

Message Suffix Description

Rounds the
parameter
(if present)
to the
specified
number of
digits. Does
not return
any error
messages.

*size -- Ran
ge

2 default.invalid.size.me
ssage

size.toosmall/siz
e.toobig

Uses a
groovy
range to
restrict the
size of a
collection,
string, or a
number.

*type -- Clas
s

Intege
r.class

typeMismatch typeMismatch See Type
Inferencing
and
Conversion
below.

url -- Boo
lea
n

true default.invalid.url.mes
sage

url.invalid If true, uses
org.apache.c
ommons.
validator.Url
Validator to
determine if
the
parameter
(if present)
is a valid
URL. Does
not support
exec or file
scheme
URLs.

Chapter 6: About Moab Web Services Plugins

Constr
aint

Def
aul
t
Val
ue

Ty
pe

Exam
ple
Value

Default Message
Code

Message Suffix Description

scripta
bleUrl

-- Boo
lea
n

true default.invalid.scripta
ble.url.message

scriptableUrl.inv
alid

Identical to
the url
validator but
adds
support for
exec and file
scheme
URLs.

validat
or

-- Clo
sur
e

(See
Custo
m
Valida
tor)

default.invalid.validat
or.message

validator.error See Custom
Validator
below.

widget -- Stri
ng

"texta
rea"

-- -- By default,
all strings
render as a
text field
when
creating or
editing
plugins.
Setting this
to textarea
causes it to
render as a
text area
with multi-
line support.
This is only
valid for
string
configuratio
n
parameters.

* The user interface (see 6.5 Plugin Management) does not support parameters whose
type is a subclass of Collection (a List, for example). Such parameters are therefore not
recommended.

Chapter 6: About Moab Web Services Plugins

318 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 319

The polling interval constraints must always apply to Integer types. If this
specification is violated, the plugin type cannot be added or updated.

Messaging
When defined constraints are violated for a plugin, error messages are retrieved based on
the configuration parameters and the applied constraints using i18n Messaging codes (see
6.2.4 i18n Messaging). First, the most specific error message will be attempted to be
resolved from a message code generated from the plugin type name, the configuration
parameter, and the constraint. This code takes the format of
pluginTypeName.parameterName.suffix where the plugin type's name has a
lowercase first letter and the suffix is shown in the table above. If this message code is not
defined, the default message code (as shown in the table above) will be used.

For example, if the url constraint validation failed for the ExamplePlugin plugin type's
endpoint configuration parameter, the following message codes would be resolved in
order:

l examplePlugin.endpoint.url.invalid

l default.invalid.url.message

Plugin types that have two or more uppercase letters at the start of the name
will not be converted to have a lowercase first letter for error message codes. In
other words, for the example just given using VCenterPlugin instead of
ExamplePlugin, the following message codes would be resolved in order:

VCenterPlugin.endpoint.url.invalid

default.invalid.url.message

Default Messages
Default messages can be contained in any messages.properties file included in the
plugin JAR file as explained in i18n Messaging (see 6.2.4 i18n Messaging).

Arguments for each constraint vary, but they always include these argument indices:

l {0}: The configuration parameter name (for example, endpoint).

l {1}: The plugin type class name (for example, my.package.ExamplePlugin).

l {2}: The value of the configuration parameter.

If default messages are not defined in the plugin project, the following messages will be
used:

default.doesnt.match.message=The ''{0}'' configuration parameter value ({2}) does not

Chapter 6: About Moab Web Services Plugins

match the required pattern ''{3}''
default.invalid.url.message=The ''{0}'' configuration parameter value ({2}) is not a
valid URL
default.invalid.scriptable.url.message=The ''{0}'' configuration parameter value ({2})
is not a valid scriptable URL
default.invalid.creditCard.message=The ''{0}'' configuration parameter value ({2}) is
not a valid credit card number
default.invalid.email.message=The ''{0}'' configuration parameter value ({2}) is not a
valid e-mail address
default.invalid.range.message=The ''{0}'' configuration parameter value ({2}) does not
fall within the valid range from {3} to {4}
default.invalid.size.message=The ''{0}'' configuration parameter value ({2}) does not
fall within the valid size range from {3} to {4}
default.invalid.max.message=The ''{0}'' configuration parameter value ({2}) is greater
than the maximum value of {3}
default.invalid.min.message=The ''{0}'' configuration parameter value ({2}) is less
than the minimum value of {3}
default.invalid.max.size.message=The ''{0}'' configuration parameter value ({2})
exceeds the maximum size of {3}
default.invalid.min.size.message=The ''{0}'' configuration parameter value ({2}) is
less than the minimum size of {3}
default.invalid.validator.message=The ''{0}'' configuration parameter value ({2}) does
not pass custom validation
default.not.inlist.message=The ''{0}'' configuration parameter value ({2}) is not
contained within the list [{3}]
default.blank.message=The ''{0}'' configuration parameter cannot be blank
default.not.equal.message=The ''{0}'' configuration parameter value ({2}) cannot be
equal to ''{3}''
default.null.message=The ''{0}'' configuration parameter cannot be null
default.required.message=The ''{0}'' configuration parameter is required and cannot be
null
typeMismatch=The ''{0}'' configuration parameter value ({2}) does not match the
required type ''{3}''

Labels and Help Messages
Message codes can also be provided for configuration parameters to aid the admin user
with human readable property labels and help messages. Similar to the validation error
message codes, labels and help message codes can be defined using the
pluginTypeName.parameterName.label and
pluginTypeName.parameterName.help message codes. These values are used
only in plugin type management (see 6.4 Plugin Type Management) and are not exposed
through the REST API.

Type Inferencing and Conversion
Due to the dynamic nature of configuration parameters, the expected type or class of
values for each parameter are inferred from constraints.

The following rules govern how type is inferred, in priority order:

l If the *type constraint is applied to a parameter, the constraint value will be used
as the expected type.

Chapter 6: About Moab Web Services Plugins

320 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 321

Only the String, Date, Double, Integer, and Boolean classes are
supported for the *type constraint. If Float or Long is desired, use Double
and Integer respectively as the type.

l If the inList or range constraints are applied to a parameter, the class of the first
element in the constraint value array is used as the expected type.

l If the *minSize or *maxSize constraints are applied to a parameter,
java.lang.Collection is used as the expected type.

l If the max, min, or notEqual constraints are applied to a parameter, the class of
the constraint value is used as the expected type.

l If none of the above apply, java.lang.String is used as the expected type.

If the configuration parameter values can be converted to the expected types, this will
occur automatically. Otherwise, the *type constraint is violated and the applicable error
messages will be generated.

Custom Validator
In cases where the built-in constraints prove inadequate for validation, custom validators
can be used. The validator constraint expects a Groovy Closure parameter that has one
or (optionally) two arguments: the value of the configuration parameter and the plugin
object. With these parameters, complex validation logic can be defined. Additionally, custom
message codes and arguments can be defined by validator constraints and these will be
used in generating error messages when validation fails.

For example, suppose that the parameter 'user' cannot be set to the same value as
parameter 'creator'. Additionally, the 'creator' parameter must not be equal to either bob
or joe. The existing constraints are inadequate to fulfill this use case, but the following code
using validators would perform exactly as expected:

import com.adaptc.mws.plugins.*
class ConstrainedPlugin extends AbstractPlugin {

static constraints = {
user validator:{ val, obj ->

if (val==obj.config.creator)
return "invalid.equal.to.creator"

}
creator validator:{ val ->

if ("val"=="joe")
return ["invalid.equal", "joe"]

if (val=="bob")
return ["invalid.equal", "bob"]

}
}

}

In the examples above, the message codes and output on validation failure is shown below:

Chapter 6: About Moab Web Services Plugins

Message codes

constrainedPlugin.user.invalid.equal.to.creator=The user configuration parameter value
({2}) must not be equal to the creator parameter.
constrainedPlugin.creator.invalid.equal=The creator configuration parameter must not
be equal to {3}.

Output error messages

For user = "jill", creator = "jill"
"The user configuration parameter value (jill) must not be equal to the creator
parameter."
For user = "jill", creator = "bob"
"The creator configuration parameter must not be equal to bob."

For user = "jill", creator = "joe"
"The creator configuration parameter must not be equal to joe."

The validator Closure may return:

l Nothing (null) or true if the validation succeeded without errors.

l false if a validation error occurred (in this case the default validator message
suffix would be used).

l A string that will be used as the message code suffix in the
pluginTypeName.propertyName.suffix format.

l A list with the first element being the message code suffix, and all other elements
being arguments for the message indexed starting at 3 (as shown in the example
above).

All validator constraints automatically have the appConfig property available, which
contains the application configuration as discussed in the Configuration section (see 6.2.5
Configuration). The suite property contains the value of the configured MWS suite.
Additionally, services can be retrieved as explained in the next section.

Retrieving Services
At times it may be necessary to use Bundled Services in custom validators. A method
named getService, which takes a single string parameter of the name of the service (as
used during injection) is provided to be used in these cases. For example, if a plugin needs
a valid server certificate file, the SSL Service can be used as follows:

import com.adaptc.mws.plugins.*
class ConstrainedPlugin extends AbstractPlugin {

static constraints = {
certificateFile validator:{ val ->

ISslService sslService = getService("sslService")
try {

sslService.getSocketFactory(val)
} catch(Exception e) {

// Certificate file is invalid, return an error

Chapter 6: About Moab Web Services Plugins

322 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 323

return ["invalid", e.message]
}

}
}

}

The getService method does not work with translators, custom components, RM
services, or the Individual Datastore.

Default Value
The default value for a configuration parameter might depend on the MWS configuration
or other properties. Therefore, the defaultValue constraint can be set to a closure. The
defaultValue closure does not take any parameters and must return the object to be
used as the default value.

For example, if the default value of a parameter must be true if and only if MWS is
configured for the HPC suite, then the following constraints would satisfy these conditions:

import com.adaptc.mws.plugins.*
class ConstrainedPlugin extends AbstractPlugin {

static constraints = {
myParameter required: true, type: Boolean, defaultValue: {

return suite == Suite.HPC
}

}
}

As with validator closures, defaultValue closures have access to appConfig,
suite, and getService.

6.2.7 Individual Datastore

Each plugin has access to an individual, persistent datastore that can be used for a variety
of reasons. The datastore is not designed to store Moab HPC Suite data such as nodes, jobs,
or virtual machines, but custom, arbitrary data pertinent only to the individual plugin. This
may include storing objects in a persistent cache, state information for currently running
processes, or any other arbitrary data.

The individual datastore has the following properties:

l Data is persisted to the Mongo database and will be available even if the plugin or
MWS is restarted.

l The data must be stored in groups of data called collections. These correspond
directly to MongoDB collections.

l Each plugin can have an arbitrary number of collections.

Chapter 6: About Moab Web Services Plugins

l Collections are guaranteed not to collide if there are identically named collections
between two plugin types or even two plugin instances.

l Each collection contains multiple objects or entries. These correspond directly to
MongoDB documents.

l The values of entries can be any object that can be serialized to MongoDB: simple
types (int or Integer), Maps, and Lists.

l A collection is automatically created whenever an entry is added to it, it does not
need to be specifically initialized.

To utilize the datastore, the Plugin Datastore Service must be used. Operations are
provided to add, query, and remove data from each collection.

Simple key/value storage is not currently provided with the datastore. It can easily be
done, however, by storing data in the format of {name:"key",
value:"value"} and then retrieving this entry later by querying on name equals
"key."

Example
The example below demonstrates two web services (see 6.2.8 Exposing Web Services). The
first adds multiple entries containing various types of data to an arbitrarily named
collection. The second retrieves the data and returns it to the user.

package example
import com.adaptc.mws.plugins.*

class DatastorePlugin extends AbstractPlugin {
IPluginDatastoreService pluginDatastoreService

def storeData(Map params) {
def collectionName = params.collectionName
def data = [[boolVal:true], [stringVal:"String"], [intVal:1],

[nullVal:null]]
if (pluginDatastoreService.addData(collectionName, data))

log.info("Data successfully added")
else

log.info("There was an error adding the data")
return [success:true]

}

def retrieveData(Map params) {
def collectionName = params.collectionName
return pluginDatastoreService.getCollection(collectionName)

}
}

Chapter 6: About Moab Web Services Plugins

324 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 325

6.2.8 Exposing Web Services

Any number of methods can be exposed as public, custom web services by satisfying
several criteria:

l The method must declare that it returns Object or def.

l The method must define a single argument of type Map.

l The method must actually return a List or Map.

l The method must not be declared as private or protected; only public or unscoped
methods will be recognized as web services.

Parameters and Request Body
The Map argument will contain all parameters passed into the web service by the client.
See 4.16.5 Accessing Plugin Web Services for additional details.

Parameters can be passed into the web service call as normal URL parameters such as
?param=value¶m2=value2, as key-value pairs in the POST body of a request, or
as JSON in the body.

For the first two cases, the parameters will be available on the Map argument passed into
the web service call as key value pairs matching those of the request. Note that in these
cases all keys and values will be interpreted as strings. However, the parameters object
has several helper methods to convert from Strings to simple types, such as Booleans,
integers, doubles, floats, and lists. If the value is not a valid simple type, null is returned.

Finally, note that the client can optionally include an objectId as the last part of the URL.
When this is done, the id field will be set to this value in the Map argument to the web
service.

GET <webServiceUrl>?key=value&key2=true&key3=5&list=1&list=2

def serviceMethod(Map params) {
assert params.key=="value"
assert params.key2=="true"
assert params.bool('key2')==true
assert params.key3=="5"
assert params.int('key3')==5
assert params.list('list')==[1, 2]

// Null is returned if the conversion is invalid
assert params.int('key')==null

}

When the body possesses JSON, the parsed JSON object or array will be available within a
parameter called body in the Map argument. In this scenario, the types of the values are
preserved by the JSON format.

POST <webServiceUrl> with JSON body of

Chapter 6: About Moab Web Services Plugins

{"key":"value","key2":true,"key3":5}

def serviceMethod(Map params) {
assert params.body.key=="value"
assert params.body.key2==true
assert params.body.key3==5

}

Unsecured Web Services
There are times when it is desirable to create a plugin with a publicly available web service
that does not require a valid application account in order to access it (for details, see
Chapter 2: Access Control). In these cases, the Unsecured annotation can be used on the
plugin web service method. No authentication will be performed on Unsecured web
services. An example of using the annotation is given below:

Sample unsecured custom web service

@Unsecured
def retrievePublicData(Map params) {

return [data:["data item 1", "data item 2"]]
}

Be cautious in using this annotation as it may potentially present a security risk if
sensitive data is returned from the web service.

Returning Errors
In order to signify an error occurred or invalid data was provided, the
WebServiceException class may be thrown from any custom web service. This exception
contains constructors and fields for a list of messages and an HTTP response code. For
example, suppose that the user provided inadequate information. The web service could
use the following code to notify the user and prompt them to take action with custom
messages:

def service(Map params) {
// Handle invalid input
if (!params.int('a'))

throw new WebServiceException("Invalid parameter 'a' specified, please
specify an integer!", 400)

// Use params.a correctly …
}

For the example above, a 400 response code (bad request) would be returned with a
response body as follows:

{
"messages":[

"Invalid parameter 'a' specified, please specify an integer!"
]

}

Chapter 6: About Moab Web Services Plugins

326 6.2 Plugin Developer's Guide

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/Unsecured.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/WebServiceException.java

6.2 Plugin Developer's Guide 327

If any other exception is thrown from a web service (i.e., Exception,
IllegalArgumentException, etc.), a 500 response code will be returned with the following
response body:

{
"messages":[

"A problem occurred while processing the request",
"Message provided in the exception constructor"

]
}

See 3.5 Responses and Return Codes for more information on error formats in MWS.

Accessing the HTTP Request Method
The HTTP method used for the request is available from the Map parameters argument.
The key used to access it is stored as a static field in PluginConstants called WEB_
SERVICES_METHOD. The value is a string that can be GET, POST, PUT, or DELETE. The
following example demonstrates how this could be used with the
WebServiceException to create a REST API with a plugin:

def serviceMethod(Map params) {
// Check to make sure that this request used the HTTP GET method
// Throw a 405 error (method not supported) if not
if (params[PluginConstants.WEB_SERVICES_METHOD]!="GET")

throw new WebServiceException("Method is not supported", 405)
}

6.2.9 Reporting State Data

As long as Moab Workload Manager is configured with MWS as a Resource Manager (RM),
plugins can report state information on jobs, nodes, storage, and virtual machines to Moab
HPC Suite. This is done through Reports that are generated by the plugin and passed to
the bundled RM services (6.6.1 Job RM Service and 6.6.3 Node RM Service). Each report is
for a specific type of object: job, node, storage, or virtual machine. Each contains current
state information on the specific attributes of the type it is for.

Note that storage is a sub-type of node, meaning that it is a specialized node.

Generating Reports
To generate a report, simply create a new instance of a report depending on the type of
object to be reported:

Chapter 6: About Moab Web Services Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/PluginConstants.java

Object Type Report Type

Job JobReport

Node NodeReport

Each report has a single required parameter for creating a new instance—the ID of the
object that is being reported. Once the report instance has been created, any property can
be modified as shown in the API documentation links in the table above. The following
example shows the creation of a simple node report and modification of a few properties:

public void poll() {
NodeReport node = new NodeReport("node1")
node.timestamp = new Date()
node.operatingSystem = "centos-6.6-stateless"
… // Set other properties and persist the report

}

Master and Slave Reports
At times, you may want to report some additional attributes on objects only if the objects
are being reported by other plugins. For example, you may want to report the power state
of a VM, but sometimes the plugin reporting this data can receive data even after the VM
has been destroyed. In this case, you can set the slaveReport field on any report to
true, signifying that the report should only be used if another plugin is reporting on the
same object (in other words, creating 'master' reports).

If all reports for an object are 'slave' reports, and no 'master' reports exist, then the
object will not report to Moab Workload Manager.

Special Cases in Field Values
All complex types, such as Lists, Maps, and objects (not including Enumerated values such
as NodeReportState and JobReportState) have default values set for them and are not
required to be instantiated before use. For example, the metrics property of a node report
can be modified as follows:

public void poll() {
NodeReport node = new NodeReport("node1")
// The following assignments are equivalent in their functionality
node.features.add("FEAT1")
node.features << "FEAT2"
// The following assignments are equivalent in their functionality
node.metrics.METRIC1 = 4d
node.metrics["METRIC2"] = 125.5
… // Set other properties and persist the report

}

Chapter 6: About Moab Web Services Plugins

328 6.2 Plugin Developer's Guide

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/JobReport.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/NodeReport.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/NodeReportState.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/JobReportState.java

6.2 Plugin Developer's Guide 329

For the resources and requirements (jobs only) properties, assignments can be
made easily without checking for previously existing values or null objects. For example,
resources can be added to the resources property simply by accessing it as a Map:

public void poll() {
NodeReport node = new NodeReport("node1")
node.resources.RES1.total = 10
node.resources.RES1.available = 3
node.resources["RES2"].total = 10
node.resources["RES2"].available = 10
… // Set other properties and persist the report

}

The job report's requirements property has some additional handling to allow it to be
accessed as a single JobReportRequirement object, such as in the following example:

public void poll() {
JobReport job = new JobReport("job.1")
job.nodeCountMinimum = 4
job.processorCountMinimum = 2
job.requiredNodeFeatures << "FEAT1"
job.preferredNodeFeatures << "FEAT2"
… // Set other properties and persist the report

}

Although multiple requirements can be added to the requirements list to provide
consistency with the MWS Job resource (see 4.9 Jobs), only the first requirement
object's properties will be reported to Moab HPC Suite through the RM interface.

Persisting a Report
After a report has been generated and all desired fields have been updated, the report
must be sent to one of the three bundled RM services for persisting. If this is not done, the
report will be discarded and will not be considered when reporting state information to
Moab HPC Suite. The RM services are shown below according to the object type that they
handle:

Object Type RM Service

Job Job RM Service

Node Node RM Service

Each service has two methods: save and update. The difference between these is that
the save method first removes all previous reports from the plugin calling the method,
and then persists the new reports, thereby only persisting the latest reports, while the
update method does not remove any reports before persisting the new reports. Typically,
the save method will be used while a plugin is being polled, while the update method

Chapter 6: About Moab Web Services Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/JobReportRequirement.java

will be used in incremental event based reporting. An example of using the save method
is shown below:

INodeRMService nodeRMService

public void poll() {
NodeReport node = new NodeReport("node1")
// Change the state
node.state = NodeReportState.BUSY
// Persist
nodeRMService.save([node])

}

Once this is done, the reports will be persisted to MongoDB and will be included in RM
queries (see 6.3.2 Resource Manager Queries) from Moab Workload Manager or users.

6.2.10 Controlling Lifecycle

Interfaces may change significantly in future releases.

At times a plugin developer may want to modify the current state of a plugin or even create
plugins programmatically. This can be done with the 6.6.4 Plugin Control Service.

Operations exist on the service to:

l create plugin instances dynamically with specific configuration.

l retrieve plugin instances by ID or based on configuration properties.

l start or stop plugin instances.

l verify plugin instance configuration.

Creating Plugins
Several methods are provided to allow on-the-fly creation of new plugins. Generally, they
allow a plugin with a specific ID and plugin type (as a string or as a Groovy Class) to be
created with optional configuration properties. These properties should match the fields in
4.16 Plugins.

If any configuration properties are omitted, the defaults will be used as described in 6.5.7
Setting Default Plugin Configuration. A boolean value is also returned indicating whether
the creation succeeded or not.

Note that the createPlugin methods will initialize the plugin for retrieval or usage and
attempt to start the plugin if the autoStart property is true.

Chapter 6: About Moab Web Services Plugins

330 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 331

Retrieving Plugins
Plugins can be retrieved by using an ID, querying by plugin type, or even querying based
on configuration parameters. Several methods are provided to perform these functions as
shown on 6.6.4 Plugin Control Service.

Starting and Stopping Plugins
Plugins can also be started or stopped on demand. These two methods are exposed directly
as start and stop on the plugin control service. Although each method does not return
any data, exceptions are thrown if errors are encountered.

Verifying Plugin Configuration
Finally, the plugin control service can be used to verify plugin configuration at any point
instead of just when the plugin is started or modified. This may be useful to attempt to
modify plugin configuration directly through the setConfig dynamic method (see 6.2.2
Dynamic Methods) and then verify that the new configuration is valid for the plugin.
Exceptions are thrown if the plugin or the configuration is invalid.

Examples
If an error state is detected it may be necessary to stop the current plugin instance until
corrective action can be taken. This can be done using the following code:

package example

import com.adaptc.mws.plugins.*

class ErrorPlugin {
IPluginControlService pluginControlService

public void poll() {
// Error is detected, stop plugin instance!
try {

log.warn("An error was detected, trying to stop the plugin ${id}
")

pluginControlService.stop(id)
log.warn("The plugin was successfully stopped")

} catch(PluginStopException e) {
log.error("Plugin instance ${id} could not be stopped", e)

}
}

}

6.2.11 Accessing MWS REST Resources

Often a plugin type may need to access existing MWS REST Resources in order to extend or
complement default MWS functionality. This can be done with the 6.6.2 Moab HPC Suite

Chapter 6: About Moab Web Services Plugins

REST Service, which allows a plugin type developer to utilize the existing Resources
documentation (see Chapter 4: Resources) to perform these tasks.

All accesses to resources require an HTTP method to use (such as GET, POST, PUT, or
DELETE) and a relative URL (such as /rest/jobs). Although it mimics the REST
resource interface, no actual requests are made and no data is transmitted through the
network.

Authentication
All resources are available to the Moab HPC Suite REST Service, and no authentication or
Application Accounts are needed.

Caution must be used when developing plugin types, as there are no restrictions to
what may be done with the Moab HPC Suite REST Service. This is especially true
when not utilizing hooks as discussed below.

Hooks
If pre and post-processing hooks are utilized in MWS (3.7 Pre- and Post-Processing
Hooks), the plugin type developer can choose whether or not they are executed when
performing a 'request' through the Moab HPC Suite REST service. This is done through the
hooks option as documented in 6.6.2 Moab HPC Suite REST Service.

Verifying API Version Support
The Moab HPC Suite REST Service provides a method for easily determining which API
versions are supported by the current version of MWS. This method includes checks to
make sure that the API version will work as expected, including verifying any configuration
or external services are running.

moabRestService.isAPIVersionSupported(1)
moabRestService.isAPIVersionSupported(2)

Converting String Dates
Because the Moab HPC Suite REST Service returns data exactly as given to an external
consumer of MWS, including dates converted to strings, the service provides a method for
converting MWS date strings to actual Date objects.

moabRestService.convertDateString("2024-11-08 13:18:47 MST")

URL Parameters
URL parameters, such as query, sort, proxy-user, and others should not be
appended directly to the URL. Instead, these can be specified with the params option:

Chapter 6: About Moab Web Services Plugins

332 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 333

// Query images that are hypervisors
moabRestService.get("/rest/images", params:[query:'{"hypervisor":true}'])
// Sort images by osType
moabRestService.get("/rest/images", params:[sort:'{"osType":1}'])

Examples
This code retrieves a list of all nodes, and is equivalent to the Get All Nodes task:

package example

import com.adaptc.mws.plugins.*
import net.sf.json.*

class RestPlugin {
IMoabRestService moabRestService

public void poll() {
def result = moabRestService.get("/rest/nodes")
// OR with the hook enabled…
def result = moabRestService.get("/rest/nodes", hooks:true)

assert result instanceof MoabRestResponse
assert nodes instanceof List

log.debug("Nodes list:")
nodes.each { JSON node ->

log.debug(node.id)
}

}
}

This code adds a flag to a job, and is equivalent to the Modify Job Attributes task.
This request also enables the hook (if one is configured) for the 'request' and uses a URL
parameter. This is the equivalent of making a call to /rest/jobs/job.1?proxy-
user=adaptive.

package example

import com.adaptc.mws.plugins.*
import net.sf.json.*

class RestPlugin {
IMoabRestService moabRestService

public void poll() {
def jobId = "job.1"
def result = moabRestService.put("/rest/jobs/"+jobId, hooks:true, params:

['proxy-user':'adaptive']) {
[flags:["RESTARTABLE"]]

}
assert result.isSuccess()

}
}

Chapter 6: About Moab Web Services Plugins

6.2.12 Creating Events and Notifications

Plugins can easily create new events and create or update notification conditions using the
6.6.6 Plugin Event Service. Previously, this was only possible by utilizing the MWS REST
resources. The event service eases this burden from plugin developers.

There are several operations that are available using the service:

l Create an event with or without specifying an event date.

l Create an event from a enumeration annotated with EventEnumeration (see
6.6.6 Plugin Event Service) with or without specifying an event date.

l Create or update a notification condition with or without specifying an observed date
or expiration duration.

In this topic:

6.2.12.A Creating Events
6.2.12.B Creating or Updating Notification Conditions
6.2.12.C Examples

6.2.12.A Creating Events
Events are composed of several properties such as arguments, associated objects, origin,
message, severity, escalation level, and a unique event code. The plugin event service
removes the need for magic strings such as those for event severity ('INFO', 'WARN',
'FATAL') and also handles creating unique event codes. In other words, no bitwise
manipulation is required to create new events.

The event code is comprised of several elements:

Code Element Description

Severity If the event is informational, a warning, an error, or fatal.

Escalation level Who cares about the event, or who should act on the event.

Component code Internally made up of the MWS component code (stored internally)
and the plugin event component code (see the Plugin Event
Component Code section below).

Entry code The code representing a unique event for the component (for each
plugin event component code).

Chapter 6: About Moab Web Services Plugins

334 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 335

The plugin event service handles the severity, escalation level, and entry code portions of
the code by the values passed as parameters to the createEvent method. The plugin
event component code is described in the next section.

Plugin Event Component Code
The plugin event component code should be a unique number across all plugin types or
projects from 1-254. This number is combined with the MWS component code to
represent each plugin as a unique component code across all Adaptive Computing
products. 0 is reserved for MWS itself and should not be used. 255 is reserved for plugin
types that do not define an event component code and represents an 'unknown' plugin
component. Additionally, codes 1-150 are reserved for Adaptive Computing plugins, while
151-254 are reserved for Professional Services and/or customer-specific plugins.

This code can be specified by setting an eventComponent property (see 8.4.13 Fields:
Plugin Types) on the plugin project file or as a static property on the plugin type. As with all
other project properties, the plugin type value overrides the project value. For example:

class MyExampleProject {
…
Integer eventComponent = 2
…

}
ExamplePlugin {

static final eventComponent = 1
…

}
Example2Plugin {

// no eventComponent property
…

}

In this case, the plugin type ExamplePlugin has a plugin event component code of 1,
while the Example2Plugin has a code of 2 since it inherits it from the project
properties.

Origin Suffix
The origin of an event created through the plugin event service is automatically set by the
plugin framework to MWS/plugins/<plugin type>/<plugin id>. For example,
an event created by the plugin created from the 'ExamplePlugin' plugin type with an ID of
'plugin1' would generate events with an origin of MWS/plugins/Example/plugin1.

While this origin is sufficient for an admin to determine the plugin where the event came
from, the plugin developer can want this to be more specific to a class name or method
name. This can be done using the optional originSuffix parameter to the
createEvent method. The origin suffix, as its name implies, is appended to the end of
the generated origin. For the example above, suppose the plugin developer passed
myMethod/switch1 as the origin suffix parameter when creating a new event. The

Chapter 6: About Moab Web Services Plugins

event would then have an origin of
MWS/plugins/Example/plugin1/myMethod/switch1.

Event Enumerations
While creating events using the plugin event service is quite simple, often there are related
events that have properties in common, such as the event type prefix or the origin suffix.
Additionally, i18n messages (see 6.2.4 i18n Messaging) are typically used for the event's
message. Using the EventEnumeration annotation (see 6.6.6 Plugin Event Service) in
combination with a enumeration simplifies this process. When this is done, each message is
pulled from the messages.properties files using a standard convention, and the
event type prefix and the origin suffix can optionally be added as static properties on the
enumeration.

Using EventEnumeration requires:

l The annotated element is an enum, not a class or interface.

l Each enumeration value must use the constructor with three arguments: the event
name, the severity, and the escalation level.

l If an event type prefix is specified, it must be defined as "static String EVENT_TYPE_
PREFIX = ..."; otherwise the property should not be defined.

l If an origin suffix is specified, it must be defined as "static String ORIGIN_SUFFIX = ...";
otherwise the property should not be defined.

If any of these conditions are not fulfilled, using the EventEnumeration annotation will
result in compilation errors.

Enumeration values are automatically marked as implementing the IPluginEvent
interface and can be used as the first parameter of the createEvent method on the
plugin event service, for example:

package example

import com.adaptc.mws.plugins.EventEnumeration
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject
import static com.adaptc.mws.plugins.IPluginEventService.Severity.*
import static com.adaptc.mws.plugins.IPluginEventService.EscalationLevel.*

public class ExamplePlugin {
void poll() {

// Event 1 takes no arguments
pluginEventService.createEvent(ExampleEvents.EVENT1, null, null)
// Event 2 takes one argument and has an associated object
pluginEventService.createEvent(ExampleEvents.EVENT2, ["arg1"],

[new AssociatedObject(type:"type1", id:"id1")])
}

}

@EventEnumeration
enum ExampleEvents {

Chapter 6: About Moab Web Services Plugins

336 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 337

EVENT1("Example One", INFO, USER), // Entry code is 0
EVENT2("Example Two", INFO, USER) // Entry code is 1

}

It can be noted that several key properties of events are missing from the enumeration
definition and create event call parameters:

l Message: retrieved automatically from i18n messages (see the Messages for Event
Enumerations section below)

l Event type: generated from the enumeration constructor and optional event type
prefix property (see the Event Type for Event Enumerations section below)

l Entry code: generated from the return value of ordinal() on the enumeration
value; in other words, this is generated from the order of the enumeration values

Messages for Event Enumerations
The message for events created from enumerations is generated using i18n messages (see
6.2.4 i18n Messaging) with codes in the following format:

l <enumeration type name>.<enumeration value name>.message

l <enumeration type name>.<enumeration value name>.comment

Considering the example in the section above, the message for
ExampleEvents.EVENT1 would be generated using the argument list passed to the
createEvent method with the "ExampleEvents.EVENT1.message" message from
messages.properties. This message should contain arguments if needed, such as
"My example with ID {0} was created" and is used as the "message" property in the
created event. The comment, on the other hand, is not persisted with the event and should
be text (typically in paragraph format) describing why the event typically occurs or what
actions should be taken when it does occur. Consider the message to contain instance
specific information for the event (passed as arguments to the message) and the comment
to be general documentation concerning the event.

As a best practice, name event enumeration values using the number and short name of
each argument to the message. This makes it easy for the consumer to know which
arguments are expected and what each means. For example, if an event is for connection
errors and needs two arguments to the message, the URL and the error message, the
enumeration value should be named CONNECT_FAILURE_1URL_2ERROR or even
CONNECT_TO_1URL_FAILURE_2ERROR. In this way, the consumer knows that the first
argument represents the URL and the second is the error message.

Event Type for Event Enumerations
As described above, the static string field EVENT_TYPE_PREFIX can be defined on the
enumeration. This value is optional and, when present, is prepended with a space to the

Chapter 6: About Moab Web Services Plugins

event name parameter from the constructor to generate the event type. For example,
consider the following enumeration:

package example

import com.adaptc.mws.plugins.EventEnumeration
import static com.adaptc.mws.plugins.IPluginEventService.Severity.*
import static com.adaptc.mws.plugins.IPluginEventService.EscalationLevel.*

@EventEnumeration
enum MyPluginEvents {

CONNECT("Connect", INFO, ADMIN),
DISCONNECT("Disconnect", INFO, ADMIN)

static String EVENT_TYPE_PREFIX = "My Plugin"
}

If MyPluginEvents.CONNECT and MyPluginEvents.DISCONNECT were used
with the plugin event service, the generated event types would be 'My Plugin Connect' and
'My Plugin Disconnect' respectively.

Origin for Event Enumerations
The origin for event enumeration values automatically contains more information than
those for non-enumerated events, such as those described above. The enumeration type
name and value are appended to the origin. For example, consider the following
enumeration and plugin fragment:

…
class ExamplePlugin {

…
assert id=="example1" // plugin ID is example1
pluginEventService.createEvent(ExampleEvents.EVENT1, null, null)
…

}
…
@EventEnumeration
enum ExampleEvents {

EVENT1("Event One", INFO, ADMIN)
...

The origin generated for the created event would be
MWS/plugins/Example/example1/ExampleEvents/EVENT1. The static string
field ORIGIN_SUFFIX can also be defined on the enumeration. This value is optional and,
when present, is appended to the end of the generated origin as described above with the
origin suffix parameter to the createEvent method.

Example
In order to understand all interactions when event enumerations are used, the following is
a complete example:

Plugin type

Chapter 6: About Moab Web Services Plugins

338 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 339

package example
import com.adaptc.mws.plugins.*

class ConnectPlugin extends AbstractPlugin {
static eventComponent = 1

IPluginEventService pluginEventService

void poll() {
def errorMessage = connect()
if (errorMessage)

pluginEventService.createEvent(ConnectEvents.
CONNECT_TO_1URL_FAILURE_2ERROR, [config.url, errorMessage], null)

else
pluginEventService.createEvent(ConnectEvents.

CONNECT_SUCCESS, null, null)
}

// Returns the error message or null/empty on success
private String connect() {

String errorMessage
…
return errorMessage

}
}

Event enumeration

package example
import com.adaptc.mws.plugins.EventEnumeration
import static com.adaptc.mws.plugins.IPluginEventService.Severity.*
import static com.adaptc.mws.plugins.IPluginEventService.EscalationLevel.*

@EventEnumeration
enum ConnectEvents {

CONNECT_SUCCESS("Success", INFO, ADMIN),
CONNECT_TO_1URL_FAILURE_2ERROR("Failure", ERROR, ADMIN)

static String EVENT_TYPE_PREFIX = "Connect"
}

messages.properties

ConnectEvents.CONNECT_SUCCESS.message=The plugin was successfully connected!
ConnectEvents.CONNECT_SUCCESS.comment=This occurs when the plugin successfully
connects to the configured URL and

is informational only.
ConnectEvents.CONNECT_TO_1URL_FAILURE_2ERROR.message=The plugin failed to connect to
{0}: {1}
ConnectEvents.CONNECT_TO_1URL_FAILURE_2ERROR.comment=This occurs when the plugin fails
to connect to the configured

URL for any reason. The most common reason is that the service is not running
and needs to be started.

The following are examples of the events created in MWS:

Created events

Chapter 6: About Moab Web Services Plugins

{"totalCount": 2, "resultCount": 2, "results": [
{

"arguments": ["https://localhost:1000", "The service is not running!"],
"code": 570523649,
"eventDate": "2024-06-12 19:16:50 UTC",
"eventType": "Connect Failure",
"message": "The plugin failed to connect to https://localhost:1000:

The service is not running!",
"origin": "MWS/plugins/Connect/connect/ConnectEvents/

CONNECT_TO_1URL_FAILURE_2ERROR",
"severity": "ERROR",
"id": "51b8c922a816c6a04af2401d",
"associatedObjects": []

},
{

"arguments": [],
"code": 33652736,
"eventDate": "2024-06-12 19:18:07 UTC",
"eventType": "Connect Success",
"message": "The plugin was successfully connected!",
"origin": "MWS/plugins/Connect/connect/ConnectEvents/CONNECT_SUCCESS",
"severity": "INFO",
"id": "51b8c96fa816c6a04af24021",
"associatedObjects": []

}
]}

Unique Event Codes
The last topic that must be covered in creating events from plugins is that all efforts should
be made to make sure that event codes are unique throughout all Adaptive Computing
product suites. Additionally, the codes should be static, meaning they do not change once
established.

In order to do this, adhere to the following recommendations:

l Use a unique (across all plugin types) plugin event component code for each plugin
type.

l Follow the guidelines for plugin event component codes established above (see the
Plugin Event Component Code section above) and ensure it is a number 1-254.

l Use event enumerations where possible; otherwise ensure (through testing if
possible) that all entry codes are unique for each plugin type.

l Ensure (through testing if possible) that the ordinal value of the event enumeration
values do not change.

6.2.12.B Creating or Updating Notification Conditions
The plugin event service also makes it easy to create or update notification conditions.
Simply use the updateNotificationCondition method. Just as the MWS
notification condition resource, this is an idempotent operation, meaning it can be called

Chapter 6: About Moab Web Services Plugins

340 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 341

multiple times with the same result. If the notification condition does not exist, it will be
created automatically. If it does exist, the observed date and details will be updated
accordingly.

6.2.12.C Examples
Examples are available in 6.6.6 Plugin Event Service.

Related Topics

l Chapter 4: Resources

l 4.6 Events

l 4.14 Notifications

l 4.13 Notification Conditions

l 8.4.4 Fields: Events

l 6.6.6 Plugin Event Service

l 6.2.13 Handling Events

l 3.9 System Events

l 1.2.5 Securing the Connection with the Message Queue

6.2.13 Handling Events

Interfaces may change significantly in future releases.

Plugin types can handle specific events by containing methods defined by the conventions
below. All events are optional.

The Polling Event
To maintain current information, each plugin is polled at a specified time interval. The
following method definition is required to utilize the polling event:

void poll() { … }

Typically this polling method is used to report node and virtual machine information. By
default, the polling interval is set to 30 seconds but can be modified for all or individual
plugins as explained in 6.5 Plugin Management.

Chapter 6: About Moab Web Services Plugins

When a polling event occurs, the poll method on the target plugin is called. This method
can perform any function desired and should typically make calls to the 6.6.3 Node RM
Service and the 6.6.1 Job RM Service services to report the current state of nodes and
virtual machines. For example, the poll method in the Native plugin type is implemented
as follows.

This is an extremely simplified version of what is actually implemented in the Native
plugin type.

INodeRMService nodeRMService;
IVirtualMachineRMService virtualMachineRMService;

public void poll() {
nodeRMService.save(getNodes());
virtualMachineRMService.save(getVirtualMachines());

}

This simple poll method calls two other helper methods called getNodes and
getVirtualMachines to retrieve node and virtual machine reports. These reports are
then sent to the appropriate RM service. See 6.2.9 Reporting State Data for more
information on the RM services; however, the objective of this example is to demonstrate
one possible use of the poll event handler. Other plugin types, on the other hand, may use
the poll event to update internal data from pertinent resources or make calls to external
APIs.

Lifecycle Events
Events are also triggered for certain lifecycle state changes. The following method
definitions are required to receive lifecycle events:

public void configure() throws InvalidPluginConfigurationException { … }
public void beforeStart() { … }
public void afterStart() { … }
public void beforeStop() { … }
public void afterStop() { … }

Each event is described in the table below with the associated state change when the event
is triggered:

State
Change

Event Description

configure Configure Triggered before beforeStart and after the plugin has been
configured. Can be used to verify configuration and perform any
setup needed any time configuration is loaded or modified.

beforeStart Start Triggered just before starting a plugin.

Chapter 6: About Moab Web Services Plugins

342 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 343

State
Change

Event Description

afterStart Start Triggered just after a plugin has been started.

beforeStop Stop Triggered just before stopping a plugin.

afterStop Stop Triggered just after stopping a plugin.

Currently, no events are triggered for pausing, resuming, erroring, or clearing errors for
plugins.

RM Events
When MWS is configured as a Moab HPC Suite Resource Manager (see 6.3 Moab Workload
Manager Resource Manager Integration, and more specifically, 6.3.1 Configuring Moab
Workload Manager), RM events are sent from Moab HPC Suite to each plugin according to
the routing specification (see 6.1.7 Routing). The following method definitions are required
to receive these events:

public boolean jobCancel(String jobName) { … }
public boolean jobModify(String jobName, Map<String, Object> attributes, ModifyMode
modifyMode) { … }
public boolean jobRequeue(String jobName) { … }
public boolean jobResume(String jobName) { … }
public boolean jobStart(String jobName, List<String> nodes, String username) { … }
public boolean jobSubmit(Map<String, Object> job, String submissionString, String
submissionFlags) { … }
public boolean jobSuspend(String jobName) { … }
public boolean nodeModify(List<String> nodes, Map<String, String> attributes,
ModifyMode modifyMode) { … }
public boolean nodePower(List<String> nodes, NodeReportPower state) { … }

Related Topics

l 4.6 Events

l 4.14 Notifications

l 4.13 Notification Conditions

l 8.4.4 Fields: Events

l Chapter 4: Resources

l 6.6.6 Plugin Event Service

l 6.2.12 Creating Events and Notifications

Chapter 6: About Moab Web Services Plugins

6.2.14 Handling Exceptions

Interfaces may change significantly in future releases.

The com.adaptc.mws.plugins package contains several exceptions that can be used
and in some cases, should be caught. All exceptions end with 'Exception', as in
PluginStartException.

There are several specific cases where Exceptions should or can be used:

l The reload method on the Plugin Control Service can throw the
InvalidPluginConfigurationException to signify that the configuration contains errors.

l Various methods on the Plugin Control Service throw plugin exceptions that must be
caught to diagnose errors when creating plugin types.

l Any exception (including the Exception class) can be thrown from a custom web
service to display a 500 Internal Server Error to the client requesting the service
with the given error message.

6.2.15 Managing SSL Connections

At times it is desirable to load and use self-signed certificates, certificates generated from a
single trusted certificate authority (CA), or even simple server certificates. It may also be
necessary to use client certificates to communicate with external resources. To ease this
process, the SSL service can be utilized (see 6.6.7 SSL Service). This service provides
methods to load client and server certificates from the filesystem. Methods are also present
to aid in creating connections that automatically trust all server certificates and
connections.

Several points should be noted when using the SSL Service:

l Certificate files can be in the PEM file format and do not need to be in the DER format
(as is typical of Java security).

l Each method returns an instance of SSLSocketFactory, which can then be used to
create simple sockets or, in combination with another client library of choice, create a
connection.

l If the client certificate password is non-null, it will be used to decrypt the protected
client certificate.

l This service is not needed when performing SSL communications with trusted
certificates, such as those for HTTPS enabled websites that do not have a self-signed
certificate.

Chapter 6: About Moab Web Services Plugins

344 6.2 Plugin Developer's Guide

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/PluginStartException.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/InvalidPluginConfigurationException.java

6.2 Plugin Developer's Guide 345

l If the file name of the certificate file (client or server) is relative (no leading '/'
character), it will be loaded from the mws.certificates.location
configuration parameter (see 8.2 MWS Configuration).

o The default value of mws.certificates.location is MWS_
HOME/etc/ssl.crt.

l Both the client certificate alias and password can be null. In this case, the client
certificate must not be encrypted and the client certificate's default alias (the first
subject CN) will be used.

l The lenient socket factory and hostname verifier automatically trust all server
certificates. Because of this, they present a large security hole. Only use these
methods in development or in fully trusted environments.

Example
To create a socket to a server that requires a client certificate, the following code can be
used:

package example

import com.adaptc.mws.plugins.*

class SSLConnectionPlugin extends AbstractPlugin {
ISslService sslService

public void poll() {
// This certificate is not encrypted and will be the only certificate

presented to the
// connecting end of the socket.
// This file will be loaded from MWS_HOME + mws.certificates.location +

my-cert.pem.
String clientCert = "my-cert.pem"

def socketFactory = sslService.getSocketFactory(clientCert, null, null)
def socket = socketFactory.createSocket("hostname.com", 443)
// Write and read from the socket as desired…

}
}

To create an HTTPS URL connection to a server that has a self-signed certificate, the
following code can be used. Note that this is very typical of client libraries – they have a
method to set the SSL socket factory used when creating connections.

package example

import com.adaptc.mws.plugins.*

class SSLConnectionPlugin extends AbstractPlugin {
ISslService sslService

public void poll() {
// This certificate represents either the server public certificate or

the CA's certificate.

Chapter 6: About Moab Web Services Plugins

// Since the path is absolute it will not be loaded from the MWS_HOME
directory.

String serverCert = "/etc/ssl/certs/server-cert.pem"

def socketFactory = sslService.getSocketFactory(serverCert)

// Open connection to URL
HttpsURLConnection conn = "https://hostname.com:443/test".toURL()

.openConnection()
conn.setSSLSocketFactory(socketFactory)

// Retrieve page content and do with as desired…
def pageContent = conn.getInputStream().text

}
}

6.2.16 Utilizing Services or Custom 'Helper' Classes

This topic describes the general types of services available for use in plugins:

l Bundled services such as the Moab REST service (see 6.6.2 Moab HPC Suite REST
Service).

l Custom built translators loaded by convention of their name.

l Other custom built helper classes registered with Annotations.

In this topic:

6.2.16.A Bundled Services
6.2.16.B Using Translators
6.2.16.C Registering Custom Components

6.2.16.A Bundled Services
Bundled services are utility classes that are included and injected by default onto all plugin
types. It is not required to use any of these services but they enable several core features
of plugin types as discussed in 6.1.5 Utility Services.

More information can be found on each bundled service in 6.6 Plugin Services.

6.2.16.B Using Translators
Often a plugin type class file becomes so complex that it is desirable to split some of its logic
into separate utility service classes. The most typical use case for this is to split out the logic
for 'translating' from a specific resource API to a format of data that the plugin type can

Chapter 6: About Moab Web Services Plugins

346 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 347

natively understand and utilize. For this reason, there is a convention defined to easily add
these helper classes called 'Translators'.

Simply end any class name with 'Translator', and it will be automatically injected just as
bundled services onto plugin types, other translators, or even custom registered
components. The injection occurs only if a field exists on the class matching the name of the
translator with the first letter lower-cased. For example, a translator class called
'MyTranslator' would be injected on plugin types, other translators, and custom
components that define a field called 'myTranslator' as def myTranslator or
MyTranslator myTranslator.

Do not use two upper-case letters to start the class name of a Translator. Doing this
may cause injection to work improperly. For example, use RmTranslator instead of
RMTranslator as the class name.

Be careful not to declare translator and custom component injection such that a
cyclic dependency is created.

Logging in Translators
All translators automatically have a 'getLog' method injected on them that can be used to
access the configured logger. It returns an instance of org.apache.commons.logging.Log.

package example

class ExampleTranslator {
public void myMethod() {

// log will be translated to getLog() by the groovy compiler
log.info("Starting my method")

}
}

See 6.2.3 Logging for more information on logging configuration and usage.

Example
Suppose that a translator needs to be created to handle a connection to access an external
REST resource. The translator could be defined as follows:

package example

class ExampleTranslator {
public int getExternalNumber() {

def number = … // Make call to external resource
return number

}
}

A plugin type can then use the translator by defining a field called 'exampleTranslator'.
Note that an instance does not need to be explicitly created.

Chapter 6: About Moab Web Services Plugins

http://commons.apache.org/logging/apidocs/org/apache/commons/logging/Log.html

package example

class ExamplePlugin {
def exampleTranslator
// OR …
//ExampleTranslator exampleTranslator

public void poll() {
// Use the translator
log.info("The current number is "+exampleTranslator.getExternalNumber())

}
}

To extend the example, the translator can also be injected into another translator:

package example

class AnotherTranslator {
def exampleTranslator

public int modifyNumber(int number) {
return number + exampleTranslator.getExternalNumber()

}
}

This translator can be used in the plugin type just as the other translator.

6.2.16.C Registering Custom Components
There are cases where the concept of a 'Translator' does not fit the desired use of a utility
class. In these cases, it is possible to register any arbitrary class as a component to be
injected just as a translator would be. This is done using the Spring Framework's
annotation org.springframework.stereotype.Component. When this
annotation is used, the class is automatically registered to be injected just as translators
onto plugin types and translators.

All annotations are available in the dependencies declared by the plugins-commons
artifact.

Do not use two upper-case letters to start the class name of a custom component.
Doing this may cause injection to work improperly. For example, use RmUtility
instead of RMUtility as the class name.

Changing Scope
By default, when a custom component is injected, only a single instance is created for all
classes that inject it. This is referred to as the 'singleton' scope. Another scope that is
available is 'prototype', which creates a new instance every time it is injected. This is useful
when the class contains state data or fields that are modified by multiple methods. To

Chapter 6: About Moab Web Services Plugins

348 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 349

change the scope, use the org.springframework.context.annotation.Scope on
the class with a single String parameter specifying 'singleton' or 'prototype'.

Injecting Translators or Components
The need may arise to inject translators or other custom components onto custom
components. This is done using the
org.springframework.beans.factory.annotation.Autowired or
javax.annotation.Resource annotations. The Autowired annotation is used to
inject class instances by the type (i.e., MyTranslator myTranslator) while the
Resource annotation is used to inject class instances by the name (i.e., def
myTranslator). Add the desired annotation to the field that needs to be injected.

Note that using the Autowired annotation does injection by type, which differs from
translator and plugin type injection. These are done by name just as the Resource
annotation allows. Due to this fact, a type of 'def' cannot be used when doing injection
onto custom components using the Autowired annotation. See the example below.

Injection of custom components onto translators and plugin types are still done by
name, only fields injected using the Autowired annotation are affected.

Be careful not to declare translator and custom component injection such that a
cyclic dependency is created.

Logging in Custom Components
Unlike plugins and translators, custom components do not automatically have a 'getLog'
method injected on them. In order to log with custom components, you must use the
Apache Commons Logging classes to retrieve a new log. The PluginConstants class
contains the value of the logger prefix that is used for all plugins and translators. The
following is an example of how to retrieve and use a logger correctly in a custom
component:

package example

import com.adaptc.mws.plugins.PluginConstants
import org.apache.commons.logging.Log
import org.apache.commons.logging.LogFactory
import org.springframework.stereotype.Component

@Component
class ExampleComponent {

private static final Log log = LogFactory.getLog(PluginConstants.LOGGER_
PREFIX+this.name)

public void myMethod() {
log.info("Starting my method")

}

Chapter 6: About Moab Web Services Plugins

}

See 6.2.3 Logging for more information on logging configuration and usage.

Example
Suppose that a custom utility class is needed to perform complex logic. A custom
component could be defined as follows (notice the optional use of the Scope annotation):

package example

import org.springframework.stereotype.Component
import org.springframework.context.annotation.Scope

@Component
@Scope("prototype")
class ComplexLogicHandler {

def handleLogic() {
… // Perform complex logic and return

}
}

A plugin type or translator could then be defined to inject this component:

package example

class CustomPlugin {
def complexLogicHandler

public void poll() {
complexLogicHandler.handleLogic()

}
}

Now suppose another custom component needs to use the ComplexLogicHandler in its
code. It can inject it using the Autowired annotation:

package example

import org.springframework.stereotype.Component
import org.springframework.beans.factory.annotation.Autowired

@Component
class AnotherHandler {

// Note that this is injected by type, so 'def' may not be used
@Autowired
ComplexLogicHandler complexLogicHandler

def wrapLogic() {
complexLogicHandler.handleLogic()

}
}

To perform the same injection but by name (as translators and plugin types are injected),
use the Resource annotation:

package example

Chapter 6: About Moab Web Services Plugins

350 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 351

import org.springframework.stereotype.Component
import javax.annotation.Resource

@Component
class AnotherHandler {

// Note that this is injected by name based solely on the name defined in
// the annotation. The name of the field itself does not affect the

injection.
@Resource(name="complexLogicHandler")
def complexLogicHandler

def wrapLogic() {
complexLogicHandler.handleLogic()

}
}

6.2.17 Packaging Plugins

Plugin types can be packaged in two different ways to upload to MWS:

l A simple Groovy file containing a single plugin type definition.

l A JAR file containing one or more plugin types, translators, and custom components.

While each can be uploaded to MWS using the REST API or the User Interface as described
in 6.4.4 Add or Update Plugin Types, using a JAR file is recommended. Using a simple
Groovy file is useful for testing and generating proof of concept work but does not allow the
use of several features of plugins.

The principles of packaging a plugin type or set of plugin types in a JAR file are very simple.
Simply compile the classes and package in a typical JAR file. All classes ending in 'Plugin'
are automatically attempted to be loaded as a plugin type, all classes ending in 'Translator'
are attempted to be loaded as a translator, and all classes annotated as a custom
component will be attempted to be loaded. We recommend that a build framework is used
to help with compiling and packaging the JAR file, such as Gradle. This makes it easy to
declare a dependency on the necessary JAR files used in plugin development and to debug,
compile, and test plugin code.

In addition to using utility services such as translators, packaging plugin types in JAR files
allows the creation of a single project for multiple related plugin types and bundling of
external dependencies. These two features are discussed in the following sections.

In this topic:

6.2.17.A Plugin Projects and Metadata
6.2.17.B Managing External Dependencies

Chapter 6: About Moab Web Services Plugins

http://www.gradle.org/

6.2.17.C Documenting Plugin Types

6.2.17.A Plugin Projects and Metadata
Each plugin type has information attached to it, called metadata, which describes the origin
and purpose of the plugin type. Additionally, a JAR file can also contain a project file that
defines default metadata attributes for all plugin types in the JAR. Initial plugins, or plugins
that will be created on loading of the JAR file if they do not exist, are also able to be defined
on a project file. In all cases, metadata declared on a plugin type will override the metadata
defined on the project file.

To define a project file, simply add a class to JAR file that ends in 'Project'. This file will be
attempted to be loaded as the project file. Every field on a project file, and even the file
itself, is optional. All available fields are shown in the example below:

class SampleProject {
// Plugin information
String title = "Sample"
String description = "Sample plugin types"
String author = "Our Company."
String website = "https://example.com"
String email = "sample@example.com"
Integer eventComponent = 1
// Versioning properties
String version = "0.1"
String mwsVersion = "10.1 > *"
String commonsVersion = "0.9 > *"
String license = "APACHE"

// Documentation properties
String issueManagementLink = "https://example.com/ticket-system/sample-plugins"
String documentationLink = "https://example.com/docs/sample-plugins"
String scmLink = "https://example.com/git/sample-plugins"

// Plugins that are to be created with these properties only when they do NOT
exist

// This does not override any existing plugin instance configuration
def initialPlugins = {

/*
// Multiple instances of plugins may be defined here.
// In this case, 'sample' is the id of the plugin
sample {

pluginType = "Sample"
// All properties except for "pluginType" are optional
pollInterval = 30
autoStart = true
// Although it is possible to set plugin precedence, it

is not recommended since this precedence
// may already be taken and plugin creation will fail in

this case
precedence = 5
config {

configParam = "value"
}

Chapter 6: About Moab Web Services Plugins

352 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 353

}
}
// Another plugin with an ID of 'sample2'
sample2 {

…
*/

}

As can be seen, metadata information about the plugin type(s), versions, and
documentation are available. These are displayed when viewing plugin information in the
User Interface or through the REST API.

Any of these properties except for initialPlugins, mwsVersion, and
commonsVersion can be overwritten by the plugin type class itself by using static
properties. A simple example is shown below:

package example

class SamplePlugin {
// Properties may be typed, untyped, final, or otherwise,
// but they MUST be static
static version = "0.2"
static title = "Sample plugin"
static description = "This sample plugin is used to demonstrate metadata

information"
static author = "Separate Division"
static eventComponent = 1

… // Rest of the plugin type definition
}

Event Component
The eventComponent field is explored in 6.2.12 Creating Events and Notifications.

MWS and Commons Versions
The mwsVersion and commonsVersion fields are used to restrict the versions of MWS
and plugin framework with which the plugin project can be used. Each field is of the format
FIRST_VERSION > LAST_VERSION, where FIRST_VERSION is the first supported
MWS or plugin framework version (inclusive), and LAST_VERSION is the last supported
MWS or plugin framework version (inclusive). Each version must take the format of #.# or
#.#.#, as in 10.1, or 10.1.2. An asterisk (*) is used to denote any version, and can be used
for the first or the last version.

Although support for restricting both the MWS and commons versions are provided, we
recommend using the commons version restriction always and the MWS version restriction
where necessary. Restrictions on the commons version prevent plugin loading errors while
restrictions on the MWS version prevent runtime errors such as missing support for
certain MWS API versions.

Typically the mwsVersion and commonsVersion fields are set as shown above, with
the first version set to a specific number, and the last version set to any (an asterisk). This

Chapter 6: About Moab Web Services Plugins

is the recommended approach for setting both fields. It is not recommended to use any
version (asterisk) for the first version. Some examples of mwsVersion and
commonsVersion values are shown below with explanations of how they behave:

String mwsVersion = "10.1 > *" // Any MWS version 10.1.0 and greater is supported
(including 10.2, etc)
String mwsVersion = "10.1.3 > *" // Any MWS version 10.1.3 and greater is supported
(including 10.2, etc)
String mwsVersion = "10.1 > 10.1.3" // Any MWS version between 10.1.0 and 10.1.3 is
supported
String mwsVersion = "* > *" // Any MWS version is supported (not recommended!)
String mwsVersion = "* > 10.2" // Any MWS version up to 10.2 is supported (not
recommended!)

String commonsVersion = "0.9 > *" // Any framework version 0.9.0 and greater is
supported (including 1.0, etc)
String commonsVersion = "0.9.3 > *" // Any framework version 0.9.3 and greater is
supported (including 1.0, etc)
String commonsVersion = "0.9 > 0.9.3" // Any framework version between 0.9.0 and 0.9.3
is supported
String commonsVersion = "* > *" // Any framework version is supported (not
recommended!)
String commonsVersion = "* > 1.0" // Any framework version up to 1.0 is supported (not
recommended!)

If the mwsVersion or commonsVersion fields are formatted incorrectly, the plugin
project will fail to load. If a plugin project is uploaded to MWS and the version check fails,
the project will fail to load with an error message about the mwsVersion or
commonsVersion.

The mwsVersion and commonsVersion fields cannot be overridden by a single
plugin type but can be set only at the plugin project level. This prevents mixing of
MWS and commons version requirements within a single project.

Initial Plugins
The initial plugins closure provides the flexibility to insert plugin instances when the JAR is
loaded. This occurs at two points: when the plugin JAR is first uploaded to MWS, and when
MWS is restarted. As shown in the example above, the ID, pluginType, and other properties
can be configured for multiple plugins.

The nature of Groovy closures means that programmatic definition of initial plugins is
possible. This can even be based on the MWS application configuration.

Two properties are automatically available in the initialPlugins closure:

l appConfig – Contains the MWS application configuration. Any configuration
parameter is available for access as documented in 8.2 MWS Configuration.

l suite – Contains the currently configured suite that MWS is running in. This is
equivalent to the mws.suite configuration parameter, and is an instance of Suite.

Chapter 6: About Moab Web Services Plugins

354 6.2 Plugin Developer's Guide

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/Suite.java

6.2 Plugin Developer's Guide 355

6.2.17.B Managing External Dependencies
External dependencies (e.g., JAR files) can be included and referenced in JAR files. Certain
rules must also be followed in order to have the dependencies loaded from the JAR file
correctly:

1. The plugin type must bundle all external dependency JARs in the root of the plugin type
JAR file.

2. An entry must be included in the MANIFEST.MF file that references each of these
bundled JAR files as a space-separated list:

Class-Path: dependency1.jar dependency2.jar dependency3.jar

Assuming that these rules are followed and that the plugin type is uploaded using the REST
API or the User Interface, the dependent JARs will first be loaded and then the new plugin
type and associated files will be loaded.

6.2.17.C Documenting Plugin Types
Documentation can also be included in JAR files by placing one or more Markdown
formatted files in the root of the project JAR file. These files will be processed dynamically
by MWS and presented as documentation pages for the respective plugin types within the
MWS plugin user interface pages. Markdown is a simple text-to-HTML format used in some
of the most popular open-source repositories such as GitHub and BitBucket. To help
provide plugin developers use a single place or file for documentation, the conventional use
of 'README.md' as documentation was followed within MWS.

Documentation File Naming
Each documentation filename must start with 'README' and end with '.md'. If only one
documentation file is needed for bundled plugin type(s), we recommend calling the file
'README.md'. For multiple plugin types, the file name must contain the plugin type name
without the 'Plugin' suffix in the format of 'README-<PluginName>.md'. For example, if a
plugin project JAR file contained the plugin type classes 'MyPlugin', 'ABTestPlugin', and
'ImportantPlugin', the documentation files would be located in the root of the JAR file and
would be called 'README-My.md', 'README-ABTest.md', and 'README-Important.md'
respectively. If a 'README' file does not exist for a certain plugin type, the main
'README.md' file (if provided) will be used as documentation for that plugin type.

Markdown Syntax
The Markdown syntax supported by MWS is very close to GitHub Flavored Markdown.
Internally, the pegdown Markdown processor is used to generate the HTML with the
TABLES, ABBREVIATIONS, FENCED_CODE_BLOCKS, SMARTYPANTS, DEFINITIONS,
and QUOTES extensions enabled. HTML tags can also be used directly in order to create

Chapter 6: About Moab Web Services Plugins

http://daringfireball.net/projects/markdown/
https://github.com/
https://bitbucket.org/
https://help.github.com/articles/github-flavored-markdown
https://github.com/sirthias/pegdown

more refined formatting of the documentation but this is discouraged with the exception of
inserting the configuration reference table discussed below.

For example, the TABLES extension can be used to easily create HTML tables:

Name	Notes
Bob | Knows how to use MWS plugins but has never created one
George | Writes MWS plugins in his spare time

The only main difference from standard Markdown processors is that block quotes
(marked by lines prepended with '> ') are shown as highlighted information boxes when
displayed in MWS. This can be used to draw more attention to informational or warning
messages without writing custom HTML.

> **Warning:** The use of this plugin type requires that MWS and MWM are configured
correctly as described in
> the MWS user guide.

Configuration Reference Table
A table of available configuration parameters is often constructed in documentation for
each plugin type. To ease the burden on the plugin developer of maintaining this
documentation and the constraints on the plugin type, a table generated from the
constraints (see 6.2.6 Configuration Constraints) and included messages is available by
using the following HTML in the README file(s):

<div class="configuration-table">This section will be replaced by MWS with the
configuration parameters table</div>

The text within the div container can be anything but should state something helpful such
as that it is placeholder in cases where the documentation can be viewed within other
contexts such as on GitHub.

The generated table includes the following columns for each configuration parameter listed
in the constraints: name, key, required, type, description. The 'name' and 'description'
values are retrieved from the 'help' and 'label' messages bundled in the plugin JAR (see
the labels and help messages section in 6.2.6 Configuration Constraints for more
information).

Web Services Reference Sections
Documentation for exposed web services (see 6.2.8 Exposing Web Services) is also able to
be generated automatically. Instead of a single table as done with configuration
parameters, a section with several tables (possible URL access points, URL parameters, and
response fields) and additional information is generated for each exposed web service.
This is available by using the following HTML in the README file(s):

<div class="webservice-sections">This section will be replaced by MWS with the web
service documentation</div>

Chapter 6: About Moab Web Services Plugins

356 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 357

The text within the div container can be anything but should state something helpful such
as that it is placeholder in cases where the documentation can be viewed within other
contexts such as on GitHub.

Changing Heading Sizes
The generated sections each begin with an <h2> heading with the name of the web
service. If a different heading size (h3, h4, etc.) is desired, this can be done with the
following HTML:

<div class="webservice-sections" data-level="3">This section will be replaced by MWS
with the web service documentation</div>

Notice the data-level attribute, which contains the number used in the HTML h tag.

Message Codes
Just as with the configuration table, the data for the content is generated automatically
from the web service method name and from i18n messages (see 6.2.4 i18n Messaging)
bundled in the plugin JAR file. Message codes are available to customize the label and
description of the web service. Codes are also available to define an arbitrary number of
URL parameters and response fields. These do not need to be defined but are helpful. The
following table defines each message used in generating the documentation for web
services:

Name Message Code Description

Web Service
Label

<pluginType>.webServices.<webService
Method>.label

The label used as the
heading for the section,
defaults to the naturally
capitalized method name
if not present.

Web Service
Description

<pluginType>.webServices.<webService
Method>.help

Paragraph text describing
the web service and its
functionality, outputs, etc.

Parameter Key <pluginType>.webServices.<webService
Method>.parameter<n>.key

The nth URL parameter,
starting at 1 (example:
id).

Parameter
Label

<pluginType>.webServices.<webService
Method>.parameter<n>.label

The label for the nth URL
parameter, defaults to
the naturally capitalized
key if not present.

Parameter <pluginType>.webServices.<webService The type for the nth URL

Chapter 6: About Moab Web Services Plugins

Name Message Code Description

Type Method>.parameter<n>.type parameter, defaults to
String if not present.

Parameter
Description

<pluginType>.webServices.<webService
Method>.parameter<n>.help

The description or help
text for the nth URL
parameter.

Response
Field Key

<pluginType>.webServices.<webService
Method>.return<n>.key

The nth response field,
starting at 1 (example:
success).

Response
Field Label

<pluginType>.webServices.<webService
Method>.return<n>.label

The label for the nth
response field, defaults to
the naturally capitalized
key if not present.

Response
Field Type

<pluginType>.webServices.<webService
Method>.return<n>.type

The type for the nth
response field, defaults to
String if not present.

Response
Field
Description

<pluginType>.webServices.<webService
Method>.return<n>.help

The description or help
text for the nth response
field.

As an example, suppose that a web service method called 'doSomething' exists on a plugin
type named 'MyExamplePlugin'. This web service expects two URL parameters: id, an
integer, and action, a string. The response body consists of a JSON object with two fields:
success, a boolean value, and messages, a list of strings. The following messages would
serve to generate helpful documentation:

messages.properties

web service messages
myExamplePlugin.webServices.doSomething.label=Do Something Important
myExamplePlugin.webServices.doSomething.help=This web service does something important
with the input parameters.
parameters
myExamplePlugin.webServices.doSomething.parameter1.key=id
myExamplePlugin.webServices.doSomething.parameter1.label=ID
myExamplePlugin.webServices.doSomething.parameter1.type=Integer
myExamplePlugin.webServices.doSomething.parameter1.help=The identifier of an object
myExamplePlugin.webServices.doSomething.parameter2.key=action
myExamplePlugin.webServices.doSomething.parameter2.label=Action # same as the default
would be
myExamplePlugin.webServices.doSomething.parameter2.type=String # same as the default
would be
myExamplePlugin.webServices.doSomething.parameter2.help=The action to perform

Chapter 6: About Moab Web Services Plugins

358 6.2 Plugin Developer's Guide

6.2 Plugin Developer's Guide 359

response fields
myExamplePlugin.webServices.doSomething.return1.key=success
myExamplePlugin.webServices.doSomething.return1.label=Success # same as the default
would be
myExamplePlugin.webServices.doSomething.return1.type=Boolean
myExamplePlugin.webServices.doSomething.return1.help=True if the request succeeded,
false otherwise
myExamplePlugin.webServices.doSomething.return1.key=messages
myExamplePlugin.webServices.doSomething.return1.label=Error Messages
myExamplePlugin.webServices.doSomething.return1.type=List of Strings
myExamplePlugin.webServices.doSomething.return1.help=Error messages describing the
reason why success is false.

Note that if the first URL parameter key is id, the listed resource URLs will include the
optional URL with the id parameter inline, such as
/rest/plugins/<pluginId>/services/<webService>/<id>. Therefore, we
recommend using id as parameter 1 if the web service expects a parameter with that key.

6.2.18 Example Plugin Types

Several plugin types are provided by Adaptive Computing for use in MWS. Examples of
these include the Native and vCenter plugin types.

A sample plugin type in Groovy would resemble the following:

package sample

import com.adaptc.mws.plugins.*

class SamplePlugin extends AbstractPlugin {
static author = "Adaptive Computing"
static description = "A simple plugin in groovy"
static version = "0.1"

INodeRMService nodeRMService

public void configure() throws InvalidPluginConfigurationException {
def myConfig = config // "config" is equivalent to getConfig() in

groovy
def errors = []
if (!myConfig.arbitraryKey)

errors << "Missing arbitraryKey!"
if (errors)

throw new InvalidPluginConfigurationException(errors)
}

public void poll() {
NodeReport node = new NodeReport("node1")
node.resources.RES1.total = 5
node.resources.RES1.available = 5
node.state = NodeReportState.IDLE
nodeRMService.save([node])

}

// Access at /rest/plugins/<id>/services/example-service

Chapter 6: About Moab Web Services Plugins

public def exampleService(Map params) {
return [success:true]

}
}

Related Topics

l 6.2 Plugin Developer's Guide

6.3 Moab Workload Manager Resource Manager
Integration

Moab Workload Manager possesses the concept of Resource Managers (RMs). While
plugins can be related to RMs, they often provide greater functionality and serve more
purposes than a typical RM. MWS must be represented in Moab HPC Suite as a RM to
enable certain plugin features such as state reporting and handling RM events. This section
describes the process of configuring Moab HPC Suite and additional details of its queries to
MWS.

In this section:

6.3.1 Configuring Moab Workload Manager
6.3.2 Resource Manager Queries

6.3.1 Configuring Moab Workload Manager

Moab Workload Manager must be configured to use MWS as a resource manager. Do the
following:

1. The following lines must be in the Moab Workload Manager configuration file or one of
its included files:

RMCFG[mws] TYPE=MWS
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] BASEURL=https://localhost:8080/mws

The BASEURL must match the configured URL of MWS.

2. Edit the MWS credential information in the Moab HPC Suite private configuration file
(/opt/moab/etc/moab-private.cfg, by default). Here are the default values:

Chapter 6: About Moab Web Services Plugins

360 6.3 Moab Workload Manager Resource Manager Integration

6.3 Moab Workload Manager Resource Manager Integration 361

CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!

USERNAME and PASSWORD must match the values of
auth.defaultUser.username and auth.defaultUser.password,
respectively, found in the MWS configuration file. The MWS RM contacts MWS
directly using the base URL, username, and password configured.

Optionally, the USERNAME and PASSWORD configuration values can be specified
directly in the Moab HPC Suite configuration file, though this is not recommended.
Likewise, the BASEURL configuration value can be specified in the Moab HPC
Suite private configuration file.

3. To enable such actions as submitting jobs as different users, the ENABLEPROXY=TRUE
option must be present in the ADMINCFG configuration line, and the OSCREDLOOKUP
option must be set to NEVER, as follows:

ADMINCFG[1] USERS=root ENABLEPROXY=TRUE
OSCREDLOOKUP NEVER

4. You may also want to configure SSL by using the following options (in either the RMCFG
or CLIENTCFG section):

l SSLCACERT: Lets you specify the absolute path to your SSL CA certificate (this also
enables the use of self-signed certificates, if desired). We recommend that you set
this option in the Moab HPC Suite private configuration file, for example:

CLIENTCFG[RM:mws] SSLCACERT=/path/to/cert.pem

l SSLNOHOSTCHECK: Lets you disable the SSL check to make sure that the actual
server name matches the certificate's server name, for example:

#In moab-private.cfg
CLIENTCFG[RM:mws] SSLNOHOSTCHECK=TRUE

#Or in moab.cfg
RMCFG[mws] SSLNOHOSTCHECK=TRUE

Warning: This setting could compromise the security of the system and
should not be used in production environments.

l SSLNOPEERCHECK: Lets you disable the SSL check to make sure that the certificate
is valid:

#In moab-private.cfg
CLIENTCFG[RM:mws] SSLNOPEERCHECK=TRUE

#Or in moab.cfg
RMCFG[mws] SSLNOPEERCHECK=TRUE

Chapter 6: About Moab Web Services Plugins

Warning: This setting could compromise the security of the system and
should not be used in production environments.

6.3.2 Resource Manager Queries

During each iteration of Moab Workload Manager's cycle, it will query MWS through the
RM interface to access current node, virtual machine, and job information. At this point, all
reports are loaded from the database and consolidated into a single report of each object
as explained in 6.1.6 Data Consolidation.

All unset (or null) values for properties on reports are ignored.

In some cases it may be desired to query MWS directly for the current consolidated node
and job reports. This can be done using the following URLs, which return data in a format
that is a subset of the API version 3 interface for each object (i.e., /rest/nodes?api-
version=3, /rest/jobs?api-version=3).

Query Description

/rest/plugins/all/rm/cluster-
query?api-version=3

Retrieves consolidated node reports from
all plugins.

/rest/plugins/<ID>/rm/cluster-
query?api-version=3

Retrieves consolidated node reports for the
specified plugin ID.

/rest/plugins/all/rm/workload-
query?api-version=3

Retrieves consolidated job reports from all
plugins.

/rest/plugins/<ID>/rm/workload-
query?api-version=3

Retrieves consolidated job reports for the
specified plugin ID.

These queries have no effect on the data itself. In other words, reports are not removed or
manipulated when RM queries are performed. These are manipulated only by the RM
services as described in 6.2.9 Reporting State Data.

Examples
The following example uses cURL (see 8.1.2 curl Samples) to perform the query:

$ curl -u moab-admin:changeme! https://localhost:8080/mws/rest/plugins/all/rm/cluster-
query?api-version=3&pretty=true
{

"nodes": {

Chapter 6: About Moab Web Services Plugins

362 6.3 Moab Workload Manager Resource Manager Integration

6.3 Moab Workload Manager Resource Manager Integration 363

"n1.test": {
"states": {

"state": "IDLE"
},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},
"memory": {

"configured": 8191,
"available": 7206

},
"gres1": {

"configured": 100
}

},
"metrics": {

"cpuLoad": 0.008233333333333334,
"vmcount": 0,
"cpuUtilization": 0.2008333333333333

},
"featuresReported": [

"feature1"
],
"ipAddress": "10.0.8.69",
"operatingSystem": "linux",
"variables": {

"VCENTER_DATASTORE_REMOTE1": "datastore-448",
"VCENTER_DATASTORE_LOCAL1": "datastore-411"

},
"attributes": {

"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

}
}

},
"n2.test": {

"states": {
"state": "IDLE"

},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},
"memory": {

"configured": 10239,
"available": 9227

},
"gres1": {

"configured": 100
}

},
"metrics": {

"cpuLoad": 0.00805,
"vmcount": 0,
"cpuUtilization": 0.19666666666666666

},
"featuresReported": [

"feature1",

Chapter 6: About Moab Web Services Plugins

"feature2"
],
"ipAddress": "10.0.8.76",
"operatingSystem": "linux",
"variables": {

"VCENTER_DATASTORE_REMOTE1": "datastore-448",
"VCENTER_DATASTORE_LOCAL1": "datastore-415"

},
"attributes": {

"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

}
}

},
"n3.test": {

"states": {
"state": "IDLE"

},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},
"memory": {

"configured": 10239,
"available": 9229

},
"gres1": {

"configured": 100
}

},
"metrics": {

"cpuLoad": 0.0097,
"vmcount": 0,
"cpuUtilization": 0.2375

},
"featuresReported": [

"feature1"
],
"ipAddress": "10.0.8.72",
"operatingSystem": "linux",
"variables": {

"VCENTER_DATASTORE_REMOTE1": "datastore-448",
"VCENTER_DATASTORE_LOCAL1": "datastore-416"

},
"attributes": {

"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

}
}

},
"n4.test": {

"states": {
"state": "IDLE"

},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},

Chapter 6: About Moab Web Services Plugins

364 6.3 Moab Workload Manager Resource Manager Integration

6.4 Plugin Type Management 365

"memory": {
"configured": 10239,
"available": 9229

},
"gres1": {

"configured": 100
}

},
"metrics": {

"cpuLoad": 0.007883333333333334,
"vmcount": 0,
"cpuUtilization": 0.1925

},
"featuresReported": [

"feature2"
],
"ipAddress": "10.0.8.77",
"operatingSystem": "linux",
"variables": {

"VCENTER_DATASTORE_REMOTE1": "datastore-448",
"VCENTER_DATASTORE_LOCAL1": "datastore-958"

},
"attributes": {

"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

}
}

}
}

}

6.4 Plugin Type Management

Plugin types can be managed and accessed with MWS dynamically, even while running.
Operations are provided to upload (add or update) plugin types and to list or show current
plugin types. The available fields that are displayed with plugin types are given in 8.4.13
Fields: Plugin Types. For more information on how these fields are set, see 6.2.17.A Plugin
Projects and Metadata.

Plugin Type JAR or groovy files should never be manually copied into the MWS_
HOME/plugins directory. They must be managed using the methods shown in this
section or through the REST API (see 4.17 Plugin Types).

Bundled plugin types are included automatically in MWS releases and can be utilized
immediately after startup. See 6.5 Plugin Management for more information on how to
utilize these plugin types.

The plugin type documentation is now located in the plugin type management pages.
See 6.4.3 Plugin Type Documentation for more information.

Chapter 6: About Moab Web Services Plugins

In this section:

6.4.1 Listing Plugin Types
6.4.2 Displaying Plugin Types
6.4.3 Plugin Type Documentation
6.4.4 Add or Update Plugin Types

6.4.1 Listing Plugin Types

To list all plugin types, browse to the MWS home page (for example,
https://servername/mws). Log in as the admin user, then click Plugins >
Plugin Types.

Chapter 6: About Moab Web Services Plugins

366 6.4 Plugin Type Management

6.4 Plugin Type Management 367

6.4.2 Displaying Plugin Types

To show information about a plugin type, click the Plugin Type List button and then
on that page, click the desired plugin type.

6.4.3 Plugin Type Documentation

To show the documentation for a plugin type, click the Plugin Type List button and
then on that page, click the desired plugin type. Then, click the Open Documentation
button. This will display any documentation bundled with the plugin type.

6.4.4 Add or Update Plugin Types

Plugin types can be uploaded into MWS using a Groovy file, a Java Archive (JAR) file, or
pasted Groovy code. To access the plugin type upload page, navigate to the Plugin Type

Chapter 6: About Moab Web Services Plugins

http://en.wikipedia.org/wiki/Jar_file

List page and click Add or Update Plugin Type. The default interface of this
page enables the uploading of a single Groovy class file or a JAR file.

When a plugin type is updated, by default all corresponding plugins created from the
plugin type will be recreated. If this behavior is not desired, clear the Do you want to
reload all plugins to use this new version? check box before uploading
the plugin type.

Single Class File
Groovy files containing a single plugin type can be uploaded at the
/mws/admin/plugin-types/create URL:

Chapter 6: About Moab Web Services Plugins

368 6.4 Plugin Type Management

6.4 Plugin Type Management 369

If the upload failed or an error occurred during initialization of the plugin, an error
message will display:

JAR File
A JAR file, as described in 6.2.17 Packaging Plugins, containing one or more plugins can
also be uploaded using the same process as the Groovy file.

Click Add files..., select the .jar file, and click the Start upload button. If the
upload failed or an error occurred during initialization of the plugin(s), an error message
will display.

The JAR upload process differs from the single file in that if successful, the name of the JAR
file itself is displayed instead of the plugin name(s):

Chapter 6: About Moab Web Services Plugins

Code
To paste or type code directly into MWS and have it be loaded as a single class file, click
Type or Paste Code, and type or paste the code into the presented text box:

When the code is in the box, click Create. If the upload succeeded and the code was able
to be compiled as Groovy, the browser will be redirected to the Show Plugin Type
page. If the upload failed or an error occurred during compilation or initialization of the
plugin, an error message will display.

Chapter 6: About Moab Web Services Plugins

370 6.4 Plugin Type Management

6.5 Plugin Management 371

You may need to refer to the MWS log file for additional details and error messages in
the case of a failure.

6.5 Plugin Management

Plugins can be managed and accessed with MWS dynamically, even while running. This
includes plugin instance and lifecycle management. Additionally, default configuration
values can be set for new plugins. In order to access custom web services, the REST API
must be utilized as described in the section Accessing Plugin Web Services. The available
fields that are displayed with plugins are given in 8.4.12 Fields: Plugins.

In this section:

6.5.1 Listing Plugins
6.5.2 Creating a Plugin
6.5.3 Displaying a Plugin
6.5.4 Modifying a Plugin
6.5.5 Deleting a Plugin
6.5.6 Monitoring and Lifecycle Controls
6.5.7 Setting Default Plugin Configuration

Chapter 6: About Moab Web Services Plugins

6.5.1 Listing Plugins

To list all plugins, browse to the MWS home page (for example,
https://servername/mws). Log in as the admin user, then click Plugins >
Plugins:

6.5.2 Creating a Plugin

To create a plugin, go to the Plugin List page and click Add Plugin. First, a Plugin
Type must be selected to continue to actually create the plugin:

The page is automatically built to support the plugin type's constraints (see 6.2.6
Configuration Constraints). The ID field will be automatically filled in with a suggested
value, and the Poll Interval field will be displayed only if the plugin type has a poll
method. The required configuration fields are displayed by default, and optional fields can
be selected and added to the configuration from the drop down at the top of the
configuration section. See 8.4.12 Fields: Plugins for more information on the fields.

Chapter 6: About Moab Web Services Plugins

372 6.5 Plugin Management

6.5 Plugin Management 373

Chapter 6: About Moab Web Services Plugins

6.5.3 Displaying a Plugin

To show information about a plugin, go to the Plugin List page and click the desired
plugin ID:

Chapter 6: About Moab Web Services Plugins

374 6.5 Plugin Management

6.5 Plugin Management 375

6.5.4 Modifying a Plugin

To modify a plugin, go to the Plugin List page, click the desired plugin ID, and then
click Edit. See 8.4.12 Fields: Plugins for more information on available fields.

6.5.5 Deleting a Plugin

To delete a plugin, go to the Plugin List page, click the desired plugin ID, and then
click Delete. A confirmation message is shown. If the OK button is clicked, the plugin is
deleted from the system and cannot be recovered, including all configuration.

6.5.6 Monitoring and Lifecycle Controls

To monitor and control the lifecycle of plugins, browse to the MWS home page (for
example, https://servername/mws). Log in as the admin user, then click Plugins
> Plugin Monitoring. This page displays the current state of all plugins as well as
their polling status:

Chapter 6: About Moab Web Services Plugins

If plugins are created from plugin types that do not have a poll method, their
lifecycle controls will be limited. Any information below that mentions polling does not
apply to the 'no-polling' plugin shown in the screenshots.

Active Plugins
Active plugins are those that are in the Started or Paused states. These are available to
receive events such as polling. If paused, a plugin will not receive events but is not actually
stopped, therefore no stop events are triggered.

Chapter 6: About Moab Web Services Plugins

376 6.5 Plugin Management

6.5 Plugin Management 377

The following images demonstrate the status of plugins in the active states.

Started plugins that can include the relative time of the last poll as well as the time of the
next poll in a countdown format. Action buttons are available to stop or pause the plugin as
well as trigger an immediate poll event.

Paused plugins that can include only the last polling time. Action buttons are available to
stop or resume the plugin, as well as trigger an immediate poll event.

Disabled Plugins
Disabled plugins are those that are in the Stopped or Errored states. These plugins do not
receive events such as polling. If errored, a plugin can either be stopped, which represents
a 'clearing' of the error, or started normally. However, if no action is taken on an errored
plugin, it likely will not start due to the fact that most plugins are put into the errored state
during startup of the plugin.

The following images demonstrate the representation of plugins in the disabled states.

Stopped plugins. A single action button is available to attempt to start the plugin.

An errored plugin. As mentioned previously, action buttons are available to stop the plugin
or clear the error as well as attempt to start the plugin. If the start fails, an error message
will display.

Chapter 6: About Moab Web Services Plugins

6.5.7 Setting Default Plugin Configuration

Configuration of default values for plugin configuration parameters involves setting fields
in the MWS configuration file. These values are used if no values are provided when
creating a new plugin. Additionally, the default values will display to the user on the
Create Plugin page.

The parameters to configure are documented in 8.2 MWS Configuration and comprise
most values starting with plugins.

6.6 Plugin Services

In this section:

6.6.1 Job RM Service
6.6.2 Moab HPC Suite REST Service
6.6.3 Node RM Service
6.6.4 Plugin Control Service
6.6.5 Plugin Datastore Service
6.6.6 Plugin Event Service
6.6.7 SSL Service

To use the built-in services, declare a variable with the correct name as a property in the
plugin class.

The convention for each service name is to remove the leading 'I' and lower case the
resulting first letter. For example, the property to use the IMoabRestService would be
called moabRestService. The following is an example of using the IPluginControlService in
this manner:

Using the IPluginControlService

Chapter 6: About Moab Web Services Plugins

378 6.6 Plugin Services

6.6 Plugin Services 379

package example;
import com.adaptc.mws.plugins.*;

class ExamplePlugin {
IPluginControlService pluginControlService;

public poll() {
// Use service…
pluginControlService.stop("pluginId");

}
}

Use of the Groovy anonymous type 'def' can also be used. For example, the service
definition above would use def pluginControlService instead of
IPluginControlService pluginControlService.

Do not attempt to create a new instance of the services before use, such as in a
constructor. The services will be automatically injected before any methods are
called on the plugin.

API Documentation
The com.adaptc.mws.plugins package contains interfaces for all bundled services
available to plugin types. These can be used as discussed above. All services begin with 'I'
and end with 'Service', as in IMoabRestService (Moab HPC Suite REST Service).

6.6.1 Job RM Service

The job RM service can be used to report job state data to Moab Workload Manager
through the RM interface. See 6.2.9 Reporting State Data for more information. It can also
be used to retrieve previous reports made by a plugin. Note that due to data consolidation
(see 6.1.6 Data Consolidation), old job reports may no longer exist in the database by the
time the query is done.

The jobRMService property will be injected with a class of type IJobRMService in all
plugin types. Note that it is not available for injection in translators or custom components.

6.6.2 Moab HPC Suite REST Service

The Moab REST service can be used to access the MWS RESTful API (see Chapter 4:
Resources) in plugins. All 'requests' made through this service are internal only and no
data is actually transmitted over the network. See 6.2.11 Accessing MWS REST Resources
for more information.

Chapter 6: About Moab Web Services Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IMoabRestService.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IJobRMService.java

The moabRestService property will be injected with a class of type IMoabRestService
in all plugin types.

Accessing Resources
In order to access a resource, a relative URL matching that in the documentation must be
used along with an HTTP method, such as GET, POST, PUT, or DELETE. The method names
on IMoabRestService match the HTTP methods directly. For example, to call a GET
operation on /rest/jobs, use the following code:

moabRestService.get("/rest/jobs")

Using Parameters Correctly
Although the ordering of the parameters for each method on IMoabRestService may seem
confusing at first glance, this is to allow for easy use with Groovy. Examples are given
below for each combination of parameters:

String URL

moabRestService.get("/rest/jobs")

Map options, String URL

moabRestService.get("/rest/jobs", hooks:true, contentType:"application/json")

String URL, Closure data

moabRestService.get("/rest/jobs/job.1") {
[flags:"RESTARTABLE"]

}

Map options, String URL, Closure data

moabRestService.get("/rest/jobs/job.1", hooks:true, contentType:"application/json") {
[flags:"RESTARTABLE"]

}

Options
The following options are valid in each method call supporting the options parameter:

Name Type Default Description

data See Valid
Data
Types

-- The body of the 'request.' This can be
overwritten by the data Closure parameter.

Chapter 6: About Moab Web Services Plugins

380 6.6 Plugin Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IMoabRestService.java

6.6 Plugin Services 381

Name Type Default Description

hooks Boolean false Whether or not hooks are run as part of the
'request' (see 3.7 Pre- and Post-Processing
Hooks).

contentType String application/json Indicates the content type used for the request.

params Map -- Indicates URL query parameters to use for the
'request,' such as query, sort, proxy-
user, or others.

Valid Data Types
If the data Closure parameter is specified, it overwrites the data option. In each case,
there are four valid types for the data option or return value of the data closure:

l A non-null JSON instance.

l A valid JSON string. This will be converted into a JSON instance.

l A valid Map instance. This will be converted into a JSONObject instance.

l A valid List instance. This will be converted into a JSONArray instance.

A JSONException may be thrown if the JSON string is invalid or the Map or List
contains values that cannot be serialized to JSON.

6.6.3 Node RM Service

The node RM service can be used to report node state data to Moab Workload Manager
through the RM interface. See 6.2.9 Reporting State Data for more information. It can also
be used to retrieve previous reports made by a plugin. Note that due to data consolidation
(see 6.1.6 Data Consolidation), old node reports may no longer exist in the database by the
time the query is done.

The nodeRMService property will be injected with a class of type INodeRMService in all
plugin types. Note that it is not available for injection in translators or custom components.

6.6.4 Plugin Control Service

Interfaces may change significantly in future releases.

Chapter 6: About Moab Web Services Plugins

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSON.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSON.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONException.html
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/INodeRMService.java

The control service allows lifecycle management operations to be performed on plugins. It
also provides methods to create and retrieve plugins. Note that the plugin control service
can be used by other plugins, allowing one plugin to dynamically create, retrieve, start, or
stop plugins.

The pluginControlService property will be injected with a class of type
IPluginControlService in all plugin types.

Examples
Create plugin with default configuration

try {
if (pluginControlService.createPlugin("myPlugin", "Native"))

log.info "myPlugin was created successfully!"
else

log.warn "There was an error creating myPlugin"
} catch(PluginStartException e) {

log.warn "There was a problem starting the new plugin: ${e.message}"
} catch(InvalidPluginConfigurationException e) {

log.warn "There were errors with the plugin's configuration: ${e.errors}"
}

Create plugin with custom configuration

if (pluginControlService.createPlugin("myPlugin", "Native", [autoStart:false,
pollInterval:600]))

log.info "myPlugin was created successfully!"
else

log.warn "There was an error creating myPlugin"

Start plugin

try {
pluginControlService.start("myPlugin")

} catch(PluginStartException e) {
log.warn "There was a problem starting the plugin: ${e.message}"

} catch(InvalidPluginException) {
log.warn "The plugin 'myPlugin' is invalid"

} catch(InvalidPluginConfigurationException e) {
log.warn "The plugin has an invalid configuration: ${e.errors}"

}

Stop plugin

try {
pluginControlService.stop("myPlugin")

} catch(PluginStopException e) {
log.warn "There was a problem stopping the plugin: ${e.message}"

} catch(InvalidPluginException) {
log.warn "The plugin 'myPlugin' is invalid"

}

Chapter 6: About Moab Web Services Plugins

382 6.6 Plugin Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IPluginControlService.java

6.6 Plugin Services 383

Configure plugin

try {
pluginControlService.configure("myPlugin")

} catch(InvalidPluginException) {
log.warn "The plugin 'myPlugin' is invalid"

} catch(InvalidPluginConfigurationException e) {
log.warn "The plugin has an invalid configuration: ${e.errors}"

}

6.6.5 Plugin Datastore Service

The datastore service is provided to allow a plugin to persist data to the database that is
isolated from all other persistent data. In other words, this service provides access to a
plugin's individual datastore (see 6.2.7 Individual Datastore).

The pluginDatastoreService property will be injected with a class of type
IPluginDatastoreService in all plugin types. Note that it is not available for injection in
translators or custom components.

Examples
Adding a single custom entry

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def data = [:]
… // Add data here to the Map
if (pluginDatastoreService.addData(collectionName,

data))
log.info("Data successfully added")

else
log.warn("There was an error adding the data")

}
}

Adding multiple entries

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def dataList = []
dataList.add(/* Custom Map of data here */)

Chapter 6: About Moab Web Services Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IPluginDatastoreService.java

dataList << … // Custom Map of data here
if (pluginDatastoreService.addData(collectionName, dataList))

log.info("Data entries successfully added")
else

log.warn("There was an error adding the data entries")
}

}

Updating a single entry

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def data = [:]
… // Add data here to the Map
if (pluginDatastoreService.updateData(collectionName, "key", "value",

data))
log.info("Data successfully updated")

else
log.warn("There was an error updating the data")

}
}

Querying if a collection exists

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
if (pluginDatastoreService.exists(collectionName))

log.info("Collection exists")
else

log.warn("The collection does not exist")
}

}

Querying contents of a collection

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def dataList = pluginDatastoreService.getCollection(collectionName)
if (dataList!=null)

log.info("Collection successfully queried")
else

log.warn("The collection does not exist!")
}

Chapter 6: About Moab Web Services Plugins

384 6.6 Plugin Services

6.6 Plugin Services 385

}

Retrieving a single entry

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def data = pluginDatastoreService.getData(collectionName, "key", "value")
if (data!=null)

log.info("Data successfully retrieved")
else

log.warn("The entry with key==value does not exist")
}

}

Removing a collection

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def data = pluginDatastoreService.clearCollection(collectionName)
// Data now contains the collection that was cleared
if (data!=null)

log.info("Collection successfully cleared")
else

log.warn("The collection does not exist!")
}

}

Removing a single entry

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
if (pluginDatastoreService.removeData(collectionName, "key", "value"))

log.info("Data entry successfully removed")
else

log.warn("The entry where key==value does not exist!")
}

}

Chapter 6: About Moab Web Services Plugins

6.6.6 Plugin Event Service

The event service is provided to ease the burden and reduce boilerplate code for creating
new events and updating notification conditions. For more information on how to use this
service, see 6.2.12 Creating Events and Notifications.

The pluginEventService property will be injected with a class of type
IPluginEventService in all plugin types. Note that it is not available for injection in
translators or custom components.

Examples
Creating a custom event

package example

import com.adaptc.mws.plugins.IPluginEventService.Severity
import com.adaptc.mws.plugins.IPluginEventService.EscalationLevel
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject

public class ExamplePlugin {
def pluginEventService

public void poll() {
// Create a completely custom event
pluginEventService.createEvent(Severity.INFO, EscalationLevel.USER,

0x4F,
"Custom Type",

"poll", "My event occurred", null, null)
}

}

Creating a custom event with messages

package example

import com.adaptc.mws.plugins.IPluginEventService.Severity
import com.adaptc.mws.plugins.IPluginEventService.EscalationLevel
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject

public class ExamplePlugin {
def pluginEventService

public void poll() {
// Use i18n messages for another event
def args = ["arg1", "arg2"]

pluginEventService.createEvent(Severity.WARN, EscalationLevel.POWER_USER,
0x5F, "Custom Type",

"poll", message
(code:"examplePlugin.customEvent.message", args:args), args,

// AssociatedObjects or simple maps may
be used

[new AssociatedObject(type:"type1",
id:"id1"), [type:"type2", id:"id2"])

}

Chapter 6: About Moab Web Services Plugins

386 6.6 Plugin Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IPluginEventService.java

6.6 Plugin Services 387

}

Creating an event from EventEnumeration

package example

import com.adaptc.mws.plugins.EventEnumeration
import com.adaptc.mws.plugins.IPluginEventService.Severity
import com.adaptc.mws.plugins.IPluginEventService.EscalationLevel
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject

public class ExamplePlugin {
def pluginEventService

public void poll() {
// Messages are pulled for messages.properties file(s) and the arguments

are used
def args = ["arg1", "arg2"]

pluginEventService.createEvent(MyEvents.EVENT_INFO, args, [[type:"type1",
id:"id1"])

pluginEventService.createEvent(MyEvents.EVENT_WARN, args, [[type:"type2",
id:"id2"])

}
}

@EventEnumeration
enum MyEvents {

EVENT_INFO("Information", INFO, USER),
EVENT_ERROR("Warning", WARN, USER)

static final String EVENT_TYPE_PREFIX = "Example Plugin"
static final String ORIGIN_SUFFIX = "poll"

}

Create or update a notification

package example

import com.adaptc.mws.plugins.IPluginEventService.EscalationLevel
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject

public class ExamplePlugin {
def pluginEventService

public void poll() {
pluginEventService.updateNotification(EscalationLevel.POWER_USER, "There

is an error with node1",
// If non-null, this must always be an associated

object, never a simple map
new AssociatedObject(id:"node1", type:"node"),

null)
}

}

Chapter 6: About Moab Web Services Plugins

Related Topics

l 4.6 Events

l 4.14 Notifications

l 4.13 Notification Conditions

l 6.2 Plugin Developer's Guide

l 8.4.4 Fields: Events

l Chapter 4: Resources

l 6.2.12 Creating Events and Notifications

6.6.7 SSL Service

The SSL service can be used to manage and load certificates or keys from disk and create
socket connections. See 6.2.15 Managing SSL Connections for more information.

The sslService property will be injected with a class of type ISslService in all plugin
types.

Chapter 6: About Moab Web Services Plugins

388 6.6 Plugin Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/ISslService.java

7.1 Power Management Plugin 389

Chapter 7: Plugin Types

In this chapter:

7.1 Power Management Plugin

7.1 Power Management Plugin

The Power Management plugin is used as a resource manager to Moab to report and
manipulate the power state (On or Off) for each node. Moab considers nodes in the power
state On or Off; however, through Torque and scripts, we are able to separate the Off state
into those controlled through the operating system (Standby, Suspend, Hibernate,
Shutdown) and those controlled through hardware (Off). This plugin provides an easy way
to integrate with Moab to translate Moab’s Off action into the desired Torque or script
action for each node. A cluster will have multiple instances of this plugin when it has varied
hardware integration and/or credentials.

In this section:

7.1.1 Creating a Power Management Plugin
7.1.2 Configuration Parameters
7.1.3 Plugin Management
7.1.4 Web Services Node Power (Secured)
7.1.5 Reload Node Configuration (Secured)
7.1.6 Node Configuration File
7.1.7 The Node Power and Query Script
7.1.8 Troubleshooting

7.1.1 Creating a Power Management Plugin
To create a Power Management plugin, see 6.5.2 Creating a Plugin. During plugin creation,
refer to 7.1.2 Configuration Parameters section below.

Chapter 7: Plugin Types

7.1.2 Configuration Parameters

Name Key Required Type Description

Node
Configuration
File

nodeConfigurationFile Yes String File containing list of nodes
that use the scripts and
credentials in this plugin
instance. This is also the file
to configure a particular
node's off state, or an off
state that will override the
default off state for this
instance.

Username
File

usernameFile Yes String File containing username
issued to the scripts with the
-u option.

Password
File

passwordFile Yes String File containing password
issued to the scripts with the
-p option.

Node Power
Script

nodePowerScript Yes String Script that powers on and off
nodes and wakes them from
a low power state.

Node Query
Script

nodeQueryScript Yes String Script that queries power
state using an intelligent
platform management
interface.

Default
Power Off
State

defaultPowerOffState Yes String Actual state (Standby,
Suspend, Hibernate,
Shutdown, or Off) nodes will
go into when Moab powers
them off.

Max Threads maxThreads Yes Integer Thread count issued to the
scripts with the -t option
(defaults to 4).

7.1.3 Plugin Management
For information on managing the IPMI plugin, including stopping it, starting it, and checking
on its status, see 6.5 Plugin Management.

Chapter 7: Plugin Types

390 7.1 Power Management Plugin

7.1 Power Management Plugin 391

7.1.4 Web Services Node Power (Secured)

Resource URLs

Resource

/rest/plugins/<pluginId>/services/nodePower

/rest/plugins/<pluginId>/services/node-power

URL Parameters

Parameter Name Type Description

nodes Moab Nodes String A comma-delimited list of Moab node names. It is
required.

power The Power
State

String The power command Moab issues the node (On or
Off).

Response Fields

Field Name Type Description

success Success Indicator Boolean True if the power script and/or
was successful; otherwise false.

messages Messages List of Strings Only present when the request
was not successful or the node
was not configured with the
plugin instance. Contains error
messages describing why the
pbsnodes or the power script
failed.

Additional Information
This web service was intended for Moab's use only and is exposed for debugging and
testing your customized scripts.

Chapter 7: Plugin Types

7.1.5 Reload Node Configuration (Secured)

Resource URLs

Resource

/rest/plugins/<pluginId>/services/reloadNodeConfiguration

/rest/plugins/<pluginId>/services/reload-node-configuration

URL Parameters

Parameter

No URL parameters required

Response Fields

Field Name Type Description

success Success
Indicator

Boolean True if the reload succeeded; otherwise false.

messages Messages List of
Strings

Only present when the request failed. Contains error
messages describing why the reload failed.

Additional Information

The reloadNodeConfiguration web service must be run after any change to the node
configuration file for it to take effect.

7.1.6 Node Configuration File
The node configuration file is used when the plugin is first instantiated or the
reloadNodeConfiguration web service is called. The plugin expects a file that is
readable by the Tomcat user and has a Moab node name on each line. If the user would
like to override the default power-off state of the node, then the node name is followed by a
space and the state. For example, a node configuration file might look like this:

node01.ac
node02.ac

Chapter 7: Plugin Types

392 7.1 Power Management Plugin

7.1 Power Management Plugin 393

node03.ac Hibernate
node04.ac Suspend

The valid power-off states include Standby, Suspend, Hibernate, Shutdown, and Off. If no
power-off state is provided for the node in the configuration file, then the default power-off
state will be used.

7.1.7 The Node Power and Query Script
The plugin uses the power script to power on nodes from all power states and to power off
nodes only into the Off power state. The plugin uses the power state of the node to decide
whether to power on the node with wake or on. If the node is in Standby or Suspend, the
plugin will call the script with the wake parameter. If the node is in Hibernate, Shutdown,
or Off, the plugin will call the script with the on parameter. The plugin calls the power node
script with the off parameter to put the node in the Off state (it uses Torque to put the
node in the Standby, Suspend, Hibernate, and Shutdown state).

The plugin uses the query script to know if a node is in the Off power state. If the query
script reports the node as Off, the plugin will report the node as Off to Moab. If the query
script reports the node as On, the plugin will look to Torque to make sure the node is in a
Running power state before it reports it as On.

The plugin passes the usernameFile, passwordFile, and maxThreads
configuration parameters down to the scripts. The node power script is called with this
syntax:

<nodePowerScript> -u <usernameFile> -p <passwordFile> -t <maxThreads> node01 node02
node03 ... <on|off|wake>

The node query script is called with this syntax:

<nodeQueryScript> -u <usernameFile> -p <passwordFile> -t <maxThreads> node01 node02
node03 ...

The plugin expects the scripts to print JSON to standard out. An example query script
output would look like this:

[
{

"name": "node01.ac",
"power": "ON",
"Processor_2_Temp": 61,
"Processor_1_Temp": 54

},
...

]

Notice it is a list of nodes where each node has the required fields name and power. All
the other key-value pairs will be reported to Moab as a generic resource as long as the
value is a number.

Chapter 7: Plugin Types

The output for the node power plugin is not required; however, the output is read to give
the user a detailed error message if needed. For both the node power and query scripts, if
the field error exists, the plugin will log an error with all the strings in the list. An
example error returned to the plugin would look like this:

[
{

"command": "ipmitool -I lan -H node01i -U admin -f /opt/moab/etc/power-
management/abc-plugin-password-file sdr type temperature",

"name": "node01.ac",
"error": [

"big error"
]

}
...

]

7.1.8 Troubleshooting
The Power Management plugin logs all errors and warnings to the MWS log file, which is
/opt/mws/log/mws.log by default. The stacktrace.log file, in the same directory as
mws.log, can also be helpful in diagnosing problems. If your MWS supports notifications,
they are also helpful in diagnosing the error states the plugin is in, if any. Just check for
notifications from the PowerManagement plugin type and the instance that you are
interested in. When the issue has been resolved, you can dismiss the notification.

In this topic:

7.1.8.A Set the Appropriate MWS RM Precedence
7.1.8.B Configure the MWS RM in Moab
7.1.8.C Configure Torque with Tomcat Administrator
7.1.8.D Make sure the Node and Power Scripts Work First

7.1.8.A Set the Appropriate MWS RM Precedence
The Create/Edit Plugin pages give the option to set the precedence of the Moab RM plugin.
The purpose of the Power Management Plugin is to report node power; however, if the
precedence is too low another Moab RM plugin with a higher precedence and conflicting
node might overwrite the node power. To check what MWS is reporting to MWM, go to the
URL:

https://<MWS host>:8080/mws/rest/plugins/all/rm/cluster-query[?api-version=3]

To check what your plugin instance is reporting to MWM, use the URL:

https://<MWS host>:8080/mws/rest/plugins/<instance-name>/rm/cluster-query[?api-

Chapter 7: Plugin Types

394 7.1 Power Management Plugin

7.1 Power Management Plugin 395

version=3]

If the power is reported in your instance but not to MWM, increase the precedence of the
Moab RM plugin.

7.1.8.B Configure the MWS RM in Moab
First, the following lines must be in the Moab Workload Manager configuration file or one
of its included files:

RMCFG[mws] TYPE=MWS
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] BASEURL=https://<mws host>:8080/mws

Next, edit the MWS credential information in the Moab private configuration file
(/opt/moab/etc/moab-private.cfg, by default). Here are the default values:

CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!

For more information, see 6.3.2 Resource Manager Queries.

7.1.8.C Configure Torque with Tomcat Administrator
The plugin assumes that Torque is installed on the same host as MWS and that Tomcat is
an administrator. This can be verified with qmgr. Run the command:

qmgr -c 's s managers += tomcat@<mws_host>'

For more information see the 'Specifying Non-Root Administrators' section of the Torque
Resource Manager Administrator Guide.

7.1.8.D Make sure the Node and Power Scripts Work First
The default scripts are included in /opt/moab/tools/mws/power_management
and have their own documentation with the -h option. They need to have a file that maps
each node in the Moab cluster to the IPMI address that the script will need to call using
ipmitool. It also needs a file that includes the IPMI password. After that is provided and
ipmitool is installed and working, the scripts will successfully implement the interface
needed for this plugin.

Related Topics

l pbsnodes -m in the Torque Resource Manager Administrator Guide

l qmgr in the Torque Resource Manager Administrator Guide

Chapter 7: Plugin Types

l Green Computing in the Moab Workload Manager Administrator Guide

Chapter 7: Plugin Types

396 7.1 Power Management Plugin

8.1 Client Code Samples 397

Chapter 8: References

In this chapter:

8.1 Client Code Samples
8.2 MWS Configuration
8.3 Logging Configuration
8.4 Resources Reference

8.1 Client Code Samples

The code samples contained in this section of the reference material are provided to help
start integration with MWS. They are provided as a convenience and not as fully developed
APIs.

All examples use the default configuration of MWS, including the default username and
password, and assume that MWS is deployed at https://localhost:8080/mws.

In this section:

8.1.1 Python Samples
8.1.2 curl Samples

Related Topics

l 8.2 MWS Configuration

8.1.1 Python Samples
These samples were tested with version 2.9.1 of the requests package.

Get List of Active Jobs
#!/usr/bin/env python

from __future__ import print_function

Chapter 8: References

import json
import sys

import requests

session = requests.Session()
session.auth = ('moab-admin', 'changeme!')
response = session.request(

method='GET',
url='https://localhost:8080/mws/rest/jobs',
params={

'query': json.dumps({'isActive': True}),
'sort': json.dumps({'credentials.user': 1}),
'fields': 'name,queueStatus,priorities.user,credentials.user',
'max': 10,
'api-version': 3,

},
)
if response.ok:

print(json.dumps(response.json(), sort_keys=True, indent=4))
else:

try:
print("Error: " + response.json()['messages'][0], file=sys.stderr)

except ValueError:
print("Error: status code is " + str(response.status_code), file=sys.stderr)

Submit Job
#!/usr/bin/env python

from __future__ import print_function

import base64
import sys

import requests

session = requests.Session()
session.auth = ('moab-admin', 'changeme!')
script = base64.b64encode("""
#!/bin/sh
/bin/date
sleep 600
/bin/date
""")
response = session.request(

method='POST',
url='https://localhost:8080/mws/rest/jobs',
params={'api-version': 3},
json={

'commandScript': script,
'initialWorkingDirectory': '/tmp',
'credentials': {

'group': 'adaptive',
'user': 'adaptive'

},
'requirements': [{'taskCount': 4}]

})
if response.ok:

print("Submitted job " + response.json()['name'])
else:

Chapter 8: References

398 8.1 Client Code Samples

8.1 Client Code Samples 399

try:
print("Error: " + response.json()['messages'][0], file=sys.stderr)

except ValueError:
print("Error: status code is " + str(response.status_code), file=sys.stderr)

Create Principal
#!/usr/bin/env python
from __future__ import print_function

import sys

import requests

session = requests.Session()
session.auth = ('moab-admin', 'changeme!')
response = session.request(

method='POST',
url='https://localhost:8080/mws/rest/principals',
params={'api-version': 3},
json={

"name": "name_of_principal",
"description": "Short description of principal",
"attachedRoles": [

{"name": "HPCUser"},
{"name": "NitroUser"},
{"name": "RemoteVizUser"}

],
"groups": [

{"name": "group1", "type": "PAMGROUP"},
{"name": "group2", "type": "PAMGROUP"},
{"name": "group3", "type": "PAMGROUP"},
{"name": "group4", "type": "PAMGROUP"},
{"name": "group5", "type": "PAMGROUP"},
{"name": "group6", "type": "PAMGROUP"}

],
"users": [

{"name": "user1", "type": "PAM"},
{"name": "user2", "type": "PAM"},
{"name": "user3", "type": "PAM"},
{"name": "user4", "type": "PAM"},
{"name": "user5", "type": "PAM"},
{"name": "user6", "type": "PAM"},
{"name": "user7", "type": "PAM"}

]
}

)

if response.ok:
print("Created principal " + response.json()['name'])

else:
try:

print("Error: " + response.json()['messages'][0], file=sys.stderr)
except ValueError:

print("Error: status code is " + str(response.status_code), file=sys.stderr)

Chapter 8: References

8.1.2 curl Samples

GET
curl -u 'moab-admin:changeme!' \

'https://localhost:8080/mws/rest/jobs?api-version=3&pretty=true'

POST
curl -u 'moab-admin:changeme!' \

-X POST \
-H 'Content-Type: application/json' \
-d '

{"commandFile":"/tmp/test.sh","initialWorkingDirectory":"/tmp","credentials":
{"group":"adaptive","user":"adaptive"},"requirements":[{"taskCount":4}]}' \

'https://localhost:8080/mws/rest/jobs?api-version=3'

PUT
curl -u 'moab-admin:changeme!' \

-X PUT \
-H 'Content-Type: application/json' \
-d '{"holds":["user"]}' \
'https://localhost:8080/mws/rest/jobs/Moab.93?api-version=3'

DELETE
curl -u 'moab-admin:changeme!' \

-X DELETE \
'https://localhost:8080/mws/rest/jobs/Moab.93?api-version=3'

8.2 MWS Configuration

These properties can be modified by setting the appropriate values in the mws-
config.groovy file. This file is located in MWS_HOME/etc/ or /opt/mws/etc/ by
default as explained in 1.1 Configuring Moab Web Services.

For documentation clarity, '/opt/mws/' is used in the file names instead of 'MWS_
HOME'.

Chapter 8: References

400 8.2 MWS Configuration

8.2 MWS Configuration 401

The configuration file is read not only on startup but also each time it is changed.
Several properties, including those for Moab Workload Manager (moab), Moab
Accounting Manager (mam), Mongo (grails.mongo), and authentication (auth)
are processed after each change and can affect the runtime behavior of MWS.

Configuration files can also be placed in the /opt/mws/etc/mws.d directory. Any
configuration files here get merged with /opt/mws/etc/mws-config.groovy.
In case of conflict, the configuration in /opt/mws/etc/mws.d takes precedence.

Configuration Reference
For all possible values that can be set, see the Grails reference guide. For project specific
settings (usually the only ones you will need to change), you can set the following
properties:

Property Type Defa
ult

Description

auth.defaultUser.password String chang
eme!

Unencoded password of the
default admin user.

The following characters
must be escaped in strings
in the
/opt/insight/etc/co
nfig.groovy and
/opt/mws/etc/mws-
config.groovy files
(such as when used in a
password): \ (backslash), "
(double quote), ' (single
quote), $ (dollar sign). For
example:
mongo.password="my\
$cool\$password". We
recommend that you avoid
using these characters.

auth.defaultUser.username String moab-
admin

Username of the default admin
user (only created if no other
users exist).

grails.mime.use.accept.header Boolean false When enabled, uses the HTTP
Content-Accept header to
determine the content type used
for return data (JSON only for
now).

Chapter 8: References

https://grails.org/documentation.html

Property Type Defa
ult

Description

grails.mongo.databaseName String mws The MongoDB database name to
use.

grails.mongo.host String 127.0.
0.1

The MongoDB host to use (note
that MongoDB runs on 127.0.0.1
and not localhost by default).

grails.mongo.options.autoConne
ctRetry

Boolean true Controls whether the system
retries automatically on
connection errors.

grails.mongo.options.connectio
nsPerHost

Integer 50 The number of connections
allowed per host.

grails.mongo.options.threads
AllowedToBlockForConnection
Multiplier

Integer 5 The number of threads per
connection allowed to wait for an
available connection.

grails.mongo.options.ssl Boolean false Whether the driver should use an
SSL connection to MongoDB.

grails.mongo.password String - (Optional) The password to use
when connecting to MongoDB.

The following characters
must be escaped in strings
in the
/opt/insight/etc/co
nfig.groovy and
/opt/mws/etc/mws-
config.groovy files
(such as when used in a
password): \ (backslash), "
(double quote), ' (single
quote), $ (dollar sign). For
example:
mongo.password="my\
$cool\$password". We
recommend that you avoid
using these characters.

grails.mongo.port Integer 27017 The MongoDB port to use.

Chapter 8: References

402 8.2 MWS Configuration

8.2 MWS Configuration 403

Property Type Defa
ult

Description

grails.mongo.replicaSet List of
Strings

n/a The MongoDB replica set servers
to use (for example,
["moab1:27017","moab2:2701
7"]); note that grails.mongo.host
must be set to null to use this
option.

grails.mongo.username String - (Optional) The username to use
when connecting to MongoDB.

grails.plugins.springsecurity.ac
tive

Boolean true Enables or disables security for
MWS as a whole, including all
providers.

grails.plugins.springsecurity.ba
sic.realmName

String Moab
Web
Servic
es

The HTTP realm used when using
basic auth.

grails.plugins.springsecurity.oa
uthProvider.active

Boolean true Enables or disables the OAuth2
provider.

grails.plugins.springsecurity.us
eBasicAuth

Boolean true Enables or disables basic auth
with a simple
username/password.

insight.command.port Integer 5568 The port on which Insight accepts
commands.

insight.command.timeout.secon
ds

Integer 5 Number of seconds MWS waits for
Insight to respond.

insight.server String localh
ost

The Insight server's host name or
IP address.

ldap.baseDNs List of
Strings

- A list of distinguished names that
are the root entries for LDAP
searches.

ldap.bindUser String - The distinguished name of the
LDAP bind user.

Chapter 8: References

Property Type Defa
ult

Description

ldap.directory.type String - The type of LDAP directory (for
example, "Microsoft Active
Directory"). See 1.1 Configuring
Moab Web Services for values.

ldap.password String - The password of the LDAP bind
user.

The following characters
must be escaped in strings
in the
/opt/insight/etc/co
nfig.groovy and
/opt/mws/etc/mws-
config.groovy files
(such as when used in a
password): \ (backslash), "
(double quote), ' (single
quote), $ (dollar sign). For
example:
mongo.password="my\
$cool\$password". We
recommend that you avoid
using these characters.

ldap.port Integer - LDAP server's port.

ldap.security.type String - How the connection between
MWS and LDAP is secured. See 1.2
Setting up MWS Security for more
information.

ldap.server String - LDAP server hostname or IP
address.

mam.messageDigestAlgorithm String SHA-1 The message digest algorithm that
MWS uses to communicate with
Moab Accounting Manager. For
now, MAM supports only SHA-1.

mam.port Integer 7112 Moab Accounting Manager
server's port.

Chapter 8: References

404 8.2 MWS Configuration

8.2 MWS Configuration 405

Property Type Defa
ult

Description

mam.secretKey String mams
ecret

Secret key used to communicate
with Moab Accounting Manager.

mam.server String localh
ost

Moab Accounting Manager server
hostname or IP address.

moab.databaseName String moab The name of the MongoDB
database to use to retrieve current
Moab HPC Suite data; this should
match the database setting in
Moab HPC Suite.

moab.messageDigestAlgorithm String SHA1 The message digest algorithm that
MWS uses to communicate with
Moab Workload Manager.
Possible values are SHA-1 and
SHA-512.

If the Moab parameter is
set to HMAC64, then

moab.messageDigestAlgorit
hm must be set to SHA-1.
Likewise, if SERVERCSALGO
is set to HMACSHA2, then
moab.messageDigestAlgorit
hm must be set to SHA-512.

moab.messageQueue.port Integer 5570 The port on which Moab HPC
Suite publishes ZeroMQ messages.

moab.messageQueue.secretKey String - Used to encrypt and decrypt
messages on the message queue
using AES. Must be a Base64-
encoded 128-bit (16-byte) key, for
example:
"1r6RvfqJa6voezy5wAx0hw=="

moab.port Integer 42559 Moab HPC Suite server's port.

moab.secretKey String moab
secret

Secret key used to communicate
with Moab HPC Suite. See
information about secret key in
the Moab Workload Manager

Chapter 8: References

http://en.wikipedia.org/wiki/Base64

Property Type Defa
ult

Description

Administrator Guide.

moab.server String localh
ost

Moab HPC Suite server hostname
or IP address.

mws.cache.duration.default Integer 60 The default number of seconds to
use for caching objects from Moab
HPC Suite. This is only supported
in certain objects such as policies.

mws.cache.duration.policy Integer 180 The number of seconds that the
cache for policies is valid. If set to
null, the default is used.

mws.certificates.location String etc/ss
l.crt

The directory (relative or
absolute) where plugin certificates
are stored. See 6.2.15 Managing
SSL Connections.

mws.events.expireAfterSeconds Integer 2592
000

Events older than this many
seconds (30 days by default) will
be deleted from the database.
Effective only with MongoDB 2.2
or later.

mws.health.check.period Integer 30 The number of seconds in
between health checks. Used in
creating notification conditions if
problems exist in configuration or
connections. For more
information, see 4.13 Notification
Conditions.

mws.hooks.location String hooks The directory (relative or
absolute) where Hooks are stored.
See 3.7 Pre- and Post-Processing
Hooks for more information.

mws.messageQueue.address String - The IP address on which MWS
publishes ZeroMQ messages.

mws.messageQueue.port Integer 5564 The port on which MWS publishes
ZeroMQ messages.

Chapter 8: References

406 8.2 MWS Configuration

8.2 MWS Configuration 407

Property Type Defa
ult

Description

mws.plugins.location String plugin
s

The directory (relative or
absolute) where Plugins are
stored. See Chapter 6: About
Moab Web Services Plugins for
more information.

mws.services.hooks.syncInterva
l

Integer 30 The number of seconds between
each time MWS checks for service
phase transition hooks that
completed or timed out.

mws.services.phases.syncInterv
al

Integer 14400 The number of seconds between
each time MWS checks with Moab
Workload Manager to verify that
the service phases are correctly
synchronized.

mws.suite String HPC The suite or context that MWS is
running in (see Suite for values).

pam.configuration.service String - The PAM service to authenticate
against. For example, login. For
more information, see 1.1.4 PAM
(Pluggable Authentication
Module) Configuration Using
/opt/mws/etc/mws-config.groovy.

plugins.autoStart Boolean true Default configuration value for the
plugin autoStart field (see 6.5.7
Setting Default Plugin
Configuration).

plugins.config Map - Default configuration value for the
plugin config field (see 6.5.7
Setting Default Plugin
Configuration).

plugins.loadInitialPlugins Boolean true If true, loads the initial plugins
defined for uploaded or built-in
plugin types (see 6.2.17.A Plugin
Projects and Metadata).

plugins.pluginType String - Default configuration value for the

Chapter 8: References

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/Suite.java

Property Type Defa
ult

Description

plugin pluginType field (see 6.5.7
Setting Default Plugin
Configuration).

plugins.pollInterval Integer 30 Default configuration value for the
plugin pollInterval field (see 6.5.7
Setting Default Plugin
Configuration).

plugins.stateConsolidationPolic
y

NodeStat
ePolicy

null If 'optimistic', treats state data
optimistically. If 'pessimistic',
treats state data pessimistically.
Can be null. See 6.1.6 Data
Consolidation for more
information.

Related Topics

l 1.1 Configuring Moab Web Services

8.3 Logging Configuration

Logging Reference
Logging for MWS is handled by the Logback logging framework and can be configured in
the MWS_HOME/etc/logback.groovy file. For information on configuring logging
refer to Grails Logging Configuration and Groovy Logback Configuration.

The following loggers are available to use for debugging purposes:

Logger Default Description

com.ace.mws debug The base logger for MWS specific functionality
not included in other loggers (this comprises
very few classes).

com.ace.mws.gapi.Connection info Logger which controls all requests and
responses from Moab HPC Suite.

Chapter 8: References

408 8.3 Logging Configuration

https://logback.qos.ch/
https://grails.github.io/legacy-grails-doc/3.3.8/guide/conf.html#logging
https://logback.qos.ch/manual/groovy.html

8.4 Resources Reference 409

Logger Default Description

com.ace.mws.gapi.parsers info Loggers for parsers of Moab HPC Suite's data.

com.ace.mws.gapi.serializers info Loggers for all serialization from MWS to Moab
HPC Suite Wire Protocol.

grails.app.bootstrap.BootStrap debug Handles startup and initialization of MWS.

grails.plugins.reloadconfig info Handles dynamic reloading of configuration
files.

plugins debug All MWS plugins (see Chapter 6: About Moab
Web Services Plugins).

8.4 Resources Reference

This section contains the type and description of all possible fields in each MWS resource
object. Because of significant changes in the API introduced between releases, MWS
possesses a versioned API. Each resource contains sections for each API version.

In this section:

8.4.1 Fields: Access Control Lists (ACLs)
8.4.2 Accounting Resources
8.4.3 Fields: Credentials
8.4.4 Fields: Events
8.4.5 Fields: Job Arrays
8.4.6 Fields: Jobs
8.4.7 Fields: Job Templates
8.4.8 Fields: Metric Types
8.4.9 Fields: Nodes
8.4.10 Fields: Notification Conditions
8.4.11 Fields: Notifications
8.4.12 Fields: Plugins
8.4.13 Fields: Plugin Types
8.4.14 Fields: Policies

Chapter 8: References

8.4.15 Fields: Principals
8.4.16 Fields: Priority
8.4.17 Fields: Report Datapoints
8.4.18 Fields: Reports
8.4.19 Fields: Reservations
8.4.20 Fields: Resource Types
8.4.21 Fields: Roles
8.4.22 Fields: Report Samples
8.4.23 Fields: Standing Reservations
8.4.24 Fields: User's Permissions
8.4.25 Fields: Virtual Containers

Related Topics

l Chapter 4: Resources

l 3.3 Global URL Parameters

8.4.1 Fields: Access Control Lists (ACLs)

See the associated 4.1 Access Control Lists (ACLs) resource section for more
information on how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource acl-rules Permissions

Hooks filename acl-rules.groovy Pre- and Post-Processing Hooks

Distinct query-supported No Distinct

Chapter 8: References

410 8.4 Resources Reference

8.4 Resources Reference 411

API version 3

AclRule
This class represents a rule that can be in Moab's access control list (ACL) mechanism.
The basic AclRule information is the object's name and type. The type directly maps to
an AclType value. The default mechanism Moab uses to check the ACL for a particular
item is if the user or object coming in has ANY of the values in the ACL, then the user or
object is given access. If no values match the user or object in question, the user or
object is rejected access.

Field Name Type PUT Description

affinity AclAffinity Yes Reservation ACLs allow or deny access to
reserved resources but they can also be
configured to affect a job's affinity for a
particular reservation. By default, jobs
gravitate toward reservations through a
mechanism known as positive affinity.
This mechanism allows jobs to run on
the most constrained resources leaving
other, unreserved resources free for use
by other jobs that may not be able to
access the reserved resources. Normally
this is a desired behavior. However,
sometimes it is desirable to reserve
resources for use only as a last resort-
using the reserved resources only when
there are no other resources available.
This last resort behavior is known as
negative affinity. Defaults to AclAffinity:
POSITIVE.

comparator ComparisonOperator Yes The type of comparison to make against
the ACL object. Defaults to
ComparisonOperator: EQUAL.

type AclType Yes The type of the object that is being
granted (or denied) access.

value String Yes The name of the object that is being
granted (or denied) access.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only

Chapter 8: References

for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the
object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

Chapter 8: References

412 8.4 Resources Reference

8.4 Resources Reference 413

AclType
This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

Chapter 8: References

Value Description

QUEUE Not supported

RACK Not supported

SCHED Not supported

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

Chapter 8: References

414 8.4 Resources Reference

8.4 Resources Reference 415

API version 2

AclRule
This class represents a rule that can be in Moab's access control list (ACL) mechanism.
The basic AclRule information is the object's name and type. The type directly maps to
an AclType value. The default mechanism Moab uses to check the ACL for a particular
item is if the user or object coming in has ANY of the values in the ACL, then the user or
object is given access. If no values match the user or object in question, the user or
object is rejected access.

Field Name Type PUT Description

affinity AclAffinity Yes Reservation ACLs allow or deny access to
reserved resources but they can also be
configured to affect a job's affinity for a
particular reservation. By default, jobs
gravitate toward reservations through a
mechanism known as positive affinity.
This mechanism allows jobs to run on
the most constrained resources leaving
other, unreserved resources free for use
by other jobs that may not be able to
access the reserved resources. Normally
this is a desired behavior. However,
sometimes it is desirable to reserve
resources for use only as a last resort-
using the reserved resources only when
there are no other resources available.
This last resort behavior is known as
negative affinity. Defaults to AclAffinity:
POSITIVE.

comparator ComparisonOperator Yes The type of comparison to make against
the ACL object. Defaults to
ComparisonOperator: EQUAL.

type AclType Yes The type of the object that is being
granted (or denied) access.

value String Yes The name of the object that is being
granted (or denied) access.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only

Chapter 8: References

for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the
object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

Chapter 8: References

416 8.4 Resources Reference

8.4 Resources Reference 417

AclType
This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

Chapter 8: References

Value Description

QUEUE Not supported

RACK Not supported

SCHED Not supported

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

Related Topics

l 4.1 Access Control Lists (ACLs)

8.4.2 Accounting Resources

In this topic:

8.4.2.1 Fields: Accounts
8.4.2.2 Fields: Allocations
8.4.2.3 Fields: Charge Rates
8.4.2.4 Fields: Fund Balances
8.4.2.5 Fields: Fund Statement Summary
8.4.2.6 Fields: Fund Statements
8.4.2.7 Fields: Funds
8.4.2.8 Fields: Liens
8.4.2.9 Fields: Organizations
8.4.2.10 Fields: Quotes
8.4.2.11 Fields: Transactions
8.4.2.12 Fields: Usage Records
8.4.2.13 Fields: Users

Chapter 8: References

418 8.4 Resources Reference

8.4 Resources Reference 419

8.4.2.1 Fields: Accounts

See the associated 4.2.1 Accounting Accounts resource section for more information
on how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource accounting/accounts Permissions

Hooks filename accounting.accounts.groovy Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

API version 3

Account
Users can be designated as members of an account and can be allowed to share its
allocations. The user members can be designated as active or inactive, and as an
account admin or not an account admin. Default account properties include the
description, the organization it is part of, and whether or not it is active. An account's
user membership can also be adjusted. By default, a standard user can only query
accounts they belong to.

Field Name Type Description

id String The unique account identifier.

active Boolean A boolean indicating whether this account is
active or not.

creationTime Date The time this account was created.

deleted Boolean A boolean indicating whether this account is
deleted or not.

description String The account description.

modificationTime Date The time this account was last modified.

organization String The organization to which the account
belongs.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

users Set<AccountUser> The users associated with this account.

AccountUser
An account user is a person authorized to use an account.

Field Name Type Description

id String The unique user identifier.

Chapter 8: References

420 8.4 Resources Reference

8.4 Resources Reference 421

Field Name Type Description

active Boolean A boolean indicating whether this user is active or not.

admin Boolean A boolean indicating whether this user is an admin or not.

Chapter 8: References

API version 2

Account
Users can be designated as members of an account and can be allowed to share its
allocations. The user members can be designated as active or inactive, and as an
account admin or not an account admin. Default account properties include the
description, the organization it is part of, and whether or not it is active. An account's
user membership can also be adjusted. By default, a standard user can only query
accounts they belong to.

Field Name Type Description

id String The unique account identifier.

active Boolean A boolean indicating whether this account is
active or not.

creationTime Date The time this account was created.

deleted Boolean A boolean indicating whether this account is
deleted or not.

description String The account description.

modificationTime Date The time this account was last modified.

organization String The organization to which the account
belongs.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

users Set<AccountUser> The users associated with this account.

AccountUser
An account user is a person authorized to use an account.

Field Name Type Description

id String The unique user identifier.

Chapter 8: References

422 8.4 Resources Reference

8.4 Resources Reference 423

Field Name Type Description

active Boolean A boolean indicating whether this user is active or not.

admin Boolean A boolean indicating whether this user is an admin or not.

Related Topics

l 4.2.1 Accounting Accounts

8.4.2.2 Fields: Allocations

See the associated 4.2.2 Accounting Allocations resource section for more information
on how to use this resource and supported operations.

Additional References

Type Value Additional
Information

Permissions
resource

accounting/allocations Permissions

Hooks filename accounting.allocations.groovy Pre- and Post-
Processing Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

API version 3

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,
withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

Chapter 8: References

424 8.4 Resources Reference

8.4 Resources Reference 425

Field Name Type Description

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

Chapter 8: References

API version 2

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,
withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

Chapter 8: References

426 8.4 Resources Reference

8.4 Resources Reference 427

Field Name Type Description

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

Related Topics

l 4.2.2 Accounting Allocations

8.4.2.3 Fields: Charge Rates

See the associated 4.2.3 Accounting Charge Rates resource section for more
information on how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource accounting/charge-rates Permissions

Hooks filename accounting.charge-
rates.groovy

Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

API version 3

ChargeRate
Charge rates establish how much to charge for usage. A charge rate consists of its
name, an optional value and the amount. Both name and value are primary keys and a
charge rate is uniquely defined by both its name and its value. A charge rate value that
is null designates the default charge rate.

Field Name Type Description

id Long

amount String The charge rate amount.

creationTime Date The date this charge rate was created.

deleted Boolean A boolean indicating whether this charge rate is deleted
or not.

description String The charge rate description.

modificationTime Date The date this charge rate was last modified.

name String The charge rate name.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

value String The charge rate value. This will be null for default charge
rates.

Chapter 8: References

428 8.4 Resources Reference

8.4 Resources Reference 429

API version 2

ChargeRate
Charge rates establish how much to charge for usage. A charge rate consists of its
name, an optional value and the amount. Both name and value are primary keys and a
charge rate is uniquely defined by both its name and its value. A charge rate value that
is null designates the default charge rate.

Field Name Type Description

id Long

amount String The charge rate amount.

creationTime Date The date this charge rate was created.

deleted Boolean A boolean indicating whether this charge rate is deleted
or not.

description String The charge rate description.

modificationTime Date The date this charge rate was last modified.

name String The charge rate name.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

value String The charge rate value. This will be null for default charge
rates.

Related Topics

l 4.2.3 Accounting Charge Rates

8.4.2.4 Fields: Fund Balances

See the associated 4.2.4 Accounting Funds resource section for more information on
how to use this resource and supported operations.

Chapter 8: References

Additional References

Type Value Additional
Information

Permissions
resource

accounting/funds/balances Permissions

Hooks filename accounting.funds.balances.groovy Pre- and Post-
Processing Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

430 8.4 Resources Reference

8.4 Resources Reference 431

API version 3

FundBalance
Represents a report of fund balance.

Field Name Type Description

id Long The unique fund identifier.

allocated BigDecimal The total adjusted allocations. This value
is affected positively by deposits,
activations and destination transfers and
affected negatively by withdrawals,
deactivations and source transfers that
have occurred since the last reset.

allocations Set<Allocation> Allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts
within this fund. It does not take into
fund current liens.

available BigDecimal The total amount available for charging.
amount - reserved + creditLimit

balance BigDecimal The allocation total not blocked by liens.
amount - reserved

capacity BigDecimal The total amount allocated via deposits
and credit limits.
allocated + creditLimit

creationTime Date Date this fund was created.

creditLimit BigDecimal The sum of active credit limits within this
fund.

description String The fund description.

fundConstraints Set<FundConstraint> Constraints on fund usage.

modificationTime Date The date this fund was last modified.

Chapter 8: References

Field Name Type Description

name String The name of this fund.

percentRemaining Double The percentage of allocation remaining.
amount * 100 / allocated

percentUsed Double The percentage of allocated used.
used * 100 / allocated

reserved BigDecimal The sum of active lien amounts against
this fund.

used BigDecimal The total amount used this allocation
cycle.
allocated - amount

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,

Chapter 8: References

432 8.4 Resources Reference

8.4 Resources Reference 433

Field Name Type Description

withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

FundConstraint
Constraints designate which entities (such as Users, Accounts, Machines, Classes,
Organizations, etc.) can access the encapsulated credits in a fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

Chapter 8: References

Field
Name Type Description

name String The name of the constraint.

value String The value of the constraint. The constraint can be negated by the use of
an exclamation point leading the value.

Chapter 8: References

434 8.4 Resources Reference

8.4 Resources Reference 435

API version 2

FundBalance
Represents a report of fund balance.

Field Name Type Description

id Long The unique fund identifier.

allocated BigDecimal The total adjusted allocations. This value
is affected positively by deposits,
activations and destination transfers and
affected negatively by withdrawals,
deactivations and source transfers that
have occurred since the last reset.

allocations Set<Allocation> Allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts
within this fund. It does not take into
fund current liens.

available BigDecimal The total amount available for charging.
amount - reserved + creditLimit

balance BigDecimal The allocation total not blocked by liens.
amount - reserved

capacity BigDecimal The total amount allocated via deposits
and credit limits.
allocated + creditLimit

creationTime Date Date this fund was created.

creditLimit BigDecimal The sum of active credit limits within this
fund.

description String The fund description.

fundConstraints Set<FundConstraint> Constraints on fund usage.

modificationTime Date The date this fund was last modified.

Chapter 8: References

Field Name Type Description

name String The name of this fund.

percentRemaining Double The percentage of allocation remaining.
amount * 100 / allocated

percentUsed Double The percentage of allocated used.
used * 100 / allocated

reserved BigDecimal The sum of active lien amounts against
this fund.

used BigDecimal The total amount used this allocation
cycle.
allocated - amount

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,

Chapter 8: References

436 8.4 Resources Reference

8.4 Resources Reference 437

Field Name Type Description

withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

FundConstraint
Constraints designate which entities (such as Users, Accounts, Machines, Classes,
Organizations, etc.) can access the encapsulated credits in a fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

Chapter 8: References

Field
Name Type Description

name String The name of the constraint.

value String The value of the constraint. The constraint can be negated by the use of
an exclamation point leading the value.

Related Topics

l 4.2.4 Accounting Funds

8.4.2.5 Fields: Fund Statement Summary

See the associated 4.2.4 Accounting Funds resource section for more information on
how to use this resource and supported operations.

Additional References

Type Value Additional
Information

Permissions
resource

accounting/funds/reports/statement Permissions

Hooks
filename

accounting.funds.reports.statement.groovy Pre- and Post-
Processing
Hooks

Distinct
query-
supported

No Distinct

Chapter 8: References

438 8.4 Resources Reference

8.4 Resources Reference 439

API version 3

FundStatementSummary
A fund statement summary is related to and quite similar to the FundStatement report
but differs in the transactions field by using the FundTransactionSummary.

Field Name Type Description

id Long

endBalance BigDecimal The balance of the funds at the
endTime of the statement.

endTime Date The ending time that the
statement covers.

funds Set<Fund> The funds that this statement
covers. Only a sub-set of the full
fund fields are available from
this property. This includes id,
name, priority, description, and
creationTime.

generationTime Date The date that the statement
report was generated.

startBalance BigDecimal The balance of the funds at the
startTime of the statement.

startTime Date The starting time that the
statement covers.

totalCredits BigDecimal The total number of credits that
occurred during the time period
that the statement covers.

totalDebits BigDecimal The total number of debits that
occurred during the time period
that the statement covers.

transactions Set<FundTransactionSummary> Summaries of the specific
transactions which occurred
during the time period that this
statement covers.

Chapter 8: References

Fund
A fund is a container for a time-bounded reference currency called credits for which
the usage is restricted by constraints that define how the credits must be used. Much
like with a bank, a fund is a repository for these resource or service credits that are
added through deposits and debited through withdrawals and charges. Each fund has a
set of constraints designating which entities (such as Users, Accounts, Machines,
Classes, Organizations, etc.) can access the fund or for which aspects of usage the funds
are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints can
also be negated with an exclamation point leading the constraint value.
When credits are deposited into a fund, they are associated with a time period within
which they are valid. These time-bounded pools of credits are known as allocations. (An
allocation is a pool of billable units associated with a fund for use during a particular
time period.) By using multiple allocations that expire in regular intervals it is possible
to implement a use-it-or-lose-it policy and establish an allocation cycle.
Funds can be nested. Hierarchically nested funds can be useful for the delegation of
management roles and responsibilities. Deposit shares can be established that assist to
automate a trickle-down effect for funds deposited at higher level funds. Additionally,
an optional overflow feature allows charges against lower level funds to trickle up the
hierarchy.
Funds can have an arbitrary name that is not necessarily unique for the fund. Funds
can also have a priority that will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier.

allocated BigDecimal Total Adjusted allocations. This value is
affected positively by deposits, activations
and destination transfers and affected
negatively by withdrawals, deactivations
and source transfers that have occurred
since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts
within this fund. It does not take into fund
current liens.

creationTime Date Date this fund was created.

creditLimit BigDecimal The sum of active credit limits within this
fund.

Chapter 8: References

440 8.4 Resources Reference

8.4 Resources Reference 441

Field Name Type Description

defaultDeposit String The default deposit amount.

deleted Boolean A boolean indicating whether this fund is
deleted or not.

description String The fund description.

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount.

modificationTime Date The date this fund was last modified.

name String The name of this fund.

priority Integer The fund priority.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Chapter 8: References

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,
withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

FundConstraint
Constraints designate which entities (such as Users, Accounts, Machines, Classes,
Organizations, etc.) can access the encapsulated credits in a fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, etc.).

Chapter 8: References

442 8.4 Resources Reference

8.4 Resources Reference 443

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint can be negated by the use of
an exclamation point leading the value.

FundTransactionSummary
Represents a Moab Accounting Manager transaction summary, which is a consolidated
view of multiple transactions. The transactions are grouped by object and action, and a
total count is given for the summary.

Field
Name Type Description

id Long

count Long The number of transactions in this grouping of object and
action.

action String Action name for the transaction.

amount BigDecimal Amount of the transaction. A positive or amount signifies a
credit, while a negative or zero amount signifies a debit.

object String Object's name associated with the transaction.

Chapter 8: References

API version 2

FundStatementSummary
A fund statement summary is related to and quite similar to the FundStatement report
but differs in the transactions field by using the FundTransactionSummary.

Field Name Type Description

id Long

endBalance BigDecimal The balance of the funds at the
endTime of the statement.

endTime Date The ending time that the
statement covers.

funds Set<Fund> The funds that this statement
covers. Only a sub-set of the full
fund fields are available from
this property. This includes id,
name, priority, description, and
creationTime.

generationTime Date The date that the statement
report was generated.

startBalance BigDecimal The balance of the funds at the
startTime of the statement.

startTime Date The starting time that the
statement covers.

totalCredits BigDecimal The total number of credits that
occurred during the time period
that the statement covers.

totalDebits BigDecimal The total number of debits that
occurred during the time period
that the statement covers.

transactions Set<FundTransactionSummary> Summaries of the specific
transactions which occurred
during the time period that this
statement covers.

Chapter 8: References

444 8.4 Resources Reference

8.4 Resources Reference 445

Fund
A fund is a container for a time-bounded reference currency called credits for which
the usage is restricted by constraints that define how the credits must be used. Much
like with a bank, a fund is a repository for these resource or service credits that are
added through deposits and debited through withdrawals and charges. Each fund has a
set of constraints designating which entities (such as Users, Accounts, Machines,
Classes, Organizations, etc.) can access the fund or for which aspects of usage the funds
are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints can
also be negated with an exclamation point leading the constraint value.
When credits are deposited into a fund, they are associated with a time period within
which they are valid. These time-bounded pools of credits are known as allocations. (An
allocation is a pool of billable units associated with a fund for use during a particular
time period.) By using multiple allocations that expire in regular intervals it is possible
to implement a use-it-or-lose-it policy and establish an allocation cycle.
Funds can be nested. Hierarchically nested funds can be useful for the delegation of
management roles and responsibilities. Deposit shares can be established that assist to
automate a trickle-down effect for funds deposited at higher level funds. Additionally,
an optional overflow feature allows charges against lower level funds to trickle up the
hierarchy.
Funds can have an arbitrary name that is not necessarily unique for the fund. Funds
can also have a priority that will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier.

allocated BigDecimal Total Adjusted allocations. This value is
affected positively by deposits, activations
and destination transfers and affected
negatively by withdrawals, deactivations
and source transfers that have occurred
since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts
within this fund. It does not take into fund
current liens.

creationTime Date Date this fund was created.

creditLimit BigDecimal The sum of active credit limits within this
fund.

Chapter 8: References

Field Name Type Description

defaultDeposit String The default deposit amount.

deleted Boolean A boolean indicating whether this fund is
deleted or not.

description String The fund description.

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount.

modificationTime Date The date this fund was last modified.

name String The name of this fund.

priority Integer The fund priority.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Chapter 8: References

446 8.4 Resources Reference

8.4 Resources Reference 447

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,
withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

FundConstraint
Constraints designate which entities (such as Users, Accounts, Machines, Classes,
Organizations, etc.) can access the encapsulated credits in a fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, etc.).

Chapter 8: References

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint can be negated by the use of
an exclamation point leading the value.

FundTransactionSummary
Represents a Moab Accounting Manager transaction summary, which is a consolidated
view of multiple transactions. The transactions are grouped by object and action, and a
total count is given for the summary.

Field
Name Type Description

id Long

count Long The number of transactions in this grouping of object and
action.

action String Action name for the transaction.

amount BigDecimal Amount of the transaction. A positive or amount signifies a
credit, while a negative or zero amount signifies a debit.

object String Object's name associated with the transaction.

Related Topics

l 4.2.4 Accounting Funds

8.4.2.6 Fields: Fund Statements

See the associated 4.2.4 Accounting Funds resource section for more information on
how to use this resource and supported operations.

Chapter 8: References

448 8.4 Resources Reference

8.4 Resources Reference 449

Additional References

Type Value Additional
Information

Permissions
resource

accounting/funds/reports/statement Permissions

Hooks
filename

accounting.funds.reports.statement.groovy Pre- and Post-
Processing
Hooks

Distinct
query-
supported

No Distinct

Chapter 8: References

API version 3

FundStatement
A fund statement is a report generated from Moab Accounting Manager fund, allocation,
and transaction data. It contains fields detailing the specific time period covered, the
starting and ending balances, the total of the transactions, and fund and transaction
details.

Field Name Type Description

id Long

endBalance BigDecimal The balance of the funds at the endTime of
the statement.

endTime Date The ending time that the statement covers.

funds Set<Fund> The funds that this statement covers. Only
a sub-set of the full fund fields are
available from this property. This includes
id, name, priority, description, and
creationTime.

generationTime Date The date that the statement report was
generated.

startBalance BigDecimal The balance of the funds at the startTime
of the statement.

startTime Date The starting time that the statement
covers.

totalCredits BigDecimal The total number of credits that occurred
during the time period that the statement
covers.

totalDebits BigDecimal The total number of debits that occurred
during the time period that the statement
covers.

transactions Set<FundTransaction> Details of each specific transaction which
occurred during the time period that this
statement covers.

Chapter 8: References

450 8.4 Resources Reference

8.4 Resources Reference 451

Fund
A fund is a container for a time-bounded reference currency called credits for which
the usage is restricted by constraints that define how the credits must be used. Much
like with a bank, a fund is a repository for these resource or service credits that are
added through deposits and debited through withdrawals and charges. Each fund has a
set of constraints designating which entities (such as Users, Accounts, Machines,
Classes, Organizations, etc.) can access the fund or for which aspects of usage the funds
are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints can
also be negated with an exclamation point leading the constraint value.
When credits are deposited into a fund, they are associated with a time period within
which they are valid. These time-bounded pools of credits are known as allocations. (An
allocation is a pool of billable units associated with a fund for use during a particular
time period.) By using multiple allocations that expire in regular intervals it is possible
to implement a use-it-or-lose-it policy and establish an allocation cycle.
Funds can be nested. Hierarchically nested funds can be useful for the delegation of
management roles and responsibilities. Deposit shares can be established that assist to
automate a trickle-down effect for funds deposited at higher level funds. Additionally,
an optional overflow feature allows charges against lower level funds to trickle up the
hierarchy.
Funds can have an arbitrary name that is not necessarily unique for the fund. Funds
can also have a priority that will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier.

allocated BigDecimal Total Adjusted allocations. This value is
affected positively by deposits, activations
and destination transfers and affected
negatively by withdrawals, deactivations
and source transfers that have occurred
since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts
within this fund. It does not take into fund
current liens.

creationTime Date Date this fund was created.

creditLimit BigDecimal The sum of active credit limits within this
fund.

Chapter 8: References

Field Name Type Description

defaultDeposit String The default deposit amount.

deleted Boolean A boolean indicating whether this fund is
deleted or not.

description String The fund description.

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount.

modificationTime Date The date this fund was last modified.

name String The name of this fund.

priority Integer The fund priority.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Chapter 8: References

452 8.4 Resources Reference

8.4 Resources Reference 453

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,
withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

FundConstraint
Constraints designate which entities (such as Users, Accounts, Machines, Classes,
Organizations, etc.) can access the encapsulated credits in a fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, etc.).

Chapter 8: References

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint can be negated by the use of
an exclamation point leading the value.

FundTransaction
Represents a Moab Accounting Manager transaction.

Field
Name Type Description

id Long

account String The account associated with the transaction. For a credit, this
will likely be zero.

action String Action name for the transaction.

amount BigDecimal Amount of the transaction. A positive or amount signifies a
credit, while a negative or zero amount signifies a debit.

instance String Instance name.

machine String The machine associated with the transaction. For a credit, this
will likely be zero.

object String Object's name associated with the transaction.

time Date The date when the transaction occurred.

user String The user associated with the transaction. For a credit, this will
likely be zero.

Chapter 8: References

454 8.4 Resources Reference

8.4 Resources Reference 455

API version 2

FundStatement
An fund statement is a report generated from Moab Accounting Manager fund,
allocation, and transaction data. It contains fields detailing the specific time period
covered, the starting and ending balances, the total of the transactions, and fund and
transaction details.

Field Name Type Description

id Long

endBalance BigDecimal The balance of the funds at the endTime of
the statement.

endTime Date The ending time that the statement covers.

funds Set<Fund> The funds that this statement covers. Only
a sub-set of the full fund fields are
available from this property. This includes
id, name, priority, description, and
creationTime.

generationTime Date The date that the statement report was
generated.

startBalance BigDecimal The balance of the funds at the startTime
of the statement.

startTime Date The starting time that the statement
covers.

totalCredits BigDecimal The total number of credits that occurred
during the time period that the statement
covers.

totalDebits BigDecimal The total number of debits that occurred
during the time period that the statement
covers.

transactions Set<FundTransaction> Details of each specific transaction which
occurred during the time period that this
statement covers.

Chapter 8: References

Fund
A fund is a container for a time-bounded reference currency called credits for which
the usage is restricted by constraints that define how the credits must be used. Much
like with a bank, a fund is a repository for these resource or service credits that are
added through deposits and debited through withdrawals and charges. Each fund has a
set of constraints designating which entities (such as Users, Accounts, Machines,
Classes, Organizations, etc.) can access the fund or for which aspects of usage the funds
are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints can
also be negated with an exclamation point leading the constraint value.
When credits are deposited into a fund, they are associated with a time period within
which they are valid. These time-bounded pools of credits are known as allocations. (An
allocation is a pool of billable units associated with a fund for use during a particular
time period.) By using multiple allocations that expire in regular intervals it is possible
to implement a use-it-or-lose-it policy and establish an allocation cycle.
Funds can be nested. Hierarchically nested funds can be useful for the delegation of
management roles and responsibilities. Deposit shares can be established that assist to
automate a trickle-down effect for funds deposited at higher level funds. Additionally,
an optional overflow feature allows charges against lower level funds to trickle up the
hierarchy.
Funds can have an arbitrary name that is not necessarily unique for the fund. Funds
can also have a priority that will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier.

allocated BigDecimal Total Adjusted allocations. This value is
affected positively by deposits, activations
and destination transfers and affected
negatively by withdrawals, deactivations
and source transfers that have occurred
since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts
within this fund. It does not take into fund
current liens.

creationTime Date Date this fund was created.

creditLimit BigDecimal The sum of active credit limits within this
fund.

Chapter 8: References

456 8.4 Resources Reference

8.4 Resources Reference 457

Field Name Type Description

defaultDeposit String The default deposit amount.

deleted Boolean A boolean indicating whether this fund is
deleted or not.

description String The fund description.

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount.

modificationTime Date The date this fund was last modified.

name String The name of this fund.

priority Integer The fund priority.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Chapter 8: References

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,
withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

FundConstraint
Constraints designate which entities (such as Users, Accounts, Machines, Classes,
Organizations, etc.) can access the encapsulated credits in a fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, etc.).

Chapter 8: References

458 8.4 Resources Reference

8.4 Resources Reference 459

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint can be negated by the use of
an exclamation point leading the value.

FundTransaction
Represents a Moab Accounting Manager transaction.

Field
Name Type Description

id Long

account String The account associated with the transaction. For a credit, this
will likely be zero.

action String Action name for the transaction.

amount BigDecimal Amount of the transaction. A positive or amount signifies a
credit, while a negative or zero amount signifies a debit.

instance String Instance name.

machine String The machine associated with the transaction. For a credit, this
will likely be zero.

object String Object's name associated with the transaction.

time Date The date when the transaction occurred.

user String The user associated with the transaction. For a credit, this will
likely be zero.

Chapter 8: References

Related Topics

l 4.2.4 Accounting Funds

8.4.2.7 Fields: Funds

See the associated 4.2.4 Accounting Funds resource section for more information on
how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource accounting/funds Permissions

Hooks filename accounting.funds.groovy Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

460 8.4 Resources Reference

8.4 Resources Reference 461

API version 3

Fund
A fund is a container for a time-bounded reference currency called credits for which
the usage is restricted by constraints that define how the credits must be used. Much
like with a bank, a fund is a repository for these resource or service credits that are
added through deposits and debited through withdrawals and charges. Each fund has a
set of constraints designating which entities (such as Users, Accounts, Machines,
Classes, Organizations, etc.) can access the fund or for which aspects of usage the funds
are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints can
also be negated with an exclamation point leading the constraint value.
When credits are deposited into a fund, they are associated with a time period within
which they are valid. These time-bounded pools of credits are known as allocations. (An
allocation is a pool of billable units associated with a fund for use during a particular
time period.) By using multiple allocations that expire in regular intervals it is possible
to implement a use-it-or-lose-it policy and establish an allocation cycle.
Funds can be nested. Hierarchically nested funds can be useful for the delegation of
management roles and responsibilities. Deposit shares can be established that assist to
automate a trickle-down effect for funds deposited at higher level funds. Additionally,
an optional overflow feature allows charges against lower level funds to trickle up the
hierarchy.
Funds can have an arbitrary name that is not necessarily unique for the fund. Funds
can also have a priority that will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier.

allocated BigDecimal Total Adjusted allocations. This value is
affected positively by deposits,
activations and destination transfers and
affected negatively by withdrawals,
deactivations and source transfers that
have occurred since the last reset.

allocations Set<Allocation> The allocations associated with this
fund.

amount BigDecimal The sum of active allocation amounts
within this fund. It does not take into
fund current liens.

creationTime Date Date this fund was created.

Chapter 8: References

Field Name Type Description

creditLimit BigDecimal The sum of active credit limits within
this fund.

defaultDeposit String The default deposit amount.

deleted Boolean A boolean indicating whether this fund
is deleted or not.

description String The fund description.

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount.

modificationTime Date The date this fund was last modified.

name String The name of this fund.

priority Integer The fund priority.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Chapter 8: References

462 8.4 Resources Reference

8.4 Resources Reference 463

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,
withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

FundConstraint
Constraints designate which entities (such as Users, Accounts, Machines, Classes,
Organizations, etc.) can access the encapsulated credits in a fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, etc.).

Chapter 8: References

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint can be negated by the use of
an exclamation point leading the value.

Chapter 8: References

464 8.4 Resources Reference

8.4 Resources Reference 465

API version 2

Fund
A fund is a container for a time-bounded reference currency called credits for which
the usage is restricted by constraints that define how the credits must be used. Much
like with a bank, a fund is a repository for these resource or service credits that are
added through deposits and debited through withdrawals and charges. Each fund has a
set of constraints designating which entities (such as Users, Accounts, Machines,
Classes, Organizations, etc.) can access the fund or for which aspects of usage the funds
are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints can
also be negated with an exclamation point leading the constraint value.
When credits are deposited into a fund, they are associated with a time period within
which they are valid. These time-bounded pools of credits are known as allocations. (An
allocation is a pool of billable units associated with a fund for use during a particular
time period.) By using multiple allocations that expire in regular intervals it is possible
to implement a use-it-or-lose-it policy and establish an allocation cycle.
Funds can be nested. Hierarchically nested funds can be useful for the delegation of
management roles and responsibilities. Deposit shares can be established that assist to
automate a trickle-down effect for funds deposited at higher level funds. Additionally,
an optional overflow feature allows charges against lower level funds to trickle up the
hierarchy.
Funds can have an arbitrary name that is not necessarily unique for the fund. Funds
can also have a priority that will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier.

allocated BigDecimal Total Adjusted allocations. This value is
affected positively by deposits,
activations and destination transfers and
affected negatively by withdrawals,
deactivations and source transfers that
have occurred since the last reset.

allocations Set<Allocation> The allocations associated with this
fund.

amount BigDecimal The sum of active allocation amounts
within this fund. It does not take into
fund current liens.

creationTime Date Date this fund was created.

Chapter 8: References

Field Name Type Description

creditLimit BigDecimal The sum of active credit limits within
this fund.

defaultDeposit String The default deposit amount.

deleted Boolean A boolean indicating whether this fund
is deleted or not.

description String The fund description.

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount.

modificationTime Date The date this fund was last modified.

name String The name of this fund.

priority Integer The fund priority.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Allocation
An allocation is a time-bounded pool of resource or service credits associated with a
fund. A fund can have multiple allocations, each for use during a different time period.
An allocation has a start time and an end time that defines the time period during which
the allocation can be used. By default an allocation is created with an unbounded time
period (-infinity to infinity). An active flag is automatically updated to true if the fund is
within its valid timeframe or false if it is not. An allocation can also have a credit limit
representing the amount by which it can go negative. Therefore, by having a positive
balance in the Amount field, the fund is like a debit fund, implementing a pay-first use-
later model. By establishing a credit limit instead of depositing an initial balance, the
fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit
limit, implementing a form of overdraft protection where the funds will be used down to
the negative of the credit limit.

Chapter 8: References

466 8.4 Resources Reference

8.4 Resources Reference 467

Field Name Type Description

id String The unique identifier for this allocation.

active Boolean Indicates whether this allocation is active or not.

allocated BigDecimal Adjusted allocation. This value stores the effective
allocated amount based on the initial deposit and
subsequent allocation adjustments via deposits,
withdrawals or transfers.

amount BigDecimal The amount of this allocation.

creationTime Date The date this allocation was created.

creditLimit BigDecimal Determines how far in the negative this allocation is
permitted to be used (enforced in quotes and liens).

deleted Boolean A boolean indicating whether this allocation is
deleted or not.

description String The description of this allocation.

endTime Date The date this allocation becomes inactive.

fund String The fund ID associated with this allocation.

modificationTime Date The date this allocation was last modified.

requestId Long The ID of the last modifying request.

startTime Date The date this allocation becomes active.

transactionId Long The ID of the last modifying transaction.

FundConstraint
Constraints designate which entities (such as Users, Accounts, Machines, Classes,
Organizations, etc.) can access the encapsulated credits in a fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, etc.).

Chapter 8: References

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint can be negated by the use of
an exclamation point leading the value.

Related Topics

l 4.2.4 Accounting Funds

8.4.2.8 Fields: Liens

See the associated 4.2.5 Accounting Liens resource section for more information on
how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource accounting/liens Permissions

Hooks filename accounting.liens.groovy Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

468 8.4 Resources Reference

8.4 Resources Reference 469

API version 3

Lien
A lien is a reservation or hold placed against an allocation. Before usage of a resource
or service begins, a lien is placed against one or more allocations within the requesting
user's applicable funds. Subsequent usage requests will also post liens while the
available balance (active allocations minus liens) allows. When the usage ends, the lien
is removed and the actual charge is made to the allocation(s). This procedure ensures
that usage will only be permitted so long as the requestors have sufficient funds.

Field Name Type Description

id Long The unique lien identifier.

allocations Set<LienAllocation> The allocation amounts reserved with this
lien.

creationTime Date The date this lien was created.

deleted Boolean A boolean indicating whether this lien is
deleted or not.

description String The lien description.

duration Long The expected duration of the reserved
usage in seconds.

endTime Date The time the lien becomes inactive.

instance String The lien is against the specified instance
(i.e., job ID).

modificationTime Date The date this lien was last modified.

requestId Long The ID of the last modifying request.

startTime Date The time the lien becomes active.

transactionId Long The ID of the last modifying transaction.

usageRecord Long The ID of the usage record associated with
the lien and containing the usage
properties.

Chapter 8: References

LienAllocation
Amounts of the allocations that the lien has holds against.

Field Name Type Description

id String The child allocation ID.

amount Long The amount reserved against the allocation by this lien.

fund Long The fund that the allocation is in.

lien String The parent lien ID.

Chapter 8: References

470 8.4 Resources Reference

8.4 Resources Reference 471

API version 2

Lien
A lien is a reservation or hold placed against an allocation. Before usage of a resource
or service begins, a lien is placed against one or more allocations within the requesting
user's applicable funds. Subsequent usage requests will also post liens while the
available balance (active allocations minus liens) allows. When the usage ends, the lien
is removed and the actual charge is made to the allocation(s). This procedure ensures
that usage will only be permitted so long as the requestors have sufficient funds.

Field Name Type Description

id Long The unique lien identifier.

allocations Set<LienAllocation> The allocation amounts reserved with this
lien.

creationTime Date The date this lien was created.

deleted Boolean A boolean indicating whether this lien is
deleted or not.

description String The lien description.

duration Long The expected duration of the reserved
usage in seconds.

endTime Date The time the lien becomes inactive.

instance String The lien is against the specified instance
(i.e., job ID).

modificationTime Date The date this lien was last modified.

requestId Long The ID of the last modifying request.

startTime Date The time the lien becomes active.

transactionId Long The ID of the last modifying transaction.

usageRecord Long The ID of the usage record associated with
the lien and containing the usage
properties.

Chapter 8: References

LienAllocation
Amounts of the allocations that the lien has holds against.

Field Name Type Description

id String The child allocation ID.

amount Long The amount reserved against the allocation by this lien.

fund Long The fund that the allocation is in.

lien String The parent lien ID.

Related Topics

l 4.2.5 Accounting Liens

8.4.2.9 Fields: Organizations

See the associated 4.2.6 Accounting Organizations resource section for more
information on how to use this resource and supported operations.

Additional References

Type Value Additional
Information

Permissions
resource

accounting/organizations Permissions

Hooks filename accounting.organizations.groovy Pre- and Post-
Processing Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

472 8.4 Resources Reference

8.4 Resources Reference 473

API version 3

Organization
An organization is a virtual organization in which accounts are grouped. An account can
only belong to a single organization while an organization can have multiple accounts.
For example, an account may represent a project or cost-center while an organization
may represent an institutional department or business division. The purpose of
defining organizations is to support the ability to produce reporting for higher-order
organizational entities beyond the individual account. Default organization properties
include an id (name in MAM) and a description. An organization can be created,
queried, modified, and deleted.

Field Name Type Description

id String The unique organization identifier.

creationTime Date The date this organization was created.

deleted Boolean A boolean indicating whether this organization is
deleted or not.

description String The organization description.

modificationTime Date The date this organization was last modified.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Chapter 8: References

API version 2

Organization
An organization is a virtual organization in which accounts are grouped. An account can
only belong to a single organization while an organization can have multiple accounts.
For example, an account may represent a project or cost-center while an organization
may represent an institutional department or business division. The purpose of
defining organizations is to support the ability to produce reporting for higher-order
organizational entities beyond the individual account. Default organization properties
include an id (name in MAM) and a description. An organization can be created,
queried, modified, and deleted.

Field Name Type Description

id String The unique organization identifier.

creationTime Date The date this organization was created.

deleted Boolean A boolean indicating whether this organization is
deleted or not.

description String The organization description.

modificationTime Date The date this organization was last modified.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Related Topics

l 4.2.6 Accounting Organizations

8.4.2.10 Fields: Quotes

See the associated 4.2.7 Accounting Quotes resource section for more information on
how to use this resource and supported operations.

Chapter 8: References

474 8.4 Resources Reference

8.4 Resources Reference 475

Additional References

Type Value Additional Information

Permissions resource accounting/quotes Permissions

Hooks filename accounting.quotes.groovy Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

API version 3

Quote
Quotes can be used to determine how much it will cost to use a resource or service.
Provided the cost-only option is not specified, this step will additionally verify that the
submitter has sufficient funds and meets all the allocation policy requirements for the
usage, and can be used at the submission of the usage request as an early filter to
prevent the usage from getting blocked when it tries to obtain a lien to start later.
If a guaranteed quote is requested, a quote ID is returned and can be used in the
subsequent charge to guarantee the rates that were used to form the original quote. A
guaranteed quote has the side effect of creating a quote record and a permanent usage
record. A quote ID will be returned that can be used with the lien and charge to claim
the quoted charge rates.
A cost-only quote can be used to determine how much would be charged for usage
without verifying sufficient funds or checking to see if the charge could succeed.

Field Name Type Description

id Long The unique quote identifier.

amount BigDecimal The total amount of the quote.

chargeRates Set<QuoteChargeRate> The applied charges that make up this
quote.

creationTime Date The date this quote was created.

deleted Boolean A boolean indicating whether this quote
is deleted or not.

description String The quote description.

duration Long The expected duration of the quoted
usage in seconds.

endTime Date The time the quote becomes inactive.

instance String The quote instance name (i.e., job ID).

modificationTime Date The date this quote was last modified.

Chapter 8: References

476 8.4 Resources Reference

8.4 Resources Reference 477

Field Name Type Description

pinned Boolean Boolean indicating whether the quote is
pinned or not.

requestId Long The ID of the last modifying request.

startTime Date The time the quote becomes active.

transactionId Long The ID of the last modifying transaction.

usageRecord Long The usage record ID associated with this
quote.

QuoteChargeRate
Saved charge rates to be used when the quote is referenced.

Field Name Type Description

id Long

amount String The charge rate amount.

name String The child charge rate name.

quote String The parent quote ID.

value String The child charge rate value.

Chapter 8: References

API version 2

Quote
Quotes can be used to determine how much it will cost to use a resource or service.
Provided the cost-only option is not specified, this step will additionally verify that the
submitter has sufficient funds and meets all the allocation policy requirements for the
usage, and can be used at the submission of the usage request as an early filter to
prevent the usage from getting blocked when it tries to obtain a lien to start later.
If a guaranteed quote is requested, a quote ID is returned and can be used in the
subsequent charge to guarantee the rates that were used to form the original quote. A
guaranteed quote has the side effect of creating a quote record and a permanent usage
record. A quote ID will be returned that can be used with the lien and charge to claim
the quoted charge rates.
A cost-only quote can be used to determine how much would be charged for usage
without verifying sufficient funds or checking to see if the charge could succeed.

Field Name Type Description

id Long The unique quote identifier.

amount BigDecimal The total amount of the quote.

chargeRates Set<QuoteChargeRate> The applied charges that make up this
quote.

creationTime Date The date this quote was created.

deleted Boolean A boolean indicating whether this quote
is deleted or not.

description String The quote description.

duration Long The expected duration of the quoted
usage in seconds.

endTime Date The time the quote becomes inactive.

instance String The quote instance name (i.e., job ID).

modificationTime Date The date this quote was last modified.

Chapter 8: References

478 8.4 Resources Reference

8.4 Resources Reference 479

Field Name Type Description

pinned Boolean Boolean indicating whether the quote is
pinned or not.

requestId Long The ID of the last modifying request.

startTime Date The time the quote becomes active.

transactionId Long The ID of the last modifying transaction.

usageRecord Long The usage record ID associated with this
quote.

QuoteChargeRate
Saved charge rates to be used when the quote is referenced.

Field Name Type Description

id Long

amount String The charge rate amount.

name String The child charge rate name.

quote String The parent quote ID.

value String The child charge rate value.

Related Topics

l 4.2.7 Accounting Quotes

8.4.2.11 Fields: Transactions

See the associated 4.2.8 Accounting Transactions resource section for more
information on how to use this resource and supported operations.

Chapter 8: References

Additional References

Type Value Additional
Information

Permissions
resource

accounting/transactions Permissions

Hooks filename accounting.transactions.groovy Pre- and Post-
Processing Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

480 8.4 Resources Reference

8.4 Resources Reference 481

API version 3

Transaction
Moab Accounting Manager logs all modifying transactions in a detailed transaction
journal (queries are not recorded). Previous transactions can be queried but not
modified or deleted. By default, a standard user can only query transactions performed
by them.

Field Name Type Description

id Long The unique transaction identifier.

account String The account name associated with the transaction.

action String The transaction action name.

actor String The authenticated user that performed the action.

allocation Long The allocation ID associated with the transaction.

amount BigDecimal The amount.

child String If the transaction object is an association, this is the
value of the child.

creationTime Date The date this transaction was created.

deleted Boolean A boolean indicating whether this transaction is
deleted or not.

delta BigDecimal The effective change (positive or negative) to the
balance of an allocation.

description String The description for the transaction.

duration Long The duration associated with the transaction in
seconds.

fund Long The fund id associated with the transaction.

instance String The instance name (e.g., the job ID).

Chapter 8: References

Field Name Type Description

key String The object primary key value.

machine String The machine name associated with the transaction
(e.g., the cluster name).

modificationTime Date The date this transaction was last modified.

object String The transaction object name.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

usageRecord Long The usage record ID associated with the transaction.

user String The user name associated with the transaction.

Chapter 8: References

482 8.4 Resources Reference

8.4 Resources Reference 483

API version 2

Transaction
Moab Accounting Manager logs all modifying transactions in a detailed transaction
journal (queries are not recorded). Previous transactions can be queried but not
modified or deleted. By default, a standard user can only query transactions performed
by them.

Field Name Type Description

id Long The unique transaction identifier.

account String The account name associated with the transaction.

action String The transaction action name.

actor String The authenticated user that performed the action.

allocation Long The allocation ID associated with the transaction.

amount BigDecimal The amount.

child String If the transaction object is an association, this is the
value of the child.

creationTime Date The date this transaction was created.

deleted Boolean A boolean indicating whether this transaction is
deleted or not.

delta BigDecimal The effective change (positive or negative) to the
balance of an allocation.

description String The description for the transaction.

duration Long The duration associated with the transaction in
seconds.

fund Long The fund id associated with the transaction.

instance String The instance name (e.g., the job ID).

Chapter 8: References

Field Name Type Description

key String The object primary key value.

machine String The machine name associated with the transaction
(e.g., the cluster name).

modificationTime Date The date this transaction was last modified.

object String The transaction object name.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

usageRecord Long The usage record ID associated with the transaction.

user String The user name associated with the transaction.

Related Topics

l 4.2.8 Accounting Transactions

8.4.2.12 Fields: Usage Records

See the associated 4.2.9 Accounting Usage Records resource section for more
information on how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions
resource

accounting/usage-records Permissions

Hooks filename accounting.usage-
records.groovy

Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

484 8.4 Resources Reference

8.4 Resources Reference 485

API version 3

UsageRecord
A usage record tracks the usage of resources and services on your system, recording
the charge and the details of the usage in a usage record.
Usage Record quotes can be used to determine how much it will cost to use a resource
or service. Provided the cost-only option is not specified, this step will additionally verify
that the submitter has sufficient funds and meets all the allocation policy requirements
for the usage, and can be used at the submission of the usage request as an early filter
to prevent the usage from getting blocked when it tries to obtain a lien to start later. If a
guaranteed quote is requested, a quote ID is returned and can be used in the
subsequent charge to guarantee the rates that were used to form the original quote. A
guaranteed quote has the side effect of creating a quote record and a permanent usage
record. A quote ID will be returned that can be used with the lien and charge to claim
the quoted charge rates. A cost-only quote can be used to determine how much would
be charged for usage without verifying sufficient funds or checking to see if the charge
could succeed.
A usage lien can be used to place a hold on the user's fund before usage starts to
ensure that the credits will be there when it completes. The replace option can be
specified if you want the new lien to replace existing liens of the same instance name
(associated with the same usage record). The modify option can be specified to
dynamically extend any existing lien with the same instance name with the specified
characteristics instead of creating a new one.
A usage charge debits the appropriate allocations based on the attributes of the usage.
The charge is calculated based on factors including the resources and services used,
the usage time, and other quality-based factors. By default, any liens associated with the
charge will be removed. The incremental option can be specified if you want associated
liens to be reduced instead of removed. If a usage record already exists for the instance
being charged it will be updated with the data properties passed in with the charge
request; otherwise a new usage record will be created.

Field Name Type POST Description

id Long No The unique usage record identifier.

charge String No The cumulative amount charged.

creationTime Date No The date this usage record was created.

deleted Boolean No A boolean indicating whether this usage record
is deleted or not.

instance String No The usage record instance name (i.e., job ID).

Chapter 8: References

Field Name Type POST Description

modificationTime Date No The date this usage record was last modified.

qualityOfService String No The quality of service associated with the
usage.

quote Long No The associated quote ID.

requestId Long No The ID of the last modifying request.

stage String No The last affecting action (i.e., Create, Quote,
Reserve, Query).

transactionId Long No The ID of the last modifying transaction.

type String No The usage record type.

user String No The user name associated with the usage.

Chapter 8: References

486 8.4 Resources Reference

8.4 Resources Reference 487

API version 2

UsageRecord
A usage record tracks the usage of resources and services on your system, recording
the charge and the details of the usage in a usage record.
Usage Record quotes can be used to determine how much it will cost to use a resource
or service. Provided the cost-only option is not specified, this step will additionally verify
that the submitter has sufficient funds and meets all the allocation policy requirements
for the usage, and can be used at the submission of the usage request as an early filter
to prevent the usage from getting blocked when it tries to obtain a lien to start later. If a
guaranteed quote is requested, a quote ID is returned and can be used in the
subsequent charge to guarantee the rates that were used to form the original quote. A
guaranteed quote has the side effect of creating a quote record and a permanent usage
record. A quote ID will be returned that can be used with the lien and charge to claim
the quoted charge rates. A cost-only quote can be used to determine how much would
be charged for usage without verifying sufficient funds or checking to see if the charge
could succeed.
A usage lien can be used to place a hold on the user's fund before usage starts to
ensure that the credits will be there when it completes. The replace option can be
specified if you want the new lien to replace existing liens of the same instance name
(associated with the same usage record). The modify option can be specified to
dynamically extend any existing lien with the same instance name with the specified
characteristics instead of creating a new one.
A usage charge debits the appropriate allocations based on the attributes of the usage.
The charge is calculated based on factors including the resources and services used,
the usage time, and other quality-based factors. By default, any liens associated with the
charge will be removed. The incremental option can be specified if you want associated
liens to be reduced instead of removed. If a usage record already exists for the instance
being charged it will be updated with the data properties passed in with the charge
request; otherwise a new usage record will be created.

Field Name Type POST Description

id Long No The unique usage record identifier.

charge String No The cumulative amount charged.

creationTime Date No The date this usage record was created.

deleted Boolean No A boolean indicating whether this usage record
is deleted or not.

instance String No The usage record instance name (i.e., job ID).

Chapter 8: References

Field Name Type POST Description

modificationTime Date No The date this usage record was last modified.

qualityOfService String No The quality of service associated with the
usage.

quote Long No The associated quote ID.

requestId Long No The ID of the last modifying request.

stage String No The last affecting action (i.e., Create, Quote,
Reserve, Query).

transactionId Long No The ID of the last modifying transaction.

type String No The usage record type.

user String No The user name associated with the usage.

Related Topics

l 4.2.9 Accounting Usage Records

8.4.2.13 Fields: Users

See the associated 4.2.10 Accounting Users resource section for more information on
how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource accounting/users Permissions

Hooks filename accounting.users.groovy Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

488 8.4 Resources Reference

8.4 Resources Reference 489

API version 3

User
A user is a person authorized to use a resource or service. Default user properties
include the common name, phone number, email address, default account, and
description for that person.

Field Name Type Description

id String The unique user identifier.

active Boolean A boolean indicating whether this user is active or not.

creationTime Date The date this user was created.

defaultAccount String The default account for this user.

deleted Boolean A boolean indicating whether this user is deleted or not.

description String The user description.

emailAddress String The user's email address.

modificationTime Date The date this user was last modified.

phoneNumber String The user's phone number.

requestId Long The ID of the last modifying request.

transactionId Long The ID of the last modifying transaction.

Related Topics

l 4.2.10 Accounting Users

8.4.3 Fields: Credentials

See the associated 4.3 Credentials resource section for more information on how to
use this resource and supported operations.

Chapter 8: References

Additional References

Type Value Additional Information

Permissions resource credentials Permissions

Hooks filename credentials.groovy Pre- and Post-Processing Hooks

Distinct query-supported No Distinct

API version 3

Credential
A credential is an entity, such as a user or a group, that has access to resources.
Credentials allow specification of job ownership, tracking of resource usage,
enforcement of policies, and many other features.

Field Name Type PUT Description

name String No The name of the credential.

API version 2

Credential
A credential is an entity, such as a user or a group, that has access to resources.
Credentials allow specification of job ownership, tracking of resource usage,
enforcement of policies, and many other features.

Field Name Type PUT Description

name String No The name of the credential.

Related Topics

l 4.3 Credentials

8.4.4 Fields: Events

See the associated 4.6 Events resource section for more information on how to use
this resource and supported operations.

Chapter 8: References

490 8.4 Resources Reference

8.4 Resources Reference 491

Additional References

Type Value Additional Information

Permissions resource events Permissions

Hooks filename events.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

API version 3

Event
Represents an event originating from any component in the system (MWM, MWS, MAM,
etc.). Events are related to, but not the same as Notifications. See Notification Condition
for an explanation of when to use an event vs a notification.

Field Name Type POST Description

id String No The unique ID for this event.

arguments List<String> Yes The event's arguments.

associatedObjects Set<AssociatedObject> Yes Objects relating to the event.

code int Yes This is a positive, 32-bit
numeric value. Source code
that needs to take action on
events based on which event
(error) occurred can switch
based on this value. The top
16 bits are determined by the
severity of the event and the
component that emits it. The
bottom 16 bits are assigned by
any arbitrary mechanism
convenient to a component.
Each component therefore has
64k unique event codes that it
can assign. Once assigned,
event codes are immutable; it
can never be the case that
error 12345 means one thing
in release A, and a different
thing in release B.

eventDate Date Yes The date and time the event
occurred, not the date and
time MWS received the event.
It is up to the reporting
component to report this time
accurately. Required during
POST.

eventType String Yes Signifies what type of event.

Chapter 8: References

492 8.4 Resources Reference

8.4 Resources Reference 493

Field Name Type POST Description

Cannot contain single quotes
(') or double quotes (").

message String Yes A summary of what happened
that caused this event.

origin String Yes The origin of this event.
Cannot contain single quotes
(') or double quotes (").

severity EventSeverity Yes Signifies the severity of an
event.

AssociatedObject
Represents and uniquely identifies an object associated with an event. (e.g., node, job,
reservation, trigger).

Field
Name Type POST Description

id String Yes The object id (e.g., reservation.1, job.21, vm3). Cannot
contain single quotes (') or double quotes (").

type String Yes The type of object (e.g., node, job, reservation). Cannot
contain single quotes (') or double quotes (").

EventSeverity

Value

INFO

WARN

ERROR

FATAL

Chapter 8: References

API version 2

EventVersion2

Field Name Type POST Description

id String No The unique ID for this
event.

details Map<String, Map> Yes A map where detail name
maps to detail value. (e.g.,
'sourceHypervisor' =>
'blade256',
'destinationHypervisor' =>
'blade257', 'os' => 'centos-
6.5-stateless').

errorMessage ErrorMessageVersion2 Yes Details about any errors
associated with the event.
If this event was not
associated with any errors
this field will be null.

eventCategory String Yes Signifies what category of
event.

eventTime Date Yes The time the event
occurred, not the time
MWS received the event. It
is up to the reporting
component to report this
time accurately.
Corresponds to eventDate
in API Version 3. Required
during POST.

eventType String Yes Signifies what type of
event.

facility String Yes A categorization of how
this event fits in with
other events.

initiatedBy UserDetailsVersion2 Yes Details about the user that
initiated this event.

Chapter 8: References

494 8.4 Resources Reference

8.4 Resources Reference 495

Field Name Type POST Description

primaryObject MoabObjectVersion2 Yes Most events will have a
'primary object' associated
with it. An event can have
at most ONE primary
object. For example, a
JobStart event will have a
primary job object, so the
type would be 'job' and
the object id would be the
ID of the job. Primary
objects are, however,
optional, depending on the
type of event. For example,
a 'SchedulerCommand'
event does not have a
primary object.

relatedObjects Set<MoabObjectVersion2> Yes Objects relating to the
event that are not the
primary object.
Corresponds to
associatedObjects in API
Version 3.

severity String Yes Signifies the severity of an
event. Severity can be
'FATAL', 'ERROR', 'WARN',
'INFO'.

sourceComponent String Yes What Adaptive Computing
component reported this
event. Examples: 'MWM',
'MWS', 'MAM', etc.
Corresponds to origin in
API Version 3.

status String Yes The status of the reported
event.

ErrorMessageVersion2

Chapter 8: References

Field
Name Type POST Description

errorCode String Yes The original error code generated or detected by the
originator.

message String Yes If an event has a status of 'failure' or other non-successful
operation, this field should provide a human-friendly
error message Corresponds to Event.message in API
Version 3 and above.

originator String Yes The software component or entity that generated or
detected the error (e.g., Moab, Torque, MWS, RM,
Database, etc.).

UserDetailsVersion2

Field Name Type POST Description

proxyUser String Yes The proxy user that initiated the event.

user String Yes The user that initiated the event.

MoabObjectVersion2

Field Name Type POST Description

id String Yes The moab object id (e.g., reservation.1, job.21, vm3).

serialization String Yes A serialized representation of the object.

type String Yes The moab object type (e.g., node, job, reservation).

Related Topics

l 4.6 Events

Chapter 8: References

496 8.4 Resources Reference

8.4 Resources Reference 497

8.4.5 Fields: Job Arrays

See the associated 4.8 Job Arrays resource section for more information on how to
use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource job-arrays Permissions

Hooks filename job-arrays.groovy Pre- and Post-Processing Hooks

Distinct query-supported No Distinct

Chapter 8: References

API version 3

JobArray
Job arrays are an easy way to submit many subjobs that perform the same work using
the same script but operate on different sets of data. Subjobs are the jobs created by an
array job and are identified by the array job ID and an index; for example, if 235[1] is
an identifier, the number 235 is a job array ID, and 1 is the subjob.

Field Name Type POST Description

cancellationPolicy CancellationPolicyInformation Yes Represents the
cancellation policy to
use for the job array.

indexRanges List<JobArrayIndexRange> Yes The index ranges
used to generate the
subjob indices. To use
hard-coded values,
see indexValues.

indexValues List<Long> Yes The index values to
use for the subjobs.
To use ranges, see
indexRanges.

jobPrototype Job Yes The definition of the
job to use for each
subjob.

name String Yes The name of the job
array. In MWS API
version 1, this is
stored in the name
field of the created
jobs. In MWS API
version 2, this is
stored in the
customName field of
the created jobs.

slotLimit Long Yes (Optional) The
number of subjobs in
the array that can run
at a time.

Chapter 8: References

498 8.4 Resources Reference

8.4 Resources Reference 499

CancellationPolicyInformation
Job arrays can be canceled based on the success or failure of the first or any subjob.
This class represents the failure policies.

Field
Name Type POST Description

anyJob CancellationPolicy Yes The cancellation policy based on the result of
any subjob. Can be used in combination with
firstJob.

firstJob CancellationPolicy Yes The cancellation policy based on the result of
the first subjob (array index 1). Can be used in
combination with anyJob.

CancellationPolicy
This enumeration represents job array cancellation policies, and is to be used in
combination with CancellationPolicyInformation.

Value Description

SUCCESS Cancels the job array if the specified subjob succeeds.

FAILURE Cancels the job array if the specified subjob fails.

JobArrayIndexRange
Represents information about a job index expression. This is used when creating job
arrays only.

Field
Name Type POST Description

endIndex Long Yes The end of the index range (i.e., 10 for 1-10).

increment Long Yes The increment of the index range, defaults to 1 and must
be greater than 0. For a range of 1-10 with an increment
of 2, the list of indices will be [1, 3, 5, 7, 9].

startIndex Long Yes The start of the index range (i.e., 1 for 1-10).

Chapter 8: References

Job
This class represents a job in the Moab Workload Manager. A job is a request for
compute resources (CPUs, memory, storage) with which the requester can do work for
a given amount of time. In an HPC environment, this might be a batch script to perform
a Monte Carlo simulation. Moab will evaluate the request and assign the requested
resources to the requester based on policies, current demand, and other factors in the
data center. A job will also usually have some process that Moab starts automatically at
the assigned start time. In an HPC environment, this can be starting a batch script on
the assigned nodes.

Field Name Type POS
T Description

id String No The unique identifier of this
job. Note: This field is not
user-assigned and is
generated by the database.

arrayIndex Long No If this job is a subjob of a
JobArray, this field contains
the index of this job in the
array. For example, if this
job is Moab.1[2], the
array index would be 2.

arrayMasterName String No If this job is a subjob of a
JobArray, this field contains
the name of the job array
master. For example, if this
job is Moab.1[2], the
array master name would
be Moab.1.

attributes Set<String> Yes The list of generic
attributes associated with
this job.

blocks Set<JobBlock> No Reasons the job is blocked
from running.

bypassCount Integer No The number of times the
job has been backfilled.

cancelCount Integer No The number of times a job
has received a cancel

Chapter 8: References

500 8.4 Resources Reference

8.4 Resources Reference 501

Field Name Type POS
T Description

request.

commandFile String Yes The name of the job script
file (absolute path). If
commandFile is set and
commandScript is not set,
then MWS must have read
access to the file. If
commandFile and
commandScript are both
set, then MWS does not
read the contents of the file
but it does provide the
name of the file to Moab.
Note that Moab changes the
contents of the
commandFile field and the
contents of the file pointed
to by commandFile. For the
original path and file
contents, see
submitCommandFile.

commandLineArguments String Yes The command line
arguments passed to the
job script specified by
commandFile or
commandScript. Must be
enclosed in quotes, for
example:
"commandLineArguments":
"\"a b c\""

commandScript String Yes The contents of the job
script. This field must be
Base64-encoded.

completionCode Integer No The exit code from this job.

cpuTime Long No CPU usage time in seconds
as reported by the resource
manager.

Chapter 8: References

Field Name Type POS
T Description

credentials JobCredentials Yes The credentials (user and
group, for example)
associated with this job.

customName String Yes The user-specified name of
this job. This field must not
contain any spaces.

dates JobDates Yes Various dates associated
with this job.

deferCount Integer No The number of times a job
has been deferred.

dependencies Set<Job
Dependency>

Yes Dependencies that must be
fulfilled before the job can
start.

description String No The description of the job.
Can be set only in a job
template.

duration Long Yes The length of time in
seconds requested for the
job. Note that it is possible
to set duration to
'INFINITY' if the
AllowInfiniteJobs flag is set
on the scheduler in the
moab.cfg.

durationActive Long No The length of time in
seconds the job has been
active or running.

durationMinimum Long No Minimum duration of the
job (used when
automatically extending
durations). See
'JOBEXTENDDURATION' in
the Moab Workload

Chapter 8: References

502 8.4 Resources Reference

8.4 Resources Reference 503

Field Name Type POS
T Description

Manager Administrator
Guide.

durationQueued Long No The length of time in
seconds the job has been
eligible to run in the queue.

durationRemaining Long No An estimate of the time
remaining, in seconds,
before the job will
complete.

durationSuspended Long No The length of time in
seconds the job has been
suspended.

emailNotifyAddresses Set<String> Yes The list of addresses to
whom email is sent by the
execution server.

emailNotifyTypes Set<JobEmail
NotifyType>

Yes The list of email notify
types attached to the job.

environmentRequested Boolean Yes Setting this field to true
tells the Moab Workload
Manager to set various
variables, if populated, in
the job's environment.

environmentVariables Map<String, Map> Yes The environment variables
to set for this job. This field
is defined only during
POST. On GET, this field is
an empty object (see also
fullEnvironmentVariableLis
t).

epilogScript String Yes The path to the TORQUE
epilog script.

flags Set<JobFlag> Yes The flags that are set on

Chapter 8: References

Field Name Type POS
T Description

this job.

fullEnvironmentVariable
List

String No The full list of all
environment variables for
this job, including variables
set by the resource
manager, if any (see also
environmentVariables).

holdDate Date No The date the most recent
hold was placed on the job.

holdReason JobHoldReason No The reason the job is on
hold.

holds Set<JobHoldType> Yes The holds that are set on
the job. The 'User' hold
type is valid during POST.

initialWorkingDirectory String Yes The path to the directory
where the job will be
started.

isActive Boolean No True if the job is active,
false if the job is complete.

jobGroup String Yes The job group to which this
job belongs (different from
credentials.group).

masterNode DomainProxy No The first node in the list of
allocated nodes for this job.
For TORQUE jobs, this
represents the 'mother
superior'.

memorySecondsDedicate
d

Double No The memory seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this

Chapter 8: References

504 8.4 Resources Reference

8.4 Resources Reference 505

Field Name Type POS
T Description

information.

memorySecondsUtilized Double No The memory seconds
utilized by the job as
reported by its resource
manager. Not all resource
managers provide this
information.

messages Set<Message> No The list of messages
associated with the job. The
'message' field is valid
during PUT.

migrateCount Integer No The number of times the
job has been migrated.

minimumPreemptTime Long No The minimum length of
time, in seconds, an active
job must be running before
it is eligible for preemption.

mwmName String No The name of the Moab
Workload Manager
instance that owns this job.

name String No The name of this job. This
name is unique per
instance of Moab Workload
Manager (i.e., not globally).

nodesExcluded Set<Domain
Proxy>

Yes The list of nodes that
should not be considered
for this job.

nodesRequested Set<Domain
Proxy>

Yes The exact set, superset, or
subset of nodes where this
job must run (see also
nodesRequestedPolicy).

nodesRequestedPolicy JobHostListMode Yes Indicates an exact set,

Chapter 8: References

Field Name Type POS
T Description

superset, or subset of nodes
where the job must run.
Only relevant if
nodesRequested is
provided (see also
nodesRequested).

partitionAccessList Set<String> No The list of partitions that
this job can access.

partitionAccessListReque
sted

Set<String> Yes The list of partitions that
this job has requested.

partitionAccessListSched
uler

Set<String> No The feasible partition
access list built by the
scheduler.

preemptCount Integer No The number of times the
job has been preempted.

priorities JobPriority Yes The list of priorities for the
job.

processorSecondsDedicat
ed

Double No The processor seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

processorSecondsLimit Double No The limit for
processorSecondsUtilized.

processorSecondsUtilize
d

Double No The processor seconds
utilized by the job as
reported by its resource
manager. Not all resource
managers provide this
information.

prologScript String Yes The path to the TORQUE

Chapter 8: References

506 8.4 Resources Reference

8.4 Resources Reference 507

Field Name Type POS
T Description

prolog script.

queueStatus JobQueueStatus No The status of the job in its
queue.

rank Integer No The index of this job in the
eligible queue.

rejectPolicies Set<JobReject
Policy>

No The list of policies enabled
when a job is rejected.

requirements Set<JobRequireme
nt>

Yes The list of items required
for this job to run. Only
JobRequirement.features is
valid during PUT.

reservationRequested DomainProxy Yes The reservation that the
job requested.

resourceFailPolicy JobResourceFail
PolicyType

Yes The policy that dictates
what should happen to the
job if it is running and at
least one of the resources it
is using fails.

resourceManagerExtensi
on

String Yes If provided during POST,
this string will be added to
the resource manager
extension section of the job
submission. For example:
'bandwidth=120;queuejob=
false'
Note that the delimiter
between
resourceManagerExtension
elements is the semicolon.

resourceManagers Set<Resource
Manager>

No The list of resource
managers associated with
this job.

Chapter 8: References

Field Name Type POS
T Description

shellName String Yes Declares the shell that
interprets the job script.

standardErrorFilePath String Yes The path to the file
containing the standard
error of the job.

standardOutputFilePath String Yes The path to the file
containing the standard
output of the job.

startCount Integer No The number of times the
job has been started.

states JobStateInformatio
n

No Information about the state
of the job.

submitCommandFile String No This read-only field
contains the path to the
original commandFile as
posted to MWS during job
submission.

submitHost String No The host from which the
job was submitted.

systemJobType JobSystemJobType No The type of system job.

templates Set<Domain
Proxy>

Yes The list of all job templates
to be set on this job.

triggers Set<String> No The list of triggers
associated with this job.

variables Map<String, Map> Yes The list of variables that
this job owns or sets on
completion.

virtualContainers Set<Domain
Proxy>

Yes When submitting this job,
add it to the specified

Chapter 8: References

508 8.4 Resources Reference

8.4 Resources Reference 509

Field Name Type POS
T Description

existing virtual container.
Valid during POST, but only
one virtual container can be
specified.

JobBlock

Field Name Type POST

category JobBlockCategory No

createdDate Date No

message String No

partition String No

type JobBlockType No

JobBlockCategory

Value

depend

jobBlock

migrate

JobBlockType

Value

ActivePolicy

BadUser

Dependency

Chapter 8: References

Value

EState

FairShare

Hold

IdlePolicy

LocalPolicy

NoClass

NoData

NoResource

NoTime

PartitionAccess

Priority

RMSubmissionFailure

StartDate

State

SysLimits

JobCredentials
Moab Workload Manager supports the concept of credentials, which provide a means of
attributing policy and resource access to entities such as users and groups. These
credentials allow specification of job ownership, tracking of resource usage,
enforcement of policies, and many other features.

Field Name Type POST Description

account String Yes The account credential is also referred to as the

Chapter 8: References

510 8.4 Resources Reference

8.4 Resources Reference 511

Field Name Type POST Description

project. This credential is generally associated with a
group of users along the lines of a particular project
for accounting and billing purposes.

group String Yes The group credential represents an aggregation of
users. User-to-group mappings are often specified by
the operating system or resource manager and
typically map to a user's UNIX group ID. However,
user-to-group mappings may also be provided by a
security and identity management service, or you can
specify such directly within Moab.

jobClass String Yes The concept of the class credential is derived from
the resource manager class or queue object. Classes
differ from other credentials in that they more
directly impact job attributes. In standard HPC usage,
a user submits a job to a class and this class imposes
a number of factors on the job. The attributes of a
class can be specified within the resource manager or
directly within Moab.

qos String No The quality of service assigned to this job. The
concept of a quality of service (QoS) credential is
unique to Moab and is not derived from any
underlying concept or peer service. In most cases, the
QoS credential is used to allow a site to set up a
selection of service levels for end-users to choose
from on a long-term or job-by-job basis. QoSs differ
from other credentials in that they are centered
around special access where this access may allow
use of additional services, additional resources, or
improved responsiveness. Unique to this credential,
organizations can also choose to apply different
charge rates to the varying levels of service available
within each QoS. As QoS is an internal credential, all
QoS configuration occurs within Moab.

qosRequested String Yes The quality of service requested for this job.

user String Yes The user credential is the fundamental credential
within a workload manager; each job requires an
association with exactly one user. In fact, the user
credential is the only required credential in Moab; all

Chapter 8: References

Field Name Type POST Description

others are optional. In most cases, the job's user
credential is configured within or managed by the
operating system itself, although Moab can be
configured to obtain this information from an
independent security and identity management
service.

JobDates

Field Name Type POST Description

completedDate Date No

createdDate Date No

deadlineDate Date Yes The deadline for completion of the job.

dispatchedDate Date No

earliestRequestedStartDate Date Yes The job will start no sooner than this
date.

earliestStartDate Date No

eligibleDate Date No

lastCanceledDate Date No

lastChargedDate Date No

lastPreemptedDate Date No

lastUpdatedDate Date No

startDate Date No

submitDate Date No

terminationDate Date No

Chapter 8: References

512 8.4 Resources Reference

8.4 Resources Reference 513

JobDependency

Field
Name Type POST Description

name String Yes The name of the object on which the job is
dependent.

type JobDependencyType Yes The type of job dependency. Only the 'set'
type is valid for POST.

value String No Optional string representation of the
dependency (used with variable
dependencies).

JobDependencyType
Represents the type of a job dependency. For now, only the 'set' type is supported.

Value Description

set Job will wait until a variable on a Moab object is set before starting.

JobEmailNotifyType

Value Description

JobStart An email will be sent when the job starts.

JobEnd An email will be sent if the job successfully ends.

JobFail An email will be sent if the job fails.

All

JobFlag
This enumeration specifies the flag types of a job.

Value Description

NONE

Chapter 8: References

Value Description

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource
managers and partitions.

ALLOWPOWERADJUSTMENT Allow system to dynamically adjust power.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are
available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be
preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt
other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

Chapter 8: References

514 8.4 Resources Reference

8.4 Resources Reference 515

Value Description

IGNPOLICIES The job will ignore idle, active, class, partition, and
system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job
granted access to all idle job reservations.

INTERACTIVE The job needs interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any
authentication.

NORESOURCES The job is a system job that does not need any
resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot
be migrated elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in
individual chunks.

FORCEPROVISION Job will provision nodes, whether they already have
OS or not.

SYSTEMJOB The job is a system job, which simply runs on the
same node that Moab is running on. This is usually
used for running scripts and other executables in
workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an admin.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job
start.

SHAREDMEM The job will share its memory across nodes.

Chapter 8: References

Value Description

BLOCKEDBYGRES The job's generic resource requirement caused the
job to start later.

GRESONLY The job is requesting only generic resources, no
compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the
template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

VCMASTER Job is the master of a virtual container.

USEMOABJOBID Whether to use the Moab job ID or the resource
manager's job ID.

JOINSTDERRTOSTDOUT Join the stderr file to the stdout file.

JOINSTDOUTTOSTDERR Join the stdout file to the stderr file.

PURGEONSUCCESSONLY Only purge the job if it completed successfully.

ALLPROCS Each job compute task requests all the procs on its
node.

Chapter 8: References

516 8.4 Resources Reference

8.4 Resources Reference 517

Value Description

COMMLOCAL Each job communications are localized, with minimal
routing outside job shape.

COMMTOLERANT Each job communications are low-intensity and
insensitive to interference.

COMMTRANSPARENT Job does not generate network communication.

JobHoldReason

Value Description

Admin

NoResources

SystemLimitsExceeded

BankFailure

CannotDebitAccount

InvalidAccount

RMFailure

RMReject Resource manager rejects job execution.

PolicyViolation Job violates job size policy.

CredAccess Job cannot access requested credential.

CredHold Credential hold in place.

PreReq Job prerequisite failed.

Data Data staging cannot be completed.

Security Job security cannot be established.

Chapter 8: References

Value Description

MissingDependency Dependency job cannot be found.

JobHoldType

Value Description

User The user has manually placed a hold on the job.

System The Moab Workload Manager has placed a hold on the job.

Batch The batch queue has placed a hold on the job.

Defer The job has been deferred.

All During GET, All means that all hold types are set. During PUT, All can be used
to clear all hold types.

DomainProxy
A reference to an object contained within an object. For example, a Virtual Machine
object contains a reference to the node on which it is running. That reference is
represented by this class.

Field Name Type POST Description

name String Yes The name of the object.

Message

Field Name Type POST Description

count Integer No The number of times this message has occurred.

createdDate Date No The date this message was created.

expireDate Date No The date this message expires.

message String No The message itself.

Chapter 8: References

518 8.4 Resources Reference

8.4 Resources Reference 519

JobHostListMode

Value

superset

subset

exactset

JobPriority

Field
Name Type POST Description

run Long No

start Long No

system Long No

user Long Yes The user-requested priority for the job. By default, the range
is between -1024 and 0. To enable priority range from -1024
to +1023, set ENABLEPOSUSERPRIORITY in the moab.cfg
file.

JobQueueStatus

Value Description

active A job is actively running in a queue.

blocked A job has been blocked because of a policy violation or because resource
requirements cannot be met.

completed A job has completed running.

eligible A job is eligible to run but has not started yet.

Chapter 8: References

JobRejectPolicy

Value

CANCEL

HOLD

IGNORE

MAIL

RETRY

JobRequirement

Field Name Type POS
T Description

architecture String Yes The architecture required by the
job.

attributes Map<String,
Job
Requirement
Attribute>

Yes Required node attributes with
version number support.

dedicateAllProcessors Boolean No Within a requirement, if
dedicateAllProcessors is true,
then all processors on the node
where the job runs will be
dedicated to the job.

features Set<String> No The list of node features the job
is scheduled against.

featuresExcluded Set<String> Yes Excluded node features. That is,
do not select nodes with these
features (see also
featuresExcludedMode).

featuresExcludedMode JobRequireme
nt
FeaturesMode

Yes Indicates whether excluded
features should be ANDed or

Chapter 8: References

520 8.4 Resources Reference

8.4 Resources Reference 521

Field Name Type POS
T Description

ORed. The default is AND. Only
relevant if featuresExcluded is
provided (see also
featuresExcluded).

featuresRequested Set<String> Yes Requested node features (see
also featuresRequestedMode).

featuresRequestedMod
e

JobRequireme
nt
FeaturesMode

Yes Indicates whether requested
features should be ANDed or
ORed. The default is AND. Only
relevant if featuresRequested is
provided (see also
featuresRequested).

operatingSystem String Yes The operating system required
by the job.

index Integer No The index of the requirement,
starting with 0.

metrics Map<String,
Double>

No Generic metrics associated with
the job as reported by the
resource manager.

nodeAccessPolicy NodeAccess
Policy

Yes How node resources should be
accessed. Note: If the job
requirements array has more
than one element that contains
nodeAccessPolicy, only the first
occurrence will be used.

nodeAllocationPolicy NodeAllocation
Policy

Yes How node resources should be
selected and allocated to the job.
Note: If the job requirements
array has more than one
element that contains
nodeAllocationPolicy, only the
first occurrence will be used.

nodeCount Integer Yes The number of nodes required

Chapter 8: References

Field Name Type POS
T Description

by the job.

nodeSet String Yes The requested node set of the
job. This must follow the format
SETSELECTION:SETTYPE
[:SETLIST]

l SETSELECTION - ANYOF,
ONEOF, or FIRSTOF

l SETTYPE - FEATURE or
VARATTR

l SETLIST - For FEATURE, a
comma-separated list of
features. For VARATTR, a
key=value pair.

Examples:

l ONEOF:FEATURE:
fastos,hiprio,bigme
m

l FIRSTOF:VARATTR:
datacenter=Provo:
datacenter=SaltLake

nodes Set<Allocated
Node>

No Nodes that have been allocated
to meet this requirement.

reservation DomainProxy No The allocated reservation
(assigned after the job has a
reservation).

resourcesPerTask Map<String,
JobResource>

Yes Contains requirements for disk,
memory, processors, swap,
GPUs, and generic resources. For
disk, memory, and swap, the unit
is MB. For each resource, the
'dedicated' field can be set
during POST.

taskCount Integer Yes The number of tasks
(processors) required by this
job.

Chapter 8: References

522 8.4 Resources Reference

8.4 Resources Reference 523

Field Name Type POS
T Description

tasksPerNode Integer Yes The number of tasks to map to
each node. If you specify
tasksPerNode, you must also
specify taskCount.

totalDedicatedProcesso
rs

Integer No

JobRequirementAttribute

Field Name Type POST Description

comparator String Yes The comparison operator. Values:

l >= - Greater than or equal to
l > - Greater than
l <= - Less than
l < - Less than
l %= - Equals
l %! - Not equals
l Null - Defaults to %=
l = - (Deprecated) Equivalent to

%=

displayValue String Yes The display value for the required
attribute.

restriction JobRequirement
AttributeRestriction

Yes The restriction of this attribute. Can be
null, but defaults to
JobRequirementAttributeRestriction:
must.

value String Yes The value of the required attribute.
During POST, if value is missing, blank,
or null, do not provide a comparator.

JobRequirementAttributeRestriction
Represents a restriction for a job requirement attribute.

Chapter 8: References

Value

must

JobRequirementFeaturesMode

Value

OR

AND

NodeAccessPolicy
This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs can utilize available resources.

SHAREDONLY Only jobs requesting shared node access can utilize available
resources.

SINGLEJOB Tasks from a single job can utilize available resources.

SINGLETASK A single task from a single job can run on the node.

SINGLEUSER Tasks from any jobs owned by the same user can utilize available
resources.

UNIQUEUSER Any number of tasks from a single job can allocate resources from a
node but only if the user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group can utilize node.

SINGLEACCOUNT Any number of tasks from the same account can utilize node.

SINGLECLASS Any number of tasks from the same class can utilize node.

SINGLEQOS Any number of tasks from the same QOS (quality of service) can utilize

Chapter 8: References

524 8.4 Resources Reference

8.4 Resources Reference 525

Value Description

node.

NodeAllocationPolicy
Node Allocation enumeration.

Value Description

FIRSTSET

MINGLOBAL

MINLOCAL

PLUGIN

NONE No node allocation policy is specified. Moab
defaults to MINRESOURCE when this is the case.

FIRSTAVAILABLE Simple first come, first served algorithm where
nodes are allocated in the order they are presented
by the resource manager. This is a very simple,
very fast algorithm.

LASTAVAILABLE This algorithm selects resources so as to minimize
the amount of time after the job and before the
trailing reservation. This algorithm is a best fit in
time algorithm which minimizes the impact of
reservation based node-time fragmentation. It is
useful in systems where a large number of
reservations (job, standing, or administrative) are
in place.

MINRESOURCE This algorithm prioritizes nodes according to the
configured resources on each node. Those nodes
with the fewest configured resources which still
meet the job's resource constraints are selected.

CPULOAD Nodes are selected which have the maximum
amount of available, unused CPU power (i.e., [# of
CPUs] - [CPU load]). Good algorithm for
timesharing node systems. This algorithm is only

Chapter 8: References

Value Description

applied to jobs starting immediately. For the
purpose of future reservations, the MINRESOURCE
algorithm is used.

LOCAL This will call the locally created contrib node
allocation algorithm.

CONTIGUOUS This algorithm will allocate nodes in contiguous
(linear) blocks as required by the Compaq RMS
system.

MAXBALANCE This algorithm will attempt to allocate the most
'balanced' set of nodes possible to a job. In most
cases, but not all, the metric for balance of the
nodes is node speed. Therefore, if possible, nodes
with identical speeds will be allocated to the job. If
identical speed nodes cannot be found, the
algorithm will allocate the set of nodes with the
minimum node speed 'span' or range.

PRIORITY This algorithm allows a site to specify the priority
of various static and dynamic aspects of compute
nodes and allocate them with preference for higher
priority nodes. It is highly flexible allowing node
attribute and usage information to be combined
with reservation affinity.

FASTEST This algorithm will select nodes in 'fastest node
first' order. Nodes will be selected by node speed if
specified. If node speed is not specified, nodes will
be selected by processor speed. If neither is
specified, nodes will be selected in a random order.

PROCESSORLOAD Alias for CPULOAD.

NODESPEED Alias for FASTEST.

INREPORTEDORDER Alias for FIRSTAVAILABLE.

INREVERSEREPORTEDORDER Alias for LASTAVAILABLE.

CUSTOMPRIORITY Alias for PRIORITY.

Chapter 8: References

526 8.4 Resources Reference

8.4 Resources Reference 527

Value Description

PROCESSORSPEEDBALANCE Alias for MAXBALANCE.

MINIMUMCONFIGUREDRESOURCES Alias for MINRESOURCE.

CRAY3DTORUS Enable topology awareness scheduling algorithm.

AllocatedNode

Field Name Type POST

name String No

taskCount Integer No

JobResource
Represents counts of dedicated and utilized resources.

Field
Name Type POST Description

dedicated Integer No The amount of this resource that has been allocated for
running workload.

utilized Integer No The amount of this resource that is currently reported
as utilized by resource managers.

JobResourceFailPolicyType

Value

CANCEL

FAIL

HOLD

IGNORE

Chapter 8: References

Value

NOTIFY

REQUEUE

ResourceManager

Field Name Type POST

isDestination Boolean No

isSource Boolean No

jobName String No

name String No

JobStateInformation

Field Name Type POST

state JobState No

stateExpected JobState No

stateLastUpdatedDate Date No

subState JobSubState No

JobState

Value Description

Idle Eligible according to all resource manager constraints.

Starting Job is launching, executing prolog.

Running Job is executing.

Chapter 8: References

528 8.4 Resources Reference

8.4 Resources Reference 529

Value Description

Removed Job was canceled before executing.

Completed Job successfully completed execution.

Hold Job is blocked by hold.

Deferred Job has a temporary hold.

Vacated Job was canceled after partial execution.

NotQueued Job is not eligible for execution.

Unknown Job state is unknown.

Staging Staging of input/output data is currently underway.

Suspended Job is no longer executing and remains in memory on the allocated compute
nodes.

Blocked

JobSubState

Value

Epilogue

Migrated

Preempted

Prologue

JobSystemJobType

Value Description

generic Generic system job (trigger attached).

Chapter 8: References

Value Description

osprovision Reprovision operating system.

poweroff Power off node.

poweron Power on node.

reset Reboot node.

Chapter 8: References

530 8.4 Resources Reference

8.4 Resources Reference 531

API version 2

JobArray
Job arrays are an easy way to submit many subjobs that perform the same work using
the same script but operate on different sets of data. Subjobs are the jobs created by an
array job and are identified by the array job ID and an index; for example, if 235[1] is
an identifier, the number 235 is a job array ID, and 1 is the subjob.

Field Name Type POST Description

cancellationPolicy CancellationPolicyInformation Yes Represents the
cancellation policy to
use for the job array.

indexRanges List<JobArrayIndexRange> Yes The index ranges
used to generate the
subjob indices. To use
hard-coded values,
see indexValues.

indexValues List<Long> Yes The index values to
use for the subjobs.
To use ranges, see
indexRanges.

jobPrototype Job Yes The definition of the
job to use for each
subjob.

name String Yes The name of the job
array. In MWS API
version 1, this is
stored in the name
field of the created
jobs. In MWS API
version 2, this is
stored in the
customName field of
the created jobs.

slotLimit Long Yes (Optional) The
number of subjobs in
the array that can run
at a time.

Chapter 8: References

CancellationPolicyInformation
Job arrays can be canceled based on the success or failure of the first or any subjob.
This class represents the failure policies.

Field
Name Type POST Description

anyJob CancellationPolicy Yes The cancellation policy based on the result of
any subjob. Can be used in combination with
firstJob.

firstJob CancellationPolicy Yes The cancellation policy based on the result of
the first subjob (array index 1). Can be used in
combination with anyJob.

CancellationPolicy
This enumeration represents job array cancellation policies, and is to be used in
combination with CancellationPolicyInformation.

Value Description

SUCCESS Cancels the job array if the specified subjob succeeds.

FAILURE Cancels the job array if the specified subjob fails.

JobArrayIndexRange
Represents information about a job index expression. This is used when creating job
arrays only.

Field
Name Type POST Description

endIndex Long Yes The end of the index range (i.e., 10 for 1-10).

increment Long Yes The increment of the index range, defaults to 1 and must
be greater than 0. For a range of 1-10 with an increment
of 2, the list of indices will be [1, 3, 5, 7, 9].

startIndex Long Yes The start of the index range (i.e., 1 for 1-10).

Chapter 8: References

532 8.4 Resources Reference

8.4 Resources Reference 533

Job
This class represents a job in the Moab Workload Manager. A job is a request for
compute resources (CPUs, memory, storage) with which the requester can do work for
a given amount of time. In an HPC environment, this might be a batch script to perform
a Monte Carlo simulation. Moab will evaluate the request and assign the requested
resources to the requester based on policies, current demand, and other factors in the
data center. A job will also usually have some process that Moab starts automatically at
the assigned start time. In an HPC environment, this can be starting a batch script on
the assigned nodes.

Field Name Type POS
T Description

id String No The unique identifier of this
job. Note: This field is not
user-assigned and is generated
by the database.

arrayIndex Long No If this job is a subjob of a
JobArray, this field contains
the index of this job in the
array. For example, if this job
is Moab.1[2], the array
index would be 2.

arrayMasterName String No If this job is a subjob of a
JobArray, this field contains
the name of the job array
master. For example, if this job
is Moab.1[2], the array
master name would be
Moab.1.

attributes Set<String> Yes The list of generic attributes
associated with this job.

blocks Set<JobBlock> No Reasons the job is blocked
from running.

bypassCount Integer No The number of times the job
has been backfilled.

cancelCount Integer No The number of times a job has
received a cancel request.

Chapter 8: References

Field Name Type POS
T Description

commandFile String Yes The name of the job script file
(absolute path). If
commandFile is set and
commandScript is not set, then
MWS must have read access to
the file. If commandFile and
commandScript are both set,
then MWS does not read the
contents of the file but it does
provide the name of the file to
Moab. Note that Moab changes
the contents of the
commandFile field and the
contents of the file pointed to
by commandFile. For the
original path and file contents,
see submitCommandFile.

commandLine
Arguments

String Yes The command line arguments
passed to the job script
specified by commandFile or
commandScript. Must be
enclosed in quotes, for
example:
"commandLineArguments":
"\"a b c\""

commandScript String Yes The contents of the job script.
This field must be Base64-
encoded.

completionCode Integer No The exit code from this job.

cpuTime Long No CPU usage time in seconds as
reported by the resource
manager.

credentials JobCredentials Yes The credentials (user and
group, for example) associated
with this job.

customName String Yes The user-specified name of

Chapter 8: References

534 8.4 Resources Reference

8.4 Resources Reference 535

Field Name Type POS
T Description

this job. This field must not
contain any spaces.

dates JobDates Yes Various dates associated with
this job.

deferCount Integer No The number of times a job has
been deferred.

dependencies Set<Job
Dependency>

Yes Dependencies that must be
fulfilled before the job can
start.

description String No The description of the job. Can
be set only in a job template.

duration Long Yes The length of time in seconds
requested for the job. Note
that it is possible to set
duration to 'INFINITY' if the
AllowInfiniteJobs flag is set on
the scheduler in the moab.cfg.

durationActive Long No The length of time in seconds
the job has been active or
running.

durationMinimum Long No Minimum duration of the job
(used when automatically
extending durations). See
'JOBEXTENDDURATION' in the
Moab Workload Manager
Administrator Guide.

durationQueued Long No The length of time in seconds
the job has been eligible to
run in the queue.

durationRemaining Long No An estimate of the time
remaining, in seconds, before
the job will complete.

Chapter 8: References

Field Name Type POS
T Description

durationSuspended Long No The length of time in seconds
the job has been suspended.

emailNotify
Addresses

Set<String> Yes The list of addresses to whom
email is sent by the execution
server.

emailNotifyTypes Set<JobEmail
NotifyType>

Yes The list of email notify types
attached to the job.

environment
Requested

Boolean Yes Setting this field to true tells
the Moab Workload Manager
to set various variables, if
populated, in the job's
environment.

environment
Variables

Map<String,
Map>

Yes The environment variables to
set for this job. This field is
defined only during POST. On
GET, this field is an empty
object (see also
fullEnvironmentVariableList).

epilogScript String Yes The path to the TORQUE
epilog script.

flags Set<JobFlag> Yes The flags that are set on this
job.

fullEnvironment
VariableList

String No The full list of all environment
variables for this job, including
variables set by the resource
manager, if any (see also
environmentVariables).

holdDate Date No The date the most recent hold
was placed on the job.

holdReason JobHoldReason No The reason the job is on hold.

Chapter 8: References

536 8.4 Resources Reference

8.4 Resources Reference 537

Field Name Type POS
T Description

holds Set<JobHoldType> Yes The holds that are set on the
job. The 'User' hold type is
valid during POST.

initialWorking
Directory

String Yes The path to the directory
where the job will be started.

isActive Boolean No True if the job is active, false if
the job is complete.

jobGroup String Yes The job group to which this
job belongs (different from
credentials.group).

masterNode DomainProxy No The first node in the list of
allocated nodes for this job.
For TORQUE jobs, this
represents the 'mother
superior'.

memorySeconds
Dedicated

Double No The memory seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

memorySeconds
Utilized

Double No The memory seconds utilized
by the job as reported by its
resource manager. Not all
resource managers provide
this information.

messages Set<Message> No The list of messages associated
with the job. The 'message'
field is valid during PUT.

migrateCount Integer No The number of times the job
has been migrated.

minimumPreempt Long No The minimum length of time,

Chapter 8: References

Field Name Type POS
T Description

Time in seconds, an active job must
be running before it is eligible
for preemption.

mwmName String No The name of the Moab
Workload Manager instance
that owns this job.

name String No The name of this job. This
name is unique per instance of
Moab Workload Manager (i.e.,
not globally).

nodesExcluded Set<DomainProxy> Yes The list of nodes that should
not be considered for this job.

nodesRequested Set<DomainProxy> Yes The exact set, superset, or
subset of nodes where this job
must run (see also
nodesRequestedPolicy).

nodesRequested
Policy

JobHostListMode Yes Indicates an exact set,
superset, or subset of nodes
where the job must run. Only
relevant if nodesRequested is
provided (see also
nodesRequested).

partitionAccessList Set<String> No The list of partitions that this
job can access.

partitionAccessList
Requested

Set<String> Yes The list of partitions that this
job has requested.

partitionAccessList
Scheduler

Set<String> No The feasible partition access
list built by the scheduler.

preemptCount Integer No The number of times the job
has been preempted.

Chapter 8: References

538 8.4 Resources Reference

8.4 Resources Reference 539

Field Name Type POS
T Description

priorities JobPriority Yes The list of priorities for the
job.

processorSeconds
Dedicated

Double No The processor seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

processorSeconds
Limit

Double No The limit for
processorSecondsUtilized.

processorSeconds
Utilized

Double No The processor seconds utilized
by the job as reported by its
resource manager. Not all
resource managers provide
this information.

prologScript String Yes The path to the TORQUE
prolog script.

queueStatus JobQueueStatus No The status of the job in its
queue.

rank Integer No The index of this job in the
eligible queue.

rejectPolicies Set<JobRejectPolicy> No The list of policies enabled
when a job is rejected.

requirements Set<JobRequiremen
t>

Yes The list of items required for
this job to run. Only
JobRequirement.features is
valid during PUT.

reservation
Requested

DomainProxy Yes The reservation that the job
requested.

resourceFailPolicy JobResourceFail
PolicyType

Yes The policy that dictates what

Chapter 8: References

Field Name Type POS
T Description

should happen to the job if it
is running and at least one of
the resources it is using fails.

resourceManager
Extension

String Yes If provided during POST, this
string will be added to the
resource manager extension
section of the job submission.
For example:
'bandwidth=120;queuejob=fals
e'
Note that the delimiter
between
resourceManagerExtension
elements is the semicolon.

resourceManagers Set<Resource
Manager>

No The list of resource managers
associated with this job.

shellName String Yes Declares the shell that
interprets the job script.

standardErrorFile
Path

String Yes The path to the file containing
the standard error of the job.

standardOutputFile
Path

String Yes The path to the file containing
the standard output of the job.

startCount Integer No The number of times the job
has been started.

states JobStateInformation No Information about the state of
the job.

submitCommandFil
e

String No This read-only field contains
the path to the original
commandFile as posted to
MWS during job submission.

submitHost String No The host from which the job
was submitted.

Chapter 8: References

540 8.4 Resources Reference

8.4 Resources Reference 541

Field Name Type POS
T Description

systemJobType JobSystemJobType No The type of system job.

templates Set<DomainProxy> Yes The list of all job templates to
be set on this job.

triggers Set<String> No The list of triggers associated
with this job.

variables Map<String,
Map>

Yes The list of variables that this
job owns or sets on
completion.

virtualContainers Set<DomainProxy> Yes When submitting this job, add
it to the specified existing
virtual container. Valid during
POST, but only one virtual
container can be specified.

JobBlock

Field Name Type POST

category JobBlockCategory No

createdDate Date No

message String No

partition String No

type JobBlockType No

JobBlockCategory

Value

depend

jobBlock

Chapter 8: References

Value

migrate

JobBlockType

Value

ActivePolicy

BadUser

Dependency

EState

FairShare

Hold

IdlePolicy

LocalPolicy

NoClass

NoData

NoResource

NoTime

PartitionAccess

Priority

RMSubmissionFailure

StartDate

State

Chapter 8: References

542 8.4 Resources Reference

8.4 Resources Reference 543

Value

SysLimits

JobCredentials
Moab Workload Manager supports the concept of credentials, which provide a means of
attributing policy and resource access to entities such as users and groups. These
credentials allow specification of job ownership, tracking of resource usage,
enforcement of policies, and many other features.

Field Name Type POST Description

account String Yes The account credential is also referred to as the
project. This credential is generally associated with a
group of users along the lines of a particular project
for accounting and billing purposes.

group String Yes The group credential represents an aggregation of
users. User-to-group mappings are often specified by
the operating system or resource manager and
typically map to a user's UNIX group ID. However,
user-to-group mappings may also be provided by a
security and identity management service, or you can
specify such directly within Moab.

jobClass String Yes The concept of the class credential is derived from
the resource manager class or queue object. Classes
differ from other credentials in that they more
directly impact job attributes. In standard HPC usage,
a user submits a job to a class and this class imposes
a number of factors on the job. The attributes of a
class can be specified within the resource manager or
directly within Moab.

qos String No The quality of service assigned to this job. The
concept of a quality of service (QoS) credential is
unique to Moab and is not derived from any
underlying concept or peer service. In most cases, the
QoS credential is used to allow a site to set up a
selection of service levels for end-users to choose
from on a long-term or job-by-job basis. QoSs differ
from other credentials in that they are centered
around special access where this access may allow
use of additional services, additional resources, or

Chapter 8: References

Field Name Type POST Description

improved responsiveness. Unique to this credential,
organizations can also choose to apply different
charge rates to the varying levels of service available
within each QoS. As QoS is an internal credential, all
QoS configuration occurs within Moab.

qosRequested String Yes The quality of service requested for this job.

user String Yes The user credential is the fundamental credential
within a workload manager; each job requires an
association with exactly one user. In fact, the user
credential is the only required credential in Moab; all
others are optional. In most cases, the job's user
credential is configured within or managed by the
operating system itself, although Moab can be
configured to obtain this information from an
independent security and identity management
service.

JobDates

Field Name Type POST Description

completedDate Date No

createdDate Date No

deadlineDate Date Yes The deadline for completion of the job.

dispatchedDate Date No

earliestRequestedStartDate Date Yes The job will start no sooner than this
date.

earliestStartDate Date No

eligibleDate Date No

lastCanceledDate Date No

lastChargedDate Date No

Chapter 8: References

544 8.4 Resources Reference

8.4 Resources Reference 545

Field Name Type POST Description

lastPreemptedDate Date No

lastUpdatedDate Date No

startDate Date No

submitDate Date No

terminationDate Date No

JobDependency

Field
Name Type POST Description

name String Yes The name of the object on which the job is
dependent.

type JobDependencyType Yes The type of job dependency. Only the 'set'
type is valid for POST.

value String No Optional string representation of the
dependency (used with variable
dependencies).

JobDependencyType
Represents the type of a job dependency. For now, only the 'set' type is supported.

Value Description

set Job will wait until a variable on a Moab object is set before starting.

JobEmailNotifyType

Value Description

JobStart An email will be sent when the job starts.

Chapter 8: References

Value Description

JobEnd An email will be sent if the job successfully ends.

JobFail An email will be sent if the job fails.

All

JobFlag
This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource
managers and partitions.

ALLOWPOWERADJUSTMENT Allow system to dynamically adjust power.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are
available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

Chapter 8: References

546 8.4 Resources Reference

8.4 Resources Reference 547

Value Description

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be
preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt
other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and
system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job
granted access to all idle job reservations.

INTERACTIVE The job needs interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any
authentication.

NORESOURCES The job is a system job that does not need any
resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot
be migrated elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in
individual chunks.

FORCEPROVISION Job will provision nodes, whether they already have

Chapter 8: References

Value Description

OS or not.

SYSTEMJOB The job is a system job, which simply runs on the
same node that Moab is running on. This is usually
used for running scripts and other executables in
workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an admin.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job
start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the
job to start later.

GRESONLY The job is requesting only generic resources, no
compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the
template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

Chapter 8: References

548 8.4 Resources Reference

8.4 Resources Reference 549

Value Description

VCMASTER Job is the master of a virtual container.

USEMOABJOBID Whether to use the Moab job ID or the resource
manager's job ID.

JOINSTDERRTOSTDOUT Join the stderr file to the stdout file.

JOINSTDOUTTOSTDERR Join the stdout file to the stderr file.

PURGEONSUCCESSONLY Only purge the job if it completed successfully.

ALLPROCS Each job compute task requests all the procs on its
node.

COMMLOCAL Each job communications are localized, with minimal
routing outside job shape.

COMMTOLERANT Each job communications are low-intensity and
insensitive to interference.

COMMTRANSPARENT Job does not generate network communication.

JobHoldReason

Value Description

Admin

NoResources

SystemLimitsExceeded

BankFailure

CannotDebitAccount

InvalidAccount

RMFailure

Chapter 8: References

Value Description

RMReject Resource manager rejects job execution.

PolicyViolation Job violates job size policy.

CredAccess Job cannot access requested credential.

CredHold Credential hold in place.

PreReq Job prerequisite failed.

Data Data staging cannot be completed.

Security Job security cannot be established.

MissingDependency Dependency job cannot be found.

JobHoldType

Value Description

User The user has manually placed a hold on the job.

System The Moab Workload Manager has placed a hold on the job.

Batch The batch queue has placed a hold on the job.

Defer The job has been deferred.

All During GET, All means that all hold types are set. During PUT, All can be used
to clear all hold types.

DomainProxy
A reference to an object contained within an object. For example, a Virtual Machine
object contains a reference to the node on which it is running. That reference is
represented by this class.

Field Name Type POST Description

name String Yes The name of the object.

Chapter 8: References

550 8.4 Resources Reference

8.4 Resources Reference 551

Message

Field Name Type POST Description

count Integer No The number of times this message has occurred.

createdDate Date No The date this message was created.

expireDate Date No The date this message expires.

message String No The message itself.

JobHostListMode

Value

superset

subset

exactset

JobPriority

Field
Name Type POST Description

run Long No

start Long No

system Long No

user Long Yes The user-requested priority for the job. By default, the range
is between -1024 and 0. To enable priority range from -1024
to +1023, set ENABLEPOSUSERPRIORITY in the moab.cfg
file.

Chapter 8: References

JobQueueStatus

Value Description

active A job is actively running in a queue.

blocked A job has been blocked because of a policy violation or because resource
requirements cannot be met.

completed A job has completed running.

eligible A job is eligible to run but has not started yet.

JobRejectPolicy

Value

CANCEL

HOLD

IGNORE

MAIL

RETRY

JobRequirement

Field Name Type POS
T Description

architecture String Yes The architecture required by the
job.

attributes Map<String,
Job
Requirement
Attribute>

Yes Required node attributes with
version number support.

dedicateAllProcessors Boolean No Within a requirement, if
dedicateAllProcessors is true,

Chapter 8: References

552 8.4 Resources Reference

8.4 Resources Reference 553

Field Name Type POS
T Description

then all processors on the node
where the job runs will be
dedicated to the job.

features Set<String> No The list of node features the job
is scheduled against.

featuresExcluded Set<String> Yes Excluded node features. That is,
do not select nodes with these
features (see also
featuresExcludedMode).

featuresExcludedMode JobRequireme
nt
FeaturesMode

Yes Indicates whether excluded
features should be ANDed or
ORed. The default is AND. Only
relevant if featuresExcluded is
provided (see also
featuresExcluded).

featuresRequested Set<String> Yes Requested node features (see
also featuresRequestedMode).

featuresRequestedMod
e

JobRequireme
nt
FeaturesMode

Yes Indicates whether requested
features should be ANDed or
ORed. The default is AND. Only
relevant if featuresRequested is
provided (see also
featuresRequested).

operatingSystem String Yes The operating system required
by the job.

index Integer No The index of the requirement,
starting with 0.

metrics Map<String,
Double>

No Generic metrics associated with
the job as reported by the
resource manager.

nodeAccessPolicy NodeAccess
Policy

Yes How node resources should be
accessed. Note: If the job

Chapter 8: References

Field Name Type POS
T Description

requirements array has more
than one element that contains
nodeAccessPolicy, only the first
occurrence will be used.

nodeAllocationPolicy NodeAllocation
Policy

Yes How node resources should be
selected and allocated to the job.
Note: If the job requirements
array has more than one
element that contains
nodeAllocationPolicy, only the
first occurrence will be used.

nodeCount Integer Yes The number of nodes required
by the job.

nodeSet String Yes The requested node set of the
job. This must follow the format
SETSELECTION:SETTYPE
[:SETLIST]

l SETSELECTION - ANYOF,
ONEOF, or FIRSTOF

l SETTYPE - FEATURE or
VARATTR

l SETLIST - For FEATURE, a
comma-separated list of
features. For VARATTR, a
key=value pair.

Examples:

l ONEOF:FEATURE:
fastos,hiprio,bigme
m

l FIRSTOF:VARATTR:
datacenter
=Provo:datacenter
=SaltLake

nodes Set<Allocated
Node>

No Nodes that have been allocated
to meet this requirement.

Chapter 8: References

554 8.4 Resources Reference

8.4 Resources Reference 555

Field Name Type POS
T Description

reservation DomainProxy No The allocated reservation
(assigned after the job has a
reservation).

resourcesPerTask Map<String,
JobResource>

Yes Contains requirements for disk,
memory, processors, swap,
GPUs, and generic resources. For
disk, memory, and swap, the unit
is MB. For each resource, the
'dedicated' field can be set
during POST.

taskCount Integer Yes The number of tasks
(processors) required by this
job.

tasksPerNode Integer Yes The number of tasks to map to
each node. If you specify
tasksPerNode, you must also
specify taskCount.

totalDedicatedProcesso
rs

Integer No

JobRequirementAttribute

Field Name Type POST Description

comparator String Yes The comparison operator. Values:

l >= - Greater than or equal to
l > - Greater than
l <= - Less than
l < - Less than
l %= - Equals
l %! - Not equals
l Null - Defaults to %=
l = - (Deprecated) Equivalent to

%=

displayValue String Yes The display value for the required

Chapter 8: References

Field Name Type POST Description

attribute.

restriction JobRequirement
AttributeRestriction

Yes The restriction of this attribute. Can be
null, but defaults to
JobRequirementAttributeRestriction:
must.

value String Yes The value of the required attribute.
During POST, if value is missing, blank,
or null, do not provide a comparator.

JobRequirementAttributeRestriction
Represents a restriction for a job requirement attribute.

Value

must

JobRequirementFeaturesMode

Value

OR

AND

NodeAccessPolicy
This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs can utilize available resources.

SHAREDONLY Only jobs requesting shared node access can utilize available
resources.

Chapter 8: References

556 8.4 Resources Reference

8.4 Resources Reference 557

Value Description

SINGLEJOB Tasks from a single job can utilize available resources.

SINGLETASK A single task from a single job can run on the node.

SINGLEUSER Tasks from any jobs owned by the same user can utilize available
resources.

UNIQUEUSER Any number of tasks from a single job can allocate resources from a
node but only if the user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group can utilize node.

SINGLEACCOUNT Any number of tasks from the same account can utilize node.

SINGLECLASS Any number of tasks from the same class can utilize node.

SINGLEQOS Any number of tasks from the same QOS (quality of service) can utilize
node.

NodeAllocationPolicy
Node Allocation enumeration.

Value Description

FIRSTSET

MINGLOBAL

MINLOCAL

PLUGIN

NONE No node allocation policy is specified. Moab
defaults to MINRESOURCE when this is the case.

FIRSTAVAILABLE Simple first come, first served algorithm where
nodes are allocated in the order they are presented
by the resource manager. This is a very simple,
very fast algorithm.

Chapter 8: References

Value Description

LASTAVAILABLE This algorithm selects resources so as to minimize
the amount of time after the job and before the
trailing reservation. This algorithm is a best fit in
time algorithm which minimizes the impact of
reservation based node-time fragmentation. It is
useful in systems where a large number of
reservations (job, standing, or administrative) are
in place.

MINRESOURCE This algorithm prioritizes nodes according to the
configured resources on each node. Those nodes
with the fewest configured resources which still
meet the job's resource constraints are selected.

CPULOAD Nodes are selected which have the maximum
amount of available, unused CPU power (i.e., [# of
CPUs] - [CPU load]). Good algorithm for
timesharing node systems. This algorithm is only
applied to jobs starting immediately. For the
purpose of future reservations, the MINRESOURCE
algorithm is used.

LOCAL This will call the locally created contrib node
allocation algorithm.

CONTIGUOUS This algorithm will allocate nodes in contiguous
(linear) blocks as required by the Compaq RMS
system.

MAXBALANCE This algorithm will attempt to allocate the most
'balanced' set of nodes possible to a job. In most
cases, but not all, the metric for balance of the
nodes is node speed. Therefore, if possible, nodes
with identical speeds will be allocated to the job. If
identical speed nodes cannot be found, the
algorithm will allocate the set of nodes with the
minimum node speed 'span' or range.

PRIORITY This algorithm allows a site to specify the priority
of various static and dynamic aspects of compute
nodes and allocate them with preference for higher
priority nodes. It is highly flexible allowing node
attribute and usage information to be combined
with reservation affinity.

Chapter 8: References

558 8.4 Resources Reference

8.4 Resources Reference 559

Value Description

FASTEST This algorithm will select nodes in 'fastest node
first' order. Nodes will be selected by node speed if
specified. If node speed is not specified, nodes will
be selected by processor speed. If neither is
specified, nodes will be selected in a random order.

PROCESSORLOAD Alias for CPULOAD.

NODESPEED Alias for FASTEST.

INREPORTEDORDER Alias for FIRSTAVAILABLE.

INREVERSEREPORTEDORDER Alias for LASTAVAILABLE.

CUSTOMPRIORITY Alias for PRIORITY.

PROCESSORSPEEDBALANCE Alias for MAXBALANCE.

MINIMUMCONFIGUREDRESOURCES Alias for MINRESOURCE.

CRAY3DTORUS Enable topology awareness scheduling algorithm.

AllocatedNode

Field Name Type POST

name String No

taskCount Integer No

JobResource
Represents counts of dedicated and utilized resources.

Field
Name Type POST Description

dedicated Integer No The amount of this resource that has been allocated for
running workload.

Chapter 8: References

Field
Name Type POST Description

utilized Integer No The amount of this resource that is currently reported
as utilized by resource managers.

JobResourceFailPolicyType

Value

CANCEL

FAIL

HOLD

IGNORE

NOTIFY

REQUEUE

ResourceManager

Field Name Type POST

isDestination Boolean No

isSource Boolean No

jobName String No

name String No

JobStateInformation

Field Name Type POST

state JobState No

Chapter 8: References

560 8.4 Resources Reference

8.4 Resources Reference 561

Field Name Type POST

stateExpected JobState No

stateLastUpdatedDate Date No

subState JobSubState No

JobState

Value Description

Idle Eligible according to all resource manager constraints.

Starting Job is launching, executing prolog.

Running Job is executing.

Removed Job was canceled before executing.

Completed Job successfully completed execution.

Hold Job is blocked by hold.

Deferred Job has a temporary hold.

Vacated Job was canceled after partial execution.

NotQueued Job is not eligible for execution.

Unknown Job state is unknown.

Staging Staging of input/output data is currently underway.

Suspended Job is no longer executing and remains in memory on the allocated compute
nodes.

Blocked

Chapter 8: References

JobSubState

Value

Epilogue

Migrated

Preempted

Prologue

JobSystemJobType

Value Description

generic Generic system job (trigger attached).

osprovision Reprovision operating system.

poweroff Power off node.

poweron Power on node.

reset Reboot node.

Related Topics

l 4.8 Job Arrays

8.4.6 Fields: Jobs

See the associated 4.9 Jobs resource section for more information on how to use this
resource and supported operations.

Chapter 8: References

562 8.4 Resources Reference

8.4 Resources Reference 563

Additional References

Type Value Additional Information

Permissions resource jobs Permissions

Hooks filename jobs.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

API version 3

Job
This class represents a job in the Moab Workload Manager. A job is a request for
compute resources (CPUs, memory, storage) with which the requester can do work for
a given amount of time. In an HPC environment, this might be a batch script to perform
a Monte Carlo simulation. Moab will evaluate the request and assign the requested
resources to the requester based on policies, current demand, and other factors in the
data center. A job will also usually have some process that Moab starts automatically at
the assigned start time. In an HPC environment, this can be starting a batch script on
the assigned nodes.

Field Name Type PO
ST

PU
T Description

id String No No The unique identifier of
this job. Note: This field is
not user-assigned and is
generated by the database.

arrayIndex Long No No If this job is a subjob of a
JobArray, this field
contains the index of this
job in the array. For
example, if this job is
Moab.1[2], the array
index would be 2.

arrayMasterName String No No If this job is a subjob of a
JobArray, this field
contains the name of the
job array master. For
example, if this job is
Moab.1[2], the array
master name would be
Moab.1.

attributes Set<String> Yes No The list of generic
attributes associated with
this job.

blocks Set<JobBlock> No No Reasons the job is blocked
from running.

bypassCount Integer No No The number of times the

Chapter 8: References

564 8.4 Resources Reference

8.4 Resources Reference 565

Field Name Type PO
ST

PU
T Description

job has been backfilled.

cancelCount Integer No No The number of times a job
has received a cancel
request.

commandFile String Yes No The name of the job script
file (absolute path). If
commandFile is set and
commandScript is not set,
then MWS must have read
access to the file. If
commandFile and
commandScript are both
set, then MWS does not
read the contents of the
file but it does provide the
name of the file to Moab.
Note that Moab changes
the contents of the
commandFile field and the
contents of the file
pointed to by
commandFile. For the
original path and file
contents, see
submitCommandFile.

commandLineArgument
s

String Yes No The command line
arguments passed to the
job script specified by
commandFile or
commandScript. Must be
enclosed in quotes, for
example:
"commandLineArgument
s": "\"a b c\""

commandScript String Yes No The contents of the job
script. This field must be
Base64-encoded.

completionCode Integer No No The exit code from this

Chapter 8: References

Field Name Type PO
ST

PU
T Description

job.

cpuTime Long No No CPU usage time in seconds
as reported by the
resource manager.

credentials JobCredentials Yes Yes The credentials (user and
group, for example)
associated with this job.

customName String Yes Yes The user-specified name
of this job. This field must
not contain any spaces.

dates JobDates Yes Yes Various dates associated
with this job.

deferCount Integer No No The number of times a job
has been deferred.

dependencies Set<Job
Dependency>

Yes No Dependencies that must
be fulfilled before the job
can start.

description String No No The description of the job.
Can be set only in a job
template.

duration Long Yes Yes The length of time in
seconds requested for the
job. Note that it is
possible to set duration to
'INFINITY' if the
AllowInfiniteJobs flag is
set on the scheduler in the
moab.cfg.

durationActive Long No No The length of time in
seconds the job has been
active or running.

Chapter 8: References

566 8.4 Resources Reference

8.4 Resources Reference 567

Field Name Type PO
ST

PU
T Description

durationMinimum Long No No Minimum duration of the
job (used when
automatically extending
durations). See
'JOBEXTENDDURATION'
in the Moab Workload
Manager Administrator
Guide.

durationQueued Long No No The length of time in
seconds the job has been
eligible to run in the
queue.

durationRemaining Long No No An estimate of the time
remaining, in seconds,
before the job will
complete.

durationSuspended Long No No The length of time in
seconds the job has been
suspended.

emailNotifyAddresses Set<String> Yes No The list of addresses to
whom email is sent by the
execution server.

emailNotifyTypes Set<Job
EmailNotify
Type>

Yes No The list of email notify
types attached to the job.

environmentRequested Boolean Yes No Setting this field to true
tells the Moab Workload
Manager to set various
variables, if populated, in
the job's environment.

environmentVariables Map<String,
Map>

Yes No The environment
variables to set for this
job. This field is defined
only during POST. On
GET, this field is an empty

Chapter 8: References

Field Name Type PO
ST

PU
T Description

object (see also
fullEnvironmentVariableLi
st) .

epilogScript String Yes No The path to the TORQUE
epilog script.

flags Set<JobFlag> Yes Yes The flags that are set on
this job.

fullEnvironmentVariabl
eList

String No No The full list of all
environment variables for
this job, including
variables set by the
resource manager, if any
(see also
environmentVariables) .

holdDate Date No No The date the most recent
hold was placed on the
job.

holdReason JobHold
Reason

No No The reason the job is on
hold.

holds Set<JobHold
Type>

Yes Yes The holds that are set on
the job. The 'User' hold
type is valid during POST.

initialWorkingDirectory String Yes No The path to the directory
where the job will be
started.

isActive Boolean No No True if the job is active,
false if the job is complete.

jobGroup String Yes No The job group to which
this job belongs (different
from credentials.group).

Chapter 8: References

568 8.4 Resources Reference

8.4 Resources Reference 569

Field Name Type PO
ST

PU
T Description

masterNode DomainProxy No No The first node in the list of
allocated nodes for this
job. For TORQUE jobs,
this represents the
'mother superior'.

memorySecondsDedicat
ed

Double No No The memory seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

memorySecondsUtilized Double No No The memory seconds
utilized by the job as
reported by its resource
manager. Not all resource
managers provide this
information.

messages Set<Message> No Yes The list of messages
associated with the job.
The 'message' field is valid
during PUT.

migrateCount Integer No No The number of times the
job has been migrated.

minimumPreemptTime Long No No The minimum length of
time, in seconds, an active
job must be running
before it is eligible for
preemption.

mwmName String No No The name of the Moab
Workload Manager
instance that owns this
job.

name String No No The name of this job. This
name is unique per
instance of Moab

Chapter 8: References

Field Name Type PO
ST

PU
T Description

Workload Manager (i.e.,
not globally).

nodesExcluded Set<Domain
Proxy>

Yes No The list of nodes that
should not be considered
for this job.

nodesRequested Set<Domain
Proxy>

Yes No The exact set, superset, or
subset of nodes where this
job must run (see also
nodesRequestedPolicy) .

nodesRequestedPolicy JobHost
ListMode

Yes No Indicates an exact set,
superset, or subset of
nodes where the job must
run. Only relevant if
nodesRequested is
provided (see also
nodesRequested).

partitionAccessList Set<String> No No The list of partitions that
this job can access.

partitionAccessListRequ
ested

Set<String> Yes Yes The list of partitions that
this job has requested.

partitionAccessListSche
duler

Set<String> No No The feasible partition
access list built by the
scheduler.

preemptCount Integer No No The number of times the
job has been preempted.

priorities JobPriority Yes Yes The list of priorities for
the job.

processorSecondsDedic
ated

Double No No The processor seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this

Chapter 8: References

570 8.4 Resources Reference

8.4 Resources Reference 571

Field Name Type PO
ST

PU
T Description

information.

processorSecondsLimit Double No No The limit for
processorSecondsUtilized.

processorSecondsUtiliz
ed

Double No No The processor seconds
utilized by the job as
reported by its resource
manager. Not all resource
managers provide this
information.

prologScript String Yes No The path to the TORQUE
prolog script.

queueStatus JobQueue
Status

No No The status of the job in its
queue.

rank Integer No No The index of this job in
the eligible queue.

rejectPolicies Set<JobReject
Policy>

No No The list of policies enabled
when a job is rejected.

requirements Set<Job
Requirement>

Yes Yes The list of items required
for this job to run. Only
JobRequirement.features
is valid during PUT.

reservationRequested DomainProxy Yes Yes The reservation that the
job requested.

resourceFailPolicy JobResource
FailPolicyType

Yes No The policy that dictates
what should happen to
the job if it is running and
at least one of the
resources it is using fails.

resourceManagerExtens
ion

String Yes No If provided during POST,
this string will be added

Chapter 8: References

Field Name Type PO
ST

PU
T Description

to the resource manager
extension section of the
job submission. For
example:
'bandwidth=120;queuejob
=false'
Note that the delimiter
between
resourceManagerExtensio
n elements is the
semicolon.

resourceManagers Set<Resource
Manager>

No No The list of resource
managers associated with
this job.

shellName String Yes No Declares the shell that
interprets the job script.

standardErrorFilePath String Yes No The path to the file
containing the standard
error of the job.

standardOutputFilePath String Yes No The path to the file
containing the standard
output of the job.

startCount Integer No No The number of times the
job has been started.

states JobState
Information

No No Information about the
state of the job.

submitCommandFile String No No This read-only field
contains the path to the
original commandFile as
posted to MWS during job
submission.

submitHost String No No The host from which the
job was submitted.

Chapter 8: References

572 8.4 Resources Reference

8.4 Resources Reference 573

Field Name Type PO
ST

PU
T Description

systemJobType
JobSystemJobT
ype

No No The type of system job.

templates Set<Domain
Proxy>

Yes No The list of all job
templates to be set on this
job.

triggers Set<String> No No The list of triggers
associated with this job.

variables Map<String,
Map>

Yes Yes The list of variables that
this job owns or sets on
completion.

virtualContainers Set<Domain
Proxy>

Yes No When submitting this job,
add it to the specified
existing virtual container.
Valid during POST, but
only one virtual container
can be specified.

JobBlock

Field Name Type POST PUT

category JobBlockCategory No No

createdDate Date No No

message String No No

partition String No No

type JobBlockType No No

Chapter 8: References

JobBlockCategory

Value

depend

jobBlock

migrate

JobBlockType

Value

ActivePolicy

BadUser

Dependency

EState

FairShare

Hold

IdlePolicy

LocalPolicy

NoClass

NoData

NoResource

NoTime

PartitionAccess

Priority

Chapter 8: References

574 8.4 Resources Reference

8.4 Resources Reference 575

Value

RMSubmissionFailure

StartDate

State

SysLimits

JobCredentials
Moab Workload Manager supports the concept of credentials, which provide a means of
attributing policy and resource access to entities such as users and groups. These
credentials allow specification of job ownership, tracking of resource usage,
enforcement of policies, and many other features.

Field Name Type POST PUT Description

account String Yes Yes The account credential is also referred to as
the project. This credential is generally
associated with a group of users along the
lines of a particular project for accounting
and billing purposes.

group String Yes No The group credential represents an
aggregation of users. User-to-group
mappings are often specified by the
operating system or resource manager and
typically map to a user's UNIX group ID.
However, user-to-group mappings may also
be provided by a security and identity
management service, or you can specify such
directly within Moab.

jobClass String Yes Yes The concept of the class credential is derived
from the resource manager class or queue
object. Classes differ from other credentials
in that they more directly impact job
attributes. In standard HPC usage, a user
submits a job to a class and this class
imposes a number of factors on the job. The
attributes of a class can be specified within
the resource manager or directly within
Moab.

Chapter 8: References

Field Name Type POST PUT Description

qos String No No The quality of service assigned to this job.
The concept of a quality of service (QoS)
credential is unique to Moab and is not
derived from any underlying concept or peer
service. In most cases, the QoS credential is
used to allow a site to set up a selection of
service levels for end-users to choose from
on a long-term or job-by-job basis. QoSs
differ from other credentials in that they are
centered around special access where this
access may allow use of additional services,
additional resources, or improved
responsiveness. Unique to this credential,
organizations can also choose to apply
different charge rates to the varying levels of
service available within each QoS. As QoS is
an internal credential, all QoS configuration
occurs within Moab.

qosRequested String Yes Yes The quality of service requested for this job.

user String Yes No The user credential is the fundamental
credential within a workload manager; each
job requires an association with exactly one
user. In fact, the user credential is the only
required credential in Moab; all others are
optional. In most cases, the job's user
credential is configured within or managed
by the operating system itself, although
Moab can be configured to obtain this
information from an independent security
and identity management service.

JobDates

Field Name Type POST PUT Description

completedDate Date No No

createdDate Date No No

deadlineDate Date Yes No The deadline for completion of
the job.

Chapter 8: References

576 8.4 Resources Reference

8.4 Resources Reference 577

Field Name Type POST PUT Description

dispatchedDate Date No No

earliestRequestedStartDate Date Yes Yes The job will start no sooner
than this date.

earliestStartDate Date No No

eligibleDate Date No No

lastCanceledDate Date No No

lastChargedDate Date No No

lastPreemptedDate Date No No

lastUpdatedDate Date No No

startDate Date No No

submitDate Date No No

terminationDate Date No No

JobDependency

Field
Name Type POST PUT Description

name String Yes No The name of the object on which the
job is dependent.

type JobDependencyType Yes No The type of job dependency. Only the
'set' type is valid for POST.

value String No No Optional string representation of the
dependency (used with variable
dependencies).

Chapter 8: References

JobDependencyType
Represents the type of a job dependency. For now, only the 'set' type is supported.

Value Description

set Job will wait until a variable on a Moab object is set before starting.

JobEmailNotifyType

Value Description

JobStart An email will be sent when the job starts.

JobEnd An email will be sent if the job successfully ends.

JobFail An email will be sent if the job fails.

All

JobFlag
This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource
managers and partitions.

ALLOWPOWERADJUSTMENT Allow system to dynamically adjust power.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

Chapter 8: References

578 8.4 Resources Reference

8.4 Resources Reference 579

Value Description

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are
available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be
preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt
other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and
system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job
granted access to all idle job reservations.

INTERACTIVE The job needs interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any
authentication.

NORESOURCES The job is a system job that does not need any

Chapter 8: References

Value Description

resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot
be migrated elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in
individual chunks.

FORCEPROVISION Job will provision nodes, whether they already have
OS or not.

SYSTEMJOB The job is a system job, which simply runs on the
same node that Moab is running on. This is usually
used for running scripts and other executables in
workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an admin.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job
start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the
job to start later.

GRESONLY The job is requesting only generic resources, no
compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the
template for this job.

PROCSPECIFIED The job requested processors on the command line.

Chapter 8: References

580 8.4 Resources Reference

8.4 Resources Reference 581

Value Description

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

VCMASTER Job is the master of a virtual container.

USEMOABJOBID Whether to use the Moab job ID or the resource
manager's job ID.

JOINSTDERRTOSTDOUT Join the stderr file to the stdout file.

JOINSTDOUTTOSTDERR Join the stdout file to the stderr file.

PURGEONSUCCESSONLY Only purge the job if it completed successfully.

ALLPROCS Each job compute task requests all the procs on its
node.

COMMLOCAL Each job communications are localized, with minimal
routing outside job shape.

COMMTOLERANT Each job communications are low-intensity and
insensitive to interference.

COMMTRANSPARENT Job does not generate network communication.

JobHoldReason

Value Description

Admin

NoResources

Chapter 8: References

Value Description

SystemLimitsExceeded

BankFailure

CannotDebitAccount

InvalidAccount

RMFailure

RMReject Resource manager rejects job execution.

PolicyViolation Job violates job size policy.

CredAccess Job cannot access requested credential.

CredHold Credential hold in place.

PreReq Job prerequisite failed.

Data Data staging cannot be completed.

Security Job security cannot be established.

MissingDependency Dependency job cannot be found.

JobHoldType

Value Description

User The user has manually placed a hold on the job.

System The Moab Workload Manager has placed a hold on the job.

Batch The batch queue has placed a hold on the job.

Defer The job has been deferred.

All During GET, All means that all hold types are set. During PUT, All can be used
to clear all hold types.

Chapter 8: References

582 8.4 Resources Reference

8.4 Resources Reference 583

DomainProxy
A reference to an object contained within an object. For example, a Virtual Machine
object contains a reference to the node on which it is running. That reference is
represented by this class.

Field Name Type POST PUT Description

name String Yes No The name of the object.

Message

Field Name Type POST PUT Description

count Integer No No The number of times this message has
occurred.

createdDate Date No No The date this message was created.

expireDate Date No No The date this message expires.

message String No Yes The message itself.

JobHostListMode

Value

superset

subset

exactset

JobPriority

Field
Name Type POST PUT Description

run Long No No

start Long No No

Chapter 8: References

Field
Name Type POST PUT Description

system Long No No

user Long Yes Yes The user-requested priority for the job. By default,
the range is between -1024 and 0. To enable priority
range from -1024 to +1023, set
ENABLEPOSUSERPRIORITY in the moab.cfg file.

JobQueueStatus

Value Description

active A job is actively running in a queue.

blocked A job has been blocked because of a policy violation or because resource
requirements cannot be met.

completed A job has completed running.

eligible A job is eligible to run but has not started yet.

JobRejectPolicy

Value

CANCEL

HOLD

IGNORE

MAIL

RETRY

Chapter 8: References

584 8.4 Resources Reference

8.4 Resources Reference 585

JobRequirement

Field Name Type POS
T

PU
T Description

architecture String Yes No The architecture required by
the job.

attributes Map<String,
Job
Requireme
nt
Attribute>

Yes No Required node attributes with
version number support.

dedicateAllProcessors Boolean No No Within a requirement, if
dedicateAllProcessors is true,
then all processors on the
node where the job runs will
be dedicated to the job.

features Set<String> No Yes The list of node features the
job is scheduled against.

featuresExcluded Set<String> Yes No Excluded node features. That
is, do not select nodes with
these features (see also
featuresExcludedMode).

featuresExcludedMod
e

Job
Requireme
nt
Features
Mode

Yes No Indicates whether excluded
features should be ANDed or
ORed. The default is AND. Only
relevant if featuresExcluded is
provided (see also
featuresExcluded).

featuresRequested Set<String> Yes No Requested node features (see
also featuresRequestedMode).

featuresRequestedMo
de

Job
Requireme
nt
Features
Mode

Yes No Indicates whether requested
features should be ANDed or
ORed. The default is AND. Only
relevant if featuresRequested
is provided (see also
featuresRequested).

Chapter 8: References

Field Name Type POS
T

PU
T Description

index Integer No No The index of the requirement,
starting with 0.

metrics Map<String,
Double>

No No Generic metrics associated
with the job as reported by the
resource manager.

nodeAccessPolicy NodeAccess
Policy

Yes No How node resources should be
accessed. Note: If the job
requirements array has more
than one element that contains
nodeAccessPolicy, only the first
occurrence will be used.

nodeAllocationPolicy Node
Allocation
Policy

Yes No How node resources should be
selected and allocated to the
job. Note: If the job
requirements array has more
than one element that contains
nodeAllocationPolicy, only the
first occurrence will be used.

nodeCount Integer Yes No The number of nodes required
by the job.

nodeSet String Yes No The requested node set of the
job. This must follow the
format
SETSELECTION:SETTYPE
[:SETLIST]

l SETSELECTION - ANYOF,
ONEOF, or FIRSTOF

l SETTYPE - FEATURE or
VARATTR

l SETLIST - For FEATURE,
a comma-separated list of
features. For VARATTR, a
key=value pair.

Examples:

l ONEOF:FEATURE:

Chapter 8: References

586 8.4 Resources Reference

8.4 Resources Reference 587

Field Name Type POS
T

PU
T Description

fastos,hiprio,bigm
em

l FIRSTOF:VARATTR:
datacenter
=Provo:datacenter
=SaltLake

nodes Set<Allocat
edNode>

No No Nodes that have been allocated
to meet this requirement.

operatingSystem String Yes No The operating system required
by the job.

reservation DomainPro
xy

No No The allocated reservation
(assigned after the job has a
reservation).

resourcesPerTask Map<String,
JobResourc
e>

Yes No Contains requirements for
disk, memory, processors,
swap, GPUs, and generic
resources. For disk, memory,
and swap, the unit is MB. For
each resource, the 'dedicated'
field can be set during POST.

taskCount Integer Yes No The number of tasks
(processors) required by this
job.

tasksPerNode Integer Yes No The number of tasks to map to
each node. If you specify
tasksPerNode, you must also
specify taskCount.

totalDedicatedProcess
ors

Integer No No

Chapter 8: References

JobRequirementAttribute

Field Name Type POS
T

PU
T Description

comparator String Yes No The comparison operator. Values:

l >= - Greater than or equal to
l > - Greater than
l <= - Less than
l < - Less than
l %= - Equals
l %! - Not equals
l Null - Defaults to %=
l = - (Deprecated) Equivalent

to %=

displayValu
e

String Yes No The display value for the required
attribute.

restriction JobRequirement
AttributeRestricti
on

Yes No The restriction of this attribute.
Can be null, but defaults to
JobRequirementAttributeRestricti
on: must.

value String Yes No The value of the required
attribute. During POST, if value is
missing, blank, or null, do not
provide a comparator.

JobRequirementAttributeRestriction
Represents a restriction for a job requirement attribute.

Value

must

JobRequirementFeaturesMode

Value

OR

Chapter 8: References

588 8.4 Resources Reference

8.4 Resources Reference 589

Value

AND

NodeAccessPolicy
This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs can utilize available resources.

SHAREDONLY Only jobs requesting shared node access can utilize available
resources.

SINGLEJOB Tasks from a single job can utilize available resources.

SINGLETASK A single task from a single job can run on the node.

SINGLEUSER Tasks from any jobs owned by the same user can utilize available
resources.

UNIQUEUSER Any number of tasks from a single job can allocate resources from a
node but only if the user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group can utilize node.

SINGLEACCOUNT Any number of tasks from the same account can utilize node.

SINGLECLASS Any number of tasks from the same class can utilize node.

SINGLEQOS Any number of tasks from the same QOS (quality of service) can utilize
node.

NodeAllocationPolicy
Node Allocation enumeration.

Chapter 8: References

Value Description

FIRSTSET

MINGLOBAL

MINLOCAL

PLUGIN

NONE No node allocation policy is specified. Moab
defaults to MINRESOURCE when this is the case.

FIRSTAVAILABLE Simple first come, first served algorithm where
nodes are allocated in the order they are presented
by the resource manager. This is a very simple,
very fast algorithm.

LASTAVAILABLE This algorithm selects resources so as to minimize
the amount of time after the job and before the
trailing reservation. This algorithm is a best fit in
time algorithm which minimizes the impact of
reservation based node-time fragmentation. It is
useful in systems where a large number of
reservations (job, standing, or administrative) are
in place.

MINRESOURCE This algorithm prioritizes nodes according to the
configured resources on each node. Those nodes
with the fewest configured resources which still
meet the job's resource constraints are selected.

CPULOAD Nodes are selected which have the maximum
amount of available, unused CPU power (i.e., [# of
CPUs] - [CPU load]). Good algorithm for
timesharing node systems. This algorithm is only
applied to jobs starting immediately. For the
purpose of future reservations, the MINRESOURCE
algorithm is used.

LOCAL This will call the locally created contrib node
allocation algorithm.

CONTIGUOUS This algorithm will allocate nodes in contiguous
(linear) blocks as required by the Compaq RMS

Chapter 8: References

590 8.4 Resources Reference

8.4 Resources Reference 591

Value Description

system.

MAXBALANCE This algorithm will attempt to allocate the most
'balanced' set of nodes possible to a job. In most
cases, but not all, the metric for balance of the
nodes is node speed. Therefore, if possible, nodes
with identical speeds will be allocated to the job. If
identical speed nodes cannot be found, the
algorithm will allocate the set of nodes with the
minimum node speed 'span' or range.

PRIORITY This algorithm allows a site to specify the priority
of various static and dynamic aspects of compute
nodes and allocate them with preference for higher
priority nodes. It is highly flexible allowing node
attribute and usage information to be combined
with reservation affinity.

FASTEST This algorithm will select nodes in 'fastest node
first' order. Nodes will be selected by node speed if
specified. If node speed is not specified, nodes will
be selected by processor speed. If neither is
specified, nodes will be selected in a random order.

PROCESSORLOAD Alias for CPULOAD.

NODESPEED Alias for FASTEST.

INREPORTEDORDER Alias for FIRSTAVAILABLE.

INREVERSEREPORTEDORDER Alias for LASTAVAILABLE.

CUSTOMPRIORITY Alias for PRIORITY.

PROCESSORSPEEDBALANCE Alias for MAXBALANCE.

MINIMUMCONFIGUREDRESOURCES Alias for MINRESOURCE.

CRAY3DTORUS Enable topology awareness scheduling algorithm.

Chapter 8: References

AllocatedNode

Field Name Type POST PUT

name String No No

taskCount Integer No No

JobResource
Represents counts of dedicated and utilized resources.

Field
Name Type POST PUT Description

dedicated Integer No No The amount of this resource that has been
allocated for running workload.

utilized Integer No No The amount of this resource that is currently
reported as utilized by resource managers.

JobResourceFailPolicyType

Value

CANCEL

FAIL

HOLD

IGNORE

NOTIFY

REQUEUE

ResourceManager

Field Name Type POST PUT

isDestination Boolean No No

Chapter 8: References

592 8.4 Resources Reference

8.4 Resources Reference 593

Field Name Type POST PUT

isSource Boolean No No

jobName String No No

name String No No

JobStateInformation

Field Name Type POST PUT

state JobState No No

stateExpected JobState No No

stateLastUpdatedDate Date No No

subState JobSubState No No

JobState

Value Description

Idle Eligible according to all resource manager constraints.

Starting Job is launching, executing prolog.

Running Job is executing.

Removed Job was canceled before executing.

Completed Job successfully completed execution.

Hold Job is blocked by hold.

Deferred Job has a temporary hold.

Vacated Job was canceled after partial execution.

Chapter 8: References

Value Description

NotQueued Job is not eligible for execution.

Unknown Job state is unknown.

Staging Staging of input/output data is currently underway.

Suspended Job is no longer executing and remains in memory on the allocated compute
nodes.

Blocked

JobSubState

Value

Epilogue

Migrated

Preempted

Prologue

JobSystemJobType

Value Description

generic Generic system job (trigger attached).

osprovision Reprovision operating system.

poweroff Power off node.

poweron Power on node.

reset Reboot node.

Chapter 8: References

594 8.4 Resources Reference

8.4 Resources Reference 595

API version 2

Job
This class represents a job in the Moab Workload Manager. A job is a request for
compute resources (CPUs, memory, storage) with which the requester can do work for
a given amount of time. In an HPC environment, this might be a batch script to perform
a Monte Carlo simulation. Moab will evaluate the request and assign the requested
resources to the requester based on policies, current demand, and other factors in the
data center. A job will also usually have some process that Moab starts automatically at
the assigned start time. In an HPC environment, this can be starting a batch script on
the assigned nodes.

Field Name Type PO
ST

PU
T Description

id String No No The unique identifier of
this job. Note: This field is
not user-assigned and is
generated by the database.

arrayIndex Long No No If this job is a subjob of a
JobArray, this field
contains the index of this
job in the array. For
example, if this job is
Moab.1[2], the array
index would be 2.

arrayMasterName String No No If this job is a subjob of a
JobArray, this field
contains the name of the
job array master. For
example, if this job is
Moab.1[2], the array
master name would be
Moab.1.

attributes Set<String> Yes No The list of generic
attributes associated with
this job.

blocks Set<JobBlock> No No Reasons the job is blocked
from running.

bypassCount Integer No No The number of times the

Chapter 8: References

Field Name Type PO
ST

PU
T Description

job has been backfilled.

cancelCount Integer No No The number of times a job
has received a cancel
request.

commandFile String Yes No The name of the job script
file (absolute path). If
commandFile is set and
commandScript is not set,
then MWS must have read
access to the file. If
commandFile and
commandScript are both
set, then MWS does not
read the contents of the
file but it does provide the
name of the file to Moab.
Note that Moab changes
the contents of the
commandFile field and the
contents of the file
pointed to by
commandFile. For the
original path and file
contents, see
submitCommandFile.

commandLineArgument
s

String Yes No The command line
arguments passed to the
job script specified by
commandFile or
commandScript. Must be
enclosed in quotes, for
example:
"commandLineArgument
s": "\"a b c\""

commandScript String Yes No The contents of the job
script. This field must be
Base64-encoded.

completionCode Integer No No The exit code from this

Chapter 8: References

596 8.4 Resources Reference

8.4 Resources Reference 597

Field Name Type PO
ST

PU
T Description

job.

cpuTime Long No No CPU usage time in seconds
as reported by the
resource manager.

credentials JobCredentials Yes Yes The credentials (user and
group, for example)
associated with this job.

customName String Yes Yes The user-specified name
of this job. This field must
not contain any spaces.

dates JobDates Yes Yes Various dates associated
with this job.

deferCount Integer No No The number of times a job
has been deferred.

dependencies Set<Job
Dependency>

Yes No Dependencies that must
be fulfilled before the job
can start.

description String No No The description of the job.
Can be set only in a job
template.

duration Long Yes Yes The length of time in
seconds requested for the
job. Note that it is
possible to set duration to
'INFINITY' if the
AllowInfiniteJobs flag is
set on the scheduler in the
moab.cfg.

durationActive Long No No The length of time in
seconds the job has been
active or running.

Chapter 8: References

Field Name Type PO
ST

PU
T Description

durationMinimum Long No No Minimum duration of the
job (used when
automatically extending
durations). See
'JOBEXTENDDURATION'
in the Moab Workload
Manager Administrator
Guide.

durationQueued Long No No The length of time in
seconds the job has been
eligible to run in the
queue.

durationRemaining Long No No An estimate of the time
remaining, in seconds,
before the job will
complete.

durationSuspended Long No No The length of time in
seconds the job has been
suspended.

emailNotifyAddresses Set<String> Yes No The list of addresses to
whom email is sent by the
execution server.

emailNotifyTypes Set<Job
EmailNotify
Type>

Yes No The list of email notify
types attached to the job.

environmentRequested Boolean Yes No Setting this field to true
tells the Moab Workload
Manager to set various
variables, if populated, in
the job's environment.

environmentVariables Map<String,
Map>

Yes No The environment
variables to set for this
job. This field is defined
only during POST. On
GET, this field is an empty

Chapter 8: References

598 8.4 Resources Reference

8.4 Resources Reference 599

Field Name Type PO
ST

PU
T Description

object (see also
fullEnvironmentVariableLi
st).

epilogScript String Yes No The path to the TORQUE
epilog script.

flags Set<JobFlag> Yes Yes The flags that are set on
this job.

fullEnvironmentVariabl
eList

String No No The full list of all
environment variables for
this job, including
variables set by the
resource manager, if any
(see also
environmentVariables).

holdDate Date No No The date the most recent
hold was placed on the
job.

holdReason JobHold
Reason

No No The reason the job is on
hold.

holds Set<JobHold
Type>

Yes Yes The holds that are set on
the job. The 'User' hold
type is valid during POST.

initialWorkingDirectory String Yes No The path to the directory
where the job will be
started.

isActive Boolean No No True if the job is active,
false if the job is complete.

jobGroup String Yes No The job group to which
this job belongs (different
from credentials.group).

Chapter 8: References

Field Name Type PO
ST

PU
T Description

masterNode DomainProxy No No The first node in the list of
allocated nodes for this
job. For TORQUE jobs,
this represents the
'mother superior'.

memorySecondsDedicat
ed

Double No No The memory seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

memorySecondsUtilized Double No No The memory seconds
utilized by the job as
reported by its resource
manager. Not all resource
managers provide this
information.

messages Set<Message> No Yes The list of messages
associated with the job.
The 'message' field is valid
during PUT.

migrateCount Integer No No The number of times the
job has been migrated.

minimumPreemptTime Long No No The minimum length of
time, in seconds, an active
job must be running
before it is eligible for
preemption.

mwmName String No No The name of the Moab
Workload Manager
instance that owns this
job.

name String No No The name of this job. This
name is unique per
instance of Moab

Chapter 8: References

600 8.4 Resources Reference

8.4 Resources Reference 601

Field Name Type PO
ST

PU
T Description

Workload Manager (i.e.,
not globally).

nodesExcluded Set<Domain
Proxy>

Yes No The list of nodes that
should not be considered
for this job.

nodesRequested Set<Domain
Proxy>

Yes No The exact set, superset, or
subset of nodes where this
job must run (see also
nodesRequestedPolicy).

nodesRequestedPolicy JobHost
ListMode

Yes No Indicates an exact set,
superset, or subset of
nodes where the job must
run. Only relevant if
nodesRequested is
provided (see also
nodesRequested).

partitionAccessList Set<String> No No The list of partitions that
this job can access.

partitionAccessListRequ
ested

Set<String> Yes Yes The list of partitions that
this job has requested.

partitionAccessList
Scheduler

Set<String> No No The feasible partition
access list built by the
scheduler.

preemptCount Integer No No The number of times the
job has been preempted.

priorities JobPriority Yes Yes The list of priorities for
the job.

processorSecondsDedic
ated

Double No No The processor seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this

Chapter 8: References

Field Name Type PO
ST

PU
T Description

information.

processorSecondsLimit Double No No The limit for
processorSecondsUtilized.

processorSecondsUtiliz
ed

Double No No The processor seconds
utilized by the job as
reported by its resource
manager. Not all resource
managers provide this
information.

prologScript String Yes No The path to the TORQUE
prolog script.

queueStatus JobQueue
Status

No No The status of the job in its
queue.

rank Integer No No The index of this job in
the eligible queue.

rejectPolicies Set<JobReject
Policy>

No No The list of policies enabled
when a job is rejected.

requirements Set<Job
Requirement>

Yes Yes The list of items required
for this job to run. Only
JobRequirement.features
is valid during PUT.

reservationRequested DomainProxy Yes Yes The reservation that the
job requested.

resourceFailPolicy JobResource
FailPolicyType

Yes No The policy that dictates
what should happen to
the job if it is running and
at least one of the
resources it is using fails.

resourceManagerExtens
ion

String Yes No If provided during POST,
this string will be added

Chapter 8: References

602 8.4 Resources Reference

8.4 Resources Reference 603

Field Name Type PO
ST

PU
T Description

to the resource manager
extension section of the
job submission. For
example:
'bandwidth=120;queuejob
=false'
Note that the delimiter
between
resourceManagerExtensio
n elements is the
semicolon.

resourceManagers Set<Resource
Manager>

No No The list of resource
managers associated with
this job.

shellName String Yes No Declares the shell that
interprets the job script.

standardErrorFilePath String Yes No The path to the file
containing the standard
error of the job.

standardOutputFilePath String Yes No The path to the file
containing the standard
output of the job.

startCount Integer No No The number of times the
job has been started.

states JobState
Information

No No Information about the
state of the job.

submitCommandFile String No No This read-only field
contains the path to the
original commandFile as
posted to MWS during job
submission.

submitHost String No No The host from which the
job was submitted.

Chapter 8: References

Field Name Type PO
ST

PU
T Description

systemJobType
JobSystemJobT
ype

No No The type of system job.

templates Set<Domain
Proxy>

Yes No The list of all job
templates to be set on this
job.

triggers Set<String> No No The list of triggers
associated with this job.

variables Map<String,
Map>

Yes Yes The list of variables that
this job owns or sets on
completion.

virtualContainers Set<Domain
Proxy>

Yes No When submitting this job,
add it to the specified
existing virtual container.
Valid during POST, but
only one virtual container
can be specified.

JobBlock

Field Name Type POST PUT

category JobBlockCategory No No

createdDate Date No No

message String No No

partition String No No

type JobBlockType No No

Chapter 8: References

604 8.4 Resources Reference

8.4 Resources Reference 605

JobBlockCategory

Value

depend

jobBlock

migrate

JobBlockType

Value

ActivePolicy

BadUser

Dependency

EState

FairShare

Hold

IdlePolicy

LocalPolicy

NoClass

NoData

NoResource

NoTime

PartitionAccess

Priority

Chapter 8: References

Value

RMSubmissionFailure

StartDate

State

SysLimits

JobCredentials
Moab Workload Manager supports the concept of credentials, which provide a means of
attributing policy and resource access to entities such as users and groups. These
credentials allow specification of job ownership, tracking of resource usage,
enforcement of policies, and many other features.

Field Name Type POST PUT Description

account String Yes Yes The account credential is also referred to as
the project. This credential is generally
associated with a group of users along the
lines of a particular project for accounting
and billing purposes.

group String Yes No The group credential represents an
aggregation of users. User-to-group
mappings are often specified by the
operating system or resource manager and
typically map to a user's UNIX group ID.
However, user-to-group mappings may also
be provided by a security and identity
management service, or you can specify such
directly within Moab.

jobClass String Yes Yes The concept of the class credential is derived
from the resource manager class or queue
object. Classes differ from other credentials
in that they more directly impact job
attributes. In standard HPC usage, a user
submits a job to a class and this class
imposes a number of factors on the job. The
attributes of a class can be specified within
the resource manager or directly within
Moab.

Chapter 8: References

606 8.4 Resources Reference

8.4 Resources Reference 607

Field Name Type POST PUT Description

qos String No No The quality of service assigned to this job.
The concept of a quality of service (QoS)
credential is unique to Moab and is not
derived from any underlying concept or peer
service. In most cases, the QoS credential is
used to allow a site to set up a selection of
service levels for end-users to choose from
on a long-term or job-by-job basis. QoSs
differ from other credentials in that they are
centered around special access where this
access may allow use of additional services,
additional resources, or improved
responsiveness. Unique to this credential,
organizations can also choose to apply
different charge rates to the varying levels of
service available within each QoS. As QoS is
an internal credential, all QoS configuration
occurs within Moab.

qosRequested String Yes Yes The quality of service requested for this job.

user String Yes No The user credential is the fundamental
credential within a workload manager; each
job requires an association with exactly one
user. In fact, the user credential is the only
required credential in Moab; all others are
optional. In most cases, the job's user
credential is configured within or managed
by the operating system itself, although
Moab can be configured to obtain this
information from an independent security
and identity management service.

JobDates

Field Name Type POST PUT Description

completedDate Date No No

createdDate Date No No

deadlineDate Date Yes No The deadline for completion of
the job.

Chapter 8: References

Field Name Type POST PUT Description

dispatchedDate Date No No

earliestRequestedStartDate Date Yes Yes The job will start no sooner
than this date.

earliestStartDate Date No No

eligibleDate Date No No

lastCanceledDate Date No No

lastChargedDate Date No No

lastPreemptedDate Date No No

lastUpdatedDate Date No No

startDate Date No No

submitDate Date No No

terminationDate Date No No

JobDependency

Field
Name Type POST PUT Description

name String Yes No The name of the object on which the
job is dependent.

type JobDependencyType Yes No The type of job dependency. Only the
'set' type is valid for POST.

value String No No Optional string representation of the
dependency (used with variable
dependencies).

JobDependencyType
Represents the type of a job dependency. For now, only the 'set' type is supported.

Chapter 8: References

608 8.4 Resources Reference

8.4 Resources Reference 609

Value Description

set Job will wait until a variable on a Moab object is set before starting.

JobEmailNotifyType

Value Description

JobStart An email will be sent when the job starts.

JobEnd An email will be sent if the job successfully ends.

JobFail An email will be sent if the job fails.

All

JobFlag
This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource
managers and partitions.

ALLOWPOWERADJUSTMENT Allow system to dynamically adjust power.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

Chapter 8: References

Value Description

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are
available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be
preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt
other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and
system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job
granted access to all idle job reservations.

INTERACTIVE The job needs interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any
authentication.

NORESOURCES The job is a system job that does not need any
resources.

Chapter 8: References

610 8.4 Resources Reference

8.4 Resources Reference 611

Value Description

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot
be migrated elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in
individual chunks.

FORCEPROVISION Job will provision nodes, whether they already have
OS or not.

SYSTEMJOB The job is a system job, which simply runs on the
same node that Moab is running on. This is usually
used for running scripts and other executables in
workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an admin.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job
start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the
job to start later.

GRESONLY The job is requesting only generic resources, no
compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the
template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

Chapter 8: References

Value Description

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

VCMASTER Job is the master of a virtual container.

USEMOABJOBID Whether to use the Moab job ID or the resource
manager's job ID.

JOINSTDERRTOSTDOUT Join the stderr file to the stdout file.

JOINSTDOUTTOSTDERR Join the stdout file to the stderr file.

PURGEONSUCCESSONLY Only purge the job if it completed successfully.

ALLPROCS Each job compute task requests all the procs on its
node.

COMMLOCAL Each job communications are localized, with minimal
routing outside job shape.

COMMTOLERANT Each job communications are low-intensity and
insensitive to interference.

COMMTRANSPARENT Job does not generate network communication.

JobHoldReason

Value Description

Admin

NoResources

SystemLimitsExceeded

Chapter 8: References

612 8.4 Resources Reference

8.4 Resources Reference 613

Value Description

BankFailure

CannotDebitAccount

InvalidAccount

RMFailure

RMReject Resource manager rejects job execution.

PolicyViolation Job violates job size policy.

CredAccess Job cannot access requested credential.

CredHold Credential hold in place.

PreReq Job prerequisite failed.

Data Data staging cannot be completed.

Security Job security cannot be established.

MissingDependency Dependency job cannot be found.

JobHoldType

Value Description

User The user has manually placed a hold on the job.

System The Moab Workload Manager has placed a hold on the job.

Batch The batch queue has placed a hold on the job.

Defer The job has been deferred.

All During GET, All means that all hold types are set. During PUT, All can be used
to clear all hold types.

Chapter 8: References

DomainProxy
A reference to an object contained within an object. For example, a Virtual Machine
object contains a reference to the node on which it is running. That reference is
represented by this class.

Field Name Type POST PUT Description

name String Yes No The name of the object.

Message

Field Name Type POST PUT Description

count Integer No No The number of times this message has
occurred.

createdDate Date No No The date this message was created.

expireDate Date No No The date this message expires.

message String No Yes The message itself.

JobHostListMode

Value

superset

subset

exactset

JobPriority

Field
Name Type POST PUT Description

run Long No No

start Long No No

Chapter 8: References

614 8.4 Resources Reference

8.4 Resources Reference 615

Field
Name Type POST PUT Description

system Long No No

user Long Yes Yes The user-requested priority for the job. By default,
the range is between -1024 and 0. To enable priority
range from -1024 to +1023, set
ENABLEPOSUSERPRIORITY in the moab.cfg file.

JobQueueStatus

Value Description

active A job is actively running in a queue.

blocked A job has been blocked because of a policy violation or because resource
requirements cannot be met.

completed A job has completed running.

eligible A job is eligible to run but has not started yet.

JobRejectPolicy

Value

CANCEL

HOLD

IGNORE

MAIL

RETRY

Chapter 8: References

JobRequirement

Field Name Type POS
T

PU
T Description

architecture String Yes No The architecture required by
the job.

attributes Map<String,
Job
Requireme
nt
Attribute>

Yes No Required node attributes with
version number support.

dedicateAllProcessors Boolean No No Within a requirement, if
dedicateAllProcessors is true,
then all processors on the
node where the job runs will
be dedicated to the job.

features Set<String> No Yes The list of node features the
job is scheduled against.

featuresExcluded Set<String> Yes No Excluded node features. That
is, do not select nodes with
these features (see also
featuresExcludedMode).

featuresExcludedMod
e

Job
Requireme
nt
Features
Mode

Yes No Indicates whether excluded
features should be ANDed or
ORed. The default is AND. Only
relevant if featuresExcluded is
provided (see also
featuresExcluded).

featuresRequested Set<String> Yes No Requested node features (see
also featuresRequestedMode).

featuresRequestedMo
de

Job
Requireme
nt
Features
Mode

Yes No Indicates whether requested
features should be ANDed or
ORed. The default is AND. Only
relevant if featuresRequested
is provided (see also
featuresRequested).

Chapter 8: References

616 8.4 Resources Reference

8.4 Resources Reference 617

Field Name Type POS
T

PU
T Description

index Integer No No The index of the requirement,
starting with 0.

metrics Map<String,
Double>

No No Generic metrics associated
with the job as reported by the
resource manager.

nodeAccessPolicy NodeAccess
Policy

Yes No How node resources should be
accessed. Note: If the job
requirements array has more
than one element that contains
nodeAccessPolicy, only the first
occurrence will be used.

nodeAllocationPolicy Node
Allocation
Policy

Yes No How node resources should be
selected and allocated to the
job. Note: If the job
requirements array has more
than one element that contains
nodeAllocationPolicy, only the
first occurrence will be used.

nodeCount Integer Yes No The number of nodes required
by the job.

nodeSet String Yes No The requested node set of the
job. This must follow the
format
SETSELECTION:SETTYPE
[:SETLIST]

l SETSELECTION - ANYOF,
ONEOF, or FIRSTOF

l SETTYPE - FEATURE or
VARATTR

l SETLIST - For FEATURE,
a comma-separated list of
features. For VARATTR, a
key=value pair.

Examples:

l ONEOF:FEATURE:

Chapter 8: References

Field Name Type POS
T

PU
T Description

fastos,hiprio,bigm
em

l FIRSTOF:VARATTR:
datacenter
=Provo:datacenter
=SaltLake

nodes Set<Allocat
edNode>

No No Nodes that have been allocated
to meet this requirement.

operatingSystem String Yes No The operating system required
by the job.

reservation DomainPro
xy

No No The allocated reservation
(assigned after the job has a
reservation).

resourcesPerTask Map<String,
JobResourc
e>

Yes No Contains requirements for
disk, memory, processors,
swap, GPUs, and generic
resources. For disk, memory,
and swap, the unit is MB. For
each resource, the 'dedicated'
field can be set during POST.

taskCount Integer Yes No The number of tasks
(processors) required by this
job.

tasksPerNode Integer Yes No The number of tasks to map to
each node. If you specify
tasksPerNode, you must also
specify taskCount.

totalDedicatedProcess
ors

Integer No No

Chapter 8: References

618 8.4 Resources Reference

8.4 Resources Reference 619

JobRequirementAttribute

Field Name Type POST PUT Description

comparator String Yes No The comparison operator.
Values:

l >= - Greater than or
equal to

l > - Greater than
l <= - Less than
l < - Less than
l %= - Equals
l %! - Not equals
l Null - Defaults to %=
l = - (Deprecated)

Equivalent to %=

displayValue String Yes No The display value for the
required attribute.

restriction JobRequirement
AttributeRestriction

Yes No The restriction of this
attribute. Can be null, but
defaults to JobRequirement
AttributeRestriction: must.

value String Yes No The value of the required
attribute. During POST, if
value is missing, blank, or null,
do not provide a comparator.

JobRequirementAttributeRestriction
Represents a restriction for a job requirement attribute.

Value

must

JobRequirementFeaturesMode

Value

OR

Chapter 8: References

Value

AND

NodeAccessPolicy
This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs can utilize available resources.

SHAREDONLY Only jobs requesting shared node access can utilize available
resources.

SINGLEJOB Tasks from a single job can utilize available resources.

SINGLETASK A single task from a single job can run on the node.

SINGLEUSER Tasks from any jobs owned by the same user can utilize available
resources.

UNIQUEUSER Any number of tasks from a single job can allocate resources from a
node but only if the user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group can utilize node.

SINGLEACCOUNT Any number of tasks from the same account can utilize node.

SINGLECLASS Any number of tasks from the same class can utilize node.

SINGLEQOS Any number of tasks from the same QOS (quality of service) can utilize
node.

NodeAllocationPolicy
Node Allocation enumeration.

Chapter 8: References

620 8.4 Resources Reference

8.4 Resources Reference 621

Value Description

FIRSTSET

MINGLOBAL

MINLOCAL

PLUGIN

NONE No node allocation policy is specified. Moab
defaults to MINRESOURCE when this is the case.

FIRSTAVAILABLE Simple first come, first served algorithm where
nodes are allocated in the order they are presented
by the resource manager. This is a very simple,
very fast algorithm.

LASTAVAILABLE This algorithm selects resources so as to minimize
the amount of time after the job and before the
trailing reservation. This algorithm is a best fit in
time algorithm which minimizes the impact of
reservation based node-time fragmentation. It is
useful in systems where a large number of
reservations (job, standing, or administrative) are
in place.

MINRESOURCE This algorithm prioritizes nodes according to the
configured resources on each node. Those nodes
with the fewest configured resources which still
meet the job's resource constraints are selected.

CPULOAD Nodes are selected which have the maximum
amount of available, unused CPU power (i.e., [# of
CPUs] - [CPU load]). Good algorithm for
timesharing node systems. This algorithm is only
applied to jobs starting immediately. For the
purpose of future reservations, the MINRESOURCE
algorithm is used.

LOCAL This will call the locally created contrib node
allocation algorithm.

CONTIGUOUS This algorithm will allocate nodes in contiguous
(linear) blocks as required by the Compaq RMS

Chapter 8: References

Value Description

system.

MAXBALANCE This algorithm will attempt to allocate the most
'balanced' set of nodes possible to a job. In most
cases, but not all, the metric for balance of the
nodes is node speed. Therefore, if possible, nodes
with identical speeds will be allocated to the job. If
identical speed nodes cannot be found, the
algorithm will allocate the set of nodes with the
minimum node speed 'span' or range.

PRIORITY This algorithm allows a site to specify the priority
of various static and dynamic aspects of compute
nodes and allocate them with preference for higher
priority nodes. It is highly flexible allowing node
attribute and usage information to be combined
with reservation affinity.

FASTEST This algorithm will select nodes in 'fastest node
first' order. Nodes will be selected by node speed if
specified. If node speed is not specified, nodes will
be selected by processor speed. If neither is
specified, nodes will be selected in a random order.

PROCESSORLOAD Alias for CPULOAD.

NODESPEED Alias for FASTEST.

INREPORTEDORDER Alias for FIRSTAVAILABLE.

INREVERSEREPORTEDORDER Alias for LASTAVAILABLE.

CUSTOMPRIORITY Alias for PRIORITY.

PROCESSORSPEEDBALANCE Alias for MAXBALANCE.

MINIMUMCONFIGUREDRESOURCES Alias for MINRESOURCE.

CRAY3DTORUS Enable topology awareness scheduling algorithm.

Chapter 8: References

622 8.4 Resources Reference

8.4 Resources Reference 623

AllocatedNode

Field Name Type POST PUT

name String No No

taskCount Integer No No

JobResource
Represents counts of dedicated and utilized resources.

Field
Name Type POST PUT Description

dedicated Integer No No The amount of this resource that has been
allocated for running workload.

utilized Integer No No The amount of this resource that is currently
reported as utilized by resource managers.

JobResourceFailPolicyType

Value

CANCEL

FAIL

HOLD

IGNORE

NOTIFY

REQUEUE

ResourceManager

Field Name Type POST PUT

isDestination Boolean No No

Chapter 8: References

Field Name Type POST PUT

isSource Boolean No No

jobName String No No

name String No No

JobStateInformation

Field Name Type POST PUT

state JobState No No

stateExpected JobState No No

stateLastUpdatedDate Date No No

subState JobSubState No No

JobState

Value Description

Idle Eligible according to all resource manager constraints.

Starting Job is launching, executing prolog.

Running Job is executing.

Removed Job was canceled before executing.

Completed Job successfully completed execution.

Hold Job is blocked by hold.

Deferred Job has a temporary hold.

Vacated Job was canceled after partial execution.

Chapter 8: References

624 8.4 Resources Reference

8.4 Resources Reference 625

Value Description

NotQueued Job is not eligible for execution.

Unknown Job state is unknown.

Staging Staging of input/output data is currently underway.

Suspended Job is no longer executing and remains in memory on the allocated compute
nodes.

Blocked

JobSubState

Value

Epilogue

Migrated

Preempted

Prologue

JobSystemJobType

Value Description

generic Generic system job (trigger attached).

osprovision Reprovision operating system.

poweroff Power off node.

poweron Power on node.

reset Reboot node.

Related Topics

l 4.9 Jobs

Chapter 8: References

8.4.7 Fields: Job Templates

See the associated 4.10 Job Templates resource section for more information on how
to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource job-templates Permissions

Hooks filename job-templates.groovy Pre- and Post-Processing Hooks

Distinct query-supported No Distinct

Chapter 8: References

626 8.4 Resources Reference

8.4 Resources Reference 627

API version 3

JobTemplate
This class represents a job template in the Moab Workload Manager. Job templates are
used for two primary purposes: (1) to provide a means of generically matching and
categorizing jobs, and (2) to provide a means of setting arbitrary default or forced
attributes for certain jobs.

Field Name Type Description

id String The unique identifier
for this job template.

account String The account under
which this job will
run for billing
purposes.

args String Command-line
arguments that get
passed to
commandFile.

commandFile String The path to the file
that is executed
when the job runs.
This is the script that
will actually call all
the work of the job.
Can be null.

description String The description of
the job.

durationRequested Long The amount of time
(in seconds)
requested for the
job.

genericSystemJob Boolean True if this template
will instantiate a
generic system job.

inheritResources Boolean True if jobs

Chapter 8: References

Field Name Type Description

instantiated from
this template inherit
resources.

jobDependencies Set<JobTemplateDependency> The list of
dependencies for this
job template.

jobFlags Set<JobFlag> Job flags for this
template.

jobTemplateFlags Set<JobTemplateFlag> Job template flags for
this template.

jobTemplateRequirements Set<JobTemplateRequirement> The requirements for
this job template.

priority Long Relative job priority.

qos String The Quality of
Service for the job.

queue String The class or queue in
which the job will
run.

select Boolean True if job template
can be directly
requested by job at
submission.

trigger Trigger The trigger that is
typically assigned to
generic system jobs.

Chapter 8: References

628 8.4 Resources Reference

8.4 Resources Reference 629

JobTemplateDependency

Field
Name Type Description

name String The name of the template on which this
template depends.

type JobDependencyTypeVersion1 The type of the dependency.

JobDependencyTypeVersion1

Value Description

JOBSTART Job can start at any time after specified jobs have started
execution.

JOBSUCCESSFULCOMPLETE Job can be start at any time after all specified jobs have
successfully completed.

JOBFAILEDCOMPLETE Job can start at any time after any specified jobs have
completed unsuccessfully.

JOBCOMPLETE Job can start at any time after all specified jobs have
completed regardless of completion status.

BEFORE Job can start at any time before specified jobs have started
execution. Note: Only reported to Moab and then reported
back. Moab currently cannot internally handle this type of
dependency.

BEFOREANY Job can start at any time before all specified jobs have
completed regardless of completion status. Note: Only
reported to Moab and then reported back. Moab currently
cannot internally handle this type of dependency.

BEFOREOK Job can start at any time before all specified jobs have
successfully completed. Note: Only reported to Moab and
then reported back. Moab currently cannot internally
handle this type of dependency.

BEFORENOTOK Job can start at any time before any specified jobs have
completed unsuccessfully. Note: Only reported to Moab and
then reported back. Moab currently cannot internally

Chapter 8: References

Value Description

handle this type of dependency.

HIBERNATE Job was set to Hibernate mode.

SYNCWITH Job will wait until it can start simultaneously with a master
job.

SYNCCOUNT This job will wait until it can start simultaneously with
synccount jobs of type syncwith that have all specified this
synccount job is their master job.

SET Job will wait until a variable on a Moab object is set before
starting.

JobFlag
This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource
managers and partitions.

ALLOWPOWERADJUSTMENT Allow system to dynamically adjust power.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

Chapter 8: References

630 8.4 Resources Reference

8.4 Resources Reference 631

Value Description

BESTEFFORT The job will succeed if even partial resources are
available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be
preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt
other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and
system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job
granted access to all idle job reservations.

INTERACTIVE The job needs interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any
authentication.

NORESOURCES The job is a system job that does not need any
resources.

NORMSTART The job will not query a resource manager to run.

Chapter 8: References

Value Description

CLUSTERLOCKED The job is locked into the current cluster and cannot
be migrated elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in
individual chunks.

FORCEPROVISION Job will provision nodes, whether they already have
OS or not.

SYSTEMJOB The job is a system job, which simply runs on the
same node that Moab is running on. This is usually
used for running scripts and other executables in
workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an admin.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job
start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the
job to start later.

GRESONLY The job is requesting only generic resources, no
compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the
template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

Chapter 8: References

632 8.4 Resources Reference

8.4 Resources Reference 633

Value Description

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

VCMASTER Job is the master of a virtual container.

USEMOABJOBID Whether to use the Moab job ID or the resource
manager's job ID.

JOINSTDERRTOSTDOUT Join the stderr file to the stdout file.

JOINSTDOUTTOSTDERR Join the stdout file to the stderr file.

PURGEONSUCCESSONLY Only purge the job if it completed successfully.

ALLPROCS Each job compute task requests all the procs on its
node.

COMMLOCAL Each job communications are localized, with minimal
routing outside job shape.

COMMTOLERANT Each job communications are low-intensity and
insensitive to interference.

COMMTRANSPARENT Job does not generate network communication.

JobTemplateFlag
This enumeration specifies the flag types of a job template.

Value Description

GLOBALRSVACCESS

HIDDEN

HWJOB

Chapter 8: References

Value Description

PRIVATE

SYNCJOBID

TEMPLATEISDYNAMIC True if the template is dynamic (not specified via moab.cfg).

SELECT True if a job can select this template.

JobTemplateRequirement

Field Name Type Description

architecture String The architecture requirement.

diskRequirement Integer The amount of disk space required
(in MB).

genericResources Map<String,
Integer>

Consumable generic attributes
associated with individual nodes
or the special pseudo-node global,
which provides shared cluster
(floating) consumable resources.

nodeAccessPolicy NodeAccessPolicy The node access policy. How node
resources will be shared by a job.

operatingSystem String The operating system
requirement.

requiredDiskPerTask Integer Disk space (in MB).

requiredFeatures Set<String> The features required by this
template.

requiredMemoryPerTask Integer Memory (in MB).

requiredProcessorsPerTask Integer Number of processors.

requiredSwapPerTask Integer Swap space (in MB).

Chapter 8: References

634 8.4 Resources Reference

8.4 Resources Reference 635

Field Name Type Description

taskCount Integer The number of tasks required.

NodeAccessPolicy
This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs can utilize available resources.

SHAREDONLY Only jobs requesting shared node access can utilize available
resources.

SINGLEJOB Tasks from a single job can utilize available resources.

SINGLETASK A single task from a single job can run on the node.

SINGLEUSER Tasks from any jobs owned by the same user can utilize available
resources.

UNIQUEUSER Any number of tasks from a single job can allocate resources from a
node but only if the user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group can utilize node.

SINGLEACCOUNT Any number of tasks from the same account can utilize node.

SINGLECLASS Any number of tasks from the same class can utilize node.

SINGLEQOS Any number of tasks from the same QOS (quality of service) can utilize
node.

Trigger

Field Name Type Description

id String Trigger id - internal ID used by Moab to track
triggers.

Chapter 8: References

Field Name Type Description

action String For exec atype triggers, signifies executable and
arguments. For jobpreempt atype triggers, signifies
PREEMPTPOLICY to apply to jobs that are running
on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its
new value (using the same syntax and behavior as
the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal
operation to wait for trigger execution to finish.
Use caution as Moab will completely stop normal
operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time when trigger should be terminated if it has
not already been activated.

failOffset Date Time (in seconds) that the threshold condition
must exist before the trigger fires.

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and
RearmTime trigger will fire at regular intervals. Can
be used with TriggerEventType: EPOCH to create a
Standing Trigger. Defaults to false.

maxRetry Integer The number of times Action will be attempted
before the trigger is designated a failure.

multiFire Boolean Whether this trigger can fire multiple times.
Defaults to false.

name String Trigger name - can be auto assigned by Moab or
requested. Alphanumeric up to 16 characters in
length.

Chapter 8: References

636 8.4 Resources Reference

8.4 Resources Reference 637

Field Name Type Description

objectId String The ID of the object that this is attached to.

objectType String The type of object that this is attached to.

offset Date Relative time offset from event when trigger can
fire.

period TriggerPeriod Can be used in conjunction with Offset to have a
trigger fire at the beginning of the specified period.
Can be used with EType epoch to create a standing
trigger.

rearmTime Date Time between MultiFire triggers. Rearm time is
enforced from the trigger event time.

requires String Variables this trigger requires to be set or not set
before it will fire. Preceding the string with an
exclamation mark (!) indicates this variable must
NOT be set. Used in conjunction with sets to
create trigger dependencies.

sets String Variable values this trigger sets upon success or
failure. Preceding the string with an exclamation
mark (!) indicates this variable is set upon trigger
failure. Preceding the string with a caret (^)
indicates this variable is to be exported to the
parent object when the current object is destroyed
through a completion event. Used in conjunction
with requires to create trigger dependencies.

threshold String Reservation usage threshold. When reservation
usage drops below Threshold, trigger will fire.
Threshold usage support is only enabled for
reservations and applies to percent processor
utilization. gmetric thresholds are supported with
job, node, credential, and reservation triggers. See
'Threshold Triggers' in the Moab Workload
Manager Administrator Guide for more
information.

timeout Date Time allotted to this trigger before it is marked as
unsuccessful and its process (if any) killed.

Chapter 8: References

Field Name Type Description

type TriggerType The type of the trigger.

unsets String Variable this trigger destroys upon success or
failure.

TriggerActionType
This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers.

CHANGE_
PARAM

Run changeparam (NOT PERSISTENT).

JOB_
PREEMPT

Indicates that the trigger should preempt all jobs currently allocating
resources assigned to the trigger's parent object. Only apply to reservation
triggers.

MAIL Sends an email.

INTERNAL Modifies an object internally in Moab. This can be used to set a job hold, for
example.

EXEC Execute the trigger action. Typically used to run a script.

MODIFY Can modify object that trigger is attached to.

QUERY

RESERVE

SUBMIT

TriggerEventType
This enumeration specifies the event type of a trigger.

Chapter 8: References

638 8.4 Resources Reference

8.4 Resources Reference 639

Value

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

DISCOVER

LOGROLL

TriggerFlag
This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this
as a message to the trigger object.

CLEANUP If the trigger is still running when the parent object completes

Chapter 8: References

Value Description

or is canceled, the trigger will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See
'Checkpointing a Trigger' in the Moab Workload Manager
Administrator Guide for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the
globalvars flag in addition to its own name space. A specific
node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_STDIN Trigger passes its parent's object XML information into the
trigger's stdin. This only works for exec triggers with
reservation type parents.

USER The trigger will execute under the user ID of the object's
owner. If the parent object is sched, the user to run under can
be explicitly specified using the format user+<username>, for
example, flags=user+john:

GLOBAL_TRIGGER The trigger will be (or was) inserted into the global trigger
list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_SYSTEM_JOB The trigger belongs to a generic system job (for
checkpointing).

REMOVE_STD_FILES The trigger will delete stdout/stderr files after it has been
reset.

Chapter 8: References

640 8.4 Resources Reference

8.4 Resources Reference 641

Value Description

RESET_ON_MODIFY The trigger resets if the object it is attached to is modified,
even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to kill the script
when a trigger times out. This flag will instead send a SIGTERM
(kill -15) signal to kill the script. The SIGTERM signal will allow
the script to trap the signal so that the script can clean up any
residual information on the system (instead of just dying, as
with the SIGKILL signal). Note: A timed-out trigger will only
receive one kill signal. This means that if you specify this flag, a
timed-out trigger will only receive the SIGTERM signal, and
never the SIGKILL signal.

TriggerPeriod
This enumeration specifies the period of a trigger.

Value

MINUTE

HOUR

DAY

WEEK

MONTH

TriggerType
This enumeration specifies the type of the trigger.

Value Description

generic Generic trigger type.

elastic Elastic computing trigger type.

Chapter 8: References

API version 2

JobTemplate
This class represents a job template in the Moab Workload Manager. Job templates are
used for two primary purposes: (1) to provide a means of generically matching and
categorizing jobs, and (2) to provide a means of setting arbitrary default or forced
attributes for certain jobs.

Field Name Type Description

id String The unique identifier
for this job template.

account String The account under
which this job will
run for billing
purposes.

args String Command-line
arguments that get
passed to
commandFile.

commandFile String The path to the file
that is executed
when the job runs.
This is the script that
will actually call all
the work of the job.
Can be null.

description String The description of
the job.

durationRequested Long The amount of time
(in seconds)
requested for the
job.

genericSystemJob Boolean True if this template
will instantiate a
generic system job.

inheritResources Boolean True if jobs

Chapter 8: References

642 8.4 Resources Reference

8.4 Resources Reference 643

Field Name Type Description

instantiated from
this template inherit
resources.

jobDependencies Set<JobTemplateDependency> The list of
dependencies for this
job template.

jobFlags Set<JobFlag> Job flags for this
template.

jobTemplateFlags Set<JobTemplateFlag> Job template flags for
this template.

jobTemplateRequirements Set<JobTemplateRequirement> The requirements for
this job template.

priority Long Relative job priority.

qos String The Quality of
Service for the job.

queue String The class or queue in
which the job will
run.

select Boolean True if job template
can be directly
requested by job at
submission.

trigger Trigger The trigger that is
typically assigned to
generic system jobs.

Chapter 8: References

JobTemplateDependency

Field
Name Type Description

name String The name of the template on which this
template depends.

type JobDependencyTypeVersion1 The type of the dependency.

JobDependencyTypeVersion1

Value Description

JOBSTART Job can start at any time after specified jobs have started
execution.

JOBSUCCESSFULCOMPLETE Job can be start at any time after all specified jobs have
successfully completed.

JOBFAILEDCOMPLETE Job can start at any time after any specified jobs have
completed unsuccessfully.

JOBCOMPLETE Job can start at any time after all specified jobs have
completed regardless of completion status.

BEFORE Job can start at any time before specified jobs have started
execution. Note: Only reported to Moab and then reported
back. Moab currently cannot internally handle this type of
dependency.

BEFOREANY Job can start at any time before all specified jobs have
completed regardless of completion status. Note: Only
reported to Moab and then reported back. Moab currently
cannot internally handle this type of dependency.

BEFOREOK Job can start at any time before all specified jobs have
successfully completed. Note: Only reported to Moab and
then reported back. Moab currently cannot internally
handle this type of dependency.

BEFORENOTOK Job can start at any time before any specified jobs have
completed unsuccessfully. Note: Only reported to Moab and
then reported back. Moab currently cannot internally

Chapter 8: References

644 8.4 Resources Reference

8.4 Resources Reference 645

Value Description

handle this type of dependency.

HIBERNATE Job was set to Hibernate mode.

SYNCWITH Job will wait until it can start simultaneously with a master
job.

SYNCCOUNT This job will wait until it can start simultaneously with
synccount jobs of type syncwith that have all specified this
synccount job is their master job.

SET Job will wait until a variable on a Moab object is set before
starting.

JobFlag
This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource
managers and partitions.

ALLOWPOWERADJUSTMENT Allow system to dynamically adjust power.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

Chapter 8: References

Value Description

BESTEFFORT The job will succeed if even partial resources are
available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be
preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt
other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and
system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job
granted access to all idle job reservations.

INTERACTIVE The job needs interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any
authentication.

NORESOURCES The job is a system job that does not need any
resources.

NORMSTART The job will not query a resource manager to run.

Chapter 8: References

646 8.4 Resources Reference

8.4 Resources Reference 647

Value Description

CLUSTERLOCKED The job is locked into the current cluster and cannot
be migrated elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in
individual chunks.

FORCEPROVISION Job will provision nodes, whether they already have
OS or not.

SYSTEMJOB The job is a system job, which simply runs on the
same node that Moab is running on. This is usually
used for running scripts and other executables in
workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an admin.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job
start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the
job to start later.

GRESONLY The job is requesting only generic resources, no
compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the
template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

Chapter 8: References

Value Description

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

VCMASTER Job is the master of a virtual container.

USEMOABJOBID Whether to use the Moab job ID or the resource
manager's job ID.

JOINSTDERRTOSTDOUT Join the stderr file to the stdout file.

JOINSTDOUTTOSTDERR Join the stdout file to the stderr file.

PURGEONSUCCESSONLY Only purge the job if it completed successfully.

ALLPROCS Each job compute task requests all the procs on its
node.

COMMLOCAL Each job communications are localized, with minimal
routing outside job shape.

COMMTOLERANT Each job communications are low-intensity and
insensitive to interference.

COMMTRANSPARENT Job does not generate network communication.

JobTemplateFlag
This enumeration specifies the flag types of a job template.

Value Description

GLOBALRSVACCESS

HIDDEN

HWJOB

Chapter 8: References

648 8.4 Resources Reference

8.4 Resources Reference 649

Value Description

PRIVATE

SYNCJOBID

TEMPLATEISDYNAMIC True if the template is dynamic (not specified via moab.cfg).

SELECT True if a job can select this template.

JobTemplateRequirement

Field Name Type Description

architecture String The architecture requirement.

diskRequirement Integer The amount of disk space required
(in MB).

genericResources Map<String,
Integer>

Consumable generic attributes
associated with individual nodes
or the special pseudo-node global,
which provides shared cluster
(floating) consumable resources.

nodeAccessPolicy NodeAccessPolicy The node access policy. How node
resources will be shared by a job.

operatingSystem String The operating system
requirement.

requiredDiskPerTask Integer Disk space (in MB).

requiredFeatures Set<String> The features required by this
template.

requiredMemoryPerTask Integer Memory (in MB).

requiredProcessorsPerTask Integer Number of processors.

requiredSwapPerTask Integer Swap space (in MB).

Chapter 8: References

Field Name Type Description

taskCount Integer The number of tasks required.

NodeAccessPolicy
This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs can utilize available resources.

SHAREDONLY Only jobs requesting shared node access can utilize available
resources.

SINGLEJOB Tasks from a single job can utilize available resources.

SINGLETASK A single task from a single job can run on the node.

SINGLEUSER Tasks from any jobs owned by the same user can utilize available
resources.

UNIQUEUSER Any number of tasks from a single job can allocate resources from a
node but only if the user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group can utilize node.

SINGLEACCOUNT Any number of tasks from the same account can utilize node.

SINGLECLASS Any number of tasks from the same class can utilize node.

SINGLEQOS Any number of tasks from the same QOS (quality of service) can utilize
node.

Trigger

Field Name Type Description

id String Trigger id - internal ID used by Moab to track
triggers.

Chapter 8: References

650 8.4 Resources Reference

8.4 Resources Reference 651

Field Name Type Description

action String For exec atype triggers, signifies executable and
arguments. For jobpreempt atype triggers, signifies
PREEMPTPOLICY to apply to jobs that are running
on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its
new value (using the same syntax and behavior as
the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal
operation to wait for trigger execution to finish.
Use caution as Moab will completely stop normal
operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time when trigger should be terminated if it has
not already been activated.

failOffset Date Time (in seconds) that the threshold condition
must exist before the trigger fires.

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and
RearmTime trigger will fire at regular intervals. Can
be used with TriggerEventType: EPOCH to create a
Standing Trigger. Defaults to false.

maxRetry Integer The number of times Action will be attempted
before the trigger is designated a failure.

multiFire Boolean Whether this trigger can fire multiple times.
Defaults to false.

name String Trigger name - can be auto assigned by Moab or
requested. Alphanumeric up to 16 characters in
length.

Chapter 8: References

Field Name Type Description

objectId String The ID of the object that this is attached to.

objectType String The type of object that this is attached to.

offset Date Relative time offset from event when trigger can
fire.

period TriggerPeriod Can be used in conjunction with Offset to have a
trigger fire at the beginning of the specified period.
Can be used with EType epoch to create a standing
trigger.

rearmTime Date Time between MultiFire triggers. Rearm time is
enforced from the trigger event time.

requires String Variables this trigger requires to be set or not set
before it will fire. Preceding the string with an
exclamation mark (!) indicates this variable must
NOT be set. Used in conjunction with sets to
create trigger dependencies.

sets String Variable values this trigger sets upon success or
failure. Preceding the string with an exclamation
mark (!) indicates this variable is set upon trigger
failure. Preceding the string with a caret (^)
indicates this variable is to be exported to the
parent object when the current object is destroyed
through a completion event. Used in conjunction
with requires to create trigger dependencies.

threshold String Reservation usage threshold. When reservation
usage drops below Threshold, trigger will fire.
Threshold usage support is only enabled for
reservations and applies to percent processor
utilization. gmetric thresholds are supported with
job, node, credential, and reservation triggers. See
'Threshold Triggers' in the Moab Workload
Manager Administrator Guide for more
information.

timeout Date Time allotted to this trigger before it is marked as
unsuccessful and its process (if any) killed.

Chapter 8: References

652 8.4 Resources Reference

8.4 Resources Reference 653

Field Name Type Description

type TriggerType The type of the trigger.

unsets String Variable this trigger destroys upon success or
failure.

TriggerActionType
This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers.

CHANGE_
PARAM

Run changeparam (NOT PERSISTENT).

JOB_
PREEMPT

Indicates that the trigger should preempt all jobs currently allocating
resources assigned to the trigger's parent object. Only apply to reservation
triggers.

MAIL Sends an email.

INTERNAL Modifies an object internally in Moab. This can be used to set a job hold, for
example.

EXEC Execute the trigger action. Typically used to run a script.

MODIFY Can modify object that trigger is attached to.

QUERY

RESERVE

SUBMIT

TriggerEventType
This enumeration specifies the event type of a trigger.

Chapter 8: References

Value

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

DISCOVER

LOGROLL

TriggerFlag
This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this
as a message to the trigger object.

CLEANUP If the trigger is still running when the parent object completes

Chapter 8: References

654 8.4 Resources Reference

8.4 Resources Reference 655

Value Description

or is canceled, the trigger will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See
'Checkpointing a Trigger' in the Moab Workload Manager
Administrator Guide for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the
globalvars flag in addition to its own name space. A specific
node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_STDIN Trigger passes its parent's object XML information into the
trigger's stdin. This only works for exec triggers with
reservation type parents.

USER The trigger will execute under the user ID of the object's
owner. If the parent object is sched, the user to run under can
be explicitly specified using the format user+<username>, for
example, flags=user+john:

GLOBAL_TRIGGER The trigger will be (or was) inserted into the global trigger
list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_SYSTEM_JOB The trigger belongs to a generic system job (for
checkpointing).

REMOVE_STD_FILES The trigger will delete stdout/stderr files after it has been
reset.

Chapter 8: References

Value Description

RESET_ON_MODIFY The trigger resets if the object it is attached to is modified,
even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to kill the script
when a trigger times out. This flag will instead send a SIGTERM
(kill -15) signal to kill the script. The SIGTERM signal will allow
the script to trap the signal so that the script can clean up any
residual information on the system (instead of just dying, as
with the SIGKILL signal). Note: A timed-out trigger will only
receive one kill signal. This means that if you specify this flag,
a timed-out trigger will only receive the SIGTERM signal, and
never the SIGKILL signal.

TriggerPeriod
This enumeration specifies the period of a trigger.

Value

MINUTE

HOUR

DAY

WEEK

MONTH

TriggerType
This enumeration specifies the type of the trigger.

Value Description

generic Generic trigger type.

elastic Elastic computing trigger type.

Related Topics

l 4.10 Job Templates

Chapter 8: References

656 8.4 Resources Reference

8.4 Resources Reference 657

8.4.8 Fields: Metric Types

See the associated 4.11 Metric Types resource section for more information on how
to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource metric-types Permissions

Hooks filename metric-types.groovy Pre- and Post-Processing Hooks

Distinct query-supported No Distinct

API version 3

MetricType
Represents a metric visible and known to Moab Workload Manager.

Field Name Type Description

id String The unique ID of this metric type.

API version 2

MetricType
Represents a metric visible and known to Moab Workload Manager.

Field Name Type Description

id String The unique ID of this metric type.

Related Topics

l 4.11 Metric Types

Chapter 8: References

8.4.9 Fields: Nodes

See the associated 4.12 Nodes resource section for more information on how to use
this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource nodes Permissions

Hooks filename nodes.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

658 8.4 Resources Reference

8.4 Resources Reference 659

API version 3

Node
This class represents a node in the Moab Workload Manager. Moab recognizes a node
as a collection of resources with a particular set of associated attributes. This definition
is similar to the traditional notion of a node found in a Linux cluster or supercomputer
wherein a node is defined as one or more CPUs, associated memory, and possibly other
compute resources such as local disk, swap, network adapters, and software licenses.
Additionally, this node is described by various attributes such as an architecture type
or operating system. Nodes range in size from small uniprocessor PCs to large
symmetric multiprocessing (SMP) systems where a single node can consist of hundreds
of CPUs and massive amounts of memory.

Field Name Type PU
T Description

id String No The unique
identifier of this
node. Note: This
field is not user-
assigned and is
generated by the
database.

aclRules Set<NodeAclRule> No The set of access
control rules
associated with this
node.

architecture String No This node's
processor
architecture.

attributes Map<String, Map> No Attributes is a map
of attribute names
to tuples (maps)
that describe the
scheduling
attributes of a
node. Each tuple
should contain the
following entries:

l value - the
attribute value

l displayValue
- the attribute

Chapter 8: References

Field Name Type PU
T Description

display value

classes Set<String> No The classes that
this node can be
scheduled for.

featuresCustom Set<String> Yes The features this
node advertises
that are
customizable at
run-time. This can
be used to define
node sets (see also
featuresReported).

featuresReported Set<String> No The features this
node advertises
that are reported
by resource
managers or are
present in the
Moab Workload
Manager
configuration. This
can be used to
define node sets
(see also
featuresCustom).

index Integer No The index for this
node as reported
by the resource
manager.

ipAddress String No This node's IPv4
address.

jobs Set<DomainProxy> No Jobs associated
with this node.

lastUpdatedDate Date No The timestamp of

Chapter 8: References

660 8.4 Resources Reference

8.4 Resources Reference 661

Field Name Type PU
T Description

the last moment
when this node
was updated. There
is no guarantee
that all user
modifications to a
node would be
picked up. This will
also be changed
every
RMPOLLINTERVAL
even if a resource
manager does not
report information
on this node.

messages Set<Message> Yes The list of
messages attached
to this node. They
can be attached by
admins, the
resource manager
layer, or triggers.

metrics Map<String, Double> Yes Metrics are the
measurable,
quantitative, and
changing aspects of
this node. They are
used to define
workload
placement, attach
triggers, etc. There
are some built-in
metrics:

l speed - A
number from
0.0 to 1.0
describing the
relative speed
of the system
for
computational
tasks. This is a

Chapter 8: References

Field Name Type PU
T Description

composite
metric, and is
defined on a
per-site basis.

l cpuLoad -
This is the
CPU load on
this node. This
value is
defined at the
resource
manager layer
but is
generally
defined on a
per-operating
system basis.
For example,
UNIX-based
OSs use some
aspect of the
UNIX load
average, as
reported by
the resource
manager layer,
while
Windows-
based OSs use
CPU
utilization.

name String No The name of this
node. This name is
unique per
instance of Moab
Workload Manager
(i.e., not globally).

operatingSystem String Yes Describes the
current or expected
operating system
image information
for this node.

Chapter 8: References

662 8.4 Resources Reference

8.4 Resources Reference 663

Field Name Type PU
T Description

partition String Yes The partition this
node belongs to.

processorSpeed Integer No The speed, in MHz,
or the processors
on this node.

profilingEnabled Boolean No Indicates whether
historical data
gathering and
reporting is
enabled for this
node. This is also
controlled by the
same setting on the
default node (i.e.,
all nodes). If set to
false (default),
node statistics are
not gathered.

rack Integer No The rack where
this node is located
in the
datacenter/cluster.

requestId String No An ID that can be
used to track the
request that
created the node.

reservations Set<DomainProxy> No Reservations
associated with this
node.

resourceManagerMessag
es

Map<String, Map> No The resource
manager messages
for this node. Each
key is the name of
a resource
manager, and the
value is the

Chapter 8: References

Field Name Type PU
T Description

message that the
resource manager
has posted onto
the node.

resourceManagers Set<NodeResourceManage
r>

No The resource
managers that are
reporting or have
previously
reported this node.
Each object also
contains
information on the
resource manager
reports.

resources Map<String, Resource> No Contains references
of a string
representing a
resource name to a
resource object
detailing the
amount of the
resource that is
available,
configured, etc.
Each key is the
name of the
resource, which
equates to the
generic resource
identifier or one of
'processors',
'memory', 'disk', or
'swap'. This name
can be used as an
ID in the resource
types web service.

slot Integer No The slot in the rack
where this node is
located.

Chapter 8: References

664 8.4 Resources Reference

8.4 Resources Reference 665

Field Name Type PU
T Description

states NodeStateInformation Yes This node's state.
The
states.powerState
and states.state
fields can be
changed using PUT.

timeToLive Date No The time that the
node is supposed
to be retired by
Moab. Moab will
not schedule any
jobs on a node
after its time to live
has passed.

triggers Set<DomainProxy> No Triggers associated
with this node.

type NodeType No The type of this
node is governed
by the types of
resources it offers.

variables Map<String, Map> Yes Variables is a map
of key-value pairs,
synonymous but
not directly related
to environment
variables. They
provide the
mechanism to store
arbitrary metadata,
which is useful to
external systems in
memory on this
node.

virtualContainers Set<DomainProxy> No The set of virtual
containers that
directly (not
recursively)
contain this node.

Chapter 8: References

NodeAclRule
This class represents a rule that can be in Moab's access control list (ACL) for a node.
The basic NodeAclRule information is the object's name and type. The type directly
maps to a NodeAclType value. The default mechanism Moab uses to check the ACL for a
particular item is if the user or object coming in has ANY of the values in the ACL, then
the user or object is given access. If no values match the user or object in question, the
user or object is rejected access.

Field Name Type PUT Description

affinity AclAffinity Yes Reservation ACLs allow or deny
access to reserved resources but
they can also be configured to affect
a job's affinity for a particular
reservation. By default, jobs
gravitate toward reservations
through a mechanism known as
positive affinity. This mechanism
allows jobs to run on the most
constrained resources leaving other,
unreserved resources free for use
by other jobs that may not be able
to access the reserved resources.
Normally this is a desired behavior.
However, sometimes it is desirable
to reserve resources for use only as
a last resort-using the reserved
resources only when there are no
other resources available. This last
resort behavior is known as
negative affinity. Defaults to
AclAffinity: POSITIVE.

comparator ComparisonOperator Yes The type of comparison to make
against the ACL object. Defaults to
ComparisonOperator: EQUAL.

credentialLock Boolean No Matching jobs will be required to
run on the resources reserved by
this reservation. You can use this
modifier on accounts, classes,
groups, qualities of service, and
users.

excludeFromAcl Boolean No If attribute is met, the requestor is

Chapter 8: References

666 8.4 Resources Reference

8.4 Resources Reference 667

Field Name Type PUT Description

denied access regardless of any
other satisfied ACLs.

hardPolicyOnly Boolean No ACLs marked with this modifier are
ignored during soft policy
scheduling and are only considered
for hard policy scheduling once all
eligible soft policy jobs start.

requireAll Boolean No All required ACLs must be satisfied
for requestor access to be granted.

type NodeAclType Yes The type of the object that is being
granted (or denied) access.

value String Yes The name of the object that is being
granted (or denied) access.

xorWithAcl Boolean No All attributes of the type specified
other than the ones listed in the
ACL satisfy the ACL.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only
for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the

Chapter 8: References

Value Description

object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

NodeAclType
This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

Chapter 8: References

668 8.4 Resources Reference

8.4 Resources Reference 669

Value Description

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

TASKSPERNODE Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

SCHED Not supported

Chapter 8: References

Value Description

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

DomainProxy
A reference to an object contained within an object. For example, a Virtual Machine
object contains a reference to the node on which it is running. That reference is
represented by this class.

Field Name Type PUT Description

name String No The name of the object.

Message

Field Name Type PUT Description

count Integer No The number of times this message has occurred.

createdDate Date No The date this message was created.

expireDate Date No The date this message expires.

message String Yes The message itself.

NodeResourceManager

Field Name Type PUT Description

isMaster Boolean No Indicates whether this resource manager is the
'master' of this node. If true, it means that this
resource manager has the final say on all
properties reported about this node. Note that the
first resource manager to report a node is the

Chapter 8: References

670 8.4 Resources Reference

8.4 Resources Reference 671

Field Name Type PUT Description

master resource manager.

name String No The name of the resource manager, according to
Moab. This name appears in both the RMCFG
parameter, and when diagnosing resource
managers (e.g., mdiag -R).

stateReported NodeState No The state reported by this resource manager. See
the states section for more details.

NodeState
This enumeration tracks the state of a node.

Value Description

NONE The node is set to none by the resource manager.

DOWN The node is not available for workload.

IDLE The node is available for workload but is not running anything.

BUSY The node is running workload and cannot accept more.

RUNNING The node is running workload and can accept more.

DRAINED The node has been sent the drain request and has no workload on it.

DRAINING The node has been sent the drain request but still has workload on it.

FLUSH The node is being reprovisioned.

RESERVED The node is being reserved. This is an internal Moab state.

UNKNOWN The state of the node is unknown.

Resource
Represents counts of resources available, configured, etc.

Chapter 8: References

Field Name Type PUT Description

available Integer No The amount of this resource
that is currently available for
allocation to workload.

configured Integer No The amount of this resource
that is considered possible to
schedule.

dedicated Integer No The amount of this resource
that has been allocated for
running workload. When used
in a job submission, this
number is the amount of the
resource required by the job.

real Integer No The amount of this resource
that physically exists on the
node. Overcommit specifically
doesn't apply to this. Note that
overcommit currently only
applies to 'processors' and
'memory', and so, for most
cases, real and configured will
always be the same.

utilized Integer No The amount of this resource
that is currently reported as
utilized by resource managers.

NodeStateInformation

Field Name Type PUT Description

powerState NodePower Yes The state of the node's power
system, as reported by the RM layer.
Modifying the powerState is
possible, and, if Moab is configured
properly, a request will be made to
modify the power state accordingly.

powerStateExpected NodePower No The expected state of the node's
power system. If a user has

Chapter 8: References

672 8.4 Resources Reference

8.4 Resources Reference 673

Field Name Type PUT Description

requested that a node be powered
off (e.g., by modifying the
powerState attribute to NodePower:
OFF), the requested state will be
shown in this field until the state
change is completed. If there is no
pending power change request, this
will be null.

state NodePower Yes The scheduling state of the node, as
reported by the resource
management layer.

stateExpected NodePower No The scheduling state of the node, as
expected by Moab. For example,
Moab may think that a node is
'Busy' because it has allocated all
configured resources, but a resource
manager may report the state as
'Running' based on actual utilization
of the resources.

stateLastUpdatedDate Date No A timestamp recording when the
state of the node was last modified.

subState String No A text description of the state of the
node, with the intention of giving
more details. Resource Managers
may use this field to further
describe the state being reported.
Resource Managers should provide
documented meaning to the
possible sub-states that they can
report.

subStateLast String No The previous sub-state of the node
as reported by the resource
management layer.

subStateLastUpdatedDate Date No A timestamp recording when the
sub-state was last modified.

Chapter 8: References

NodePower
Represents the various options for a node's power state.

Value

NONE

ON

OFF

NodeType
Represents the type of node as reported by a resource manager.

Value Description

Compute Advertises at least processors and memory.

License Advertises licenses to license managers.

Chapter 8: References

674 8.4 Resources Reference

8.4 Resources Reference 675

API version 2

Node
This class represents a node in the Moab Workload Manager. Moab recognizes a node
as a collection of resources with a particular set of associated attributes. This definition
is similar to the traditional notion of a node found in a Linux cluster or supercomputer
wherein a node is defined as one or more CPUs, associated memory, and possibly other
compute resources such as local disk, swap, network adapters, and software licenses.
Additionally, this node is described by various attributes such as an architecture type
or operating system. Nodes range in size from small uniprocessor PCs to large
symmetric multiprocessing (SMP) systems where a single node can consist of hundreds
of CPUs and massive amounts of memory.

Field Name Type PU
T Description

id String No The unique
identifier of this
node. Note: This
field is not user-
assigned and is
generated by the
database.

aclRules Set<NodeAclRule> No The set of access
control rules
associated with this
node.

architecture String No This node's
processor
architecture.

attributes Map<String, Map> No Attributes is a map
of attribute names
to tuples (maps)
that describe the
scheduling
attributes of a
node. Each tuple
should contain the
following entries:

l value - the
attribute value

l displayValue
- the attribute

Chapter 8: References

Field Name Type PU
T Description

display value

classes Set<String> No The classes that
this node can be
scheduled for.

featuresCustom Set<String> Yes The features this
node advertises
that are
customizable at
run-time. This can
be used to define
node sets (see also
featuresReported).

featuresReported Set<String> No The features this
node advertises
that are reported
by resource
managers or are
present in the
Moab Workload
Manager
configuration. This
can be used to
define node sets
(see also
featuresCustom).

index Integer No The index for this
node as reported
by the resource
manager.

ipAddress String No This node's IPv4
address.

jobs Set<DomainProxy> No Jobs associated
with this node.

lastUpdatedDate Date No The timestamp of

Chapter 8: References

676 8.4 Resources Reference

8.4 Resources Reference 677

Field Name Type PU
T Description

the last moment
when this node
was updated. There
is no guarantee
that all user
modifications to a
node would be
picked up. This will
also be changed
every
RMPOLLINTERVAL
even if a resource
manager does not
report information
on this node.

messages Set<Message> Yes The list of
messages attached
to this node. They
can be attached by
admins, the
resource manager
layer, or triggers.

metrics Map<String, Double> Yes Metrics are the
measurable,
quantitative, and
changing aspects of
this node. They are
used to define
workload
placement, attach
triggers, etc. There
are some built-in
metrics:

l speed - A
number from
0.0 to 1.0
describing the
relative speed
of the system
for
computational
tasks. This is a

Chapter 8: References

Field Name Type PU
T Description

composite
metric, and is
defined on a
per-site basis.

l cpuLoad -
This is the
CPU load on
this node. This
value is
defined at the
resource
manager layer
but is
generally
defined on a
per-operating
system basis.
For example,
UNIX-based
OSs use some
aspect of the
UNIX load
average, as
reported by
the resource
manager layer,
while
Windows-
based OSs use
CPU
utilization.

name String No The name of this
node. This name is
unique per
instance of Moab
Workload Manager
(i.e., not globally).

operatingSystem String Yes Describes the
current or expected
operating system
image information
for this node.

Chapter 8: References

678 8.4 Resources Reference

8.4 Resources Reference 679

Field Name Type PU
T Description

partition String Yes The partition this
node belongs to.

processorSpeed Integer No The speed, in MHz,
or the processors
on this node.

profilingEnabled Boolean No Indicates whether
historical data
gathering and
reporting is
enabled for this
node. This is also
controlled by the
same setting on the
default node (i.e.,
all nodes). If set to
false (default),
node statistics are
not gathered.

rack Integer No The rack where
this node is located
in the
datacenter/cluster.

requestId String No An ID that can be
used to track the
request that
created the node.

reservations Set<DomainProxy> No Reservations
associated with this
node.

resourceManagerMessag
es

Map<String, Map> No The resource
manager messages
for this node. Each
key is the name of
a resource
manager, and the
value is the

Chapter 8: References

Field Name Type PU
T Description

message that the
resource manager
has posted onto
the node.

resourceManagers Set<NodeResourceManage
r>

No The resource
managers that are
reporting or have
previously
reported this node.
Each object also
contains
information on the
resource manager
reports.

resources Map<String, Resource> No Contains references
of a string
representing a
resource name to a
resource object
detailing the
amount of the
resource that is
available,
configured, etc.
Each key is the
name of the
resource, which
equates to the
generic resource
identifier or one of
'processors',
'memory', 'disk', or
'swap'. This name
can be used as an
ID in the resource
types web service.

slot Integer No The slot in the rack
where this node is
located.

Chapter 8: References

680 8.4 Resources Reference

8.4 Resources Reference 681

Field Name Type PU
T Description

states NodeStateInformation Yes This node's state.
The
states.powerState
and states.state
fields can be
changed using PUT.

timeToLive Date No The time that the
node is supposed
to be retired by
Moab. Moab will
not schedule any
jobs on a node
after its time to live
has passed.

triggers Set<DomainProxy> No Triggers associated
with this node.

type NodeType No The type of this
node is governed
by the types of
resources it offers.

variables Map<String, Map> Yes Variables is a map
of key-value pairs,
synonymous but
not directly related
to environment
variables. They
provide the
mechanism to store
arbitrary metadata,
which is useful to
external systems in
memory on this
node.

virtualContainers Set<DomainProxy> No The set of virtual
containers that
directly (not
recursively)
contain this node.

Chapter 8: References

NodeAclRule
This class represents a rule that can be in Moab's access control list (ACL) for a node.
The basic NodeAclRule information is the object's name and type. The type directly
maps to a NodeAclType value. The default mechanism Moab uses to check the ACL for a
particular item is if the user or object coming in has ANY of the values in the ACL, then
the user or object is given access. If no values match the user or object in question, the
user or object is rejected access.

Field Name Type PUT Description

affinity AclAffinity Yes Reservation ACLs allow or deny
access to reserved resources but
they can also be configured to affect
a job's affinity for a particular
reservation. By default, jobs
gravitate toward reservations
through a mechanism known as
positive affinity. This mechanism
allows jobs to run on the most
constrained resources leaving other,
unreserved resources free for use
by other jobs that may not be able
to access the reserved resources.
Normally this is a desired behavior.
However, sometimes it is desirable
to reserve resources for use only as
a last resort-using the reserved
resources only when there are no
other resources available. This last
resort behavior is known as
negative affinity. Defaults to
AclAffinity: POSITIVE.

comparator ComparisonOperator Yes The type of comparison to make
against the ACL object. Defaults to
ComparisonOperator: EQUAL.

credentialLock Boolean No Matching jobs will be required to
run on the resources reserved by
this reservation. You can use this
modifier on accounts, classes,
groups, qualities of service, and
users.

excludeFromAcl Boolean No If attribute is met, the requestor is

Chapter 8: References

682 8.4 Resources Reference

8.4 Resources Reference 683

Field Name Type PUT Description

denied access regardless of any
other satisfied ACLs.

hardPolicyOnly Boolean No ACLs marked with this modifier are
ignored during soft policy
scheduling and are only considered
for hard policy scheduling once all
eligible soft policy jobs start.

requireAll Boolean No All required ACLs must be satisfied
for requestor access to be granted.

type NodeAclType Yes The type of the object that is being
granted (or denied) access.

value String Yes The name of the object that is being
granted (or denied) access.

xorWithAcl Boolean No All attributes of the type specified
other than the ones listed in the
ACL satisfy the ACL.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only
for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the

Chapter 8: References

Value Description

object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

NodeAclType
This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

Chapter 8: References

684 8.4 Resources Reference

8.4 Resources Reference 685

Value Description

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

TASKSPERNODE Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

SCHED Not supported

Chapter 8: References

Value Description

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

DomainProxy
A reference to an object contained within an object. For example, a Virtual Machine
object contains a reference to the node on which it is running. That reference is
represented by this class.

Field Name Type PUT Description

name String No The name of the object.

Message

Field Name Type PUT Description

count Integer No The number of times this message has occurred.

createdDate Date No The date this message was created.

expireDate Date No The date this message expires.

message String Yes The message itself.

NodeResourceManager

Field Name Type PUT Description

isMaster Boolean No Indicates whether this resource manager is the
'master' of this node. If true, it means that this
resource manager has the final say on all
properties reported about this node. Note that the
first resource manager to report a node is the

Chapter 8: References

686 8.4 Resources Reference

8.4 Resources Reference 687

Field Name Type PUT Description

master resource manager.

name String No The name of the resource manager, according to
Moab. This name appears in both the RMCFG
parameter, and when diagnosing resource
managers (e.g., mdiag -R).

stateReported NodeState No The state reported by this resource manager. See
the NodeState section for more details.

NodeState
This enumeration tracks the state of a node.

Value Description

NONE The node is set to none by the resource manager.

DOWN The node is not available for workload.

IDLE The node is available for workload but is not running anything.

BUSY The node is running workload and cannot accept more.

RUNNING The node is running workload and can accept more.

DRAINED The node has been sent the drain request and has no workload on it.

DRAINING The node has been sent the drain request but still has workload on it.

FLUSH The node is being reprovisioned.

RESERVED The node is being reserved. This is an internal Moab state.

UNKNOWN The state of the node is unknown.

Resource
Represents counts of resources available, configured, etc.

Chapter 8: References

Field Name Type PUT Description

available Integer No The amount of this resource
that is currently available for
allocation to workload.

configured Integer No The amount of this resource
that is considered possible to
schedule.

dedicated Integer No The amount of this resource
that has been allocated for
running workload. When used
in a job submission, this
number is the amount of the
resource required by the job.

real Integer No The amount of this resource
that physically exists on the
node. Overcommit specifically
doesn't apply to this. Note that
overcommit currently only
applies to 'processors' and
'memory', and so, for most
cases, real and configured will
always be the same.

utilized Integer No The amount of this resource
that is currently reported as
utilized by resource managers.

NodeStateInformation

Field Name Type PUT Description

powerState NodePower Yes The state of the node's power
system, as reported by the RM layer.
Modifying the powerState is
possible, and, if Moab is configured
properly, a request will be made to
modify the power state accordingly.

powerStateExpected NodePower No The expected state of the node's
power system. If a user has

Chapter 8: References

688 8.4 Resources Reference

8.4 Resources Reference 689

Field Name Type PUT Description

requested that a node be powered
off (e.g., by modifying the
powerState attribute to NodePower:
OFF), the requested state will be
shown in this field until the state
change is completed. If there is no
pending power change request, this
will be null.

state NodeState Yes The scheduling state of the node, as
reported by the resource
management layer.

stateExpected NodeState No The scheduling state of the node, as
expected by Moab. For example,
Moab may think that a node is
'Busy' because it has allocated all
configured resources, but a resource
manager may report the state as
'Running' based on actual utilization
of the resources.

stateLastUpdatedDate Date No A timestamp recording when the
state of the node was last modified.

subState String No A text description of the state of the
node, with the intention of giving
more details. Resource Managers
may use this field to further
describe the state being reported.
Resource Managers should provide
documented meaning to the
possible sub-states that they can
report.

subStateLast String No The previous sub-state of the node
as reported by the resource
management layer.

subStateLastUpdatedDate Date No A timestamp recording when the
sub-state was last modified.

Chapter 8: References

NodePower
Represents the various options for a node's power state.

Value

NONE

ON

OFF

NodeType
Represents the type of node as reported by a resource manager.

Value Description

Compute Advertises at least processors and memory.

License Advertises licenses to license managers.

Related Topics

l 4.12 Nodes

8.4.10 Fields: Notification Conditions

See the associated 4.13 Notification Conditions resource section for more information
on how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource notification-conditions Permissions

Hooks filename notification-
conditions.groovy

Pre- and Post-Processing
Hooks

Distinct query-
supported

Yes Distinct

Chapter 8: References

690 8.4 Resources Reference

8.4 Resources Reference 691

API version 3

NotificationCondition
A notification condition is related to an Event but differs in three distinct areas:

l Notification conditions are a persistent condition of the system or a component
rather than a single occurrence.

o They are ongoing rather than reoccurring, which is why they are generated
from Notification Conditions.

o They can be observed many times, but the condition is always the same.
o A good test for this is if something 'is' wrong rather than something 'went'
wrong.

l Notification conditions can be acted on to result in a resolved state, meaning the
admin or user can and must take actions to 'fix' the condition or problem.

l Notification conditions contain state information based on admin or user input,
meaning that they contain information about the condition (similar to events) but
also contain the 'status' of the admin's view of the notification, whether it is
currently open, dismissed, or ignored.

In general, questions can be asked to ascertain whether an Event or a Notification
Condition is the right fit for an occurrence. These questions, along with some sample
situations, are provided below.

l Is the occurrence the root cause of a potentially ongoing condition?
o A VM migration failed because the VM's state was unknown. The root cause
was that the state was unknown, not that the VM migration failed.
Therefore, VM migration failed would be an event, while the unknown state
would be a notification condition.

o A VM service provision fails because there are no hypervisors that satisfy
the requirements. This would be an event. Note that there may be a
notification related to this failure, such as a service template requires a
feature that does not exist on any hypervisors in the system, but this would
be distinctly detected and managed from the provision failure event.

o A request to MWS failed because the connection between MWM and
MongoDB was misconfigured. The failed request can be represented as an
event, but a notification condition should exist that the connection between
MWM and MongoDB was down.

l Can an admin or user affect the outcome of the occurrence?
o The outcome of a VM migration failing is in the past and cannot be changed
by the admin. However, the outcome of a future VM migration can be
changed when the admin resolves the root problem (i.e., VM state is

Chapter 8: References

unknown).

A notification condition is an observed condition for which notifications are created.
These conditions are created or updated on every PUT request based on the
NotificationCondition.escalationLevel, NotificationCondition.origin,
NotificationCondition.message, NotificationCondition.objectType, and
NotificationCondition.objectId fields. When notifications are requested, these observed
conditions are used to create the notifications for the requesting user.
While notification conditions cannot be deleted, they 'expire' after a specified amount of
time and are no longer considered as active conditions for which notifications are
created.

Field Name Type PUT Description

id String No The identifier of the condition.

createdDate Date No The date that the condition first
started appearing.

details Map<String,
Map>

No Arbitrary storage of details for this
notification. This could include
'pluginType', 'pluginId', etc.

escalationLevel EscalationLevel No The escalation level of the condition.
This indicates who should care about
the condition or who can respond to
it. This CANNOT be EscalationLevel:
INTERNAL.

expirationDate Date No The date when the condition is
considered 'expired' and notifications
are no longer created for it. This is
typically set using the
expirationDuration field.

expirationDuration Long No The duration in seconds that may pass
before a notification will not be
created for a user. Effectively, this can
disable notifications from being
created if they are too old. When this
field is set, it will set the
expirationDate field automatically
each time the condition is updated or
on creation. This field must be set to 1

Chapter 8: References

692 8.4 Resources Reference

8.4 Resources Reference 693

Field Name Type PUT Description

or greater or else set to null.

message String No A message detailing the notification
and why it exists, with possible action
items.

objectId String No The identifier of the object that this
notification affects, such as 'node1' or
'vm1'.

objectType String No The object type that this notification
affects, such as 'Node', 'VM', 'System',
etc.

observedDate Date No The latest date that the condition was
observed. If this field is not set in an
update request, it will automatically
be set to the current date.

origin String No The origin of the notification.

EscalationLevel

Value

USER

POWER_USER

ADMIN

INTERNAL

Related Topics

l 4.13 Notification Conditions

Chapter 8: References

8.4.11 Fields: Notifications

See the associated 4.14 Notifications resource section for more information on how to
use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource notifications Permissions

Hooks filename notifications.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

694 8.4 Resources Reference

8.4 Resources Reference 695

API version 3

Notification
Notifications, while related to Events, are used for different purposes. See Notification
Condition for more information on when notifications should be used as opposed to
events.
Notifications are a per-user representation of all notification conditions present in the
system at any one time. When an admin or user requests this resource, notifications are
automatically created from the notification conditions that they have access to
(determined by the NotificationCondition escalationLevel fields).

Notifications are expected to contain messages and details that can be understood by a
user or admin depending on the escalation level, and contain fields that control whether
the user or admin will be notified of future updates to their corresponding condition.
Notifications cannot be deleted but they can be marked as ignored (see
Notification.ignoredDate) or dismissed (see Notification.dismissedDate).

Field Name Type PUT Description

id String No The identifier of the notification.

conditionId String No The identifier of the NotificationCondition from
which this notification was created.

createdDate Date No The date that the notification condition first
appeared.

details Map<String,
Map>

No Arbitrary storage of details for this notification.
This could include 'pluginType', 'pluginId', etc.

dismissedDate Date No The date that the notification was dismissed by
a user or admin, meaning that they
acknowledged the notification and wanted to
know of future updates to this notification. This
field is cleared every time the attached
notification condition is updated/observed
again (see also conditionId).

ignoredDate Date No The date that the notification was ignored by a
user or admin, meaning that they
acknowledged the notification now and in the
future and did not want to know of any
updates. This field is never cleared, even if the
attached notification condition is

Chapter 8: References

Field Name Type PUT Description

updated/observed again.

message String No A message detailing the notification and why it
exists, with possible action items.

objectId String No The identifier of the object that this notification
affects, such as 'node1' or 'vm1'.

objectType String No The object type that this notification affects,
such as 'Node', 'VM', 'System', etc.

observedDate Date No The latest date that the notification condition
was observed. If this field, ignoredDate, and
dismissedDate are not set during an update
(i.e., a user/admin is not ignoring or dismissing
the notification), this field will automatically be
set to the current date.

origin String No The origin of the notification.

user String No The user that this notification was created for.

Related Topics

l 4.14 Notifications

8.4.12 Fields: Plugins

See the associated 4.16 Plugins resource section for more information on how to use
this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource plugins Permissions

Hooks filename plugins.groovy Pre- and Post-Processing Hooks

Chapter 8: References

696 8.4 Resources Reference

8.4 Resources Reference 697

Type Value Additional Information

Distinct query-supported No Distinct

Chapter 8: References

API version 3

PluginInstance
This class represents a configured plugin created from a plugin type.

Field Name Type POST PUT Description

id String Yes No Unique identifier for the plugin. Must
contain at least one letter and must
also start with a letter. Reserved IDs
are 'all' and 'moab'. If these are used, an
error will be returned.

autoStart Boolean Yes Yes Whether the plugin should start
automatically when created.

config Map<String,
Map>

Yes Yes The configuration of the plugin. Plugin
types may define constraints on the
configuration, therefore we recommend
viewing the plugin type's
documentation for more information
on required and optional fields.
Regardless, the plugin configuration
supports arbitrary keys and values.

dateCreated Date No No The date that this plugin was created.

lastPollDate Date No No The date of the last polling event that
occurred. This may be null if the plugin
is in the STOPPED state or has not yet
been polled.

lastUpdated Date No No The date that this plugin was last
updated.

nextPollDate Date No No The date of the next polling event that
is scheduled to occur. This may be null
if the plugin is in the STOPPED state.

pluginType String Yes No The plugin name as in Native or
Example for the plugin called
ExamplePlugin.

pollInterval Integer Yes Yes The polling interval to use for the

Chapter 8: References

698 8.4 Resources Reference

8.4 Resources Reference 699

Field Name Type POST PUT Description

plugin in seconds. This is ignored if the
plugin type does not support polling.

precedence Long Yes Yes The precedence of this plugin, with the
lowest value being the highest
precedence. Minimum of 1. This is used
when doing data consolidation when
reporting current state data. Lower
numbers results in a higher precedence
(i.e., 1 is higher precedence than 10).
If not specified during creation, this will
be automatically set to 1 for the first
plugin created, then 1 greater for each
subsequently created plugin (i.e., 1 for
plugin1, 2 for plugin2, etc.). It is always
set to 1 greater than the plugin with
the greatest precedence number (i.e.,
11 if two plugins exist with precedence
1 and 10).

state PluginState No No The current state of the plugin. Defaults
to PluginState: STOPPED.

PluginState
Represents the current state of a plugin.

Value Description

STOPPED The plugin is created and ready for use but is not currently receiving any
events.

STARTED The plugin is currently receiving events and is working correctly.

PAUSED The plugin is currently not receiving any events but is also not stopped. This
should be used when polling or other events should stop only temporarily
without firing the stop events.

ERRORED MWS has detected an error with the plugin and has automatically stopped it.
Errors could be due to the following reasons:

l An invalid configuration was detected when running the AbstractPlugin:
configure method.

Chapter 8: References

Value Description

l An unexpected exception was thrown during an event, such as during
polling.

Chapter 8: References

700 8.4 Resources Reference

8.4 Resources Reference 701

API version 2

PluginInstance
This class represents a configured plugin created from a plugin type.

Field Name Type POST PUT Description

id String Yes No Unique
identifier for
the plugin.
Must contain
at least one
letter and
must also start
with a letter.
Reserved IDs
are 'all' and
'moab'. If these
are used, an
error will be
returned.

autoStart Boolean Yes Yes Whether the
plugin should
start
automatically
when created.

config Map<String, Map> Yes Yes The
configuration
of the plugin.
Plugin types
may define
constraints on
the
configuration,
therefore we
recommend
viewing the
plugin type's
documentation
for more
information on
required and
optional fields.
Regardless, the
plugin

Chapter 8: References

Field Name Type POST PUT Description

configuration
supports
arbitrary keys
and values.

dateCreated Date No No The date that
this plugin was
created.

lastPollDate Date No No The date of the
last polling
event that
occurred. This
may be null if
the plugin is in
the STOPPED
state or has
not yet been
polled.

lastUpdated Date No No The date that
this plugin was
last updated.

nextPollDate Date No No The date of the
next polling
event that is
scheduled to
occur. This
may be null if
the plugin is in
the STOPPED
state.

pluginType String Yes No The plugin
name as in
Native or
Example for
the plugin
called
ExamplePlugin.

pollInterval Integer Yes Yes The polling

Chapter 8: References

702 8.4 Resources Reference

8.4 Resources Reference 703

Field Name Type POST PUT Description

interval to use
for the plugin
in seconds.
This is ignored
if the plugin
type does not
support
polling.

precedence Long Yes Yes The
precedence of
this plugin,
with the
lowest value
being the
highest
precedence.
Minimum of 1.
This is used
when doing
data
consolidation
when
reporting
current state
data. Lower
numbers
results in a
higher
precedence
(i.e., 1 is
higher
precedence
than 10).
If not specified
during
creation, this
will be
automatically
set to 1 for the
first plugin
created, then 1
greater for
each

Chapter 8: References

Field Name Type POST PUT Description

subsequently
created plugin
(i.e., 1 for
plugin1, 2 for
plugin2, etc.).
It is always set
to 1 greater
than the plugin
with the
greatest
precedence
number (i.e.,
11 if two
plugins exist
with
precedence 1
and 10).

state PluginState No No The current
state of the
plugin.
Defaults to
PluginState:
STOPPED.

PluginState
Represents the current state of a plugin.

Value Description

STOPPED The plugin is created and ready for use but is not currently receiving any
events.

STARTED The plugin is currently receiving events and is working correctly.

PAUSED The plugin is currently not receiving any events but is also not stopped. This
should be used when polling or other events should stop only temporarily
without firing the stop events.

ERRORED MWS has detected an error with the plugin and has automatically stopped it.
Errors could be due to the following reasons:

l An invalid configuration was detected when running the AbstractPlugin:

Chapter 8: References

704 8.4 Resources Reference

8.4 Resources Reference 705

Value Description

configure method.
l An unexpected exception was thrown during an event, such as during

polling.

Related Topics

l 4.16 Plugins

8.4.13 Fields: Plugin Types

See the associated 4.17 Plugin Types resource section for more information on how
to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource plugin-types Permissions

Hooks filename plugin-types.groovy Pre- and Post-Processing Hooks

Distinct query-supported No Distinct

Chapter 8: References

API version 3

PluginType
Represents a MWS plugin type. All fields in this class are generated from plugin project
and type metadata and cannot be modified directly. Consequentially, all fields are only
valid for list/show/GET operations.

Field Name Type PUT Description

id String No The unique identifier of the plugin
type. This is based on the class
name of the plugin, for example:
Plugin Class Name -> ID
NativePlugin -> Native
MyExamplePlugin -> MyExample

author String No The main author (company or
person) of the plugin type.

commonsVersion String No A string representing the restriction
on which version of the plugin
framework (plugins-commons
dependency) is required for the
plugin type. In the format
'COMMONS_VERSION > *', meaning
that any version greater or equal to
COMMONS_VERSION is valid.

description String No The full description of the plugin
type.

documentationLink String No A full URL to the complete
documentation for the plugin type.

email String No The email of the author.

eventComponent Integer No The event component ID of the
plugin type. This should be unique
for each plugin type and should be 1
or greater.

initialPlugins Map<String,
Map>

No Represents the plugins that are
initially configured when the plugin
type is loaded. Each key represents
the plugin ID.

Chapter 8: References

706 8.4 Resources Reference

8.4 Resources Reference 707

Field Name Type PUT Description

instances List<List> No The list of plugin instances created
from this plugin type.

issueManagementLink String No A full URL to the issue management
system or project for the plugin
type.

license String No The license of this plugin type,
typically APACHE.

mwsVersion String No A string representing the restriction
on which version of MWS is
required for the plugin type. In the
format 'MWS_VERSION > *',
meaning that any version greater or
equal to MWS_VERSION is valid.

pollMethod boolean No Indicates whether the plugin type
has a defined 'poll' method (event
handler) or not.

realizedEventComponent Integer No The fully realized event component
ID of the plugin type, including the
MWS bits. This should take the
form of 0x201. If the
eventComponent is not set, this will
be 0x2FF, meaning the component
ID is an unknown plugin type.

scmLink String No A full URL to the Source Control
Management (SCM) system or
project for the plugin type.

title String No A short name describing the plugin
type.

webServices List<List> No The list of web service IDs that can
be called for this plugin type.

website String No The website of the author.

Chapter 8: References

API version 2

PluginType
Represents a MWS plugin type. All fields in this class are generated from plugin project
and type metadata and cannot be modified directly. Consequentially, all fields are only
valid for list/show/GET operations.

Field Name Type PUT Description

id String No The unique
identifier of the
plugin type. This
is based on the
class name of the
plugin, for
example:
Plugin Class
Name -> ID
NativePlugin ->
Native
MyExamplePlugin
-> MyExample

author String No The main author
(company or
person) of the
plugin type.

commonsVersion String No A string
representing the
restriction on
which version of
the plugin
framework
(plugins-
commons
dependency) is
required for the
plugin type. In
the format
'COMMONS_
VERSION > *',
meaning that any
version greater
or equal to
COMMONS_
VERSION is valid.

Chapter 8: References

708 8.4 Resources Reference

8.4 Resources Reference 709

Field Name Type PUT Description

description String No The full
description of the
plugin type.

documentationLink String No A full URL to the
complete
documentation
for the plugin
type.

email String No The email of the
author.

eventComponent Integer No The event
component ID of
the plugin type.
This should be
unique for each
plugin type and
should be 1 or
greater.

initialPlugins Map<String, Map> No Represents the
plugins that are
initially
configured when
the plugin type is
loaded. Each key
represents the
plugin ID.

instances List<List> No The list of plugin
instances created
from this plugin
type.

issueManagementLink String No A full URL to the
issue
management
system or project
for the plugin
type.

Chapter 8: References

Field Name Type PUT Description

license String No The license of
this plugin type,
typically APACHE.

mwsVersion String No A string
representing the
restriction on
which version of
MWS is required
for the plugin
type. In the
format 'MWS_
VERSION > *',
meaning that any
version greater
or equal to MWS_
VERSION is valid.

pollMethod boolean No Indicates
whether the
plugin type has a
defined 'poll'
method (event
handler) or not.

realizedEventComponent Integer No The fully realized
event component
ID of the plugin
type, including
the MWS bits.
This should take
the form of
0x201. If the
eventComponent
is not set, this
will be 0x2FF,
meaning the
component ID is
an unknown
plugin type.

scmLink String No A full URL to the
Source Control
Management

Chapter 8: References

710 8.4 Resources Reference

8.4 Resources Reference 711

Field Name Type PUT Description

(SCM) system or
project for the
plugin type.

title String No A short name
describing the
plugin type.

webServices List<List> No The list of web
service IDs that
can be called for
this plugin type.

website String No The website of
the author.

Related Topics

l 4.17 Plugin Types

8.4.14 Fields: Policies

See the associated 4.18 Policies resource section for more information on how to use
this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource policies Permissions

Hooks filename policies.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

API version 3

Policy
A Moab Workload Manager policy, which can affect scheduling decisions such as
resource allocation. A policy contains state, identifying information, a priority, and
metadata about the policy.

Field Name Type PUT Description

id String No The unique identifier for the policy. Must
contain only lowercase letters and dashes,
such as 'node-allocation'.

conflicted Boolean No Signifies whether any other policies are
currently activated that potentially conflict
with this policy. If true, it signifies a
potential conflict.

description String No The user friendly description of the policy.

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially
conflict with this policy.

priority Integer No Indicates the absolute priority of the policy
with respect to others. It is possible that
more than one policy has the same priority.
The higher the number, the greater the
priority. Minimum is 0.

state PolicyState Yes Defines the current state of the policy:
enabled or disabled. Defaults to PolicyState:
DISABLED.

tags Set<String> No A set of strings that can be used to aid in
filtering or querying policies.

types Set<String> No A set of categories or types that the policy is
included in. This can be used to filter or
query on groups of policies.

Chapter 8: References

712 8.4 Resources Reference

8.4 Resources Reference 713

NodeAllocationPolicy
Node allocation is the process of selecting the best resources to allocate to a job from a
list of available resources. Moab contains a number of allocation algorithms that
address this in the NodeAllocationPolicy.

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier
for the policy. Must
contain only
lowercase letters and
dashes, such as
'node-allocation'.

conflicted Boolean No Signifies whether any
other policies are
currently activated
that potentially
conflict with this
policy. If true, it
signifies a potential
conflict.

customPriorityFunction String Yes Defines the priority
function when the
CustomPriority
algorithm is used.

description String No The user friendly
description of the
policy.

name String No The user friendly
name of the policy.

nodeAllocationAlgorithm NodeAllocationAlgorithm Yes Configures the node
allocation algorithm
utilized when the
policy is active.
Defaults to NONE.
When ENABLED, this
must not be set to
NONE.

Chapter 8: References

Field Name Type PUT Description

potentialConflicts Set<String> No A set of policy IDs
that may potentially
conflict with this
policy.

priority Integer No Indicates the
absolute priority of
the policy with
respect to others. It
is possible that more
than one policy has
the same priority.
The higher the
number, the greater
the priority.
Minimum is 0.

state PolicyState Yes Defines the current
state of the policy:
enabled or disabled.
Defaults to
PolicyState:
DISABLED.

tags Set<String> No A set of strings that
can be used to aid in
filtering or querying
policies.

types Set<String> No A set of categories or
types that the policy
is included in. This
can be used to filter
or query on groups
of policies.

NodeAllocationAlgorithm
Represents the algorithm used to allocate Nodes when the NodeAllocationPolicy is used.

Chapter 8: References

714 8.4 Resources Reference

8.4 Resources Reference 715

Value Description

NONE

InReportedOrder Simple first come, first served algorithm where nodes
are allocated in the order they are presented by the
resource manager. This is a very simple, and very fast
algorithm.

InReverseReportedOrder The default setting. Nodes are allocated in descending
order that they are presented by the resource manager,
or the reverse of FIRSTAVAILABLE.

CustomPriority This algorithm allows a site to specify the priority of
various static and dynamic aspects of compute nodes
and allocate them with preference for higher priority
nodes. It is highly flexible allowing node attribute and
usage information to be combined with reservation
affinity. Using node allocation priority, you can specify
the node priority with
GlobalNodeAllocationPolicy.globalCustomPriorityFuncti
on.

ProcessorLoad Nodes are selected that have the maximum amount of
available, unused CPU power (number of CPUs minus
CPU load). ProcessorLoad is a good algorithm for
timesharing node systems and applies to jobs starting
immediately. For the purpose of future reservations, the
MinimumConfiguredResources algorithm is used.

MinimumConfiguredResourc
es

This algorithm prioritizes nodes according to the
configured resources on each node. Those nodes with
the fewest configured resources that still meet the job's
resource constraints are selected.

Contiguous This algorithm allocates nodes in contiguous (linear)
blocks as required by the Compaq RMS system.

ProcessorSpeedBalance This algorithm attempts to allocate the most balanced
set of nodes possible to a job. In most cases, but not all,
the metric for balance of the nodes is node procspeed.
Therefore, if possible, nodes with identical procspeeds
are allocated to the job. If identical procspeed nodes
cannot be found, the algorithm allocates the set of
nodes with the minimum node procspeed span or range.

Chapter 8: References

Value Description

NodeSpeed This algorithm selects nodes in the order of fastest node
first order. Nodes are selected by node speed if
specified. If node speed is not specified, nodes are
selected by processor speed. If neither is specified,
nodes are selected in a random order.

FairsharePolicy
Fairshare allows historical resource utilization information to be incorporated into job
feasibility and priority decisions. This feature allows site admins to set system utilization
targets for users, groups, accounts, classes, and QoS levels. Administrators can also
specify the time frame over which resource utilization is evaluated in determining
whether the goal is being reached. Parameters allow sites to specify the utilization
metric, how historical information is aggregated, and the effect of fairshare state on
scheduling behavior. You can specify fairshare targets for any credentials (such as
user, group, and class) that admins want such information to affect.

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier for the
policy. Must contain only
lowercase letters and dashes,
such as 'node-allocation'.

conflicted Boolean No Signifies whether any other
policies are currently activated
that potentially conflict with this
policy. If true, it signifies a
potential conflict.

decayFactor Double Yes The decay rate applied to past
fairshare interval when
computing effective fairshare
usage. Values can be in the range
of 0.01 to 1.0. A smaller value
causes more rapid decay causing
aged usage to contribute less to
the overall effective fairshare
usage. A value of 1.0 indicates
that no decay will occur and all
fairshare intervals will be

Chapter 8: References

716 8.4 Resources Reference

8.4 Resources Reference 717

Field Name Type PUT Description

weighted equally when
determining effective fairshare
usage.

depth Integer Yes Number of fairshare windows
factored into current fairshare
utilization. Note: The number of
available fairshare windows is
bounded by the MAX_FSDEPTH
value (32 in Moab).

description String No The user friendly description of
the policy.

intervalSeconds Long Yes The length of each fairshare
window in seconds.

name String No The user friendly name of the
policy.

potentialConflicts Set<String> No A set of policy IDs that may
potentially conflict with this
policy.

priority Integer No Indicates the absolute priority of
the policy with respect to others.
It is possible that more than one
policy has the same priority. The
higher the number, the greater
the priority. Minimum is 0.

state PolicyState Yes Defines the current state of the
policy: enabled or disabled.
Defaults to PolicyState:
DISABLED.

tags Set<String> No A set of strings that can be used
to aid in filtering or querying
policies.

types Set<String> No A set of categories or types that
the policy is included in. This can

Chapter 8: References

Field Name Type PUT Description

be used to filter or query on
groups of policies.

usageMetric FairshareUsageMetric Yes As Moab runs, it records how
available resources are used.
Each iteration, it updates
fairshare resource utilization
statistics. Resource utilization is
tracked in accordance with the
usage metric allowing various
aspects of resource consumption
information to be measured. The
usage metric allows selection of
both the types of resources to be
tracked as well as the method of
tracking. It provides the option
of tracking usage by dedicated or
consumed resources, where
dedicated usage tracks what the
scheduler assigns to the job and
consumed usage tracks what the
job actually uses.

PolicyState
Represents the state of a policy. A policy can only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

FairshareUsageMetric
The unit of tracking FairsharePolicy usage.

Value Description

NONE

DEDICATED_ Usage tracked by processor seconds dedicated to each job relative to
other processor seconds dedicated to other jobs on the system.

Chapter 8: References

718 8.4 Resources Reference

8.4 Resources Reference 719

Value Description

PROCESSOR_
SECONDS_
DELIVERED

(Useful in dedicated node environments.)

DEDICATED_
PROCESSOR_
SECONDS_
AVAILABLE

Usage tracked by processor seconds dedicated to each job relative to
all available processor seconds dedicated to other jobs on the
system. (Useful in dedicated node environments.)

DEDICATED_
PROCESSOR_
EQUIVALENT_
SECONDS_
DELIVERED

Usage tracked by processor-equivalent seconds dedicated to each job
relative to other processor-equivalent seconds dedicated to other
jobs on the system. (Useful in dedicated and shared nodes
environments).

UTILIZED_
PROCESSOR_
SECONDS_
DELIVERED

Usage tracked by processor seconds used by each job relative to
other processor seconds used by other jobs on the system. (Useful in
shared node/SMP environments.)

Chapter 8: References

API version 2

Policy
A Moab Workload Manager policy, which can affect scheduling decisions such as
resource allocation. A policy contains state, identifying information, a priority, and
metadata about the policy.

Field Name Type PUT Description

id String No The unique identifier for the policy. Must
contain only lowercase letters and dashes,
such as 'node-allocation'.

conflicted Boolean No Signifies whether any other policies are
currently activated that potentially conflict
with this policy. If true, it signifies a
potential conflict.

description String No The user friendly description of the policy.

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially
conflict with this policy.

priority Integer No Indicates the absolute priority of the policy
with respect to others. It is possible that
more than one policy has the same priority.
The higher the number, the greater the
priority. Minimum is 0.

state PolicyState Yes Defines the current state of the policy:
enabled or disabled. Defaults to PolicyState:
DISABLED.

tags Set<String> No A set of strings that can be used to aid in
filtering or querying policies.

types Set<String> No A set of categories or types that the policy is
included in. This can be used to filter or
query on groups of policies.

Chapter 8: References

720 8.4 Resources Reference

8.4 Resources Reference 721

NodeAllocationPolicy
Node allocation is the process of selecting the best resources to allocate to a job from a
list of available resources. Moab contains a number of allocation algorithms that
address this in the NodeAllocationPolicy.

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier
for the policy. Must
contain only
lowercase letters and
dashes, such as
'node-allocation'.

conflicted Boolean No Signifies whether any
other policies are
currently activated
that potentially
conflict with this
policy. If true, it
signifies a potential
conflict.

customPriorityFunction String Yes Defines the priority
function when the
CustomPriority
algorithm is used.

description String No The user friendly
description of the
policy.

name String No The user friendly
name of the policy.

nodeAllocationAlgorithm NodeAllocationAlgorithm Yes Configures the node
allocation algorithm
utilized when the
policy is active.
Defaults to NONE.
When ENABLED, this
must not be set to
NONE.

Chapter 8: References

Field Name Type PUT Description

potentialConflicts Set<String> No A set of policy IDs
that may potentially
conflict with this
policy.

priority Integer No Indicates the
absolute priority of
the policy with
respect to others. It
is possible that more
than one policy has
the same priority.
The higher the
number, the greater
the priority.
Minimum is 0.

state PolicyState Yes Defines the current
state of the policy:
enabled or disabled.
Defaults to
PolicyState:
DISABLED.

tags Set<String> No A set of strings that
can be used to aid in
filtering or querying
policies.

types Set<String> No A set of categories or
types that the policy
is included in. This
can be used to filter
or query on groups
of policies.

NodeAllocationAlgorithm
Represents the algorithm used to allocate Nodes when the NodeAllocationPolicy is used.

Chapter 8: References

722 8.4 Resources Reference

8.4 Resources Reference 723

Value Description

NONE

InReportedOrder Simple first come, first served algorithm where nodes
are allocated in the order they are presented by the
resource manager. This is a very simple, and very fast
algorithm.

InReverseReportedOrder The default setting. Nodes are allocated in descending
order that they are presented by the resource manager,
or the reverse of FIRSTAVAILABLE.

CustomPriority This algorithm allows a site to specify the priority of
various static and dynamic aspects of compute nodes
and allocate them with preference for higher priority
nodes. It is highly flexible allowing node attribute and
usage information to be combined with reservation
affinity. Using node allocation priority, you can specify
the node priority with
GlobalNodeAllocationPolicy.globalCustomPriorityFuncti
on.

ProcessorLoad Nodes are selected that have the maximum amount of
available, unused CPU power (number of CPUs minus
CPU load). ProcessorLoad is a good algorithm for
timesharing node systems and applies to jobs starting
immediately. For the purpose of future reservations, the
MinimumConfiguredResources algorithm is used.

MinimumConfiguredResourc
es

This algorithm prioritizes nodes according to the
configured resources on each node. Those nodes with
the fewest configured resources that still meet the job's
resource constraints are selected.

Contiguous This algorithm allocates nodes in contiguous (linear)
blocks as required by the Compaq RMS system.

ProcessorSpeedBalance This algorithm attempts to allocate the most balanced
set of nodes possible to a job. In most cases, but not all,
the metric for balance of the nodes is node procspeed.
Therefore, if possible, nodes with identical procspeeds
are allocated to the job. If identical procspeed nodes
cannot be found, the algorithm allocates the set of
nodes with the minimum node procspeed span or range.

Chapter 8: References

Value Description

NodeSpeed This algorithm selects nodes in the order of fastest node
first order. Nodes are selected by node speed if
specified. If node speed is not specified, nodes are
selected by processor speed. If neither is specified,
nodes are selected in a random order.

FairsharePolicy
Fairshare allows historical resource utilization information to be incorporated into job
feasibility and priority decisions. This feature allows site admins to set system utilization
targets for users, groups, accounts, classes, and QoS levels. Administrators can also
specify the time frame over which resource utilization is evaluated in determining
whether the goal is being reached. Parameters allow sites to specify the utilization
metric, how historical information is aggregated, and the effect of fairshare state on
scheduling behavior. You can specify fairshare targets for any credentials (such as
user, group, and class) that admins want such information to affect.

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier for the
policy. Must contain only
lowercase letters and dashes,
such as 'node-allocation'.

conflicted Boolean No Signifies whether any other
policies are currently activated
that potentially conflict with this
policy. If true, it signifies a
potential conflict.

decayFactor Double Yes The decay rate applied to past
fairshare interval when
computing effective fairshare
usage. Values can be in the range
of 0.01 to 1.0. A smaller value
causes more rapid decay causing
aged usage to contribute less to
the overall effective fairshare
usage. A value of 1.0 indicates
that no decay will occur and all
fairshare intervals will be

Chapter 8: References

724 8.4 Resources Reference

8.4 Resources Reference 725

Field Name Type PUT Description

weighted equally when
determining effective fairshare
usage.

depth Integer Yes Number of fairshare windows
factored into current fairshare
utilization. Note: The number of
available fairshare windows is
bounded by the MAX_FSDEPTH
value (32 in Moab).

description String No The user friendly description of
the policy.

intervalSeconds Long Yes The length of each fairshare
window in seconds.

name String No The user friendly name of the
policy.

potentialConflicts Set<String> No A set of policy IDs that may
potentially conflict with this
policy.

priority Integer No Indicates the absolute priority of
the policy with respect to others.
It is possible that more than one
policy has the same priority. The
higher the number, the greater
the priority. Minimum is 0.

state PolicyState Yes Defines the current state of the
policy: enabled or disabled.
Defaults to PolicyState:
DISABLED.

tags Set<String> No A set of strings that can be used
to aid in filtering or querying
policies.

types Set<String> No A set of categories or types that
the policy is included in. This can

Chapter 8: References

Field Name Type PUT Description

be used to filter or query on
groups of policies.

usageMetric FairshareUsageMetric Yes As Moab runs, it records how
available resources are used.
Each iteration, it updates
fairshare resource utilization
statistics. Resource utilization is
tracked in accordance with the
usage metric allowing various
aspects of resource consumption
information to be measured. The
usage metric allows selection of
both the types of resources to be
tracked as well as the method of
tracking. It provides the option
of tracking usage by dedicated or
consumed resources, where
dedicated usage tracks what the
scheduler assigns to the job and
consumed usage tracks what the
job actually uses.

PolicyState
Represents the state of a policy. A policy can only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

FairshareUsageMetric
The unit of tracking FairsharePolicy usage.

Value Description

NONE

DEDICATED_ Usage tracked by processor seconds dedicated to each job relative to
other processor seconds dedicated to other jobs on the system.

Chapter 8: References

726 8.4 Resources Reference

8.4 Resources Reference 727

Value Description

PROCESSOR_
SECONDS_
DELIVERED

(Useful in dedicated node environments.)

DEDICATED_
PROCESSOR_
SECONDS_
AVAILABLE

Usage tracked by processor seconds dedicated to each job relative to
all available processor seconds dedicated to other jobs on the
system. (Useful in dedicated node environments.)

DEDICATED_
PROCESSOR_
EQUIVALENT_
SECONDS_
DELIVERED

Usage tracked by processor-equivalent seconds dedicated to each job
relative to other processor-equivalent seconds dedicated to other
jobs on the system. (Useful in dedicated and shared nodes
environments).

UTILIZED_
PROCESSOR_
SECONDS_
DELIVERED

Usage tracked by processor seconds used by each job relative to
other processor seconds used by other jobs on the system. (Useful in
shared node/SMP environments.)

Related Topics

l 4.18 Policies

8.4.15 Fields: Principals

See the associated 4.19 Principals resource section for more information on how to
use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource principals Permissions

Hooks filename principals.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

API version 3

Principal
A principal maps to a set of ldap users, ldap groups, pam users, and/or pam groups.
MWS roles are attached to the principals to authorize the group to use the specific MWS
roles.

Field
Name Type PO

ST
P
UT Description

id String No No The unique ID of this principal.

attachedR
oles

Set<Rol
e>

Yes Ye
s

The MWS roles this principal is authorized to use.

descriptio
n

String Yes Ye
s

The principal description.

groups List<M
ap>

Yes Ye
s

The groups associated with this principal. Each
group has a name and a type. The valid types of
groups are LDAPOU, LDAPGROUP, and
PAMGROUP. Example group: {"name":
"CN=Engineering,CN=Users,DC=cor
p,DC=hpc, DC=dev","type":
"LDAPGROUP"} or {"name":
"engineering", "type":
"PAMGROUP"}

name String Yes Ye
s

The unique human-readable name of this
principal. Required during POST.

users List<M
ap>

Yes Ye
s

The users associated with this principal. Each user
has a name and type. The valid types of users are
LDAP and PAM. Example user: {"name":
"jhammon", "type": "LDAP"} or
{"name": "jhammon", "type":
"PAM"}

Role
A role defines a set of permissions that are based on the proxy-user. If no proxy user is
specified then access to objects in MWS are limited to its application permissions. For
example if the application has permission to update all resources in MWS and no proxy-
user is specified in the request then the request can access all resources in MWS.

Chapter 8: References

728 8.4 Resources Reference

8.4 Resources Reference 729

Field Name Type POST PUT Description

id String No No The unique ID of this role.

description String Yes Yes The role description.

name String Yes Yes The unique human-readable name
of this role. Required during
POST.

permissions List<Permission> Yes Yes The set of permissions enforced
based on the proxy-user.

Permission
Represents a permission.

Field Name Type POST PUT Description

id String No No The unique ID of this role.

action String No No The action that can be performed on
the resource.

administrator Boolean No No If true, grants full rights over the
given resource for the given action.
For example, if resource is 'jobs' and
action is 'update' and administrator is
true, then this permission allows the
user to update any job, not just jobs
owned by the user.

description String No No A description of this permission.

fieldPath String No No Field level ACL control, if null or '*',
all fields are accessible; otherwise
requests must match dot delimited
path. Currently only checked when
doing writable actions. For example,
attributes.*: create|update

label String No No A human readable label for this
permission.

Chapter 8: References

Field Name Type POST PUT Description

resource String No No The resource the permission applies
to.

resourceFilter Map<String,
Map>

No No A map used to limit which resource
instances this permission applies to. If
this is null then the permission will
apply to all instances of the resource.
For api permissions the filter uses
mongo query syntax.

type String No No The type of the permission. Only 'api'
type permissions are enforced.

Chapter 8: References

730 8.4 Resources Reference

8.4 Resources Reference 731

API version 2

Principal
A principal maps to a set of ldap users, ldap groups, pam users, and/or pam groups.
MWS roles are attached to the principals to authorize the group to use the specific MWS
roles.

Field Name Type POS
T

PU
T Description

id String No No The unique ID of this principal.

attachedRol
es

Set<Rol
e>

Yes Yes The MWS roles this principal is authorized to
use.

description String Yes Yes The principal description.

groups List<Ma
p>

Yes Yes The groups associated with this principal.
Each group has a name and a type. The valid
types of groups are LDAPOU, LDAPGROUP,
and PAMGROUP. Example group:
{"name": "CN=Engineering,
CN=Users,DC=corp,DC=hpc,DC=d
ev", "type": "LDAPGROUP"} or
{"name": "engineering",
"type": "PAMGROUP"}

name String Yes Yes The unique human-readable name of this
principal. Required during POST.

users List<Ma
p>

Yes Yes The users associated with this principal. Each
user has a name and type. The valid types of
users are LDAP and PAM. Example user:
{"name": "jhammon", "type":
"LDAP"} or {"name": "jhammon",
"type": "PAM"}

Role
A role defines a set of permissions that are based on the proxy-user. If no proxy user is
specified then access to objects in MWS are limited to its application permissions. For
example if the application has permission to update all resources in MWS and no proxy-
user is specified in the request then the request can access all resources in MWS.

Chapter 8: References

Field Name Type POST PUT Description

id String No No The unique ID of this role.

description String Yes Yes The role description.

name String Yes Yes The unique human-readable name
of this role. Required during
POST.

permissions List<Permission> Yes Yes The set of permissions enforced
based on the proxy-user.

Permission
Represents a permission.

Field Name Type POST PUT Description

id String No No The unique ID of this role.

action String No No The action that can be performed on
the resource.

administrator Boolean No No If true, grants full rights over the
given resource for the given action.
For example, if resource is 'jobs' and
action is 'update' and administrator is
true, then this permission allows the
user to update any job, not just jobs
owned by the user.

description String No No A description of this permission.

fieldPath String No No Field level ACL control, if null or '*',
all fields are accessible; otherwise
requests must match dot delimited
path. Currently only checked when
doing writable actions. For example,
attributes.*: create|update

label String No No A human readable label for this
permission.

Chapter 8: References

732 8.4 Resources Reference

8.4 Resources Reference 733

Field Name Type POST PUT Description

resource String No No The resource the permission applies
to.

resourceFilter Map<String,
Map>

No No A map used to limit which resource
instances this permission applies to. If
this is null then the permission will
apply to all instances of the resource.
For api permissions the filter uses
mongo query syntax.

type String No No The type of the permission. Only 'api'
type permissions are enforced.

Related Topics

l 4.19 Principals

8.4.16 Fields: Priority

See the associated 4.20 Priority resource section for more information on how to use
this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource priority Permissions

Hooks filename priority.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

API version 3

Priority

Field Name Type PUT

id Long No

attribute PriorityAttributeVersion1 No

credential PriorityCredentialVersion1 No

fairshare PriorityFairshareVersion1 No

resource PriorityResourceVersion1 No

service PriorityServiceVersion1 No

target PriorityTargetVersion1 No

usage PriorityUsageVersion1 No

PriorityAttributeVersion1

Field Name Type PUT

attribute String No

state String No

weight String No

PriorityCredentialVersion1

Field Name Type PUT

account_credential String No

class_credential String No

group_credential String No

Chapter 8: References

734 8.4 Resources Reference

8.4 Resources Reference 735

Field Name Type PUT

qos_credential String No

user_credential String No

weight String No

PriorityFairshareVersion1

Field Name Type PUT

account_credential String No

class_credential String No

group_credential String No

jobs_per_user String No

processor_seconds_per_user String No

processors_per_user String No

qos_credential String No

user_credential String No

weight String No

PriorityResourceVersion1

Field Name Type PUT

disk String No

memory String No

node String No

processor_equivalent_seconds String No

Chapter 8: References

Field Name Type PUT

swap String No

walltime String No

weight String No

PriorityServiceVersion1

Field Name Type PUT

bypass String No

policy_violation String No

queue_time String No

weight String No

x_factor String No

PriorityTargetVersion1

Field Name Type PUT

queue_time String No

weight String No

x_factor String No

PriorityUsageVersion1

Field Name Type PUT

bypass String No

policy_violation String No

Chapter 8: References

736 8.4 Resources Reference

8.4 Resources Reference 737

Field Name Type PUT

queue_time String No

weight String No

x_factor String No

Chapter 8: References

API version 2

Priority

Field Name Type PUT

id Long No

attribute PriorityAttributeVersion1 No

credential PriorityCredentialVersion1 No

fairshare PriorityFairshareVersion1 No

resource PriorityResourceVersion1 No

service PriorityServiceVersion1 No

target PriorityTargetVersion1 No

usage PriorityUsageVersion1 No

PriorityAttributeVersion1

Field Name Type PUT

attribute String No

state String No

weight String No

PriorityCredentialVersion1

Field Name Type PUT

account_credential String No

class_credential String No

group_credential String No

Chapter 8: References

738 8.4 Resources Reference

8.4 Resources Reference 739

Field Name Type PUT

qos_credential String No

user_credential String No

weight String No

PriorityFairshareVersion1

Field Name Type PUT

account_credential String No

class_credential String No

group_credential String No

jobs_per_user String No

processor_seconds_per_user String No

processors_per_user String No

qos_credential String No

user_credential String No

weight String No

PriorityResourceVersion1

Field Name Type PUT

disk String No

memory String No

node String No

processor_equivalent_seconds String No

Chapter 8: References

Field Name Type PUT

swap String No

walltime String No

weight String No

PriorityServiceVersion1

Field Name Type PUT

bypass String No

policy_violation String No

queue_time String No

weight String No

x_factor String No

PriorityTargetVersion1

Field Name Type PUT

queue_time String No

weight String No

x_factor String No

PriorityUsageVersion1

Field Name Type PUT

bypass String No

policy_violation String No

Chapter 8: References

740 8.4 Resources Reference

8.4 Resources Reference 741

Field Name Type PUT

queue_time String No

weight String No

x_factor String No

Related Topics

l 4.20 Priority

8.4.17 Fields: Report Datapoints

See the associated 4.21 Reports resource section for more information on how to use
this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource reports/datapoints Permissions

Hooks filename reports.datapoints.groovy Pre- and Post-Processing
Hooks

Distinct query-
supported

Yes Distinct

Chapter 8: References

API version 3

Datapoint
A metric that measures system state over a specified period of time. For example, a
datapoint can contain data on CPU utilization by specific users. A datapoint is generated
by the consolidation of zero or more Samples. It could be said that a datapoint
represents a smoothing of samples.

Field Name Type Description

id Long

data Map<String,
Map>

The actual consolidated sample data. This property
may be 'null' if the Report.minimumSampleSize was
not met when consolidating the datapoint.

endDate Date The ending date that the datapoint covers.

firstSampleDate Date The date of the first sample consolidated in this
datapoint (see also Sample.timestamp).

lastSampleDate Date The date of the last sample consolidated in this
datapoint (see also Sample.timestamp).

startDate Date The beginning date that the datapoint covers.

Chapter 8: References

742 8.4 Resources Reference

8.4 Resources Reference 743

API version 2

Datapoint
A metric that measures system state over a specified period of time. For example, a
datapoint can contain data on CPU utilization by specific users. A datapoint is generated
by the consolidation of zero or more Samples. It could be said that a datapoint
represents a smoothing of samples.

Field Name Type Description

id Long

data Map<String,
Map>

The actual consolidated sample data. This property
may be 'null' if the Report.minimumSampleSize was
not met when consolidating the datapoint.

endDate Date The ending date that the datapoint covers.

firstSampleDate Date The date of the first sample consolidated in this
datapoint (see also Sample.timestamp).

lastSampleDate Date The date of the last sample consolidated in this
datapoint (see also Sample.timestamp).

startDate Date The beginning date that the datapoint covers.

Related Topics

l 4.21 Reports

8.4.18 Fields: Reports

See the associated 4.21 Reports resource section for more information on how to use
this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource reports Permissions

Chapter 8: References

Type Value Additional Information

Hooks filename reports.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

744 8.4 Resources Reference

8.4 Resources Reference 745

API version 3

Report
A set of time-based values that share similar context. For example, a report can contain
data on CPU or power utilization for all nodes in a cluster.
A report is composed of metadata and a collection of Datapoints. Samples are also
associated with reports but these are consolidated using the
Report.consolidationFunction to create Datapoints.
If the datapoint documents are being truncated in any way or there are warnings about
documents being too large, it may be necessary to increase the
Report.reportDocumentSize.

Field Name Type POST Description

id String No The unique identifier for the
report. This is automatically
assigned and will be ignored if
specified duration creation.

consolidationFunction String Yes The consolidation function is the
process used to convert a set of
samples into a datapoint.
Currently the only supported
function is 'average', which is
used if none is specified.

datapointDuration Long Yes Required. How long the
datapoints are, in seconds.

datapoints List<Datapoint> Yes This is the set of datapoints that
have been consolidated for the
report or are desired to be
included in the report during
creation time. In the latter case,
these represent historical data
created outside of the reporting
framework. Only present when
getting a single report.

description String Yes A description of the report.

keepSamples Boolean Yes Controls if samples are retained
after consolidation. Defaults to
false, which means that after

Chapter 8: References

Field Name Type POST Description

consolidation, samples are
discarded.

minimumSampleSize Integer Yes If number of samples is below
this number, the datapoint data
field is 'null'. Defaults to 1.

name String Yes Required. A unique name
identifying the report. Valid
characters are all alphanumeric
characters, dashes (-), periods (.),
and underscores (_).

reportDocumentSize Long Yes The maximum size in bytes of
each datapoint document stored
for this report. This option is
provided to maximize the
amount of disk space used for a
single report. The default value
for this option is 100*1024, or
100 KB. The maximum value of
this option is 16*1024*1024
(16777216) or 16 MB, which
represents the maximum
document size in MongoDB. See
also mongodb.org. Keep in mind
that when creating a new report,
MongoDB will initialize all
needed space for all possible
datapoint documents up front.
This can easily fill a disk unless
this parameter is modified.

reportSize Long Yes Required. The size of the report
in datapoints. After this number
of datapoints is reached, the old
datapoints will be discarded.

Chapter 8: References

746 8.4 Resources Reference

https://www.mongodb.org/

8.4 Resources Reference 747

Field Name Type POST Description

Warning: On report
creation, a Mongo

collection will be initialized
that is the maximum size of
a single entry (currently 16
MB) multiplied by the
report size. Be careful in
setting a large report size
as this will quickly allocate
the entire disk if many
reports with large report
sizes are created.

Datapoint
A metric that measures system state over a specified period of time. For example, a
datapoint can contain data on CPU utilization by specific users. A datapoint is generated
by the consolidation of zero or more Samples. It could be said that a datapoint
represents a smoothing of samples.

Field Name Type POST Description

id Long No

data Map<String,
Map>

No The actual consolidated sample data. This
property may be 'null' if the
Report.minimumSampleSize was not met
when consolidating the datapoint.

endDate Date No The ending date that the datapoint covers.

firstSampleDate Date No The date of the first sample consolidated in
this datapoint (see also Sample.timestamp).

lastSampleDate Date No The date of the last sample consolidated in
this datapoint (see also Sample.timestamp).

startDate Date No The beginning date that the datapoint
covers.

Chapter 8: References

API version 2

Report
A set of time-based values that share similar context. For example, a report can contain
data on CPU or power utilization for all nodes in a cluster.
A report is composed of metadata and a collection of Datapoints. Samples are also
associated with reports but these are consolidated using the
Report.consolidationFunction to create Datapoints.
If the datapoint documents are being truncated in any way or there are warnings about
documents being too large, it may be necessary to increase the
Report.reportDocumentSize.

Field Name Type POST Description

id String No The unique identifier for the
report. This is automatically
assigned and will be ignored if
specified duration creation.

consolidationFunction String Yes The consolidation function is the
process used to convert a set of
samples into a datapoint.
Currently the only supported
function is 'average', which is
used if none is specified.

datapointDuration Long Yes Required. How long the
datapoints are, in seconds.

datapoints List<Datapoint> Yes This is the set of datapoints that
have been consolidated for the
report or are desired to be
included in the report during
creation time. In the latter case,
these represent historical data
created outside of the reporting
framework. Only present when
getting a single report.

description String Yes A description of the report.

keepSamples Boolean Yes Controls if samples are retained
after consolidation. Defaults to
false, which means that after

Chapter 8: References

748 8.4 Resources Reference

8.4 Resources Reference 749

Field Name Type POST Description

consolidation, samples are
discarded.

minimumSampleSize Integer Yes If number of samples is below
this number, the datapoint data
field is 'null'. Defaults to 1.

name String Yes Required. A unique name
identifying the report. Valid
characters are all alphanumeric
characters, dashes (-), periods (.),
and underscores (_).

reportDocumentSize Long Yes The maximum size in bytes of
each datapoint document stored
for this report. This option is
provided to maximize the
amount of disk space used for a
single report. The default value
for this option is 100*1024, or
100 KB. The maximum value of
this option is 16*1024*1024
(16777216) or 16 MB, which
represents the maximum
document size in MongoDB. See
also mongodb.org. Keep in mind
that when creating a new report,
MongoDB will initialize all
needed space for all possible
datapoint documents up front.
This can easily fill a disk unless
this parameter is modified.

reportSize Long Yes Required. The size of the report
in datapoints. After this number
of datapoints is reached, the old
datapoints will be discarded.

Chapter 8: References

https://www.mongodb.org/

Field Name Type POST Description

Warning: On report
creation, a Mongo

collection will be initialized
that is the maximum size of
a single entry (currently 16
MB) multiplied by the
report size. Be careful in
setting a large report size
as this will quickly allocate
the entire disk if many
reports with large report
sizes are created.

Datapoint
A metric that measures system state over a specified period of time. For example, a
datapoint can contain data on CPU utilization by specific users. A datapoint is generated
by the consolidation of zero or more Samples. It could be said that a datapoint
represents a smoothing of samples.

Field Name Type POST Description

id Long No

data Map<String,
Map>

No The actual consolidated sample data. This
property may be 'null' if the
Report.minimumSampleSize was not met
when consolidating the datapoint.

endDate Date No The ending date that the datapoint covers.

firstSampleDate Date No The date of the first sample consolidated in
this datapoint (see also Sample.timestamp).

lastSampleDate Date No The date of the last sample consolidated in
this datapoint (see also Sample.timestamp).

startDate Date No The beginning date that the datapoint
covers.

Chapter 8: References

750 8.4 Resources Reference

8.4 Resources Reference 751

Related Topics

l 4.21 Reports

8.4.19 Fields: Reservations

See the associated 4.22 Reservations resource section for more information on how
to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource reservations Permissions

Hooks filename reservations.groovy Pre- and Post-Processing Hooks

Distinct query-supported No Distinct

Chapter 8: References

API version 3

Reservation
A reservation is the mechanism by which Moab guarantees the availability of a set of
resources at a particular time. Each reservation consists of three major components: (1)
a set of resources, (2) a time frame, and (3) an access control list. It is a scheduler role
to ensure that the access control list is not violated during the reservation's lifetime
(that is, its time frame) on the resources listed. For example, a reservation may specify
that node002 is reserved for user Tom on Friday. The scheduler is therefore
constrained to make certain that only Tom's jobs can use node002 at any time on
Friday.

Field Name Type POS
T

PU
T Description

id String No No The unique ID of
the reservation.

accountingAccount String Yes No Accountable
Account.

accountingGroup String Yes No Accountable
Group.

accountingQOS String Yes No Accountable
QOS.

accountingUser String Yes No Accountable
User.

aclRules Set<AclRule> Yes No The set of access
control rules
associated with
this reservation.

allocatedNodeCount Integer No No The number of
allocated nodes
for this
reservation.

allocatedNodes Set<DomainProxy
Version1>

No No The nodes
allocated to the
reservation.

Chapter 8: References

752 8.4 Resources Reference

8.4 Resources Reference 753

Field Name Type POS
T

PU
T Description

allocatedProcessorCou
nt

Integer No No The number of
allocated
processors.

allocatedTaskCount Integer No No The number of
allocated tasks.

comments String Yes No Reservation's
comments or
description.

creationDate Date No No Creation date.
Automatically set
by Moab when a
user creates the
reservation.

duration Long Yes No The duration of
the reservation
(in seconds).

endDate Date Yes No The end date of
the reservation.
This is especially
useful for one-
time
reservations,
which have an
exact time for
when a
reservation ends.

excludeJobs Set<String> Yes No The list of jobs
to exclude. Client
must also set the
IGNJOBRSV
reservation flag.
Otherwise,
results are
undefined. Used
only during
reservation

Chapter 8: References

Field Name Type POS
T

PU
T Description

creation.

expireDate Date No No The date/time
when the
reservation
expires and
vacates.

flags Set<ReservationFlag> Yes No The flags
associated with
the reservation.

globalId String No No Global
reservation ID.

hostListExpression String Yes No The list of nodes
a user can select
to reserve. This
may or may not
be the nodes that
are currently
allocated to this
reservation.
Note: Either
hostListExpressi
on or taskCount
must be set to
create a
reservation.

idPrefix String Yes No The user-
specified prefix
for this
reservation. If
provided, Moab
combines the
idPrefix with an
integer, and the
combination is
the unique
identifier for this
reservation.

Chapter 8: References

754 8.4 Resources Reference

8.4 Resources Reference 755

Field Name Type POS
T

PU
T Description

isActive Boolean No No State whether or
not this
reservation is
currently active.

label String Yes No When a label is
assigned to a
reservation, the
reservation can
then be
referenced by
that label as well
as by the
reservation
name.

maxTasks Integer No No The maximum
number of tasks
for this
reservation.

messages Set<MessageVersion1> No No Messages for the
reservation.

owner EmbeddedCredential Yes No The owner of the
reservation.

partitionId String Yes No The ID of the
partition this
reservation is
for.

profile String Yes No The profile that
this reservation
is using. A profile
is a specification
of attributes that
all reservations
share. Used only
during
reservation
creation.

Chapter 8: References

Field Name Type POS
T

PU
T Description

requirements ReservationRequireme
nt

Yes No The reservation's
requirements.

reservationGroup String Yes No The reservation
group to which
the reservation
belongs.

resources Map<String, Integer> Yes No The reservation's
resources. This
field is a map,
where the key is
PROCS, MEM
DISK, SWAP, or
one or more
user-defined
keys.

startDate Date Yes No The start time
for the
reservation. This
is especially
useful for one-
time
reservations,
which have an
exact time for
when a
reservation
starts.

statistics ReservationStatistics No No The reservation's
statistical
information.

subType String Yes No The reservation
sub-type.

taskCount Integer No No The number of
tasks that must
be allocated to
satisfy the

Chapter 8: References

756 8.4 Resources Reference

8.4 Resources Reference 757

Field Name Type POS
T

PU
T Description

reservation
request. Note:
Either
hostListExpressi
on or taskCount
must be set to
create a
reservation.

trigger Trigger Yes No Trigger for
reservation. Used
only during
reservation
creation.

triggerIds Set<String> No No The IDs of the
triggers attached
to this
reservation.

uniqueIndex String No No The globally-
unique
reservation
index.

variables Map<String, Map> Yes Yes The set of
variables for this
reservation.

AclRule
This class represents a rule that can be in Moab's access control list (ACL) mechanism.
The basic AclRule information is the object's name and type. The type directly maps to
an AclType value. The default mechanism Moab uses to check the ACL for a particular
item is if the user or object coming in has ANY of the values in the ACL, then the user or
object is given access. If no values match the user or object in question, the user or
object is rejected access.

Chapter 8: References

Field Name Type POST PUT Description

affinity AclAffinity No Yes Reservation ACLs allow or
deny access to reserved
resources but they can also be
configured to affect a job's
affinity for a particular
reservation. By default, jobs
gravitate toward reservations
through a mechanism known
as positive affinity. This
mechanism allows jobs to run
on the most constrained
resources leaving other,
unreserved resources free for
use by other jobs that may not
be able to access the reserved
resources. Normally this is a
desired behavior. However,
sometimes it is desirable to
reserve resources for use only
as a last resort-using the
reserved resources only when
there are no other resources
available. This last resort
behavior is known as negative
affinity. Defaults to AclAffinity:
POSITIVE.

comparator ComparisonOperator No Yes The type of comparison to
make against the ACL object.
Defaults to
ComparisonOperator: EQUAL.

type AclType No Yes The type of the object that is
being granted (or denied)
access.

value String No Yes The name of the object that is
being granted (or denied)
access.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only
for granting access to reservations.

Chapter 8: References

758 8.4 Resources Reference

8.4 Resources Reference 759

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the
object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

Chapter 8: References

AclType
This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

Chapter 8: References

760 8.4 Resources Reference

8.4 Resources Reference 761

Value Description

QUEUE Not supported

RACK Not supported

SCHED Not supported

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

DomainProxyVersion1

Field Name Type POST PUT Description

id String No No The ID of the object.

ReservationFlag
The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this reservation but not start
during it (unless they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations, but not user or other
reservations.

CHARGE Charge the idle cycles in the accounting manager.

Chapter 8: References

Value Description

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this
reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job
(when using exclusive).

ADVRES If set, the reservation is created in advance of
needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation
when it is released.

ALLOWGRID The reservation is set up for use in a grid
environment.

ALLOWPRSV Personal reservations can be created within the
space of this standing reservation (and ONLY this
standing reservation). By default, when a standing
reservation is given the flag ALLOWPRSV, it is given
the ACL rule USER==ALL+ allowing all jobs and all
users access.

BYNAME Reservation only allows access to jobs that meet
reservation ACLs and explicitly request the
resources of this reservation using the job ADVRES
flag.

DEDICATEDNODE If set, only one active reservation is allowed on a
node.

OWNEREXCLUSIVEBF When an owner job is idle, other jobs are not
allowed to backfill.

DEDICATEDRESOURCE The reservation is only placed on resources that are
not reserved by any other reservation, including
jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one
job can run in the reservation.

Chapter 8: References

762 8.4 Resources Reference

8.4 Resources Reference 763

Value Description

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of
whether there are other reservations currently
residing on the nodes.

IGNSTATE Request ignores existing resource reservations,
allowing the reservation to be forced onto available
resources even if this conflicts with other
reservations.

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set, the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor
status for resources contained in the reservation.

PARENTLOCK The reservation can only be destroyed by
destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-administrator, non-
standing reservation, user-created reservation.

REQFULL The reservation will fail if all resources requested
cannot be allocated.

SCHEDULEVCRSV The reservation was created as part of a schedule
VC command. This pertains to reservations creating

Chapter 8: References

Value Description

while scheduling MWS Services, and these are
filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after
completion of the first job to use the reserved
resources.

SPACEFLEX The reservation is allowed to adjust resources
allocated over time in an attempt to optimize
resource utilization.

STANDINGRSV If set, the reservation was created by a standing
reservation instance.

STATIC Makes a reservation ineligible to modified or
canceled by an admin.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved
time frame in an attempt to optimize resource
utilization.

TRIGHASFIRED The reservation has one or more triggers that have
fired on it.

WASACTIVE The reservation was previously active.

BESTEFFORT Succeed even if only partial resources available.

COMMTRANSPARENT Job does not generate network communication.

MessageVersion1

Field Name Type POST PUT Description

author String No No The author of the message.

creationTime Date No No The time the message was created in epoch
time.

Chapter 8: References

764 8.4 Resources Reference

8.4 Resources Reference 765

Field Name Type POST PUT Description

expireTime Date No No The time the message will be deleted in
epoch time.

index Integer No No The index of the message relative to other
messages in Moab's memory.

message String No Yes The comment information itself.

messageCount Integer No No The number of times this message has been
displayed.

priority Double No No An optional priority that can be attached to
the comment.

EmbeddedCredential

Field Name Type POST PUT

name String No No

type CredentialType No No

CredentialType

Value

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

Chapter 8: References

ReservationRequirement
Represents all the types of requirements a user can request while creating a
reservation.

Field Name Type POST PUT Description

architecture String Yes No Required architecture.

featureList Set<String> Yes No The list of features required for this
reservation.

featureMode String No No Required feature mode.

memory Integer Yes No Required node memory, in MB.

nodeCount Integer No No Required number of nodes.

nodeIds Set<String> No No The list of node IDs required for this
reservation.

os String Yes No Required operating system.

taskCount Integer Yes No Required task count.

ReservationStatistics
Represents some basic statistical information that is kept about the usage of
reservations. All metrics that are kept track relate to processor-seconds usage.

Field Name Type POST PUT Description

blockedProcessorSeconds Long No No Number of processor seconds
included in the reservation.

reservedProcessorSeconds Long No No Number of processor seconds
blocked by jobs in the
reservation.

Chapter 8: References

766 8.4 Resources Reference

8.4 Resources Reference 767

Trigger

Field Name Type POST PUT Description

id String No No Trigger id - internal ID used by
Moab to track triggers.

action String No No For exec atype triggers, signifies
executable and arguments. For
jobpreempt atype triggers,
signifies PREEMPTPOLICY to
apply to jobs that are running on
allocated resources. For
changeparam atype triggers,
specifies the parameter to change
and its new value (using the
same syntax and behavior as the
changeparam command).

actionType TriggerActionType No No

blockTime Date No No Time (in seconds) Moab will
suspend normal operation to
wait for trigger execution to
finish. Use caution as Moab will
completely stop normal
operation until BlockTime
expires.

description String No No

eventType TriggerEventType No No

expireTime Date No No Time when trigger should be
terminated if it has not already
been activated.

failOffset Date No No Time (in seconds) that the
threshold condition must exist
before the trigger fires.

flags Set<TriggerFlag> No No

interval Boolean No No When used in conjunction with
MultiFire and RearmTime trigger

Chapter 8: References

Field Name Type POST PUT Description

will fire at regular intervals. Can
be used with TriggerEventType:
EPOCH to create a Standing
Trigger. Defaults to false.

maxRetry Integer No No The number of times Action will
be attempted before the trigger is
designated a failure.

multiFire Boolean No No Whether this trigger can fire
multiple times. Defaults to false.

name String No No Trigger name - can be auto
assigned by Moab or requested.
Alphanumeric up to 16
characters in length.

objectId String No No The ID of the object that this is
attached to.

objectType String No No The type of object that this is
attached to.

offset Date No No Relative time offset from event
when trigger can fire.

period TriggerPeriod No No Can be used in conjunction with
Offset to have a trigger fire at the
beginning of the specified period.
Can be used with EType epoch to
create a standing trigger.

rearmTime Date No No Time between MultiFire triggers.
Rearm time is enforced from the
trigger event time.

requires String No No Variables this trigger requires to
be set or not set before it will
fire. Preceding the string with an
exclamation mark (!) indicates
this variable must NOT be set.
Used in conjunction with sets

Chapter 8: References

768 8.4 Resources Reference

8.4 Resources Reference 769

Field Name Type POST PUT Description

to create trigger dependencies.

sets String No No Variable values this trigger sets
upon success or failure. Preceding
the string with an exclamation
mark (!) indicates this variable is
set upon trigger failure.
Preceding the string with a caret
(^) indicates this variable is to be
exported to the parent object
when the current object is
destroyed through a completion
event. Used in conjunction with
requires to create trigger
dependencies.

threshold String No No Reservation usage threshold.
When reservation usage drops
below Threshold, trigger will fire.
Threshold usage support is only
enabled for reservations and
applies to percent processor
utilization. gmetric thresholds
are supported with job, node,
credential, and reservation
triggers. See 'Threshold Triggers'
in the Moab Workload Manager
Administrator Guide for more
information.

timeout Date No No Time allotted to this trigger
before it is marked as
unsuccessful and its process (if
any) killed.

type TriggerType No No The type of the trigger.

unsets String No No Variable this trigger destroys
upon success or failure.

TriggerActionType
This enumeration specifies the action type of a trigger.

Chapter 8: References

Value Description

CANCEL Only apply to reservation triggers.

CHANGE_
PARAM

Run changeparam (NOT PERSISTENT).

JOB_
PREEMPT

Indicates that the trigger should preempt all jobs currently allocating
resources assigned to the trigger's parent object. Only apply to reservation
triggers.

MAIL Sends an email.

INTERNAL Modifies an object internally in Moab. This can be used to set a job hold, for
example.

EXEC Execute the trigger action. Typically used to run a script.

MODIFY Can modify object that trigger is attached to.

QUERY

RESERVE

SUBMIT

TriggerEventType
This enumeration specifies the event type of a trigger.

Value

CANCEL

CHECKPOINT

CREATE

END

EPOCH

Chapter 8: References

770 8.4 Resources Reference

8.4 Resources Reference 771

Value

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

DISCOVER

LOGROLL

TriggerFlag
This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this
as a message to the trigger object.

CLEANUP If the trigger is still running when the parent object completes
or is canceled, the trigger will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See 'Checkpointing
a Trigger' in the Moab Workload Manager Administrator Guide
for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the
globalvars flag in addition to its own name space. A specific
node to search can be specified using the following format:
globalvars+node_id

Chapter 8: References

Value Description

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_STDIN Trigger passes its parent's object XML information into the
trigger's stdin. This only works for exec triggers with
reservation type parents.

USER The trigger will execute under the user ID of the object's owner.
If the parent object is sched, the user to run under can be
explicitly specified using the format user+<username>, for
example, flags=user+john:

GLOBAL_TRIGGER The trigger will be (or was) inserted into the global trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_SYSTEM_JOB The trigger belongs to a generic system job (for checkpointing).

REMOVE_STD_FILES The trigger will delete stdout/stderr files after it has been reset.

RESET_ON_MODIFY The trigger resets if the object it is attached to is modified, even
if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to kill the script
when a trigger times out. This flag will instead send a SIGTERM
(kill -15) signal to kill the script. The SIGTERM signal will allow
the script to trap the signal so that the script can clean up any
residual information on the system (instead of just dying, as
with the SIGKILL signal). Note: A timed-out trigger will only
receive one kill signal. This means that if you specify this flag, a
timed-out trigger will only receive the SIGTERM signal, and never
the SIGKILL signal.

TriggerPeriod
This enumeration specifies the period of a trigger.

Chapter 8: References

772 8.4 Resources Reference

8.4 Resources Reference 773

Value

MINUTE

HOUR

DAY

WEEK

MONTH

TriggerType
This enumeration specifies the type of the trigger.

Value Description

generic Generic trigger type.

elastic Elastic computing trigger type.

Chapter 8: References

API version 2

Reservation
A reservation is the mechanism by which Moab guarantees the availability of a set of
resources at a particular time. Each reservation consists of three major components: (1)
a set of resources, (2) a time frame, and (3) an access control list. It is a scheduler role
to ensure that the access control list is not violated during the reservation's lifetime
(that is, its time frame) on the resources listed. For example, a reservation may specify
that node002 is reserved for user Tom on Friday. The scheduler is therefore
constrained to make certain that only Tom's jobs can use node002 at any time on
Friday.

Field Name Type POS
T

PU
T Description

id String No No The unique ID of
the reservation.

accountingAccount String Yes No Accountable
Account.

accountingGroup String Yes No Accountable
Group.

accountingQOS String Yes No Accountable QOS.

accountingUser String Yes No Accountable User.

aclRules Set<AclRule> Yes No The set of access
control rules
associated with
this reservation.

allocatedNodeCoun
t

Integer No No The number of
allocated nodes
for this
reservation.

allocatedNodes Set<DomainProxy
Version1>

No No The nodes
allocated to the
reservation.

allocatedProces
sorCount

Integer No No The number of
allocated

Chapter 8: References

774 8.4 Resources Reference

8.4 Resources Reference 775

Field Name Type POS
T

PU
T Description

processors.

allocatedTaskCount Integer No No The number of
allocated tasks.

comments String Yes No Reservation's
comments or
description.

creationDate Date No No Creation date.
Automatically set
by Moab when a
user creates the
reservation.

duration Long Yes No The duration of
the reservation
(in seconds).

endDate Date Yes No The end date of
the reservation.
This is especially
useful for one-
time reservations,
which have an
exact time for
when a
reservation ends.

excludeJobs Set<String> Yes No The list of jobs to
exclude. Client
must also set the
IGNJOBRSV
reservation flag.
Otherwise, results
are undefined.
Used only during
reservation
creation.

expireDate Date No No The date/time
when the

Chapter 8: References

Field Name Type POS
T

PU
T Description

reservation
expires and
vacates.

flags Set<ReservationFlag> Yes No The flags
associated with
the reservation.

globalId String No No Global reservation
ID.

hostListExpression String Yes No The list of nodes a
user can select to
reserve. This may
or may not be the
nodes that are
currently
allocated to this
reservation. Note:
Either
hostListExpressio
n or taskCount
must be set to
create a
reservation.

idPrefix String Yes No The user-specified
prefix for this
reservation. If
provided, Moab
combines the
idPrefix with an
integer, and the
combination is the
unique identifier
for this
reservation.

isActive Boolean No No State whether or
not this
reservation is
currently active.

Chapter 8: References

776 8.4 Resources Reference

8.4 Resources Reference 777

Field Name Type POS
T

PU
T Description

label String Yes No When a label is
assigned to a
reservation, the
reservation can
then be
referenced by that
label as well as by
the reservation
name.

maxTasks Integer No No The maximum
number of tasks
for this
reservation.

messages Set<MessageVersion1> No No Messages for the
reservation.

owner EmbeddedCredential Yes No The owner of the
reservation.

partitionId String Yes No The ID of the
partition this
reservation is for.

profile String Yes No The profile that
this reservation is
using. A profile is
a specification of
attributes that all
reservations
share. Used only
during reservation
creation.

requirements ReservationRequiremen
t

Yes No The reservation's
requirements.

reservationGroup String Yes No The reservation
group to which
the reservation
belongs.

Chapter 8: References

Field Name Type POS
T

PU
T Description

resources Map<String, Integer> Yes No The reservation's
resources. This
field is a map,
where the key is
PROCS, MEM
DISK, SWAP, or
one or more user-
defined keys.

startDate Date Yes No The start time for
the reservation.
This is especially
useful for one-
time reservations,
which have an
exact time for
when a
reservation starts.

statistics ReservationStatistics No No The reservation's
statistical
information.

subType String Yes No The reservation
sub-type.

taskCount Integer No No The number of
tasks that must be
allocated to satisfy
the reservation
request. Note:
Either
hostListExpressio
n or taskCount
must be set to
create a
reservation.

trigger Trigger Yes No Trigger for
reservation. Used
only during
reservation
creation.

Chapter 8: References

778 8.4 Resources Reference

8.4 Resources Reference 779

Field Name Type POS
T

PU
T Description

triggerIds Set<String> No No The IDs of the
triggers attached
to this
reservation.

uniqueIndex String No No The globally-
unique
reservation index.

variables Map<String, Map> Yes Yes The set of
variables for this
reservation.

AclRule
This class represents a rule that can be in Moab's access control list (ACL) mechanism.
The basic AclRule information is the object's name and type. The type directly maps to
an AclType value. The default mechanism Moab uses to check the ACL for a particular
item is if the user or object coming in has ANY of the values in the ACL, then the user or
object is given access. If no values match the user or object in question, the user or
object is rejected access.

Field Name Type POST PUT Description

affinity AclAffinity No Yes Reservation ACLs allow or
deny access to reserved
resources but they can also be
configured to affect a job's
affinity for a particular
reservation. By default, jobs
gravitate toward reservations
through a mechanism known
as positive affinity. This
mechanism allows jobs to run
on the most constrained
resources leaving other,
unreserved resources free for
use by other jobs that may not
be able to access the reserved
resources. Normally this is a
desired behavior. However,

Chapter 8: References

Field Name Type POST PUT Description

sometimes it is desirable to
reserve resources for use only
as a last resort-using the
reserved resources only when
there are no other resources
available. This last resort
behavior is known as negative
affinity. Defaults to AclAffinity:
POSITIVE.

comparator ComparisonOperator No Yes The type of comparison to
make against the ACL object.
Defaults to
ComparisonOperator: EQUAL.

type AclType No Yes The type of the object that is
being granted (or denied)
access.

value String No Yes The name of the object that is
being granted (or denied)
access.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only
for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the

Chapter 8: References

780 8.4 Resources Reference

8.4 Resources Reference 781

Value Description

object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

AclType
This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

Chapter 8: References

Value Description

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

SCHED Not supported

SYSTEM Not supported

Chapter 8: References

782 8.4 Resources Reference

8.4 Resources Reference 783

Value Description

TASK Not supported

VC Not supported

XFACTOR Not supported

DomainProxyVersion1

Field Name Type POST PUT Description

id String No No The ID of the object.

ReservationFlag
The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this reservation but not start
during it (unless they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations but not user or other
reservations.

CHARGE Charge the idle cycles in the accounting manager.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this
reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job
(when using exclusive).

Chapter 8: References

Value Description

ADVRES If set, the reservation is created in advance of
needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation
when it is released.

ALLOWGRID The reservation is set up for use in a grid
environment.

ALLOWPRSV Personal reservations can be created within the
space of this standing reservation (and ONLY this
standing reservation). By default, when a standing
reservation is given the flag ALLOWPRSV, it is given
the ACL rule USER==ALL+ allowing all jobs and all
users access.

BYNAME Reservation only allows access to jobs that meet
reservation ACLs and explicitly request the
resources of this reservation using the job ADVRES
flag.

DEDICATEDNODE If set, only one active reservation is allowed on a
node.

OWNEREXCLUSIVEBF When an owner job is idle, other jobs are not
allowed to backfill.

DEDICATEDRESOURCE The reservation is only placed on resources that are
not reserved by any other reservation, including
jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one
job can run in the reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

EXCLUDEMYGROUP Exclude reservations within the same group.

Chapter 8: References

784 8.4 Resources Reference

8.4 Resources Reference 785

Value Description

IGNRSV Forces the reservation onto nodes regardless of
whether there are other reservations currently
residing on the nodes.

IGNSTATE Request ignores existing resource reservations,
allowing the reservation to be forced onto available
resources even if this conflicts with other
reservations.

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set, the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor
status for resources contained in the reservation.

PARENTLOCK The reservation can only be destroyed by
destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-administrator, non-
standing reservation, user-created reservation.

REQFULL The reservation will fail if all resources requested
cannot be allocated.

SCHEDULEVCRSV The reservation was created as part of a schedule
VC command. This pertains to reservations creating
while scheduling MWS Services, and these are
filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after
completion of the first job to use the reserved
resources.

SPACEFLEX The reservation is allowed to adjust resources
allocated over time in an attempt to optimize

Chapter 8: References

Value Description

resource utilization.

STANDINGRSV If set, the reservation was created by a standing
reservation instance.

STATIC Makes a reservation ineligible to modified or
canceled by an admin.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved
time frame in an attempt to optimize resource
utilization.

TRIGHASFIRED The reservation has one or more triggers that have
fired on it.

WASACTIVE The reservation was previously active.

BESTEFFORT Succeed even if only partial resources available.

COMMTRANSPARENT Job does not generate network communication.

MessageVersion1

Field Name Type POST PUT Description

author String No No The author of the message.

creationTime Date No No The time the message was created in epoch
time.

expireTime Date No No The time the message will be deleted in
epoch time.

index Integer No No The index of the message relative to other
messages in Moab's memory.

message String No Yes The comment information itself.

Chapter 8: References

786 8.4 Resources Reference

8.4 Resources Reference 787

Field Name Type POST PUT Description

messageCount Integer No No The number of times this message has been
displayed.

priority Double No No An optional priority that can be attached to
the comment.

EmbeddedCredential

Field Name Type POST PUT

name String No No

type CredentialType No No

CredentialType

Value

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

ReservationRequirement
Represents all the types of requirements a user can request while creating a
reservation.

Field Name Type POST PUT Description

architecture String Yes No Required architecture.

Chapter 8: References

Field Name Type POST PUT Description

featureList Set<String> Yes No The list of features required for this
reservation.

featureMode String No No Required feature mode.

memory Integer Yes No Required node memory, in MB.

nodeCount Integer No No Required number of nodes.

nodeIds Set<String> No No The list of node IDs required for this
reservation.

os String Yes No Required operating system.

taskCount Integer Yes No Required task count.

ReservationStatistics
Represents some basic statistical information that is kept about the usage of
reservations. All metrics that are kept track relate to processor-seconds usage.

Field Name Type POST PUT Description

blockedProcessorSeconds Long No No Number of processor seconds
included in the reservation.

reservedProcessorSeconds Long No No Number of processor seconds
blocked by jobs in the
reservation.

Trigger

Field Name Type POST PUT Description

id String No No Trigger id - internal ID used by
Moab to track triggers.

action String No No For exec atype triggers, signifies
executable and arguments. For

Chapter 8: References

788 8.4 Resources Reference

8.4 Resources Reference 789

Field Name Type POST PUT Description

jobpreempt atype triggers,
signifies PREEMPTPOLICY to
apply to jobs that are running on
allocated resources. For
changeparam atype triggers,
specifies the parameter to change
and its new value (using the
same syntax and behavior as the
changeparam command).

actionType TriggerActionType No No

blockTime Date No No Time (in seconds) Moab will
suspend normal operation to
wait for trigger execution to
finish. Use caution as Moab will
completely stop normal
operation until BlockTime
expires.

description String No No

eventType TriggerEventType No No

expireTime Date No No Time when trigger should be
terminated if it has not already
been activated.

failOffset Date No No Time (in seconds) that the
threshold condition must exist
before the trigger fires.

flags Set<TriggerFlag> No No

interval Boolean No No When used in conjunction with
MultiFire and RearmTime trigger
will fire at regular intervals. Can
be used with TriggerEventType:
EPOCH to create a Standing
Trigger. Defaults to false.

maxRetry Integer No No The number of times Action will

Chapter 8: References

Field Name Type POST PUT Description

be attempted before the trigger is
designated a failure.

multiFire Boolean No No Whether this trigger can fire
multiple times. Defaults to false.

name String No No Trigger name - can be auto
assigned by Moab or requested.
Alphanumeric up to 16
characters in length.

objectId String No No The ID of the object that this is
attached to.

objectType String No No The type of object that this is
attached to.

offset Date No No Relative time offset from event
when trigger can fire.

period TriggerPeriod No No Can be used in conjunction with
Offset to have a trigger fire at the
beginning of the specified period.
Can be used with EType epoch to
create a standing trigger.

rearmTime Date No No Time between MultiFire triggers.
Rearm time is enforced from the
trigger event time.

requires String No No Variables this trigger requires to
be set or not set before it will
fire. Preceding the string with an
exclamation mark (!) indicates
this variable must NOT be set.
Used in conjunction with sets
to create trigger dependencies.

sets String No No Variable values this trigger sets
upon success or failure. Preceding
the string with an exclamation

Chapter 8: References

790 8.4 Resources Reference

8.4 Resources Reference 791

Field Name Type POST PUT Description

mark (!) indicates this variable is
set upon trigger failure.
Preceding the string with a caret
(^) indicates this variable is to be
exported to the parent object
when the current object is
destroyed through a completion
event. Used in conjunction with
requires to create trigger
dependencies.

threshold String No No Reservation usage threshold.
When reservation usage drops
below Threshold, trigger will fire.
Threshold usage support is only
enabled for reservations and
applies to percent processor
utilization. gmetric thresholds
are supported with job, node,
credential, and reservation
triggers. See 'Threshold Triggers'
in the Moab Workload Manager
Administrator Guide for more
information.

timeout Date No No Time allotted to this trigger
before it is marked as
unsuccessful and its process (if
any) killed.

type TriggerType No No The type of the trigger.

unsets String No No Variable this trigger destroys
upon success or failure.

TriggerActionType
This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers.

Chapter 8: References

Value Description

CHANGE_
PARAM

Run changeparam (NOT PERSISTENT).

JOB_
PREEMPT

Indicates that the trigger should preempt all jobs currently allocating
resources assigned to the trigger's parent object. Only apply to reservation
triggers.

MAIL Sends an email.

INTERNAL Modifies an object internally in Moab. This can be used to set a job hold, for
example.

EXEC Execute the trigger action. Typically used to run a script.

MODIFY Can modify object that trigger is attached to.

QUERY

RESERVE

SUBMIT

TriggerEventType
This enumeration specifies the event type of a trigger.

Value

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

Chapter 8: References

792 8.4 Resources Reference

8.4 Resources Reference 793

Value

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

DISCOVER

LOGROLL

TriggerFlag
This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach
this as a message to the trigger object.

CLEANUP If the trigger is still running when the parent object
completes or is canceled, the trigger will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See
'Checkpointing a Trigger' in the Moab Workload Manager
Administrator Guide for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with
the globalvars flag in addition to its own name space. A
specific node to search can be specified using the following
format: globalvars+node_id

INTERVAL Trigger is periodic.

Chapter 8: References

Value Description

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_STDIN Trigger passes its parent's object XML information into the
trigger's stdin. This only works for exec triggers with
reservation type parents.

USER The trigger will execute under the user ID of the object's
owner. If the parent object is sched, the user to run under
can be explicitly specified using the format
user+<username>, for example, flags=user+john:

GLOBAL_TRIGGER The trigger will be (or was) inserted into the global
trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_SYSTEM_JOB The trigger belongs to a generic system job (for
checkpointing).

REMOVE_STD_FILES The trigger will delete stdout/stderr files after it has been
reset.

RESET_ON_MODIFY The trigger resets if the object it is attached to is modified,
even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to kill the
script when a trigger times out. This flag will instead send
a SIGTERM (kill -15) signal to kill the script. The SIGTERM
signal will allow the script to trap the signal so that the
script can clean up any residual information on the system
(instead of just dying, as with the SIGKILL signal). Note: A
timed-out trigger will only receive one kill signal. This
means that if you specify this flag, a timed-out trigger will
only receive the SIGTERM signal, and never the SIGKILL
signal.

Chapter 8: References

794 8.4 Resources Reference

8.4 Resources Reference 795

TriggerPeriod
This enumeration specifies the period of a trigger.

Value

MINUTE

HOUR

DAY

WEEK

MONTH

TriggerType
This enumeration specifies the type of the trigger.

Value Description

generic Generic trigger type.

elastic Elastic computing trigger type.

Related Topics

l 4.22 Reservations

8.4.20 Fields: Resource Types

See the associated 4.23 Resource Types resource section for more information on
how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource resource-types Permissions

Chapter 8: References

Type Value Additional Information

Hooks filename resource-
types.groovy

Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

API version 3

ResourceType
Represents a resource type in Moab Workload Manager.

Field Name Type Description

id String The unique ID of this resource type.

Related Topics

l 4.23 Resource Types

8.4.21 Fields: Roles

See the associated 4.24 Roles resource section for more information on how to use
this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource roles Permissions

Hooks filename roles.groovy Pre- and Post-Processing Hooks

Distinct query-supported Yes Distinct

Chapter 8: References

796 8.4 Resources Reference

8.4 Resources Reference 797

API version 3

Role
A role defines a set of permissions that are based on the proxy-user. If no proxy user is
specified then access to objects in MWS are limited to its application permissions. For
example if the application has permission to update all resources in MWS and no proxy-
user is specified in the request then the request can access all resources in MWS.

Field Name Type POST PUT Description

id String No No The unique ID of this role.

description String Yes Yes The role description.

name String Yes Yes The unique human-readable name
of this role. Required during
POST.

permissions List<Permission> Yes Yes The set of permissions enforced
based on the proxy-user.

Permission
Represents a permission.

Field Name Type POST PUT Description

id String No No The unique ID of this role.

action String No No The action that can be performed on
the resource.

administrator Boolean No No If true, grants full rights over the
given resource for the given action.
For example, if resource is 'jobs' and
action is 'update' and administrator is
true, then this permission allows the
user to update any job, not just jobs
owned by the user.

description String No No A description of this permission.

fieldPath String No No Field level ACL control, if null or '*',

Chapter 8: References

Field Name Type POST PUT Description

all fields are accessible; otherwise
requests must match dot delimited
path. Currently only checked when
doing writable actions. For example,
attributes.*: create|update

label String No No A human readable label for this
permission.

resource String No No The resource the permission applies
to.

resourceFilter Map<String,
Map>

No No A map used to limit which resource
instances this permission applies to. If
this is null then the permission will
apply to all instances of the resource.
For api permissions the filter uses
mongo query syntax.

type String No No The type of the permission. Only 'api'
type permissions are enforced.

Chapter 8: References

798 8.4 Resources Reference

8.4 Resources Reference 799

API version 2

Role
A role defines a set of permissions that are based on the proxy-user. If no proxy user is
specified then access to objects in MWS are limited to its application permissions. For
example if the application has permission to update all resources in MWS and no proxy-
user is specified in the request then the request can access all resources in MWS.

Field Name Type POST PUT Description

id String No No The unique ID of this role.

description String Yes Yes The role description.

name String Yes Yes The unique human-readable name
of this role. Required during
POST.

permissions List<Permission> Yes Yes The set of permissions enforced
based on the proxy-user.

Permission
Represents a permission.

Field Name Type POST PUT Description

id String No No The unique ID of this role.

action String No No The action that can be performed on
the resource.

administrator Boolean No No If true, grants full rights over the
given resource for the given action.
For example, if resource is 'jobs' and
action is 'update' and administrator is
true, then this permission allows the
user to update any job, not just jobs
owned by the user.

description String No No A description of this permission.

fieldPath String No No Field level ACL control, if null or '*',

Chapter 8: References

Field Name Type POST PUT Description

all fields are accessible; otherwise
requests must match dot delimited
path. Currently only checked when
doing writable actions. For example,
attributes.*: create|update

label String No No A human readable label for this
permission.

resource String No No The resource the permission applies
to.

resourceFilter Map<String,
Map>

No No A map used to limit which resource
instances this permission applies to. If
this is null then the permission will
apply to all instances of the resource.
For api permissions the filter uses
mongo query syntax.

type String No No The type of the permission. Only 'api'
type permissions are enforced.

Related Topics

l 4.24 Roles

8.4.22 Fields: Report Samples

See the associated 4.21 Reports resource section for more information on how to use
this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource reports/samples Permissions

Hooks filename reports.samples.groovy Pre- and Post-Processing
Hooks

Chapter 8: References

800 8.4 Resources Reference

8.4 Resources Reference 801

Type Value Additional Information

Distinct query-
supported

Yes Distinct

API version 3

Sample
A single snapshot of system state. It can contain all the same information as
Datapoint.data in the sample's data field.

Field
Name Type POST Description

id Long No

agent String No A unique identifier for the agent that recorded this
sample.

data Map<String,
Map>

No Arbitrary data that was recorded for this sample.
Defaults to an empty object if none is supplied.

timestamp Date No The date and time when this sample was
recorded. Defaults to the current date if none is
supplied.

Related Topics

l 4.21 Reports

8.4.23 Fields: Standing Reservations

See the associated 4.25 Standing Reservations resource section for more information
on how to use this resource and supported operations.

Chapter 8: References

Additional References

Type Value Additional Information

Permissions resource standing-reservations Permissions

Hooks filename standing-
reservations.groovy

Pre- and Post-Processing
Hooks

Distinct query-
supported

No Distinct

Chapter 8: References

802 8.4 Resources Reference

8.4 Resources Reference 803

API version 3

StandingReservation
This class represents a standing reservation. A standing reservation is any reservation
that is not a one-time reservation. This includes reservations that recur every day or
every week, or infinite reservations.

Field Name Type Description

id String The unique ID of the standing
reservation.

access ReservationAccess If set to ReservationAccess: SHARED,
allows a standing reservation to use
resources already allocated to other
non-job reservations. Otherwise,
these other reservations block
resource access.

accounts Set<String> Jobs with the associated accounts can
use the resources contained within
this reservation.

aclRules Set<AclRule> The set of access control rules
associated with this standing
reservation.

chargeAccount String The account to which Moab will
charge all idle cycles within the
reservation (via the accounting
manager).

chargeUser String The user to which Moab will charge
all idle cycles within the reservation
(via the accounting manager). Must
be used in conjunction with
chargeAccount.

classes Set<String> Jobs with the associated
classes/queues can use the resources
contained within this reservation.

clusters Set<String> Jobs originating within the listed
clusters can use the resources
contained within this reservation.

Chapter 8: References

Field Name Type Description

comment String A descriptive message associated
with the standing reservation and all
child reservations.

days Set<String> Which days of the week the standing
reservation is active. Values are Mon,
Tue, Wed, Thu, Fri, Sat, Sun, or
[ALL].

depth Integer The depth of standing reservations
to be created, starting at depth 0
(one per period).

disabled Boolean If the standing reservation should no
longer spawn child reservations.

endOffset Long The ending offset, in seconds, from
the beginning of the current period
(DAY or WEEK), for this standing
reservation. See examples at
startOffset.

flags Set<ReservationFlag> Special reservation attributes.

groups Set<String> The groups allowed access to this
standing reservation.

hosts Set<String> The set of hosts that the scheduler
can search for resources to satisfy
the reservation. If specified using the
class:X format, Moab only selects
hosts that support the specified class.
If TASKCOUNT is also specified, only
TASKCOUNT tasks are reserved.
Otherwise, all matching hosts are
reserved.

jobAttributes Set<JobFlag> Job attributes that grant a job access
to the reservation. Values can be
specified with a != assignment to
only allow jobs NOT requesting a
certain feature inside the

Chapter 8: References

804 8.4 Resources Reference

8.4 Resources Reference 805

Field Name Type Description

reservation.

maxJob Integer The maximum number of jobs that
can run in the reservation.

maxTime Integer The maximum time for jobs
allowable. Can be used with affinity
to attract jobs with same maxTime.

messages Set<String> Messages associated with the
reservation.

nodeFeatures Set<String> The required node features for
nodes that are part of the standing
reservation.

os String The operating system that should be
in place during the reservation.
Moab provisions this OS at
reservation start and restores the
original OS at reservation
completion.

owner EmbeddedCredential The owner of the reservation. Setting
ownership for a reservation grants
the user management privileges,
including the power to release it.
Setting a user as the owner of a
reservation gives that user privileges
to query and release the reservation.
For sandbox reservations, sandboxes
are applied to a specific peer only if
owner is set to
CLUSTER:<PEERNAME>.

partition String The partition in which to create the
standing reservation. Defaults to
ALL.

period TimeWindow Period of the Standing reservation.
Defaults to TimeWindow: DAY.

Chapter 8: References

Field Name Type Description

procLimit IntLimit The processor limit for jobs
requesting access to this standing
reservation.

psLimit IntLimit The processor-second limit for jobs
requesting access to this standing
reservation.

qoses Set<String> Jobs with the listed QoS names can
access the reserved resources.

reservationAccessList Set<Reservation> A list of reservations to which the
specified reservation has access.

reservationGroup String The group of the reservation.

resources Map<String, Integer> What resources constitute a single
standing reservation task. (Each task
must be able to obtain all of its
resources as an atomic unit on a
single node.) Supported resources
currently include the following:
l PROCS (number of processors)
l MEM (real memory in MB)
l DISK (local disk in MB)
l SWAP (virtual memory in MB)

rollbackOffset Integer The minimum time in the future
when the reservation may start. This
offset is rolling meaning the start
time of the reservation will
continuously roll back into the
future to maintain this offset.
Rollback offsets are a good way of
providing guaranteed resource
access to users under the conditions
that they must commit their
resources in the future or lose
dedicated access. See 'QoS Credential'
in the Moab Workload Manager
Administrator Guide for more
information on quality of service and

Chapter 8: References

806 8.4 Resources Reference

8.4 Resources Reference 807

Field Name Type Description

service level agreements.

startOffset Long The starting offset, in seconds, from
the beginning of the current period
(DAY or WEEK), for this standing
reservation. If period is DAY, the
offset is from midnight (00:00) of
the current day. If period is WEEK,
the offset is from midnight Sunday of
the current week.
Example 1: For a standing
reservation that begins at 9:00 and
ends at 17:00 every day, period is
DAY, startOffset is 32400 (9*60*60),
and endOffset is 61200 (17*60*60).
Example 2: For a standing
reservation that begins at 9:00
Monday and ends at 17:00 Friday
every week, period is WEEK,
startOffset is 118800
((24+9)*60*60), and endOffset is
493200 (((5*24)+17)*60*60).

taskCount Integer How many tasks should be reserved
for the reservation. Default is 0
(unlimited tasks).

tasksPerNode Integer The minimum number of tasks per
node that must be available on
eligible nodes. Default is 0 (no TPN
constraint).

timeLimit Integer The maximum allowed overlap
between the standing reservation
and a job requesting resource access.
Default is null (-1 in moab).

triggers Set<Trigger> Triggers associated with the
reservation.

type String The type of the reservation.

Chapter 8: References

Field Name Type Description

users Set<String> Which users have access to the
resources reserved by this
reservation.

ReservationAccess
The access type of a standing reservation. If set to SHARED, allows a standing
reservation to use resources already allocated to other non-job reservations. Otherwise,
these other reservations block resource access.

Value

DEDICATED

SHARED

AclRule
This class represents a rule that can be in Moab's access control list (ACL) mechanism.
The basic AclRule information is the object's name and type. The type directly maps to
an AclType value. The default mechanism Moab uses to check the ACL for a particular
item is if the user or object coming in has ANY of the values in the ACL, then the user or
object is given access. If no values match the user or object in question, the user or
object is rejected access.

Field Name Type Description

affinity AclAffinity Reservation ACLs allow or deny access to
reserved resources but they can also be
configured to affect a job's affinity for a particular
reservation. By default, jobs gravitate toward
reservations through a mechanism known as
positive affinity. This mechanism allows jobs to
run on the most constrained resources leaving
other, unreserved resources free for use by other
jobs that may not be able to access the reserved
resources. Normally this is a desired behavior.
However, sometimes it is desirable to reserve
resources for use only as a last resort-using the
reserved resources only when there are no other
resources available. This last resort behavior is
known as negative affinity. Defaults to AclAffinity:

Chapter 8: References

808 8.4 Resources Reference

8.4 Resources Reference 809

Field Name Type Description

POSITIVE.

comparator ComparisonOperator The type of comparison to make against the ACL
object. Defaults to ComparisonOperator: EQUAL.

type AclType The type of the object that is being granted (or
denied) access.

value String The name of the object that is being granted (or
denied) access.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only
for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the
object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Chapter 8: References

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

AclType
This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

Chapter 8: References

810 8.4 Resources Reference

8.4 Resources Reference 811

Value Description

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

SCHED Not supported

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

ReservationFlag
The flag types of a reservation.

Chapter 8: References

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this reservation but not start
during it (unless they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations but not user or other
reservations.

CHARGE Charge the idle cycles in the accounting manager.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this
reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job
(when using exclusive).

ADVRES If set, the reservation is created in advance of
needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation
when it is released.

ALLOWGRID The reservation is set up for use in a grid
environment.

ALLOWPRSV Personal reservations can be created within the
space of this standing reservation (and ONLY this
standing reservation). By default, when a standing
reservation is given the flag ALLOWPRSV, it is given
the ACL rule USER==ALL+ allowing all jobs and all
users access.

BYNAME Reservation only allows access to jobs that meet
reservation ACLs and explicitly request the
resources of this reservation using the job ADVRES
flag.

Chapter 8: References

812 8.4 Resources Reference

8.4 Resources Reference 813

Value Description

DEDICATEDNODE If set, only one active reservation is allowed on a
node.

OWNEREXCLUSIVEBF When an owner job is idle, other jobs are not
allowed to backfill.

DEDICATEDRESOURCE The reservation is only placed on resources that are
not reserved by any other reservation, including
jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one
job can run in the reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of
whether there are other reservations currently
residing on the nodes.

IGNSTATE Request ignores existing resource reservations,
allowing the reservation to be forced onto available
resources even if this conflicts with other
reservations.

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set, the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor
status for resources contained in the reservation.

PARENTLOCK The reservation can only be destroyed by
destroying its parent.

Chapter 8: References

Value Description

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-administrator, non-
standing reservation, user-created reservation.

REQFULL The reservation will fail if all resources requested
cannot be allocated.

SCHEDULEVCRSV The reservation was created as part of a schedule
VC command. This pertains to reservations creating
while scheduling MWS Services, and these are
filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after
completion of the first job to use the reserved
resources.

SPACEFLEX The reservation is allowed to adjust resources
allocated over time in an attempt to optimize
resource utilization.

STANDINGRSV If set, the reservation was created by a standing
reservation instance.

STATIC Makes a reservation ineligible to modified or
canceled by an admin.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved
time frame in an attempt to optimize resource
utilization.

TRIGHASFIRED The reservation has one or more triggers that have
fired on it.

WASACTIVE The reservation was previously active.

BESTEFFORT Succeed even if only partial resources available.

Chapter 8: References

814 8.4 Resources Reference

8.4 Resources Reference 815

Value Description

COMMTRANSPARENT Job does not generate network communication.

JobFlag
This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource
managers and partitions.

ALLOWPOWERADJUSTMENT Allow system to dynamically adjust power.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are
available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be
preempted by other jobs.

Chapter 8: References

Value Description

PREEMPTOR The job is a preemptor and therefore can preempt
other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and
system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job
granted access to all idle job reservations.

INTERACTIVE The job needs interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any
authentication.

NORESOURCES The job is a system job that does not need any
resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot
be migrated elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in
individual chunks.

FORCEPROVISION Job will provision nodes, whether they already have
OS or not.

SYSTEMJOB The job is a system job, which simply runs on the
same node that Moab is running on. This is usually
used for running scripts and other executables in

Chapter 8: References

816 8.4 Resources Reference

8.4 Resources Reference 817

Value Description

workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an admin.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job
start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the
job to start later.

GRESONLY The job is requesting only generic resources, no
compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the
template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

VCMASTER Job is the master of a virtual container.

USEMOABJOBID Whether to use the Moab job ID or the resource
manager's job ID.

Chapter 8: References

Value Description

JOINSTDERRTOSTDOUT Join the stderr file to the stdout file.

JOINSTDOUTTOSTDERR Join the stdout file to the stderr file.

PURGEONSUCCESSONLY Only purge the job if it completed successfully.

ALLPROCS Each job compute task requests all the procs on its
node.

COMMLOCAL Each job communications are localized, with minimal
routing outside job shape.

COMMTOLERANT Each job communications are low-intensity and
insensitive to interference.

COMMTRANSPARENT Job does not generate network communication.

EmbeddedCredential

Field Name Type

name String

type CredentialType

CredentialType

Value

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

Chapter 8: References

818 8.4 Resources Reference

8.4 Resources Reference 819

TimeWindow
This enumeration represents some common time windows. It can be used for many
purposes but was created specifically for statistics.

Value

MINUTE

HOUR

DAY

WEEK

MONTH

YEAR

INFINITY

IntLimit

Field Name Type Description

qualifier String One of:

l <
l <=
l ==
l >=
l >

value Integer

Reservation
A reservation is the mechanism by which Moab guarantees the availability of a set of
resources at a particular time. Each reservation consists of three major components: (1)
a set of resources, (2) a time frame, and (3) an access control list. It is a scheduler role
to ensure that the access control list is not violated during the reservation's lifetime
(that is, its time frame) on the resources listed. For example, a reservation may specify
that node002 is reserved for user Tom on Friday. The scheduler is therefore

Chapter 8: References

constrained to make certain that only Tom's jobs can use node002 at any time on
Friday.

Field Name Type Description

id String The unique ID of the
reservation.

accountingAccount String Accountable Account.

accountingGroup String Accountable Group.

accountingQOS String Accountable QOS.

accountingUser String Accountable User.

aclRules Set<AclRule> The set of access control
rules associated with this
reservation.

allocatedNodeCount Integer The number of allocated
nodes for this reservation.

allocatedNodes Set<DomainProxyVersion1> The nodes allocated to the
reservation.

allocatedProcessorCount Integer The number of allocated
processors.

allocatedTaskCount Integer The number of allocated
tasks.

comments String Reservation's comments or
description.

creationDate Date Creation date.
Automatically set by Moab
when a user creates the
reservation.

duration Long The duration of the
reservation (in seconds).

Chapter 8: References

820 8.4 Resources Reference

8.4 Resources Reference 821

Field Name Type Description

endDate Date The end date of the
reservation. This is
especially useful for one-
time reservations, which
have an exact time for
when a reservation ends.

excludeJobs Set<String> The list of jobs to exclude.
Client must also set the
IGNJOBRSV reservation
flag. Otherwise, results are
undefined. Used only
during reservation
creation.

expireDate Date The date/time when the
reservation expires and
vacates.

flags Set<ReservationFlag> The flags associated with
the reservation.

globalId String Global reservation ID.

hostListExpression String The list of nodes a user can
select to reserve. This may
or may not be the nodes
that are currently allocated
to this reservation. Note:
Either hostListExpression
or taskCount must be set
to create a reservation.

idPrefix String The user-specified prefix
for this reservation. If
provided, Moab combines
the idPrefix with an
integer, and the
combination is the unique
identifier for this
reservation.

isActive Boolean State whether or not this

Chapter 8: References

Field Name Type Description

reservation is currently
active.

label String When a label is assigned to
a reservation, the
reservation can then be
referenced by that label as
well as by the reservation
name.

maxTasks Integer The maximum number of
tasks for this reservation.

messages Set<MessageVersion1> Messages for the
reservation.

owner EmbeddedCredential The owner of the
reservation.

partitionId String The ID of the partition this
reservation is for.

profile String The profile that this
reservation is using. A
profile is a specification of
attributes that all
reservations share. Used
only during reservation
creation.

requirements ReservationRequirement The reservation's
requirements.

reservationGroup String The reservation group to
which the reservation
belongs.

resources Map<String, Integer> The reservation's
resources. This field is a
map, where the key is
PROCS, MEM DISK, SWAP,
or one or more user-

Chapter 8: References

822 8.4 Resources Reference

8.4 Resources Reference 823

Field Name Type Description

defined keys.

startDate Date The start time for the
reservation. This is
especially useful for one-
time reservations, which
have an exact time for
when a reservation starts.

statistics ReservationStatistics The reservation's statistical
information.

subType String The reservation sub-type.

taskCount Integer The number of tasks that
must be allocated to satisfy
the reservation request.
Note: Either
hostListExpression or
taskCount must be set to
create a reservation.

trigger Trigger Trigger for reservation.
Used only during
reservation creation.

triggerIds Set<String> The IDs of the triggers
attached to this
reservation.

uniqueIndex String The globally-unique
reservation index.

variables Map<String, Map> The set of variables for this
reservation.

DomainProxyVersion1

Field Name Type Description

id String The ID of the object.

Chapter 8: References

MessageVersion1

Field Name Type Description

author String The author of the message.

creationTime Date The time the message was created in epoch time.

expireTime Date The time the message will be deleted in epoch time.

index Integer The index of the message relative to other messages in
Moab's memory.

message String The comment information itself.

messageCount Integer The number of times this message has been displayed.

priority Double An optional priority that can be attached to the comment.

ReservationRequirement
Represents all the types of requirements a user can request while creating a
reservation.

Field Name Type Description

architecture String Required architecture.

featureList Set<String> The list of features required for this reservation.

featureMode String Required feature mode.

memory Integer Required node memory, in MB.

nodeCount Integer Required number of nodes.

nodeIds Set<String> The list of node IDs required for this reservation.

os String Required operating system.

taskCount Integer Required task count.

Chapter 8: References

824 8.4 Resources Reference

8.4 Resources Reference 825

ReservationStatistics
Represents some basic statistical information that is kept about the usage of
reservations. All metrics that are kept track relate to processor-seconds usage.

Field Name Type Description

blockedProcessorSeconds Long Number of processor seconds included in the
reservation.

reservedProcessorSeconds Long Number of processor seconds blocked by jobs in
the reservation.

Trigger

Field Name Type Description

id String Trigger id - internal ID used by Moab to track
triggers.

action String For exec atype triggers, signifies executable and
arguments. For jobpreempt atype triggers, signifies
PREEMPTPOLICY to apply to jobs that are running
on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its
new value (using the same syntax and behavior as
the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal
operation to wait for trigger execution to finish.
Use caution as Moab will completely stop normal
operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time when trigger should be terminated if it has
not already been activated.

failOffset Date Time (in seconds) that the threshold condition
must exist before the trigger fires.

Chapter 8: References

Field Name Type Description

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and
RearmTime trigger will fire at regular intervals. Can
be used with TriggerEventType: EPOCH to create a
Standing Trigger. Defaults to false.

maxRetry Integer The number of times Action will be attempted
before the trigger is designated a failure.

multiFire Boolean Whether this trigger can fire multiple times.
Defaults to false.

name String Trigger name - can be auto assigned by Moab or
requested. Alphanumeric up to 16 characters in
length.

objectId String The ID of the object that this is attached to.

objectType String The type of object that this is attached to.

offset Date Relative time offset from event when trigger can
fire.

period TriggerPeriod Can be used in conjunction with Offset to have a
trigger fire at the beginning of the specified period.
Can be used with EType epoch to create a standing
trigger.

rearmTime Date Time between MultiFire triggers. Rearm time is
enforced from the trigger event time.

requires String Variables this trigger requires to be set or not set
before it will fire. Preceding the string with an
exclamation mark (!) indicates this variable must
NOT be set. Used in conjunction with sets to
create trigger dependencies.

sets String Variable values this trigger sets upon success or
failure. Preceding the string with an exclamation
mark (!) indicates this variable is set upon trigger

Chapter 8: References

826 8.4 Resources Reference

8.4 Resources Reference 827

Field Name Type Description

failure. Preceding the string with a caret (^)
indicates this variable is to be exported to the
parent object when the current object is destroyed
through a completion event. Used in conjunction
with requires to create trigger dependencies.

threshold String Reservation usage threshold. When reservation
usage drops below Threshold, trigger will fire.
Threshold usage support is only enabled for
reservations and applies to percent processor
utilization. gmetric thresholds are supported with
job, node, credential, and reservation triggers. See
'Threshold Triggers' in the Moab Workload
Manager Administrator Guide for more
information.

timeout Date Time allotted to this trigger before it is marked as
unsuccessful and its process (if any) killed.

type TriggerType The type of the trigger.

unsets String Variable this trigger destroys upon success or
failure.

TriggerActionType
This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers.

CHANGE_
PARAM

Run changeparam (NOT PERSISTENT).

JOB_
PREEMPT

Indicates that the trigger should preempt all jobs currently allocating
resources assigned to the trigger's parent object. Only apply to reservation
triggers.

MAIL Sends an email.

INTERNAL Modifies an object internally in Moab. This can be used to set a job hold, for

Chapter 8: References

Value Description

example.

EXEC Execute the trigger action. Typically used to run a script.

MODIFY Can modify object that trigger is attached to.

QUERY

RESERVE

SUBMIT

TriggerEventType
This enumeration specifies the event type of a trigger.

Value

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

Chapter 8: References

828 8.4 Resources Reference

8.4 Resources Reference 829

Value

START

THRESHOLD

DISCOVER

LOGROLL

TriggerFlag
This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach
this as a message to the trigger object.

CLEANUP If the trigger is still running when the parent object
completes or is canceled, the trigger will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See
'Checkpointing a Trigger' in the Moab Workload Manager
Administrator Guide for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the
globalvars flag in addition to its own name space. A specific
node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_STDIN Trigger passes its parent's object XML information into the
trigger's stdin. This only works for exec triggers with
reservation type parents.

USER The trigger will execute under the user ID of the object's
owner. If the parent object is sched, the user to run under
can be explicitly specified using the format user+<username>,
for example, flags=user+john:

Chapter 8: References

Value Description

GLOBAL_TRIGGER The trigger will be (or was) inserted into the global trigger
list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_SYSTEM_JOB The trigger belongs to a generic system job (for
checkpointing).

REMOVE_STD_FILES The trigger will delete stdout/stderr files after it has been
reset.

RESET_ON_MODIFY The trigger resets if the object it is attached to is modified,
even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to kill the script
when a trigger times out. This flag will instead send a
SIGTERM (kill -15) signal to kill the script. The SIGTERM signal
will allow the script to trap the signal so that the script can
clean up any residual information on the system (instead of
just dying, as with the SIGKILL signal). Note: A timed-out
trigger will only receive one kill signal. This means that if you
specify this flag, a timed-out trigger will only receive the
SIGTERM signal, and never the SIGKILL signal.

TriggerPeriod
This enumeration specifies the period of a trigger.

Value

MINUTE

HOUR

DAY

Chapter 8: References

830 8.4 Resources Reference

8.4 Resources Reference 831

Value

WEEK

MONTH

TriggerType
This enumeration specifies the type of the trigger.

Value Description

generic Generic trigger type.

elastic Elastic computing trigger type.

Chapter 8: References

API version 2

StandingReservation
This class represents a standing reservation.
A standing reservation is any reservation that is not a one-time reservation. This
includes reservations that recur every day or every week, or infinite reservations.

Field Name Type Description

id String The unique ID of the
standing reservation.

access ReservationAccess If set to
ReservationAccess:
SHARED, allows a
standing reservation to
use resources already
allocated to other non-
job reservations.
Otherwise, these other
reservations block
resource access.

accounts Set<String> Jobs with the associated
accounts can use the
resources contained
within this reservation.

aclRules Set<AclRule> The set of access control
rules associated with
this standing
reservation.

chargeAccount String The account to which
Moab will charge all idle
cycles within the
reservation (via the
accounting manager).

chargeUser String The user to which Moab
will charge all idle cycles
within the reservation
(via the accounting
manager). Must be used
in conjunction with

Chapter 8: References

832 8.4 Resources Reference

8.4 Resources Reference 833

Field Name Type Description

chargeAccount.

classes Set<String> Jobs with the associated
classes/queues can use
the resources contained
within this reservation.

clusters Set<String> Jobs originating within
the listed clusters can
use the resources
contained within this
reservation.

comment String A descriptive message
associated with the
standing reservation
and all child
reservations.

days Set<String> Which days of the week
the standing reservation
is active.
Values are Mon, Tue,
Wed, Thu, Fri, Sat, Sun,
or [ALL].

depth Integer The depth of standing
reservations to be
created, starting at
depth 0 (one per
period).

disabled Boolean If the standing
reservation should no
longer spawn child
reservations.

endOffset Long The ending offset, in
seconds, from the
beginning of the current
period (DAY or WEEK),
for this standing
reservation. See

Chapter 8: References

Field Name Type Description

examples at startOffset.

flags Set<ReservationFlag> Special reservation
attributes.

groups Set<String> The groups allowed
access to this standing
reservation.

hosts Set<String> The set of hosts that the
scheduler can search for
resources to satisfy the
reservation. If specified
using the class:X format,
Moab only selects hosts
that support the
specified class. If
TASKCOUNT is also
specified, only
TASKCOUNT tasks are
reserved. Otherwise, all
matching hosts are
reserved.

jobAttributes Set<JobFlag> Job attributes that grant
a job access to the
reservation. Values can
be specified with a !=
assignment to only
allow jobs NOT
requesting a certain
feature inside the
reservation.

maxJob Integer The maximum number
of jobs that can run in
the reservation.

maxTime Integer The maximum time for
jobs allowable. Can be
used with affinity to
attract jobs with same
maxTime.

Chapter 8: References

834 8.4 Resources Reference

8.4 Resources Reference 835

Field Name Type Description

messages Set<String> Messages associated
with the reservation.

nodeFeatures Set<String> The required node
features for nodes that
are part of the standing
reservation.

os String The operating system
that should be in place
during the reservation.
Moab provisions this OS
at reservation start and
restores the original OS
at reservation
completion.

owner EmbeddedCredential The owner of the
reservation. Setting
ownership for a
reservation grants the
user management
privileges, including the
power to release it.
Setting a user as the
owner of a reservation
gives that user
privileges to query and
release the reservation.
For sandbox
reservations, sandboxes
are applied to a specific
peer only if owner is set
to
CLUSTER:<PEERNAME>.

partition String The partition in which
to create the standing
reservation. Defaults to
ALL.

period TimeWindow Period of the Standing
reservation. Defaults to
TimeWindow: DAY.

Chapter 8: References

Field Name Type Description

procLimit IntLimit The processor limit for
jobs requesting access
to this standing
reservation.

psLimit IntLimit The processor-second
limit for jobs requesting
access to this standing
reservation.

qoses Set<String> Jobs with the listed QoS
names can access the
reserved resources.

reservationAccessList Set<Reservation> A list of reservations to
which the specified
reservation has access.

reservationGroup String The group of the
reservation.

resources Map<String, Integer> What resources
constitute a single
standing reservation
task. (Each task must be
able to obtain all of its
resources as an atomic
unit on a single node.)
Supported resources
currently include the
following:
l PROCS (number of

processors)
l MEM (real memory

in MB)
l DISK (local disk in

MB)
l SWAP (virtual

memory in MB)

rollbackOffset Integer The minimum time in

Chapter 8: References

836 8.4 Resources Reference

8.4 Resources Reference 837

Field Name Type Description

the future when the
reservation may start.
This offset is rolling
meaning the start time
of the reservation will
continuously roll back
into the future to
maintain this offset.
Rollback offsets are a
good way of providing
guaranteed resource
access to users under
the conditions that they
must commit their
resources in the future
or lose dedicated access.
See 'QoS Credential' in
the Moab Workload
Manager Administrator
Guide for more
information on quality
of service and service
level agreements.

startOffset Long The starting offset, in
seconds, from the
beginning of the current
period (DAY or WEEK),
for this standing
reservation. If period is
DAY, the offset is from
midnight (00:00) of the
current day. If period is
WEEK, the offset is from
midnight Sunday of the
current week.
Example 1: For a
standing reservation
that begins at 9:00 and
ends at 17:00 every day,
period is DAY,
startOffset is 32400
(9*60*60), and
endOffset is 61200
(17*60*60).

Chapter 8: References

Field Name Type Description

Example 2: For a
standing reservation
that begins at 9:00
Monday and ends at
17:00 Friday every
week, period is WEEK,
startOffset is 118800
((24+9)*60*60), and
endOffset is 493200
(((5*24)+17)*60*60).

taskCount Integer How many tasks should
be reserved for the
reservation
Default is 0 (unlimited
tasks).

tasksPerNode Integer The minimum number
of tasks per node that
must be available on
eligible nodes. Default is
0 (no TPN constraint).

timeLimit Integer The maximum allowed
overlap between the
standing reservation
and a job requesting
resource access. Default
is null (-1 in moab).

triggers Set<Trigger> Triggers associated with
the reservation.

type String The type of the
reservation.

users Set<String> Which users have access
to the resources
reserved by this
reservation.

Chapter 8: References

838 8.4 Resources Reference

8.4 Resources Reference 839

ReservationAccess
The access type of a standing reservation. If set to SHARED, allows a standing
reservation to use resources already allocated to other non-job reservations. Otherwise,
these other reservations block resource access.

Value

DEDICATED

SHARED

AclRule
This class represents a rule that can be in Moab's access control list (ACL) mechanism.
The basic AclRule information is the object's name and type. The type directly maps to
an AclType value. The default mechanism Moab uses to check the ACL for a particular
item is if the user or object coming in has ANY of the values in the ACL, then the user or
object is given access. If no values match the user or object in question, the user or
object is rejected access.

Field Name Type Description

affinity AclAffinity Reservation ACLs allow or deny access to
reserved resources but they can also be
configured to affect a job's affinity for a particular
reservation. By default, jobs gravitate toward
reservations through a mechanism known as
positive affinity. This mechanism allows jobs to
run on the most constrained resources leaving
other, unreserved resources free for use by other
jobs that may not be able to access the reserved
resources. Normally this is a desired behavior.
However, sometimes it is desirable to reserve
resources for use only as a last resort-using the
reserved resources only when there are no other
resources available. This last resort behavior is
known as negative affinity. Defaults to AclAffinity:
POSITIVE.

comparator ComparisonOperator The type of comparison to make against the ACL
object. Defaults to ComparisonOperator: EQUAL.

type AclType The type of the object that is being granted (or
denied) access.

Chapter 8: References

Field Name Type Description

value String The name of the object that is being granted (or
denied) access.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only
for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the
object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

Chapter 8: References

840 8.4 Resources Reference

8.4 Resources Reference 841

Value Description

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

AclType
This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

Chapter 8: References

Value Description

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

SCHED Not supported

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

ReservationFlag
The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this reservation but not start
during it (unless they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

Chapter 8: References

842 8.4 Resources Reference

8.4 Resources Reference 843

Value Description

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations but not user or other
reservations.

CHARGE Charge the idle cycles in the accounting manager.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this
reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job
(when using exclusive).

ADVRES If set, the reservation is created in advance of
needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation
when it is released.

ALLOWGRID The reservation is set up for use in a grid
environment.

ALLOWPRSV Personal reservations can be created within the
space of this standing reservation (and ONLY this
standing reservation). By default, when a standing
reservation is given the flag ALLOWPRSV, it is given
the ACL rule USER==ALL+ allowing all jobs and all
users access.

BYNAME Reservation only allows access to jobs that meet
reservation ACLs and explicitly request the
resources of this reservation using the job ADVRES
flag.

DEDICATEDNODE If set, only one active reservation is allowed on a
node.

OWNEREXCLUSIVEBF When an owner job is idle, other jobs are not
allowed to backfill.

Chapter 8: References

Value Description

DEDICATEDRESOURCE The reservation is only placed on resources that are
not reserved by any other reservation, including
jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one
job can run in the reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of
whether there are other reservations currently
residing on the nodes.

IGNSTATE Request ignores existing resource reservations,
allowing the reservation to be forced onto available
resources even if this conflicts with other
reservations.

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set, the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor
status for resources contained in the reservation.

PARENTLOCK The reservation can only be destroyed by
destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-administrator, non-

Chapter 8: References

844 8.4 Resources Reference

8.4 Resources Reference 845

Value Description

standing reservation, user-created reservation.

REQFULL The reservation will fail if all resources requested
cannot be allocated.

SCHEDULEVCRSV The reservation was created as part of a schedule
VC command. This pertains to reservations creating
while scheduling MWS Services, and these are
filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after
completion of the first job to use the reserved
resources.

SPACEFLEX The reservation is allowed to adjust resources
allocated over time in an attempt to optimize
resource utilization.

STANDINGRSV If set, the reservation was created by a standing
reservation instance.

STATIC Makes a reservation ineligible to modified or
canceled by an admin.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved
time frame in an attempt to optimize resource
utilization.

TRIGHASFIRED The reservation has one or more triggers that have
fired on it.

WASACTIVE The reservation was previously active.

BESTEFFORT Succeed even if only partial resources available.

COMMTRANSPARENT Job does not generate network communication.

JobFlag
This enumeration specifies the flag types of a job.

Chapter 8: References

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource
managers and partitions.

ALLOWPOWERADJUSTMENT Allow system to dynamically adjust power.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are
available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be
preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt
other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

Chapter 8: References

846 8.4 Resources Reference

8.4 Resources Reference 847

Value Description

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and
system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job
granted access to all idle job reservations.

INTERACTIVE The job needs interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any
authentication.

NORESOURCES The job is a system job that does not need any
resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot
be migrated elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in
individual chunks.

FORCEPROVISION Job will provision nodes, whether they already have
OS or not.

SYSTEMJOB The job is a system job, which simply runs on the
same node that Moab is running on. This is usually
used for running scripts and other executables in
workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an admin.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job
start.

Chapter 8: References

Value Description

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the
job to start later.

GRESONLY The job is requesting only generic resources, no
compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the
template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

VCMASTER Job is the master of a virtual container.

USEMOABJOBID Whether to use the Moab job ID or the resource
manager's job ID.

JOINSTDERRTOSTDOUT Join the stderr file to the stdout file.

JOINSTDOUTTOSTDERR Join the stdout file to the stderr file.

PURGEONSUCCESSONLY Only purge the job if it completed successfully.

Chapter 8: References

848 8.4 Resources Reference

8.4 Resources Reference 849

Value Description

ALLPROCS Each job compute task requests all the procs on its
node.

COMMLOCAL Each job communications are localized, with minimal
routing outside job shape.

COMMTOLERANT Each job communications are low-intensity and
insensitive to interference.

COMMTRANSPARENT Job does not generate network communication.

EmbeddedCredential

Field Name Type

name String

type CredentialType

CredentialType

Value

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

TimeWindow
This enumeration represents some common time windows. It can be used for many
purposes but was created specifically for statistics.

Chapter 8: References

Value

MINUTE

HOUR

DAY

WEEK

MONTH

YEAR

INFINITY

IntLimit

Field Name Type Description

qualifier String One of:

l <
l <=
l ==
l >=
l >

value Integer

Reservation
A reservation is the mechanism by which Moab guarantees the availability of a set of
resources at a particular time. Each reservation consists of three major components: (1)
a set of resources, (2) a time frame, and (3) an access control list. It is a scheduler role
to ensure that the access control list is not violated during the reservation's lifetime
(that is, its time frame) on the resources listed. For example, a reservation may specify
that node002 is reserved for user Tom on Friday. The scheduler is therefore
constrained to make certain that only Tom's jobs can use node002 at any time on
Friday.

Chapter 8: References

850 8.4 Resources Reference

8.4 Resources Reference 851

Field Name Type Description

id String The unique ID of the
reservation.

accountingAccount String Accountable Account.

accountingGroup String Accountable Group.

accountingQOS String Accountable QOS.

accountingUser String Accountable User.

aclRules Set<AclRule> The set of access control
rules associated with this
reservation.

allocatedNodeCount Integer The number of allocated
nodes for this reservation.

allocatedNodes Set<DomainProxyVersion1> The nodes allocated to the
reservation.

allocatedProcessorCount Integer The number of allocated
processors.

allocatedTaskCount Integer The number of allocated
tasks.

comments String Reservation's comments or
description.

creationDate Date Creation date.
Automatically set by Moab
when a user creates the
reservation.

duration Long The duration of the
reservation (in seconds).

endDate Date The end date of the
reservation. This is

Chapter 8: References

Field Name Type Description

especially useful for one-
time reservations, which
have an exact time for
when a reservation ends.

excludeJobs Set<String> The list of jobs to exclude.
Client must also set the
IGNJOBRSV reservation
flag. Otherwise, results are
undefined. Used only
during reservation
creation.

expireDate Date The date/time when the
reservation expires and
vacates.

flags Set<ReservationFlag> The flags associated with
the reservation.

globalId String Global reservation ID.

hostListExpression String The list of nodes a user can
select to reserve. This may
or may not be the nodes
that are currently allocated
to this reservation. Note:
Either hostListExpression
or taskCount must be set
to create a reservation.

idPrefix String The user-specified prefix
for this reservation. If
provided, Moab combines
the idPrefix with an
integer, and the
combination is the unique
identifier for this
reservation.

isActive Boolean State whether or not this
reservation is currently
active.

Chapter 8: References

852 8.4 Resources Reference

8.4 Resources Reference 853

Field Name Type Description

label String When a label is assigned to
a reservation, the
reservation can then be
referenced by that label as
well as by the reservation
name.

maxTasks Integer The maximum number of
tasks for this reservation.

messages Set<MessageVersion1> Messages for the
reservation.

owner EmbeddedCredential The owner of the
reservation.

partitionId String The ID of the partition this
reservation is for.

profile String The profile that this
reservation is using. A
profile is a specification of
attributes that all
reservations share. Used
only during reservation
creation.

requirements ReservationRequirement The reservation's
requirements.

reservationGroup String The reservation group to
which the reservation
belongs.

resources Map<String, Integer> The reservation's
resources. This field is a
map, where the key is
PROCS, MEM DISK, SWAP,
or one or more user-
defined keys.

startDate Date The start time for the

Chapter 8: References

Field Name Type Description

reservation. This is
especially useful for one-
time reservations, which
have an exact time for
when a reservation starts.

statistics ReservationStatistics The reservation's statistical
information.

subType String The reservation sub-type.

taskCount Integer The number of tasks that
must be allocated to satisfy
the reservation request.
Note: Either
hostListExpression or
taskCount must be set to
create a reservation.

trigger Trigger Trigger for reservation.
Used only during
reservation creation.

triggerIds Set<String> The IDs of the triggers
attached to this
reservation.

uniqueIndex String The globally-unique
reservation index.

variables Map<String, Map> The set of variables for this
reservation.

DomainProxyVersion1

Field Name Type Description

id String The ID of the object.

Chapter 8: References

854 8.4 Resources Reference

8.4 Resources Reference 855

MessageVersion1

Field Name Type Description

author String The author of the message.

creationTime Date The time the message was created in epoch time.

expireTime Date The time the message will be deleted in epoch time.

index Integer The index of the message relative to other messages in
Moab's memory.

message String The comment information itself.

messageCount Integer The number of times this message has been displayed.

priority Double An optional priority that can be attached to the comment.

ReservationRequirement
Represents all the types of requirements a user can request while creating a
reservation.

Field Name Type Description

architecture String Required architecture.

featureList Set<String> The list of features required for this reservation.

featureMode String Required feature mode.

memory Integer Required node memory, in MB.

nodeCount Integer Required number of nodes.

nodeIds Set<String> The list of node IDs required for this reservation.

os String Required operating system.

taskCount Integer Required task count.

Chapter 8: References

ReservationStatistics
Represents some basic statistical information that is kept about the usage of
reservations. All metrics that are kept track relate to processor-seconds usage.

Field Name Type Description

blockedProcessorSeconds Long Number of processor seconds included in the
reservation.

reservedProcessorSeconds Long Number of processor seconds blocked by jobs in
the reservation.

Trigger

Field Name Type Description

id String Trigger id - internal ID used by Moab to track
triggers.

action String For exec atype triggers, signifies executable and
arguments. For jobpreempt atype triggers, signifies
PREEMPTPOLICY to apply to jobs that are running
on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its
new value (using the same syntax and behavior as
the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal
operation to wait for trigger execution to finish.
Use caution as Moab will completely stop normal
operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time when trigger should be terminated if it has
not already been activated.

failOffset Date Time (in seconds) that the threshold condition
must exist before the trigger fires.

Chapter 8: References

856 8.4 Resources Reference

8.4 Resources Reference 857

Field Name Type Description

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and
RearmTime trigger will fire at regular intervals. Can
be used with TriggerEventType: EPOCH to create a
Standing Trigger. Defaults to false.

maxRetry Integer The number of times Action will be attempted
before the trigger is designated a failure.

multiFire Boolean Whether this trigger can fire multiple times.
Defaults to false.

name String Trigger name - can be auto assigned by Moab or
requested. Alphanumeric up to 16 characters in
length.

objectId String The ID of the object that this is attached to.

objectType String The type of object that this is attached to.

offset Date Relative time offset from event when trigger can
fire.

period TriggerPeriod Can be used in conjunction with Offset to have a
trigger fire at the beginning of the specified period.
Can be used with EType epoch to create a standing
trigger.

rearmTime Date Time between MultiFire triggers. Rearm time is
enforced from the trigger event time.

requires String Variables this trigger requires to be set or not set
before it will fire. Preceding the string with an
exclamation mark (!) indicates this variable must
NOT be set. Used in conjunction with sets to
create trigger dependencies.

sets String Variable values this trigger sets upon success or
failure. Preceding the string with an exclamation
mark (!) indicates this variable is set upon trigger

Chapter 8: References

Field Name Type Description

failure. Preceding the string with a caret (^)
indicates this variable is to be exported to the
parent object when the current object is destroyed
through a completion event. Used in conjunction
with requires to create trigger dependencies.

threshold String Reservation usage threshold. When reservation
usage drops below Threshold, trigger will fire.
Threshold usage support is only enabled for
reservations and applies to percent processor
utilization. gmetric thresholds are supported with
job, node, credential, and reservation triggers. See
'Threshold Triggers' in the Moab Workload
Manager Administrator Guide for more
information.

timeout Date Time allotted to this trigger before it is marked as
unsuccessful and its process (if any) killed.

type TriggerType The type of the trigger.

unsets String Variable this trigger destroys upon success or
failure.

TriggerActionType
This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers.

CHANGE_
PARAM

Run changeparam (NOT PERSISTENT).

JOB_
PREEMPT

Indicates that the trigger should preempt all jobs currently allocating
resources assigned to the trigger's parent object. Only apply to reservation
triggers.

MAIL Sends an email.

INTERNAL Modifies an object internally in Moab. This can be used to set a job hold, for

Chapter 8: References

858 8.4 Resources Reference

8.4 Resources Reference 859

Value Description

example.

EXEC Execute the trigger action. Typically used to run a script.

MODIFY Can modify object that trigger is attached to.

QUERY

RESERVE

SUBMIT

TriggerEventType
This enumeration specifies the event type of a trigger.

Value

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

Chapter 8: References

Value

START

THRESHOLD

DISCOVER

LOGROLL

TriggerFlag
This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this
as a message to the trigger object.

CLEANUP If the trigger is still running when the parent object completes
or is canceled, the trigger will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See 'Checkpointing
a Trigger' in the Moab Workload Manager Administrator Guide
for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the
globalvars flag in addition to its own name space. A specific
node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_STDIN Trigger passes its parent's object XML information into the
trigger's stdin. This only works for exec triggers with
reservation type parents.

USER The trigger will execute under the user ID of the object's
owner. If the parent object is sched, the user to run under can
be explicitly specified using the format user+<username>, for
example, flags=user+john:

Chapter 8: References

860 8.4 Resources Reference

8.4 Resources Reference 861

Value Description

GLOBAL_TRIGGER The trigger will be (or was) inserted into the global trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_SYSTEM_JOB The trigger belongs to a generic system job (for checkpointing).

REMOVE_STD_FILES The trigger will delete stdout/stderr files after it has been reset.

RESET_ON_MODIFY The trigger resets if the object it is attached to is modified, even
if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to kill the script
when a trigger times out. This flag will instead send a SIGTERM
(kill -15) signal to kill the script. The SIGTERM signal will allow
the script to trap the signal so that the script can clean up any
residual information on the system (instead of just dying, as
with the SIGKILL signal). Note: A timed-out trigger will only
receive one kill signal. This means that if you specify this flag, a
timed-out trigger will only receive the SIGTERM signal, and never
the SIGKILL signal.

TriggerPeriod
This enumeration specifies the period of a trigger.

Value

MINUTE

HOUR

DAY

WEEK

MONTH

Chapter 8: References

TriggerType
This enumeration specifies the type of the trigger.

Value Description

generic Generic trigger type.

elastic Elastic computing trigger type.

Related Topics

l 4.25 Standing Reservations

8.4.24 Fields: User's Permissions

See the associated 4.15 Permissions resource section for more information on how to
use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource permissions/users Permissions

Hooks filename permissions.users.groovy Pre- and Post-Processing
Hooks

Distinct query-
supported

Yes Distinct

Chapter 8: References

862 8.4 Resources Reference

8.4 Resources Reference 863

API version 3

UserPermission

Field Name Type Description

id String The unique ID of the cached user permission.

name String The unique name of the user.

permissions List<Permission> The list of permissions.

Permission
Represents a permission.

Field Name Type Description

id String The unique ID of this role.

action String The action that can be performed on the resource.

administrator Boolean If true, grants full rights over the given resource for the
given action. For example, if resource is 'jobs' and action
is 'update' and administrator is true, then this
permission allows the user to update any job, not just
jobs owned by the user.

description String A description of this permission.

fieldPath String Field level ACL control, if null or '*', all fields are
accessible; otherwise requests must match dot delimited
path. Currently only checked when doing writable
actions. For example, attributes.*: create|update

label String A human readable label for this permission.

resource String The resource the permission applies to.

resourceFilter Map<String,
Map>

A map used to limit which resource instances this
permission applies to. If this is null then the permission
will apply to all instances of the resource. For api
permissions the filter uses mongo query syntax.

Chapter 8: References

Field Name Type Description

type String The type of the permission. Only 'api' type permissions
are enforced.

Related Topics

l 4.15 Permissions

8.4.25 Fields: Virtual Containers

See the associated 4.26 Virtual Containers resource section for more information on
how to use this resource and supported operations.

Additional References

Type Value Additional Information

Permissions resource vcs Permissions

Hooks filename vcs.groovy Pre- and Post-Processing Hooks

Distinct query-supported No Distinct

Chapter 8: References

864 8.4 Resources Reference

8.4 Resources Reference 865

API version 3

VirtualContainer
A virtual container is a logical grouping of objects with a shared variable space and
applied policies. Containers can hold virtual machines, physical machines, jobs,
reservations, and/or nodes and req node sets. Containers can also be nested inside
other containers.

Field Name Type POST PUT Description

id String No No The unique ID of
this virtual
container.

aclRules Set<AclRule> No No The set of access
control rules
associated with
this virtual
container.

createDate Date No No The date/time
that the virtual
container was
created.

creator String No No The creator of
the virtual
container.

description String Yes Yes A user-defined
string that acts
as a label.

flags Set<VirtualContainerFlag> No Yes The flags on this
virtual
container.

jobs Set<DomainProxyVersion1> No Yes The set of jobs
in this virtual
container.

nodes Set<DomainProxyVersion1> No Yes The set of nodes
in this virtual
container.

Chapter 8: References

Field Name Type POST PUT Description

owner EmbeddedCredential Yes Yes The owner of
the virtual
container.

reservations Set<Reservation> No Yes The set of
reservations in
this virtual
container.

variables Map<String, Map> No Yes Variables
associated with
the virtual
container.

virtualContainers Set<VirtualContainer> No Yes The set of
virtual
containers in
this virtual
container.

AclRule
This class represents a rule that can be in Moab's access control list (ACL) mechanism.
The basic AclRule information is the object's name and type. The type directly maps to
an AclType value. The default mechanism Moab uses to check the ACL for a particular
item is if the user or object coming in has ANY of the values in the ACL, then the user or
object is given access. If no values match the user or object in question, the user or
object is rejected access.

Field Name Type POST PUT Description

affinity AclAffinity No Yes Reservation ACLs allow or
deny access to reserved
resources but they can also be
configured to affect a job's
affinity for a particular
reservation. By default, jobs
gravitate toward reservations
through a mechanism known
as positive affinity. This
mechanism allows jobs to run

Chapter 8: References

866 8.4 Resources Reference

8.4 Resources Reference 867

Field Name Type POST PUT Description

on the most constrained
resources leaving other,
unreserved resources free for
use by other jobs that may not
be able to access the reserved
resources. Normally this is a
desired behavior. However,
sometimes it is desirable to
reserve resources for use only
as a last resort-using the
reserved resources only when
there are no other resources
available. This last resort
behavior is known as negative
affinity. Defaults to AclAffinity:
POSITIVE.

comparator ComparisonOperator No Yes The type of comparison to
make against the ACL object.
Defaults to
ComparisonOperator: EQUAL.

type AclType No Yes The type of the object that is
being granted (or denied)
access.

value String No Yes The name of the object that is
being granted (or denied)
access.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only
for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

Chapter 8: References

Value Description

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the
object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

AclType
This enumeration describes the values available for the type of an ACL Rule.

Chapter 8: References

868 8.4 Resources Reference

8.4 Resources Reference 869

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

Chapter 8: References

Value Description

SCHED Not supported

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

VirtualContainerFlag
This enumeration specifies the flag types of a virtual container.

Value Description

DESTROYOBJECTS Destroy reservations, jobs, and virtual machines in virtual
container when the virtual container is destroyed.

DESTROYWHENEMPTY Destroy virtual container when it contains no objects.

DELETING Virtual container has started removal process -- might be
waiting on workflows, etc., to finish.

HASSTARTED Virtual container has jobs that have started -- workflows only.

HOLDJOBS Virtual container will place a hold on jobs that are submitted to
it while this flag is set.

WORKFLOW Virtual container for a workflow -- maximum of one workflow
virtual container per workflow.

DomainProxyVersion1

Field Name Type POST PUT Description

id String No No The ID of the object.

Chapter 8: References

870 8.4 Resources Reference

8.4 Resources Reference 871

EmbeddedCredential

Field Name Type POST PUT

name String No No

type CredentialType No No

CredentialType

Value

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

Reservation
A reservation is the mechanism by which Moab guarantees the availability of a set of
resources at a particular time. Each reservation consists of three major components: (1)
a set of resources, (2) a time frame, and (3) an access control list. It is a scheduler role
to ensure that the access control list is not violated during the reservation's lifetime
(that is, its time frame) on the resources listed. For example, a reservation may specify
that node002 is reserved for user Tom on Friday. The scheduler is therefore
constrained to make certain that only Tom's jobs can use node002 at any time on
Friday.

Field Name Type POS
T

PU
T Description

id String No No The unique ID
of the
reservation.

accountingAccount String Yes No Accountable

Chapter 8: References

Field Name Type POS
T

PU
T Description

Account.

accountingGroup String Yes No Accountable
Group.

accountingQOS String Yes No Accountable
QOS.

accountingUser String Yes No Accountable
User.

aclRules Set<AclRule> Yes No The set of access
control rules
associated with
this reservation.

allocatedNodeCount Integer No No The number of
allocated nodes
for this
reservation.

allocatedNodes Set<DomainProxyVersio
n1>

No No The nodes
allocated to the
reservation.

allocatedProcessorCo
unt

Integer No No The number of
allocated
processors.

allocatedTaskCount Integer No No The number of
allocated tasks.

comments String Yes No Reservation's
comments or
description.

creationDate Date No No Creation date.
Automatically
set by Moab
when a user

Chapter 8: References

872 8.4 Resources Reference

8.4 Resources Reference 873

Field Name Type POS
T

PU
T Description

creates the
reservation.

duration Long Yes No The duration of
the reservation
(in seconds).

endDate Date Yes No The end date of
the reservation.
This is especially
useful for one-
time
reservations,
which have an
exact time for
when a
reservation
ends.

excludeJobs Set<String> Yes No The list of jobs
to exclude.
Client must also
set the
IGNJOBRSV
reservation flag.
Otherwise,
results are
undefined. Used
only during
reservation
creation.

expireDate Date No No The date/time
when the
reservation
expires and
vacates.

flags Set<ReservationFlag> Yes No The flags
associated with
the reservation.

Chapter 8: References

Field Name Type POS
T

PU
T Description

globalId String No No Global
reservation ID.

hostListExpression String Yes No The list of nodes
a user can select
to reserve. This
may or may not
be the nodes
that are
currently
allocated to this
reservation.
Note: Either
hostListExpressi
on or taskCount
must be set to
create a
reservation.

idPrefix String Yes No The user-
specified prefix
for this
reservation. If
provided, Moab
combines the
idPrefix with an
integer, and the
combination is
the unique
identifier for
this reservation.

isActive Boolean No No State whether or
not this
reservation is
currently active.

label String Yes No When a label is
assigned to a
reservation, the
reservation can
then be
referenced by

Chapter 8: References

874 8.4 Resources Reference

8.4 Resources Reference 875

Field Name Type POS
T

PU
T Description

that label as
well as by the
reservation
name.

maxTasks Integer No No The maximum
number of tasks
for this
reservation.

messages Set<MessageVersion1> No No Messages for the
reservation.

owner EmbeddedCredential Yes No The owner of
the reservation.

partitionId String Yes No The ID of the
partition this
reservation is
for.

profile String Yes No The profile that
this reservation
is using. A
profile is a
specification of
attributes that
all reservations
share. Used only
during
reservation
creation.

requirements ReservationRequirement Yes No The
reservation's
requirements.

reservationGroup String Yes No The reservation
group to which
the reservation
belongs.

Chapter 8: References

Field Name Type POS
T

PU
T Description

resources Map<String, Integer> Yes No The
reservation's
resources. This
field is a map,
where the key is
PROCS, MEM
DISK, SWAP, or
one or more
user-defined
keys.

startDate Date Yes No The start time
for the
reservation. This
is especially
useful for one-
time
reservations,
which have an
exact time for
when a
reservation
starts.

statistics ReservationStatistics No No The
reservation's
statistical
information.

subType String Yes No The reservation
sub-type.

taskCount Integer No No The number of
tasks that must
be allocated to
satisfy the
reservation
request. Note:
Either
hostListExpressi
on or taskCount
must be set to
create a

Chapter 8: References

876 8.4 Resources Reference

8.4 Resources Reference 877

Field Name Type POS
T

PU
T Description

reservation.

trigger Trigger Yes No Trigger for
reservation.
Used only
during
reservation
creation.

triggerIds Set<String> No No The IDs of the
triggers attached
to this
reservation.

uniqueIndex String No No The globally-
unique
reservation
index.

variables Map<String, Map> Yes Yes The set of
variables for this
reservation.

ReservationFlag
The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this reservation but not start
during it (unless they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations but not user or other
reservations.

Chapter 8: References

Value Description

CHARGE Charge the idle cycles in the accounting manager.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this
reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job
(when using exclusive).

ADVRES If set, the reservation is created in advance of
needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation
when it is released.

ALLOWGRID The reservation is set up for use in a grid
environment.

ALLOWPRSV Personal reservations can be created within the
space of this standing reservation (and ONLY this
standing reservation). By default, when a standing
reservation is given the flag ALLOWPRSV, it is given
the ACL rule USER==ALL+ allowing all jobs and all
users access.

BYNAME Reservation only allows access to jobs that meet
reservation ACLs and explicitly request the
resources of this reservation using the job ADVRES
flag.

DEDICATEDNODE If set, only one active reservation is allowed on a
node.

OWNEREXCLUSIVEBF When an owner job is idle, other jobs are not
allowed to backfill.

DEDICATEDRESOURCE The reservation is only placed on resources that are
not reserved by any other reservation, including
jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one

Chapter 8: References

878 8.4 Resources Reference

8.4 Resources Reference 879

Value Description

job can run in the reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of
whether there are other reservations currently
residing on the nodes.

IGNSTATE Request ignores existing resource reservations,
allowing the reservation to be forced onto available
resources even if this conflicts with other
reservations.

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set, the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor
status for resources contained in the reservation.

PARENTLOCK The reservation can only be destroyed by
destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-administrator, non-
standing reservation, user-created reservation.

REQFULL The reservation will fail if all resources requested
cannot be allocated.

Chapter 8: References

Value Description

SCHEDULEVCRSV The reservation was created as part of a schedule
VC command. This pertains to reservations creating
while scheduling MWS Services, and these are
filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after
completion of the first job to use the reserved
resources.

SPACEFLEX The reservation is allowed to adjust resources
allocated over time in an attempt to optimize
resource utilization.

STANDINGRSV If set, the reservation was created by a standing
reservation instance.

STATIC Makes a reservation ineligible to modified or
canceled by an admin.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved
time frame in an attempt to optimize resource
utilization.

TRIGHASFIRED The reservation has one or more triggers that have
fired on it.

WASACTIVE The reservation was previously active.

BESTEFFORT Succeed even if only partial resources available.

COMMTRANSPARENT Job does not generate network communication.

MessageVersion1

Field Name Type POST PUT Description

author String No No The author of the message.

creationTime Date No No The time the message was created in epoch

Chapter 8: References

880 8.4 Resources Reference

8.4 Resources Reference 881

Field Name Type POST PUT Description

time.

expireTime Date No No The time the message will be deleted in
epoch time.

index Integer No No The index of the message relative to other
messages in Moab's memory.

message String No Yes The comment information itself.

messageCount Integer No No The number of times this message has been
displayed.

priority Double No No An optional priority that can be attached to
the comment.

ReservationRequirement
Represents all the types of requirements a user can request while creating a
reservation.

Field Name Type POST PUT Description

architecture String Yes No Required architecture.

featureList Set<String> Yes No The list of features required for this
reservation.

featureMode String No No Required feature mode.

memory Integer Yes No Required node memory, in MB.

nodeCount Integer No No Required number of nodes.

nodeIds Set<String> No No The list of node IDs required for this
reservation.

os String Yes No Required operating system.

taskCount Integer Yes No Required task count.

Chapter 8: References

ReservationStatistics
Represents some basic statistical information that is kept about the usage of
reservations. All metrics that are kept track relate to processor-seconds usage.

Field Name Type POST PUT Description

blockedProcessorSeconds Long No No Number of processor seconds
included in the reservation.

reservedProcessorSeconds Long No No Number of processor seconds
blocked by jobs in the
reservation.

Trigger

Field Name Type POST PUT Description

id String No No Trigger id - internal ID used by
Moab to track triggers.

action String No No For exec atype triggers, signifies
executable and arguments. For
jobpreempt atype triggers,
signifies PREEMPTPOLICY to
apply to jobs that are running on
allocated resources. For
changeparam atype triggers,
specifies the parameter to change
and its new value (using the
same syntax and behavior as the
changeparam command).

actionType TriggerActionType No No

blockTime Date No No Time (in seconds) Moab will
suspend normal operation to
wait for trigger execution to
finish. Use caution as Moab will
completely stop normal
operation until BlockTime
expires.

description String No No

Chapter 8: References

882 8.4 Resources Reference

8.4 Resources Reference 883

Field Name Type POST PUT Description

eventType TriggerEventType No No

expireTime Date No No Time when trigger should be
terminated if it has not already
been activated.

failOffset Date No No Time (in seconds) that the
threshold condition must exist
before the trigger fires.

flags Set<TriggerFlag> No No

interval Boolean No No When used in conjunction with
MultiFire and RearmTime trigger
will fire at regular intervals. Can
be used with TriggerEventType:
EPOCH to create a Standing
Trigger. Defaults to false.

maxRetry Integer No No The number of times Action will
be attempted before the trigger is
designated a failure.

multiFire Boolean No No Whether this trigger can fire
multiple times. Defaults to false.

name String No No Trigger name - can be auto
assigned by Moab or requested.
Alphanumeric up to 16
characters in length.

objectId String No No The ID of the object that this is
attached to.

objectType String No No The type of object that this is
attached to. Value: vm - Virtual
Machine

offset Date No No Relative time offset from event
when trigger can fire.

Chapter 8: References

Field Name Type POST PUT Description

period TriggerPeriod No No Can be used in conjunction with
Offset to have a trigger fire at the
beginning of the specified period.
Can be used with EType epoch to
create a standing trigger.

rearmTime Date No No Time between MultiFire triggers.
Rearm time is enforced from the
trigger event time.

requires String No No Variables this trigger requires to
be set or not set before it will
fire. Preceding the string with an
exclamation mark (!) indicates
this variable must NOT be set.
Used in conjunction with sets
to create trigger dependencies.

sets String No No Variable values this trigger sets
upon success or failure. Preceding
the string with an exclamation
mark (!) indicates this variable is
set upon trigger failure.
Preceding the string with a caret
(^) indicates this variable is to be
exported to the parent object
when the current object is
destroyed through a completion
event. Used in conjunction with
requires to create trigger
dependencies.

threshold String No No Reservation usage threshold.
When reservation usage drops
below Threshold, trigger will fire.
Threshold usage support is only
enabled for reservations and
applies to percent processor
utilization. gmetric thresholds
are supported with job, node,
credential, and reservation
triggers. See 'Threshold Triggers'
in the Moab Workload Manager
Administrator Guide for more

Chapter 8: References

884 8.4 Resources Reference

8.4 Resources Reference 885

Field Name Type POST PUT Description

information.

timeout Date No No Time allotted to this trigger
before it is marked as
unsuccessful and its process (if
any) killed.

type TriggerType No No The type of the trigger.

unsets String No No Variable this trigger destroys
upon success or failure.

TriggerActionType
This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers.

CHANGE_
PARAM

Run changeparam (NOT PERSISTENT).

JOB_
PREEMPT

Indicates that the trigger should preempt all jobs currently allocating
resources assigned to the trigger's parent object. Only apply to reservation
triggers.

MAIL Sends an email.

INTERNAL Modifies an object internally in Moab. This can be used to set a job hold, for
example.

EXEC Execute the trigger action. Typically used to run a script.

MODIFY Can modify object that trigger is attached to.

QUERY

RESERVE

SUBMIT

Chapter 8: References

TriggerEventType
This enumeration specifies the event type of a trigger.

Value

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

DISCOVER

LOGROLL

TriggerFlag
This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach

Chapter 8: References

886 8.4 Resources Reference

8.4 Resources Reference 887

Value Description

this as a message to the trigger object.

CLEANUP If the trigger is still running when the parent object
completes or is canceled, the trigger will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See
'Checkpointing a Trigger' in the Moab Workload Manager
Administrator Guide for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the
globalvars flag in addition to its own name space. A specific
node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_STDIN Trigger passes its parent's object XML information into the
trigger's stdin. This only works for exec triggers with
reservation type parents.

USER The trigger will execute under the user ID of the object's
owner. If the parent object is sched, the user to run under
can be explicitly specified using the format
user+<username>, for example, flags=user+john:

GLOBAL_TRIGGER The trigger will be (or was) inserted into the global trigger
list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_SYSTEM_JOB The trigger belongs to a generic system job (for
checkpointing).

Chapter 8: References

Value Description

REMOVE_STD_FILES The trigger will delete stdout/stderr files after it has been
reset.

RESET_ON_MODIFY The trigger resets if the object it is attached to is modified,
even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to kill the script
when a trigger times out. This flag will instead send a
SIGTERM (kill -15) signal to kill the script. The SIGTERM signal
will allow the script to trap the signal so that the script can
clean up any residual information on the system (instead of
just dying, as with the SIGKILL signal). Note: A timed-out
trigger will only receive one kill signal. This means that if
you specify this flag, a timed-out trigger will only receive the
SIGTERM signal, and never the SIGKILL signal.

TriggerPeriod
This enumeration specifies the period of a trigger.

Value

MINUTE

HOUR

DAY

WEEK

MONTH

TriggerType
This enumeration specifies the type of the trigger.

Value Description

generic Generic trigger type.

elastic Elastic computing trigger type.

Chapter 8: References

888 8.4 Resources Reference

8.4 Resources Reference 889

API version 2

VirtualContainer
A virtual container is a logical grouping of objects with a shared variable space and
applied policies. Containers can hold virtual machines, physical machines, jobs,
reservations, and/or nodes and req node sets. Containers can also be nested inside
other containers.

Field Name Type POST PUT Description

id String No No The unique ID of
this virtual
container.

aclRules Set<AclRule> No No The set of access
control rules
associated with
this virtual
container.

createDate Date No No The date/time
that the virtual
container was
created.

creator String No No The creator of
the virtual
container.

description String Yes Yes A user-defined
string that acts
as a label.

flags Set<VirtualContainerFlag> No Yes The flags on this
virtual
container.

jobs Set<DomainProxyVersion1> No Yes The set of jobs
in this virtual
container.

nodes Set<DomainProxyVersion1> No Yes The set of nodes
in this virtual
container.

Chapter 8: References

Field Name Type POST PUT Description

owner EmbeddedCredential Yes Yes The owner of
the virtual
container.

reservations Set<Reservation> No Yes The set of
reservations in
this virtual
container.

variables Map<String, Map> No Yes Variables
associated with
the virtual
container.

virtualContainers Set<VirtualContainer> No Yes The set of
virtual
containers in
this virtual
container.

AclRule
This class represents a rule that can be in Moab's access control list (ACL) mechanism.
The basic AclRule information is the object's name and type. The type directly maps to
an AclType value. The default mechanism Moab uses to check the ACL for a particular
item is if the user or object coming in has ANY of the values in the ACL, then the user or
object is given access. If no values match the user or object in question, the user or
object is rejected access.

Field Name Type POST PUT Description

affinity AclAffinity No Yes Reservation ACLs allow or
deny access to reserved
resources but they can also be
configured to affect a job's
affinity for a particular
reservation. By default, jobs
gravitate toward reservations
through a mechanism known
as positive affinity. This
mechanism allows jobs to run

Chapter 8: References

890 8.4 Resources Reference

8.4 Resources Reference 891

Field Name Type POST PUT Description

on the most constrained
resources leaving other,
unreserved resources free for
use by other jobs that may not
be able to access the reserved
resources. Normally this is a
desired behavior. However,
sometimes it is desirable to
reserve resources for use only
as a last resort-using the
reserved resources only when
there are no other resources
available. This last resort
behavior is known as negative
affinity. Defaults to AclAffinity:
POSITIVE.

comparator ComparisonOperator No Yes The type of comparison to
make against the ACL object.
Defaults to
ComparisonOperator: EQUAL.

type AclType No Yes The type of the object that is
being granted (or denied)
access.

value String No Yes The name of the object that is
being granted (or denied)
access.

AclAffinity
This enumeration describes the values available for describing how a rule is used in
establishing access to an object in Moab. Currently, these ACL affinities are used only
for granting access to reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last
choice.

NEUTRAL Access to the object is not affected by affinity.

Chapter 8: References

Value Description

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the
accessor. Supported only during GET.

REQUIRED The rule in question must be satisfied in order to gain access to the
object. Supported only during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator
This enumeration is used when Moab needs to compare items. One such use is in
Access Control Lists (ACLs).

Value Description

GREATER_THAN Values: >, gt

GREATER_THAN_OR_EQUAL Values: >=, ge

LESS_THAN Values: <, lt

LESS_THAN_OR_EQUAL Values: <=, le

EQUAL Values: ==, eq, =

NOT_EQUAL Values: !=, ne, <>

LEXIGRAPHIC_SUBSTRING Value: %<

LEXIGRAPHIC_NOT_EQUAL Value: %!

LEXIGRAPHIC_EQUAL Value: %=

AclType
This enumeration describes the values available for the type of an ACL Rule.

Chapter 8: References

892 8.4 Resources Reference

8.4 Resources Reference 893

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

Chapter 8: References

Value Description

SCHED Not supported

SYSTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

VirtualContainerFlag
This enumeration specifies the flag types of a virtual container.

Value Description

DESTROYOBJECTS Destroy reservations, jobs, and virtual machines in virtual
container when the virtual container is destroyed.

DESTROYWHENEMPTY Destroy virtual container when it contains no objects.

DELETING Virtual container has started removal process -- might be
waiting on workflows, etc., to finish.

HASSTARTED Virtual container has jobs that have started -- workflows only.

HOLDJOBS Virtual container will place a hold on jobs that are submitted to
it while this flag is set.

WORKFLOW Virtual container for a workflow -- maximum of one workflow
virtual container per workflow.

DomainProxyVersion1

Field Name Type POST PUT Description

id String No No The ID of the object.

Chapter 8: References

894 8.4 Resources Reference

8.4 Resources Reference 895

EmbeddedCredential

Field Name Type POST PUT

name String No No

type CredentialType No No

CredentialType

Value

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

Reservation
A reservation is the mechanism by which Moab guarantees the availability of a set of
resources at a particular time. Each reservation consists of three major components: (1)
a set of resources, (2) a time frame, and (3) an access control list. It is a scheduler role
to ensure that the access control list is not violated during the reservation's lifetime
(that is, its time frame) on the resources listed. For example, a reservation may specify
that node002 is reserved for user Tom on Friday. The scheduler is therefore
constrained to make certain that only Tom's jobs can use node002 at any time on
Friday.

Field Name Type POS
T

PU
T Description

id String No No The unique ID
of the
reservation.

accountingAccount String Yes No Accountable

Chapter 8: References

Field Name Type POS
T

PU
T Description

Account.

accountingGroup String Yes No Accountable
Group.

accountingQOS String Yes No Accountable
QOS.

accountingUser String Yes No Accountable
User.

aclRules Set<AclRule> Yes No The set of access
control rules
associated with
this reservation.

allocatedNodeCount Integer No No The number of
allocated nodes
for this
reservation.

allocatedNodes Set<DomainProxyVersio
n1>

No No The nodes
allocated to the
reservation.

allocatedProcessorCo
unt

Integer No No The number of
allocated
processors.

allocatedTaskCount Integer No No The number of
allocated tasks.

comments String Yes No Reservation's
comments or
description.

creationDate Date No No Creation date.
Automatically
set by Moab
when a user

Chapter 8: References

896 8.4 Resources Reference

8.4 Resources Reference 897

Field Name Type POS
T

PU
T Description

creates the
reservation.

duration Long Yes No The duration of
the reservation
(in seconds).

endDate Date Yes No The end date of
the reservation.
This is especially
useful for one-
time
reservations,
which have an
exact time for
when a
reservation
ends.

excludeJobs Set<String> Yes No The list of jobs
to exclude.
Client must also
set the
IGNJOBRSV
reservation flag.
Otherwise,
results are
undefined. Used
only during
reservation
creation.

expireDate Date No No The date/time
when the
reservation
expires and
vacates.

flags Set<ReservationFlag> Yes No The flags
associated with
the reservation.

Chapter 8: References

Field Name Type POS
T

PU
T Description

globalId String No No Global
reservation ID.

hostListExpression String Yes No The list of nodes
a user can select
to reserve. This
may or may not
be the nodes
that are
currently
allocated to this
reservation.
Note: Either
hostListExpressi
on or taskCount
must be set to
create a
reservation.

idPrefix String Yes No The user-
specified prefix
for this
reservation. If
provided, Moab
combines the
idPrefix with an
integer, and the
combination is
the unique
identifier for
this reservation.

isActive Boolean No No State whether or
not this
reservation is
currently active.

label String Yes No When a label is
assigned to a
reservation, the
reservation can
then be
referenced by

Chapter 8: References

898 8.4 Resources Reference

8.4 Resources Reference 899

Field Name Type POS
T

PU
T Description

that label as
well as by the
reservation
name.

maxTasks Integer No No The maximum
number of tasks
for this
reservation.

messages Set<MessageVersion1> No No Messages for the
reservation.

owner EmbeddedCredential Yes No The owner of
the reservation.

partitionId String Yes No The ID of the
partition this
reservation is
for.

profile String Yes No The profile that
this reservation
is using. A
profile is a
specification of
attributes that
all reservations
share. Used only
during
reservation
creation.

requirements ReservationRequirement Yes No The
reservation's
requirements.

reservationGroup String Yes No The reservation
group to which
the reservation
belongs.

Chapter 8: References

Field Name Type POS
T

PU
T Description

resources Map<String, Integer> Yes No The
reservation's
resources. This
field is a map,
where the key is
PROCS, MEM
DISK, SWAP, or
one or more
user-defined
keys.

startDate Date Yes No The start time
for the
reservation. This
is especially
useful for one-
time
reservations,
which have an
exact time for
when a
reservation
starts.

statistics ReservationStatistics No No The
reservation's
statistical
information.

subType String Yes No The reservation
sub-type.

taskCount Integer No No The number of
tasks that must
be allocated to
satisfy the
reservation
request. Note:
Either
hostListExpressi
on or taskCount
must be set to
create a

Chapter 8: References

900 8.4 Resources Reference

8.4 Resources Reference 901

Field Name Type POS
T

PU
T Description

reservation.

trigger Trigger Yes No Trigger for
reservation.
Used only
during
reservation
creation.

triggerIds Set<String> No No The IDs of the
triggers attached
to this
reservation.

uniqueIndex String No No The globally-
unique
reservation
index.

variables Map<String, Map> Yes Yes The set of
variables for this
reservation.

ReservationFlag
The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this reservation but not start
during it (unless they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations but not user or other
reservations.

Chapter 8: References

Value Description

CHARGE Charge the idle cycles in the accounting manager.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this
reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job
(when using exclusive).

ADVRES If set, the reservation is created in advance of
needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation
when it is released.

ALLOWGRID The reservation is set up for use in a grid
environment.

ALLOWPRSV Personal reservations can be created within the
space of this standing reservation (and ONLY this
standing reservation). By default, when a standing
reservation is given the flag ALLOWPRSV, it is given
the ACL rule USER==ALL+ allowing all jobs and all
users access.

BYNAME Reservation only allows access to jobs that meet
reservation ACLs and explicitly request the
resources of this reservation using the job ADVRES
flag.

DEDICATEDNODE If set, only one active reservation is allowed on a
node.

OWNEREXCLUSIVEBF When an owner job is idle, other jobs are not
allowed to backfill.

DEDICATEDRESOURCE The reservation is only placed on resources that are
not reserved by any other reservation, including
jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one

Chapter 8: References

902 8.4 Resources Reference

8.4 Resources Reference 903

Value Description

job can run in the reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of
whether there are other reservations currently
residing on the nodes.

IGNSTATE Request ignores existing resource reservations,
allowing the reservation to be forced onto available
resources even if this conflicts with other
reservations.

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set, the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor
status for resources contained in the reservation.

PARENTLOCK The reservation can only be destroyed by
destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-administrator, non-
standing reservation, user-created reservation.

REQFULL The reservation will fail if all resources requested
cannot be allocated.

Chapter 8: References

Value Description

SCHEDULEVCRSV The reservation was created as part of a schedule
VC command. This pertains to reservations creating
while scheduling MWS Services, and these are
filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after
completion of the first job to use the reserved
resources.

SPACEFLEX The reservation is allowed to adjust resources
allocated over time in an attempt to optimize
resource utilization.

STANDINGRSV If set, the reservation was created by a standing
reservation instance.

STATIC Makes a reservation ineligible to modified or
canceled by an admin.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved
time frame in an attempt to optimize resource
utilization.

TRIGHASFIRED The reservation has one or more triggers that have
fired on it.

WASACTIVE The reservation was previously active.

BESTEFFORT Succeed even if only partial resources available.

COMMTRANSPARENT Job does not generate network communication.

MessageVersion1

Field Name Type POST PUT Description

author String No No The author of the message.

creationTime Date No No The time the message was created in epoch

Chapter 8: References

904 8.4 Resources Reference

8.4 Resources Reference 905

Field Name Type POST PUT Description

time.

expireTime Date No No The time the message will be deleted in
epoch time.

index Integer No No The index of the message relative to other
messages in Moab's memory.

message String No Yes The comment information itself.

messageCount Integer No No The number of times this message has been
displayed.

priority Double No No An optional priority that can be attached to
the comment.

ReservationRequirement
Represents all the types of requirements a user can request while creating a
reservation.

Field Name Type POST PUT Description

architecture String Yes No Required architecture.

featureList Set<String> Yes No The list of features required for this
reservation.

featureMode String No No Required feature mode.

memory Integer Yes No Required node memory, in MB.

nodeCount Integer No No Required number of nodes.

nodeIds Set<String> No No The list of node IDs required for this
reservation.

os String Yes No Required operating system.

taskCount Integer Yes No Required task count.

Chapter 8: References

ReservationStatistics
Represents some basic statistical information that is kept about the usage of
reservations. All metrics that are kept track relate to processor-seconds usage.

Field Name Type POST PUT Description

blockedProcessorSeconds Long No No Number of processor seconds
included in the reservation.

reservedProcessorSeconds Long No No Number of processor seconds
blocked by jobs in the
reservation.

Trigger

Field Name Type POST PUT Description

id String No No Trigger id - internal ID used by
Moab to track triggers.

action String No No For exec atype triggers, signifies
executable and arguments. For
jobpreempt atype triggers,
signifies PREEMPTPOLICY to
apply to jobs that are running on
allocated resources. For
changeparam atype triggers,
specifies the parameter to change
and its new value (using the
same syntax and behavior as the
changeparam command).

actionType TriggerActionType No No

blockTime Date No No Time (in seconds) Moab will
suspend normal operation to
wait for trigger execution to
finish. Use caution as Moab will
completely stop normal
operation until BlockTime
expires.

description String No No

Chapter 8: References

906 8.4 Resources Reference

8.4 Resources Reference 907

Field Name Type POST PUT Description

eventType TriggerEventType No No

expireTime Date No No Time when trigger should be
terminated if it has not already
been activated.

failOffset Date No No Time (in seconds) that the
threshold condition must exist
before the trigger fires.

flags Set<TriggerFlag> No No

interval Boolean No No When used in conjunction with
MultiFire and RearmTime trigger
will fire at regular intervals. Can
be used with TriggerEventType:
EPOCH to create a Standing
Trigger. Defaults to false.

maxRetry Integer No No The number of times Action will
be attempted before the trigger is
designated a failure.

multiFire Boolean No No Whether this trigger can fire
multiple times. Defaults to false.

name String No No Trigger name - can be auto
assigned by Moab or requested.
Alphanumeric up to 16
characters in length.

objectId String No No The ID of the object that this is
attached to.

objectType String No No The type of object that this is
attached to. Value: vm - Virtual
Machine

offset Date No No Relative time offset from event
when trigger can fire.

Chapter 8: References

Field Name Type POST PUT Description

period TriggerPeriod No No Can be used in conjunction with
Offset to have a trigger fire at the
beginning of the specified period.
Can be used with EType epoch to
create a standing trigger.

rearmTime Date No No Time between MultiFire triggers.
Rearm time is enforced from the
trigger event time.

requires String No No Variables this trigger requires to
be set or not set before it will
fire. Preceding the string with an
exclamation mark (!) indicates
this variable must NOT be set.
Used in conjunction with sets
to create trigger dependencies.

sets String No No Variable values this trigger sets
upon success or failure. Preceding
the string with an exclamation
mark (!) indicates this variable is
set upon trigger failure.
Preceding the string with a caret
(^) indicates this variable is to be
exported to the parent object
when the current object is
destroyed through a completion
event. Used in conjunction with
requires to create trigger
dependencies.

threshold String No No Reservation usage threshold.
When reservation usage drops
below Threshold, trigger will fire.
Threshold usage support is only
enabled for reservations and
applies to percent processor
utilization. gmetric thresholds
are supported with job, node,
credential, and reservation
triggers. See 'Threshold Triggers'
in the Moab Workload Manager
Administrator Guide for more

Chapter 8: References

908 8.4 Resources Reference

8.4 Resources Reference 909

Field Name Type POST PUT Description

information.

timeout Date No No Time allotted to this trigger
before it is marked as
unsuccessful and its process (if
any) killed.

type TriggerType No No The type of the trigger.

unsets String No No Variable this trigger destroys
upon success or failure.

TriggerActionType
This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers.

CHANGE_
PARAM

Run changeparam (NOT PERSISTENT).

JOB_
PREEMPT

Indicates that the trigger should preempt all jobs currently allocating
resources assigned to the trigger's parent object. Only apply to reservation
triggers.

MAIL Sends an email.

INTERNAL Modifies an object internally in Moab. This can be used to set a job hold, for
example.

EXEC Execute the trigger action. Typically used to run a script.

MODIFY Can modify object that trigger is attached to.

QUERY

RESERVE

SUBMIT

Chapter 8: References

TriggerEventType
This enumeration specifies the event type of a trigger.

Value

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

DISCOVER

LOGROLL

TriggerFlag
This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach

Chapter 8: References

910 8.4 Resources Reference

8.4 Resources Reference 911

Value Description

this as a message to the trigger object.

CLEANUP If the trigger is still running when the parent object
completes or is canceled, the trigger will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See
'Checkpointing a Trigger' in the Moab Workload Manager
Administrator Guide for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the
globalvars flag in addition to its own name space. A specific
node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_STDIN Trigger passes its parent's object XML information into the
trigger's stdin. This only works for exec triggers with
reservation type parents.

USER The trigger will execute under the user ID of the object's
owner. If the parent object is sched, the user to run under
can be explicitly specified using the format
user+<username>, for example, flags=user+john:

GLOBAL_TRIGGER The trigger will be (or was) inserted into the global trigger
list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_SYSTEM_JOB The trigger belongs to a generic system job (for
checkpointing).

Chapter 8: References

Value Description

REMOVE_STD_FILES The trigger will delete stdout/stderr files after it has been
reset.

RESET_ON_MODIFY The trigger resets if the object it is attached to is modified,
even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to kill the script
when a trigger times out. This flag will instead send a
SIGTERM (kill -15) signal to kill the script. The SIGTERM signal
will allow the script to trap the signal so that the script can
clean up any residual information on the system (instead of
just dying, as with the SIGKILL signal). Note: A timed-out
trigger will only receive one kill signal. This means that if
you specify this flag, a timed-out trigger will only receive the
SIGTERM signal, and never the SIGKILL signal.

TriggerPeriod
This enumeration specifies the period of a trigger.

Value

MINUTE

HOUR

DAY

WEEK

MONTH

TriggerType
This enumeration specifies the type of the trigger.

Value Description

generic Generic trigger type.

elastic Elastic computing trigger type.

Chapter 8: References

912 8.4 Resources Reference

8.4 Resources Reference 913

Related Topics

l 4.26 Virtual Containers

Chapter 8: References

	Moab Web Services Overview
	Chapter 1: Moab Web Services Setup
	1.1 Configuring Moab Web Services
	1.1.1 Home Directory
	1.1.2 Configuration Files
	1.1.3 LDAP Configuration Using /opt/mws/etc/mws-config.groovy
	1.1.4 PAM (Pluggable Authentication Module) Configuration Using /opt/mws/etc/mws-config.groovy
	1.1.5 OAuth Configuration Using /opt/mws/etc/mws-config.groovy

	1.2 Setting up MWS Security
	1.2.1 Securing the Connection with Moab
	1.2.2 Securing the Connection with MongoDB
	1.2.3 Securing Client Connections to MWS
	1.2.4 Securing the LDAP Connection
	1.2.5 Securing the Connection with the Message Queue

	1.3 Configuring Logging
	1.3.1 Logging Introduction
	1.3.2 Configuring an Event Log
	1.3.3 Configuring an Audit Trail Log

	1.4 Version and Build Information
	1.4.1 Browser
	1.4.2 REST Request
	1.4.3 MANIFEST.MF File

	Chapter 2: Access Control
	 2.1 Application Accounts
	 2.2 Managing Application Accounts
	 2.3 Listing Application Accounts
	 2.4 Creating an Application Account
	 2.5 Displaying an Application Account
	 2.6 Modifying an Application Account
	 2.7 Resetting an Application Password
	 2.8 Deleting an Application Account

	Chapter 3: About the API
	3.1 RESTful Web Services
	3.2 Data Format
	3.3 Global URL Parameters
	3.3.1 Parameters
	3.3.2 API Version (api-version)
	3.3.3 Pretty (pretty)
	3.3.4 Field Selection (fields)
	3.3.5 Field Exclusion (exclude-fields)
	3.3.6 Sorting (sort)

	3.4 Requesting Specific API Versions
	3.5 Responses and Return Codes
	3.5.1 Listing and Showing Resources
	3.5.2 Creating Resources
	3.5.3 Modifying Resources
	3.5.4 Deleting Resources
	3.5.5 Moab HPC Suite Response Headers

	3.6 Error Messages
	 400 Bad Request
	 401 Unauthorized
	 403 Forbidden
	 404 Not Found
	 405 Method Not Allowed
	 500 Internal Server Error

	3.7 Pre- and Post-Processing Hooks
	3.7.1 Configuring Hooks
	3.7.2 Defining Hooks for a Resource
	3.7.3 Before Hooks
	3.7.4 After Hooks
	3.7.5 Error Handling
	3.7.6 Defining Common Hooks
	3.7.7 Reference

	3.8 Authentication
	3.9 System Events
	3.9.1 Events
	3.9.2 Notification Conditions

	Chapter 4: Resources
	4.1 Access Control Lists (ACLs)
	4.1.1 Getting ACLs
	4.1.2 Creating or Updating ACLs
	4.1.3 Deleting ACLs

	4.2 Accounting Resources
	4.2.1 Accounting Accounts
	4.2.2 Accounting Allocations
	4.2.3 Accounting Charge Rates
	4.2.4 Accounting Funds
	4.2.5 Accounting Liens
	4.2.6 Accounting Organizations
	4.2.7 Accounting Quotes
	4.2.8 Accounting Transactions
	4.2.9 Accounting Usage Records
	4.2.10 Accounting Users

	4.3 Credentials
	4.3.1 Getting Credentials
	4.3.2 Modifying Credentials

	4.4 Diagnostics
	4.4.1 Get Version Information
	4.4.2 Diagnose Authentication
	4.4.3 Connection Health Information
	4.4.4 Get License Information

	4.5 Distinct
	4.5.1 Get Distinct Values

	4.6 Events
	4.6.1 Getting Events
	4.6.2 Creating Events

	4.7 Fairshare
	4.7.1 Getting Credential-Based Fairshare Interval Data

	4.8 Job Arrays
	4.8.1 Submitting Job Arrays

	4.9 Jobs
	4.9.1 Supported Methods
	4.9.2 Getting Job Information
	4.9.3 Submitting Jobs
	4.9.4 Modifying Jobs
	4.9.5 Deleting (Canceling) Jobs

	4.10 Job Templates
	4.10.1 Getting Job Templates

	4.11 Metric Types
	4.11.1 Getting Metric Types

	4.12 Nodes
	4.12.1 Getting Nodes
	4.12.2 Modifying Nodes

	4.13 Notification Conditions
	4.13.1 Getting Notification Conditions
	4.13.2 Updating Notification Conditions

	4.14 Notifications
	4.14.1 Getting Notifications
	4.14.2 Ignoring Notifications
	4.14.3 Unignoring Notifications
	4.14.4 Dismissing Notifications

	4.15 Permissions
	4.15.1 Getting Permissions
	4.15.2 Creating Permissions
	4.15.3 Deleting Permissions

	4.16 Plugins
	4.16.1 Getting Plugins
	4.16.2 Creating Plugins
	4.16.3 Modifying Plugins
	4.16.4 Deleting Plugins
	4.16.5 Accessing Plugin Web Services

	4.17 Plugin Types
	4.17.1 Getting Plugin Types
	4.17.2 Creating or Updating Plugin Types

	4.18 Policies
	4.18.1 Getting Policies
	4.18.2 Modifying Policies

	4.19 Principals
	4.19.1 Getting Principals
	4.19.2 Creating Principals
	4.19.3 Modifying Principals
	4.19.4 Deleting Principals

	4.20 Priority
	4.20.1 Getting Priorities
	4.20.2 Modifying Priorities

	4.21 Reports
	4.21.1 Getting Reports
	4.21.2 Getting Samples for Reports
	4.21.3 Creating Reports
	4.21.4 Creating Samples
	4.21.5 Deleting Reports

	4.22 Reservations
	4.22.1 Getting Reservations
	4.22.2 Creating Reservations
	4.22.3 Modifying Reservations
	4.22.4 Releasing Reservations

	4.23 Resource Types
	4.23.1 Getting Resource Types

	4.24 Roles
	4.24.1 Getting Roles
	4.24.2 Creating Roles
	4.24.3 Modifying Roles
	4.24.4 Deleting Roles

	4.25 Standing Reservations
	4.25.1 Getting Standing Reservations

	4.26 Virtual Containers
	4.26.1 Getting Virtual Containers
	4.26.2 Creating Virtual Containers
	4.26.3 Modifying Virtual Containers
	4.26.4 Destroying Virtual Containers

	Chapter 5: Reporting Framework
	5.1 Overview of Reporting Framework
	5.1.1 Concepts
	5.1.2 Capabilities

	5.2 Example Report (CPU Utilization)
	5.2.1 Creating a Report
	5.2.2 Adding Samples
	5.2.3 Consolidating Data
	5.2.4 Retrieving Report Data
	5.2.5 Possible Configurations

	Chapter 6: About Moab Web Services Plugins
	6.1 Plugin Overview
	6.1.1 Plugin Introduction
	6.1.2 Lifecycle States
	6.1.3 Events
	6.1.4 Custom Web Services
	6.1.5 Utility Services
	6.1.6 Data Consolidation
	6.1.7 Routing

	6.2 Plugin Developer's Guide
	6.2.1 Requirements
	6.2.2 Dynamic Methods
	6.2.3 Logging
	6.2.4 i18n Messaging
	6.2.5 Configuration
	6.2.6 Configuration Constraints
	6.2.7 Individual Datastore
	6.2.8 Exposing Web Services
	6.2.9 Reporting State Data
	6.2.10 Controlling Lifecycle
	6.2.11 Accessing MWS REST Resources
	6.2.12 Creating Events and Notifications
	6.2.13 Handling Events
	6.2.14 Handling Exceptions
	6.2.15 Managing SSL Connections
	6.2.16 Utilizing Services or Custom 'Helper' Classes
	6.2.17 Packaging Plugins
	6.2.18 Example Plugin Types

	6.3 Moab Workload Manager Resource Manager Integration
	6.3.1 Configuring Moab Workload Manager
	6.3.2 Resource Manager Queries

	6.4 Plugin Type Management
	6.4.1 Listing Plugin Types
	6.4.2 Displaying Plugin Types
	6.4.3 Plugin Type Documentation
	6.4.4 Add or Update Plugin Types

	6.5 Plugin Management
	6.5.1 Listing Plugins
	6.5.2 Creating a Plugin
	6.5.3 Displaying a Plugin
	6.5.4 Modifying a Plugin
	6.5.5 Deleting a Plugin
	6.5.6 Monitoring and Lifecycle Controls
	6.5.7 Setting Default Plugin Configuration

	6.6 Plugin Services
	6.6.1 Job RM Service
	6.6.2 Moab HPC Suite REST Service
	6.6.3 Node RM Service
	6.6.4 Plugin Control Service
	6.6.5 Plugin Datastore Service
	6.6.6 Plugin Event Service
	6.6.7 SSL Service

	Chapter 7: Plugin Types
	7.1 Power Management Plugin
	7.1.1 Creating a Power Management Plugin
	7.1.2 Configuration Parameters
	7.1.3 Plugin Management
	7.1.4 Web Services Node Power (Secured)
	7.1.5 Reload Node Configuration (Secured)
	7.1.6 Node Configuration File
	7.1.7 The Node Power and Query Script
	7.1.8 Troubleshooting

	Chapter 8: References
	8.1 Client Code Samples
	8.1.1 Python Samples
	8.1.2 curl Samples

	8.2 MWS Configuration
	8.3 Logging Configuration
	8.4 Resources Reference
	8.4.1 Fields: Access Control Lists (ACLs)
	8.4.2 Accounting Resources
	8.4.3 Fields: Credentials
	8.4.4 Fields: Events
	8.4.5 Fields: Job Arrays
	8.4.6 Fields: Jobs
	8.4.7 Fields: Job Templates
	8.4.8 Fields: Metric Types
	8.4.9 Fields: Nodes
	8.4.10 Fields: Notification Conditions
	8.4.11 Fields: Notifications
	8.4.12 Fields: Plugins
	8.4.13 Fields: Plugin Types
	8.4.14 Fields: Policies
	8.4.15 Fields: Principals
	8.4.16 Fields: Priority
	8.4.17 Fields: Report Datapoints
	8.4.18 Fields: Reports
	8.4.19 Fields: Reservations
	8.4.20 Fields: Resource Types
	8.4.21 Fields: Roles
	8.4.22 Fields: Report Samples
	8.4.23 Fields: Standing Reservations
	8.4.24 Fields: User's Permissions
	8.4.25 Fields: Virtual Containers

